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Abstract: Deep neural networks have proven to be effective in various domains, especially in natural
language processing and image processing. However, one of the challenges associated with using
deep neural networks includes the long design time and expertise needed to apply these neural
networks to a particular domain. The research presented in this paper investigates the automation of
the design of the deep neural network pipeline to overcome this challenge. The deep learning pipeline
includes identifying the preprocessing needed, the feature engineering technique, the neural network
to use and the parameters for the neural network. A selection pertubative hyper-heuristic (SPHH)
is used to automate the design pipeline. The study also examines the reusability of the generated
pipeline. The effectiveness of transfer learning on the generated designs is also investigated. The
proposed approach is evaluated for text processing—namely, sentiment analysis and spam detection—
and image processing—namely, maize disease detection and oral lesion detection. The study revealed
that the automated design of the deep neural network pipeline produces just as good, and in some
cases better, performance compared to the manual design, with the automated design requiring
less design time than the manual design. In the majority of instances, the design was not reusable;
however, transfer learning achieved positive transfer of designs, with the performance being just as
good or better than when transfer learning was not used.

Keywords: automated design; deep neural network pipeline; transfer learning; sentiment analysis;
spam detection; image segmentation; image classification

1. Introduction

Deep neural networks have led to significant advances in the fields of text and image
processing [1,2]. One of the challenges associated with applying deep neural networks is
the high design time associated with the deep neural network pipeline and the expertise
needed for this process [3]. Thus, there is a need to automate the design of this pipeline.
While there has been a fair amount of research into automating the design of specific
neural network aspects such as the architecture in the case of ENAS [4] and the weights for
example Auto-Net [3], there has not been research into automating the design of the entire
pipeline. There has been previous work on automating the pipeline for data classification
resulting in the development of TPOT [5]; however, this has not been carried out for the
deep learning pipeline. The main contribution of this research is automation of the deep
neural network pipeline. This research differs from previous work in that the automated
design focuses on the entire deep neural network pipeline rather than one aspect of it.

Various techniques, including evolutionary algorithms [6] and hyper-heuristics [7],
have been successfully employed for the automated design of machine learning techniques.
An advantage of using selection hyper-heuristics for automated design is that the same
performance can be achieved with less computational effort than is needed by evolutionary
algorithms [8].

This study employs a selection perturbative hyper-heuristic (SPHH) for the automated
design of the deep neural network pipeline. The selection perturbative hyper-heuristic
determines the preprocessing technique, augmentation technique, feature engineering
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technique, the neural network architecture and the neural network parameters. The ap-
proach was evaluated for sentiment analysis, spam detection, maize disease detection and
oral lesion detection. The automated design was found to produce just as good, and in
some instances better results than the manual design, with the manual design requiring
more design time. The generated designs were not reusable. Transfer learning applied
to the produced designs was found to be comparative, and in some instances improved
performance. From the current state of the literature, no research has been conducted
pertaining to the use of transfer learning in automated design, making this work the first
study to examine the effect of transfer learning on the automated design of the deep neural
network pipeline.

Hence, the main contributions of this research are:

• Automation of the deep neural network pipeline using a selection hyper-heuristic.
• An analysis of the reusability of the generated designs.
• An investigation into transfer learning applied to the generated designs.

Section 2 provides an overview of the topics related to the research presented.
Section 3.1 presents the selection hyper-heuristic employed for the automated design
of the deep learning pipeline. The experimental setup employed to evaluate the SPHH for
sentimental analysis, spam detection, maize disease detection and oral lesion detection
is described in Section 3.3. The performance of SPHH for automated design, including
reusability and transfer learning of the generated designs, is discussed in Section 4. A
summary of the findings of the study and future extensions of this work is provided in
Section 6.

2. Background

This section provides an overview of related work. First, the deep learning neural
network pipeline is presented. An overview of hyper-heuristics is given in Section 2.3.
Automated design in machine learning, including the use of hyper-heuristics for this
purpose, is discussed in Section 2.2. Transfer learning, focusing on previous work applying
transfer learning in automated design, is discussed in Section 2.4. The application domains
that the proposed SPHH will be evaluated on are described in Sections A.1.2 and 2.6.

2.1. Deep Neural Network Pipeline

This section describes the deep neural network pipeline. At each point in the pipeline,
design decisions have to be made to choose the appropriate technique to use for the
particular process. These decisions are usually made manually by researchers. The research
presented in this paper aims to automate the decision making using optimization. Based on
a survey of the literature [9–11], we summarize the processes comprising the deep neural
network pipeline to include the following:

• Preprocessing (PP)—Involves processing the data, images or text, to be in a format
required for application of the neural network with the aim of cleaning and altering the
input data with the goal of bettering the eventual performance of the neural network.
Studies have shown that in the preprocessing stage, not only are the techniques
themselves important; the order in which they are applied will affect the performance
of the stages that follow [12]. Different preprocessing techniques are used for image
processing and text processing.

• Data Augmentation (DA)—Data augmentation techniques are used in image pro-
cessing to increase the set of images available for training and testing of the neural
network. Data augmentation has been shown to result in better performance across
the many problem instances that image processing is comprised of [13].

• Feature Engineering (FE)—Feature engineering techniques are used in text processing
to extract relevant features from data. When applying a well chosen feature engineer-
ing technique, it has been shown to provide a significant increase in the accuracy of
the deep neural networks that use the produced feature representation, both in the
case of sentiment analysis [14] as well as spam detection [15,16].
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• Neural Network Architecture Selection (NNAS)—From previous work, it is evident
that different deep neural networks are suitable for different image processing [17–19]
and text processing [20,21]. This step in the pipeline involves determining which
neural network architecture should be used to solve the problem at hand.

• Hyper-parameter Tuning (HT)—Deep neural networks requiring various parameters
to to be tuned, e.g., learning rate [2].

When considering the No Free Lunch Theorem [22], it is clear that the task of designing
a deep neural network pipeline is one that will have to be repeated for each new problem
domain, and potentially for each dataset. A detailed description of the various options
for the processes making up the deep learning pipeline for image processing and text
processing is given in Appendix A.

2.2. Automated Design

There has been a fair amount of research into automated design of various aspects
of neural networks, including hyper-parameter tuning, determining the architecture and
determining the weights leading to the fields of neuroevolution [23], neural architecture
search [24] and AutoML [25]. The proposed automated design approach is applied to four
problems that can be categorized into the two main areas that deep neural networks have
been effective in: image processing and text processing.

