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Executive Summary  

The agricultural sector developed a need to utilise technology to make informed 

decisions about crops. Remote sensing technologies, which typically utilises 

satellite, airborne, or ground-based sensors, has been increasingly used in 

precision agriculture lately. However, Unmanned Aerial Vehicles (UAVs) or drones 

have become a more cost-effective and versatile solution, providing higher-

resolution imagery and greater flexibility in flight time, frequency, and crop 

visibility. 

The project opportunity stems from the growing usage of UAVs in agriculture. The 

problem statement addresses the need for a comprehensive framework for 

selecting, designing, and implementing a crop monitoring UAV system, which has 

not yet been identified. This project developed an integrated system of solution for a 

machine learning enabled drone that combines different attributes into a unique 

solution. 

The literature review highlighted several aspects to consider for a drone remote 

sensing system and illustrated how such a system fits into precision agriculture 

applications. Required equipment and technologies identified for a system include a 

machine learning enabled UAV, control systems, sensors, and data processing 

tools. A case study research approach is deemed appropriate as it allows for the 

review of literature and available solution options before designing a solution.  

Attributes were identified and modelled to create a unique decision support 

framework for a crop monitoring solution system following their relevance and 

combinatorial characteristics. The integrated system is divided into three solution 

paths, each with critical user decisions and recommended selection processes. 

Possible solutions are categorised by farm and aircraft specifications to facilitate 

simpler selection. The research objectives were addressed through the identification 

of these attributes and through designing the main decision systems along with the 

categorisation of potential solution options. 

A case study research approach is deployed throughout the project to allow for the 

integration of literature and available solution options to the holistic system and 

each smaller decision sub-system. The methodology was iterated within each main 

decision path to define and analyse a unique case for each decision system and 

create a solution based on the information available for the specific decision 

system. 
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Despite this research being skewed towards qualitative investigations, some 

quantifications from the research findings include that from the 31 UAV models 

considered for analysis, they can be categorised into six categories relating to UAVs 

characteristics and two categories related to the farm characteristics. The 

categories are designed to group together those aircrafts with similar 

characteristics or specifications, to allow for an easy reference and selection by the 

user. 

The presented solution addresses the complexity of the system and identified 

literature gaps through an encompassing and integrated system of solution. Future 

work includes creating a comprehensive database that includes all possible 

solution options and developing a functioning decision support system based on 

the developed solution system.  
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Definition of Terms 
 

The definition of the most important and most frequently used terms are presented 

in this section. All of the terms used within the project are largely explored within 

the literature review in Chapter 2: Literature Review. Terms are defined 

and introduced before assigning an acronym to them. Thereafter, the terms are 

referred to by only their acronym in some cases. The commonly used terms are 

defined below: 

Drone or Unmanned Aerial Vehicle (UAV): Any aircraft that operates without a 

human on-board the aircraft but rather by way of remote control from the ground 

or pre-programmed autonomous flight controls. The term drone and UAV are used 

interchangeably throughout the entire document. 

 

Crops: This is a generalised term used when referring to all plants grown and 

harvested on a large scale for profit generation or personal subsistence. The term 

crops are used when referring to crops in general throughout the document, in rare 

cases specific crop types or crop groups are mentioned.  

 

Machine Learning Enabled UAVs: This includes aircrafts that are in some manner 

controlled using machine learning methods, or the control system is designed using 

machine learning methodologies. An assumption can be made that all UAVs 

included in this analysis are machine learning controlled, unless otherwise 

specified.  

 

Non-Machine Learning Controlled UAVs: This includes aircrafts that does not 

incorporate machine learning methods in the design of the navigational system or 

integrate the learning ability within any part of the aircraft control mechanisms. 

 

Precision Agriculture (PA): This is defined as the science of improving crop yields. 

It aids with agricultural decision making based on high technology sensors and 

analysis tools (Singh et al., 2020). 

 

Remote Sensing: This is a way of monitoring and detecting physical 

characteristics of a geographic area based on the reflected radiation measured from 

either a satellite or aircraft. 
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Payload: This is a sensor or camera (or combination thereof) attached to the UAV 

that captures the data used for crop monitoring purposes.  

 

Holistic: This refers to the system or object as a whole, rather than parts of it. 

 

Integrated System: This is a combination of different components and sub-

systems into a single functional system. 

 

System User: This consists of the farmer, farm manager or individual that will 

utilise and operate the crop monitoring system on the respective farm. The system 

user is referred to using male pronouns, throughout the document as a method of 

generalisation. 

 

Decision Support System (DSS): A responsive system designed and developed to 

promote the decision making process of ill-structured decision-making problems or 

scenarios.  

 

Decision Support Framework (DSF): An integrated framework created to 

incorporate all factors and considerations imperative to the design of a functioning 

decision support framework. 
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Chapter 1: Introduction 

1.1 Background Information 

By 2050, the world population is estimated to increase by two billion people while 

the percentage of land used for cultivation will only increase by a meagre 4%, 

according to the United Nations’ Food and Agriculture Organisation (FAO) 

(Dharmaraj & Vijayanand, 2018). Statistics South Africa estimates 20% of the 

country’s population suffers from food insecurity, and with the estimated global 

population increase, food security will only become an increasingly urgent matter 

(Statistics South Africa, 2019). Agriculture plays a vital role in the economy and 

livelihood of any country. Commercial farms as well as smallholder farms are 

important to ensure food security for a single household, community or country. In 

addition, farming activities generate large revenue for both individual households 

and larger farming businesses, which in turn supports the local and global 

economies. Encouraging sustainable agricultural practices along with rural 

development is crucial to eliminate extreme poverty in both South Africa and the 

rest of the African continent (Aguera et al., 2020).  

The use of advanced technologies adapted for agricultural applications has the 

potential to transform this sector under the correct enabling conditions. These 

technologies include machine learning, computer vision, artificial intelligence (AI), 

Internet of Things (IoT), remote sensing and Unmanned Aerial Vehicles (UAVs) 

(Aguera et al., 2020). Applied in the agricultural sector the above mentioned 

technological implementations, form part of a much larger and broader global 

digital transformation. For the technologies to be applied, digitalisation of 

agriculture should be conducted. Aguera et al. (2020) define the digitalisation of 

agriculture as changing measured agricultural inputs and outputs into digital data 

to be used for advanced decision making based on additional information and the 

automation of systems.  

Improved technologies allow for larger and increasing amounts of data to be 

captured on farms and analysed. A new form of agriculture, namely ‘precision- or 

smart farming’ emerged as a result of the increasing datafication of the sector. The 

entire step towards digitalising the agricultural sector can lead to opportunities 

that could aid South Africa and the entire African continent to tackle food 

insecurity while creating the possibility for additional job creation. The South 

African agricultural sector has started to indicate the use of some of these 
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advanced technologies and digitalisation. The technologies mentioned above 

including additional satellite systems, robotics, data management and analytics 

tools are all incorporated to develop services geared towards cost reduction, 

resource conservation, input optimisation and output maximisation (Aguera et al., 

2020).  

Mulla (2013) predicted that in the near future, there would be a need for massive 

data collection and analysis of crop characteristics to identify and manage various 

factors that can affect overall crop health. This information is to be obtained by 

sensors from satellites, aeroplanes, remotely piloted aircrafts and other robots or 

machines. The data will assist in identifying weeds, pests and diseases at an early 

stage, as well as the crop health, water stress and nutritional deficit, for the precise 

and selected application of fertilisers and pesticides. 

1.2 History and Overview of UAVs 

A drone or an Unmanned Aerial Vehicle (UAV) is a pilotless aircraft, that is either 

operated using remote control or by way of a pre-programmed flight route (Krishna, 

2018). The term drone is typically used as a collective term for an aircraft without 

an on-board pilot. These aircrafts can either be operated from the ground with a 

remote-control system or fly autonomously (Custers, 2016). Different terms exist 

when referring to a drone, but none of these terms has the same scope or meaning 

to the different stakeholders. A drone is the term adapted by the media and thus 

the term most widely known by the public (Custers, 2016). The first association for 

the term drone was within the military, however, the term is now used for 

unmanned aeroplanes and helicopters, usually equipped with a camera which can 

be controlled remotely using a smartphone.  

The terms UAV or Unmanned Aerial System (UAS) refer to the same type of aircraft 

as a drone, however, these terms are more commonly used in official documents or 

legislation. In practice, a UAV refers to the flying platform, whereas a UAS refer to 

both the platform and the control system in place at the ground station (Custers, 

2016). A Remotely Piloted Aircraft System (RPAS) refers to a UAS that is remotely 

controlled by a pilot. An RPAS, therefore, differs from a UAV and UAS as a pilot is 

necessary to operate the system, whereas a UAV or UAS can be operated by any 

individual or is autonomously operated. Custers (2016) stipulates that all RPASs 

are UAVs, but not all UAVs are RPASs. Other terms used to describe specific 

subsets of drones include Unmanned Combat Aerial Vehicles (UCAVs), Micro Aerial 
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Vehicle (MAV) or micro copters. Drones used for recreational purposes such as 

model aeroplanes or radio-controlled aircrafts indicate another subset of drones.  

Drones were first developed during the First World War as an unmanned, radio 

controlled airplane used in remote warzones for enemy surveillance (Stehr, 2015). 

Drones used in the military sector range from aerial torpedoes or fling bombs to 

enemy scouting UAVs. Since then, drones have been developed and sold 

commercially while adopting various other roles in different fields including 

journalism, photography, entertainment, mining, agriculture, healthcare, parcel 

delivery or e-commerce, emergency response systems, and wildlife conservation, to 

name a few.  UAVs within the field of agriculture have been gaining more 

popularity, especially within the South African market. Drones within agriculture 

are being used for several purposes, including, crop monitoring and evaluating 

purposes, livestock monitoring, safety and security as well as pesticide spraying.  

 

Over the recent years, significant development within drone technology has led to 

drones being sold commercially for various uses including but not limited to: 

photography, surveillance, package delivery, entertainment and recreational use. 

Puri, Nayyar, and Raja (2017) indicated that drones offer many advantages above 

anything else of the same nature such as ease of use, availability and monitoring of 

areas that are hard to reach by man, observation of forest fires, tracing of illegal 

activities and crop yields surveillance. Consumers can purchase drones at an 

affordable price for personal or recreational use as the user does not require a 

license to operate the drone.  

Modern drone technologies have advanced considerably in the last 10-15 years 

(Puri et al., 2017). Most drones are equipped with a GPS and camera which the 

pilot can use to track and fly the drones over longer distances while making use of 

smartphones with built-in GPS systems. Drones can integrate with High-Definition 

(HD) cameras by way of Wi-Fi technology and provide a real-time video or First 

Person View of the flight over a smartphone or tablet.   

Drones are mostly categorised into two categories, fixed-wing aeroplanes and rotary 

motor helicopters as mentioned above. A fixed-wing drone looks like an aeroplane 

and uses lift and drag to fly, similar to a normal aircraft (Miller & Adkins, 2018). 

These drones usually have a longer battery life and can fly at greater speeds, thus 

covering a larger surface in the same amount of time. A fixed-wing drone does 

however require a ‘landing strip’ or space to take off and land. A rotary motor 
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helicopter or rotary drone is distinguished based on the number of propellers, 

similar to a helicopter, attached to the drone. The number of propellers typically 

ranges from 4 to 8 propellers. These propellers allow the drone to take-off and land 

vertically, even in a small confined space and hover over a specific area (Miller & 

Adkins, 2018). Rotary drones have a shorter battery life compared to fixed-wing 

drones but are easier to operate and manoeuvre. 

Most commercially available drones are fitted with their own cameras, typically 

used for photography or scouting. Drones with a specialised purpose may be fitted 

with a camera or sensor specifically for that purpose. Some drones allow the user 

to attach a camera of choice, whereas other cameras are fitted to a drone 

permanently. South African drone company, Aerobotics, designed and developed 

two cameras in-house, which can only be fitted onto the specific drone that they 

use for their operations (Reinecke & Prinsloo, 2017). 

1.3 Problem Statement 

Current methods of crop monitoring and evaluation are extremely time and labour 

consuming, as you need people are needed to physically walk through the fields 

and evaluate the health of the crops. Depending on the type of crop or plant, the 

human inspectors might need to inspect each tree, bush or plant. For crops such 

as wheat, maize, sugar cane, etc. only a small sample of the field will be evaluated. 

This could lead to incorrect conclusions on the overall health of the crop field, 

which in turn can lead to the farmer spending more time and resources to perform 

maintenance on the incorrectly diagnosed fields. 

Currently, aerial images of a field can be obtained through satellite images or 

aeroplanes. These options however provide low-resolution images at a higher cost 

(Stehr, 2015). In addition, these options are weather permitting as clouds or bad 

weather can obstruct the view of the field. Satellite images usually have a delay of a 

week or two before the images can be retrieved and then analysed by the farmer. 

Drones provide farmers with a low-cost, high-resolution, highly efficient, flexible 

alternative to manual crop and satellite-based monitoring and evaluation. UAVs 

provide aerial maps of the entire crop field and if fitted with the correct camera and 

equipment, the drones can determine the health of crops by measuring the 

temperature, chlorophyll levels and near infrared light emitted by the plants. These 

factors, including others, can ultimately determine and monitor the health of a 

single plant, as well as an entire field of crops. Drones can fly below the cloud level, 
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thus the view of the field is hardly ever obstructed. In addition, drones can be flown 

at regular intervals or at any time, depending on the need of the specific farmer.  

The need for a holistic and integrated system of solution to implement a drone 

system, for monitoring and evaluation of crops within the agricultural sector has 

been identified as a gap in the literature. This is premised on the fact that different 

drone designs have their respective capabilities and limitations. Hence, drones 

aren’t universally fit for all aerial monitoring tasks. The need to guide potential crop 

monitoring drone users on specifics concerning the selection and assemblage of a 

customised drone system is quite significant. As part of the integrated system of 

solution, a holistic perspective is considered to evaluate all relevant aspects and 

elements obtained from the literature. The system of solution as developed in this 

research is quite robust and capable of aiding the user to make an easy and more 

informed decision regarding the design and/or selection of a crop monitoring 

system to be implemented as part of the user’s farming business. The solution 

should take into consideration all of the relevant elements that can influence the 

system, or the decisions made in the system to deliver an accurate and more 

suitable solution to address the specific needs of a customer.  

1.4 Research Questions 

The following research questions have been identified: 

1. What benefits does a remote sensing drone system present to the 

agricultural sector? 

2. How can drones be used to monitor or evaluate crop health to ultimately 

improve crop yield? 

3. What factors or measurements need to be considered or measured to 

determine or model the health of crops? 

4. What attributes or variables need to be considered when designing an 

integrated system of solution for the implementation of an agricultural 

drone system? 

5. How do the identified variables influence the main decisions to be made 

in the system?  
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1.5. Project Aim and Research Objectives 

This section of the report defines the project aim and specific research objectives. 

1.5.1 Project Aim 

The aim of this research is to develop an integrated system of solution based on a 

decision support framework for the selection and design of a drone system for 

agricultural crop monitoring. The framework makes provision for different inputs 

and preferences to aid in the design and selection of a suitable agricultural crop 

monitoring system. The goal of the solution system is to assist any user with the 

selection and integration design of a system suited to the users’ specific goals.  

1.5.2 Research Objectives 

The research objectives (RO) correspond to the project aim as well as the research 

questions specified above. The following under listed are the objectives addressed 

in this research: 

1. Holistically identify attributes of drones that are relevant to the monitoring of 

crop health diagnostics.  

2. Conduct of analysis on identified attributes for different crop farming 

systems. 

3. Design and development of an integrated system of solution capable of being 

deployed for the purpose of decision support and evaluation of crops in 

semi-commercial or commercial farms. 

1.5 Project Rationale 

The use of drones to monitor crops offers multiple possibilities to obtain data from 

crop fields in an easy, fast and cost-effective manner, compared to previous 

methods of crop monitoring. Drones can fly at a constant speed while taking high-

resolution aerial images of the area to which the camera is pointed. Along with 

these features, drones can be operated using either a remote control or a pre-

programmed flight system. These features along with proficient image analysis 

software and advantages such as ease of use, flexibility and accuracy enable 

drones to be used within precision agriculture as a remote sensing method. 

Not only does a drone system save the user time and money, but more informed 

farming decisions can be made based on the data and images captured by the 

system and analysed by the accompanying software or algorithms. The high 

flexibility of a drone system allows the user to capture high-resolution images as 

often as required. 
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A standardised configuration encompassing all of the different variables and 

inputs, providing a unique output or system design option has not yet been 

identified within relevant research. Due to this factor, many users employ ad-hoc 

procedures or continue to utilise traditional and alternative crop monitoring 

methods. Due to the current high cost of implementing a complete agricultural 

drone system, this crop monitoring method has not yet been commercialised and is 

only employed by large commercial farmers or businesses.  

Creating an integrated system of solution considering all of the variables and the 

different arrangements of these said variables would allow the system designer to 

develop and design a crop monitoring system for any customer, based solely on the 

specified needs and stated inputs of the user. The decision support solution system 

is designed in such a manner that the system user can also utilise the system to 

make informed and substantiated decisions regarding such a system. 

1.6 Motivation 

In recent years, airborne and satellite remote sensing systems are gradually being 

replaced by UAVs. Stehr (2015) indicates that the resolution of the cameras 

attached to drones is 40 000 times better than the commonly available satellite 

data and 44 times better than the best commercial satellite images. C. Anderson 

(2014) indicates that drones are much cheaper and offer a higher resolution 

compared to satellite imagery. This is mostly since drones can fly below the clouds 

and thus offer an unobstructed view of the agricultural fields. Compared to a 

manned aircraft, a drone can be purchased for almost the same price one would 

pay to have a manned aircraft run for an hour. 

Drones can provide farmers with a different view of the crops, which in turn 

presents the farmers with valuable information regarding the health and growth of 

crops. For instance, an aerial view of a field can reveal patterns to the farmer that 

is not apparent at eye level or from the ground. Multispectral sensors and cameras 

can collect data from the infrared and visible light spectrum. This information can 

assist the farmer in differentiating between healthy and stressed plants, long before 

the plant shows physical signs of distress. Lastly, drones can conduct crop surveys 

as frequently as required by the end user, which is much more frequent than 

provided by satellite or manned aircrafts. 

The fundamental motivation for this research project is the lack of an integrated 

system of solution for an agricultural crop monitoring system. Various systems 
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exist, designed for a specific scenario or farm, but no generalised system has yet 

been identified that encompasses all of the necessary factors and variables for the 

effective implementation of such a system 

1.7 Scope of the Research  

The scope of the research is to design and develop a holistic decision support 

system of solution to implement an agricultural drone monitoring system on any 

farm, given that information and data for the specific crop type cultivated on the 

farm are readily available. The project is limited to PA products and services 

provided or readily available within South Africa. The scope of the project does not 

include the AI aspect, thus designing or developing image recognition or specific 

data analysis software to determine the health of the crops or predict the yield. This 

component of the project is to be fulfilled using available off-the shelf solutions. 

1.8 Limitation of the Research 

The project is limited by the literature available within this area of study. The 

project is also limited to the current commercially available software, equipment 

and technology used for remote sensing drone applications. All software and 

hardware components identified within this study are those models available up to 

and including August 2022. Any new hardware components, equipment or updated 

software systems identified after the end of August are not considered for research 

purposes. No additional software or equipment will be designed during this project. 

Currently, no prospects of testing such a system exist, thus no data will be 

collected, and the project will solely be based on available literature and 

information provided freely by UAV manufacturing companies.  

1.9 Delimitation of the Project  

All AI-related aspects will not be included in this project, but rather consulted 

within the available literature. Already existing software applications or packages 

will be identified, and evaluated and a suitable software package will be selected to 

be implemented as part of the solution. 

The used of drones, especially those designed for agricultural purposes need to 

adhere to set out regulations and some legislation. These regulations and 

legislation apply more to the drone operator and the areas in which the drone(s) 

can be flown and not. For this project, these rules, regulations and legislation will 

be briefly mentioned, as part of the design phase of the project, but not evaluated 
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critically. These regulations only need to be considered if the system is to be tested 

or implemented on a real farm. 

The inputs identified for the solution system, during analysis, will be limited to 

those critically discussed within available literature. If no reputable literature is 

found regarding a specific aspect, topic or variable, the variable will be excluded 

from the study. If this variable, topic or aspect is crucial to the success of the 

project, a grey literature review will be conducted to obtain the necessary 

information. 

1.10 Project Organization 

Chapter one of this project document contains the background to the problem. The 

project opportunity is identified within the project statement subsection. Based on 

the identified need, applicable research questions and objectives are identified 

along with the project aim. Further, the project motivation, rational and scope of 

the research are presented in this Chapter. The appropriate limitations and 

delimitations are established along with the definitions of the terms mostly used 

throughout the document. 

The second Chapter addresses the relevant literature consulted to obtain an in-

depth understanding of the research domain. Alternative solutions are identified 

and evaluated. The preferred solution alternative is selected and introduced in this 

Chapter.  

Chapter three contains the research methodology or research approach 

alternatives. The conceptual and theoretical frameworks are defined within this 

Chapter as an accurate outline of the project.  

Chapter four contains the design of the final system of solution and the 

accompanying information and discussions. The chapter is divided into the three 

main solution paths and their accompanying sub-decisions. Finally, a conclusion 

and recommendations for the project along with the anticipated future work are 

discussed in Chapter five. 
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Chapter 2: Literature Review 

2.1 Introduction 

This chapter contains a literature review including the basic concepts pertaining to 

the implementation of an agricultural drone system. Research was conducted to 

gain a thorough understanding of concepts such as precision agriculture, remote 

sensing, drones and UAVs and crop monitoring techniques and methods. 

2.2 Precision Agriculture 

Zachariah (2019) defines precision agriculture (PA) as a farm management 

methodology that utilises IT technology to ensure that crops reach ideal health and 

efficiency.  Pierce (1999) describes PA as the utilisation of technology to manage 

variabilities, spatial and temporal, related to agricultural production, to improve 

the performance of crops as well as environmental quality. PA focuses on the 

protection of the environment while ensuring profitability and sustainability. C. 

Yang (2018) indicates the main idea of PA is to identify and monitor variability 

within the fields and to manage the variability accordingly. PA utilises specialised 

equipment, IT services, and software to continuously gather information regarding 

various factors such as the condition or health of crops, soil, and ambient air, 

among other relevant information. According to Santos, Barbosa, and Andrade 

(2019), PA is designed to improve the long-term, site-specific or production 

efficiency of the entire farm, as well as the profitability and productivity of 

production. Zachariah (2019) indicates that PA is the combination of IT and 

production experience, utilised to: optimise quality and production efficiency; and 

minimise risk and environmental impact. 

Precision agriculture commenced in the late 1980s with research and development 

of grid soil sampling and sensors, yield monitors, positioning systems and variable 

rate technology. Significant growth in PA technologies has occurred since the GPS 

systems and Geographic Information Systems (GIS), sensor technology and finally 

remote sensing technology were introduced and improved on. C. Yang (2018) 

proposes that PA is changing the way in which farmers are managing their fields as 

a whole. While the general adoption rate of precision agriculture is still low, some of 

the developed technologies have become standard practices within production 

agriculture. In the USA automatic guidance systems and yield monitors are the 

most popular PA technologies used (C. Yang, 2018). Other PA technologies include 

real-time crop and soil sensors, soil sampling using GPS technologies, variable rate 
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technology and remote sensing. These applications or technologies are mostly used 

by customers or consultants to enable site-specific water, fertiliser and pesticide 

application. PA can be divided into three components, namely: data capturing; data 

analysis and interpretation; and the implementation of a timely management 

response (Zachariah, 2019). 

2.2.1 Remote Sensing 

Remote sensing is the process of detecting and monitoring the physical 

characteristics of an area by measuring the reflected and emitted radiation at a 

distance (typically from a satellite or aircraft). Special cameras collect remotely 

sensed images, which help researchers "sense" things about the Earth. 

Remote sensing technologies supplement many PA activities as farmers are able to 

alter inputs according to specific conditions determined by spatial information 

technology (C. Yang, 2018). Z Chen, Zhou, and Tang (2004) indicate that the 

inherent characteristics of agriculture allow remote sensing to be a suitable method 

of monitoring and management of crops and agricultural fields. These 

characteristics include:  

- Traditional methods of field monitoring or survey are time-consuming and 

costly, as agricultural activities are usually performed in large spatial 

regions. 

- The economic output from agriculture is not so substantial, compared to 

other sectors. 

- Different crops have different phenological or biological rhythms as growth 

and development happen at different times of the year. 

- As humans monitor and manage agricultural activities, they require 

accurate and timely information regarding all aspects of agriculture.  

Remote sensing technology in the agricultural sector has been utilised for a long 

period of time, due to the technology meeting these inherent characteristics 

mentioned above. Zhongxin Chen et al. (2008) specify that remote sensing meets 

these requirements by way of its own characteristics, including: accuracy, timing, 

economy, rapidness, and repetitive and dynamic monitoring abilities.  

Remote sensing systems provide users with accurate information used for 

production and management in agriculture, in a timely manner. The main 

applications of remote sensing within this field include the monitoring of crop 
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growth, yield estimation or prediction, identification of crops, mapping of 

croplands, precision farming, etc.  

Wójtowicz, Wójtowicz, and Piekarczyk (2016) divide remote sensing into three 

categories: satellite, ground-based and airborne remote sensing. Each of these 

categories is evaluated based on their spatial and spectral resolutions. Spectral 

resolution specifies the spectral band width that can be detected with the sensor, 

whereas the spatial resolution indicates the pixel size or number of pixels used for 

satellite or airborne pictures. The three categories of remote sensing technology 

used for agricultural applications are described below.  

2.2.1.1 Satellite Remote Sensing 

The first satellite sensors to be used for agricultural applications, the Landsat and 

SPOT were introduced in the 1970s (C. Yang, 2018). Since then, high-resolution 

satellite sensors were developed providing users with high spatial resolution, and 

high revisit time. 

Nguyen et al. (2020) propose satellite imagery as an alternative method to generate 

field maps, or specifically paddy maps. Satellite images offer a wide spatial range 

over a large geographic area. These images can sometimes be accessed free of 

charge and cover a high temporal resolution, the number of times the same area or 

location is revisited to acquire data. Differentiation between crop areas and non-

crop areas is done using different image indices, based on the multi-spectral nature 

of satellite images. These image indices usually require comprehensive knowledge 

to analyse and might be subject to contradicting conditions.  

Some challenges experienced by satellite imagery as a remote sensing mechanism 

include cloud coverage or solar radiation influencing the images taken (Nguyen et 

al., 2020). In addition, older generation sensors have very low spatial resolution. 

The spatial resolution of a digital image indicates the number of pixels used to 

construct or form the image. Low-resolution images increase the probability of 

confusion between crops and natural vegetation (Zhongxin Chen et al., 2008). This 

confusion is however not limited to low-resolution images, as areas with 

complicated planting patterns and seasons can also lead to such confusion. The 

satellites used to gather the images are usually polar-orbiting satellites, which 

contain a relatively low sampling rate. Another challenge experienced by satellite 

imagery is the empirical nature of the current spectral indices used to identify 
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areas or vegetation, thus requiring additional domain-specific calibration and 

validation of the data.  

Significant improvements were made since high-resolution satellite sensors were 

first developed. The improved image sensors now offer a higher spatial resolution as 

well as a high revisit frequency. Along with the large area coverage and improved 

turnaround time for data, these high-resolution sensors can be used for many 

applications within the agricultural sector (C. Yang, 2018). These improved high-

resolution satellite sensors have significantly closed the gap between satellite 

imagery and airborne imagery used for precision agricultural purposes. The most 

recent high-resolution satellites provide the user with multispectral imagery, and 

resolutions ranging between 1.24m to 4m. 

Various applications for high-resolution satellite sensors exist within agriculture. 

The IKONOS satellite sensor delivered multispectral images which were used to 

map the leaf area index for vineyard canopy management; improve field map 

accuracy; estimate variability in soil properties; and created soil organic matter 

maps (C. Yang, 2018). The QuickBird satellite sensor was utilised for cotton yield 

mapping, crop type identification, mapping yield patterns for grain sorghum, 

disease detection in wheat and oil palms, estimating nitrogen concentration in 

irrigated maize as well as classifying weed patches in winter for site-specific 

control. The Spot-5 satellite sensor was evaluated by C. Yang, Everitt, and Murden 

(2011) for crop type identification and crop yield estimation purposes. Other 

satellite sensors were evaluated against ground-based sensors for the calculation of 

site-specific nitrogen fertilisation, nitrogen uptake in wheat and predicting the yield 

for different crops and plants.  

Despite the recent improvement in satellite sensors, some challenges are still 

experienced. Some customers or farmers are ill-informed or not up to date with the 

technology, and are therefore uncertain about which images to select or how to 

order new or even archived images (C. Yang, 2018). Acquiring and delivering 

images in a timely manner is a challenge to most companies. The actual image 

acquisition can vary greatly from the specified revisit time of the satellite sensors. 

This is due to weather conditions and possible competition between customers in a 

similar geographic area. Assorted publications of image processing exist, however, 

there are no standard methods or software available to convert images into 

vegetation index maps, classification maps or prescription maps. Customers often 
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face challenges when selecting the correct or appropriate software, due to the 

different capabilities, prices and complexities of these software (C. Yang, 2018). 

2.2.1.2 Ground-Based Remote Sensing 

Hand-held remote sensing devices are effective for smaller-scale field monitoring 

(Wójtowicz et al., 2016). These sensors offer greater spectral, temporal and spatial 

resolutions compared to airborne or satellite remote sensing mechanisms. The 

main limitation of these hand-held sensors is the efficiency and reduced time when 

evaluating small areas, compared to the larger areas monitored by aircraft or 

satellite sensors at a time. Ground-based remote sensing is usually performed 

using field spectrometers, to measure and monitor nutritional requirements or 

plants, water demands, weed control, detecting damage pertaining to pests, and 

forecasting yields (Wójtowicz et al., 2016). 

2.2.1.3 Airborne Remote Sensing 

Airborne remote sensing and imaging systems have been used within the field of 

precision agriculture since the 1990s (C. Yang, 2018). Up until recently, airborne 

remote sensing was conducted with piloted aircrafts but is now replaced by sensors 

attached to drones. Aeroplanes also offer a relatively cost-effective option for remote 

sensing uses as the systems are designed to capture high-resolution images at a 

low altitude, and slowly enough to allow a thorough analysis of these images 

(Zachariah, 2019). The uses for airborne remote sensing are similar to that of 

satellite sensors, as they include weed detection, estimating yield, plant population 

count, evaluating the salinity of soil and measuring the chlorophyll content in 

plants. Tsouros, Bibi, and Sarigiannidis (2019) indicate that manned aircrafts often 

need to perform multiple flights to obtain sufficient images of crops and can 

therefore result in a higher cost.  

2.3 Drones and UAVs 

In recent years, airborne remote sensing systems are gradually being replaced by 

UAVs. Limited research was found regarding manned aircraft remote sensing 

systems due to the influx of research on UAVs and their application within remote 

sensing and precision agriculture. The following section of the literature review will 

therefore focus on using drones within precision agriculture and for remote sensing 

applications. The term drone or UAV has already been defined as an aircraft that 

operates through the use of remote controls or by a pre-programmed flight route. 
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2.3.1 Drone Licensing and Legislation 

The South African Civil Aviation Authority (SACAA) specifies certain regulations to 

be followed when flying drones within South Africa. The flying or operating of 

drones is legal in SA, subject to strict regulations. The most important rules pertain 

to the premise under which drones are flown as Part 101 of the Civil Aviation 

Regulations (CAR) applies to all RPAS, operated for the following purposes: ("Civil 

Aviation Act No 13 of 2009, Civil Aviation Regulations Part 101 of 2011,") 

- Commercial operations 

- Corporate operations 

- Private operations 

- Non-profit operations. 

Excluded from the regulations specified in Part 101, is the following type of 

aircrafts: 

- Unmanned free balloons 

- Autonomous unmanned aircrafts 

- Model and Toy aircrafts 

- Aircrafts operated in terms of Part 94. 

RPAS classified as either class 1 or 2 aircrafts as well as individuals who act as 

owners, pilots, operators, observers and persons performing maintenance fall 

within the regulations of Part 101 of the Civil Aviation Regulations. Drones or RPAS 

are classified according to four parameters: the mass of the aircraft, referred to as 

the Maximum Take Off Mass (MTOM); the height above ground level it can fly; 

impact energy of the RPA (converted from the impact velocity of the RPA) and; the 

flight rules. The rules of flight correspond to the Radio line-of-sight (RLOS) between 

the operator and the aircraft. Various classification options exist for RLOS. The 

available classifications for RLOS aircrafts and operations are described in Table 1.  

Table 1 RLOS Aircraft Classifications and Operations 

Line of Sight Explanation  

RLOS: Radio Line-of-sight Direct contact linking the transmitter and 

receiver through electronic point-to-point 

contact. 

VLOS: Visual Line-of-sight An unobstructed view of the UAV from the 

person who operates the aircraft. The operator 

must be able to see the UAV with natural vision, 

or vision corrected with glasses or contact 
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Line of Sight Explanation  

lenses. The UAV operates within 120m above 

the ground level where the operator is situated 

and does not exceed a distance of 500m from 

the operator. 

R-VLOS: Restricted Visual 

Line-of-sight 

UAV operates within 500m of the operator and 

below the height of the highest obstacle within a 

300m radius of the aircraft. The operator is 

required to maintain direct, unaided visual 

contact with the aircraft. 

E-VLOS: Extended Visual 

Line-of-sight 

Aircraft operates within 120m above the surface, 

where an observer maintains direct visual 

contact with the UAV, within a radius of 1000m 

from the pilot. 

B-VLOS: Beyond Visual Line-

of-sight 

Operations where the operator cannot uphold a 

direct visual line of sight with the aircraft and 

thus manage the flight visually. 

Determination of the impact energy of an RPA is described in the Technical 

Guidance Material (TGM) appendix in Part 101 of the CAR. The TGM for RPAS is 

currently under review, thus not information could be obtained from this material 

to calculate the impact energy of an RPA. The classification of RPAS as specified by 

the SACAA and the CAR is outlined in Table 2 ("Civil Aviation Act No 13 of 2009, 

Civil Aviation Regulations Part 101 of 2011,"). 

Table 2 RPAS Aircraft Classification 

Class Line-of-sight Energy (kJ) Height (ft) MTOM (kg) 

Class 1A R-VLOS/VLOS E < 15 h < 400 m < 1.5 

Class 1B R-VLOS/VLOS/E-

VLOS 

E < 15 h < 400 m < 7 

Class 1C VLOS/E-VLOS E < 34 h < 400 m < 20 

Class 2A VLOS/E-VLOS E < 34 h < 400 m < 20 

Class 2B Experimental/Research 

Class 3A B-VLOS E < 34 h < 400 m < 150 

Class 3B VLOS/E-VLOS Any h < 400 m < 150 

Class 4A B-VLOS Any h < 400 m < 150 

Class 4B Any Any Any m < 150 

Class 5 Reserved Reserved Reserved Reserved 

The term ‘Reserved’ refers to information that will be defined in the future, whereas 

the ‘h’ refers to the height above the surface. 

