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Abstract

A brief overview of the science of formal program verifi-
cation is presented, a topic close to the heart of Derrick
Kourie to whom this article is dedicated in honour of
his siztieth birthday. No account would do justice to
this topic without referring to the well-known Floyd-
Hoare axiomatic approach to the verification and con-
struction of programs. The specification of a program
in terms of a precondition, program statement and post-
condition is touched on and is followed by specification
methods employed during the earlier phases of system
development. Reasoning about the properties of a spec-
ification is a rewarding exercise since it may lead to
useful insights. Modern specification languages often
support set-theoretic constructs and these pose demand-
ing challenges to automated reasoning programs. To
this end the science of Automated Reasoning has made
remarkable progress as far as tool usage is concerned.
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1 Introduction

The work of Robert Floyd [11] and C A R Hoare [12]
together probably constitute some of the earliest writ-
ings on the formal verification of computer programs.
Essentially Floyd defined rules for the construction of
flowcharts while Hoare defined a number of similar de-
duction rules, based on the notions of preconditions,
postconditions and program statements for proving the
correctness of programming constructs.

Traditionally verification principles are presented in
terms of compilable programming language constructs,

e.g. if statements, while statements, etc. Mathemati-
cal rigour may, however, be employed much earlier in
the design phase and this has led to the development
of a multitude of formal specification techniques like
VDM [14], Z [6, 15] and B [1] to name but a few. In
essence a specification of a system defines what the re-
sultant system must do rather than saying how it is to
be achieved. One of the benefits to be realised through
the use of a formal specification is that the specifier
may reason about the properties of the system to be
built at a very early stage in the development process.
Any errors or omissions discovered in the user require-
ments could, therefore, be rectified earlier, leading to
reduced costs [21].

Mathematical set theory [10] is a basic, yet deep,
underlying commodity in Computing, e.g. any good
text on relational databases tells us that databases are
based on functions — given a person’s ID number (a
key), the system returns the record for the person. It is
no coincidence, therefore, that many formal specifica-
tion languages (e.g. Z, B, etc.) are in part based on set
theory. This brings about significant challenges when
one tries to reason about the properties of specifications
written in these languages. Set theory is highly hierar-
chical, since an object (e.g. a set) at a very fine level of
granularity may be an element of another (coarser) ob-
ject, which may in turn be a member of another, even
coarser object. Iterations through these levels often
give rise to much activity and the generation of much
irrelevant information [26]. If one, therefore, embarks
on the use of an automated reasoner to prove properties
of these set-theoretic specifications, then one quickly
encounters a number of time- and space complexity
problems. [7, 22, 26].

Automated reasoning tools have steadily improved
over the last couple of decades and in this paper I will
trace some of these advances made.



1.1 Layout of this Paper

In Section 2 a small coding example of the utility of
Hoare’s verification rules is presented. Following this
I show in Section 3 an example of a Z specification
which, as mentioned above, is a document produced
early on in the development of a system. The utility of
such a formal viewpoint is illustrated when omissions in
the specification are identified through a manual proof.
Thereafter I take a very short trip through reasoning
with set theory since the 1970s. In Section 4 I in-
troduce, amongst others, the OTTER theorem prover
[17] which T often used in reasoning about the prop-
erties of specifications. It is shown how this reasoner
easily discharges some proofs, yet has difficulty with
more complicated proofs. Newer, more sophisticated
provers emerge all the time and in the same section
I mention briefly two other state of the art reasoners,
namely, Vampire [27] and Prover9 [18], the latter being
the successor of OTTER.

2 Hoare Logic: An Example

An expression of the form {P}S{Q} where P and
@) are properties of the program variables and S is a
program (a single statement or large code fragment), is
called a Hoare triple [12, 2]. P is called the precondi-
tion and @ is known as the postcondition of S. In this
paper {P}S{Q} is interpreted as follows: If statement
S and all its associated variables are defined in context
and precondition P is satisfied before the execution of
S, execution of S is guaranteed to terminate, and after-
wards, the program variables will satisfy @ [2]. This
property is defined as total correctness by Baber [4].
Over time proof rules for the verification of assignment
statements, conditionals, sequential composition, loop-
ing constructs, procedure calls, etc. have been defined.

Verification theory involving pre- and postcondi-
tions allows us to solve a rather common problem in
Computing, namely, if the postcondition to a code frag-
ment is known, how does one determine the precondi-
tion, i.e. where does one have to start to ensure the
end result? The answer to this question is of value in
requirements engineering [20] as well; if a user states
some requirements (postcondition) and a software engi-
neer suggests a solution, then what should be in place
beforehand to ensure that the solution proposed will
satisfy the requirements of the user, i.e. what is the
precondition? For example, suppose we require a bal-
ance to be above a certain minimum after a user has
withdrawn an amount of money. If the minimum bal-
ance is R50 and the user withdraws R130, then ignoring
transaction costs, it should be easy to see that the user

should start with at least R180 in the account.

