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Abstract

In this paper, we construct and analyse a discrete cancer mathe-
matical model. Essential dynamic properties such as positivity and
boundedness of solutions are discussed. Using the Lyapunov stabil-
ity theorem, we prove that one of the tumor-free equilibria is globally
asymptotically stable. Furthermore, the discrete model exhibits chaos
for certain parameter values and this is supported by the existence of
a positive Lyapunov exponent. Numerical simulations are performed
to demonstrate our analytical results.
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1 Introduction

Cancer is often regarded as one of the most feared diseases worldwide because of the pain and sorrow
associated with some of its treatments and untimely deaths it causes. According to [1], cancer accounted
for ahout 9 million deaths globally in 2016. In the study of mechanisms of carcinogenesis [2 6], this
disease is partly understood to be a consequence of some damage to the DNA of an organism, which
fails to successfully undergo DNA repair and restoration; see for instance [3,4,7 9]. The damaged
DNA undergoes mutation which results in genetic changes. Cell division may be affected by these
changes in ways that lead to excessive and abnormal growth of cells known as tumor [4,10 12|, which
could be classified as either benign or malignant. A benign tumor is regarded as less harmful unless
it is situated on a vital organ such as the brain, whereas a malignant tumor is regarded as cancerous
because it may progress to invade the nearby tissues and ultimately metastasise to other organs.
IPathogenesis, progression and management of cancer are very complicated and this is one of the reasons
why interdisciplinary research in this area has become imperative. We acknowledge that clinical trials
are very essential for the study of diseases, however, they are often costly [13] and sometimes take a
relatively long time to yield reliable results [14].

Probably as either an alternative or a supplement, mathematical modeling has proven to be a useful
tool for understanding disease dynamics and less costly. Mathematical models are widely used to study

the dynamics of complex systems such as disease transmission [11, 15-18], electric circuits [19, 20],
population dynamics [21,22], and the list is endless. Several cancer mathematical models have been
developed; see for instance [23-31] for the continuous setting and [32-37] for the discrete setting. In
particular, the discrete model in [33] is without a doubt inspired by the model in [25]; however, it has
a pitfall of producing negative discrete solutions. Since human cells, or any other cells for that matter,
are non-negative quantities, it is essential that the discrete solutions remain in the biologically feasible
domain. In this paper, our main objective is to construct a discrete cancer model by considering the
parameters in the continuous model [25]. This research is necessary because statistical data about
systems is observed and collected in discrete time [15]. Furthermore, in order to simulate continuous
time models, the time interval needs to be discretised first.



Most importantly, our discrete model should preserve the essential dynamic properties of its contin-
uous counterpart and precisely the following: (i) equlibria (ii) positivity and boundedness of solutions
(iii) global asymptotic stability (GAS) of tumor-free equilibrium (iv) chaotic attractor.

A lot of work involving the construction of schemes that capture certain dynamic properties has
been done, namely: dynamically consistent schemes [16, 38-40], bifurcation preserving [41, 42], and
many more which are not mentioned here. However, the works on numecrical schemes that preserve
the GAS property are relatively fow; sce for instance [43-45] and their analysis often poses a great
challenge [46]. Our discrete model will not only preserve GAS property, but also preserve chaos; and
this is an important contribution of this paper. This is critical because chaos is defined as the sensitive
dependence of a dynamical system on initial conditions; see for instance [17-50]. Meaning that, in
the context of cancer, a small change of some clinical parameters might result to a change from a
stable clinical state of the patient to an unstable one. This phenomenon could be one of the major
contributors to the causes of unexpected deaths of patients who are in hospices and palliative care
units; see for instance [51-53].

The remainder of the paper is organised as follows: In Section 2 we introduce the continuous
model [25]. We construct the diserete model and analyse it in Section 3. Section 41 is devoted to
numerical simulations. The conclusion is in Section 5.

2 The continuous model

A nondimensionalised cancer mathematical model is studied in [12,25,54] and it reads as follows:
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which is a dynamical system in the nonnegative orthant:
T = {(x1,00.03) ER’|0 <x; < 1,0 <xp < 1,x3 > 0}.

The system in (1)-(3) represents the rate of change in tumor cell (x;), heathy cell (x2), and effector cell
(x3) populations, respectively. The model parameters aja, ajs, a2 and a3 account for a destructive
interaction between the tumor cells and the other cells [9,55-57|, while r2, ry and k3 reflect the impact
of growth stimulation on the healthy cells and the immune cells. Immune cells die naturally at the rate
ds.