In addition to the different classifications of the aircrafts, different approvals 

and/or licenses are required to fly a drone for a specific use. Table 3 indicates each 
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licence and/or approval required to operate RPAS for commercial, corporate, non-

profit and private operations. According to subpart 101.01.2 of the CAR, private 

operations, refer to the use of a UAV for private or individual purposes with non-

commercial outcome, gain or interest. Provisions and regulations not applicable to 

RPAS for private use are provided in the subpart dealing with private operations of 

drones. Commercial operations refer to all drone operations performed for business 

purposes, performed for remuneration or hire, such as: anti-poaching, security 

surveillance, mapping, animal counting, aerial applications, etc. Corporate 

operations describe all non-commercial drone operations, where UAVs are used by 

any entity to assist in the conduct of their business. 

Table 3 Required Licence and Approval to Operate RPAS for Different Operations 

Type of Operation 

 

Commercial Corporate Non-Profit Private 

Required Approval     

ASL:  

Air Service Licence 

Yes N/A N/A N/A 

ROC:  

RPAS Operator 

Certificate 

Yes Yes Yes N/A 

RLA: RPAS  

Letter of Approval 

Yes Yes Yes N/A 

RPL:  

Remote Pilot Licence 

Yes Yes Yes N/A 

C of R:  

Certificate of 

Registration 

Yes Yes Yes N/A 

The Air Service License (ASL) referred to in Table 3 is awarded to applicants should 

they adhere to the stipulations mentioned in the Air Service Licencing Act ("Air 

services Licensing Act No.115," 1990). The ASL issued by the council is in 

accordance with the prescribed class of air service. Air Service refers to any service 

performed by an aircraft for a reward. The general requirements for an RPAS 

Operator Certificate (ROC) are specified in Part 101 of the CAR. The Regulation 

specifies that no individual shall operate any RPAS in terms of Part 101 or the CAR 

unless the person is the holder of: a) in the case of commercial, corporate and non-

profit operations, a valid ROC including the operations specifications attached 

thereto; and b) in the case of commercial operations, an ASL issued in terms of the 

Air Service Licensing Act, 1990 (Act No.115 of 1990). The RPAS Letter of Approval 
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(RLA) refers to a letter of approval granted to the applicant by the Director. 

According to Part 101 of the CAR, no RPAS shall be operated within the Republic, 

unless such RPAS has been issued with a letter of approval by the Director. Thus, 

no aircraft can be operated without a valid RLA. 

A Remote Pilot License (RPL) allows the holder of an RPAS to operate the system for 

financial gain. The license is issued by the SACAA upon completion of the course 

that contains a combination or theoretical and practical training. For an individual 

to obtain an RPL several compulsory requirements should be adhered to. These 

include: 

1. The applicant must be 18 years and older 

2. The applicant must hold current medical assessments 

3. An Approved Training Organisation (ATO) for training purposes must be 

identified 

4. Foreign theoretical training will be approved and validated 

5. Successful completion will only be accepted 

6. The applicant must pass the practical assessment for an RPL 

7. The applicant must pass the Radiotelephony Examination 

8. The applicant must achieve English Language Proficiency (ELP) level 4 or 

higher 

9. All RPL applications must be submitted to the SACAA. 

Part 101 of the CAR along with the Civil Aviation Technical Standards (CATS) 

provides an extensive list of requirements for RPL. All RPAs to be operated in the 

Republic of South Africa, require a Certificate of Registration (C of R) issued by the 

Director in accordance with Part 101 of the Civil Aviation Regulations of 2011. 

In general, it is acceptable to use RPAS for private use, given that a) the aircraft is 

used for the individual’s personal and private purposes, with no commercial 

outcome, gain or interest; b) All statutory requirements relating to privacy, liability 

and other laws should be adhered to by the pilot.  For all other uses of an RPAS, 

the aircraft must be registered and when operated, must adhere to the terms stated 

in Part 101 of the South African Civil Aviation Regulations. The regulations specify 

that no RPA should be flown/operated within 50m from any person of group of 

persons, or on any property without the property owners’ permission.  
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RPA’s are not permitted to fly in the following cases unless it has been approved by 

the SACAA: 

- Close to a manned aircraft 

- In a controlled airspace 

- 10km or closer to an aerodrome, such as an airport, airfield or helipad. 

- In restricted airspace 

- In prohibited airspace 

- If the aircraft weighs more than 7kg. 

Other more detailed regulations regarding more specific instances are discussed 

the Part 101 of the CAR that is not as important to this specific project. 

2.3.2 Machine Learning Enabled Drone Control System 

Traditional and most used methods to control UAVs are through a remote control 

system operated by a RPAS pilot. This method of control is usually referred to as a 

manual mode of control. Spinka, Kroupa, and Hanzálek (2007) identified a growing 

demand for other drone control systems. Many projects in both commercial and 

academic institutions are aiming to design a UAV autopilot system, to allow for a 

fully autonomous UAV system. Since then, Choi and Cha (2019) have identified the 

challenges faced by autonomous flight systems. These challenges were identified as 

control strategies that include parameter tuning, recognition of objects in specific 

environments, and real-time path planning.  

Different approaches were used to attempt to solve these challenges, such as a 

heuristic approach, a graph theory approach and a negotiation approach (Bortoff, 

2000; Gan & Sukkarieh, 2011; Sabo, Kingston, & Cohen, 2014). However, the 

above-mentioned approaches still had issues with system dynamics, sensors, etc. 

Machine learning has evolved into a more appealing approach for autonomous 

drone flights and also overcame the above challenges (Choi & Cha, 2019). Through 

utilising machine learning methodologies, UAVs are enabled to recognise patterns 

and make predictions from data without the need for designed programming for an 

autonomous flight. The study conducted by Choi and Cha (2019) identifies previous 

studies conducted where machine learning principles are applied to drones for 

autonomous flights. The two main contributions discussed are contributions to 

control strategies, and object recognition. The key to autonomous flight of UAVs is 

the control strategy adopted or improved by machine learning. Three categories are 

identified for control strategies where machine learning is applied, namely: 
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Parameter tuning, navigation and real-time path planning. Another challenge faced 

by autonomously controlled UAVs is that of object recognition, where the aircraft is 

required to identify or recognise objects in real-time to avoid collisions. In addition 

to collision avoidance, drones might require object recognition for altitude 

monitoring or checking for suitable landing areas. Although autonomous flight 

mechanisms still contain a number of challenges and issues, extensive research is 

being conducted to solve or address these challenges through the use of machine 

learning methods. 

Due to the increased amount of available data and the development of high-

performance processors and graphics processing units, the development of UAVs 

have benefitted immensely (Hashesh et al., 2022). Machine learning especially are 

known to provide machines with increased intelligence and enable the machines to 

perform some tasks more efficiently than human beings are capable of. As 

mentioned earlier, UAVs are traditionally designed to be controlled and operated by 

humans, but with the immense improvement and growth in popularity or machine 

learning and its applications, smart UAVs have become more fashionable (Hashesh 

et al., 2022).  

Data collected by the drone sensors can be used as inputs to perform distinct AI 

tasks. Machine learning solutions can aid UAVs through improving the energy 

efficiency of the aircrafts by way of efficient resource management and interference 

mitigation. In addition, machine learning can be used to aid in trajectory planning, 

to enable UAVs to be equipped with the correct battery capacity to be able to avoid 

obstacles and plan autonomous routes, while prolonging battery life. 

Moreover, essential UAV applications including landing site recognition, traffic 

control and surveillance could be intelligently enhance through the application of 

AI and machine learning algorithms (Hashesh et al., 2022). Another prospectively 

promising direction is to utilise existing machine learning computer vision 

algorithms for picture enhancements for UAV applications. Thus, using various 

machine learning techniques to automate more complex UAV tasks and thus 

improve the overall system efficiency. 

Mozaffari, Saad, Bennis, Nam, and Debbah (2019) states that machine learning can 

potentially be utilised to design and more importantly optimise UAV-based wireless 

communication systems. This is achieved through the basis that machine learning 

allows systems to better performance from learning from past experiences and their 
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environments. Some machine learning algorithms that can be used to assist a 

drone in adjusting flight positions, directions and motion control dynamically is 

reinforcement learning algorithms. UAVs are thus able to adapt to these dynamic 

environments and autonomously optimise their flight trajectory. Machine learning 

tools can further be used to predict user behaviour and effectively operate the 

aircrafts from these predictions.  

A. I. Khan and Al-Mulla (2019) states that the combination of machine learning and 

UAVs lead to increased precision, accuracy and higher efficiency in image 

classification and object detection. In general, the research pertaining to UAVs and 

machine learning combinations have increased over time, with the research within 

the agricultural sector maintaining a constant growth pattern. 

2.3.3 Drones in Agriculture 

The Association for Unmanned Aerial Vehicle Systems International (AUVSI) 

forecasts a high increase in the commercial use of drones over the next 12-15 

years, with agricultural drone use amounting to 80% of commercial drone usage 

(Karst, 2013). After military use, the AUVSI predicts that agricultural drone use will 

be the leading user.  

Drones within the agricultural sector have a range of different uses. Among the 

wide range of uses, Veroustraete (2015) specifies that a drone can be used for mid-

season crop monitoring, cattle or animal herd monitoring, mid-field weed 

identification, monitoring of irrigation equipment and determining soil fertility 

based on variable-rate application. Puri et al. (2017) indicate the following practical 

applications for drones within agriculture: farm analysis by way of 3D mapping, air 

monitoring of a field, Geographic Information System (GIS) mapping integration 

and determining crop health status through imaging. The implementation of drones 

for crop monitoring and pesticide spraying is presented by Mogili and Deepak 

(2018). 

According to Veroustraete (2015) crop health monitoring is thus far the leading use 

for drones in the agricultural sector. Drones have the ability to fly above crops 

while capturing images and other data that cannot be seen by a human, like near 

infrared emitted by the plants or the Normalised Difference Vegetative Index (NDVI). 

Determining crop health by way of drone imaging allows the farmer to monitor the 

crop health, transpiration and sunlight absorption rates, using multispectral 

sensors and near infrared and NDVI data (Puri et al., 2017). Drones can conduct 
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an inspection of the farm as well as a soil and/or field analysis can also be 

performed using a drone and 3D mapping. These inspections provide valuable 

information that leads to better crop growth (Puri et al., 2017). Using the same data 

and images used to determine crop health, a weed map can be created to 

differentiate between areas with high-intensity weed growth and areas with healthy 

crop growth (Veroustraete, 2015).  

Another use for drones within agriculture is to assist the farmer with specific 

application of fertilisers to crops. The nutrient uptake is determined based on a 

drone-generated variable-rate application (VRA) map, based on NDVI values. This 

VRA map allows the farmer to adjust the amount of fertiliser to be applied to 

different areas of the field, depending on the nutrient uptake in that specific area. 

Less fertiliser is applied to healthy areas and more to struggling areas, in essence 

decreasing fertiliser costs (Veroustraete, 2015). The reasoning behind the precise 

application of fertiliser can also be applied to the application of pesticides and 

water, which would increase the yield for a piece of agricultural land (Puri et al., 

2017). Drones integrated with GIS mapping can assist farmers to outline field 

borders and determine an accurate flight pattern.  

Tracking and monitoring of herds of animals are simplified by utilising drones to 

monitor herds from the sky. Some drones contain heat sensors or cameras allowing 

the monitoring of herds during the night. This can be used as a method to curb 

livestock theft, by continuously monitoring herd quantity and activity. Drones are 

also used to monitor irrigation equipment, over a large surface area and especially 

when crops reach certain heights (Puri et al., 2017). 

2.3.4 Drones in Precision Agriculture 

In comparison to images obtained by satellites, drones have a higher temporal and 

spatial resolution, which allows the availability of high-resolution images to be 

examined within PA (Zhang & Kovacs, 2012). Drones offer a practical, yet 

inexpensive substitute for obtaining imagery through satellite or aircraft 

applications. Zhang and Kovacs (2012) estimate that the UAS industry could 

potentially exceed the demand for the traditional manned aircraft industry, due to 

the flexible acquisition time as well as the reduced cost of image extraction. 

2.3.4.1 Remote Sensing 

Drones can fly at a low altitude and therefore provide images with an ultra-high 

spatial resolution, thus improving the overall performance of the images 
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exceptionally (Tsouros et al., 2019). Drones provide the user with high flexibility as 

they can be flown at any time and as frequently as the user requires and thus 

provides a high temporal resolution. In comparison with a manned aircraft, a drone 

is much cheaper and easier to use. With regards to ground-based sensors, a drone 

is more efficient as it can cover a larger area in a shorter amount of time and collect 

imagery in a non-destructive way.  

2.4 Crop Monitoring 

Traditional methods of crop monitoring are labour-intensive as it requires 

observational field work, usually conducted by several individuals walking into the 

fields and assessing the plants. Some farmers conduct the monitoring process by 

themselves, which becomes more timely and inefficient as the size of the farm 

increases. Methods like sectioning and numbering different parts of the fields are 

also utilised during manual crop inspection procedures. Alternative methods to 

conduct crop monitoring correspond to the different types of remote sensing 

techniques, such as ground-based, airborne and satellite remote sensing. However, 

most farmers (more specifically smaller-scale farmers) do not utilise these remote 

sensing methods due to the increased cost of these methods. They rather utilise 

their already employed labour force to conduct inspections of the crops and 

agricultural fields 

2.4.1 Crop Monitoring Using Drones 

The simplest form of a drone system contains the drone and attached to it a basic 

camera, usually a GoPro or Canon digital camera, which only takes still images 

(Stehr, 2015). Once the customer has decided what features are needed, other 

types or cameras or sensors can be attached to the drone. A wide range of 

measurements is typically taken when conducting crop monitoring or crop scouting 

with the aid of a drone. 

A UAS typically includes the drone used as well as the control systems and 

additional sensors, when used within PA. Tsouros et al. (2019) specify the key 

elements or equipment needed when utilising a UAS for PA. The necessary 

components usually include the following: 

- One or multiple drones (UAVs): A drone suitable for use within agriculture is 

required, which can either operate autonomously or remotely. 
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- Sensors: The sensors typically include the cameras used to capture 

necessary images and the different sensors. The most common sensors used 

for agricultural applications are discussed later in this section. 

- Drone control system (DCS): This system is used to control the drone(s). 

Drone flights are typically either controlled by a built-in computer, with a 

built-in GPS or a remote control system. Recreational drones typically 

contain a built-in GPS and are controlled via a remote control application on 

a smart device (smartphone or tablet). This system allows for the proper 

operation of the drone by communicating in two directions with the flight 

control system or autopilot system. The DCS receives data and in turn 

processes it to ensure the drone operates as it should. The control system 

also has the ability to receive information from the sensors attached or 

included on the drone, perform correcting actions and in turn, communicate 

this to the ground control system in real-time. These sensors monitor flight 

properties, such as air force, altitude, etc.  

- Ground Control Station (GCS): The GCS is usually a computer that can 

communicate to either the DCS or directly to the drone. This system 

monitors the drone flight information. The GCS provides the user with flight 

data along with data measured by supporting on-board sensors. The 

software required to process and analyse data obtained by the drone is 

included in the GCS. The software allows the user to extract the necessary 

information used for crop monitoring. 

The list above indicates the necessary components or elements required to utilise 

drones within PA. Additional information pertaining to each element is provided in 

the paragraphs to follow.  

2.4.1.1 Drones 

Various categories of drones, as mentioned above, and different models and makes 

of drones within the same classification exist. Puri et al. (2017) identified different 

drones available for agricultural use along with their technical specifications. Due 

to the fast-changing nature of technology, and especially with regard to improved 

models of agricultural drones, more information on the available drones and their 

specifications will be provided at a later stage in this project.  
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2.4.1.2 Sensors 

Sensors are included in a UAS to capture high spatial and temporal resolution 

images to facilitate the monitoring of various vegetation characteristics. G. Yang et 

al. (2017) specify that a large variety of sensors are available for drone usage in PA, 

dependent on the variety of crop parameters to be monitored. Sensors attached to 

drones need to adhere to certain requirements, for instance: they must be small in 

size; have a low weight; and low energy consumption. Limitations such as a low 

payload capacity as well as the application of small platforms limit the selection of 

drones. The most important requirement a drone needs to adhere to is its ability to 

capture high-resolution images that can be analysed after the flight has been 

performed. 

The latest on-board sensors used within PA can be divided into four types 

according to (Tsouros et al., 2019), namely: 

- Multispectral sensors 

- Hyperspectral sensors 

- Visible light sensors (RGB) 

- Thermal sensors 

Other sensors available for use include laser scanners or light detection and 

ranging (LiDAR), however, these sensors are mostly used for environmental 

purposes such as terrestrial scanning. The sensor types mentioned above can 

monitor separate characteristics pertaining to vegetation. They can monitor the 

colour and texture of the vegetation, as well as the geometric outline of crops. 

Other sensors measure the radiation, only particular wavelengths emitted from the 

plants. Important crop characteristics throughout the different growth stages can 

be determined through further processing of data obtained by these sensors. The 

characteristics monitored include soil moisture, plant biomass and vegetation 

health (Tsouros et al., 2019). 

Airborne imaging sensors are classified as multispectral and hyperspectral 

according to the number of spectral bands and band widths measured by the 

sensor (C. Yang, 2018). A multispectral image sensor measures emitted or reflected 

energy in 3–12 different spectral bands, whereas a hyperspectral sensor measures 

the radiation across the electromagnetic spectrum in tens to hundreds of narrow 

spectral bands. In short, these sensors gather information regarding the spectral 

absorption and reflection of vegetation on several bands (Tsouros et al., 2019). 
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According to C. Yang (2018), hyperspectral sensors deliver images with a higher 

spectral detail than that multispectral sensors.  

For most PA applications, multispectral imagery with the four standard spectral 

bands (green, blue, red and Near Infrared (NIR)) are sufficient. Additionally, one can 

add bands in red edge, Shortwave Infrared (SWIR) and thermal wavelengths can be 

used for other specific applications. Hyperspectral sensors on the other hand can 

detect spectrally identical plant species or symptoms. The spectral information 

obtained from these sensors can assess various biological and physical 

characteristics of crops. Tsouros et al. (2019) specify that the unhealthy plants or 

part of the plants can be distinguished with an image. This is possible due to the 

chlorophyll in the plant absorbing the visible radiation in the red band or channel, 

but strongly reflecting the NIR. The information obtained by the NIR channel is 

sufficient even if it is not yet visible in the red channel. Calculations of multiple 

vegetation indices are based on the spectral information obtained by the sensors. 

Vegetation indices are discussed in more detail at a later stage in this section. 

Despite the high cost of multispectral and hyperspectral sensors, these sensors are 

frequently used within PA. Between the two sensors, multispectral sensors are 

used more frequently due to their slightly lower cost (Tsouros et al., 2019). The only 

drawback identified concerning these sensors is the need for complex post-

processing techniques required to extract information from the images. 

Visible light sensors (RGB) are used most frequently for PA applications containing 

a drone or UAV. Compared to other sensors, these sensors are cheaper, while still 

offering high-resolution images. The sensors are easy to operate, they are 

lightweight and the processing of information is relatively simple (Tsouros et al., 

2019). RGB sensors can capture images in both sunny and cloudy weather 

conditions, but require a specific time frame (depending on the weather conditions), 

to limit under- or overexposure of images. These sensors are used in conjunction 

with other sensors, as they are incapable of analysing various vegetation 

parameters that require spectral information outside of the visible spectrum. 

Another type of sensor used in PA is thermal infrared sensors. These sensors 

measure the temperature of plants or objects. A thermal image is created which is 

then analysed, instead of studying the visual properties of the images. Infrared 

energy is obtained through an infrared sensor as well as an optical lens. Objects 

containing a temperature above absolute zero (-273⁰C), emit infrared radiation at 
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specific long-wave infrared (LWIR) and medium-wave infrared (MWIR) bands, 

proportional to their internal temperature (Tsouros et al., 2019). A grayscale image 

indicating the heat representation of an area is developed based on the radiation 

within these wavelengths detected by the thermal camera. Some sensors or thermal 

cameras can also create a coloured image indicating the warmer objects as yellow 

or red and the cold objects as blue. Infrared sensors are less often used for crop 

monitoring purposes, but have other specific applications within PA. 

2.4.2 UAV Data Processing Methods 

Various data processing techniques exist to analyse the imagery obtained during 

drone flights. Tsouros et al. (2019) discuss the diverse methods to study the 

different vegetation features from the information obtained from sensors or 

cameras attached to drones. The most common crop features that can be 

monitored by a remote sensing drone system are shown in Table 4. 

Table 4 Crop Features to be monitored by Drone System  

The entity to be measured Crop features 

Vegetation Vegetation indices 

Nitrogen status 

Biomass 

Temperature 

Spatial position of object(s) 

Vegetation colour 

Moisture content 

Shape and size of different elements and plants 

Spectral behaviour of chlorophyll 

Soil Temperature 

Moisture content 

Electrical conductivity 

Tsouros et al. (2019) identified three of the most commonly used analysis 

techniques to process and analyse imagery obtained from drones for PA 

applications. These techniques include the following: 

- Vegetation indices calculation 

- Machine learning methods 

- Photogrammetry techniques. 

These three techniques will be discussed in further detail in the subsections to 

follow. 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



    

28 
 

2.4.2.1 Vegetation Indices 

The most popular method to analyse data for remote sensing applications within 

PA is Vegetation Indices (VIs). VIs are defined as unit less radiometric measures, 

which characterises the biophysical features of plants (Wójtowicz et al., 2016). VIs 

are calculated as ratios or the difference between two or more bands within the 

Visible Light (VIS), NIR and SWIR wavelengths. VIs utilise different mathematical 

combinations of two or more spectral bands within the electromagnetic spectrum. 

These indices are designed to minimise external confounding factors while 

maximising vegetation characteristics’ contributions (Tsouros et al., 2019). A VI is 

deemed useful based on the low sensitivity to factors limiting the remote sensing 

data interpretation as well as their high correspondence to the actual biophysical 

parameters of plants. VIs are effective when monitoring the health and growth of 

crops, based on the absorption of electromagnetic radiation from the vegetation 

(Tsouros et al., 2019). VIs are deemed to be an effective method to measure and 

monitor the health of crops qualitatively and quantitatively. 

Different VIs have been developed, as each environment consists of its unique 

characteristics, which need to be taken into account when using a VI. Each VI, 

therefore, has a unique combination of the reflectance of different spectral bands, 

to be able to detect vegetation (Tsouros et al., 2019). The calculations can be done 

premised on the information pertaining to an individual photograph as well as an 

orthophoto or orthomosaic of the entire crop. An orthophoto is a geometrically 

corrected aerial photograph, whereas an orthomosaic is an aerial image created by 

combining many smaller images (usually orthophotos) into one large image.  

VIs share a relation with different parameters of vegetation, and therefore a full 

understanding of spectral behaviour is required to analyse various features of 

vegetation. VIs are typically calculated based on the light or radiation reflected from 

the vegetation compared to the soil. Two categories of VIs exist. The first uses 

multispectral and hyperspectral data, whereas the second uses information from 

the visible spectrum. More information regarding specific VIs is discussed in the 

theoretical framework of this report. 

2.4.2.2 Machine Learning 

The second data or image processing method identified by Tsouros et al. (2019) is 

that of machine learning. Mitchell (1997) defines machine learning as “the field of 

study that gives a computer the ability to learn without being explicitly 
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programmed.” According to Carbonell, Michalski, and Mitchell (1983), machine 

learning can be divided into three main areas of focus, namely: 

- Task-oriented studies: This approach is also known as the engineering 

approach and consists of the analysis and development of learning systems 

to improve the performance of a set of predetermined tasks. 

- Cognitive simulation: This entails the simulation and investigation of human 

learning processes. 

- Theoretical analysis: An independent theoretical analysis of possible learning 

methods and algorithms within an application domain. 

In addition to the categories of machine learning, the three main types of machine 

learning are specified, namely: supervised learning; unsupervised learning; and 

reinforcement learning (Das, 2017). Supervised learning occurs if the relationship 

between the input and output is already known. Thus, the user knows what the 

correct output is based on the given data set. Supervised learning can in turn be 

classified into classification and regression problems. A classification problem aims 

to predict or map input variables into a discrete category of outputs. A regression 

problem on the other hand aims to map input variables to a continuous output. 

During unsupervised learning, problems or instances are approached to which 

results are unknown to the researcher. Structure is derived through a method of 

clustering data with regard to the relationships identified between variables. The 

only drawback of unsupervised learning is the lack of feedback from the predicted 

results. Finally, reinforcement learning is a field of machine learning that studies 

how agents should behave in an environment to maximise their cumulative reward. 

Different types of machine learning techniques used most commonly include: 

function approximation and nonlinear regression; Pattern recognition and 

classification; clustering and; time series and dynamic systems. Each of the 

mentioned machine learning techniques is discussed in the sub-parts to follow. 

i) Function Approximation and Nonlinear Regression 

Another way used to describe supervised learning within machine learning is 

through the use of function approximation (Brownlee, 2020b). Function 

approximation is a methodology used to estimate an unknown, underlying function 

using historical or available observations from a domain. Thus, an unknown 

underlying function is assumed within a dataset that continuously maps inputs to 

outputs within a target domain and therefore results in a complete dataset. 

Supervised learning, more specifically neural networks can be used to approximate 
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the unknown function represented by the dataset. Other approaches to function 

approximation include least squares linear approximation and other complex 

methods like approximation with splines (Andras, 2013). The approximation is 

done by minimising the calculated error between predicted and expected outputs. 

A popular method used to predict an output variable based on a set of given inputs 

or predictor variables is that of regression (Saeed, 2021). An unknown function 

maps the input variables to the output variables within regression analysis, where 

one can assume that a linear or nonlinear regression model can be used to 

approximate this function. Nonlinear regression can be distinguished through the 

relation between the prediction equation and one of more of the unknown 

parameters. This relation is defined as a nonlinear relation (Smyth, 2002). Linear 

regression on the other hand is most often used to create an empirical model, 

whereas nonlinear regression is utilised when physical evidence exists that the 

relationship between the predictors and response follows a specific functional form. 

Rhinehart (2016) specifies the objective of regression is to alter and adjust model 

coefficients to match the output data obtained by the model in accordance with the 

fixed input values. Once the model coefficients is found that minimise the sum of 

the squared distances/difference between the actual data point and the model 

curve, one can assume that the best model is identified. 

ii) Pattern Recognition and Classification 

The process of describing, grouping and classifying patterns is known as pattern 

recognition (K. Chen, Kvasnicka, Kanen, & Haykin, 2001). Pattern recognition 

utilises computer or machine learning algorithms to recognise or identify patterns 

and regularities within data (Waweru, 2021). Patter recognition can be divided into 

either supervised or unsupervised schemes, based on the availability of 

information. Supervised schemes recognise unknown patterns as part of a 

predefined class. Whereas, input patterns are classified into clusters or classes in 

unsupervised schemes (K. Chen et al., 2001). These pattern recognition algorithms 

classify data on either statistical information or the understanding obtained by 

patterns and corresponding representation. Pattern recognition is classified as a 

type of machine learning that aims to match new data with the existing information 

in the database. The aim of pattern recognition is to automatically discover 

patterns within different forms of data, including visual data. To achieve pattern 

recognition the given dataset is divided into two separate datasets, the training 

data and the testing data. The goal for the training data is to train or build the 
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model, through the utilisation of the learning concept. Rules used for training 

provide output decision criteria. The algorithms are trained to match the provided 

input data to each corresponding output decision (Waweru, 2021). Once a training 

algorithm is successfully created, the testing dataset is used to validate the 

accuracy of the system, by evaluating the accuracy of the outputs attained by the 

trained system. Once an algorithm is successfully created and trained, the process 

of pattern recognition can be divided into two main parts, namely an explorative 

and descriptive part. The explorative part of the algorithm searches for patterns in 

general, whereas the descriptive part categorizes the patterns found in the data. 

Classification forms part of supervised machine learning and utilises algorithms to 

assign class labels to examples within the dataset (Al-Omary & Jamil, 2006). 

Classification predictive modelling predicts a class label for a given example of 

input data (Brownlee, 2020a). Similar to pattern recognition, a training dataset is 

required with numerous inputs and outputs, from which the model can learn. The 

created model will use the training data to calculate the best way to map the 

examples of input data to their specific labels. Several algorithms exist for 

classification problems, however, it is advised that controlled experiments should 

be used to identify the algorithm or configuration of algorithms that return the best 

performance for the classification task at hand. The success of a classification 

algorithm is assessed on the results obtained from modelling.  

Classification can be sub-divided into four main classification tasks, including: 

Binary, Multi-Class, Multi-Label and Imbalanced classification (Brownlee, 2020a). 

Binary classification entails classification problems, where one of two class labels 

are assigned to the input. The two class labels used within this type of 

classification are usually the normal and abnormal states, denoted by the values 1 

and 0 respectively. These two states are described through more fitting terms, 

relating to the problem, for instance ‘spam’ and ‘not spam’ for classifying emails. 

Multi-Class classification allows for the classification tasks with more than two 

class labels.  This classification method allows examples to be categorised to a 

class within a known range of classes and not to either normal or abnormal states 

as done with binary classification. Multi-label classification allows for an example to 

be assigned to one or more class labels from the two or more available class labels. 

This method of classification is used to predict multiple outputs, whereas both 

binary and multi-class classification predicts a sole class label for each example. 

The classification task where the amount of examples included in each class is 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



    

32 
 

unevenly distributed is known as imbalanced classification tasks. These 

classification tasks are usually of binary nature, where most of the examples 

included in the training dataset are categorised in the normal class, with the 

minority in the abnormal class (Brownlee, 2020a). 

iii) Clustering 

According to Madhulatha (2012), clustering can be deemed as the most important 

unsupervised learning problem. The goal of clustering is to find natural patterns or 

structures within the feature space. A cluster is defined as a group of data objects 

with a similarity between them and a dissimilarity to the data objects categorised in 

the other clusters. The goal of clustering is to determine and decide which 

examples within the dataset should be grouped together into a cluster (Al-Omary & 

Jamil, 2006). Clustering algorithms can be divided into hierarchical or partitional 

algorithms. Hierarchical algorithms identify sequential clusters based on previously 

identified clusters. Partitional clustering algorithms are used to determine all of the 

clusters at the same time. Many different clustering algorithms exist with no single 

best algorithm for all cases, therefore it is recommended to investigate different 

algorithms and algorithm configurations for each problem (Madhulatha, 2012). An 

example of a machine learning algorithm, based on clustering mechanisms is the 

Clustering Algorithm System (CAS) (Al-Omary & Jamil, 2006). The CAS combines 

two separate machine learning approaches, to utilise the advantages of the 

approaches. The first approach learns from examples, whereas the second 

approach learns through observation. 

iv) Time Series and Dynamic Systems 

Bontempi, Ben Taieb, and Borgne (2012) define a time series as a string of 

observations ordered in time. A time series dataset, therefore, refers to a dataset 

with a known time dimension, or a series of data points ordered in time (Peixeiro, 

2019). Time series analysis deals with understanding the data, whereas time series 

forecasting makes predictions based on historical data. When plotting the time 

series data, different patterns, including trends, cycles, level shifts and unusual 

observations are uncovered. The most common approach used to model, analyse 

and forecast time series data is through basis statistical methodologies, including 

visual displays and numerical analyses. Analysis and/or forecasting of time series 

data is usually initiated by a graphical display of the data, known as a time series 

plot (Box, Jenkins, Reinsel, & Ljung, 2015). Numerical time series modelling 

methods include the moving average and exponential smoothing models. 
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Traditional time series models are categorised as either univariate of multivariate 

models. Univariate models include two variables, one being the time and the other 

the field or output to be forecasted. Multivariate models include multiple variables, 

with one variable fixed as time. Within machine learning, unique models are 

utilised to analyse, interpret and create theories or assumptions from the time 

series data (Tyagi, 2020). Through the use of machine learning, time series analysis 

and forecasting are done much faster, more precisely and more efficiently than 

traditional methods as machine learning algorithms allow for faster processing of 

larger amounts of data.  

2.4.2.3 Machine Learning in Agriculture 

Machine learning methods are largely used within the field of PA to analyse data 

obtained by drone(s) (Tsouros et al., 2019). Machine learning can be used to extract 

different vegetation parameters from the data collected from an agricultural field. 

Due to the large amount of data collected from such a field, machine learning can 

be applied to ultimately improve the performance of an agricultural drone system 

within PA. For instance, machine learning methods can assess and calculate 

parameters such as the growth rate of crops, detect diseases and identify objects 

within images. Machine learning can therefore be used for various purposes and in 

many different cases pertaining to agriculture (Tsouros et al., 2019).  

Within an agricultural domain, both supervised and unsupervised machine 

learning techniques can be utilised, through regression, clustering and 

classification methods. Regression methods are frequently used in PA, specifically 

for drone or UAV applications. Regression methods have been applied to calculate 

vegetation indices based on spectral data obtained from RGB images (Z. Khan, 

Rahimi-Eichi, Haefele, Garnett, & Miklavcic, 2018). Other studies identified by 

Tsouros et al. (2019) investigated the relationship between VIs and other vegetation 

features. For these types of analyses, both linear and nonlinear regression methods 

are utilised. Information obtained by RGB, thermal sensors and multispectral 

sensors, investigated by way of regression methods can predict the crop water 

status (Romero, Luo, Su, & Fuentes, 2018). 

For weed mapping and disease identification purposes, classification methods are 

utilised. Algorithms, including the Artificial Neural Networks (ANNs) group, are 

among the most commonly used classification techniques. These algorithms utilise 

visible light (obtained from RGB), light intensity and spectral information from the 

imagery captured by the drones. In addition to this data, classification techniques 
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can utilise VIs to improve the accuracy of the analysis. Different techniques or 

algorithms deliver different levels of accuracy, for different crops. Convolutional 

Neural Networks (CNNs), a form of deep learning algorithm is one of the most 

popular algorithms and is deemed very effective in object detection within a large 

set of data (Romero et al., 2018). 

A recent, yet promising machine learning technique used in PA is that of deep 

learning. Deep learning has become increasingly popular and can widen the typical 

machine learning use through added complexity within derived models (Tsouros et 

al., 2019). This technique uses different functions to convert data to allow a 

hierarchical representation of the data. Object Based Image Analysis (OBIA) is 

another common application of machine learning methods within PA. OBIA is used 

to distinguish objects within aerial images captured by a drone. The high spatial 

resolution of drone captured images allows for a more accurate grouping of pixels 

into vector objects. A typical object-oriented classification method divides the image 

pixels into homogenous groups, and then further classifies these groups or 

segments into classes according to other characteristics. OBIA is typically used to 

detect weeds and distinguish between different plant species in an agricultural 

field. 

i) Photogrammetric Techniques 

The final data processing technique proposed by Tsouros et al. (2019), is that of 

photogrammetry techniques. These techniques consider creating an accurate 

reconstruction of an object or scene from multiple pictures that overlap one 

another. 2D data is processed and a geometric relationship is determined between 

the images to create a 3D model of the object or area. This technique is mostly used 

to create or extract digital 3D surface or terrain models and/or orthophotos. Due to 

a drone’s ability to fly at a low altitude and capture images with a higher spatial 

resolution, data collection for the construction of 3D models are much simpler.  

In order to create orthophotos or Digital Elevation Models (DEMs) of crops or a 

field, a large number of overlapping pictures are required. Once a 3D model or 

orthophoto is created, information regarding the three-dimensional characteristics 

of plants or crops can be evaluated. According to research done by Tsouros et al. 