The only other study that focuses on the automated design of a machine learning
pipeline is the research on TPOT-NN. TPOT-NN (Tree-based Pipeline Optimization Tool) [5]
is tree based, and while it allows for domain agnostic use and can employ basic neural
network architectures such as a multi-layer perceptron, ultimately TPOT-NN does not
include any deep neural network architectures.

Various approaches have proven to be effective for automated design of machine
learning and search techniques [6], with evolutionary algorithms often used for this pur-
pose. However, more recently, hyper-heuristics have proven to be effective for automated
design [7], without requiring as much computational effort as evolutionary algorithms.

2.3. Hyper-Heuristics

A hyper-heuristic is defined as an algorithm that will search for heuristics for a given
optimization problem, where the heuristics that the algorithm finds will create a solution
to an optimization problem [7]. This definition implies the existence of two spaces: the
heuristic space and the solution space. The hyper-heuristic performs search in the heuristic
space, where the heuristic space consists of a collection of low-level heuristics. The low-level
heuristics will affect movement in the solution space, where the solution space consists of a
collection of solutions to the optimization problem being solved. Hyper-heuristics can either
perform selection or generation, where selection hyper-heuristics will simply select low-
level heuristics in the heuristic space and generation hyper-heuristics will create new low-
level heuristics. Hyper-heuristics can further either be perturbative or constructive in nature.
Perturbative hyper-heuristics will (by means of low-level heuristics) make changes to an
existing solution with the aim of improving the solution and constructive hyper-heuristics
will (by means of low-level heuristics) create a brand new solution. Hyper-heuristics
are classified as being either selection perturbative, selection constructive, generation
perturbative or generation constructive.

Hyper-heuristics have been used for the automated design of machine learning and
optimization techniques [7]. Selection perturbative hyper-heuristics have proven to be
effective for selecting parameters, operators, selection methods and move operators in
metaheuristics [6]. To the knowledge of the authors, there has not been previous work
examining the automated design of a deep-learning pipeline using hyper-heuristics. In this
study, a single point selection perturbative hyper-heuristic (SPHH) will be investigated for
this purpose.
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2.4. Transfer Learning

Transfer learning is defined as applying knowledge obtained in the process of solving
one optimization problem to the process of solving a different optimization problem. In
transfer learning, there is the concept of a transfer learning source and a transfer learning
target. Information will be taken from the source and applied to the target [26].

Transfer learning has been successfully used in neural AutoML [27], where the design
of the architecture of a deep neural network was automated using a reinforcement-learning-
based architecture search method. The search is performed by a controller. During the
search process, the controller will learn which general and task-specific architecture and
hyper-parameter choices perform best. When the controller is presented with a new task, it
will persist in what it has learnt and use the knowledge to make architecture and hyper-
parameter choices for the new task, while still allowing for task-specific adjustments to be
made. The transfer learning is thus used to inform the search process.

The work in [27] differs from the work being proposed in this research, as this research
aims to automate the design of the deep neural network pipeline in its entirety, not just the
design of the neural network architecture.

2.5. Text Processing

This section provides an overview of previous working using deep neural networks
for sentiment analysis (Section 2.5.1) and spam detection (Section 2.5.2) respectively. The
scope of the review is restricted to studies that have used the same datasets as this work. A
full description of all datasets mentioned below is given in Appendix C.

2.5.1. Sentiment Analysis

Sentiment analysis extracts features within user-originating texts with the aim of
determining the opinion that the author holds of a specific entity. The aforementioned
entity could be anything from a political candidate to a restaurant. This research will make
use of five datasets: ACL IMDB movie reviews dataset [28], Amazon product reviews
dataset [29], Coronavirus tweets dataset [30], Sentiment 140 dataset [31] and the Yelp
reviews dataset [32].

The work in [33] predicts movie ratings by using a deep neural network pipeline.
The preprocessing stage consists of case conversion, tokenisation, stop word removal,
spelling correction, stemming and lemmatization. The feature engineering stage using the
Word2Vec technique in a skipgram configuration and the resulting feature representation
is then given to a Long Short-Term Memory (LSTM). The deep neural network pipeline
described was applied to the ACL IMDB movie reviews dataset [28] and is the state of the
art for that dataset.

The work in [34] showed that a deep neural network pipeline using an LSTM with no
preprocessing techniques and a basic word embedding as the feature engineering technique
provided optimal performance for the Amazon product reviews dataset [29]. The work
in [35] developed a deep neural network pipeline to predict the sentiment of a tweet
pertaining to the 2020 Coronavirus pandemic. The deep neural network pipeline contained
a preprocessing stage with unspecified techniques and a feature engineering stage that used
one-hot encoding. The neural network component was a Convolutional Neural Network
(CNN). The deep neural network pipeline as a whole was applied to the Coronavirus
tweets dataset [30].

The comparative study in [36] sought to determine whether an LSTM or CNN would
perform most effectively in a deep neural network pipeline for sentiment analysis, specifi-
cally for tweets. The preprocessing stage made use of stop word removal, lemmatization
and stemming. The feature engineering stage was not specified. The best-performing deep
neural network was a LSTM as applied to the Sentiment 140 dataset [31]. The last study [37]
constructed a deep neural network pipeline where the preprocessing stage consisted of case
conversion, punctuation removal, tokenisation, lemmatisation and stop word removal. The
feature engineering technique chosen was GloVe, and the resulting feature representation
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was given to a CNN for classification. The Yelp reviews dataset [32] was used, and the
resulting deep neural network pipeline is now the state of the art for this dataset.

2.5.2. Spam Detection

Spam detection attempts to differentiate between genuine, benevolent texts and un-
solicited or malicious texts [38]. Spam detection is most commonly defined as a binary
classification task where a textual data instance is either classified as spam or ham. A
real world example of spam detection is seen in email clients. This research uses four
datasets for spam detection: Enron emails dataset [39], SMS spam dataset [40], Spam
Assassin dataset [41] and the YouTube comments spam dataset [42]. A full description of
the aforementioned datasets is given in Section 3.3. If an email is classified as “spam”, it is
unsolicited or malicious [41]. If an email is classified as “ham”, it is a benevolent text.

The work carried out in [43] focused on spam filtering for emails, specifically for
datasets that are balanced. A deep neural network pipeline is constructed in which the
preprocessing stage consists of case conversion, tokenization, stop word removal and
stemming. The feature engineering stage made use of the TF-IDF technique, and the neural
network architecture chosen was a CNN. The Enron emails dataset [39] was used, as it
contains a balance of spam and ham emails, and the deep neural network pipeline set a
new state of the art for [39].