The above example is relatively simple, but for more
complicated calculations we need formal rules. Exam-
ple 1 illustrates how two of the rules of Hoare logic may
be used to calculate a precondition for a more complex
system.

Example 1

Suppose we want to calculate the precondition, P for
the sequence of statements z :=x — 1 and y :== y — 1,
given a postcondition {z—1 < y < z < w}. We employ
the assignment axiom (1) as well as the proof rule for
sequential composition (2) defined below.

{Qz = el}w:=e{Q} (1)

{P}S1; 52{Q} — {P}SUHR} A {R}S2{Q} (2)

First we apply the assignment axiom and replace y with
(y — 1) in the postcondition @ to obtain an intermedi-
ate precondition, say, P1=2—-1<(y—1) <z < w.
Now we apply the rule of sequential composition and
equate P1 as the postcondition for the first assignment
statement z := z — 1. Applying the assignment axiom
again in P1 gives us the final precondition P = z—1
(y — 1) < (z — 1) < w which can be simplified to z
y <z < w+1. Therefore: {z <y<z<w+1l}z:
z—1 y=y—1{z—1<y <z < w}. The triple
({precondition}, program fragment, { postcondition}) is
often referred to as a specification for the particular
program fragment. The reader is referred to any of [4]
or [2] for further details.

I IAIA

In the next section I introduce a specification mecha-
nism applicable to the earlier phases of system devel-
opment.

3 Formal Specification Using Z

7 specifications are essentially set-theoretic specifi-
cations. Z is based on a strongly-typed fragment of
Zermelo-Fraenkel set theory [10], expressed in suitable
first-order languages augmented by schema notation.
The schema notation arose, according to Hoare, as a
mechanism to separate visually the formed parts of a
specification from the semi-formal and informal docu-
mentation around them [13, 26].

A schema is generally divided into two parts: a dec-
laration part in which variables to be used in the spec-
ification are declared, and a predicate part in which
constraints are placed on the variables. Schemas may
be combined using the schema calculus [21]. Z as a
specification tool is different from the style presented



in Section 2, since its notation employs first-order logic
rather than programming constructs which emerge fur-
ther on in the development cycle. Z may, therefore, be
viewed as a front end to Hoare logic.

Next we give an example of a partial Z specification,
starting with a requirements definition of what needs to
be specified. The development below stems essentially
from [28] and [25].

3.1 An oil terminal control system

Design a Z specification to enable a sea port authority
to keep track of oil tankers arriving and docking at its
berths. If a tanker arrives, and there is an open berth,
the berth will be allocated to that tanker, else the tanker
must join the back of a queue, waiting to be berthed.
Information to be kept include the berths maintained by
the port authority, all tankers known to the authority,
a queue of all tankers waiting to be berthed and a record
of which tanker occupies which berth.

The following additional requirements are to be met:

(1) A tanker cannot simultaneously be in the queue
and in a berth.

2) The tankers queueing will all be different.

3) A tanker will queue only if all the berths are full.

(2)
3)
(4) The tankers occupying berths will all be different.
(5) Two tankers cannot occupy the same berth.

An abstract state space of the system in schema nota-
tion is (numbers in brackets label the formal counter-
parts of the informal requirements (1) to (5) above):

__ Qil_tanker_control
berths : P Berth
known : P Tanker
waiting : seq Tanker
docked : Tanker -~ Berth

ran waiting N dom docked = @ (1)
H#waiting = #(ran waiting) (2)
#waiting > 0 = (berths = ran docked)  (3)

ran docked C berths
ran waiting U dom docked C known

I shall define one partial operation on the state to il-
lustrate some ideas. The reader is referred to [25] for
a comprehensive operational development of the above
requirements definition. An operation to allow for the
successful arrival of a tanker at the port is:

__Arrive
A Oil_tanker_control
tanker? : Tanker
report! : Report

(ran docked # berths N
(3b)(b € berths A
b ¢ ran docked N
docked’ = docked & {tanker? — b}) A
waiting’ = waiting N\
known’ = known A
report! = OK)

V

(ran docked = berths N
waiting' = waiting ~ (tanker?) A
docked’ = docked N
known’ = known A
report! = wait)

The operation is called Arrive and the tanker that ar-
rives is denoted by tanker?. AQil_tanker_control in
the declaration part indicates that, since a new tanker
arrives there is a possible change in the state. In Z a
prime (") denotes the value of a variable after an op-
eration. The symbol @ is Z’s overriding operator —
it replaces tuples in a relation or a function where the
first coordinate matches the coordinate of the overrid-
ing tuple. Concatenation of sequences is indicated by
™. The first disjunct inside the predicate part speci-
fies what happens when a tanker arrives and there is
at least one free berth. The berth is allocated to the
tanker. The second disjunct specifies what happens
if there is no free berth for the newly arrived tanker
— the tanker is added to the back of a waiting queue.
Note that Arrive does not specify any error conditions.
Details on these appear in [25].