(2019), photogrammetric techniques are popular in all types of PA applications, 

since these techniques are used to create VIs maps. 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



    

35 
 

2.5 Systems Engineering and Systems Thinking 

Kossiakoff, Sweet, Seymour, and Biemer define the main focus of Systems 

Engineering (SE) is to “guide the engineering of complex systems.” Incose and Wiley 

(2015) define SE as “an interdisciplinary approach and means to enable the 

realisation of successful systems.” SE is a multidisciplinary process or profession 

that considers the system as a whole. The system is defined as a group of 

“interrelated components that work together to achieve a common objective” 

(Kossiakoff et al.). Incose and Wiley (2015) define a system through different 

definitions regarded as the characteristics of a system. A system is therefore 

defined as: 

- “Man-made, created and utilised to provide products or services in defined 

environments for the benefit of users and other stakeholders” 

(ISO/IEC/IEEE15288, 2015).  

- A set of elements, subsystems, assemblies or parts that are integrated to 

achieve a stated objective (Incose & Wiley, 2015). 

- The functioning of a complex whole that is dependent on the parts and how 

the parts interact. 

- A group of interacting elements arranged to achieve a stated purpose or 

purposes (ISO/IEC/IEEE15288, 2015). 

A system is therefore regarded more as a whole than the combination of its 

individual parts. In the same sense, SE focuses on the system as a whole and its 

complete operation (Kossiakoff et al.). SE evaluates the system from an outsider’s 

point of view, thus evaluates the systems’ interactions with the environment and 

other systems as well as the interactions within the system. SE not only focuses on 

the design of the system, but takes into account the external factors that can affect 

the system design. These factors include the system operation environment, 

customer needs, interfacing or interacting systems, personnel capabilities and 

many other factors that should be incorporated into the system design. The role of 

systems engineers within SE is to not only guide but to lead the concept 

development stage of a new system development. The concept development stage 

concludes with the functional design of the system, aimed at meeting the user 

needs. Essential decisions to be made at this stage of the system design process 

rely on the qualitative judgements of the SE, through the exploitation of experience 

in different disciplines (Kossiakoff et al.). The SE process over a life cycle includes 

the following generic stages: concept, development, production, utilisation, support, 
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and retirement. Through the life cycle stages, technical processes are invoked. The 

technical processes are applied to define the requirements for a system and then 

use the requirements to develop a product (Incose & Wiley, 2015). The 14 technical 

processes included in the ISO/IEC/IEEE15288 (2015) standards are identified and 

discussed in Table 5. 

Table 5 Technical Processes 

Technical Process Definition 

Business or mission 

analysis 

Definition of the problem and its domain, identification of 

main stakeholders, describe the solution space and 

establish probable solutions. 

Stakeholder needs and 

requirements 

definition process 

Identification of stakeholder needs and transforming the 

needs into formal stakeholder requirements. 

System requirements 

definition process 

Transformation of stakeholder needs into system 

requirements. 

Architecture definition 

process 

Evaluate alternative architectures designs for the system, 

select the most suitable option 

Design definition 

process 

Define system elements in more detail to allow consistent 

implementation, in accordance with the chosen system 

architecture. 

System analysis 

process 

Other analysis techniques such as simulation, modelling or 

mathematical analysis support decision-making activities. 

Implementation 

process 

Allows for the development of the system and each of its 

elements in accordance with the requirements specified.  

Integration process System elements are combined into a complete system that 

adheres to the system requirements, architecture and 

design. 

Verification process Aims to prove that the system and/or elements satisfy the 

requirements. 

Transition process The designed system is installed into the operational 

environment.  

Validation process Provide evidence that the system operates as intended in 

the correct operational environment and meets all the 

defined operational requirements. 

Operation process The system is used as intended. 

Maintenance process The system is maintained to ensure it functions as 

intended. 

Disposal process System reaches the end of its existence. Parts or elements 

or the whole system are disposed of in responsible ways. 
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Smith and Terry Bahill (2010) refine the basic SE process to the following steps:  

1. Customer needs definition 

2. Document requirements 

3. System design 

4. System implementation 

5. Verification and validation of the system 

6. System deployment, use and disposal 

This process is illustrated in Figure 1. Smith and Terry Bahill (2010) deem 

attributes as highly important as it is essential in satisfying the needs of 

customers. The authors Smith and Terry Bahill (2010) conducted a study on 

attribute substitution within SE and the SE process life cycle. Thus, attributes are 

included in the SE process illustrated in Figure 1.  

 

Figure 1 Systems Engineering Process (Smith & Terry Bahill, 2010) 

 

Attributes are defined as characteristics that are intangible and complex, which 

makes it difficult to specify. Regardless, attributes play a vital role in SE activities 

according to Smith and Terry Bahill (2010). Attributes become tangible when they 

are realised as requirements. The customer needs that serve as the main input to 

the requirements analysis phase typically fall outside of the project boundary and 

are usually defined in the project statement. Included as part of the customer 

needs are the goals or capabilities of the project, the project scope, stakeholders, 
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and list of deliverables, key decisions and the preferred alternatives. The rest of the 

SE process follows the generic process as described above, however, some 

processes are condensed and combined into one larger process. Once the customer 

needs have been defined, the needs are transformed into requirements and 

analysed in the requirements analysis phase. The defined requirements are then 

translated into system functions. The functions are analysed and allocated in the 

functional analysis and allocation process. Requirements and functions are 

evaluated and verified through the requirements loop. In the design synthesis, the 

defined functions are utilised to design the system according to the defined 

functions. The design loop is used to review and evaluate the functional analysis 

and design synthesis processes against one another. Each of the three processes 

mentioned is evaluated and validated through control loops connecting each 

process with the system analysis and control process. The output from the design 

synthesis phase is typically a balanced product, which should be validated through 

comparison with the originally defined customer needs.  

2.5.1 Complex Systems  

Systems engineers require sufficient knowledge of the different interacting 

disciplines included in complex system development (Kossiakoff, Sweet, Seymour, 

& Biemer). A complex system is typically defined as a system consisting of 

complicated, interrelated parts. Complex systems are known for their hierarchical 

structure containing various important elements that interact. These elements are 

known as subsystems, which are broken down into components, subcomponents 

and parts. Ottino (2003) defines a complex system as a system with many 

communicating elements that interact with each other and the external 

environment. A common quality of complex systems is how they exhibit 

organisation without anything organising the elements. Another way to identify a 

complex system is the systems’ tendency for many interactions, including non-

linear interactions. Interactions occur between immediate elements as well as 

distant elements. Complex systems are difficult to understand or predict its 

behaviour in different scenarios or environments. Many complex systems cannot be 

broken down into independent elements for analysis, design and development. 

Knowledge of the elementary parts of a complex system does not necessarily define 

the behaviour of the larger system (Ottino, 2003). 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



    

39 
 

2.5.2 Systems Thinking 

The term systems thinking has been defined and redefined numerous times, with 

no single best definition. Through the use of different definitions of systems 

thinking, the concept is explained. Systems thinking can be described as the 

identification of assorted individual elements that relate with one another towards 

a common purpose, the function of the unit (Munro, Ramu, & Zrymiak). It utilises 

tools and methodologies to comprehend the activities conducted at a specific 

operation and how that activity might affect other activities or be affected by other 

activities. Systems thinking can be used to understand a process and identify the 

changes that might occur within the rest of the process when a single factor is 

influenced or changed in a certain way. Senge (2006) defines systems thinking as 

“a discipline for seeing wholes and a framework for seeing interrelationships rather 

than things.” V. Anderson and Johnson (1997) describes systems thinking as a set 

of tools, as well as a framework to review problems or issues as systemic wholes. V. 

Anderson and Johnson (1997) categorised systems thinking into foundational 

principles that aid in the definition of systems thinking. These principles are: think 

of the ‘big picture; recognise the nature of systems to be dynamic, complex and 

interdependent; measurable as well as non-measurable factors should be taken 

into account; balance both short and long-term perspectives and; keep in mind 

that everybody forms part of those systems in which they function and influence 

those systems in a similar way that the systems influence the individuals. Sweeney 

and Sterman (2000) defines systems thinking as the capability to illustrate and 

analyse the dynamic complexity of a system, either through textual or graphical 

displays of both. From this definition of systems thinking, a list of systems thinking 

skills are listed, which include: 

- Understand the dynamic complexity of a system, thus how its behaviour 

emerges from interacting agents over time. 

- Identify and illustrate feedback processes that portray system behaviour 

patterns. 

- Be able to identify stock and flow models. 

- Recognise a delay within the system and how it can impact the system. 

- Be able to identify nonlinearities. 

- Identify the boundaries of mental and formal models and how these 

boundaries can be challenged. 
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This definition focuses on the dynamic complexity of systems, and not on the 

elements that interact with each other. 

2.6 Decision Support Systems and Frameworks 

A decision support system (DSS) is formally defined as an interactive system 

designed to assist the decision-making process of unstructured or ill-structured 

decision-making problems (Sprague Jr, 1980). These systems are typically 

computer-based and rely on using data and models to solve problems. Generally, a 

DSS can be subdivided into three subsystems, the user-system interface, the data 

subsystem, and the model subsystem (Kim-keung Ho & Sculli, 1994). The user-

system interface is the link between the decision-maker and the system. The data 

subsystem, known as the database management system, is where all data is 

stored, managed and can be retrieved from to be analysed and displayed. The third 

subsystem, formally known as the model base management system, incorporates 

the model(s) or groups of models, used for analytical purposes and solving user 

queries. Sprague Jr (1980) specifies that a DSS should possess the essential 

features, listed below: 

- The aim of a DSS is to support or assist in the decision-making process, not 

replace it. 

- A DSS should focus on unstructured or poorly structured decision-making 

tasks. 

- All models and data included in the DSS should be arranged around the 

potential decision. 

- A DSS should be easy to use and understand and is typically delivered as a 

software package. 

Along with the above-mentioned essential features, some nonessential, yet 

desirable features for a DSS are identified. These features include: 

- The decision-makers should have complete control over the DSS, if possible. 

- An immediate response should be enabled through interactive processing. 

- The designed DSS should be comprehensive while providing support 

throughout the entire decision-making process. 

Boza, Ortiz, Vicens, and Poler (2009) identifies three constructs that play a vital 

role in information systems and decision technologies, especially in how they 

interact. These constructs include: data modelling; decision modelling and; model 

analysis. Decision modelling is the most relevant construct and develops a model(s) 
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that grasps the structure and decisions regarding a given problem. The models are 

further used to evaluate all feasible decisions or actions that can be made within 

the given problem area, and the potential outcomes of the selected actions or 

decisions. The data modelling construct provides the necessary information about 

the decision problem to the decision-maker. The construct refers to how recorded 

facts are represented internally and presented externally. The third construct, 

model analysis and investigation, allows for the creation of model instances with 

data and the evaluation of the parameters and results of the model. This is all done 

to gain insight and build confidence into the model. 

2.6.1 A Framework for Decision Support System in Hierarchical Extended 

Enterprise Decision Making 

Boza et al. (2009) developed a framework for DSS in hierarchical extended 

enterprise decision-making, which is deconstructed into four parts, namely: 

components, relationships between components, main roles and a DSS platform. 

The first part or step of the framework is to define the components for each of the 

constructs (data modelling, decision modelling and model analysis). The data 

modelling components are defined to generate a structure for the representation of 

the data used in the system. The datasets are structured into entities, relations and 

attributes. Decision modelling components are used to determine the structured 

visualisation of hierarchical decision models. The last construct, model analysis 

and investigation, allows for the creation of instances of the model with the data. 

The data modelling construct is further defined into its entities, relations, 

attributes and models. The decision modelling construct relates to the structure of 

the decision models. Components defined within this construct defines the 

hierarchy of the decision models. The first component, hierarchy, identifies the 

hierarchy of the decision problems of a complex problem. The hierarchy level 

identifies the level of the hierarchy, as each level corresponds to a decision sub-

problem. A decision model presents the mathematical representation of the 

problem, to find the most optimal solution. The decision model correlates to the 

data model. A level model is where the decision model and data model connect to a 

hierarchy level. Each level model is regarded as abstract to a certain level, and the 

aggregation or disaggregation processes allow for the link between the lower and 

higher levels of the hierarchy.  

The second part of the framework defines and explains the relationships between 

the components of the framework defined in the previous step (Boza et al., 2009). 
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Relationships exist on different levels within the framework. Within the data 

modelling construct, relationships and interactions exist between entities and their 

attributes, as well as between different entities and other attributes should new 

relationships arise. Within the decision modelling construct relationships usually 

exist between different hierarchical levels defined within this construct. 

Components within the model analysis and investigation construct are resolved 

using the level resolution process within the extended enterprise decision data 

model.  

Thirdly, the main roles required to model and operate the DSS are identified and 

defined. These roles are defined as the: decision maker; decision model designer 

and; information system designer. The decision maker is the individual(s) who are 

responsible for deciding on a particular hierarchical level of the system. The 

decision model designer designs and constructs the decision models for every level 

of the decision problem hierarchy. Finally, the information system designer is the 

individual responsible for constructing the final information system. The final part 

of the framework is the DSS platform, usually a software tool, to be used within the 

correct context (Boza et al., 2009). The platform to be built must include all three 

constructs mentioned above. The DSS platform must include all necessary 

information included in the structural components of the hierarchy.  

2.6.2 A Multi-Perspective Systems-based Framework for Decision Support 

System Design 

Ho and Sculli (1994) proposed a system-based framework for DSS design that 

allows for the integration of different systems concepts into DSS design and 

analysis. The framework proposed by Ho and Sculli (1994) combines systems 

thinking concepts with DSS studies by making use of exploratory questions. As a 

response to the increasing complexity of DSS studies, the author proposed this 

framework, to allow researchers and system users to view DSSs from a wider 

perspective. The framework is suggested to be a comprehensive framework, based 

on concepts of multiperspectivity, with a critical and creative approach. The 

building blocks of the framework originate from systems thinking methods, 

including synthesis, expansionism and producer-product relationships. Synthesis 

allows for the explanation of the system in which the to-be-explained event is 

located, the explanation of the behaviour of the domain that contains the event, 

and the explanation of the role(s) of the event within the containing domain. 

Expansionism explains how expanding the domain of the area under study, can 
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increase the understanding of the phenomenon. The producer-product relationship 

supports the concept of influencing factors or producers, which is required, but not 

sufficient to explain the results or products. 

2.8 Alternative Solutions 

By conducting a thorough review of the literature within the PA and remote sensing 

environments, specifically with regard to crop monitoring through the use of drones 

or UAVs, different techniques were identified to implement such a system on a 

farm. In addition, different techniques with regard to data analysis processes were 

also identified. As a result of the above-mentioned review, alternative solutions 

were identified to address the stated need. Of these alternatives, one alternative will 

be selected as the preferred solution. The alternative solutions were evaluated 

against one another based on various criteria. 

The identified alternative solutions are discussed in the paragraphs to follow. 

2.8.1 Alternative Solution 1: Holistic Framework for Traditional Crop 

Monitoring Methods 

The most basic method of crop monitoring is manual crop or field inspection. This 

is usually conducted by a number of workers walking a section of the fields or the 

entire field and evaluating and inspecting a sample or all of the plants or crops. An 

alternative method utilised by many farmers is the evaluation of aerial images 

obtained through satellite remote sensing methods. Other farmers utilise 

traditional manned aircrafts to capture aerial footage, however, this methodology is 

not as widely used as satellite imagery.  

An alternative to meet the defined project need and opportunity is to create a 

holistic framework for the monitoring of crops, by processing and analysing 

satellite obtained images. This method does not require any aeroplanes, cameras or 

sensors as the images are obtained from an existing satellite. These images are 

usually ordered from an organisation providing these types of footage and then 

analysed either in-house or by a service provider specialising in data extraction and 

analysis of aerial footage.  

The framework to be designed should encompass various inputs and variables, and 

present the user with sufficient and accurate data to make informed decisions 

regarding their crops. The inputs to this framework are relatively straightforward as 

one only needs to decide on the data to be collected from the aerial images and the 
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data processing methodologies to be followed. Since the images are captured from 

orbiting satellites, one cannot determine the altitude of the satellite or the 

frequency of when the images are captured. These variables are specified by the 

company providing the service. The only aspects to be determined by this 

framework is the type of data and the information gathered from the data. The cost 

of such a system varies depending on the spatial, and temporal resolution required. 

2.8.2 Alternative Solution 2: Integrated System of Solution for Crop 

Monitoring using UAVs 

This solution alternative aims to design and develop an integrated system of 

solution for decision support for the implementation of a remote sensing crop 

monitoring system, using drones, related sensors, equipment and data processing 

techniques and software. As determined throughout the literature study, such 

systems were specifically designed or evaluated on a single farm or study area. Due 

to the ever-improving technology and development of new software tools, many 

studies only evaluate the effectiveness of drones or UAVs for remote sensing or PA 

applications. Other studies evaluate the accuracy of data processing methods such 

as machine learning and image processing software. Some studies focus solely on 

the sensors or equipment used and how to process and interpret the data obtained 

by these sensors. Little to no literature was found defining a complete holistic 

framework or solution system to be used to implement a remote sensing system, 

utilising drones on any farm.  

Hosseiny, Rastiveis, and Homayouni (2020) proposed a framework for detecting 

plant species in agricultural lands using drone images, based on image processing 

and deep learning methodologies. This framework operates completely automated 

and unsupervised and is designed to generate unlimited amounts of simulated 

training data from captured drone images. Another study, conducted by Gao, Sun, 

Hu, and Zhang (2020), attempted to design a framework for the monitoring of 

agricultural diseases and pests based on drones and Internet-of-Things (IoT). The 

goal of this work was to design a framework to provide useful insights into the 

specific relationships between different weather parameters and the existence of 

pests or diseases on crops. Rakhade, Patil, Pardeshi, and Mhasde (2021) develop a 

hierarchical framework that selects the most optimal crop spraying drone using 

multiple attribute decision-making (MADM) strategies. This study aims to find the 

most optimal UAV for a certain scenario of crop monitoring purposes.  
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This solution will encompass different inputs to the system, and based on these 

inputs, one would be able to generate outputs regarding the various aspects of the 

system. These aspects to be considered include: the types of drones, the level of 

automation of the system, the sensor types, camera type, data to be collected, data 

analysis methods, the frequency of drone flights, and the altitude at which drones 

should fly. This list will continue to grow as the design and development of the 

system proceeds. 

2.8.3 Evaluating Alternatives 

The alternatives above are evaluated against certain criteria to determine the 

preferred solution to effectively address the identified project need and aim. The 

main criterion to be met by the selected alternative solution is its ability to create a 

usable product that recommends a solution to the end user, with regard to the 

design of an agricultural drone system. Additional criteria used to evaluate the 

identified alternatives are indicated in Table 6. 

Table 6 Evaluation of Alternative Solutions 

Criteria Alternative 

Solution 1 

Alternative 

Solution 2 

Does the alternative address the stated project 

need/opportunity to meet the project aim? 

Yes Yes 

Does the alternative address all of the research 

questions?  

No Yes 

 

Does the alternative address/meet all of the research 

objectives? 

No Yes 

Is the supporting literature relevant and supporting 

the effectiveness of the solution space? 

No No 

 

Does the alternative address the opportunity and 

created a solution from a holistic point of view? 

Yes Yes 

 

Does a gap exist in the literature, giving way to a 

newly designed solution alternative? 

No Yes 

Does the alternative provide an effective end-product, 

suggesting a solution specific to the stated inputs? 

Yes Yes 

When comparing the alternative solutions, solution 2 should be selected as the 

preferred solution, as the solution meets more of the stated criteria and especially 

the most important criteria. The preferred alternative solution is discussed in the 

following section. 
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2.9 Preferred Solution  

Ultimately this project aims to address the identified research questions as well as 

meet the research objectives. The selected solution alternative is intended to 

address the research questions and objectives defined in Chapter 1. The research 

questions and objectives are defined in such a manner that the overall project aim 

is reached, and the identified opportunity is addressed.  

The solution approach is divided into two large phases. The first is conducting a 

thorough literature review to obtain the necessary information required to 

construct the solution. The second part is the designing and developing of the 

integrated system of solution based on the relevant literature. These two phases or 

sections, along with the steps and objectives of each are summarised in Table 7. 

The research objective addressed by each proposed step is also identified below. 

1. Holistically identify attributes of drones that are relevant to the monitoring of 

crop health diagnostics.  

2. Conduct of analysis on identified attributes spanning across their optimum 

combinatorial integration for different crop farming systems. 

3. Design and development of an integrated system of solution capable of being 

deployed for the purpose of decision support and evaluation of crops in 

semi-commercial or commercial farms. 

Table 7 Solution Steps 

Phase Aim Steps 

Review 

literature 

The main goal of this step is 

to thoroughly review 

literature regarding the 

entire project scope.  

Determine the feasibility of designing 

such a solution within PA applications. 

(RO 1) 

Identify all of the various aspects to be 

considered when designing a holistic 

framework. (RO 1) 

Define different input variables and 

obtain sufficient information regarding 

each input. (RO 1 & 2) 

Evaluate different input alternatives, 

such as methodologies and 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



    

47 
 

Phase Aim Steps 

technologies. (RO 1 & 2) 

Investigate the relationship of each 

input with the selected output, based 

on literature. (RO 3) 

Design 

solution 

The goal for this phase of the 

project is to design and 

develop the final solution 

framework 

Evaluate the accuracy of the 

relationships between the identified 

inputs and relevant outputs. (RO 2 & 

3) 

Design a system of solution taking into 

account all of the different 

combinations of inputs and what 

outputs each present. (RO 3) 

Evaluate the accuracy and 

effectiveness of the solution system. 

(RO 2 & 3) 

Note that the table above is only a suggestion of the steps and phases to be 

followed throughout this project to meet the desired solution and address the 

project's aim. In addition to these steps, the selected research methodology 

(discussed in Chapter 3), should be followed in conjunction with these steps. This 

solution approach is designed to allow the researcher to obtain a comprehensive 

understanding of the research field before designing the system of solution. Due to 

the high reliability on the latest technologies available, the researcher will have to 

continuously update the information on the technologies such as the drone(s), 

sensors and data analysis methods or software, up until a certain date within the 

project timeline.  

2.10 Chapter Summary 

Discussed within this Chapter are the relevant areas of literature consulted to gain 

a better understanding of the project. The area of PA is discussed, along with a 

detailed explanation of remote sensing applications within PA. Three different 

methods of remote sensing are identified, namely: Satellite remote sensing; 

airborne remote sensing; and ground-based remote sensing.  
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UAVs are defined along with the different terms used to refer to a drone system. A 

brief history of drones as well as their multiple applications within the agricultural 

sector is explained with reference to drones within PA specifically. The legislation 

applicable to UAV and RPAS is investigated, especially the requirements for 

commercial or corporate applications. Various drone control mechanisms have 

been identified and evaluated. Crop monitoring methods are specifically explored, 

starting with a brief mention of the traditional methods of crop monitoring and 

then describing how crop monitoring can be done using drones. All of the identified 

equipment and technology required is included within this subsection. The 

equipment includes drone(s), ground control systems, sensors, and drone control 

systems. Various alternative data processing systems frequently used within PA are 

consulted and discussed. Machine learning is introduced and different techniques 

within this domain are further investigated. In addition, the specific applications of 

machine learning methodologies within the PA and agricultural field are discussed. 

An introduction and basic explanation of systems engineering and specifically 

systems thinking practices are provided. The focus is placed on complex systems 

within the systems engineering practices and how these systems differ from other 

systems. Decision support systems (DSS) and accompanying frameworks are 

elaborated on and discussed in depth to provide a thorough understanding of these 

methodologies. Two previous studies conducted on how a DSS and framework 

interact are reviewed within this subsection.  

Finally, two alternative solutions to the project opportunity were identified and 

discussed briefly. These alternatives were evaluated against one another and 

additional criteria to determine the preferred solution. Once the preferred solution 

was determined, a brief explanation including the planned or proposed steps to 

reach the desired solution system was addressed.  
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Chapter 3: Research Approach 

3.1 Introduction 

This section introduces two alternative research approaches, considered for this 

project. In addition, the conceptual and theoretical framework for the project is 

specified within this Chapter. 

3.2 Case Study Research 

Saunders, Lewis, and Thornhill (2016) defined a case study as a detailed 

investigation into a specific topic within its real-life setting. A case can refer to 

anything or anybody including, but not limited to, a person, a group of people, an 

organisation or association, an event or a change process. Another definition as 

presented by Gerring (2017), specifies a case as a “spatially and temporally 

delimited phenomenon of theoretical significance.” In addition to the different cases 

mentioned above, a case can also refer to a state or state-like entity (such as 

nations, municipalities, etc.) and social groups (referring to ethnicity, gender, race, 

age, etc.). A case study can therefore be defined in many different ways, where the 

main principle is the need to explore an event or phenomenon, within its natural 

context (Crowe et al., 2011). Due to this reason, case study research can be 

referred to as a naturalistic design instead of the traditional experimental design.  

Stake (1995) distinguished between three main types of case studies, namely: 

intrinsic; instrumental and collective. When investigating and learning about a 

unique phenomenon, an intrinsic case study is usually conducted, where the 

researcher specifically defines the uniqueness of the phenomenon. An instrumental 

case study evaluates a specific case to understand and appreciate the specific issue 

or phenomenon. When studying multiple cases either simultaneously or 

sequentially to generate and even broader understanding or appreciation of an 

issue, a collective case study is utilised (Crowe et al., 2011; Stake, 1995). One 

should be aware that the identified types of case study research are not mutually 

exclusive and can be combined. 

According to Gerring (2017), a case study is a study of a single case, or a small 

number of cases, based on observational data, that promises to provide insight into 

a larger population of cases. The goal of case study research is to understand the 

dynamics of the topic being studied (Saunders et al., 2016). 
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A large amount of time is spent by researchers analysing a single case due to it 

being an extremely focused methodology. Therefore, when presenting the selected 

case(s) it can be viewed as the researcher providing substantial evidence for the 

argument. According to Gerring (2017), the time and attention devoted to a single 

case decrease as the number of cases included in the study increases. A small-C 

constitutes of a study of one or several cases. When the focus shifts from an 

individual case to that of a sample of cases, the study is defined as a large-C. In 

essence, this means that fewer cases are studied more intensively, while fewer 

cases are studied more superficially. The causal factor within case study research 

is observational, thus it is not intentionally manipulated by the researcher. An 

assumption can be made that a range of styles regarding observational evidence is 

applied, granting a holistic view of the case study. Evidence regarding the case 

study is usually generated through multilevel inference, by utilising different levels 

of analysis. 

The goal of case study research is to analyse and explain the case(s) under 

investigation as well as to provide insight into a population or larger class of cases. 

One must be able to put the study into a larger context for it to qualify as case 

study research, even if it is not the goal of the author (Gerring, 2017). Case study 

research allows the researcher to gather information regarding the ‘how,’ ‘what,’ 

and ‘why’ aspects of the case study (Crowe et al., 2011).  

3.2.1 How is Case Study Research Conducted 

Crowe et al. (2011) specify the main phases of case study research:  

1. Case definition 

2. Case(s) selection  

3. Data collection 

4. Data analysis and interpretation  

5. Reporting the findings 

The first step in case study research is to define the case. To define a case briefly, 

yet appropriately one should consider the research questions, and existing 

literature along with a prior appreciation of the theoretical issues and setting(s) 

(Crowe et al., 2011). A theory-driven approach to defining a case can produce 

potentially transferable data. Essentially, each case should consist of a 

predetermined boundary, clarifying the nature of the case study and the potential 

time period of the case. In addition, the group of interest (social group or 
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organisation), or geographical area of interest, the data collection and analysis 

priorities and the evidence types to be collected should be predefined (Crowe et al., 

2011). The case definition step is preceded by the definition of the research 

question(s), regarding the specific direction of the research. The research questions 

should however correlate with the definition of the case. 

The second step included in the case study research approach is selecting the 

case(s). When selecting a case for an intrinsic case study, the case is selected due 

to its uniqueness and interest to the researcher(s). Within an experimental case 

study, Gerring (2017) defines generic features regarding case selection, which 

include: case independence; intrinsic importance; within-case evidence; 

representativeness; and logistics.  

Case independence specifies that selected cases should be independent from one 

another and of the other cases in the population if the study is designed to 

investigate a causal question. 

Intrinsic importance relates to the fact that some cases are influenced by the 

perceived importance of a case, since some cases matter more than others, or 

matter more to a specific group of people.  

When the purpose of a case is to provide knowledge regarding a specific subject, 

evidence should be extracted from that specific case, given the evidence is not 

available or not in a precise and reliable form. The new evidence is typically found 

at a lower level of analysis, referred to as within-case evidence.  

The selected case should be representative of the larger population pertaining to the 

larger argument, in any relevant way. Within a descriptive argument, 

representativeness relates to features highlighted by the theory.  

When identifying within-case evidence as referred to above, the availability of this 

type of evidence is partly due to the case itself, and partly due to the personal 

attributes of the researcher. An assumption is made that in any case selection 

process, these logistical features are taken into account both implicitly and 

explicitly.  

The third step in case study research as defined by Crowe et al. (2011) is collecting 

the necessary data regarding the case(s). To thoroughly understand the case, 

multiple sources of evidence are usually gathered using a range of both 

quantitative and qualitative techniques. Data triangulation is suggested as a 
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method to increase the internal validity of a case study, thus the degree to which 

the method appropriately answers the research question (Stake, 1995). Within 

multiple case study analyses, the data analysis technique should be flexible 

enough to allow the researcher to develop a detailed description of each individual 

case, before analysing the differences and similarities of the cases altogether.  

Data analysis and interpretation, the fourth step of case study research, overlaps 

with the third step, data collection. Crowe et al. (2011) suggest the analysis of data 

regarding the individual component of each case should be done first, before 

comparing the findings against other cases. A method of organising and coding 

data along with key issues from the literature and dataset is proposed to allow for 

easy retrieval at a later stage in the process. An approach suggested for analysing 

large datasets in a limited time is the Framework approach. This approach consists 

of five stages, namely: familiarisation; identify a thematic framework; indexing; 

charting; mapping; and finally interpretation. Integrating the different data sources 

and reviewing emerging themes, is aided by theoretical frameworks (Crowe et al., 

2011).  

The final step in case study research is to report the findings, thus providing the 

reader with sufficient contextual information to understand the processes followed 

and the conclusions reached (Crowe et al., 2011). Many researchers choose to 

present individual case findings separately before combining findings across cases 

in a collective case study. Gerring (2017) defines this last step in case study 

research as the validation part of the process, where both internal and external 

validity is assessed. Internal validity refers to the inferences regarding the causal 

effects, thus the relationship of two instances with regard to one another. The 

external validity attempts to generalise the selected case(s) to a larger population of 

cases or to the natural context of the case.  

3.2.2 Advantages of using Case Study Research 

Krusenvik (2016) analysed the advantages of using case studies as a research 

methodology and presents various statements and evidence from other sources of 

literature. The main advantage of case study research is its ability to understand 

and change interwoven complexities of interpersonal processes emerging in a wider 

social context. Case study research is applicable to both qualitative and 

quantitative research methodologies. Some advantages of the case study research 

approach include: 
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Flyvbjerg (2006) states the most important advantage of case study research is that 

it can focus on a single real-life situation and test different views directly 

concerning the phenomena as it unfolds in a real-life context, and thus provides a 

detailed analysis of a single case. The internal validity of case studies is high due to 

the study methods gaining relevant and detailed data, which is not taken out of 

context (Jacobsen & Sandin, 2002). Case studies allow the researcher to get as 

close as possible to the area of interest under investigation, by observing the 

phenomenon within its natural environment or context. Other advantages include 

the ability of the case study research method to perform an intensive study into an 

event, phenomena or topic. It allows the researcher to continuously analyse the 

situation and provides the opportunity to compare different facts about the topic 

under investigation. Case study research is one of the best ways to stimulate new 

research or studies within a specific field or research topic. 

3.2.3 Disadvantages of Case Study Research 

Most critics demonstrate that the very status of case study research as a scientific 

method is being questioned, thus its theory, reliability and validity are the main 

issues (Flyvbjerg, 2006). Krusenvik (2016) expresses the five most commonly 

discussed disadvantages of case study research, as mentioned by Flyvbjerg (2006). 

These disadvantages include: 

- One cannot accurately generalise a topic, event or phenomenon from a single 

case. 

- Case studies are effective in generating hypotheses, whereas other methods 

are more suitable for testing hypotheses. 

- Theoretical knowledge is more valuable than practical knowledge. 

- One often struggles to summarise specific case studies. 

- Some case studies contain a bias towards verification. 

According to Yin (2009), the greatest concern of case study research is its lack of 

rigour. It is common that the researcher or investigator has too much freedom 

when investigating a case and therefore does not follow systematic procedures. 

3.3 Inductive Research Approach 

Inductive and deductive approaches are referred to as broad methods of reasoning 

(Trochim & Donnelly, 2007). Induction is defined as moving from the specific to the 

general while, deduction starts at the general and ends at the specific. According to 

Trochim and Donnelly (2007), any argument or topic based on observation or 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



    

54 
 

experience is communicated effectively through induction, while arguments based 

solely on laws, rules or other principles are best communicated deductively. 

Streefkerk (2019) specifies the aim of inductive reasoning is to develop a theory, 

while deductive reasoning aims to test an existing theory. According to Goddard 

and Melville (2004), an inductive approach (or reasoning) starts with the 

observation of cases, thus collecting sufficient data, and proposing theories towards 

the end of the research process. According to Thomas (2003), the inductive 

approach is a structured approach to analyse qualitative data, guided by specific 

objectives.  Bernard (2011) indicates that inductive reasoning allows the researcher 

to search for patterns from observation, and only then develop explanations or 

theories for those identified patterns. The goal of an inductive approach is to allow 

research-based findings to emerge from raw data without the restraints posed by 

structured methodologies (Thomas, 2003). 

Using an inductive approach does not suggest theories be disregarded when 

formulating objectives and research questions and therefore does not prevent the 

researcher to use or consult existing theories when defining research questions 

(Dudovskiy, 2018). The process of inductive reasoning starts with an in-depth 

observation of the world, a topic, phenomenon, case or idea. After thorough 

observation, the aim is to determine patterns or relationships within the observed 

case. The type and nature of the research findings and the final hypotheses are 

only determined once the study is completed. An inductive approach is typically 

associated with qualitative data collection and analysis methods (Dudovskiy, 2018).  

Some underlying assumptions are identified by Thomas (2003) for the use of the 

general inductive approach. These assumptions include the following: 

- The findings from the analysis are determined by both the outlined 

research objectives (a deductive approach), as well as the findings and 

interpretations obtained from the data analysis (an inductive approach). 

- The fundamental method of analysis aims to develop categories obtained 

from the data into a model or framework. This model or framework 

should capture the key themes and/or processes deemed significant by 

the researcher. 

- The findings obtained from the research are shaped by the researchers’ 

assumptions and experiences while conducting the data analysis. The 

researcher, therefore, needs to decide on the importance of the findings 

within the research. 
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- As each researcher uses discretion, the findings presented will not be 

identical or contain overlapping components. 

- Techniques exist to evaluate the trustworthiness of the findings. These 

techniques include independent replication of the research; comparison 

of findings to that of previous research; participant feedback; 

triangulation of data and conclusions; and feedback from the users of the 

research findings. 