The work carried out in [44] used a deep neural network pipeline to perform spam
filtering for SMS messages. The author of [44] specifies that a preprocessing stage was in-
cluded, but does not mention the techniques used. The feature engineering stage used basic
word embedding and the chosen deep neural network architecture was a Recurrent Neural
Network (RNN). The SMS Spam dataset [40] was used to validate the aforementioned deep
neural network pipeline.

The work in [45] performs a general study of information filtering, which includes
spam filtering. A deep neural network pipeline was used as the solution. No techniques
were used during the preprocessing stage. The feature engineering stage used the GloVe
technique, and an LSTM was chosen as the deep neural network architecture. The Spam
Asssassin dataset [41] was one of the datasets included. The last study is [46], which
constructs a general spam detection system that amounts to a deep neural network pipeline.
The preprocessing stage consists of case conversion, removal of URI-like strings, conversion
to ASCII, removal of punctuation, removal of date and time strings, removal of whitespace,
removal of stop words, stemming, lemmatization, spelling correction and duplicate word
removal. The feature engineering stage used a custom unspecified word embedding
technique. The deep neural network architecture chosen was a basic Deep Neural Network
(DNN). The YouTube comments spam dataset [42] was one of the datasets used in this study.

2.6. Image Processing

Deep neural networks perform either classification or segmentation in the area of
image processing. This study will automate the design of the deep learning pipeline
for both classification and segmentation. The problem examined for classification is the
classification of oral lesions as benign or malignant. In the case of segmentation, the
application is the detection of common rust in maize.

2.6.1. Maize Disease Detection

The image segmentation portion of this research focuses specifically on maize disease
detection. This research utilizes three datasets: the Iowa State University maize disease
dataset version one [47], the Iowa State University maize disease dataset Rp1d and the
Iowa State University maize disease dataset Tilt. The three datasets will be referred to as
ISU V1, ISU Rp1d and ISU Tilt, respectively, for the remainder of this research paper. The
research conducted in [47] made use of a Mask R-CNN, which had its hyper-parameters
tuned by means of a genetic algorithm; in other words, by means of automated design.
Cropping was used as a data augmentation technique and CLaHe contrast enhancement
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was used as a preprocessing technique. The work in [47] made use of the ISU V1 dataset
and subsequently set a new state of the art for common rust quantification. The ISU Rp1d
and ISU Tilt do not currently have any published results in the literature, meaning this is
the first research to make use of these two datasets.

2.6.2. Oral Lesion Detection

The image classification portion of this research focuses specifically on oral lesion
detection. This research utilizes two datasets for this task: the Karnataka Oral Lesion
Dataset [48] and the University of Pretoria (UP) Oral Images Dataset [49]. Both the afore-
mentioned datasets are considered real-world datasets, as the photos they consist of were
gathered in-field. The research in [50] compared the performance of two neural network
pipelines, namely a Resnet-50 with rotation as augmentation technique and a VGG16 with
rotation as augmentation technique and no processing techniques. The two pipelines were
applied to the Karnataka Oral Lesion Dataset [48] and UP Oral Images Dataset [49], and in
both cases the Resnet-50 pipeline outperformed the VGG16 pipeline, thereby becoming the
state-of-the-art deep neural network technique for oral lesion detection.

3. Materials and Methods

The selection perturbative hyper-heuristic (SPHH) that is being used to automate the
design of the deep neural network pipeline is detailed in Section 3.1. The transfer learning
experimentation that is performed on the SPHH is described in Section 3.2. Finally, the
experimental setup is given in Section 3.3.

3.1. Selection Perturbative Hyper-Heuristic for Automated Design (SPHH)

This section describes the SPHH used to automate the design of the deep neural
network pipeline. The algorithm for the SPHH is given in Algorithm 1. In Algorithm 1, the
following abbreviations are used:

1. DS—design string.
2. DNNP—deep neural network pipeline.
3. LLPH—low level perturbative heuristic.

Algorithm 1 Single point selection-perturbative hyper-heuristic
create random DS
apply greedy initialization
iteration_limit← 50
current_iteration← 0
while current_iteration ≤ iteration_limit do

select LLPH
apply LLPH to DS
create DNNP from DS
evaluate DNNP
update rank for LLPH
if move is accepted then

keep changes made to DS by LLPH
else

revert changes made to DS by LLPH
end if
current_iteration + 1

end while
return DS for the best performing DNNP as solution

In Algorithm 1 on line 1, a random deep neural network pipeline design is created.
Initially, the design is described in Section 3.1.1. On line 6 in Algorithm 1, the hyper-
heuristic selects a low-level perturbative heuristic to apply to the initial design. The
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low-level perturbative heuristics used in the study are presented in Section 3.1.2. The
new deep neural network pipeline design is then evaluated on line 9 by executing the
deep neural network pipeline it represents. A SPHH is comprised of two components;
namely, the heuristic selector and the move acceptor [7]. The heuristic selector chooses the
perturbative heuristic to apply, and the move acceptor (line 11 in Algorithm 1) determines
whether the move should be accepted or not. Section 3.1.3 describes the choice function
used to select the heuristic and the move acceptance algorithm. The parameter values for
the hyper-heuristic are presented in Section 3.1.4.

3.1.1. Deep Neural Network Pipeline Design String

The pipeline design will differ depending on whether the design is being created for a
text processing or image processing task. Each design is represented as a string comprised
of n components, with each component representing a design decision in the pipeline.
In the case of image processing, the length of the string is thirteen, representing thirteen
design decisions, and in the case of text processing, it is sixteen. Tables 1 and 2 describe the
design decision that each component of the design represents.

Table 1. Definition of the string representing the different design decisions for an image process-
ing pipeline.

Position in
Chromosome Gene Value Definition Stage

1 Augmentation stage technique [1..8] Augmentation

2 Mean normalization use/exclude position (one of [1..5])

Preprocessing

3 Gaussian blur use/exclude position (one of [1..5])

4 Move from RGB to HSV use/exclude position (one of [1..5])

5 Segmentation using k-means use/exclude position (one of [1..5])

6 Contrast enhancement use/exclude position (one of [1..5])

7 Deep neural network technique
Segmentation—[1..3]
Classification—[1..18]

Processing

8
Deep neural network technique
specific parameters

{
parameter_1: value,
parameter_2: value,
. . .
}

9
Deep neural network technique
optimizer [1..8]

10
Deep neural network technique
loss function [1..11]

11
Deep neural network technique
activation function [1..9]

12
Deep neural network technique
kernel initializer [1..8]

13
Deep neural network technique
bias initializer [1..8]
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Table 2. Definition of the string representing the different designs decisions for a text process-
ing pipeline.