Proving properties of a formal specification may be
a rewarding exercise. Amongst other things reasoning
about the specification may reveal possible omissions.
In the next section we see how an attempt at discharg-
ing a proof obligation reveals that a precondition to an
operation has to be strengthened.

3.2 The utility of proof

Some proof obligations arise from the definition of
Arrive and I shall give one such proof attempt to il-
lustrate the idea. Recall that the state of this system
is given by Oil_Tanker_Control in Section 3.1. One of
the invariants of the after state, i.e. the state resulting
from Arrive is:

ran waiting’ U dom docked’ C known'  (3)



A proof of (3) would show that Arrive preserves part
of the invariant of the system.

Suppose the first disjunct of Arrive is applicable,
that is, ran docked # berths, i.e. there is a free berth
available when a new tanker arrives. A proof of (3)
boils down to proving each of the following two cases:

(1) ran waiting’ C known’
(2) dom docked” C known'

Case (1) above presents no problem, since:

if ran waiting C known [before state invariant]

then ranwaiting’ C known  [waiting’ = waiting]

i.e. ran waiting’ C known’  [known' = known]

Case (2) however reveals a problem:

dom docked’
dom (docked U {tanker? — b})

[3b € (berths — ran docked)]
dom docked U dom{tanker? — b} [law of U]

Now we have:

dom docked C known
[invariant part of before state]

i.e. dom docked C known'  [known’ = known]

The last part to prove is:

dom{tanker? — b} C known'
i.e. {tanker?} C known'

i.e. tanker? € known’

[definition of dom]

We notice that in order for tanker? to be an element of
known’, we need to add tanker? € known to the pre-
condition of Arrive above, i.e. we need to strengthen
the precondition. This is, however, not the end of the
story. Our precondition needs to be strengthened fur-
ther, since it has to provide for the case that a newly
arrived tanker must not already be queued or docked.
Details on how this is discovered through a further
proof attempt appear in [25].

Proofs by hand are tedious for humans and it is,
therefore, no coincidence that much research went
into the development of automated or at least semi-
automated reasoners over the past couple of decades.
In the following section we take a brief look at some of
these developments and challenges. Owing to my re-
search interests, the discussion centers around progress
made with resolution-based reasoners.

4 Advances Made by Automated Rea-
soners

The paper by Woodrow (Woody) Bledsoe in the
collection compiled by Jorg Siekmann and Graham
Wrightson [5] gives an account of an early theorem-
proving program called PROVER. In essence the
prover divides a problem into subproblems through two
routines called SPLIT (for general mathematical prob-
lems) and REDUCE (for problems in set theory). The
subproblems were then passed on to a resolution proce-
dure to perform the necessary proofs. This divide-and-
conquer approach was very necessary, as Bledsoe wrote:
“Resolution, when used, is relegated to the job it does
best, proving relatively easy assertions”. The capabili-
ties of these early provers were limited, as pointed out
again by Bledsoe himself: “But this ability [dividing a
problem into subproblems], which is really an overall
planning capacity, is still severely limited”. An exam-
ple of the operation of the split and reduce routines are
given below.

Example 2

Suppose a specifier wishes to prove (¢ € (AU B) —
D) where A, B and D have been defined before. The
reduce routine would rewrite the proof obligation as
((t € AV t € B) — D) whereafter SPLIT would divide
it into two subproblems (t € A — D) and (¢t € B —
D). The resolution procedure would then attempt to
refute each of the two subproblems.

Resolution-based reasoners made steady progress
through the 1980s and nineties. The OTTER (Organ-
ised Techniques for Theorem-proving and Effective Re-
search) theorem prover [17] is a success story from this
era. I have used this reasoner extensively in my own
work (OTTER easily discharges the proof obligation in
Example 2 above), and so has one of the fathers of Au-
tomated Reasoning, Larry Wos [31]. In fact, a variant
of OTTER called EQP was used by its author (Mc-
Cune) to discharge a long standing open conjecture,
namely, that Robbins Algebras are boolean algebras
[16]. The automated proof of this famous conjecture
made the front pages of national newspapers worldwide
[8].