Keeping the assumptions in mind, the following procedure is defined to conduct an 

inductive analysis of qualitative data (Thomas, 2003): 

1. Prepare raw data files: Format all of the raw data files into the same 

format and make a backup of each data file. 

2. Read text closely: The researcher is required to read the data files closely 

in order to become familiar with the content while gaining a thorough 

understanding of the possible themes and details. 

3. Create categories: The researcher identifies important or recurring 

categories or themes. The general categories are most likely to be derived 

from the research objectives and aims, whereas the specific categories 

will be obtained from reading the raw data multiple times. Text coding 

methods are utilised during this step of the approach. 

4. Overlapping coding and un-coded text: Qualitative coding contains two 

distinct rules compared to quantitative coding, namely: a segment of text 

may be coded into multiple categories; a large amount of text may not be 

allocated to a category, as a large part of that text is not relevant. 

5. Continuous revision and refinement of category system: Revise each 

category and identify sub-topics, contradicting points and new insights. 

Identify suitable quotes from the text that convey the main points or 

theme of each category. Categories with similar meanings can be linked 

or combined under a single subordinate category. 

Thomas (2003) specifies that the ideal number of categories to be created is 

between three and eight, which should capture the core themes prevalent in the 

data. These categories are to be assessed against the research objectives. 
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3.4 Conceptual Framework 

Figure 2 specifies the conceptual framework for the project, based on the selected 

research approach. 

 

Figure 2 Conceptual Framework 

3.4.1 Research Methodology 

A case study research approach is followed throughout the project. The conceptual 

framework illustrated in Figure 2 depicts how the research approach is linked to 

the defined research objectives and questions. This methodology corresponds to the 

solution steps presented in Table 7 as part of the preferred solution outline. Along 

with the objectives and questions, each step of the methodology is explained briefly. 

This sub-section aims to expand on these steps performed in accordance with the 

selected research approach to form the methodology followed to reach the end 

results. 
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The first step defines the case, through the evaluation of the research questions 

and existing literature. This step is mainly performed in Chapter 1: 

Introduction where the research questions and objectives are defined. 

Further, the case is defined in more detail through the information provided in the 

literature review presented in Chapter 2: Literature Review.  

The second step, case selection, aims to identify and select appropriate case(s) 

based on the literature and current implementations within the research field. This 

step of the methodology is mainly addressed within the literature review in Chapter 

2: Literature Review. From the relevant literature a basic crop 

monitoring system is defined, including all the basic components required for such 

a system. The crop monitoring system with the main components required for 

successful operation is defined and discussed in Section 4.1 Crop Monitoring 

System. Hereon the basic form for the integrated system of solution is created 

stemming from the first decision: “What solution does the user require?” and 

incorporating the factors that possibly influences this decision.  

The data collection, analysis and interpretation steps of the methodology are 

combined into a single step, which is addressed in Section 4.2 Integrated System of 

Solution. This step allows for information and data obtained through literature 

review to be included in the design and development of the solution system and 

each of the main decision paths stemming from the first decision to be made. 

Including the identification of all factors and variables that can possibly affect each 

decision as well as possible solution options unique to each decision system. Each 

individual decision path thus re-iterates the basic case study research approach in 

a simpler manner to deliver the individual decision systems and accompanying 

solution selection processes produced as the outcomes. 

The final step of the methodology relates to the reporting of the findings from the 

previous steps. The main findings presented from this research is of qualitative 

nature and presented as the decision systems and selection processes. Quantitative 

findings are incorporated into the project by means of classifying possible solution 

options based on common (and available) denominators between the relevant 

solution options. This categorisation is represented in Section 4.3 Solution 

Categorisation, where solution options are categorised according to output 
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selections based on the various categories created relating to the solution type, 

farm characteristics and UAV characteristics. 

3.5 Theoretical Framework  

The theoretical framework specifies the methods and equations required to process 

the data obtained from UAV flights. These methods are used during the post-flight 

processing stage when performing crop health diagnostics. These equations and 

methods are not used within the project, but rather included to ensure a thorough 

understanding of the methods exist. The most popular data processing technique 

within remote sensing and PA is that of Vegetation Indices (VIs) as discussed in the 

literature review. The specific application and equations of the most frequently 

used VIs are presented in the paragraphs to follow. 

In an attempt to model the biophysical parameters of vegetation, separate VIs was 

created. These VIs are divided into two categories. The first category contains all of 

the VIs based on multispectral and/or hyperspectral data. These VIs combine 

several bands obtained from the multispectral or hyperspectral information. The 

second category calculates VIs from information from the visible spectrum. 

Different VIs have been created to utilise the visible spectrum as an alternative to 

multispectral and hyperspectral information due to the high cost of these sensors. 

 

The most popular VI is the Normalised Difference Vegetation Index (NDVI). The 

NDVI is calculated as a quotient of the difference and the sum of the NIR and red 

region reflectance (Wójtowicz et al., 2016). Healthy plants typically reflect green and 

infrared (NIR) wavelengths of light, while a stressed plant typically reflects a 

different type of light. This is due to the green parts of the plant reflecting in the 

NIR range due to the scattering of the leaf mesophyll, and chlorophyll absorption of 

red and blue light (Stehr, 2015). Unhealthy plants reflect more visible light than 

infrared light. Vegetation can thus be distinguished from the soil due to the fact 

that red visible radiation is absorbed and NIR is reflected (Tsouros et al., 2019). 

These changes in the reflected light can be picked up by cameras or near infrared 

sensors (Stehr, 2015). These measurements are then used to calculate the NDVI. 

The formula to calculate the ration of NIR to VIS, known as the NDVI is indicated 

below in equation 1. Some formulas calculate the NDVI as the ratio between the 

NIR and Red visible light. This deviation of the formula is indicated in Table 8. 

𝑁𝐷𝑉𝐼 =  
𝑁𝐼𝑅−𝑉𝐼𝑆

𝑁𝐼𝑅+𝑉𝐼𝑆
                                                   (1) 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



    

59 
 

The NDVI is the most commonly used VI to determine the condition, biomass and 

developmental stages of cultivated plants and in turn forecast their yield. Various 

other VIs are defined.  

In order to understand and correctly interpret the equations of the VIs, a list of 

abbreviations identifying the light reflection in the respective colour and/or 

spectrum, along with their wave length is listed below: 

- G: Green (500 – 560 nm) 

- R: Red (620 – 670 nm) 

- B: Blue (430 – 500 nm) 

- NIR: Near Infrared (720 – 1500 nm) 

- RE: Red Edge (670 – 720 nm) 

One of the earliest and most well-known indices is the Ration Vegetation Index 

(RVI). This index is used to distinguish between vegetation and soil by enhancing 

the contrast between them. The RVI is however very sensitive to the optical 

properties of soil (Tsouros et al., 2019). From the popular NDVI, other VIs have 

been developed utilising the same method. For instance, the Normalised Difference 

Red Edge Index (NDRE) uses the NDVI method to normalise NIR radiation with Red 

Edge (RE) radiation. Similarly, NIR radiation is normalised using green bands, to 

form the Green Normalised Difference Vegetation Index (GNDVI). A summary of the 

frequently used VIs, as specified by Tsouros et al. (2019), and identified through 

additional research, is indicated in Table 8.  

Table 8 Most Common Vegetation Indices 

Abbreviation Vegetation Index (VI) Formula 

Multispectral information  

NDVI Normalised Difference Vegetation Index 𝑁𝐼𝑅 − 𝑅

𝑁𝐼𝑅 + 𝑅
 

RVI Ratio Vegetation Index 𝑁𝐼𝑅

𝑅
 

NDRE Normalised Difference Red Edge Index 𝑁𝐼𝑅 − 𝑅𝐸

𝑁𝐼𝑅 + 𝑅𝐸
 

GNDVI Green Normalised Difference Vegetation 

Index 

𝑁𝐼𝑅 − 𝐺

𝑁𝐼𝑅 + 𝐺
 

ENDVI Enhanced Normalised Difference Vegetation 

Index 

(𝑁𝐼𝑅 + 𝐺) − (2 ∗ 𝐵)

(𝑁𝐼𝑅 + 𝐺) + (2 ∗ 𝐵)
 

SAVI Soil Adjusted Vegetation Index (𝑁𝐼𝑅 − 𝑅)

(𝑁𝐼𝑅 + 𝑅 + 𝐿)(1 + 𝐿)
 

L = amount of green 
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Abbreviation Vegetation Index (VI) Formula 

vegetation cover 

Visible light (RGB) 

ExG Excess Greenness Index 2 ∗ 𝐺 − 𝑅 − 𝐵 

NDI Normalised Difference Index 𝐺 − 𝑅

𝐺 + 𝑅
 

VARI Visible Atmospherically Resistant Index 𝐺 − 𝑅

𝐺 + 𝑅 − 𝐵
 

The ENDVI mentioned above utilises three spectral bands (NIR, B and G) to allow 

for an improved perception of the index, when compared to the original NDVI 

(Strong, Burnside, & Llewellyn, 2017). The chlorophyll reflection values are inflated 

by adding the NIR and green reflectance. The blue light reflection also inflates the 

chlorophyll absorption values due to the higher amplitude of blue wavelength 

energy absorption. The green reflection illustrates a higher sensitivity to the 

concentration of chlorophyll when compared to the red reflection. The GNDVI is 

thus developed to provide a more accurate measurement of pigment concentrations 

(Strong et al., 2017). The SAVI is an enhancement to the existing NDVI, where the 

soil variations are normalised so that it does not influence vegetation canopy 

measurements (Huete, 1988). This index is usually used where the vegetation cover 

is low. The VARI index identifies and highlights the vegetation within the visible 

light section of the spectrum. This index is mainly used as a correction to some 

atmospheric effects (Gitelson, Kaufman, Stark, & Rundquist, 2002). 

VIs utilise visible light obtained from RGB sensors, such as the ExG and NDI 

indices mentioned above is mostly based on the fact that plants display great levels 

of green visible light. For instance, the ExG index is based solely on the assumption 

that vegetation or crops show a clear high level of greenness compared to soil, 

which is only seen as an element in the background. The ExG is calculated by 

multiplying the radiation measured in the green channel with a factor of 2 and then 

subtracting the radiation from the red and blue channels. The NDI only use the 

measured radiation from the red and green bands to distinguish between plants, 

soil and background images.  
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Chapter 4: Solution and Discussion 

4.1 Crop Monitoring System 

Remote sensing systems aimed at monitoring the health of crops utilise different 

types of sensors to capture data. This data is used as an input to a range of 

software tools or algorithms to calculate various vegetation indices, soil water 

quantities and the overall health of the crops. In this case, airborne sensors, more 

specifically UAVs are utilised to capture the required data, and a range of 

components that make up such a system are identified. The basic system 

comprises of an Unmanned Aerial System (UAS), a drone operator or pilot, the 

system user and the farm to be monitored, as illustrated in Figure 3. In addition to 

the monitoring system, a software tool is utilised to analyse and evaluate the 

information captured by the system, to produce a final result. In the subsections to 

follow, each of the identified components is explained and discussed with relevance 

to a crop monitoring system. The component pertaining to the farm itself, describes 

the various physical characteristics of the farm and how these characteristics could 

influence the crop monitoring system. Similarly, the component relating to the 

system user identifies different needs and requirements that can be specified by the 

user and how these user defined specifications can affect the system as a whole. 

 

Figure 3 Basic System Components 

4.1.1 Unmanned Aerial System 

As mentioned in Chapter 2, a UAS used for crop monitoring purposes require basic 

elements to operate effectively. These elements include the drone or UAV(s), the 

camera and/or sensor attached to the drone, the drone control system (DCS) and 

the ground control system (GCS). In general, these elements are imperative to the 

successful operation of the system, however, the specific details or specifications 

regarding each element are interchangeable depending on each unique system and 
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the specific needs and requirements of that system. In some systems the GCS 

include the post-flight processing software, however, for this system, the post-flight 

processing software is regarded as independent from the GCS. The GCS as part of 

the monitoring UAS is used to communicate to the DCS or the drone directly to 

obtain flight information. The four elements of the UAS monitoring system are 

dependent on one another as the selection of one element, may affect the selection 

of the other three elements. Almost all commercially available drones are developed 

alongside their own DCS and/or GCS. These systems are often not distinguished 

from one another, especially if the drone is equipped with autonomous flight 

abilities. A traditional drone that requires a drone operator, contains a DCS used to 

navigate and control the drone during take-off, flight, data capturing and landing 

operations. The GCS in such a system will obtain flight information through 

communication with the drone itself or the DCS. Typically, with a fully autonomous 

system, the DCS and GCS are combined into a single control system. This control 

system is used to plan the flight, initiate the flight, and monitor the flight progress. 

Thus, selecting a drone manufacturer or a specific drone model affects the DCS 

and GCS included in the system as the UAV and control systems are developed 

synchronously.  

The other important elements to the crop monitoring UAS are the aircraft itself and 

the sensors/cameras to be attached to the drone for data capturing. The specific 

drone selected affects the sensors/cameras available to use, as not all drones are 

compatible with all cameras or all sensors. Specific drone models are compatible to 

be used in conjunction with specified sensors or cameras. Some monitoring drone 

manufacturers developed a range of sensors and cameras or combinations thereof 

in-house to be used along with their drone model(s). These drones are known to 

contain a swappable payload feature, where the payload attached to the drone can 

be changed depending on the data to be captured. In the instance of a monitoring 

drone, the payload refers to the camera or sensor or combination thereof attached 

to the drone. Other drone manufacturers designed their drones in such a way that 

it is compatible with commercially available cameras or sensors. For instance, the 

WingtraOne GEN II drone is compatible with a range of Sony cameras ("WingtraOne 

GEN II drone Technical Specifications," 2022). The users’ final choice of a specified 

drone model consequently affects the availability of sensors and cameras to choose 

from. This dependency between the drone and the cameras or sensors can be 

described as a bi-directional dependency. This is because the selection of a specific 
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camera or sensor, will automatically limit the drone options or drone manufacturer 

options to select from. Figure 4 indicates the UAS with the basic elements and how 

these elements affect and interact within the system. 

 

Figure 4 Unmanned Aerial System (UAS) and the Required Components 

A range of service providers offers users a full-stack solution, containing all the 

necessary hardware, equipment and software required to suit their specific needs. 

This Commercial off the Shelf (COTS) solutions are presented to the client with all 

the required hardware (drones, cameras, sensors) and software (DCS, GCS) 

included in the solution. Some of these service providing companies offer the user 

freedom to select a specific drone model and corresponding cameras or sensors, 

developed by the company, depending on the need of the client. In some cases, a 

full-stack solution provides the client with post-flight processing software or a list 

of recommended software options to choose from. Full-stack solutions typically 

include a warranty and maintenance plan for the hardware and a subscription to 

the required software.  

4.1.2 Farm Characteristics 

The four elements required in the drone monitoring UAS will allow the user to fly 

the drone and capture data. For the data captured to be of relevance, the drone 

should be flown over an agricultural field or pasture used to cultivate crops on a 

farm. One of the primary inputs to the system and its overall working is the 

physical characteristics of the farm or area where the monitoring system is to be 

operated. These characteristics include the topography of the farm, the types of 

crops planted, the size of the fields, etc. and are discussed later in this section.  
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The physical characteristics of the farm where the system is to be implemented 

serve as a main input to the crop monitoring UAV system. This input category 

deals with the physical features of the farm where the system is to be implemented. 

The term farm refers to any farming business cultivating and producing crops, 

regardless of the size of the farm or fields, location of the farm, type of farming 

business (commercial or non-commercial farming) or the profits generated. Here 

crops refer to all types of crops grown and harvested for profit or subsistence. The 

physical farm attributes can be grouped into three main categories namely the 

topographic characteristics of the farm or area where crops are cultivated, the types 

of crops planted and their respective features and the layout of the farm. These 

characteristics influence other attributes throughout the entire system. Further 

investigation into the main physical features revealed additional information or 

factors for consideration.  

The topographic characteristics of a farm area and especially where the fields are 

located should be taken into consideration when developing an agricultural drone 

monitoring system. The topography of an area refers to the natural formations of 

an area, like the mountains, valleys, rivers, lakes and dams. Human-made features 

are sometimes also included in topographic maps. These features include roads, 

bridges, buildings etc. The topographic characteristics can affect certain decisions 

made within the crop monitoring system. The topography of an area can either 

affect the system as a whole or the component(s) within the system. Should the 

specific topographic characteristics of an area affect a component or feature 

included in the system, one can assume that it will, in turn, also have an effect on 

the system as a whole, maybe not directly, but secondary.  

Some factors affected by the topographic characteristics of an area are discussed 

below. The topography of the area of interest could affect decisions regarding the 

type of drone, multi-rotor or fixed-wing, to be selected for the monitoring task. 

Multi-rotor machines are a more practical solution for mountainous areas or where 

fields are arranged over or between rolling hills. On the other hand, a fixed-wing 

type drone might be more advantageous to use on a large flat area. Another 

important consideration is a drone’s ability to fly at a steady altitude in relation to 

the changing ground surface, otherwise known as terrain following. If a UAV is 

equipped with this feature, the machine will fly at the set altitude above the surface 

and as the topography changes, the drone will adjust its flight path to remain at 

the set altitude. This feature prevents drones from flying too close to dangerous 
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obstructions like cliffs, boulders or trees. The topography of an area may have an 

effect on the take-off and landing position or circumstances. These circumstances 

in turn affect the choice of drone to be selected for the system.  

The second category takes the crops planted, the type and related features, into 

consideration. Each type of crop planted or cultivated has a range of features or 

attributes related to that specific crop type. For instance, a field of corn grows 

completely differently compared to a field of potatoes. A cornstalk grows on average 

up to 2.5 meters, with the cob of corn growing above ground on the plant. A potato 

plant on the other hand typically stands up to 1 meter tall, with the stalk and 

leaves above the ground and the vegetables growing below the ground. Thus, each 

crop type grows to a different height, and width and can visually be distinguished 

from one another. These traits associated with a specific crop type affect how and 

possibly where the crop is planted. The ‘how’ refers to how close individual plants 

are planted next to each other, how big a field is used for that specific crop and the 

growing season of the crop, etc.  

A UAV-based crop monitoring system acquires visual data from flying above a field 

where crops are planted. Thus the only characteristics of significance are the height 

to which the plant grows, and the colour of the plant or field as seen from above 

during the different life-cycle stages of the plant. Most data utilised as a part of the 

UAV-based monitoring system is visual data, or NIR or Visible light reflected from 

the plants. Each individual crop type grows to an average range of heights and 

widths for that specific species of crop. The actual growth trends for each crop have 

an effect on the flight patterns of the drones. Crops that grow to a larger height 

may require the drone to fly at a greater altitude, whereas shorter crops can allow 

the drone to fly at much lower altitudes. The flight altitude of the drone in turn 

affects the accuracy of the data or images obtained. However, many drones fly at a 

predefined cruising altitude, regardless of the height of the crops to ensure the 

predetermined absolute accuracy of the captured images and data is maintained. 

Some commercially available UAVs provide the user with the option to set the 

cruising altitude during the pre-flight planning phase, especially for fully-

autonomous flight systems. For these systems, the height of the crops may affect 

the defined flight altitude, however, most drones fly at an altitude that is not 

affected by the crop heights.  

The type of crop to be monitored can vary from one farming business to the next. A 

single farm can cultivate more than one crop type throughout a growing season. 
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Each type of crop that needs to be monitored has a different lifecycle. The lifecycle 

or growing cycle of the crop has an effect on the frequency of flights required to 

provide the user with sufficient information. Thus, the planning and scheduling of 

flights differ for each crop type, as it has a different lifecycle and may require 

monitoring at specific time intervals throughout the lifecycle of the crop. Flight 

planning and scheduling can further be complicated if more than one crop type 

with different growth cycles is planted on the same farm within the same season. 

The layout of different crop types in relation to one another on a farm impacts the 

total area to cover as well as the scheduling and planning of flights. More is 

elaborated on this consideration within the farm layout category. 

The third category included in the physical characteristics of the farm is defined as 

the farm layout. This category includes all the information related to the size of the 

agricultural fields to be monitored, the layout of these fields on the farm and 

especially in relation to one another and the layout of individual crops within a 

single field. The total size of the farm should be broken down into the areas used 

for cultivating crops and those used for other purposes. The UAV crop monitoring 

system should only monitor those areas or fields where crops are planted, thus 

only those field sizes (usually measured in hectares or acres) are of relevance. The 

system should not only take the total size of cultivated fields (the sum of the sizes 

of all individual fields together) into consideration but also the size of each 

individual field and the layout of these fields in relation to one another. If the fields 

are located next to each other or in close relation to one another, and the same 

crop type is planted in these fields, one can combine them into a single monitoring 

area. If however, the fields are not close to one another, or different crops are 

planted on adjoining fields, each individual field is regarded as a single monitoring 

area. For this project, a monitoring area is defined as an agricultural area to be 

monitored by a single UAV flight. A monitoring area can either be determined by 

the drone model selected, as each drone has a predefined coverage area and can 

thus only monitor areas less than the defined coverage area, or by the 

requirements specified by the user. The user can define the monitoring area based 

on what he wishes to achieve with the monitoring system. For instance, if the user 

wants to monitor the entire farm with a single flight, the total size of all of the fields 

is defined as the monitoring area. In such a case, when the monitoring area is less 

than the drone coverage of the selected drone, the entire area can be monitored in a 

single flight. If this is not the case and the monitoring area exceeds the drone 
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coverage area for a single drone, multiple flights or drones might be required to 

produce the same output. Utilising more than one drone or multiple flights with a 

single drone can affect flight planning and further complicate flight scheduling 

steps. Once a limit is determined for the maximum size of a monitoring area to be 

“serviced” by a single drone, multiple drones or multiple flights will be required.  

The total size of the monitoring area has a direct influence on the type of drone 

(multi-rotor or fixed wing) to be considered as well as the specific model of the 

drone to be considered, as each drone has a different battery capacity and in turn a 

predefined flight time. The predefined flight times for available drones are 

determined in ideal conditions, with no additional payload added to the drone, 

other than the absolute essentials. Some drone models allow the option to add 

additional batteries or an endurance battery option, to extend the flight time for 

every single flight. Each drone’s specified flight time reflects the total area of 

coverage, in hectares or acres, for that specific drone. Drone selection should be 

performed in conjunction with information regarding the monitoring area, the 

predefined flight time or area coverage of the drone and the user requirements.  The 

layout of the farm, more specifically where fields are situated in relation to one 

another can also have an impact on the flight planning phase. This is due to 

additional distances and flight times that might need to be included in the flight 

map to allow the drone to map two or more monitoring areas within one flight. If a 

continuous flight is not possible, the drone operator might need to perform multiple 

flights from different locations to cover the required monitoring areas, which 

extends the total time required to perform monitoring. If the farm under 

investigation plant and produce different crops the layout of the different crop fields 

in relation to one another, also has an impact on the coverage area and flight 

planning and scheduling requirements. If fields with the same crop is located close 

in relation to one another, flights can be combined or performed in succession to 

simplify planning and scheduling. 

4.1.3 System User 

In addition to the physical characteristics of the farm, the other main component in 

the system that has an impact on the system as a whole is the users’ preferences. 

The user in this case refers to the farmer, farm owner or farm manager who wishes 

to use UAVs to capture data regarding crops and in such a way monitor the crops. 

These preferences specified by the user, for the system should be taken into 

consideration before designing or selecting a suitable system or system 
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configuration. The decisions made by the system user affects the entire operation 

and final goals of the system. Implementation of an agricultural crop monitoring 

system using UAVs is extremely user-dependent. This is due to the entire system 

relying on the user's personal requirements and preferences for what the system 

should be able to do or not do.  One can assume that for a crop monitoring system 

the main goal of the system is to periodically capture and process crop data to 

assist the farmer in making more informed decisions, which in turn will possibly 

lead to a higher yield.  

In addition to the physical characteristics of the farm, the user-specified needs and 

requirements affect the system as a whole. These needs and requirements, similarly 

to the farm characteristics, affect the whole system as well as individual parts or 

aspects of the system. Since the entire system is user dependent, the needs and 

requirements specified by the user should be known well in advance, before 

designing the system, to ensure the system operates as envisioned by the user. One 

of the main decision variables that have an effect on the entire system and how it 

operates is the user-defined goals for the system. These goals include the users’, 

desires and demands for the system. As a UAV-based crop monitoring system is 

customised for a specific farming business, the requirements for the system differ 

depending on the user. Each user might have a preference as to what is expected 

from the system, what output is preferred and how he envisioned the entire system 

operating. For instance, a user might require the system to only monitor a single 

cultivated area, where a single crop is planted, on a monthly basis; whereas 

another user might require weekly monitoring of the entire farm and of all of the 

different crops planted on the farm. In addition to these preferences on how the 

system should operate, a user can define the desired output to be delivered by the 

system. The desired output is typically the type (the format) of the data presented 

after analysis. The data can be presented to the user in numerical format, through 

the use of the original orthophotos or orthomosaic or by way of adapting the 

orthophoto or orthomosaic to indicate the calculated vegetation indices based on 

the measurements obtained by the attached sensors. The most commonly used 

mode of measuring crop health is through the use of vegetation indices, such as 

the NDVI, NDI, NDRE, RVI, etc. These indices require measurements obtained from 

sensors (specifically multispectral sensors) attached to the drone. Once the data is 

captured by the sensor/camera combination, the data is processed using an 

available software program. If the system user wishes to utilise these inferences to 
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evaluate the health of crops, the system should be designed to accommodate all of 

the factors to ensure that the desired output is reached. The decisions made 

regarding the desired outputs produced by the system influence how the system 

should operate as well as the sensors or cameras selected as part of the system and 

finally the image processing software programs selected to generate these outputs. 

In addition to knowing the user preferences pertaining to the main goal of the 

project and the desired outputs produced by the system an important 

consideration to be prescribed by the user is the hardware and software 

preferences. This factor distinguishes between whether the user wishes to own his 

own hardware and software to be used in the system and whether a third-party 

service provider option is to be considered. A third-party service provider provides 

the service of flying and capturing the data and images using their own hardware 

components, analysing the data using their own processing software and then only 

presenting the final data and results to the user. The decision between these two 

options greatly affects the main design of the system. For the system where a third-

party service provider is used, the main decision driver is the needs and 

requirements specified by the user, specifically the main goals for the system and 

the desired outputs. This decision driver will ultimately aid in the selection of a 

service provider. Along with the users’ needs and requirements, the farm 

characteristics are also taken into account when designing the system, but this 

information is rather used by the service provider to alter the proposed solution to 

suit the needs of the client. If the selected service provider is unable to produce a 

solution based on the characteristics of the farm, another more suitable service 

provider must be selected.  

If the system user wishes to own his own hardware and software components, the 

system design is much more complicated, as the entire system containing all 

hardware and software components should be designed to meet the needs of the 

system user. The needs and requirements specified by the system user (along with 

the other system inputs) will ultimately affect the components selected as part of 

the solution. The desired outputs of the system also have an effect on the 

components selected. This is attributable to the user requiring a specific output 

(data type, or format) and the hardware and software components to be altered in 

such a way that the desired output is met. Should the user have the desire to own 

the hardware and software, the user must ensure that additional human resources 

are available to plan, manage and operate the system. In the case of a fully 
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autonomous system, the system user can be any person who has received training 

on how to operate the system. Whereas, a manual system requires a drone operator 

with the required training and RPAS licencing. This can lead to additional capital 

investment to provide training for an existing employee or the hiring of a trained 

and licensed drone operator. In addition to the added human resources, a large 

capital investment is required to initially purchase the required hardware and 

software. The budgetary constraints specified by the system owner can limit the 

availability of options for the system as a whole (if a COTS system is selected) or for 

the selection of hardware and software components.  

4.1.4 Drone Pilot or Operator 

The final component required for the successful operation of a crop monitoring 

system using a UAV is the drone operator or pilot. According to Part 101 of the Civil 

Aviation Regulations, for both commercial and corporate use of a RPAS, the 

operator or pilot requires a valid RPAS Operator Certificate (ROC) and a Remote 

Pilot License (RPL). These regulations are however only valid in the case where a 

manually operated UAV classified as either class 1 or 2, is used to monitor crops. 

In the case of a fully autonomous operating drone, the operator does not require a 

ROC or RPL licenses or certificates. However, a different set of regulations apply to 

an autonomous flying drone. For fully-automated systems, a system operator is 

still required to plan and initiate flights. In some cases, the operator might be the 

farmer or system user, but it can differ in some cases.  

The drone operator does not directly affect the decision of the system as a whole, 

but the system cannot operate without a trained and licensed pilot or operator. 

This regulation can have an effect on the initial capital investment required for the 

system. The user will either have to appoint a licensed drone pilot or arrange for a 

current employee to undergo the required training to obtain the necessary licenses. 

If the user wishes to send a current employee to acquire the correct licensing, the 

project timeline should be adjusted to include the time necessary for the individual 

to attend the necessary courses. Due to the absence of a direct influence between 

the drone operator and the decisions to be made in the system, the operator is 

disregarded within the decision frameworks. 
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4.2 Integrated System of Solution 

The aim of the integrated system of solution for an agricultural crop monitoring 

system using UAVs is to assist any individual in making an informed decision 

regarding the acquisition, or simply the use of such a system. Before designing or 

purchasing an entire system, a few considerations should be revised to ensure the 

system delivers what the user needs from the system. The first, and seemingly most 

important decision to be considered is what type of solution system the user wants. 

Does the user wish to own his own hardware and software for the crop monitoring 

UAS or does the user only want the end results obtained from the system? The 

term ‘his’ in this context, refers to the system user, regardless of the gender of the 

person. This initial decision is influenced by a number of factors such as the users’ 

preferences for the system, budgetary constraints experienced by the user and 

additionally possible licencing constraints for the system. The user's preferences for 

the system are identified as the most influential variable, as the user has the power 

to make a decision regarding the system, regardless of any of the other variables. 

Licencing constraints can limit the user as most UAVs require a licenced drone pilot 

to operate and control the aircraft. In addition to a licenced pilot, the aircraft itself 

also requires a licence if it is used for commercial or corporate applications. The 

licencing requirements increase the total cost of the system and can delay the 

timeline of the entire project.  

The user's preferences for the system are defined as a main variable but can 

contain many sub-variables or considerations that effect this variable. The sub-

variables, mentioned earlier in this chapter, include the following:  

- User needs and requirements 

- User-defined system goals 

- User desired outputs 

- User hardware and software preferences 

- Budgetary constraints 

For the selection of a solution option, the budgetary constraints are defined as an 

individual decision variable, due to the large impact that this variable has on the 

solution selection. The other sub-variables are grouped as the users’ preferences 

for the initial decision regarding the type of solution. However, in later parts of the 

solution system, some of these preferences are defined individually. 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



    

72 
 

A potential system user needs to decide between three alternative solution options. 

The solutions are divided based on the user's hardware and software preferences, 

whether the user wishes to own his own hardware or whether he only requires the 

final results produced by the system. If an individual is not entirely convinced 

about the advantages such a system could pose to his business, the user can 

contact a Third-Party Service Provider (3PSP) to capture crop data and deliver the 

results to the user. If the user is satisfied with the results, he can decide whether to 

purchase his own system hardware and software or continue to make use of the 

services provided by a 3PSP. If the user wishes to purchase the hardware and 

software, one of two options can be selected. Either the user can design his own 

system, by selecting a specific drone model and accompanying sensor(s) or 

camera(s) and purchasing the selected processing software applications to generate 

reports. If the user does not wish to design a unique system to suit his specific 

needs, a Commercial off the Shelf (COTS), a full-stack solution can be purchased. 

These solutions include the necessary hardware, software and additional support, 

maintenance and information within a single solution package. Typically a COTS 

solution is designed to perform a specific task or function. Some COTS solutions 

provide the user with slight variability in the main function of the system, by 

offering different payloads (sensors and cameras) to select as part of the solution.  

In the case where the user does not want to own his own system, but still requires 

the data captured by a UAV-based crop monitoring system, a third-party service 

provider should be used. A third-party service provider refers to any company that 

provides the service of collecting crop data on the users’ farm and then producing a 

report after data analysis is completed. The user is thus not required to purchase 

any hardware or software, while still benefitting from the data acquired by a UAV 

crop monitoring system.  

Figure 5 illustrates the different solution paths, described above, that can be 

followed by a farmer who desires to implement or reap the benefits of an 

agricultural crop monitoring system using UAVs.  
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Figure 5 Visualisation of Different Solution Paths 

Each solution path can be divided into the core decisions to be made as part of that 

main solution path. The first solution path, where the user decides to make use of 

a 3PSP, simply requires the user to select a 3PSP. Nevertheless, this decision is 

influenced by a range of factors and considerations. If the user chooses to follow 

the service-provider route, the 3PSP selection process should be followed, while 

evaluating the specific system to ensure the final decision adheres to the users’ 

requirements. The second solution stream is where the user buys the necessary 

hardware and software. If the user decides to design his own system, this solution 

path is divided into three decision activities. The decisions to be made when 

designing a system are the UAV model to select, the accompanying payload and the 

processing software solution. Each of these sub-decisions is modelled as its own 

individual system, along with a corresponding selection process. It is advised that 

the user should follow these selection processes to select a suitable aircraft, 

payload and software solution, to complete the monitoring system. An integrated 

solution system combining the three sub-decisions when designing your own 

system is also developed, to illustrate the collective influence of certain variables. If 

the user, however, decides to purchase a COTS solution, the only two decisions to 

be made within this solution path are what COTS solution to purchase and what 

processing software to acquire. Similar to the previous decision paths, each sub-

decision within the COTS selection decision, is illustrated by a system and 

recommended selection process, to enable the user to make a quicker and more 

informed decision regarding the solution selection. Figure 6 illustrates the main 

decision paths along with the different decisions to be made within each main 

solution path.  
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Figure 6 Main Decision Paths  

The sections to follow will provide more information concerning the three main 

solution paths available, designing your own system, purchasing a COTS system or 

using a third-party service provider and their corresponding sub-decisions. 

4.2.1 Third-Party Service Provider 

Selecting a third-party service provider seems like a relatively simple solution in 

comparison to purchasing the different hardware and software components 

required for a crop monitoring system. In practice, this decision is however affected 

by a number of different factors. These factors include but is not limited to: the 

user needs and requirements; the desired outputs required from the system; the 

physical farm characteristics; budgetary limitations; services offered; and the 

availability of service provider. The factors all affect the decision made by the user 

when selecting a service provider to suit his business. As mentioned above, 

following this solution path allows the user to gain the benefits of continuously 

monitoring crops, without having to purchase hardware and/or software licences. 

Once a 3PSP is selected, the company captures the necessary data and delivers the 

agreed-upon final report to the farmer or farm owner. An assumption is made that 

if a farmer requires recurring flights performed by the 3PSP, a contract will be 

undertaken between the client and the service provider, to provide the service 

multiple times over an agreed-upon time period. Figure 7 illustrates how these 

above-mentioned factors influence the selection of a 3PSP. The factors on the left 

refer to the factors specified by the system user, whereas the factors on the right 

are the factors that are determined by the service provider. 
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Figure 7 Factors that Influence Third-Party Service Provider Selection 

Each of these factors and how they affect the 3PSP-selection decision is discussed 

in the paragraphs to follow. The factors are divided into elements relating to the 

user and features relating to the 3PSP.  