Position in
Chromosome Gene Value Definition Stage

1 Spelling correction use/exclude position (one of [1..8])

Preprocessing

2 Lemmatization use/exclude position (one of [1..8])

3 Stemming use/exclude position (one of [1..8])

4 Remove stop words use/exclude position (one of [1..8])

5 Remove hashtags use/exclude position (one of [1..8])

6
Removal of URLs and
URI-type strings use/exclude position (one of [1..8])

7 Removal of punctuation use/exclude position (one of [1..8])

8 Conversion of all text to lowercase use/exclude position (one of [1..8])

9 Feature engineering technique [1..6]

Feature engineering
10

Feature engineering technique
specific parameters

{
parameter_1: value,
parameter_2: value,
...
}

11 Deep neural network technique [1..4]

Classification

12
Deep neural network technique
optimizer [1..8]

13
Deep neural network technique
loss function [1..11]

14
Deep neural network technique
activation function [1..9]

15
Deep neural network technique
kernel initializer [1..8]

16
Deep neural network technique
bias initializer [1..8]

3.1.2. Low-Level Perturbative Heuristics

The SPHH selects a low-level perturbative heuristic to apply to the design in an
attempt to improve the initial randomly created design. This section describes the pertur-
bative heuristics used in this study. These are grouped into three categories, which are
domain independent, image-processing specific and text-processing specific. The low-level
perturbative heuristics are shown in Table 3.



Appl. Sci. 2022, 12, 12215 9 of 31

Table 3. This table lists the low-level perturbative heuristics the SPHH uses. For each heuristic, the
category, name and description is shown.

Heuristic Category Heuristic Name Heuristic Description

Domain independent Add new preprocessing technique Adds a new technique in a random
position to the preprocessing stage

Domain independent Remove preprocessing technique Removes a randomly selected
technique from the preprocessing stage

Domain independent Select deep neural network architecture

Select a random deep neural
network architecture. The pool of
possible architectures is determined
by the problem domain.

Domain independent Select optimizer
Select a new optimizer for the
deep neural network.

Domain-independent Select loss function
Select a new loss function for the
deep neural network.

Domain independent Selection activation function Select a new activation function for
the deep neural network.

Domain-independent Select kernel initializer Select a new function to initialize the
kernel for a deep neural network.

Domain-independent Select bias initializer Select a new function to initialize the
bias for a deep neural network.

Image processing specific Select augmentation technique Select a new augmentation technique

Image processing specific Select augmentation stage parameter value
Where applicable, select a new value
for parameters that are unique to the
augmentation technique.

Image processing specific Select CNN parameter value

Certain image segmentation deep neural
network architectures have parameters
that are unique to them; for example
the non-maximal suppression threshold
parameter in the Mask R-CNN. If
applicable, this low-level perturbative
heuristic will be included.

Text processing specific Select feature engineering technique Select a new feature-engineering technique.

Text processing specific Select feature-engineering parameter value
Where applicable, select a new value for
any parameters that are unique to the
feature-engineering technique

3.1.3. Heuristic Selection and Move Acceptance

The hyper-heuristic consists of two components: the heuristic selector and move
acceptor. A choice function is used for heuristic selection. The choice function is used to
rank each low-level perturbative heuristic using the following formula [7]:

f (hi) = α f 1(hi) + β f 2(hi) + δ f 3(hi)

Details regarding the components that make up the choice function can be found in
Appendix B.

The low-level perturbative heuristic with the highest rank is selected to be applied to
the DPND. After the deep neural network pipeline created from the perturbed DNPD has
been evaluated, this perturbation/move can be either accepted or not. For this research,
Adapted Iteration Limited Threshold Accepting (AILTA) [51] is employed to determine
whether to accept the perturbation or not.

AILTA works by accepting moves that result in the design performing either equally or
better than it was prior to the move. AILTA will also accept moves that result in the design
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performance degrading when certain conditions are met. AILTA has two hyper-parameters:
an iteration limit and a threshold. Moves that degrade design performance will be accepted
if the current iteration is greater than the iteration limit and if the performance of the
solution is less than the threshold of the best performance obtained thus far.

The iteration limit and threshold values are then adapted as the search progresses to
allow for more exploration of the heuristic space early on and exploitation of good design
towards the end of the SPHH’s execution.

3.1.4. Parameter Values

The six parameters in Table 4 were all tuned in tandem by first carrying out some
by-hand empirical experimentation to get to a good starting point, then further tuned by
means of a basic grid search. The iteration count value specifically was validated afterwards
to ensure that no further solution improvement will happen beyond 50 iterations.

Table 4. The various hyper-parameters along with their values for the SPHH are listed in this table.

Hyper-Parameter Value

Number of iterations 50

AILTA iteration limit 10

AILTA threshold 0.15

Choice function—alpha value 0.5

Choice function—beta value 0.5

Choice function—delta value 0.25

3.2. Transfer Learning

This section describes the transfer learning that this work will be implementing. In this
study, the pipeline design will be transferred. This string is thus our means of transferring
the design from one independent run to another. At the end of a full independent run of
the SPHH, the design string is captured and stored. When a new run of the SPHH begins,
the values from the stored design string will be used to initialize the values for the current
run’s design string. The source domain and the target domain must be the same in order to
perform transfer learning. When designing a text processing pipeline, only a design string
representing a text processing pipeline will be valid to use for transfer learning. Similarly,
for the image processing pipeline, only a design string representing an image processing
pipeline will be valid to be used for transfer learning when designing an image processing
pipeline. The SPHH will continue to optimize and tune the various components of the
design string, with the hypothesis being that the search process is now starting in a more
ideal location and will therefore produce better or equally good results.

3.3. Experimental Setup

This section describes the experimental setup employed to meet the objectives listed
in Section 1. The datasets used in the study are presented in Section 3.3.1. Section 3.3.2
provides an outline of the experiments conducted. Finally, Section 3.3.3 describes the
technical specifications.