Reasoning with set theory continues to pose diffi-
culty to resolution-based reasoners, despite the theo-
retical advances made in this area, e.g. hyperresolu-
tion [24], set-of-support strategy [32], paramodulation
[23], resonance [30] and the hot-list strategy [33] to
name just a few. A number of researchers, e.g. [7], [22]
and [26] demonstrated the challenges that set-theoretic
proofs pose to automated reasoning programs. Set-
theoretic constructs are strongly hierarchical and may



lead to constructs that are deeply nested. A reasoner
should avoid ‘opening up’ every set-theoretic definition
so that inferences can be made at the appropriate level.
Some definitions must, however, be expanded. A key
technique would be to layer the deductions and to iden-
tify suitable occasions for crossing from one layer to
another.

It is generally recognised that heuristics would play
an important role in launching an attack on the com-
plexities of set theory, thereby increasing the success
rate of an automated reasoner [8]. An example of one
of these heuristics from my own work [26] and [25] in
reasoning about mathematical set theory is given be-
low. All the proof attempts reported on in the following
section were done on a Pentium IIT with a clock speed
of 600MHz and 32MB RAM, running Red Hat Linux
Release 9.

Example 3

Suppose we want to prove:

P{Ovl} = {®7{0}7{1}ﬂ{0a1}} (4)

When writing the contents of sets in list notation, e.g.
the contents of the above set on the right-hand side,
one naturally tends to define these sets using one or
more levels of indirection by moving from the vari-
ous elements to a symbol representing the collection
of those elements. Therefore, we rewrite the above set-
theoretic equality to make the relevant constructions
explicit, i.e.:

A={0}AB={1}AC={0,1} AD=P(C) A
E={@,A,B,C} - D=E (5)

OTTER fails to find any proof for (5) in 30 minutes.
Suppose we cut down on the complexity of information
by eliminating the symbol F in the above definition.
Hence we effectively remove one extra level of indirec-
tion, i.e.

A={0}AB={1} AC={0,1} AD=P(C)
— D ={@,A,B,C} (6)

With the above formulation OTTER finds a proof in 4
minutes 5 seconds. This brought about an important
heuristic proposed in [25], namely, to avoid unnecessary
levels of elementhood in set-theoretic formulae by using
the elements of sets directly. Through the use of the
divide-and-conquer technique, this last proof attempt
may be streamlined even further. The details appear
in [25].

The Vampire theorem prover [27] considered to
be the benchmark for resolution-based reasoners, ow-
ing to its consistent success at the annual CADE

ATP System Competitions (CASC [19], see also
http://www.cs.miami.edu/~tptp/CASC/), also fails
to find a proof of (5) in 30 minutes. If we, how-
ever, resort to (6) then Vampire easily finds a proof
in just 0.8 seconds. The OTTER reasoner has since
been decommissioned by McCune and replaced by
a more advanced reasoner, Prover9 [18] (see also
http://www.cs.unm.edu/~mccune/prover9/). I have
not tested Prover9 on the proofs I did with OTTER
but I recently secured a MSc student in this area and it
would be interesting to see the performance of Prover9
on the proofs in [25].

5 Summary

In this paper I gave a brief overview of some aspects
of formal program specification and verification, the
importance of stating proof obligations arising from a
specification and the role that automated reasoners can
play in discharging these proof obligations to increase
confidence in the correctness of the specification.

The Floyd-Hoare contributions made to the verifica-
tion scene during the early years were acknowledged.
The construction of a formal specification and the sub-
sequent reasoning thereof for humans turn out to be a
tedious task. Mathematical set theory on which many
formal specification languages are based, pose demand-
ing challenges to resolution-based reasoners. Neverthe-
less, much progress with the automation of proofs have
made during the last couple of decades, owing to the-
oretical advances in this area as well as the sophistica-
tion of the reasoners employing the theory.

Some basic challenges in set-theoretic reasoning re-
main. In his book Automated Reasoning: 33 Basic
Research Problems [29], Larry Wos poses a research
question largely still unsolved: What inference rule, if
any, effectively performs for set theory as paramodula-
tion does for equality? The object of an application of
paramodulation is to cause an equality substitution to
take place from one clause into another. In their paper,
Bailin and Barker-Plummer [3] claimed to have found
such a rule which they call the ‘Z-match’, but they also
state that they have not been able to prove the chal-
lenge problem that accompanies the research problem
proposed by Wos. Their approach is furthermore not
resolution-based.

So, yes Derrick, there are definite advances that have
been made in the formal methods arena. Since some
disagree on the usefulness of mathematical formalism
[9], an obvious next step as proposed by Dr. Stefan
Gruner and others would be to determine the utility of
formal methods in industry. Hopefully this is a project
we can all enjoy doing in the years to come!
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