The entire system is user dependent, especially when making use of a service 

provided by an external company, the system user is allowed to select a solution 

that suits his needs and requirements. The user will therefore not select a solution 

should it not provide him with the desired outputs from the system. If the user, for 

instance, only requires aerial images in the form of an orthomosaic of his crop 

fields, he will surely select a 3PSP that can provide him with that service. Similarly, 

if the user requires further analyses of different vegetation indices calculated for his 

crops, he will not select a 3PSP that cannot provide that solution output. In 

another instance, the user might require a certain frequency of flights, and thus 

will only select the service provider that can meet the user’s needs. The services 

offered by the available 3PSPs should be noted in the selection process, as this 

factor should be evaluated in correspondence with the user’s needs and 

requirements and the desired outputs to be obtained when selecting a suitable 

service provider. In the case where the 3PSP offers a tailored solution to the client 

based on the client’s needs, the user can specify exactly what he requires from the 

solution. The users’ preferences thus affect the outputs delivered by the system. 
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In addition to the requirements and preferences stated by the user, budgetary 

limitations can have an effect on the selection of a specific 3PSP. The farmer 

purchases the service of data capturing (using UAVs), data analysis and 

conclusions and recommendations from the service-providing company. An 

assumption can be made that the cost for the desired service will differ from 

company to company. This is due to the fact that every company has a different 

business model or calculates the cost of the service differently. Similarly, the cost of 

different jobs performed by the same company will also differ from job to job. 

Therefore, the financial means allocated for crop monitoring purposes by the 

farmer in question can possibly limit the selection of 3PSPs. Due to the fact that 

service providers only calculate job quotes once the farmer has requested for a 

quote, this factor affects the final decision when selecting a service provider.  

Another group of factors for consideration is the physical characteristics of the farm 

or farming area itself. These characteristics can, in some cases, limit the selection 

of service providers. For instance, if the farming business produces citrus fruits, a 

3PSP that is not familiar with citrus orchards will most probably not be selected, 

compared to a service provider that specialises in citrus farm monitoring. Along 

with the types of crops monitored, the size of the crop fields to be monitored and 

the layout of the fields may play a role in the selection of a suitable service 

provider.  

The final factor for consideration is the availability of service providers within the 

geographical region of the farm. The influence of this factor on the selection of 

3PSPs is premised on the fact that each individual service provider is located in a 

specific region of the country. The service provider thus only provides services 

within the surrounding areas of its base location. If this is not the case, 3PSPs 

most probably specify their regions of service. If a farm falls outside of a selected 

service provider’s region of service, that 3PSP will be disregarded.  The selection of 

a suitable 3PSP thus relies on the availability of the service provider within the 

same geographical region, where the farm is located. Conversely, service providers 

may not necessarily choose to limit their clients based on geographical locations. In 

such a case where services are provided regardless of the location of the farm, the 

3PSP will remain part of the list of suitable service providers the user can select 

from. In this case, however, the service provider may increase the cost of the 

service due to additional or increased travelling costs to the farm location. 
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The typical process followed to select the most suitable 3PSP starts with the user 

(farmer) evaluating each of the above-mentioned factors, paying special attention to 

the needs and requirements and desired results specified by the user. Once each 

factor has been evaluated, the list of available service providers is assessed and 

through elimination, unsuitable candidates are removed from the list. Once the list 

of available 3PSPs is refined, based on the preferences concerning each factor, the 

service providers are contacted to obtain a quote for the desired service. Hereafter 

the user evaluates the suitability of a specific service provider to perform the 

required task, based on the budgetary constraints set by the user. If none of the 

service providers falls within the set limits, one of the previously determined factors 

specified by the user might need to be adjusted or changed slightly. If this is the 

case, the entire process will be repeated until the most fitting service provider is 

selected. This process is visually illustrated in Figure 8.  

Figure 8 is designed to be used in collaboration with Table 9 to assist the user in 

selecting the most appropriate service provider. Included in the Table are 11 3PSPs 

identified within South Africa ("Aerobotics," 2022; "Agri-Sense International," 2022; 

"The Awareness Company," 2022; "DC Geomatics Drone Technology," 2022; "Epic 

Air," 2022; "Integrated Aerial Systems (IAS)," 2022; "RocketFarm," 2022; "Southern 

Mapping," 2022; "Specialised Agricultural Services," 2022; "UAV Industries 

(FlyUAVI)," 2022; "UVSSA," 2022). The service providers are selected through 

research and the elimination of unsuitable service providers. Examples of 

unsuitable service providers include companies that provide crop-spraying 

solutions or provide farming insights based solely on satellite imagery or imagery 

obtained through a manned flight. Other examples excluded are precision 

agricultural practices utilising ground-based sensors. Some of the identified service 

providers also operate outside of South Africa, however, these companies are 

primarily based in South Africa. Service providers based outside of SA are 

disregarded from the summary table. In addition, data included the table 

pertaining to each service provider is limited to information obtained through the 

company website. Thus, the only information used is that which is provided by the 

company on their respective websites.  

The information is grouped and presented in an easier-to-use and reference to 

format to aid the user in making an informed decision.  The information presented 

for each 3PSP includes the following: services offered; output type; crop types; 

location; and legal status and licencing. The information included in the Services 
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Offered column, includes the service(s) provided or marketed by each individual 

company. Only the services pertaining to crop health diagnostics and the use of 

UAVs are included. The various output(s) produced by the company is mentioned 

in the second column. Included as an output is the type of images captured or the 

data captured by different sensors. A common output provided to users is the 

calculation of various growth indices based on the sensor data captured. These 

indices can be visually illustrated in an adapted orthomosaic of the area captured. 

The third column provides information regarding the crop types serviced by each 

respective company. An assumption can be made that in the case where no 

individual crop types are listed, the service provider does not limit their services to 

specific crop types. The geographic region where each service provider is based, as 

well as the areas or countries in which the respective service provider can operate 

is indicated in the fourth column. The official licences and legal status, if 

mentioned on the company website, are presented in the final column. An 

assumption can be made that all of the companies adhere to the relevant 

legislation and that all aircrafts and drone operators have the correct licensing.  

Information is only included in the table if it could easily be obtained through the 

company website. If no information could be found for a specific grouping of 

information or data for that particular service provider, no information is provided. 

If the user specifically requires that information, it can be requested from the 3PSP 

at a later stage. The summary table aims to provide the user with a ‘one-stop’ 

reference document with the necessary information for each respective service 

provider. The Table should be used in the manner, corresponding to the decision-

making process illustrated and discussed above.  
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Figure 8 Process Followed to Select Most Suitable Third-Party Service Provider
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Table 9 Third-Party Service Providers in South Africa 

Services Offered Output Type  Crop types Location Legal Status/ 
Licences 

Aerobotics                         

Insights for precision growing and crop insurance.  
 

Plant performance:  
ID nutrient deficiencies, pest infestations, and disease or irrigation issues. 

Track practices over time. 
 

Irrigation:  
Monitor irrigation, manage hardware maintenance. 
 

Plant Count:  
Tree counting, manage and maximise plant inventory. 

 
Yield: 
Continuous crop monitoring and yield prediction. 

 
Pest and Disease: 
Digital pest and disease monitoring solution. 
 

Multispectral and thermal imagery obtained by drone flights. Citrus 
Nuts 

Apples 
Avocados 

Berries 
Pome 

Stone 

Grapes 
Subtropical 

fruit 
Olives 

Pomegranates 

Based: Cape Town 
 

Service: 18+ 
Countries (Africa, 

Americas, Europe, 
Australasia) 

 

Integrated Aerial Systems (IAS)                  
Crop insights with intelligent drone data. 

Goal: Reduce costs, increase yields. 
 

Individual Tree stats: 
Tree counts, height, canopy size, canopy volume and health. 
 

Field Insights: 
Detect problem areas and variations. Develop field contours and digital 

elevation models for crop and irrigation management. 
 

Actionable Data: 
Increase yield and reduce crop loss with rapid intervention. 

 

In Field Scouting: 
Share maps easily across different devices. 

 
Analysis Over Time: 
Monitor crop and plant health throughout the season with data captured 
from multiple surveys. 

 

Flights conducted within 48 hours after request. Data processed 

within 24 hours after flight. 
 

Data analysis: Advanced data analysis, detailed maps and 

customisable reports. 
 

Multispectral and RGB images technology. 
 

Field insights: 
Orthomosaic, NDVI, VARI and other algorithms designed for plant 

health. 
 

Critical near real-time data. 

 Based: Cape Town 

 
Service: South 

Africa and Africa. 

Fully Licensed and 

Insured. 
 

CAA Certified 

Operator 
 

ROC Certificate from 
SACAA. 

 
Class III General ASL 

DC Geomatics                             
ROC partnership solution. 

 
Crop management: 
 
Crop monitoring 

Crop protection 

 Crops 

Orchards  

Based: Umhlanga  

 
Service: South 

Africa 

Fully licensed and 

insured. 
 

SACAA Approved. 
 

CUAASA Diamond 
Member. 
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Services Offered Output Type  Crop types Location Legal Status/ 

Licences 

Epic Air                                    

Measure, observe and act on changes in crops. 

 
Crop scout sections of farmland. 

 
Measure plant health instantaneously. 

 
Detect crop and soil problems with NDVI and VARI. 

 
Take field action and monitor reports over time. 

NDVI and VARI index maps. 

 
2D or orthomosaic maps and 3D models within hours. 

 
Digital elevation maps. 

Thermal index maps. 
Plant counting. 

 
Real-time HD video footage streamed to multiple devices on the 

ground. 

 Based: Cape 

Town. 

Fully Licensed and 

Insured. 
 

Fully licensed RPAS 
Operator. 

 
ROC certificate from 

SACAA. 

Rocketfarm                          

(division of Rocketmine) 

Precision crop monitoring solutions. 
Provides precise, geo-referenced, spatially dense plant population data. 

 
Analyses delivered within 48 hours after flight. 

 
Primary services: 

- Crop health trends reporting 

- Monitor weather damage 
- Crop stress analysis and plant scouting 

- Plant counting (entire field or specific area) 
- Forecast Yield 

- Monitor plant growth and health 
 

Specific solutions: 
 

Waterlogging Analysis 
Nitrogen status in Crops 
Weed Analysis 

Stand Count Report 
Plant Population 
Canopy Analysis 
Drought Analysis 
Flowering Estimator 
Plant Stress Analysis 
Yield Estimates 
Plant Disease Analysis 
Pest Analysis 

NDVI index maps. 
 

High accuracy, 10 cm Ground Sampling Distance (GSD). 
 

 
 

 

 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 

 
*Additional crop analyses available on request 

Summer Crops:      
Cotton 

Tomatoes 
Maize 

Sorghum 
Soybeans 

Dry Beans 

Sunflower 
 

Winter Crops: 
Potatoes 

Tomatoes 
Onions 

Wheat 
Barley 

 

Perennial Crops: 
Sugarcane 

Macadamias 
Pecans 

Citrus 
Lychees 

Mangos 
Apples 

Grapes 

Bananas 
Avocados 

Olives 

Based 
(Rocketmine): 

Johannesburg 
 

Service: South 
Africa, Namibia, 

Zambia, Australia, 

Ghana, Cote 
d’Ivoire, France, 

Israel. 

Fully licensed by the 
CAA. 

 
Licenced Commercial 

Drone Operator. 

UVSSA                           

Monitoring and Evaluation Services: 
 

Crop inspection. 
Crop health and failure detection 

Track progress of Crops 
Forecast Harvest 

Customised solutions  Based: 
Johannesburg 

 
Service: South  

Africa 
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Services Offered Output Type  Crop types Location Legal Status/ 

Licences 

FlyUAVI                               
Drone training, Drone operations, Drone ROC for rent. 

 
Aerial mapping and Surveys: 
Raw video footage 
Geo-referenced Orthomosaics 

3D modelling 
Photogrammetry 

 
Industrial Inspections: 
Orthomosaics 

RGB, thermal and multispectral sensors 

Visual (RGB) imagery. 

 
RGB, Thermal and Multispectral Sensors. 

 Based: Pretoria SACAA Certified 

Drone operator. 

Specialised Agricultural Services                  

Drone Aerial Surveys: 
Contour Mapping 
Irrigation and drainage design 

Tree and Crop height calculation 
Accurate field and area measurements 

3d Modelling and volumetric calculation 

 
Plant stress detection 

Crop assessments 
Crop and orchard analysis 

Accurate 3D maps. 

 
NIR cameras 

NDVI and other reflectance maps 

 Based: Dolphin 

Coast 

 

The Awareness Company                      

HYDRA Holistic Agriculture 

 
Farm Awareness: 
Track livestock weight and health. 
Log genecology information. 

Harvesting or planting analysis. 
Pest detection and quality checks.  

 
Agri Insights: 
Enables more insights and value from data. 

Drone captures data that serves as inputs to HYDRA Holistic 

Agriculture. 

 Based: Pretoria 

 
Service: South 

Africa 

 

Southern Mapping                       

Support soil classification, farm design and agri business and vegetation 

mapping and monitoring. 

 
Agri Monitoring: 
Crop performance monitoring 
Monitor moisture in crops 

Irrigation and drainage monitoring 
Yield monitoring and management of factors that affect yield 

 

Agri Farm Design: 
Drainage and irrigation planning 

Soil management 
Soil survey or field sampling 

NDVI and NDWI Index maps  Based: 

Johannesburg 

 
Service: South 

Africa, more than 
48 countries. 
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Services Offered Output Type  Crop types Location Legal Status/ 

Licences 

Agri Sense International                    

Crop monitoring Services: 
Monitor crop performance 
Identify poor growth within crop 

 
Capture drone imagery on your behalf. 

RGB, NIR and Thermal Imagery. 

Aerial imagery. 
Statistical Analysis. 

 
HD Geo-rectified Maps 

Vegetation and Crop assessment Maps (Calibrated NIR and 
Standardised NDVI) 

 
Vegetation Indices: 
CIG 

G-NDVI 
NDVI 

SR 

 Based: Hilton, 

KZN. 
 

Service: South 
Africa 

Nigeria 
Tanzania 

Ghana 
Angola 

Mozambique 

Rwanda 
DRC 

Malawi 
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4.2.2 Purchase Own System 

As mentioned in Figure 6, if the user wishes to purchase his own system, he can 

either design the entire system by selecting each component to make up a whole 

system or purchase a full-stack solution (otherwise known as a COTS solution) 

from a company specialising in the development of agricultural drone systems. 

Similarly, to selecting a 3PSP, both these solution paths are influenced by several 

factors and considerations. 

4.2.2.1 Design of Own System 

In the case where the system user decides to purchase each of the separate 

elements to create a crop monitoring system, each element of the UAS should be 

selected individually, but also taking into consideration the other elements to make 

up the whole system. As mentioned previously, UAVs are developed to be 

compatible with a specific DCS software tool, developed by the same company that 

developed the aircraft. Thus, if you purchase a drone, in essence, you purchase the 

DCS software tool along with the drone. Alternatively, not all drone developing 

companies provide an in-house post-flight processing software tool. An assumption 

is made that the user should purchase the software tool or a license to the software 

program to be used for post-flight processing of the captured data, separately. 

Many drone companies, however, make recommendations for post-flight processing 

software that is most compatible with the data or information obtained by their 

aircraft. Similarly, the user is also responsible for selecting a UAV and 

accompanying payload (sensor or camera) to complete the crop monitoring UAS. 

Aircrafts are designed either with a fixed, permanent payload or a swappable 

payload feature. However, if an aircraft has a swappable payload feature, it does 

not mean that any payload could be attached to the drone. Only payloads 

compatible with the drone and drones compatible with the payload can be 

attached. Thus, the selection of a specific drone model might limit the available 

payload options to select from. Similarly, selecting a payload model limits the 

available UAV models to select from. 

The components of a crop monitoring system identified earlier in this Chapter 

influence the decisions concerning the selection of each individual element of the 

UAS. Figure 9 demonstrates how these components (in general) affect the selection 

of the specific elements of the system. 
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Figure 9 System Component and UAS Element Interactions 

The system user directly influences the selection of the payload and the selected 

payload influences the selection of the post-flight processing software tool. The 

payload is selected based primarily on the users’ desired outputs from the system 

and in turn, the data outputs produced by the payload affects the selection of the 

software tool. Different types of cameras or sensors deliver different file outputs 

and not all software tools can process the different file types. In a similar manner, 

the system user, along with the farm characteristics and the licensing and 

legislative requirements, affect the selection of a UAV model. And selecting a UAV 

affects the payload selection and vice versa.  

The design of the UAS comprises of selecting a specific model or version of each of 

the three identified components; the UAV; payload (camera/sensor); and software. 

Each of these elements follows a separate selection process that will be discussed 

in the sub-sections to follow. 

i) UAV Selection 

A number of characteristics of a drone exist, that affect the selection of a specific 

drone model to be included in the users’ crop monitoring UAV system. These 

characteristics do not all possess the same level of influence on the drone selection 

decision. To develop an integrated framework, each characteristic is considered a 

variable influencing the final decision of what drone model to select. These drone 

characteristics are regarded as key variables that influence the UAV selection 

decision. 

The factors were selected based on the information freely provided by drone 

manufacturing companies combined with expert opinion. The characteristics 
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selected are those that are most often measured, or information provided for, by 

drone manufacturing companies. The UAV characteristics were selected by 

obtaining the technical specifications of popular agricultural drone models, and 

drone models specifically used for crop monitoring purposes. After analysis of the 

information provided in the technical specifications document, the most common 

characteristics and features of the drone models were identified. These factors are 

in turn used to model the effect each characteristic has on the selection of a UAV 

model. The aircrafts selected as part of the analysis are those specific models 

mentioned in previous research articles, relevant to the current study. Due to the 

fast-changing nature and improvements to drone technology, many aircraft models 

have since been replaced with improved or updated models. The latest model of 

each drone is considered for the analysis unless otherwise stated. The aircrafts 

included in the analysis are those aircrafts that are commercially available before 

July 2022. Any new or improved aircrafts or aircraft models released after the end 

of July 2022 are not included in the analysis. The UAV models mentioned in the 

identified research articles were regarded as a starting point for further research 

into UAV models used for agricultural purposes. A basic search for commercially 

available drones was conducted. In some instances, the aircrafts mentioned in 

previous research correspond to those found through basic research. Only drones 

or aircrafts used specifically for crop monitoring or mapping, precision agricultural or 

other, similar purposes are considered throughout this analysis. 

The following subsection identifies various drone models mentioned in previous 

literature sources that are considered for the analysis. 

• UAV Models Mentioned in Previous Research Works 

The literature consulted for this part of the analysis to identify relevant UAV/drone 

models are listed in  
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Table 10. The previously conducted research works reviewed for this part of the 

analysis correspond, in some cases, with the literature studied for the literature 

review in Chapter 2: Literature Review. The literature sources are listed 

in 
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Table 10 to allow for an increased specificity of the analysis. Each article is further 

analysed and the specific drone models have been identified in the paragraphs to 

follow. 
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Table 10 Literature Consulted for UAV Model Identification 

Author(s) Title 

(Puri et al., 2017) Agriculture drones: A modern breakthrough in 

precision agriculture. 

(Dileep, Navaneeth, 

Ullagaddi, & Danti, 2020) 

A study and analysis on various types of agricultural 

drones and its applications. 

(Petkovics, Simon, 

Petkovics, & Čović, 2017) 

Selection of unmanned aerial vehicle for precision 

agriculture with multi-criteria decision-making 

algorithm. 

(G. Yang et al., 2017) Unmanned aerial vehicle remote sensing for field-

based crop phenotyping: current status and 

perspectives. 

(Maddikunta et al., 2021) Unmanned aerial vehicles in smart agriculture: 

Applications, requirements, and challenges 

(Rakhade et al., 2021) Optimal Choice of Agricultural Drone using MADM 

Methods 

Puri et al. (2017) listed a variety of fixed-wing and multi-rotor drones within their 

study, highlighting how drones have gained importance within the agricultural 

field. Included in the analysis are a number of drones available in the market for 

agricultural applications. Information pertaining to these drones is mentioned in 

Table 11. 

Table 11 UAV Models Mentioned by Puri et al. (2017) 

Drone Model Drone Type Commercially Available 

Honeycomb AgDrone 

System 

Fixed-wing Company temporarily closed 

DJI Matrice 100 Multi-rotor 

(Quadcopter) 

Discontinued, 

Matrice 300 RTK 

DJI T600 Inspire 1 Multi-rotor 

(Quadcopter) 

Discontinued, 

Matrice 300 RTK 

Sensefly eBee SQ Fixed-wing Discontinued 

Precision Hawk Lancaster 

5 

Fixed-wing Discontinued 

DSOLO AGCO Edition Multi-rotor 

(Quadcopter) 

Little to no information 

available 

Dileep et al. (2020) conducted an analysis focused on the types of drones available 

and compared these different types of drones, and the applications these aircrafts 

have within the agricultural field. Table 12 lists the drone manufacturing 

companies mentioned in Dileep et al. (2020)’s study. Further research was 

conducted to identify the different drone models currently available from each 
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company. Aircrafts specifically designed for precision agricultural purposes are 

included in Table 12. Sentera offers one of three full-stack solutions, namely the 

Research, Broad Acre and Scouting packages ("Sentera," 2022). Each of these 

solutions comprises of a UAV and the necessary sensor. Listed in the Table below 

are the three drone models included in these solutions. The DJI Matrice 300 that 

forms part of the Research Package by Sentera is the same aircraft as the Matrice 

300 RTK model advertised by DJI. The DJI Phantom 4 Pro model which is used as 

part of Sentera’s scouting package, has since been replaced by the DJI Phantom 4 

Pro V2.0. Both of these drone models have been included in the analysis. Precision 

Hawk advertises two DJI drone models along with their own UAV, the BFD 1400-

SE8 model ("Precision Hawk," 2022). Although the DJI Matrice 200 V2 is available 

if acquired through Precision Hawk and thus will be included in the analysis. The 

DJI Phantom series listed by Precision Hawk does not specify an exact Phantom 

series, thus the latest series, the Phantom 4 Pro series, will be evaluated. Similarly, 

the DJI Mavic series is not specified, therefore the latest Mavic model, the Mavic 3 

is included. 

Table 12 UAV Models Mentioned by Dileep et al. (2020) 

Manufacturer Drone Model Drone Type 

American Robotics Scout drone Multi-rotor (Quadcopter) 

DJI: 

(Da-Jiang Innovations) 

P4 Multispectral 

Phantom 4 RTK 

Matrice 30 Series 

Matrice 300 RTK 

Multi-rotor (Quadcopter) 

Multi-rotor (Quadcopter) 

Multi-rotor (Quadcopter) 

Multi-rotor (Quadcopter) 

Precision Hawk BFD 1400-SE8 

DJI Matrice 200 V2 

DJI Phantom Series 

Multi-rotor 

Multi-rotor (Quadcopter) 

Multi-rotor (Quadcopter) 

Sensefly eBee X 

eBee AG 

Fixed-wing 

Fixed-wing 

Sentera DJI Matrice 300 

Sentera PHX 

DJI Phantom 4 Pro 

DJI Mavic 3 

Multi-rotor (Quadcopter) 

Fixed-Wing 

Multi-rotor (Quadcopter) 

Multi-rotor (Quadcopter) 

Through analysis and selection of UAVs for precision agricultural purposes, 

Petkovics et al. (2017) identified the five most prominent drone manufacturers, 

namely: PrecisionHawk, AgEagle, SenseFly, Honeycomb and Delair-Tech. In 

addition to identifying these manufacturers, multiple drone models were identified 

and classified into weight categories, to distinguish performance between different 

drone sizes.  The various drone models, along with their most common uses (as 
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indicated by the individual drone companies) are indicated in Table 13. Many of the 

drones identified by Petkovics et al. (2017) are not commercially available anymore, 

and information about these aircrafts is difficult to come by. In the cases where 

information could be found on a specific drone model, the model was included in 

the analysis, whereas, if no information could be found, the drone model is 

disregarded for the analysis. 

Table 13 Drone Manufacturers and Drone Models identified by Petkovics et al. (2017) 

Drone Model Drone Type Specified use Commercially 

Available 

Sensefly eBee X Fixed-wing   

Sensefly eBee Ag Fixed-wing   

Sensefly eBee RTK Fixed-wing Survey, mapping Discontinued 

AscTec 

Hummingbird 

Multi-rotor Inspection Discontinued 

Novadem U130 Multi-rotor Close inspection, Field 

mapping 

 

Blade 360X3 Multi-rotor Aerial photography & 

videography 

Discontinued  

Ghost Aerial Multi-rotor Aerial photography & 

videography 

Discontinued 

FlyBi Drone Multi-rotor 

(VR goggles) 

Aerial photography & 

videography 

Pilot project 

discontinued 

Pocketflyer Multi-rotor Aerial photography & 

videography 

Discontinued 

Sensefly Swinglet 

Cam 

Fixed-wing Monitoring, Aerial Imagery Discontinued 

Trimble UX5 Fixed-wing Mapping & Surveying  

Delair DT18 range 

 

Fixed-wing Mapping and Surveying  

Bramor gEO Fixed-wing Surveying and Remote 

Sensing 

Discontinued 

Bramor ppX 

Bramor aGX 

Bramor C4EYE 

Atlas AS90X 

Atmos 6 CATUAV Fixed-wing Utility drone Discontinued 

Atmos 8 

RAPID AgEagle Fixed-wing  Discontinued 

MINEOS CATUAV Fixed-wing Initially developed for 

landmine detection, other 

applications available. 

Discontinued 

Hexo+ Multi-rotor Aerial Footage and 

videography 

 

ATLAS Fixed-wing First responders & special Discontinued 
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Drone Model Drone Type Specified use Commercially 

Available 

operations forces ATLAS AS90X 

F50 AEE UAVs Multi-Rotor First responders, fire 

detection 

Discontinued 

Penguin B Fixed-wing Surveillance & inspection  

Penguin CE Fixed-wing Surveillance & inspection  

Penguin BE Fixed-wing  Surveillance & inspection 

(electric version of the 

Penguin B model) 

 

Serenity by ING 

Robotic Aviation 

Fixed-wing Inspections, mapping, 

monitoring. 

Discontinued 

Delair DT26-X Fixed-wing Survey, monitoring and 

inspection. 

 

CAT UAV Argos Fixed-wing Aerial Photography  

CAT UAV Argos 

Electric 

Fixed-wing Aerial Photography  

AT-100    Discontinued 

Responder Helicopter  Discontinued 

The ATLAS AS90X drone, the successor of the ATLAS drone, is developed for use by 

first responders and special operations forces. Thus, the drone model is 

disregarded as part of this analysis. Similarly, both the Bramor aGX and C4EYE 

models are disregarded for the analysis as their specified uses do not include crop 

monitoring, surveying or remote sensing applications ("C-Astral Aerospace," 2022). 

In the study conducted by G. Yang et al. (2017), UAV-based remote sensing for 

field-based crop phenotyping was investigated. The study compared the current 

status of crop phenotyping using UAVs and the current perspectives. Included in 

the study are the typical UAV types used for remote sensing, but specifically for 

field-based crop phenotyping applications. The types of aircrafts include: multi-

rotor, helicopter, fixed-wing, flying wing and blimps. Due to the limitations of the 

current study, only the multi-rotor and fixed-wing drone model types are included. 

These two drone models are included in Table 14. 

Table 14 Multi-Rotor and Fixed-Wing Drones Mentioned by G. Yang et al. (2017) 

Drone Model Drone Type Commercially Available 

DJI S1000+ Multi-rotor Discontinued 

Bat-3  Fixed-wing Could not find any information 

Maddikunta et al. (2021) evaluated the uses, requirements and difficulties 

prevalent when utilising UAV technology in smart farming. The study explored 
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types of UAVs and accompanying agricultural sensors used in smart farming while 

highlighting the different features and applications of each type. The UAVs reviewed 

within this study are listed in Table 15. 

Table 15 UAV Models Identified by Maddikunta et al. (2021) 

Drone Model Drone Type Commercially Available 

eBee SQ Fixed-Wing Discontinued 

Sentera PHX Fixed-Wing  

Lancaster 5  Fixed-Wing  

HoneyComb Fixed-Wing Company temporarily 

closed 

AgEagle RX-60 Fixed-Wing  

DJI Matrice 600 Pro Multi-Rotor Discontinued, 

Matrice 30 series 

DJI Matrice 210 Multi-Rotor Discontinued,  

DJI Matrice 300 RTK 

Sentera NDVI Multi-Rotor  

AgBot Multi-Rotor  

 

• UAVs Identified through Market Research 

The UAV models identified above are not an exclusive list of all of the drone models 

available for agricultural purposes, but rather a list of the aircrafts that have been 

mentioned in previous literature. While researching and analysing the technical 

specifications of the above-mentioned aircrafts, a range of newer models from the 

same companies and new models from other companies, were identified (Atmos 

UAV, 2021; "C-Astral Aerospace," 2022; "Delair," 2022; "Wingtra," 2022). The UAV 

models identified through market research are included in the analysis. The 

aircrafts are listed in Table 16. 

Table 16 UAV Models Identified Through Market Research 

Drone Model Drone Type Specified Use 

WingtraOne GEN 

II 

Fixed-wing Monitor plant health, plant counts, 

optimise plant ROI. 

Delair UX11 Ag Fixed-wing Mapping 

Delair UX5-HP Fixed-wing Survey, monitor & inspect 

Delair DT26E 

LiDAR 

Fixed-wing Laser mapping, Survey, Monitor & 

inspect 

Delair DT26E 

Surveillance 

Fixed-wing Surveillance 

Delair DT26E 

Tactical 

Fixed-wing Sensitive missions 
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Delair DT26E 

Open Payload 

Fixed-wing Monitoring, depending on the selected 

payload 

Bramor ppX Fixed-wing Surveying, Remote sensing 

Marlyn Fixed-wing Precision Agriculture 

Note, that the UAV models listed are not an extensive list of all UAVs with 

agricultural applications, as the drone model options are endless. In addition, the 

technologies associated with UAVs and especially as part of the agricultural remote 

sensing sector, are quick-changing. Therefore, the UAV models listed in this 

document might be obsolete or be discontinued by the producing company in a 

short span of time. The UAV models selected as part of the analysis are indicated in 

Table 17 ("AgBot for Precision Agriculture," ; AgEagle, 2018; "American Robotics," 

2022; Atmos UAV, 2021; C-Astral Aerospace, 2022; Delair; Delair; Delair, 2017, 

2018, 2020; DJI, 2020a, 2020b, 2021a, 2021b, 2022a, 2022b, 2022c; Factory, 

2022; "Novadem," 2022; "Precision Hawk," 2022; SenseFly, 2021a, 2021b; Sentera; 

Trimble, 2015; Wingtra). 

Table 17 UAV Models Considered for Analysis 

UAV Model UAV Model 

1. DJI: 

1.1 Matrice 300RTK 

1.2 P4 Multispectral 

1.3 P4 RTK  

1.4 Phantom 4 Pro 

1.5 Phantom 4 Pro V2 

1.6 Matrice 30 Series 

6. Novadem U130 

7. Trimble UX5 

8. Bramor ppX 

9. Atmos 8 

10. Penguin B 

11. Penguin BE  

2. American Robotics: Scout drone 15. WingtraOne GEN II 

3. PrecisionHawk: 

3.1 BFD 1400-SE8 

3.2 DJI Matrice 200 V2 

3.3 Lancaster 5 

16. Atmos Marlyn 

17. AgEagle RX-60 

18. AgBot 

19. Delair 

19.1 UX11 Ag 

19.2 UX5-HP 

19.3 DT 26E LiDAR 

19.4 DT 26E Open  Payload 

 19.5 DT18 HD 

19.6 DT18 AG 

4. Sensefly: 

4.1 eBee X 

4.2 eBee AG 

5. Sentera: 

5.1 Sentera PHX 

5.2 DJI Phantom 4 Pro 

5.3 DJI Mavic 3 
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• UAV Characteristic Identification 

The identification of the UAV characteristics that will be considered as the key 

variables influencing decision-making were identified by reviewing the technical 

specifications of each drone model mentioned above. Only the technical 

specifications that could easily be obtained or that are provided freely by the UAV 

manufacturing company were used. Each drone developer or manufacturer differs; 

thus the naming of factors might differ even though it refers to the same 

specification. Each of the technical specifications documents was analysed and the 

characteristics pertaining to the aircraft operation and output were identified. The 

characteristics were grouped into two main categories, namely: Technical Input and 

Functional Output. The technical input category includes characteristics and 

information regarding the technical and physical aspects of the aircraft, such as 

the weight of the aircraft, the battery size or capacity, connection method, etc. The 

technical input characteristics identified are discussed in Table 18.  

Table 18 Technical Input Characteristics of UAVs 

Technical Input 

Characteristic 

Description 

Battery information Information pertaining to the battery included in the 

aircraft, such as the size, capacity, voltage, etc. 

Type of UAV UAVs are categorised into different categories, based on 

the propulsion method utilised by the aircraft. For the 

purpose of this study, two types of aircrafts are 

considered: fixed-wing and multi-rotor aircrafts.  

Aircraft weight 

  

Maximum take-off 

weight 

Payload capacity 

The weight of the body of the aircraft, excluding the 

payload and additional elements. 

The maximum weight of the aircraft at take-off, including 

the aircraft and the payload weight. 

The payload weight capacity of the aircraft. 

Control system 

information 

Control system type 

  

Radio/data link 

  

 

Global Positioning 

System (GPS) 

Operating frequency 

  

Global Navigation 

Software System 

Information pertaining to the control system of the 

aircraft. 

Control type of the specific aircraft: manual, semi-

automatic or autonomous. 

Information relating to the radio frequency transmission 

used to receive and transmit information to and from the 

drone. 

Information regarding the GPS module included in the 

aircraft, if such a module is included. 

The frequency bands utilised by the drone for 

communication. 

GNSS data is similar to that of GPS, as the data is used 

to control autonomous drones, to maintain position, 
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Technical Input 

Characteristic 

Description 

(GNSS) follow pre-set waypoints and return to the specified home 

point. 

Take-off and landing 

information 

The take-off and landing system of the specific aircraft. 

Aircraft safety 

mechanisms and 

features 

Safety mechanisms or features embedded in the aircraft 

control mechanisms that automatically react in the case 

of an emergency or unsafe instant. 

Aircraft size Size dimensions of the aircraft. The specified dimensions 

differ between different aircraft manufacturers. 

Wingspan  The length (usually in mm) of the aircraft measured from 

wing (blade) tip to wing (blade) tip. Note the wingspan is 

only applicable for fixed wing drones. 

Wifi connection A connection mechanism between the drone and the 

users’ control device, usually a cell phone. 

Bluetooth connection A method to connect the drone with the GCS and control 

the drone wirelessly.  

Aircraft material The material that the aircraft is made of, such as carbon 

fibre, aluminium, etc. 

Motor type The type of motor used in the aircraft. Typically drones 

contain either brushed or brushless motors. 

Motor size or power 

capacity 

The size and/or capacity of the motor used in the aircraft. 

This information is typically provided through the 

kilovolts, watts and/or lipo voltage of the motor. 

Real-time kinematic 

(RTK) 

RTK geotags images and records the GPS information 

throughout the drone flight, to allow each image or video 

captured to include its precise GPS location. 

Connection/control 

range 

The range that the aircraft can fly, in a radius, from the 

location of the controller or GCS. 

Landing 

space/accuracy  

The area (usually in m2) required for an aircraft to land, in 

the case where the aircrafts lands autonomously based 

on a predefined home point. The landing accuracy is how 

close the aircraft lands in range from the predefined home 

or landing point specified. 