3.3.1. Datasets

The datasets used during experimentation are listed below. Each dataset is divided
into a training and testing subset containing 70% and 30% of the total dataset, respectively.
Additionally, smaller subsets of the total training set are created and used at each iteration
of the SPHH to allow for more robustness, as well as to reduce computational time. The
exact size of the training subsets is dependent on the size of the dataset being used. The
testing set is not reduced into subsets; it is used as is. Please refer to Appendix C for further
details regarding the datasets.
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Text processing datasets:

• Sentiment analysis: ACL IMDB movie reviews dataset [28]
• Sentiment analysis: Amazon product reviews dataset [29]
• Sentiment analysis: Coronavirus tweets dataset [30]
• Sentiment analysis: Sentiment 140 dataset [31]
• Sentiment analysis: Yelp reviews dataset [32]
• Spam detection: Enron email dataset [39]
• Spam detection: SMS spam dataset [40]
• Spam detection: Spam assassin dataset [41]
• Spam detection: YouTube comments spam dataset [42]

Image processing datasets:

• Image classification: Karnataka Oral Lesion Dataset [48]
• Image classification: UP Oral Lesion Images Dataset [49]
• Image segmentation: ISU V1 [47]
• Image segmentation: ISU Rp1D
• Image segmentation: ISU Tilt

3.3.2. Experiments

The experiments that are conducted as part of this research are described below:

Experiment 1—Basic Automated Design

The first experiment runs the SPHH as defined in Section 3.1 on each of the text
processing and image processing datasets specified in Section 3.3.1. Ten independent runs
of the SPHH will be performed on each dataset, and the average result will be taken at
the end of the 10 independent runs. The results (accuracy and best performing pipeline
design) for each of the runs will be recorded and compared to results of manually designed
pipelines from the literature. The goal of this experiment is to determine whether automated
design of a deep neural network pipeline is effective for both the text processing and image
processing domains.

Experiment 2—Design Reusability

This experiment uses each of the best-performing deep neural network pipeline
designs from Experiment 1. It applies the design as is to all other image processing
datasets if the design was produced for an image processing dataset, or to all other text
processing datasets if the design was produced for a text processing dataset. The goal of
this experiment is to determine whether the designs produced by the SPHH are disposable
or reusable.

Experiment 3—Automated Design with Transfer Learning

This experiment uses each of the best-performing deep neural network pipeline
designs from Experiment 1 as an initial design for the SPHH. It runs the SPHH on either
all other image processing datasets if the design was produced for an image processing
dataset, or all other text processing datasets if the design was produced for a text processing
dataset. The goal of this experiment will be to analyse the effect of transfer learning on
the SPHH.

3.3.3. Technical Specifications

All experiments were performed using HPC resources that consisted of 24 CPUs and
a GPU. The GPU is a Nvidia V100 and the CPUs are Intel 5th generation. Experimentation
was set up such that the neural network training would run on a GPU and the remainder
of computation on the CPU. The HPC resources were provided by the Centre for High
Performance Computing in Cape Town, South Africa.



Appl. Sci. 2022, 12, 12215 12 of 31

4. Results

This section presents the results from the three experiments described in Section 3.3.2.
The results for Experiment 1 are presented in Section 5.1, Experiment 2 in Section 5.2 and
Experiment 3 in Section 5.3. Note that for all tables the best result per dataset is highlighted
in bold.

4.1. Experiment 1—Basic Automated Design
4.1.1. Text Processing

Table 5 contains the precision, recall and F1 score values for the SPHH. Table 6 shows
the performance of SPHH automated design versus the results from the techniques dis-
cussed in the literature survey in Section Appendix A.1.2 for sentiment analysis and spam
detection, the best values for each dataset are highlighted in bold. Table 6 compares the
accuracy as well as the application time for the sentiment analysis and spam detection
datasets, respectively. The application time refers to the time it takes in minutes for a
deep neural network pipeline to run to completion; in other words, for all stages to com-
plete. Note that where the application time was not specified, this was indicated with
“Not specified”.

4.1.2. Image Processing

Table 7 contains the precision, recall and F1 score values for the SPHH and Table 8
shows the performance of the SPHH automated design versus the manual design, as well as
a comparison with the techniques listed in the literature survey in Section 2.6. The datasets
listed only have one other state-of-the-art technique listed in the literature. Note that for
ISU Rp1D and ISU Tilt, there are no published results available, making this research the
current state of the art.

Table 5. The precision, recall and F1 score values of the SPHH when applied to the text process-
ing datasets.

Dataset Precision Recall F1 Score

ACL
IMDB
Movie

Reviews

0.79 0.95 0.86

Amazon
product
reviews

0.74 0.92 0.82

Coronavirus 0.83 0.82 0.83

Sentiment-140 0.80 0.94 0.87

Yelp 0.75 0.88 0.81

Enron 0.89 0.90 0.89

SMS Spam 0.84 0.93 0.88

Spam assassin 0.83 0.82 0.82

YouTube
comments

spam
0.82 0.98 0.89
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Table 6. Performance of SPHH compared with the state of the art and other deep neural network
pipeline techniques for the text-processing datasets.

Dataset SPHH
(Accuracy)

Literature
(Accuracy)

SPHH
(Application Time)

Literature
(Application Time)

ACL
IMDB
Movie

Reviews

95.10

95.68 [52]
97.4 [33]
90.3 [53]

94 [54]

127.73 900 [52]

Amazon
product
Reviews

86.89
82.0 [53]

96.54 [55]
87.86 [34]

87.04 10 [34]

Coronavirus 91.55 81.4 [56]
90.67 [35] 51.41 395.27 [35]

Sentiment-140 91.74
84.41 [57]

84.9 [58]
92.0 [36]

200.04 1440 [57]

Yelp 86.84
89.0 [54]

88.62 [37] 232.2 Not specified

Enron 97.45
97.47 [43]

95.9 [59] 90.93 170.75 [43]

SMS Spam 93.17

98.1 [43]
95.33 [60]
98.11 [44]

96.4 [46]

31.82 225.15 [43]

Spam assassin 91.37
95.9 [59]

98.67 [45] 189.72 Not specified

YouTube
comments

spam
98.78

94.7 [46]
96.61 [61] 24.97 Not specified

Table 7. The precision, recall and F1 score values of the SPHH when applied to the image process-
ing datasets.

Dataset Precision Recall F1 Score

Oral lesion
dataset

(Classification)
0.97 0.86 0.91

UP oral lesion
images dataset
(Classification)

0.90 0.79 0.85

ISU V1
(Segmentation) 0.67 0.82 0.74

ISU Rp1d
(Segmentation) 0.65 0.79 0.71

ISU Tilt
(Segmentation) 0.66 0.80 0.72
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Table 8. Performance of SPHH compared with the state of the art and other deep neural network
pipeline techniques for the image-processing datasets.