Table 1 Nonlocal discretisations of System (1)-(3).
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3 The discrete model

In this Section we construct a discrete system which preserves nonnegativity and boundedness of
solutions, equilibria, global asymptotic stability and chaos of the system in (1)-(3). Let the step size

h="20 where f; = ih (i=0,1,2,--- ,N) and "' =~ x(t; +h) (k=1,2,3).

We introduee the nonlocal discretisations in Table 1; see for instance [39,41,68-61]. If we substitute
these nonlocal discretisations into the system in (1)-(3), we then obtain the following system of difference

equations:
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System (1) can be expressed in explicit form:
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3.1 Positivity and boundedness

Theorem 1. [f0<xi <1 (k=1,2,3), then 0 <x{"' <1 (k= 1,2) and there ezists &
0 <X < 8 whenever ds < 1+ 2r3.

Proof. We consider,
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The proof is complete.
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Lemma 2. The discrete System (5) is a dynamical system defined on the region
[p={(¥,%,4) ER0<H <1,0<5 <1,0<5 <8, ds < 1+23}. (6)
3.2 Equilibria
The steady state of system (5) satisfies the following equations:
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From the equations in (7)-(9), we obtain the system of equations in (10)-(12), respectively. And these
should be solved simultaneously.
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Remark 1. The equations in (10)-(12) are similar to the equations abtained in [25] for the continuous
model.

Table 2 Fixed points of Model (5)
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Lemma 3. Model (5) has 8 fized points and are given in Table 2, where we assume that
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Remark 2. The equilibria Ey, E; and E; are always nonnegative. However, E; (j=3,:--,7) might
have negative components for certain parameter values. As a result, the study of the stability of these
equilibria is a complicated task and may be done numerically.



3.3 Stability analysis

The tumeor free equilibria are of great interest because they mean the eradication of cancer. Hence, in
this Subsection we study the stability of the fixed point E;.

Theorem 4. If ay» > 1, then the fized point E; is locally asymptotically stable.

Proof. Let f; [x‘, ,1‘2,1‘4) (j=1,2,3) denote the Right Hand Side of System (5) corresponding to xff"'l,
respectively. The corresponding Jacobian matrix J evaluated at E, is given by the equation
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where 5
Jj = gfj (j=1,2,3) and (k=1,2,3). (15)

The eigenvalues of J(E)) are A = diag[J(E))]. Clearly, if aj2 > 1, then all the eigenvalues are nonzero
and have magnitudes less than 1. Hence, the fixed point E; is locally asymptotically stable [62]. |

Theorem 5. Let I, = {(x,xh,x5) e R}0 < x| < 1,2 =1,0<x, <1}. Ifap > 1, then the fized point
Ey is globally asymplotically stable with respect to T'y.

Proof. Let V;=V(x,x,,x) = x| be a Lyapunov function [69, pp. 450-453]. The function V satisfies
V:I't = R, and also,
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Table 3 Modecl parameters used in simulation [25] .

az) a3 as ry r3 k3 dy
1.5 2.5 0.2 0.6 4.5 1 0.5

_ A(1—and)— (4)" —andd
l+xli +algx‘£+a]}x§ ’

Note that AV; < 0 if a;p > 1 and x‘z = 1. Also, AV,(E|) = 0. By the Lyapunov stability theorem [69,
pp. 453], the proof is complete. |

3.4 Chaos and Lyapunov exponents

We introduce the method in [63] that will be used to calculate Lyapunov exponents of the discrete
system (5). Lyapunov exponents are numerical values that are used to determine chaotic behaviour of
attractors; see for instance [25,63]. Nonchaotic attractors have only nonpositive Lyapunov exponents,
whereas chaotic attractors have at least one positive Lyapunov exponent. Let

X = (2, %,5) and G=J()I(') I, (16)

where J is defined in Eq. (15). If A41,42,43 are the eigenvalues of the matrix G in Eq. (16), then the
Lyapunov exponents (LE) of system (5) are

1
LEj = iyl (7=1,2,3). (17)



The Lyapunov dimension [25] is given by
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4 Simulations

In this Section we use numerical illustrations to confirm theoretical findings. In all our simulations we
will use the parameter values in Table 3 with varying ajs.