Take-off run The length of open space required for the drone to take-

off. This is only applicable to larger fixed-wing models. 

Fuel tank size The size of the fuel tank attached to the drone (typically 

in litres). This is only applicable to drones that are fuel 

powered and contain small combustion engines.  

The characteristics classified as functional outputs include characteristics related 

to the performance of the aircraft. In essence, the technical characteristics of a UAV 

influence the performance of the drone, thus differences in the technical inputs 
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influence the functional output of the aircraft. The functional output 

characteristics included in the analysis are listed and described in Table 19.  

Table 19 Functional Output Characteristics of UAVs 

Functional 

Output 

Characteristic 

Description 

Flight time The average flight time of a single flight, measured in optimal 

conditions, usually measured in minutes. 

Flight coverage  The average area (m2) covered by the drone in a single flight. 

Flight speed The average speeds at which the aircraft flies. Different speeds 

are measured for different flight actions, such as take-off, 

hovering or cruising speeds, etc. 

Wind resistance The maximum wind speeds that the aircraft can sustain while 

in flight (measured in m/s or km/h or mph). 

Operating 

temperature 

Temperature range within which the drone can operate. 

Ingress Protection 

(IP) rating 

The drones’ resistance to unwanted penetration of water of 

moisture. Typically the IP rating consists of three parts, but in 

this case the IP rating refer to the level of water resistance the 

drone has. 

Service altitude  

 

Flight/cruising 

height 

The maximum altitude at which the drone can fly, usually the 

service altitude is measured as the height above sea level. 

The flight or cruising height is the typical height or altitude 

above the ground that the aircraft flies at. 

Ground Control 

Points (GCPs) 

Used in conjunction with RTK and GPS information, GCPs are 

points set on the map to assist an autonomously controlled 

drone to collect information of the area being surveyed. 

Hovering accuracy The accuracy of the images and information obtained from the 

drone compared to the exact locations of the images. 

Angular velocity The velocity at which the propellers of the drone rotate or 

revolve along each of their axes. 

Ground Sampling 

Distance (GSD) 

The distance on the ground measured between two successive 

pixel centres. A lower GSD relates to a lower spatial resolution 

of the image, thus less clear images.  

Rate of data 

collection 

The rate or speed at which the drone collects information and 

data while in flight.  

Mapping accuracy Divided into relative and absolute accuracy. The relative 

accuracy is measured through comparing features from the 

captured image or map to other features in the same map. 

Absolute accuracy reviews the difference between the location 

of features or elements in the map and their exact position in 

reality. A high absolute accuracy means the map closely 

depicts reality.  
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In addition to the technical input and functional output characteristics, other 

characteristics are identified that cannot be categorised into any of the categories. 

These characteristics are the specifications relating to the built-in camera or 

sensor, and the payload compatibility of the specific aircraft. In the case where the 

drone is equipped with a camera or sensor that cannot easily be exchanged for a 

camera or sensor of choice, the specifications for the payload should be reviewed. 

Other drones allow the user to insert any camera/sensor from a range of available 

payloads designed specifically for that aircraft. Such drones contain a swappable 

payload feature. In some cases, the drones are designed in such a way that 

commercially available drone cameras/sensors can be attached to the aircraft.  

• UAV Selection as a System 

From the 40 identified characteristics, 13 were identified that either has a direct 

influence on the UAV selection decision or that influences or are influenced by any 

of the system components or elements thereof. These characteristics and the 

components that influence one another within the UAV selection process are 

illustrated in Figure 10. The key variables identified for ultimately making the 

decision to select a UAV or drone model are those characteristics or components of 

the system that directly influence the main decision variable, the UAV selection 

variable. The payload selection variable is indicated below to illustrate how the UAV 

selection and payload selection processes relate and connect to one another. Due to 

the system being very user dependent, the influence that the user has on some of 

the variables is not illustrated visually but described when referring to a specific 

variable(s). The variables that affect the primary variables (those variables that 

directly influence the main decision variables) are described as the secondary 

variables, as they don’t have a direct influence on the UAV selection variable, but 

rather affect another variable that possibly directly affects the main variable.  

The variables and their influence (primary or secondary) on selecting a drone model 

are discussed. One of the first decisions to be made by a user is what type of drone 

is preferred, thus selecting either a multi-rotor or a fixed-wing drone.  Selecting a 

type of drone instantly influences the take-off and landing ability of the drone. A 

multi-rotor possesses a vertical take-off and landing (VTOL) ability, whereas most 

fixed-wing drones are hand-launched or with a catapult. Only a few fixed-wing 

drones contain a VTOL ability. These two variables directly influence the main 

variable, as preferences regarding these drones limit the selection of available 
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aircraft models. Likewise, selecting a UAV instantly defines the type of drone, take-

off and landing ability, as well as the safety feature included.  

Similarly, the safety features embedded in the drone control system or the drone 

itself, also affect the selection of a UAV. The safety features preferences are heavily 

influenced by the topography of the area where the farm of choice is located. This is 

due to the user possibly requiring specific safety features when operating the 

aircraft on the farm. If an aircraft does not contain the safety features deemed 

important by the user the aircraft should be disregarded as part of the selection. 

The topography of the area also affects both the type of UAV selected as well as the 

take-off and landing ability preferred for the drone. The topography affects the type 

of UAV selected, as each type of UAV is more suited for a specific topography. A 

fixed-wing drone is more suited for larger, flat areas to be monitored, whereas a 

multi-rotor drone is more versatile, and can operate easily in more mountainous 

areas as well. Similarly, the take-off and landing ability preferred is reliant on the 

area topography. A drone equipped with VTOL abilities can be operated in any 

location, even in confined areas or between trees, etc. Drones without VTOL 

abilities might require more open space to take off and especially land. In areas 

where open spaces might be restricted, the user might opt for an aircraft with VTOL 

abilities.   
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Figure 10 UAV Selection as a System 
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The next primary variables that influence the selection of a UAV are the aircraft’s 

wind resistance ability and the ideal operating temperatures of the aircraft. These 

two variables are directly influenced by the geographic location of the farm. A 

geographic location is associated with certain weather patterns and occurrences 

common to that area. Therefore, the location of the farm can have an effect on the 

requirements pertaining to the aircraft’s wind resistance and ideal temperatures in 

which it can operate. These variables only play a very important role in UAV 

selection in extreme cases. For instance, if the area in which the farm is located is 

subject to extremely strong winds for almost the entire year, or in areas where the 

temperatures are either extremely high or extremely low. In most farming areas, 

such extreme weather occurrences are uncommon, and in the case where the 

weather might be unsuitable for a drone to operate in, the flight schedule might 

only be delayed for a few days. In all other ‘normal’ circumstances, the wind 

resistance of the aircraft might affect the decision made as it can be regarded as an 

additional safety measure. Drones with a higher wind resistance have the ability to 

better withstand strong winds or gusts and can safely navigate home, while other 

aircrafts might be swept up by unexpected strong winds and lose connection with 

the GCS. 

The size of the farm, more specifically the size of the monitoring area, affects the 

flight time and coverage required. The size of the monitoring area can either be 

defined by the user, thus the user defines the size of the area to be monitored in a 

single flight, or be defined based on the drone model selected for the system, or 

influenced and defined by the layout of the farm and the size of the crop fields to be 

monitored. A monitoring area can thus be defined by a number of different factors, 

or through a combination of these factors. The farm layout variable directly affects 

the monitoring area size in the case where the farm is laid out in such a way that 

each crop field should be defined as a single monitoring area. In this case, each 

field will be monitored with a single drone flight (if the size of the field is less than 

the drone’s coverage) and to monitor the entire farm, a number of single flights will 

be performed. The farm layout also affects the monitoring area in cases where 

multiple crop fields (preferably of the same crop) are positioned next to, or close to 

one another. In this case, fields can be combined into a single monitoring area, 

thus decreasing the number of flights required to monitor the entire farm, if the 

selected drone can cover the defined monitoring areas in a single flight. Thus, the 

size of the monitoring area influences the flight coverage and flight time required 
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from the selected drone. The flight coverage and time requirements directly 

influence the UAV model selected by the user. Conversely, if a drone is selected, the 

flight coverage and flight time are predetermined for that drone. Thus, the time and 

coverage variables influence the size of the monitoring area to be defined. In 

simpler words, if a drone can only fly for 20 minutes, the monitoring area should 

be defined in such a way that the area aimed to be covered in that flight would take 

less than 20 minutes. Similarly, monitoring areas can be combined to allow for a 

larger area to be monitored than originally planned. The speed at which the drone 

flies while monitoring is also a factor of concern, as the determined flight speed can 

have an effect on the area covered. For instance, an increased flight speed can lead 

to a larger area coverage in the same timeframe as a lower speed flight. However, 

an increased flight speed may have an effect on the flight time, as the higher 

operating speed may cause a faster decrease in battery life, thus decreasing the 

flight time of the aircraft. An increased flight speed can increase flight coverage, 

while at the same time decrease the flight time, due to limited battery life. This 

trade-off should be considered carefully, as a change in flight speed, can lead to the 

area covered and flight time cancelling each other out. In essence, an increased 

flight speed may allow for a larger area coverage, but it comes at a cost of 

decreased flight time. Not all drones allow for an adjustment to flight speed, thus 

the selection of a UAV model could be a limiting factor on the flight speed variable. 

Similarly, the selection of a specified flight speed or the ability to alter these speeds 

could influence the selection of a UAV model. 

The farm layout has an effect on the monitoring area size, as discussed above. But 

in a similar way, the types of crops that are to be monitored can have an effect on 

the layout of the farm for monitoring purposes. This is due to different crop types 

being planted in different fields and typically fields with the same type of crop are 

located close to one another, if possible. The layout of the crop fields in relation to 

one another can influence how the monitoring area is defined. The types of crops to 

be monitored also impacts the height requirement for the flight. This, however, is 

only applicable for drones without a predefined cruising height or altitude. 

Generally, all autonomously operated drone systems fly at a predefined altitude, 

whereas an aircraft that is manually controlled can fly at any height above the 

ground. Each different type of crop grows to a different height, thus the cruising 

height of the drone should be adjusted accordingly, if necessary. The flight height or 

cruising altitude, influences the licensing requirements for both the aircraft and the 
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operator. The maximum flight height of an aircraft, usually height above ground 

level, is restricted according to the classification of the aircraft. Almost all aircraft 

classes can fly up to 400 feet above ground level with the Class 4B drone as the 

only exception. The required flight height influences the UAV selection variable as 

an aircraft with a specific flight height ability might be selected if necessary. 

Similarly, once a UAV is selected, the flight height variable becomes a constant, 

due to the fact that the maximum flight height and possibly the cruising altitude is 

predetermined, depending on the specific drone.   

The other variables that influence the licensing requirements are the UAV selected, 

the weight of the aircraft and the control mechanism of the aircraft. These four 

variables, including the flight height, ultimately determine the class of the aircraft. 

Combined with the specified use for the drone (commercial, corporate, non-profit or 

private), the legislative and licensing requirements are clearly defined. Along with 

these variables, the specific aircraft model selected affects the licensing 

requirements if the aircraft is selected before referring to the licensing and 

legislative requirements. In another sense, if the licensing requirements are limited 

or defined before selecting a drone model (which is highly unlikely), the licensing 

requirements variable affects the UAV selection variable. The weight of the aircraft 

or more specifically the Maximum Take-Off Mass (MTOM) has an influence on the 

licensing prerequisites or requirements. The MTOM is the maximum weight of the 

aircraft with all payloads and other accessories attached. Thus, the weight of the 

aircraft affects the available capacity for a payload.  

The payload capacity can only be influenced by drones with a swappable payload 

feature or drones that external payloads can be attached to. If weight limitations 

are defined, then the UAV weight variable influences the UAV selection variable, 

however, if there are no weight restrictions, the aircraft weight variable holds no 

influence over the UAV selection variable. In such a case, the UAV would be 

selected and from that selection, the UAV weight variable is defined as a constant 

value that only aids in classifying the aircraft for licensing purposes and 

calculating the available payload capacity. The weight capacity for the payload is 

determined by deducting the aircraft weight from the MTOM of the aircraft if the 

payload capacity is not specified separately. Some UAVs specify the dimensions of 

the payload bay, should an external or additional payload be attached. The payload 

capacity directly influences the payload selection as only payloads that would 

adhere to the weight and size requirements can be selected to be used in 
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conjunction with the drone. Similarly, only payloads that are compatible with the 

selected drone model can be selected for use. Thus, the selection of a UAV model 

limits the payloads to select from, due to not all drones being compatible with all 

payloads and vice versa. Conversely, when selecting a specific payload, the 

selection of drones is also limited. 

The final variable that influences the licensing requirements to operate a specific 

drone is the control mechanism of the specific aircraft. The control mechanism 

relates to how the aircraft is controlled, either through remote controls, or manual 

controls, or the aircraft contains an automated control function. Drones with an 

automated flight option, allow the user to plan the flight, and then only initiating 

the flight, leaving the aircraft to perform the flight as planned. Specific regulations 

and legislation apply to such aircrafts. Manually controlled aircrafts are more 

common, and the licensing regulations are more clearly noted for these operations. 

The choice of control mechanism, is solely due to user preference and the selection 

of a type of mechanism, limits the availability of drones within that category. The 

selection of a control mechanism, thus influences the selection of a UAV model. In 

the same manner, if a UAV model is selected without reference to the control 

mechanism, the variable becomes a constant, as each drone model is built with a 

set method of control. 

An original assumption is made that each characteristic, influences the selection of 

a UAV model equally, in order to illustrate the UAV selection as a system. However, 

this does not assist the system user in making the decision regarding a UAV model.  

• Identification of Important Characteristics 

In order to identify those characteristic(s) that carry the most importance in the 

UAV model decision, the technical specifications of the selected drones are 

reviewed. For each drone model mentioned in Table 17, the technical specifications 

were reviewed to determine if information pertaining to the selected characteristics, 

those illustrated in Figure 10, are available. This analysis is performed to 

determine the frequency of availability of information regarding a specific 

characteristic, among the UAV models selected for analysis. This step allows the 

researcher to determine what information is most frequently included within the 

technical specifications of the selected UAVs. Table 22 lists the drone models 

considered for analysis as rows, and the characteristics as columns.  
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The information included in Table 22 is based on the available technical 

specifications for each UAV model identified in the analysis. If the technical 

specifications of a UAV model include information pertaining to a specific 

characteristic, a tick-mark is allocated to that block, so as to correspond to the 

aircraft model and characteristic under consideration. In total 31 different drone 

models were reviewed and the frequency of each characteristic is indicated at the 

bottom of the table. From these totals, it is easy to determine which 

characteristic(s) are more often mentioned or specified within the technical 

specifications of UAV models. Table 20 ranks the characteristics from the highest 

to the lowest frequency. 

Table 20 Characteristics Ranked in Descending Order of Frequency 

Rank Characteristic Frequency 

1 Flight time 30 

2 MOTM/ Weight 29 

3 Flight speed 29 

4 Take-off & landing preferences 28 

5 Payload compatibility 25 

6 Wind resistance 22 

7 Control mechanism 19 

8 Operating temperature 17 

9 Payload capacity 15 

10 Safety features 15 

11 Flight height 12 

12 Flight coverage 12 

From the above ranking, the characteristics that are most commonly specified are 

the flight time, weight of the aircraft, flight speed, take-off and landing preferences 

and payload compatibility. After the characteristics were ranked in descending 

frequency of availability of information, each characteristic is reviewed within the 

UAV selection system, illustrated in Figure 10. For each characteristic, the 

relationship(s) to and from, thus both inbound and outbound, from the 

characteristic is noted. The number of arrows, both inbound and outbound, for 

each characteristic is counted. The number of arrows signifies the number of 

associations between each specific characteristic and other characteristics that are 

influenced or influence the characteristic under investigation. A single arrow marks 

a single association or relationship created to or from the characteristic under 

investigation. The total number of interactions for each individual characteristic is 

denoted in Table 21.   
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Table 21 Characteristics Ranked in Descending Order of Number of Associations 

Rank Characteristic Number of 

Association 

1 Flight time 6 

2 Flight speed 6 

3 Flight coverage 6 

4 Take-off & landing preferences 5 

5 Payload compatibility 4 

6 MOTM/ Weight 4 

7 Flight height 4 

8 Payload capacity 4 

9 Wind resistance 3 

10 Operating temperature 3 

11 Control mechanism 3 

12 Safety features 3 

 

In accordance with the number of interactions per characteristic, the flight time, 

speed and coverage characteristics prove to be the most important characteristics. 

However, these results do not coincide completely with the first analysis, based on 

the availability of information. Thus, the two analyses are combined to provide a 

more thorough conclusion. Table 23 ranks the characteristics in ascending order 

according to the combined impact of the frequency and interactions for each 

individual characteristic. The frequency and number of interactions are multiplied 

with one another, to calculate the combined weight or level of importance.  
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Table 22 UAV Models and Corresponding Characteristics 

UAV Model Flight 

time 

Flight 

coverage 

Flight 

Speed 

MTOM / 

Weight 

 

Payload 

capacity 

Wind 

resistance 

Operating 

temperature 

Flight 

height  

Control 

mechanism 

Take-off & 

landing 

preferences 

Safety 

features 

Payload 

compatibility 

DJI:             

Matrice 300RTK             

P4 Multispectral             

P4 RTK             

Phantom 4 Pro             

Phantom 4 Pro V2             

Matrice 30 Series             

American Robotics: 

Scout drone 

         

 

   

PrecisionHawk:             

BFD 1400-SE8             

DJI Matrice 200 V2             

DJI P4 Advanced 

Lancaster 5 

 

 

 

 

 
 

 
 

 

 

  
 

 

 

    

Sensefly:             

eBee X             

eBee AG             

Sentera:             

Sentera PHX             

DJI Mavic 3             

Novadem U130             

Trimble UX5             

Bramor ppX             

Atmos 8             

Penguin B             
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UAV Model Flight 

time 

Flight 

coverage 

Flight 

Speed 

MTOM / 

Weight 

 

Payload 

capacity 

Wind 

resistance 

Operating 

temperature 

Flight 

height  

Control 

mechanism 

Take-off & 

landing 

preferences 

Safety 

features 

Payload 

compatibility 

Penguin BE         

AgEagle RX-60             

AgBot             

WingtraOne GEN II             

Atmos Marlyn             

Delair:             

UX11 Ag              

UX5-HP             

DT 26E LiDAR             

DT 26E Open  

Payload 

            

DT18 HD             

DT18 AG             

Total 30 11 29 29 15 22 17 12 19 28 15 25 
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Table 23 Combined Ranking of UAV Characteristic Importance 

Rank Characteristic Frequency Interactions Total 

1 Flight time 30 6 180 

2 Flight Speed 29 6 174 

3 Take-off & landing preferences 28 5 140 

4 MTOM or Weight 29 4 116 

5 Payload compatibility 25 4 100 

6 Flight coverage 12 6 72 

7 Wind resistance 22 3 66 

8 Payload capacity 15 4 60 

9 Control mechanism 19 3 57 

10 Operating temperature 17 3 51 

11 Flight height or operating altitude 12 4 48 

12 Safety features 15 3 45 

From Table 23 the most important UAV characteristics to consider, based on 

information availability and characteristic influence combined are: flight time; flight 

speed; take-off and landing preferences; MOTM of aircraft weight and; payload 

compatibility. An assumption can thus be made that these characteristics should 

be specified or selected by the user, ahead of the other listed characteristics and 

consequently defining each characteristic in descending order down the list. 

However, it still remains the users’ decision as to what characteristic he deems 

most important. As most characteristics influence one or more characteristics, a 

decision regarding a single characteristic will limit the availability of options to 

select from regarding other characteristics. Those characteristics that directly 

influence the drone selection variable, limit the drone models to select from once an 

individual characteristic is defined or specified. The list of available UAVs to choose 

from can then further be refined once more characteristics are defined by the user. 

This process can be iterated until a suitable aircraft model is identified, or the list 

of available models refined to such a point that the user can make an easy 

decision. The user is however not bound to define certain characteristics ahead of 

others should the user not deem that characteristic more important that the 

characteristics listed after it.  

• UAV Selection Process 

The selection or decision process of a specific UAV model is an iterative process 

that relies on the unique requirements and needs of the system user. The 

descending order in which the characteristics are ranked above is thus only a 

suggestion for a case where the user does not have specific preferences or needs for 
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the system. Figure 11 visually illustrates the process that can be followed by the 

user to select a suitable UAV model. The first step of the process is to review and 

define the users’ needs and requirements for the system as a whole. Thereafter, the 

system components (i.e. the farm size and layout, crop types, the topography of the 

area and the geographic location of the farm) are specified. An assumption is made 

that these components remain rather constant (to a certain extent) within the 

system. Only some of these components can possibly change, for instance, the type 

of crops planted can differ from one planting season to the next, or the layout of the 

farm and the crop fields can be changed between planting seasons. The user needs 

and requirements and the system components are evaluated to ensure that it 

aligns with the overall system goals. If these two groups don’t coincide, the user 

needs and requirements should be re-evaluated. After re-evaluation, the user can 

proceed to the next steps indicated in the process.  

This step enables the user to define each UAV characteristic, in a descending order 

based on the level of importance given to each characteristic. From the analysis 

above, the user should first define the flight time, then the flight speed, followed by 

the aircraft weight, payload compatibility and so forth. The process is designed in 

such a manner that a single characteristic is defined, and then the available UAV 

models are filtered based on the defined characteristic. This step iterates until all of 

the required UAV characteristics are defined or the refined list of UAV models 

adheres to the previously specified requirements. If the final refined list of UAVs 

does not adhere to all of the requirements, the process is reviewed from the first 

step and followed again. Once the list of appropriate UAVs is established, the user 

should decide whether a suitable UAV model can be selected from the list. If the 

user is not satisfied with the pre-selected list of UAV models, the process of 

defining characteristics should be reviewed and repeated until a more desirable 

result is obtained. If the user is satisfied with the UAVs to select from, the selection 

process must be continued to select the most suitable UAV model.  

The UAV selection process illustrated above is a suggestion of the process that 

should be followed by the user. The user is however free to adapt the process to 

suit his demands. For instance, the user can list the characteristics in any order of 

preferences, should he deem some characteristics more important than others that 

specifically don’t coincide with the results from the importance ranking conducted 

earlier.  
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Figure 11 UAV Selection Process 
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ii) Payload Selection 

The second component to be selected as part of the crop monitoring system is the 

payload. In this case, the payload refers to the camera or sensor, or combination 

thereof, attached to a drone that captures the crop data. Most cameras attached to 

drones only capture visual images or videos, however other types of sensors have 

been developed, including but not limited to: Multispectral, Hyperspectral, Visible 

Light (RGB) and Thermal sensors. Each sensor type delivers a different output from 

the captured data or can be used in different calculations related to crop health.  

The selection of a suitable sensor relies heavily on the drone model selected. This is 

due to most aircrafts being manufactured with an already attached camera or 

sensor that cannot be removed and/or swapped easily. In the case where the drone 

specifications and requirements have preference over the requirements for the 

payload, the user will typically select the drone before selecting a payload, if the 

payload can be selected for that specific drone and is not attached to the drone. 

Some drones contain a swappable payload or open payload feature. A swappable 

payload allows the user to easily switch between different payloads (if necessary) for 

the same drone. This feature allows the user to select a payload from a range of 

payloads compatible with that specific aircraft model, thus expanding the user’s 

selection. An open payload allows the user to attach or insert any payload given 

that it adheres to the dimensions and specifications of the payload bay of the 

aircraft. In some cases, an external payload (a camera or sensor developed by a 

different company than the drone manufacturer) is used by multiple drone 

manufacturers. In this case, if the user were to select a specific payload before 

selecting an aircraft, the payload selected limits the UAV models available for 

selection. If the drone model is selected before selecting a sensor, the available 

payload capacity and payload compatibility (only applicable for swappable or 

interchangeable payload features) are determined by the selected aircraft. The 

payload capacity and/or compatibility can therefore also limit the selection of 

payloads available for a specific drone model. Alternatively, if a payload is selected 

before a UAV model, the selected payload limits the available aircraft models to 

choose from. Due to a relationship already existing between the payload 

compatibility, payload selection and UAV selection variables, the selected payload 

does not directly affect the available payload compatibility and compatibility. This 

is due to the existing relationship between the UAV selection and the available 

payload specifications for that particular UAV.  
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The system user heavily influences the selection of a specific payload, by defining 

the specific goals of the system or the outputs desired from the system. The user 

can define the type of output(s) required from the system as what data type to be 

captured (visual or other) or the post-processing calculations required. This 

decision affects the type of payload selected as part of the system, as the selected 

payload should be able to deliver the required output. The system user is indicated 

in this system due to the important role that he plays in defining the goals and 

outputs required from the system. Similar to the UAV selection system, the system 

user component has an effect on the whole system and some variables within the 

system. Along with the user-defined goals and desired system outputs, the selected 

payload affects the selection of post-processing software solutions. The selection of 

software is discussed in the next subsection. Each sensor delivers data or images 

to a predefined accuracy or Ground Sampling Distance (GSD). The GSD is 

influenced by the UAV model and the cruising altitude (flight height) of the UAV as 

well as the sensor type and designed accuracy. The accuracy level preferred or 

required by the user can thus influence the selection of the specific payload. 

Similarly, payloads can deliver a predefined coverage of the area being monitored. 

The coverage offered by a payload differs from the flight coverage due to the 

overlapping of captured images to create an orthomosaic of the monitored area. 

Figure 12 illustrates the variables that affect the payload selection variable. 

 

Figure 12 Payload Selection as a System 
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• Payload Identification 

Similar to UAVs, the number of options for sensors or cameras to be attached to a 

drone is endless. Thus only applicable models are considered and presented as part 

of the analysis. The specific sensor models identified are those models attached to 

or compatible with the drone models considered for the analysis. These drone 

models are listed in Table 17. From the technical specifications or information 

provided by the drone manufacturers, the sensor or camera attached to the drone, 

or listed as a payload option is identified. The comprehensive list of payloads for 

the identified drones is shown in Table 24. The model name (if available), type of 

payload (camera, type of sensor) and the file or data output produced by each 

payload is described ("AgBot for Precision Agriculture," ; "AgEagle," 2022; Atmos 

UAV, 2021; C-Astral Aerospace, 2022; Delair; Delair; Delair, 2017, 2018, 2020; 

DJI, 2020a, 2020b, 2021a, 2021b, 2022a, 2022b, 2022c; Factory, 2022; 

MicaSense, 2020a, 2020b; "Novadem," 2022; "Precision Hawk," 2022; SenseFly, 

2022; Sentera; Sentera; Sentera; Sentera; Trimble, 2015; Wingtra).  
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Table 24 Payloads Identified for each UAV Model 

UAV Model Payload Attached/Compatible with Type of Payload File or Data Output 

DJI:    

Matrice 300RTK Supports multiple payload configurations.   

P4 Multispectral Attached camera Multispectral, with RGB JPEG images 

TIFF images 

P4 RTK 1-Inch CMOS sensor (attached) Wide angle image sensor (camera) 4K videos (MOV or MP4 format) 

20MP photos 

Phantom 4 Pro 1-Inch CMOS sensor (attached) Wide angle image sensor (camera) 4K videos (MOV or MP4 format) 

20MP photos 

Phantom 4 Pro V2 1-Inch CMOS sensor (attached) Wide angle image sensor (camera) 4K videos (MOV or MP4 format) 

20MP photos 

Matrice 30 Series Attached zoom and wide angle camera. 

M30T: Long-wave infrared thermal camera 

(additional) 

Image sensor (camera) 

M30T: Thermal sensor 

Aerial photos 

M30T: Thermal images 

American Robotics: 

Scout drone 

 

No payload information available 

  

PrecisionHawk:    

BFD 1400-SE8 Large payload capacity (11kg), no other 

information provided. 

  

DJI Matrice 200 V2 

 

 

 

Zenmuse Z30  

 

Zenmuse X5S 

Image sensor (camera) 

 

Image sensor (camera) 

 

JPEG images 

MOV, MP4 videos 

DNG, JPEG, DNG + JPEG Images 

RAW, ProRes, MOV, MP4 videos 

Sensefly:    

eBee X S.O.D.A.  

S.O.D.A. 3D  

 

Duet T 

 

Aeria X 

Image sensor with RGB 

Image sensor with RGB 

 

Thermal and RGB sensor 

 

Image sensor with RGB 

JPEG, DNG + JPEG images 

nadir and oblique images, JPEG, 

DNG + JPEG images 

Thermal: R-JPEG images 

RGB: JPEG images 

JPEG, DNG + JPEG images 
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UAV Model Payload Attached/Compatible with Type of Payload File or Data Output 

Duet M 

 

Parrot Sequoia + 

 

MicaSense RedEdge-MX 

RGB (S.O.D.A.) and Multispectral 

(Parrot Sequoia+) combination 

Multispectral + RGB sensor 

 

Multispectral sensor 

JPEG, TIFF 

Four-band multispectral 

JPEG, TIFF 

four-band multispectral 

TIFF, five-band multispectral 

eBee AG Duet M *See eBee X *See eBee X 

Sentera:    

Sentera PHX 

 

 

 

 

6X 

 

6X Thermal 

 

Double 4K Specialised Sensors 

RGB + Multispectral 

 

RGB + Multispectral + Thermal 

 

NDVI/NDRE (multispectral sensor)  

 

 

Analytics (RGB sensor) 

JPEG, TIFF, RAW 

Five-band multispectral 

JPEG, TIFF, RAW 

four-band multispectral 

JPEG, TIFF, RAW,  

Four-band multispectral, NDVI, 

NDRE, Terrain elevation 

JPEG, TIFF, RAW 

NDVI, Terrain elevation 

  

 

 

 

 

 

 

 

Single 

Ag+ (RGB + Multispectral sensor) 

 

 

Multispectral 

 

 

Weed Mapper (RGB sensor) 

 

RGB + Multispectral 

JPEG, TIFF, RAW 

four-band multispectral, NDVI, 

RGB, Terrain elevation 

JPEG, TIFF, RAW 

five-band multispectral, NDVI, 

NDRE, Terrain elevation 

JPEG, TIFF, RAW 

RGB, Terrain elevation 

JPEG, TIFF 

NDVI, NDRE 

DJI Phantom 4 Pro Double 4K *See Sentera PHX *See Sentera PHX 

DJI Mavic 3 Hasselblad L2D-20c camera 

½-inch CMOS camera sensor 

Photos and videos 

Photos and videos 

JPEG, DNG (RAW), MP4, MOV 

JPEG, MP4, MOV 

Novadem U130 Embedded Sensors HD video and still image camera  

Trimble UX5 Attached camera 24MP mirrorless camera with  
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UAV Model Payload Attached/Compatible with Type of Payload File or Data Output 

custom 15mm lens. 

Bramor ppX Attached camera 24.2MP RGB Sensor  

Atmos 8 No specific payload information provided   

Penguin B 

Penguin BE  

Universal Payload mount 

Universal Payload mount 

  

Lancaster 5 No specific payload information provided   

AgEagle RX-60 Attached sensor Crop health NDVI Sensor  

AgBot Attached camera Multispectral sensor/filters Five-band multispectral 

WingtraOne GEN II Sony RX1R II 

Sony a6100 (nadir and oblique) 

MicaSense RedEdge-MX 

MicaSense Altum 

RGB nadir 

RGB nadir and oblique 

Multispectral 

Multispectral and thermal 

 

 

Five-band multispectral 

Five-band multispectral + 

Thermal 

Atmos Marlyn Sony RX1R II 

Sony A7C 

MicaSense RedEdge-MX 

MicaSense Altum 

*See WingtraOne 

RGB image sensor 

*See WingtraOne 

*See WingtraOne 

*See WingtraOne 

 

*See WingtraOne 

*See WingtraOne 

Delair:    

UX11 Ag MicaSense RedEdge-MX *See WingtraOne *See WingtraOne 

UX5-HP Attached sensor Mirrorless 36MP camera with 15, 25 

or 35mm lens 

Raw data 

DT 26E LiDAR RIEGL miniVUX-1DL LiDar sensor; Industrial grade RGB 

sensor 

Photogrammetry 

LiDAR data 

RGB data 

DT 26E Open  

Payload 

Open payload: any payload can be 

attached/inserted if it adheres to given 

dimensions 

  

DT18 HD Attached Sensor Photogrammetry   

DT18 AG MicaSense RedEdge-MX *See WingtraOne *See WingtraOne 
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The payloads are further grouped into the types or payloads, indicated in Table 25. 

Three categories are created, Image sensors/cameras (including RGB sensors), 

multispectral sensors and thermal images. Payloads containing a combination of 

the sensors in the different categories are listed more than once, in each category 

that it can be grouped into. Payloads attached to drones, that are not listed with a 

unique model name are listed under the drone model in Table 25. 

Table 25 Categorised Payloads 

Image Sensors or Cameras 

(including RGB) 

Multispectral Sensors Thermal 

Sensors 

DJI P4 RTK Sensefly Duet M DJI M30T 

DJI Phantom 4 Pro Parrot Sequoia + Sensefly Duet T 

DJI Phantom 4 Pro V2 MicaSense RedEdge-MX Sentera 6X 

Thermal 

DJI M30 Sentera 6X MicaSense 

Altum 

Zenmuse 30 Sentera 6X Thermal  

Zenmuse X5S Sentera Double 4K 

NDVI/NDRE 

 

Sensefly S.O.D.A.  Sentera Double 4K Ag+  

Sensefly S.O.D.A. 3D  Sentera Double 4K Weed 

Mapper 

 

Sensefly Duet T AgEagle RX-60  

Sensefly Aeria X AgBot  

Sensefly Duet M MicaSense Altum  

Parrot Sequoia +   

Sentera 6X   

6 Sentera X Thermal   

Sentera Double 4K Analytics   

Sentera Double 4K Ag+   

Sentera Double 4K Weed Mapper   

Hasselblad L2D-20c   

DJI Mavic 3 ½-inch CMOS   

Novadem U130   

Trimble UX5   

Bramor ppX   

Sony RX1R II   

Sony a6100 (nadir and oblique)   

Sony A7C   

Deliar UX5-HP drone   

RIEGL miniVUX-1DL   

Delair DT18 HD   
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Due to the vast amount of sensors available in the market, only those sensors 

attached to, or compatible with the drone models identified earlier are used for 

analysis. The above list of sensors is thus not an exhaustive list of available 

sensors, as the list of UAV models would also grow as more suitable 

sensors/cameras are identified and vice versa.  

• Selection Process 

Similar to the previous selection processes, a recommendation of the process steps 

to follow to select a suitable payload is developed. The payload selection process is 

illustrated in Figure 13. The first step in the recommended process is for the user 

to define his goals and desired outputs from the system. The goals and outputs for 

the system serve as the main requirements when selecting a payload, as the 

selected payload should be able to deliver what the user wants from the system. 

Secondly, it should be determined whether a UAV model has been selected prior to 

selecting a payload. If a UAV model has been selected, the available payloads are 

limited to those compatible with the specific drone model. Thus, the compatible 

payloads should be reviewed first, before the rest of the process can be performed. 