Dataset SPHH
(Accuracy)

Literature
(Accuracy)

SPHH
(Application Time)

Literature
(Application Time)

Karnataka
oral

lesion
dataset

(Classification)

98.37 92.43 [50] 622 606.25 [50]

UP
oral lesion

images
dataset

(Classification)

92.43 82.13 [50] 152.38 Not specified

ISU V1
(Segmentation) 72.82 68.02 [47] 717.96 6845 [47]

ISU Rp1d
(Segmentation) 70.45 - 729.98 Not specified

ISU Tilt
(Segmentation) 70.22 - 851.81 Not specified

4.2. Experiment 2—Design Reusability
4.2.1. Text Processing

Tables 9 and 10 show the results of using the best-performing design from different
datasets as for a different dataset; in other words, reusing the design. In order for a design
to be considered reusable, it must provide results comparable to a design that is explicitly
created for a given dataset.

Table 9. Results for reusing pipeline designs created for one sentiment analysis dataset on another.

Dataset Target
for Design

Dataset Source
for Design Accuracy Precision Recall F1 Score

ACL
IMDB
Movie
Review

Amazon
product
reviews

78.95 0.68 0.80 0.74

Coronavirus 64.13 0.51 0.63 0.56

Sentiment-
140 82.27 0.69 0.80 0.74

Yelp 52.50 0.40 0.52 0.45

Amazon
product
reviews

ACL
IMDB
Movie

Reviews

77.35 0.56 0.82 0.67

Coronavirus 51.88 0.31 0.57 0.40

Sentiment-
140 54.44 0.33 0.59 0.42

Yelp 54.17 0.32 0.58 0.41
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Table 9. Cont.

Dataset Target
for Design

Dataset Source
for Design Accuracy Precision Recall F1 Score

Coronavirus

ACL
IMDB
Movie

Reviews

91.26 0.92 0.92 0.92

Amazon
product
reviews

90.91 0.91 0.91 0.91

Sentiment-
140 91.93 0.94 0.94 0.94

Yelp 73.61 0.67 0.66 0.67

Sentiment-140

ACL
IMDB
Movie

Reviews

56.94 0.47 0.62 0.53

Amazon
product
reviews

55.56 0.43 0.59 0.50

Coronavirus 46.67 0.35 0.51 0.42

Yelp 53.61 0.44 0.59 0.50

Yelp

ACL
IMDB
Movie

Reviews

85.65 0.71 0.84 0.77

Amazon
product
reviews

85.19 0.72 0.85 0.78

Coronavirus 66.94 0.53 0.56 0.55

Sentiment-
140 65.83 0.51 0.53 0.52

Table 10. Results for reusing pipeline designs created for one spam detection dataset on another.

Dataset Target
for Design

Dataset Source
for Design Accuracy Precision Recall F1 Score

Enron

SMS Spam 97.83 0.78 0.88 0.83

Spam
assassin 85.99 0.96 0.91 0.93

YouTube
Comments

Spam
97.72 0.92 0.86 0.89

SMS Spam

Enron 86.19 0.88 0.88 0.88

Spam
assassin 87.70 0.88 0.88 0.88

YouTube
Comments

Spam
86.19 0.88 0.88 0.88
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Table 10. Cont.

Dataset Target
for Design

Dataset Source
for Design Accuracy Precision Recall F1 Score

Spam
assassin

Enron 84.70 0.78 0.77 0.77

SMS Spam 84.70 0.78 0.77 0.77

YouTube
Comments

Spam
84.70 0.76 0.75 0.76

YouTube
Comments

Spam

Enron 72.45 0.81 0.62 0.70

SMS Spam 59.39 0.56 0.35 0.43

Spam
assassin 59.59 0.68 0.64 0.65

4.2.2. Image Processing

Table 11 shows the results of using the best performing design from different datasets
as is for a different dataset, in other words, reusing the design.

Table 11. Results for reusing pipeline designs created for one image processing dataset on another.

Dataset Target
for Design

Dataset Source
for Design Accuracy Precision Recall F1 Score

UP
oral lesion

images dataset

Karnataka oral lesion
dataset 89.09 0.52 0.71 0.60

ISU Rp1d ISU V1 66.3 0.31 0.50 0.39

ISU Tilt ISU V1 69.8 0.32 0.51 0.40

4.3. Experiment 3—Automated Design with Transfer Learning
4.3.1. Text Processing

Tables 12 and 13 shows the performance of SPHH when using the best=performing
design from different datasets as the initial design. and thus, when using transfer learning.
Table 14 presents the p-values from a statistical comparison conducted using a left-tailed
Mann–Whitney U test conducted at a significance level of 0.05 (5%).
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Table 12. Results of running the SPHH with transfer learning for the sentiment analysis datasets.

Dataset Target
for Design

Dataset Source
for Design Accuracy Precision Recall F1 Score

ACL
IMDB
Movie
Review

ACL
IMDB
Movie

Reviews
95.10 0.87 0.97 0.92

Amazon
product
reviews

94.50 0.77 0.94 0.85

Coronavirus 95.89 0.80 0.97 0.88

Sentiment-140 94.22 0.82 0.85 0.83

Yelp 89.17 0.71 0.78 0.74

Amazon
product
reviews

ACL
IMDB
Movie

Reviews
86.99 0.74 0.77 0.75

Amazon
product
reviews

86.89 0.71 0.90 0.79

Coronavirus 86.33 0.72 0.92 0.81

Sentiment-140 85.94 0.77 0.93 0.84

Yelp 85.55 0.76 0.81 0.78

Coronavirus

ACL
IMDB
Movie

Reviews
91.14 0.80 0.80 0.80

Amazon
product
reviews

90.89 0.81 0.81 0.81

Coronavirus 91.55 0.81 0.80 0.81

Sentiment-140 90.89 0.82 0.82 0.82

Yelp 90.61 0.80 0.80 0.80

Sentiment-140

ACL
IMDB
Movie

Reviews
90.28 0.75 0.91 0.83

Amazon
product
reviews

91.76 0.81 0.97 0.88

Coronavirus 91.22 0.76 0.92 0.83

Sentiment-140 91.74 0.79 0.95 0.86

Yelp 90.56 0.81 0.96 0.88

Yelp

ACL
IMDB
Movie

Reviews
85.83 0.78 0.90 0.84

Amazon
product
reviews

86.11 0.85 0.89 0.87

Coronavirus 86.67 0.71 0.78 0.74

Sentiment-140 86.94 0.74 0.80 0.77

Yelp 86.84 0.74 0.87 0.80



Appl. Sci. 2022, 12, 12215 18 of 31

Table 13. Results of running the SPHH with transfer learning for the spam detection datasets.