Example 1. To validate Theorem 4, we use aja = 1.2 and the initial values x? = (0.1,0.8,0.1). Specif-
ically, we demonstrate that if system (5) starts close to the equilibrium point Ej, then the solution
asymptotically approaches E;. This is shown in Fig. 1. On the other hand, if we start at a point
0= (0.9,0.001,0.001) that is a little further than Ej, then the solution approaches Ej in an oscillatory
manner; see Fig. 2. In this scenario, both tumor and immune cells are destroyed.

Example 2. We validate Theorem 5, by using a2 = 1.2 and four different sets of initial values 2 € ;..
Precisely, in Fig. 3 we demonstrate that for all these initial values, the solutions of system (5) will
always asymptotically approach Ej.
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Fig. 1 To illustrate Example 1, the initial point 2° = (0.1,0.8,0.1), N =200 and a;2 = 1.2 are used with parameter
values in Table 3. Solution of Model (5) monotonically converges to the equilibrium point E; = (0,1,0) as scen

in (a), (b), (¢) and (d).



Asymptotic Stability (Oscillatory)
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Fig. 2 We further illustrate Example 1 by starting at the initial point x” = (0.9,0.001,0.001) while keeping

N =200 and a;; =1.2. In this case x; and x3 converge to Ej in a slightly oscillatory manner as scen in (b) and
(d), while x; approaches E; monotonieally in (¢). The phase portrait of x; —x; —x3 is in (a).

Global Asymptotic Stability
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Fig. 3 To illustrate Example 2, we consider four initial points in the region I'.: ¥ = (0.2,1,0.2), 3" = (0.4,1,0.4),
A% =(0.6,1,0.6) and 1% = (0.8,1,0.8), N = 200 and a;2 = 1.2. All trajectorics in this phase portrait converge to
E,.

Remark 3. The equilibrium point in Examples 1 and 2, together with the corresponding Figures 1-3,
appear to be biologieally questionable; however, this scenario makes sense if we consider the theory of
super-competitor cells [56,64]; whereby one ecll group has over-expression of MYC which might induce
apoptosis in its comparatively MYC-deprived neighbours, see for instance [65-68]. We nevertheless,
emphasise that research in this direction is ongoing and less definitive.



Example 3. To calculate the Lyapunov exponents, we consider aj> = 1, the initial values x” = (0.1,0.1,0.1'
and Eq. (16). Taking M — 78, we obtain the matrix G. Then, from Eq. (17) we get the following
Lyapunov exponents:

LE, =0.12969 , LE, = —0.11936 , LE, = —0.34887, (20)
and the Lyapunov dimension is
LE, + LE>
dp =24 ———= =2.029. 21
! |LE3| (21)

Clearly, LE, > 0. Hence, the following proposition:
Proposition 6. If a3 =1, then the discrete model (5) is chaotic for the parameter values in Table 3.

In order to support Proposition 1, the phase portrait of a chaotic attractor, its projections onto phase
spaces xj — Xz, X1 —Xx3 and x2 —x3 are shown in Fig. 4 (a), (b}, (¢) and (d), respectively. In particular,
sub-figure 4(a) depicts a chaotic attractor surrounding the biologically-feasible interior equilibrium
point. We can see from sub-figures (b), (¢) and (d) that the trajectories of the chaotic attractor come
very close to all the equilibria. Surely, getting too close to the equilibria Ey, E>, E3 and E4 could cause
deterioration in the clinical state of the patient because the healthy cells are depleted.

5 Conclusion

In this paper, a continuous chaotic cancer model is introduced and then its discrete counterpart is
constructed and analysed. It is proven that the discrete model exhibits the following essential dynamic
properties: positivity and boundedness of solutions, local and global asymptotic stability of some
equilibria and chaos. Numerical simulations support all our analytical resulis.

These results are important because chaos is capable of changing the patients” stable clinical states
to very unstable ones. Thus, more awareness of this phenomenon is recommended to the care-givers in
hospices and palliative care units.

It has to be noted that analysis of discrete models is challenging and the literature is not as vast
as for the continuous setting. According to the authors’ knowledge, very few works exist on discrete
models that preserve global asymptotic stability and chaos.

Our immediate plan is to apply the mathematical techniques in this paper to other dynamically
challenging models in science and engineering.

Chaotic attractor
(@) (b)

RO ' %00

Fig. 4 In this illustration the initial point 2" = (0.1,0.1,0.1), @j = 1 and N = 1500 arc used. We demonstrate
Proposition 1 in (a) where a chaotic attractor is depicted in phase space x) —x2 —x3. Its projections onto x; —x2,
x1 —x3 and x» —x3 phase spaces appear in (b), (c) and (d), respectively.
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