Once the payloads are reviewed, or in the case where a UAV model has not been 

selected, the next step is to define the characteristics and requirements relating 

specifically to the payload. The characteristics to be defined are those identified 

earlier and illustrated in Figure 12. Once the characteristics are defined and the 

requirements for the payload specified, the available payloads should be refined 

according to the requirements and characteristics. In the case where a UAV model 

has been selected prior to selecting a payload, the list of payloads has already been 

refined based on their compatibility with the selected UAV. The already refined list 

is then further refined to address the characteristics and requirements of the 

payload. From the refined list of payloads, the user should be able to easily select 

the most suitable payload option for the system. 
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Figure 13 Payload Selection Process 
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iii) Software Selection 

As mentioned above, some GCSs, typically those included in a full-stack COTS 

solution, include the post-flight processing software as part of the control systems, 

whereas other systems require third-party software to be used. For a system where 

third-party software is to be used, a range of factors should be taken into account 

when selecting the software tool. An assumption is made that for the purpose of 

this study, the post-flight processing or photogrammetry software solution(s), does 

not form part of the GCS software accompanying the UAV. An important 

consideration for selecting post-flight processing software is the file format of the 

data captured by the payload attached to the monitoring UAS. The data will vary 

depending on the type of payload used and can range from aerial images, and 

multispectral images, to NIR data or images. The data produced as output from the 

UAS serves as input to the processing software. The data outputs from the UAS is 

directly dependent on the payload used within the monitoring system. Thus 

selecting a specific payload affects the data produced as an output to the system. 

And through selecting a specific payload, the choice of drones is affected. These 

dependencies are bi-directional as selecting a single software tool affects the input 

data file format. These input files affect the camera or sensor selected as payload 

and it can be assumed that a certain type of camera or sensor produces a certain 

type of file output. Selecting a camera based on the file format affects the 

availability of drones to choose from.  

Another aspect to be taken into account is the desired output(s) and results 

required by the user. This variable is defined as the system goals and desired 

outputs defined or required by the system user along with the requirements 

specified by the user. This will affect the software program selected, should the 

specific program adheres to the users’ requirements or not. A user requirement 

that can potentially have a big impact on selecting a software tool is the budget 

available for purchasing a software tool or the license thereof. The user directly 

influences the format or desired style of results and conclusions to be produced by 

the software. This means that should the user, for instance, require images 

indicating the calculated NDVI or other VI’s for a specific area, a software solution 

with the ability to produce such results should be selected. These dependencies are 

illustrated in Figure 14. 
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Figure 14 Software Selection as a System 

 

In combination with the software selection system, a user can follow a 

predetermined selection process to simplify the decision process.  

• Software Selection Process 

Selecting a suitable software solution from the countless alternatives can be 

illustrated through a recommended selection process. Similar to the previous 

selection processes, this process starts by defining the user goals and desired 

system outputs. These conditions should correspond to the previously defined 

goals and outputs in general. The conditions can differ with regard to the specifics 

of the goals and outputs produced by the software solution selected. The next step 

of the process is to determine whether a payload has already been selected for the 

system in one of the previous processes. If a payload has already been selected for 

the system, the output files or data types for the selected payload are reviewed. The 

available software tools are then refined based on their compatibility with the 

output files produced by the selected payload. Finally, the refined list of compatible 

software tools is further refined based on the users’ requirements for the system, 

where after a suitable software tool is selected by the user. In the case where a 

payload has not been selected for the system in any of the previous processes, the 

available or possibly suitable payload alternatives are evaluated with regard to the 

data or file outputs generated by the alternatives. After evaluating the payload 

alternatives, software tools compatible with the different file/data inputs are 

determined and grouped together. The software tools are further refined based on 

the users’ specific requirements, where after a suitable software tool can be 

selected. Ideally, the selected software tool should allow for standard data or file 

input types that the majority of payloads produce as outputs, so as to not limit the 

available payload alternatives.  

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



    

123 
 

The process as described above is visually illustrated in Figure 15.  This process 

flow map only serves as a recommendation for the user to follow, to make an 

easier, yet informed decision regarding a suitable software solution.  

 

Figure 15 Software Selection Process 
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• Software Identification 

Various software tools have been identified through reviewing the technical 

specifications of the UAV models identified as part of the analysis. All of the 

software tools mentioned in the specifications were reviewed and analysed to 

identify only those software tools suitable for agricultural purposes, and more 

specifically the tools that can be used to process imagery and data for crop 

monitoring purposes ("3D Survey," ; Agisoft; "Alteia," ; "Drone Deploy," ; "ENVI Crop 

Science," ; "ESRI ArcGIS," ; "ESRI ArcGIS Drone2Map," ; "Measure Ground 

Control," ; "Menci Software," ; "Pix4D fields," ; "Precision Analytics," ; "Sentera 

FieldAgent," ; "Simactive," ; "Skippy Scout," ; "Trimble Inpho UASMaster,"). Any 

solution outputs relating to measuring crop health or aiding in determining the 

health of crops were included in the selection. In addition, software tools that can 

create orthomosaics or orthophotos from the captured data were also included, as a 

visual representation of a crop field also carries significant value. When reviewing 

the suitable software tools, the most important information considered is the 

outputs or products produced by the software as well as the data file or input type 

compatibility of the software tool. Table 26 presents a refined list of the software 

tools available, that specialises in agricultural applications, or can be used for 

agricultural applications.  
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Table 26 Software Tools Available 

Software Tool Outputs/Products Data File Input Compatibility 

Pix4D Fields Digital maps:  

- Orthomosaic 

- Vegetation Indices maps 

- Zonation maps 

- Prescription maps 

- Field boundaries 

- Digital Surface Models 

- RGB: JPEG 

- Multispectral: TIFF or JPEG  

- Pre-processed maps: geoTIFF orthomosaic or VI’s 

- Field Boundaries: geoJSON, KML or Shapefile 

- Geotagged images: JPEG, TIFF 

DroneDeploy Field edge mapping 

Stand counts 

Advanced crop health analysis 

Vegetation Indices 

Digital Elevation models 

Geotagged aerial data: JPG format 

Sentera FieldAgent Crop health 

Canopy cover 

Flowering 

Height and Lodging 

Stand and Tassel Count 

Weed detection 

Exports PDF file of selected information 

 

Skippy Scout Scout field maps 

Disease identification 

Monitor problem areas 

Any image or map from any source, does not specify file type. 

Trimble Inpho 

UASMaster 

Photogrammetry workflows Can process data from almost every UAS vendor, no vendor or file 

types specified. 

Esri ArcGIS 

 

Drone2Map 

Multispectral analysis 

Crop status 

Orthomosaics 

Digital surface and terrain models 

Multiple VIs: NDVI; SAVI; GNDVI; Red-Edge NDVI 

 

 

Can visualise natural-colour, thermal infrared and multispectral 

datasets. 

Supports most main multispectral cameras. 

PrecisionAnalytics Multiple VIs: NDVI; ENDVI; VARI; NDRE; SAVI RGB, 3-Band Multispectral and Thermal data from: 
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Software Tool Outputs/Products Data File Input Compatibility 

Growth trends 

Plant counts and sizes 

Plant stress identifiers 

- DJI sensors 

- Parrot Sequoia 

- MicaSense: Red Edge M/MX; Altum 

Alteia Crop characteristics 

Weed maps 

Visual drone data:  

- RGB 

- Multispectral 

- Hyperspectral 

- LiDAR 

Field boundaries  

Simactive Digital surface models 

Digital terrain models 

Orthomosaics 

3D models 

Calibrated reflectance maps 

Index maps (NDVI) 

Any UAV platform 

All cameras and sensors 

Infrared and multispectral imagery 

Agisoft Metashape Multichannel Orthomosaic 

Vegetation indices 

RGB 

NIR 

Thermal 

Multispectral images 

3D Survey Orthophotos 

Surface models 

Contour maps 

Compatible with any drone and any camera. Nothing mentioned 

about sensors. 

Menci Orthophotos 

Orthomosaic 

Digital surface models 

Any drone images: TIF, JPG format 

Measure Ground 

Control 

Integrates with Pix4D 

Orthomosaic 

Multispectral reflectance map 

Digital surface and terrain models 

 

ENVI  

Crop Science 

Integrates with Esri’s ArcGIS platform. 

Crop health information 

 

Spectral and Spatial imagery 
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iv) Integrated Solution to Design Own System 

From the design and development of the three separate decisions that form part of 

the main solution to design your own system, an integrated solution is created. 

This solution combines the three decisions to be made within the main decision 

path. These decisions include the selection of a UAV model, payload and suitable 

processing software. Each of these decisions was individually evaluated and 

modelled as a system, to illustrate the different factors and variables that influence 

these decisions respectively. As mentioned previously, and that became apparent in 

the analysis of each decision, the main components that influence these decisions 

are the user; the physical farm characteristics and; licensing and legislation 

requirements. The user influences the decisions through multiple sub-variables 

identified earlier in this Chapter. In some of the decision systems, the system user 

is indicated as a variable, whereas in other systems, one of the sub-variables of the 

system user is used. In the cases where the sub-variables are used, it illustrates 

the importance of that variable on the other variables within that decision system. 

The physical farm characteristics are also divided into their sub-variables when 

included in the decision systems, as the different sub-variables have distinct 

influences on the other variables within the system. 

Due to the three main decision variables directly influencing each other, the UAV 

selection and payload selection influence each other bi-directionally, while the 

payload selection directly influences the selection of a suitable software tool. The 

three separate decision systems are combined into a single system, to illustrate the 

collective effect of the variables on one another and on the three decision variables. 

The integrated system is illustrated in Figure 16. Some of the variables were 

identified in more than one of the sub-decision systems, for instance, the system 

user influences all three of the decisions, namely UAV, payload and software 

selection. Similarly, the system goals and desired outputs specified by the user 

have an influence on both the payload and software selection decisions. The other 

variables that share direct influences are the payload compatibility and capacity 

variables, which both affect and are affected by, the payload and UAV selection 

variables. Other variables influence one of the decision variables directly, but 

indirectly influences one of the other variables, thus through influencing another 

variable that influences the decision variable. These variables have a secondary 

influence on the decision variables and are depicted in Figure 16. 
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Figure 16 Design Your Own System Illustrated as an Integrated System 
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• Integrated Solution Design Process 

Accompanying the integrated solution system, a process diagram has been 

developed to combine the three separate sub-decisions to be made when designing 

your own solution. This process starts by reviewing the users’ needs and system 

requirements along with defining the goals and desired outputs for the system. This 

step is a combination of the first steps indicated in the various sub-decision 

processes. When user preferences have been reviewed, the system components 

(especially the farm characteristics) are specified. After the specification of these 

components, the user is referred to either the UAV selection or the payload 

selection process. Depending on the users’ preferences, the order in which these 

processes are followed is influenced. If the user places more emphasis on the UAV 

model and its specifications, the user will refer to the UAV selection process before 

referring to the payload selection process. Alternatively, if the user is more peculiar 

regarding the specifications of the payload, the user will refer to the payload 

selection process and then to the UAV selection process. This is a consequence of 

the strong influence these two items have on one another and selecting one greatly 

influences the selection of the other. After referring to either the UAV selection or 

payload selection process, the other process should be referred to and performed 

consequently. Following the selection of a suitable UAV and payload, the software 

selection process is referred to. The software selection process makes provision for 

a case where a payload is not yet selected. If this is the case, the software selection 

process can be completed, followed by the payload selection process. Upon 

completion of the three sub-decisions to design your own system, the compatibility 

of the hardware and software components should be evaluated. If all of the 

components are able to effectively integrate and work together, the system should 

be evaluated against the initial preferences specified by the user. Upon user 

satisfaction, the selected system can be purchased and implemented by the user. 

The complete integrated selection process is illustrated in Figure 17.  
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Figure 17 Integrated Solution Selection Process to Design Own System 
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4.2.2.2 Purchase Full-Stack Solution 

If a user opts to acquire a full-stack or COTS solution instead of designing the 

entire solution and selecting each individual component within the system, the 

selection process is that of the COTS solution itself. The terms full-stack solution 

and COTS solution is used interchangeably, referring to the same solution type. A 

full-stack or COTS solution contains all of the necessary hardware and software 

within a single solution package. Usually, a full-stack solution, designed for 

agricultural purposes specifically, contains the UAV, payload or payload options to 

select from, DCS and additional spare parts and/or maintenance plans or extended 

warranty periods. Each COTS solution is however different, especially with regard 

to the included components and/or software. For this analysis, an assumption is 

made that the post-flight processing software solution is not included in the COTS 

solution. Selecting a suitable and appropriate COTS solution, as with the other 

main decisions to be made within the system, can be influenced by a number of 

factors within and outside the system’s boundaries. The selection of a suitable 

COTS solution and the variables that affect this decision is illustrated in Figure 18. 

Similar to the UAV selection system, the system user has a strong influence over 

the entire system, thus the users’ influence is not illustrated visually, but rather 

explained when referring to a specific variable.  

 

Figure 18 COTS Solution Selection as a System 
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The main elements of the COTS solution are the UAV and attached payload, thus 

the variables that influence the selection of the combination of the two are deemed 

most significant. As the UAV and payload are the main elements of the solution, 

the two separate elements are combined into a single element, defined as the COTS 

selection variable. The variables that influence the selection of a UAV model and the 

corresponding payload respectively, that are defined in the previous subsections 

and systems, are merged to form a single system for the selection of a COTS 

solution. The payload selection system joins the UAV selection system to form the 

COTS selection system. The variables that are shared or the effects slightly adapted 

include: flight height, accuracy, payload coverage, UAV flight coverage, flight time 

and the size of the monitoring area. Thus, the other variables that directly influence 

the selection of a UAV model and a payload, respectively, remain constant from the 

previously defined selection systems. The flight coverage variable is specified as the 

UAV flight coverage variable, to distinguish between the flight coverage of the 

aircraft and the payload respectively. The size of the monitoring area, flight time and 

flight height affects the payload coverage and is affected by the variable. Similar to 

how the defined or required monitoring area size affects the flight coverage 

required, it can have an effect on the required payload coverage. Alternatively, if the 

payload coverage is constant, the size of the monitoring area needs to be adapted to 

suit the available coverage. The payload coverage variable directly influences the 

selection of a COTS solution and is directly influenced by the selection of a COTS 

solution. The predefined or required flight time of the UAV has an influence on the 

area captured by the payload. A longer flight time allows for a larger area coverage, 

whereas a shorter flight time leads to a smaller area coverage. Similarly, the flight 

height can also influence the area captured by the payload. This dependency 

however also relies on the accuracy of the data captured or required by the 

respective payload. Selecting a COTS solution defines the accuracy obtainable by 

the particular payload. Conversely, if the user defines the required accuracy for the 

payload, the selection of a COTS solution will be influenced, thus only including 

suitable payloads.  

As mentioned previously, the post-flight processing software does not form part of 

the COTS solution. Therefore, the software selection sub-decision that forms part of 

the decision system to design your own solution, is utilised to assist the user in 

selecting a suitable software solution. This sub-decision is explained and 
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illustrated, along with the recommended software selection process, in sub-section 

4.2.2.1 Design of Own System.  

• Full-Stack Solution Selection Process 

Selecting an appropriate full-stack or COTS solution as part of a crop monitoring 

system follows a process very similar to the process of selecting a UAV model. As 

the COTS solution contains a UAV and corresponding payload, the characteristics 

or variables referred to in the process map are those illustrated in Figure 18. In the 

UAV selection process, the characteristics of a UAV are ranked in order of 

importance, to enable the user to more easily define the most important variables 

ahead of other variables. Due to the COTS solutions containing not only the UAV 

model, other characteristics relating to the payload may also be deemed more 

important by the user. The payload selection on the other hand has been expressed 

as being very user-dependent, where the user is required to define the goals and 

desired outputs of the system in order to select a suitable payload that can conform 

to it. The outputs from the system are however still dependent on the post-flight 

processing software selected, but the data output from the payload affects the 

selection of a suitable software tool. The COTS solution selection process thus 

allows the user to specify the goals and desired outputs from the system, before 

defining any other characteristics or variables related to the UAV model or the 

payload. In the same step, the users’ needs and requirements for the system as a 

whole is reviewed to ensure they correspond with the goals and outputs sought.  

After the user defines his various elements, the system components (the farm 

characteristics, licensing requirements, etc.) are specified. If the user-defined 

elements or specifications align with the system components, the process continues 

to where each characteristic (UAV characteristics and payload characteristics) are 

defined individually, where after the available COTS solutions are refined based on 

the defined characteristic. These two steps repeat themselves until all of the 

necessary characteristics have been defined and the user is able to determine the 

most suitable solution. From the final refined list of suitable solutions, the user can 

establish whether the solutions adhere to the most important requirements of the 

system. If the user is satisfied, a solution is selected from the refined list of 

solutions. If the user is not satisfied that the possible solutions adhere to the 

important system requirements, the entire process should repeat itself, thus the 

user should start by reviewing the requirements and system needs and redefine the 

goals and system outputs. The process is very repetitive and mainly based on the 
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user and what he requires or wants from the system. In addition, the process 

should be considered as a recommendation to select an appropriate full-stack 

solution. The recommended process to select a suitable COTS solution is depicted 

in Figure 20.  

Once the user has selected an appropriate COTS solution, the user is directed to 

the software selection process described in the previous sub-section. A minor 

adjustment should be made within the software selection process. Instead of 

determining whether a payload has already been selected, it should be rephrased to 

determine whether a COTS solution has been selected. Due to the step of referring 

to the software selection process succeeding the step where a suitable solution is 

selected, it becomes redundant to determine whether a solution has been selected 

in the software selection process step. This step should be disregarded if a full-

stack solution is chosen, nonetheless, the user needs to review the output files or 

data types produced by the selected full-stack solution. An adapted software 

selection process is illustrated in Figure 19. 

 

Figure 19 Adapted Software Selection Process 
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Figure 20 Full-Stack Solution Selection Process 
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• Full-Stack Solution Identification 

From the list of UAV models identified for the analysis in the previous sub-section, 

those models that provide a full-stack solution as an alternative have been 

identified. The identified UAV models, can typically be acquired individually and 

not part of a COTS solution, however, the option does exist should the user wish to 

purchase the complete solution. Table 27 lists the identified COTS solutions, along 

with the drone model and payload model included in the solution (Delair; Delair, 

2017, 2018, 2020; DJI, 2021a, 2021b; SenseFly, 2021a; Trimble, 2015). Note, this 

is not a comprehensive list of all of the available full-stack solutions designed for 

agricultural purposes, only those that can easily be identified based on the 

previous analyses. 

Table 27 Available COTS Solutions for Identified UAV Models 

COTS Solution UAV Model Payload Model 

eBee Ag solution eBee Ag Duet M: RGB and 4-band multispectral 

DJI P4 Multispectral 

Agriculture solution 

DJI P4 

Multispectral 

RGB and multispectral combination 

camera 

DJI P4 Pro V2 solution DJI P4 Pro V2 1-inch 20MP CMOS sensor (RGB 

camera) 

DJI P4 RTK solution DJI P4 RTK 1-inch 20MP CMOS sensor (RGB 

camera) 

Trimble UX5 solution UX5 HP 36MP full-frame sensor camera, 

combination between NIR and RGB 

sensor system. 

Delair UX11 Ag 

solution 

UX11 Ag MicaSense RedEdge-MX: RGB and 

multispectral 

Delair UX5 HP solution UX5 36MP full-frame camera, RGB sensor 

Delair DT26E LiDAR 

solution 

DT26E LiDAR 21MP RGB sensor 

Delair DT18 HD 

solution 

DT18 HD 21MP RGB sensor 

Delair DT18 Ag DT18 Ag MicaSense RedEdge-MX: RGB and 

multispectral 

 

4.3 Solution Categorisation 

In addition to the system of solution introduced in the previous sub-sections, a 

categorisation of possible solutions is developed. This categorisation includes 

different output selections based on the various categories created relating to the 

solution type, farm characteristics and UAV characteristics. No categories are 

created for the selection of payload solutions due to a lack of the necessary 
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information regarding each identified payload. In the previous sub-section, the 

identified payloads are already grouped according to the type of payload. For the 

purpose of this summary categorisation, the initial grouping of the payloads is 

sufficient. For each individual category identified, the appropriate or most suitable 

solution is identified. The categories and corresponding solutions are identified and 

elaborated on in the sub-sections to follow.  

4.3.1 3PSP Solution 

The service provider solution was created for those users who do not want to own 

their own hardware and software components, but rather only make use of the 

services provided by a registered service provider. Table 9 identified the available 

service providers based in South Africa, along with the services provided by each 

company, the type of outputs produced, the crop types specialised in and where the 

company is based and what areas are serviced by that company. From this table, 

three categories are created to further group the service provider solutions. These 

categories include the output type produced, the geographic location of the 

company and the crop type specialisations. Each of these categories is further 

elaborated on in the following sections.  

4.3.1.1 Output Type 

The outputs produced by each service provider, if the information is available, were 

identified in Table 9. The types of outputs are grouped into five main output types, 

indicated in Table 28 for each output type, the service provider(s) that can deliver 

that specific output are listed. Not all service providers stated their output types, 

thus only those who disclosed the required information are included. 

Table 28 Service Providers Grouped Based on Output Types 

Multispectral 

Thermal 

Imagery, VI's 

Visual (RGB), 

Orthomosaics 

2D/3D maps, 

Digital 

Elevation 

Models 

Real-time 

data and 

information 

Statistical 

Analyses 

Aerobotics Integrated 

Aerial 

Systems 

Epic Air Integrated 

Aerial 

Systems 

Agri Sense 

International 

Integrated 

Aerial 

Systems 

Epic Air Specialised 

agricultural 

services 

Epic Air 
 

Epic Air FlyUAVI 
   

Rocketfarm Agri Sense 

International 

   

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



    

138 
 

Multispectral 

Thermal 

Imagery, VI's 

Visual (RGB), 

Orthomosaics 

2D/3D maps, 

Digital 

Elevation 

Models 

Real-time 

data and 

information 

Statistical 

Analyses 

FlyUAVI 
    

Specialised 

agricultural 

services 

    

Southern 

Mapping 

    

Agri Sense 

International 

    

 

4.3.1.2 Geographic Locations 

Similar to the grouping according to the types of outputs produced, the service 

providers are grouped according to the geographic locations, where the company is 

based and what areas they service. Most of the service providers service the whole 

of South Africa while being based in a major city or province. Some of the service 

providers extend their services to countries outside of SA, these are all grouped into 

the ‘Other Countries’ category. The identified categories with the service providers 

within each of the categories are indicated in Table 29. 

Table 29 Service Provider Grouped According to Service or Base Locations 

Whole of 

South Africa 

Johannesburg, 

Pretoria Region 

Kwa-Zulu 

Natal 

Cape Town Other 

Countries 

Agri Sense 

International 

Southern 

Mapping 

Agri Sense 

International 

Epic Air Agri Sense 

International 

Southern 

Mapping 

The Awareness 

Company 

DG Geomatics Integrated 

Aerial 

Systems 

Southern 

Mapping 

The 

Awareness 

Company 

FlyUAVI Specialised 

agricultural 

services 

Aerobotics Rocketfarm 

UVSSA UVSSA 
  

Integrated 

Aerial 

Systems 

Rocketfarm Rocketfarm 
  

Aerobotics 

DG Geomatics 
    

Integrated 

Aerial 

Systems 
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A user based in Pretoria can select any service provider that best suit their needs 

that fall within the categories ‘Johannesburg, Pretoria Region’ and ‘Whole of South 

Africa.’ A similar observation can be made for a user based in any location unless 

the user is not situated in SA. In that case, the user should individually review 

each service provider that operates in other countries to identify those most 

suitable.  

4.3.1.3 Crop Type Specialisations 

Some of the service-providing companies specify the types of crops that they 

specialise in, while others do not provide any information regarding crop types. An 

assumption can be made that those companies who do not specify specific crop 

types, can perform their services regardless of the type of crop produced by the 

user. The companies that do however specify which crop type they specialise in, are 

categorised according to the crop categories that they service. The crop categories 

are defined in accordance with the crop classifications defined in by the Food and 

Agriculture Organisation of the United Nations (World Programme for the Census of 

Agriculture 2020, 2015). The service providers that provided crop information are 

grouped according to the crop categories and shown in Table 30. 

Table 30 Service Providers Grouped based on Crop Categories 

Crop Categories Service Providers 

Cereal crops DG Geomatics Rocketfarm 
 

Vegetables and melons Rocketfarm 
  

Fruits and nuts Rocketfarm DG Geomatics Aerobotics 

Oilseed crops Aerobotics Rocketfarm 
 

Root/tuber crops Rocketfarm 
  

Leguminous crops Rocketfarm 
  

Sugar crops Rocketfarm 
  

Other crops Rocketfarm 
  

 

4.3.2 Farm Characteristics  

Solutions can further be grouped into categories stemming from the physical farm 

characteristics defined. These categories are created for the topographic 

characteristics of the area, the type of crops planted and the size of the farm or 

monitoring areas. Since some of these characteristics are constant and cannot be 

changed, the different solutions for these categories are identified. The solutions 

are defined by selecting a UAV model(s) best suited for that category. For instance, 

the topographic characteristics of the farming area cannot be changed, thus 
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solutions for the topographic categories are recommended. The types of crops 

planted, and the size of the monitoring areas can however be changed from one 

planting season to the next. To accommodate for these possible changes multiple 

categories are defined with approximations (where necessary) within each main 

category. The categories and recommended solutions are further elaborated on in 

the following sub-sections. 

4.3.2.1 Topographic Characteristics 

The topographic characteristics of the area where the farm is located can have an 

effect on the type of UAV selected as part of the monitoring system. This influence 

is defined and explained in previous sections. Thus, the topographic form of the 

farm or fields can be grouped into either flat or mountainous areas. For crop fields 

situated in an overarching flat area, a fixed-wing drone is typically recommended, 

whereas, for crop fields situated in more hilly or mountainous areas, a multi-rotor 

aircraft is typically recommended. The classification of UAV models (those identified 

for analysis) according to the topography of the farm, is indicated in Table 31. 

Table 31 Classification of UAV Models According to Topography and type of UAV 

Flat Areas (Fixed-Wing UAVs) Mountainous or Hilly Areas 

(Multi-Rotor UAVs) 

Lancaster 5 DJI Matrice 300RTK 

eBee X DJI P4 Multispectral 

eBee AG DJI P4 RTK 

Sentera PHX DJI Phantom 4 Pro 

Trimble UX5 DJI Phantom 4 Pro V2 

Bramor ppX DJI Matrice 30 Series 

Atmos 8 BFD 1400-SE8 

Penguin B DJI Matrice 200 V2 

Penguin BE DJI P4 Advanced 

AgEagle RX-60 DJI Mavic 3 

WingtraOne GEN II Novadem U130 

Atmos Marlyn AgBot 

Delair UX11 Ag 
 

Delair UX5-HP 
 

Delair DT 26E LiDAR 
 

Delair DT 26E Open  Payload 
 

Delair DT18 HD 
 

Delair DT18 AG 
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4.3.2.2 Crop Type and Height Categorisation 

Crop types are classified according to the Indicative Crop Classification (ICC 1.0) 

developed by the Food and Agriculture Organisation of the United Nations included 

as an annexure in the World Programme for the Census of Agriculture 2020 2015). 

The complete crop classification is included in Appendix B. Crops are grouped into 

categories based on three factors, namely: product type; crop genus or species; and 

temporary or permanent crops. The main categories of crop types include the 

following: Cereal crops; Vegetables and melons; Fruit and nuts; Oilseed crops and 

oleaginous fruits; Root/tuber crops; Stimulant, spice or aromatic crops; 

Leguminous crops; Sugar crops; and other crops. 

The crop types are further refined to only include those crop types that are 

produced in South Africa. A comprehensive list and/or classification of crops 

produced in South Africa could not be identified, thus other resources were utilised 

to identify the main crop types produced within South Africa. The list was 

developed through the combination of information provided by Statistics SA, the 

Department of agriculture, land reform and rural development and articles 

published by SouthAfrica.co.za (Census of Commercial Agriculture 2017, 2020; 

"Crop Farming in South Africa," ; "Plant Production," 2022). The final list of crops 

produced in SA, grouped according to the categories specified above, is denoted in 

Table 32. 

Crops are further categorised based on an estimate of the height to which the crop 

grows, thus how tall a single plant grows. This information, along with the flight 

heights of the UAV models, allows for a categorisation of UAV solutions based on 

plant height approximations. Crops are grouped into three size categories: small, 

medium and large, or tree crops. Small crops are those crops that grow to a height 

of less than 1m, typically your vegetables, melons and legumes. Some of these 

crops included in the category can grow beyond the 1m threshold, however, those 

crops are categorised as small crops based on the type of crop. The crop types 

categorised in the small crop category, along with an approximation of the average 

height to which each crop grows, are displayed in Table 33. 
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Table 32 Classification of Crops Produced in South Africa 

1. Cereal Crops 3. Fruits and Nuts 4. Oilseed Crops and 

Oleaginous Fruits 

Wheat Avocados Soya Beans 

Maize Bananas Groundnuts 

Barley Mangoes, Guava Rapeseed 

Oats Papaya Sunflower 

Lucerne Pineapples Olives 

Buckwheat Grapefruit And 

Pomelo 

5. Root/Tuber Crops 

Quinoa Lemons And Limes Potatoes 

2. Vegetables and Melons Oranges Sweet Potatoes 

Asparagus Tangerines, 

Mandarins, etc. 

Cassava 

Cabbages Grapes 6. Sugar Crops 

Lettuce Strawberries Sugar Cane 

Chicory Apples Sweet Sorghum 

Cucumbers Peaches and 

Nectarines 

7. Stimulant, Spice or 

Aromatic Crops 

Tomatoes Pears and Quinches Coffee 

Watermelons Plums Tea 

Carrots Pecan Ginger 

Turnips Macadamia 8. Leguminous Crops 

Garlic Litchi Chick Peas 

Onions Almonds Cow Peas 

Leeks Pistachio Lentils 

Bell Pepper Walnuts Lupins 

Beetroot Blueberries Peas 

Celery Raspberries Pigeon Peas 

Chives Cherries Green Beans 

Eggplants Dates 9. Other 

Pumpkin, Squash, etc. Figs Tobacco 

Cauliflowers And Broccoli Gooseberries Cotton 

Spinach   

Cantaloupes   
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Table 33 Small Crop Types and Average Height 

Crop type Average Height (m)  

Asparagus 1,5 

Cabbages 0,3 

Lettuce 0,65 

Cucumbers 0,6 

Tomatoes 1,05 

Watermelons 0,5 

Carrots 0,3 

Turnips 0,325 

Garlic 0,6 

Onions 0,5 

Leeks 0,75 

Bell pepper 1 

Beetroot 0,5 

Celery 0,35 

Chives 0,35 

Eggplants 0,9 

Pumpkin, squash, etc. 0,5 

Cauliflowers and broccoli 0,53 

Spinach 0,25 

Cantaloupes 0,42 

Strawberries 0,3 

Soya beans 0,7 

Groundnuts 0,5 

Rapeseed 0,3 

Ginger 1 

Chickpeas 0,5 

Cow peas 0,6 

Lentils 0,3 

Lupins 0,85 

Peas 1,5 

Green beans 2,1 

 

The second size category defined is that of medium-sized crops, those crop types 

that usually grow above 1 meter, up until a height of 3 meters. This category 

corresponds to the types of crops that are typically planted in large fields. Some 

crops exceed the upper height bound, but these crops are grouped into the medium 

crop size category based on the planting habits of that crop type in a commercial 

farming environment. An approximate value for the average height of each crop 

categorised in this category is indicated in Table 34. 
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Table 34 Medium Crops and Average Height 

Crop Type Average Height (m)  

Wheat 1,2 

Maize 3 

Barley 0,9 

Oats 1,5 

Lucerne 0,6 

Buckwheat 0,9 

Quinoa 1,2 

Chicory 1,25 

Sunflower 2,25 

Potatoes 1 

Sweet potatoes 1 

Cassava 2,4 

Tea 1,83 

Pigeon peas 2,25 

Sugar cane 4,25 

Sweet sorghum 2,25 

Tobacco 1,5 

Cotton 1,5 

The final category contains the remaining crops, growing to a height beyond three 

meters. This category mainly consists of tree or bush-like crops, typically planted in 

an orchard. Some smaller crops are included in this category due to a 

correspondence between the crop categorisations. The crops included in the 

category along with an approximation of the average height to which each crop 

grows are denoted in Table 35. 

Table 35 Tall Crops and Corresponding Height 

Crop Type Average Height (m)   

Avocados 12,2 

Bananas 5 

Mangoes, guava 12 

Papaya 7,5 

Pineapples 1,35 

Grapefruit and pomelo 7,62 

Lemons and limes 6 

Oranges 9,5 

Tangerines, mandarins, etc. 3,75 

Grapes 1,25 

Apples 5 

Peaches and nectarines 9 

Pears and quinces 9,8 
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Crop Type Average Height (m)   

Plums 5,5 

Pecan 20 

Macadamia 20 

Litchi 19,5 

Almonds 6 

Pistachio 8 

Walnuts 25 

Blueberries 2,7 

Raspberries 1,8 

Cherries 4,5 

Dates 23 

Figs 6,75 

Gooseberries 1,8 

Olives 7,5 

Coffee 12,5 

The height approximations for the different crop types are significant when 

combined with the flight height(s) specified for the UAV models included in the 

analysis. The flight heights are defined as the altitude or height above ground level 

(AGL), at which the aircraft collects data. Only those UAV models that explicitly 

state the flight height as a technical specification are evaluated. Some UAV models 

can fly at different set heights based on the area coverage to be obtained during a 

single flight. These aircrafts are listed in each relevant flight height category. The 

height categories are defined based on the provided flight heights and define the 

maximum height, in meters above ground level, at which the aircraft can fly while 

collecting data. The UAV models are grouped according to these maximum flight 

heights in Table 36. 

Table 36 Maximum Flight Height of UAV Models 

Maximum 

Flight Height 

(m AGL) 

UAV Models 

60 Lancaster 

5 

AgBot Delair 

UX5-HP 

   

80 Trimble 

UX5 

Delair 

UX11 Ag 

Delair DT 

26E 

LiDAR 

Delair 

DT18 HD 

Delair 

DT18 

AG 

 

100 Trimble 

UX5 

     

120 Sensefly 

eBee X 

Sensefly 

eBee AG 

Sentera 

PHX 

Delair 

UX11 Ag 

Delair 

UX5-

HP 

Delair DT 

26E 

LiDAR 
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Maximum 

Flight Height 

(m AGL) 

UAV Models 

150 Trimble 

UX5 

Delair 

DT18 HD 

Delair 

DT18 AG 

   

200 Trimble 

UX5 

Bramor 

ppX 

    

300 Trimble 

UX5 

Lancaster 

5 

    

500 Trimble 

UX5 

Delair 

UX11 Ag 

    

700 Trimble 

UX5 

Delair 

DT18 HD 

Delair 

DT18 AG 

   

800 Delair 

UX5-HP 

Bramor 

ppX 

    

The UAV flight heights and crop heights identified indicate that the UAVs that fly at 

the lowest height (60m AGL) are still significantly higher than the tallest crop 

height. Essentially, the user can select any UAV model, irrespective of the height of 

the crops. A trade-off however occurs between the flight height and the area 

coverage and possibly the accuracy of the data captured by the camera/sensor. A 

larger flight height allows the aircraft to cover a larger area, whereas a lower flight 

height, significantly reduces the total area coverage. 