Dataset Target
for Design

Dataset Source
for Design Accuracy Precision Recall F1 Score

Enron

Enron 97.45 0.86 0.87 0.87

SMS Spam 97.83 0.91 0.90 0.90

Spam
assassin 96.39 0.84 0.85 0.85

YouTube
Comments

Spam
97.50 0.88 0.88 0.88

SMS Spam

Enron 92.11 0.92 0.92 0.92

SMS Spam 93.17 0.95 0.95 0.95

Spam
assassin 92.11 0.95 0.95 0.95

YouTube
Comments

Spam
91.83 0.92 0.92 0.92

Spam
assassin

Enron 91.3 0.83 0.82 0.82

SMS Spam 91.21 0.84 0.83 0.83

Spam
assassin 91.37 0.84 0.83 0.84

YouTube
Comments

Spam
90.7 0.81 0.91 0.86

YouTube
Comments

Spam

Enron 98.8 0.82 0.89 0.86

SMS Spam 94.17 0.80 0.94 0.86

Spam
assassin 94.72 0.91 0.94 0.93

YouTube
Comments

Spam
98.78 0.92 0.88 0.90

Table 14. Results of a Mann–Whitney U test conducted at a statistical significance of 5% when
comparing running the SPHH with transfer learning and without transfer learning for the text
processing datasets.

Dataset Source for Design

Dataset Target
for Design

ACL
IMDB
Movie

Reviews

Amazon
Product
Reviews

Coronavirus Sentiment 140 Yelp

ACL
IMDB
movie

reviews
- 0.8112 0.00002065 0.9877 1

Amazon
product
reviews

0.9747 - 0.9994 1 1

Coronavirus 0.9959 0.9997 - 0.9998 1

Sentiment 140 1 0.376 0.998 - 1

Yelp 1 1 0.9747 0.7767 -

Dataset source for design

Dataset target
for design Enron SMS Spam Spam

assassin
YouTube

comments
spam

Enron - 0.00016 0.9499 0.05382

SMS Spam 1 - 1 1

Spam
assassin 0.445 0.9086 - 0.997

YouTube
comments

spam
0.838 1 1 -
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4.3.2. Image Processing

Table 15 shows the performance of SPHH when using the best-performing design from
different datasets as the initial design; ergo, when using transfer learning. Table 15 also
presents the p-values from a statistical comparison made using a left-tailed Mann–Whitney
U test performed at a significance level of 0.05 (5%).

Table 15. Results of running the SPHH with transfer learning for the image processing datasets.

Dataset Target
for Design

Dataset Source
for Design Accuracy Precision Recall F1 Score p-Value

UP
oral lesion

images dataset

Karnataka
oral

lesion
dataset

90.15 0.87 0.78 0.82 1.0

ISU Rp1d ISU V1 70.09 0.66 0.30 0.41 0.8903

ISU Tilt ISU V1 71.47 0.69 0.33 0.45 0.0045

5. Discussion

This section discusses the results presented in Section 4. Experiment 1 is discussed in
Section 5.1, Experiment 2 in Section 5.2 and Experiment 3 in Section 5.3.

5.1. Experiment 1—Basic Automated Design
5.1.1. Text Processing

From Table 6, we can see that the SPHH matches the performance of the techniques
from the literature survey for the Enron dataset. The Coronavirus dataset and YouTube
comments spam dataset exceeds the performance of the techniques from the literature
survey. For the remainder of the datasets, the SPHH falls just a few percentage points short
of the performance (in certain instances, less than a whole percentage) from the techniques
in the literature. Comparisons were made on the basis of p-values from a left one-tailed
Mann–Whitney U test at a statistical significance of 0.05 (5%).

When considering the difference between the application time for the pipeline designs
produced by the SPHH and the manually derived designs in the literature, results show
that the SPHH designs pipelines have application times that are either equal to or lower
than the manually derived pipelines from the literature. Considering that the SPHH has an
augmentation stage, which results in the total number of dataset instances increasing, this
is an especially encouraging result. The results prove that automation of the deep neural
network pipeline for text processing is indeed effective, confirming the first objective of
this research.

Tables 16 and 17 break down the best-performing pipeline designs produced by the
SPHH for a more holistic view of the experimentation. The most popular techniques per
stage are listed. Tables 16 and 17 clearly illustrates that different datasets require different
techniques per stage. This table also shows that the SPHH avoids techniques that are
simpler, and from the literature survey, appear to be used less often. For example, one-hot
encoding does not appear in the table once as a feature engineering technique, which
mirrors the choice actual data scientists might make when designing by hand, since it is
quite a basic technique. In other words, the SPHH is in fact performing informed design
and not just simply moving around the search space at random.
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Table 16. Best-performing designs produced by the SPHH for the sentiment analysis datasets.

Dataset

Best Performing Design

Preprocessing Stage
Feature

Engineering
Stage

Classification
Stage

ACL
IMDB
movie

reviews

Stemming, convert text
to lowercase, remove stop words,

remove punctuation, remove
URI-like objects, lemmatization

Word-to-vec
CBOW

Vanilla deep
neural network

Amazon
product
reviews

Remove URI like objects,
lemmatization, stemming,

remove stop words,
remove hashtags

Word-to-vec
CBOW

Vanilla deep
neural network

Coronavirus

Stemming, remove stop words,
remove URI-like objects,

spelling correction, remove
hashtags

FastText Long-short
term memory

Sentiment 140 Stemming, lemmatization,
text to lowercase GLoVe Vanilla deep

neural network

Yelp

Spelling correction, remove
punctuation, convert text to

lowercase, remove stop words,
remove hashtags, stemming,

lemmatization

TF-IDF Vanilla deep
neural network

Table 17. Best-performing designs produced by the SPHH for the spam detection datasets.