4.3.2.3 Farm Size and Flight Coverage 

The size of the crop fields on a specific farm is typically a constant value, it can 

however change from one planting season to the next. For the purpose of this 

analysis, the size of the crop fields is regarded as constant values. Multiple fields, 

especially if the same crop is planted on these fields, can be combined into a single 

monitoring area. In other cases, a single field is defined as a single monitoring area. 

The size of the monitoring area can either be defined by the user as the area to be 

monitored within a single flight or by the area that can be monitored in a single 

flight as specified by the UAV model. For this analysis, an approximation of the 

maximum hectares that can be monitored by a specific UAV model is considered. 

Only the UAV models that defined the area coverage within the technical 

specifications are included. The UAV models are categorised according to the 

estimated maximum area coverage (in hectares). This classification is indicated in 

Table 37. 
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Table 37 UAV Models Categorised according to Maximum Area Coverage 

Maximum Area Coverage (ha) Drones 
 

2 Bramor ppX   

32 Bramor ppX   

52 Delair UX5-HP   

90 Delair UX11-Ag Delair DT18 Ag 

120 Delair UX5-HP Lancaster 5 

150 Delair UX11-Ag Atmos Marlyn 

160 AgEagle RX-60 Sensefly eBee Ag 

180 Delair DT18 HD   

200 Sensefly eBee Ag   

210 Delair DT18 Ag   

220 Sensefly eBee X   

360 Delair DT18 HD   

500 Sensefly eBee X   

600 Delair UX11-Ag   

780 Delair UX5-HP   

1150 Delair DT18 Ag   

1900 Trimble UX5 Delair DT18 HD 

9700 Delair DT26E LiDar  

The system user can refer to the above table to determine which UAV model is most 

suitable for the size of his crop fields or monitoring areas. As mentioned previously, 

a trade-off exists between the flight height and the area coverage. Some of the UAV 

models are listed in more than one category as a result of this trade-off. 

4.3.3 UAV Characteristics 

Feasible solutions can be categorised based on the inherent characteristics that 

define the operation of a UAV. Categories are created according to the most 

important technical input and functional output characteristics presented by the 

analysed UAV models. These characteristics are selected based on their ability to 

alter the operation of the system or affect the solutions delivered by the system. 

The UAV characteristics used to create the necessary categories include flight time, 

flight speed, flight coverage, and flight height, control mechanism, operating 

temperatures, wind resistance and take-off and landing preferences. The flight 

height and coverage categories have already been introduced in previous sub-

sections as part of the farm size and crop type categories, respectively. The 

remaining categories are introduced and explained in the sub-sections to follow.  
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4.3.3.1 Flight Time 

The flight time characteristic is one of the most common specifications provided by 

drone manufacturing companies. The estimated flight times range from anything 

between 20 minutes to more than 20 hours per single flight. Fixed-wing drones 

usually have a longer flight time compared to that of multi-rotor drones. Each UAV 

model (identified earlier) is analysed and the information pertaining to the flight 

times is recorded. The models are then grouped into flight time ranges, for 

instance, all of the aircrafts that can fly for approximately 30 minutes per flight, are 

grouped together. These aircrafts can thus fly for any duration between 0 and 30 

minutes, per single flight. The UAV models are categorised according to their flight 

time ranges in Table 38. 

Table 38 UAV Models Categorised based on Flight Times 

Flight 

Time 

Range 

(min) 

UAV Models 

0-20 Novadem U130 
    

0-30 DJI P4 

Multispectral 

DJI P4 Advanced DJI P4 RTK DJI Phantom 

4 Pro & V2 

AgBot 

0-35 Delair UX5-HP 
    

0-40 DJI Matrice 30 

Series 

DJI Matrice 200 

V2 

   

0-45 DJI Matrice 

300RTK 

Lancaster 5 DJI Mavic 3 
  

0-50 Trimble UX5 Atmos Marlyn Delair UX11 

Ag 

  

0-55 Sensefly eBee 

AG 

    

0-60 BFD 1400-SE8 Sentera PHX AgEagle RX-

60 

WingtraOne 

GEN II 

 

0-90 Sensefly eBee X 
    

0-100 Atmos 8 
    

0-110 Penguin BE Delair DT 26E 

LiDAR 

   

0-120 Delair DT18 HD Delair DT18 AG 
   

0-135 Delair DT 26E 

Open  Payload 

    

0-210 Bramor ppX 
    

0-1200 Penguin B 
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4.3.3.2 Flight Speed  

The speed at which an aircraft flies while collecting data is recorded as the flight 

speed or the cruising speed of the aircraft. The speed at which the aircraft fly, vary 

over time depending on the operation being performed by the aircraft. For instance, 

the ascent or descent speed will differ from the speed at which the actual 

monitoring is performed. The flight speed characteristic is also one of the most 

commonly specified characteristics among UAV models. For most models a single 

cruising or hovering speed is defined, however, some models can be flown at 

different flight settings resulting in multiple hovering speeds. These UAV models 

are categorised in all of the applicable categories. Table 39 indicates the UAV 

models grouped according to the approximate maximum cruising speed (in km/h). 

4.3.3.3 Control Mechanism 

 The control mechanism of the aircraft refers to the way in which the aircraft is 

controlled. Most UAVs are flown and controlled by a remote control system 

connecting the aircraft to GCS. Other UAVs operate completely autonomously, by 

pre-defining the flight route and then utilising GPS information and possible 

waypoints to perform the programmed flight. UAV models can thus be 

distinguished based solely on how they are controlled, autonomously or by remote 

control. In rare instances, the aircraft can contain a remote control function in 

conjunction with the autonomous flight control function. These aircrafts can 

usually be stopped in the middle of a pre-programmed flight and then further 

manually control the aircraft for the duration of the flight. The identified UAV 

models are classified according to the control mechanism indicated for those 

aircrafts. This classification is indicated in Table 41. 
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Table 39 UAV Models grouped by Flight Speeds 

Maximum Cruising Speed (km/h) 

20 40 50 55 60 70 80 110 

DJI 
Mavic 3 

Novadem 
U130 

DJI P4 Multispectral Delair UX11 Ag DJI P4 Advanced DJI Phantom 4 
Pro 

DJI Matrice 30 
Series 

AgEagle 
RX-60   

DJI P4 RTK Delair DT 26E LiDAR DJI P4 Multispectral DJI Phantom 4 

Pro V2 

DJI Matrice 

300RTK 

eBee X 

  
DJI Phantom 4 Pro Sentera PHX DJI P4 RTK BFD 1400-SE8 DJI Matrice 

200 V2 
eBee AG 

  
DJI Phantom 4 Pro 
V2 

DJI Mavic 3 DJI Phantom 4 Pro DJI P4 
Advanced 

Trimble UX5 
 

  
DJI P4 Advanced  DJI Phantom 4 Pro V2 DJI Mavic 3 Penguin B 

 

    
DJI Matrice 200 V2 

 
Penguin BE 

 

    
Lancaster 5 

 
Delair UX5-HP 

 

    
AgBot 

   

    
WingtraOne GEN II 

   

    
Delair DT 26E Open  
Payload 

   

    
Delair DT18 HD 

   

    
Delair DT18 AG 

   

 

Table 40 UAV Models grouped according to Operating Temperature Range 

Operating Temperature Range (°C) 

-20 to 50 -20 to 45 -15 to 40 -10 to 40 -10 to 35 0 to 40 0 to 76,7 

Matrice 300RTK UX11 Ag DT 26E LiDAR DJI Mavic 3 Atmos Marlyn DJI P4 Advanced AgEagle RX-60 

Matrice 30 Series   

DT 26E Open  

Payload 

WingtraOne GEN 

II   P4 Multispectral   

    eBee X     P4 RTK   

    eBee AG     Phantom 4 Pro   

          Phantom 4 Pro V2   

          Lancaster 5   
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Table 41 UAV Models grouped based on Control Mechanism 

Remote Controlled Autonomous Combination 

DJI Matrice 300RTK WingtraOne GEN II WingtraOne GEN II 

DJI P4 Multispectral Atmos Marlyn   

DJI P4 RTK Bramor ppX   

DJI Phantom 4 Pro Sensefly eBee X   

DJI Phantom 4 Pro V2 Sensefly eBee AG   

DJI Matrice 30 Series Scout drone   

BFD 1400-SE8     

DJI Matrice 200 V2     

DJI P4 Advanced     

DJI Mavic 3     

Novadem U130     

Trimble UX5     

Atmos 8     

AgEagle RX-60     

Delair UX11 Ag     

Delair UX5-HP     

 

4.3.3.4 Operating Temperature and Wind Resistance 

 The characteristics pertaining to the desired operating environment for a UAV 

model include the temperature range in which the aircraft can operate effectively as 

well as the maximum wind speeds the aircraft can withstand. UAV models are 

grouped based on the temperature ranges in which the aircrafts are designed to 

operate in Table 40. The temperature range categories created can overlap with one 

another, but they are grouped separately to ensure that UAV models limited to a 

specific temperature range are also included.  

Additionally, UAV models are grouped into categories pertaining to the maximum 

wind speeds (measured in kilometres per hour) that the aircraft can withstand. 

These speeds are generally listed as the wind resistance factor within the technical 

specifications of the UAV models. The wind resistance categories, and the aircrafts 

grouped into each category, are shown in Table 42. Combined, these classifications 

allow a user to easily select an aircraft suited for the climatic conditions of the area 

where the farm is located.  
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Table 42 UAV Models grouped based on Maximum Wind Resistance Speeds 

Maximum Wind Speed Resistance (km/h) 

36 45 50 55 65 

DJI P4 RTK 

DJI Matrice 

200 V2 

Delair 

UX11 Ag 

DJI Matrice 

300RTK Trimble UX5 

DJI Phantom 4 Pro 

Sensefly eBee 

X 

Delair 

DT18 HD 

DJI Matrice 30 

Series 

AgEagle RX-

60 

DJI Phantom 4 Pro 

V2 

Sensefly eBee 

AG 

Delair 

DT18 AG Bramor ppX 

WingtraOne 

GEN II 

DJI P4 Advanced Sentera PHX  Atmos Marlyn  
Novadem U130 DJI Mavic 3  Delair UX5-HP  
Delair DT 26E 

LiDAR     
Delair DT 26E Open  

Payload     
 

4.3.3.5 Take-off and Landing Mechanisms 

The final categorisation of the UAV model solutions distinguishes the aircrafts 

based on the take-off and landing mechanisms of each drone. Typically, multi-rotor 

drones take-off and land vertically, whereas fixed-wing drones are hand launched 

and usually land on their belly in the field. A fixed-wing drone thus takes up a 

larger amount of space to take off and then land again after finishing the flight. 

Some fixed-wing drones, however are designed with a vertical take-off and landing 

mechanism, thus eliminating the large area requirement. The take-off and landing 

mechanisms are therefore of importance for crop fields with limited space to initiate 

and end a flight. The UAV models are grouped first according to their means of 

take-off and then according to how they perform the landing. For take-off, three 

categories are created: vertical, hand-launched and catapult launched. For landing, 

four categories are created namely: vertical, belly landing, automatic landing and 

para landing. Automatic landing includes those aircrafts that perform the landing 

operation automatically. Only the aircraft models that specifically indicated that 

they perform an automatic landing, are included in this category, however, a 

number of other aircrafts possibly also perform an automatic landing operation. 

Para landing refers to landing the aircraft through the use of an automatically 

initiated parachute, designed specifically for the aircraft. The categorisation of the 

UAV models according to their take-off and landing abilities is indicated in Table 

43. 
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Table 43 UAV Take-off and Landing Mechanisms 

Take-off Mechanisms 

Vertical Hand-Launch Catapult 

DJI Matrice 300 RTK Sensefly eBee X Delair UX5-HP 

DJI P4 Multispectral Sensefly eBee AG Delair DT 26E LiDAR 

DJI P4 RTK Sentera PHX Delair DT 26E Open  Payload 

DJI Phantom 4 Pro Delair UX11 Ag Penguin B 

DJI Phantom 4 Pro V2 Delair DT18 HD Penguin BE 

DJI Matrice 30 Series Delair DT18 AG AgEagle RX-60 

BFD 1400-SE8  Trimble UX5 

DJI Matrice 200 V2  Bramor ppX 

DJI P4 Advanced   
DJI Mavic 3   
Novadem U130   
AgBot   
WingtraOne GEN II   
Atmos Marlyn   

Landing Mechanisms 

Vertical  Belly Landing 

Automatic 

Landing Para landing 

DJI Matrice 300RTK Sensefly eBee X Sentera PHX Bramor ppX 

DJI P4 Multispectral Sensefly eBee AG AgEagle RX-60  
DJI P4 RTK Trimble UX5   
DJI Phantom 4 Pro Delair UX11 Ag   
DJI Phantom 4 Pro V2 Delair UX5-HP   
DJI Matrice 30 Series Delair DT 26E LiDAR   

BFD 1400-SE8 

Delair DT 26E Open  

Payload   
DJI Matrice 200 V2 Delair DT18 HD   
DJI P4 Advanced Delair DT18 AG   
DJI Mavic 3    
Novadem U130    
AgBot    
WingtraOne GEN II    
Atmos Marlyn    
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4.4 UAV Selection Illustration 

A theoretical scenario is created: a semi-commercial farm, situated in a 

mountainous area cultivates sorghum in summer (from November) and wheat and 

rye in late summer (from February or March). The total size of the farm is 

approximately 575 hectares, while the total crop field amount to 120 hectares. The 

rest of the farm is used for grazing purposes. If the user aims to purchase and 

design the entire system, the following recommendations are made.  

Based on the topography of the area, mountainous, a multi-rotor UAV is suggested, 

when referring to Table 31. Multi-rotor aircrafts are synonymous with vertical take-

off and landing abilities, however, it is suggested for mountainous areas to utilise 

an aircraft that doesn’t require a lot of space to take-off and land. Table 43 

categorises aircrafts according to the take-off and landing abilities. The available 

aircrafts can thus be reduced to multi-rotor aircrafts with a vertical take-off and 

landing ability. Since only multi-rotor drones are considered the fixed-wing 

aircrafts with a vertical landing and take-off ability are disregarded. The crop types 

does not limit the user to a specific category of UAVs as they are medium sized 

crops (cereal and sugar crops).  

The total size of the crop fields amount to 120 hectares. If the user wishes to 

monitor all the crop fields in a single flight, only aircrafts with a greater area 

coverage (larger than 120ha) according to Table 37 can be considered. Since the 

UAV models included in Table 37 are only those aircrafts that provide area 

coverage information, the aircrafts previously categorised based on the topography 

and crop types, are excluded from this categorisation. The refined list of aircrafts 

are indicated in Table 44. The aircrafts can further be grouped based on their listed 

flight times, as most of the multi-rotor aircrafts only provide flight time information 

and not area coverage information.  Here the user can select a flight time suited for 

his needs, keeping in mind that a longer flight time corresponds with a larger area 

coverage. Table 44 includes the flight durations for each of the aircrafts, however, it 

still remains the preference of the user to select a suitable aircraft. 

Table 44 Refined List of UAV Models Considered for Theoretical Scenario 

UAV model Flight Time (min) 

DJI Matrice 300RTK 0-45 

DJI P4 Multispectral 0-30 

DJI P4 RTK 0-30 

DJI Phantom 4 Pro 0-30 
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UAV model Flight Time (min) 

DJI Phantom 4 Pro V2 0-30 

DJI Matrice 30 Series 0-40 

BFD 1400-SE8 0-60 

DJI Matrice 200 V2 0-40 

DJI P4 Advanced 0-30 

DJI Mavic 3 0-45 

Novadem U130 No information 

AgBot 0-30 

 

As the Eastern Cape is known for low temperatures, the list of aircrafts can further 

be refined based on the operating temperature ranges of the aircrafts. Based on 

Table 40, aircrafts that can operate below 0 degrees Celsius are selected. Included 

in Table 45 are those aircrafts that operate between 0 and 40 degrees Celsius. 

These aircrafts are included due to the seasons in which the crops are planted, 

makes provision for these aircrafts. 

Table 45 Further Refined List of UAVs 

UAV model Flight Time (min) Operating Temperature Range (°C) 

DJI Matrice 300RTK 0-45 -20 to 50 

DJI P4 Multispectral 0-30 0 to 40 

DJI P4 RTK 0-30 0 to 40 

DJI Phantom 4 Pro 0-30 0 to 40 

DJI Phantom 4 Pro V2 0-30 0 to 40 

DJI Matrice 30 Series 0-40 -20 to 50 

DJI P4 Advanced 0-30 0 to 40 

DJI Mavic 3 0-45 -10 to 40 

The aircrafts mentioned above is a good starting point for the system user to select 

a suitable UAV. In order to further refine the options, additional information is 

required, especially regarding the system user’s preferences. This information is not 

available due to the demonstration being based on a theoretical scenario. However, 

in practice a more thorough selection will occur once all of the important variables 

have been clearly defined. Once a UAV model is selected, the user can continue to 

select a suitable payload and software solution. These selection processes are not 

illustrated due to the lack of information available for this selection.  
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Chapter 5: Conclusion and Recommendations 

5.1 Conclusion  

The need for an integrated system of solution for the diagnosis of crop health using 

machine learning controlled UAVs has been identified. The need presented an 

opportunity to review the literature to determine whether such a system (1) exists 

and (2) is a feasible alternative to traditional or more modern methods of crop 

monitoring. This project presented multiple research questions to be addressed to 

ensure the success of the project. In addition to these research questions, specific 

objectives were identified to be met throughout the duration of the project. 

In order to gain a thorough understanding of the field of literature and the solution 

domain, a review was conducted on the most basic terms and research areas 

regarded as important to the project. This includes precision agriculture, remote 

sensing, UAVs, and crop monitoring methods. In addition to these topics, literature 

was consulted to determine different solution alternatives. The selected solution 

alternative, to design an integrated system of solution for crop monitoring using 

UAVs, was selected as it aligned with the project aim, research objectives and 

research questions. Research methodologies were consulted to provide a structured 

project approach aimed at addressing the project objectives. A case study research 

approach is selected to allow the researcher to evaluate existing cases and 

literature throughout the duration of the project. An integrates system of solution 

framework provides a graphical representation of how research objectives are met 

throughout the selected research methodology.  

The basic system and the components that are included in the system were 

identified and those component characteristics that can influence the design of the 

system have been identified. Three main solution paths are identified based on the 

users’ preference for owning the hardware and software components. The solution 

paths are further broken down into the main decisions to be made within each of 

the solution paths. These decisions are modelled as systems, clearly indicating the 

variables and factors that can have an effect on the decision variable. A 

recommendation of steps to be followed by the system user for each main decision 

is also presented. Finally, a categorisation of the possible solutions is presented, to 

allow a user to more refined solution suggestion based on specific categories.  
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5.2 Research Findings 

Upon analysis and the design of the decision support system of solution for a UAV 

crop monitoring system, it was concluded that the main decisions within the 

framework can be classified as complex systems. These decision systems, allow for 

the integration of multiple variables in the system, illustrating the complexity of 

these systems. It can thus be inferred that a UAV-based crop monitoring system is 

a complex system. The complexity of the system, along with the high variability of 

the system components, hinder the creation of a single best solution to fit most 

circumstances. For each system user and their unique circumstances, a suggested 

solution can however be created. Designing the suggested best solution is however 

an intricate process, that can be simplified using the designed solution processes 

presented in the research. These processes are however only recommendations of 

the steps to be performed to select the various components within the crop 

monitoring system.  

Upon analysis of the available literature, no solution system that takes all of the 

identified variables and components into consideration, has been identified. A 

system of solution to aid in decision-making has been designed based on the 

literature available on general UAV crop monitoring operations. The two primary 

solution paths identified, using a service provider or purchasing a system, were 

identified based on the users’ preferences to own a system or not. Following this 

division, available literature revealed the main components of a UAV-based crop 

monitoring system. Decision sub-systems were then identified based on the main 

hardware and software components included within a crop monitoring UAS. The 

solutions developed in the category where the user purchases the system evolved 

from the commercially available hardware and software options to be included in 

the system and the corresponding technical specifications, not from literature. 

Multiple literature sources were however consulted to identify some of these 

hardware or software options to be included as part of the solutions. The solution 

options analysed and presented for the 3PSP solution path were identified as those 

service providers operating within South Africa. No previous analysis of existing 

service providers, not limited to South Africa, has been identified.  

5.3 Research Objectives Achieved 

The research objectives stated in Chapter 1: Introduction were achieved 

throughout the document, in various chapters, sections or sub-sections. Each of 
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the research objectives is reviewed to establish how they are addressed within the 

project document.  

The first objective defined aims to holistically identify the attributes of drones or 

UAVs that are relevant to the monitoring of crop health diagnostics. This objective 

focuses solely on those attributes of UAV aircrafts that are relevant to crop 

monitoring activities. The basic UAS comprises of the drone and other components 

to ensure the system operates effectively. The UAS along with these necessary 

components are identified and briefly explained in Section 4.1.1 Unmanned Aerial 

System. The main UAS components formed the main decision parts of the system. 

The UAV selection decision, described in Section 4.2.2.1 Design of Own System, 

identifies the UAV characteristics of relevance. The characteristics included in the 

analysis are those characteristics for which information could be freely obtained 

through the review of the technical specification documents of the UAV models. The 

characteristics identified are grouped into two categories namely: technical input 

and functional output characteristics. The characteristics were further refined to 

identify those characteristics important to the selection of a UAV model for crop 

monitoring purposes. This refinement and identification are presented in the sub-

section Identification of Important Characteristics as a step in developing the UAV 

selection decision path. Further, UAV solutions were grouped according to the 

important UAV characteristics in Section 4.3.3 UAV Characteristics In conclusion, 

research objective one was addressed in the following chapters, sections and 

subsections: 

- Section 4.1.1 Unmanned Aerial System 

- Section 4.2.2.1 Design of Own System: 

- UAV Characteristic Identification 

- Identification of Important Characteristics 

- Section 4.3.3 UAV Characteristics 

The second research objective aimed to analyse the identified attributes of different 

crop farming systems. This objective is addressed throughout Chapter 4: 

Solution and Discussion, where all of the different characteristics of 

the main components of the system are identified. To distinguish between different 

crop farming systems, the physical characteristics of a farm are included in the 

analysis. These characteristics are identified in Section 4.1.2 Farm Characteristics. 
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Specific aircraft models to consider as a solution, based on the categorised farm 

characteristics are suggested in Section 4.3.2 Farm Characteristics.  
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In summary, the second research objective was addressed in the following chapters 

or sections: 

- Chapter 4: Solution and Discussion 

- Section 4.1.2 Farm Characteristics  

- Section 4.3.2 Farm Characteristics 

The final research objective relates to the design and development of a 

comprehensive framework suitable for decision support and evaluation of crops in 

a farming environment. This objective is addressed in Section  

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



    

161 
 

4.2 Integrated System of Solution, where a decision support system of solution was 

developed. The solution system is divided into the main decisions, which are 

further elaborated on in the subsections of the above-mentioned section. The main 

decision paths are defined and described in Sections 4.2.1 Third-Party Service 

Provider and 4.2.2 Purchase Own System. The third and final research objective is 

addressed in the following chapters, sections and subsections of the document:  

- Section  
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- 4.2 Integrated System of Solution 

- Section 4.2.1 Third-Party Service Provider  

- Section 4.2.2 Purchase Own System 

This sub-section serves as confirmation that each of the defined research objectives 

was addressed throughout the document. The identified chapters and sections 

mentioned above, excludes the literature review in Chapter 2: Literature 

Review, as the literature review serves as the foundation for the solution 

development part of the project. 

5.4 Recommendations and Future Work 

The purpose of this research is to provide a system user or potential system user, 

with a tool to assist him/her in making more informed decisions regarding the 

design and acquisition of a UAV crop monitoring system. It should be noted that 

the solutions presented by this study are only recommendations and that the 

system user should still perform his own research and enquire about certain 

aspects of the system should he be unsure about a component of the system. Due 

to the high variability between the solution requirements or specifications 

presented by a user, no single best solution could be identified and no suitable 

evaluation methods exist to evaluate the effectiveness of the recommended 

solution.  

Future work includes transforming the created decision support system of solution 

that is deemed as the basis, into a functioning decision support system to be 

utilised by system users. Future work could also include performing tests and 

experiments at existing farms, to evaluate the effectiveness of the solution and 

gathering data pertaining to each unique solution. The data to be captured can be 

used to refine the suggested solutions, to enable the system to produce more 

specific solutions in future. In addition, a complete database with up-to-date 

information for all of the solution options, including the different hardware and 

software options such as available UAV models, payload models, software tools etc. 

can be created in future. This database should be updated regularly to ensure the 

information included is still applicable and the specific models or versions of 

software are still available commercially.  

Future work could also include a study focusing on the integration of multiple 

UAVs within a single system. This research can focus on investigating the 
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simultaneous use of more than one aircraft to perform crop monitoring, thus 

reducing the total time required for monitoring. These systems could be beneficial 

for extremely large crop fields that usually take an unreasonable amount of time to 

completely monitor the entire field.  Such systems could also be utilised when 

monitoring tree crops that require a full 360° image of the tree including the sides 

and the trunk. A final recommendation for future work is to create an interactive 

tool that allows a user to select the system requirements and inputs and then 

based on those selections the tool presents the user with solution options designed 

uniquely for the user. This tool is however dependent on the creation of a 

comprehensive database mentioned above.   
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7.1 Appendix A: Research Timeline 
 

 

Figure 21 Research Timeline 
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7.2 Appendix B: Indicative Crop Classification (ICC 1.0) 
 

Group Class Subclass Order Title Crop type
*
 

1 
   

Cereals T 

 
1.01 

  
Wheat T 

 
1.02 

  
Maize T 

 
1.03 

  
Rice T 

 
1.04 

  
Sorghum T 

 
1.05 

  
Barley T 

 
1.06 

  
Rye T 

 
1.07 

  
Oats T 

 
1.08 

  
Millet T 

 
1.09 

  
Triticale T 

 
1.10 

  
Buckwheat T 

 
1.11 

  
Fonio T 

 
1.12 

  
Quinoa T 

 
1.13 

  
Canary seed T 

 
1.14 

  
Mixed cereals T 

 
1.90 

  
Other cereals, n.e.c. T 

2    Vegetables and melons T 

 2.01   
Leafy or stem vegetables T 

  
2.01.01 

 
Artichokes T 

  
2.01.02 

 
Asparagus T 

  
2.01.03 

 
Cabbages T 

  
2.01.04 

 
Cauliflower and broccoli T 

  
2.01.05 

 
Lettuce T 

  
2.01.06 

 
Spinach T 

  
2.01.07 

 
Chicory T 

  
2.01.90 

 
Other leafy or stem vegetables, n.e.c. T 

 2.02   
Fruit-bearing vegetables T 

  
2.02.01 

 
Cucumbers T 

  
2.02.02 

 
Eggplants (aubergines) T 

  
2.02.03 

 
Tomatoes T 

  
2.02.04 

 
Pumpkin, squash and gourds T 

  
2.02.05 

 
Okra T 

  
2.02.90 

 
Other fruit-bearing vegetables, n.e.c. T 

 2.03   
Root, bulb or tuberous vegetables T 

  
2.03.01 

 
Carrots T 

  
2.03.02 

 
Turnips T 

  
2.03.03 

 
Garlic T 

  
2.03.04 

 
Onions (incl. shallots) T 

  
2.03.05 

 
Leeks and other alliaceous vegetables T 

  
2.03.90 

 
Other root, bulb, or tuberous vegetables, n.e.c. T 

 2.04   
Mushrooms and truffles T 

 2.05   
Melons T 

  
2.05.01 

 
Watermelons T 

  
2.05.02 

 
Cantaloupes and other melons T 

 2.90   
Other vegetables n.E.C. T 
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Group Class Subclass Order Title Crop type
*
 

3    Fruit and nuts P 

 3.01   
Tropical and subtropical fruits P 

  
3.01.01 

 
Avocados P 

  
3.01.02 

 
Bananas P 

  
3.01.03 

 
Plantains P 

  
3.01.04 

 
Dates P 

  
3.01.05 

 
Figs P 

  
3.01.06 

 
Mangoes, guavas and mangosteens P 

  
3.01.07 

 
Papayas P 

  
3.01.08 

 
Pineapples P 

  
3.01.90 

 
Other tropical and subtropical fruits, n.e.c. P 

 3.02   
Citrus fruits P 

  
3.02.01 

 
Grapefruit and pomelo P 

  
3.02.02 

 
Lemons and limes P 

  
3.02.03 

 
Oranges P 

  
3.02.04 

 
Tangerines mandarins, clementines P 

  
3.02.90 

 
Other citrus fruits, n.e.c. P 

 3.03   
Grapes P 

 3.04   
Berries P 

  
3.04.01 

 
Currants P 

  
3.04.02 

 
Gooseberries P 

  
3.04.03 

 
Kiwi fruit P 

  
3.04.04 

 
Raspberries P 

  
3.04.05 

 
Strawberries P 

  
3.04.06 

 
Blueberries P 

  
3.04.07 

 
Cranberries P 

  
3.04.90 

 
Other berries, n.e.c P 

 3.05   
Pome fruits and stone fruits P 

  
3.05.01 

 
Apples P 

  
3.05.02 

 
Apricots P 

  
3.05.03 

 
Cherries and sour cherries P 

  
3.05.05 

 
Peaches and nectarines P 

  
3.05.06 

 
Pears and quinces P 

  
3.05.08 

 
Plums and sloes P 

  
3.05.90 

 
Other pome fruits and stone fruits, n.e.c. P 

 3.06   
Nuts P 

  
3.06.01 

 
Almonds P 

  
3.06.02 

 
Cashew nuts P 

  
3.06.03 

 
Chestnuts P 

  
3.06.04 

 
Hazelnuts P 

  
3.06.05 

 
Pistachios P 

  
3.06.06 

 
Walnuts P 

  
3.06.07 

 
Brazil nuts P 

  
3.06.08 

 
Areca nuts P 

  
3.06.09 

 
Cola nuts P 

  
3.06.90 

 
Other nuts, n.e.c. P 

 3.90   
Other fruits, n.e.c. P 
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*
 

4    Oilseed crops and oleaginous fruits  

 
4.01 

  
Soya beans T 

 
4.02 

  
Groundnuts T 

 
4.03 

  
Other temporary oilseed crops T 

  
4.03.01 

 
Castor bean T 

  
4.03.02 

 
Linseed T 

  
4.03.03 

 
Mustard T 

  
4.03.04 

 
Niger seed T 

  
4.03.05 

 
Rapeseed T 

  
4.03.06 

 
Safflower T 

  
4.03.07 

 
Sesame T 

  
4.03.08 

 
Sunflower T 

  
4.03.09 

 
Shea tree (shea butter or karite nuts) T 

  
4.03.10 

 
Tung tree T 

  
4.03.11 

 
Jojoba T 

  
4.03.12 

 
Poppy T 

  
4.03.13 

 
Tallow tree T 

  
4.03.90 

 
Other temporary oilseed crops, n.e.c. T 

 
4.04 

  
Permanent oilseed crops P 

  
4.04.01 

 
Coconuts P 

  
4.04.02 

 
Olives P 

  
4.04.03 

 
Oil palms P 

  
4.04.90 

 
Other oleaginous fruits, n.e.c. P 

5    Root/tuber crops with high starch or inulin content T 

 
5.01 

  
Potatoes T 

 
5.02 

  
Sweet potatoes T 

 
5.03 

  
Cassava T 

 
5.04 

  
Yams T 

 
5.05 

  
Taro T 

 
5.06 

  
Yautia T 

 
5.90 

  
Other roots and tubers, n.e.c. T 

6    Stimulant, spice and aromatic crops  

 
6.01 

  
Stimulant crops P 

  
6.01.01 

 
Coffee P 

  
6.01.02 

 
Tea P 

  
6.01.03 

 
Maté P 

  
6.01.04 

 
Cocoa P 

  
6.01.05 

 
Chicory roots P 

  
6.01.90 

 
Other stimulant crops, n.e.c. P 

 
6.02 

  
Spice and aromatic crops 

 

  
6.02.01 

 
Temporary spice and aromatic crops T 

   
6.02.01.01 Chillies and peppers (capsicum spp.) T 

   
6.02.01.02 Anise, badian, and fennel T 

   
6.02.01.90 Other temporary spice crops, n.e.c. T 

  
6.02.02 

 
Permanent spice and aromatic crops P 

   
6.02.02.01 Pepper (piper spp.) P 
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6.02.02.02 Nutmeg, mace, cardamoms P 

   
6.02.02.03 Cinnamon (canella) P 

   
6.02.02.04 Cloves P 

   
6.02.02.05 Ginger P 

   
6.02.02.06 Vanilla P 

   
6.02.02.07 Hops P 

   
6.02.02.90 Other permanent spice and aromatic crops, n.e.c. P 

7    Leguminous crops T 

 
7.01 

  
Beans T 

 
7.02 

  
Broad beans T 

 
7.03 

  
Chickpeas T 

 
7.04 

  
Cowpeas T 

 
7.05 

  
Lentils T 

 
7.06 

  
Lupins T 

 
7.07 

  
Peas T 

 
7.08 

  
Pigeon peas T 

 
7.09 

  
Bambara beans T 

 
7.10 

  
Vetches T 

 
7.90 

  
Leguminous crops, n.e.c. T 

8    Sugar crops T 

 
8.01 

  
Sugar beet T 

 
8.02 

  
Sugar cane T 

 
8.03 

  
Sweet sorghum T 

 
8.90 

  
Other sugar crops, n.e.c. T 

9    Other crops  

 
9.01 

  
Grasses and other fodder crops 

 

  
9.01.01 

 
Temporary grass and fodder crops T 

  
9.01.02 

 
Permanent grass and fodder crops P 

 
9.02 

  
Fibre crops 

 

  
9.02.01 

 
Temporary fibre crops T 

   
9.02.01.01 Cotton T 

   
9.02.01.02 Jute, kenaf, and other similar crops T 

   
9.02.01.04 Flax T 

   
9.02.01.05 Hemp T 

   
9.02.01.90 Other temporary fibre crops, n.e.c. T 

  
9.02.02 

 
Permanent fibre crops P 

   
9.02.02.01 Ramie P 

   
9.02.02.02 Sisal P 

   
9.02.02.90 Other permanent fibre crops, n.e.c. P 

 
9.03 

  
Medicinal, pesticidal or similar crops 

 

  
9.03.01 

 
Temporary medicinal, pesticidal or similar crops T 

   
9.03.01.01 Mint T 

   
9.03.01.02 Basil T 

   
9.03.01.90 Other temporary medicinal, pesticidal or similar crops T 

  
9.03.02 

 
Permanent medicinal, pesticidal or similar crops P 

   
9.03.02.01 Ginseng P 
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9.03.02.02 Coca P 

   
9.03.02.03 Kava P 

   
9.03.02.04 Guarana P 

   
9.03.02.90 Other permanent medicinal, pesticidal or similar crops P 

 
9.04 

  
Rubber P 

 
9.05 

  
Flower crops 

 

  
9.05.01 

 
Temporary flower crops T 

  
9.05.02 

 
Permanent flower crops P 

 
9.06 

  
Tobacco T 

 
9.90 

  
Other crops, n.e.c. 

 

  
9.90.01 

 
Other crops, n.e.c. – temporary T 

  
9.90.02 

 
Other crops, n.e.c. – permanent P 

*T = temporary, P = permanent. 
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