Dataset

Best Performing Design

Preprocessing
Stage

Feature
Engineering

Stage
Classification

Stage

Enron

Stemming, convert text
to lowercase, remove stop words,

remove punctuation, remove
URI-like objects,
lemmatization

Word-to-vec
CBOW

Vanilla deep
neural network

SMS Spam

Remove URI like objects,
lemmatization, stemming,

remove stop words, remove
hashtags

Word-to-vec
CBOW

Vanilla deep
neural network

Spam assassin

Stemming, remove stop
words, remove URI like

objects, spelling correction,
remove hashtags

FastText Long-short
term memory

YouTube
comments

spam
Stemming, lemmatization,

text to lowercase GLoVe Vanilla deep
neural network

5.1.2. Image Processing

From Table 8, we can see that the SPHH exceeds the performance achieved by previous
work for all datasets listed. As for the text processing, comparisons were made on the basis
of p-values from a left one-tailed Mann–Whitney U test at a statistical significance of 0.05
(5%). As for the text processing domain above, when considering the difference between
the automated design time and manual design time, we can see that the SPHH delivers
results in a far shorter timeframe. The results again confirm that automation of the deep
neural network pipeline for image processing is possible, and effective at that.

When considering the difference between the application time for the pipeline designs
produced by the SPHH and the manually derived design in the literature, we can see that
in the instances where application times are available, the SPHH designs pipelines have
application times that are either equal to or lower than the manually derived pipelines
from the literature.

Table 18 breaks down the best-performing pipeline designs produced by the SPHH
for a more holistic view of the experimentation. The most popular techniques per stage are
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listed. Table 18 shows that for the two image classification datasets, different techniques
are clearly required per stage. For image segmentation, we can see that similar design
choices are being made across all three datasets. This is in fact expected behaviour, since
the three datasets have the same provenance and are visually similar (see Figure 1). The
SPHH making similar design choices for the three datasets again proves that the design
process is both informed and does indeed converge.

Table 18. Best-performing designs produced by the SPHH for the image processing datasets.

Dataset
Best Performing Design

Augmentation
Stage

Preprocessing
Stage

Classification
Stage

Classification

Oral lesion
dataset Crop Contrast

enhancement XCeption

UP oral
lesion

images
dataset

Flip Mean normalization VGG16

Segmentation

ISU V1 Translate RGB colour
space to HSV U-Net

ISU Rp1D Translate No clear pattern U-Net

ISU Tilt Translate Mean normalization
Gaussian blur U-Net

Figure 1. Comparison of images from the three ISU maize disease datasets, from left to right, first
version then Rp1d, and lastly, Tilt.
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5.2. Experiment 2—Design Reusability
5.2.1. Text Processing

Tables 9 and 10 show that in certain instances, such as when the Coronavirus dataset is
the target and the ACL IMDB movie reviews dataset is the source, the design does appear
to be reusable. Another instance of a design being reusable is seen when Enron is the target
and the YouTube comments dataset is the source. Reusability is only achieved when the
performance of a deep neural network pipeline design that is being reused is statistically
similar to the performance of a deep neural network pipeline design that has been designed
from scratch.

From the results, it is clear that there are plenty of instances of design reuse producing
exceedingly poor results, meaning that the design is not reusable. In fulfilment of the
second objective of this research, the results indicate that designs produced by the SPHH
do not appear to be reusable. However, there are certain instances of design reuse that
were effective.

It is desirable to have reusable designs, as it means that a new deep neural network
pipeline does not need to be designed from scratch every single time the dataset changes,
which saves computational cost. In order to adjust the SPHH to produce reusable designs,
different datasets can be used at once during design time. Another way to adjust the SPHH
for reusability could be to design multiple deep neural network pipelines and subsequently
create an ensemble. Ensembles could be more reusable than single deep neural network
pipeline designs. Future work will investigate this further.

5.2.2. Image Processing

Table 11 shows that for both image classification and image segmentation, designs
do not appear to be reusable, as the performance is not comparable to the performance
resulting from a design that was explicitly created for a given dataset. With regard to
the second research object, the results again confirm that the SPHH does not produce
reusable designs.

5.3. Experiment 3—Automated Design with Transfer Learning
5.3.1. Text Processing

Tables 12 and 13 show that transfer learning is incredibly effective on the whole;
however, the choice of source for transfer learning does seem to have an effect on the
efficacy of the transfer learning. In certain instances, such as when using the Yelp dataset as
the source of design for the ACL IMDB movie reviews dataset, the use of transfer learning
resulted in poorer performance. However, for some datasets, such as when using the SMS
Spam dataset as source and the Enron dataset as target, transfer learning resulted in better
performance than when no transfer learning was used.

The third objective of this research questioned whether transfer learning would be
possible when carrying out automated design of the deep neural network pipeline. The
results in Tables 12 and 13 confirm that while transfer learning is possible and, when done
well, even improves performance in certain instances, it cannot be conducted thoughtlessly.
The target and source must be carefully considered. Future research will investigate the
correlation between the source and target for transfer learning.

5.3.2. Image Processing

The results from Table 15 indicate that transfer learning used in the image processing
domain was ineffective for the classification, but it was very effective for the segmentation.
For the classification, a decrease in performance was observed when referring back to
Table 18 which describes the design choices made. This is not surprising, as the source
and target dataset had very different designs created for them, meaning that transfer
learning would result in the search being initialized in a sub-optimal location. For image
segmentation, the Tilt dataset showed an increase in performance, to which the other
dataset (Rp1d) showed similar performance when transfer learning is not used. The image
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segmentation results can also be explained by referring back to Table 18. which shows that
the source and target datasets had very similar designs produced for them.

6. Conclusions

This research has shown that automated design of a deep neural network pipeline
using a single-point hyper-heuristic is effective for the image processing and text processing
domains. Automating the design of a deep neural network pipeline by means of a SPHH
results in pipelines that are competitive with manually derived pipeline designs published
in the literature for some of the datasets presented.

The results show that reusing designs created by the SPHH does not provide com-
parable performance to the results achieved when specifically creating a design for a
dataset. The designs are therefore not reusable for either the image processing or text
processing domain.

Transfer learning was found to produce results comparable to or better than the
results achieved when using the SPHH without transfer learning. Importantly, however,
transfer learning was only effective when the correct target and source are chosen. For
some target datasets, negative transfer occurs when using certain datasets as the transfer
learning source.

Future work will include applying the automated design system to more domains and
datasets, as well as looking at how to potentially make designs more reusable. Future work
will look at automating the transfer learning process to ensure only positive transfer occurs.
Future work should also use automated design to construct a pipeline for unsupervised
deep learning techniques instead of deep neural networks, as the state of the literature
indicates a steady increase in interest in unsupervised deep-learning techniques. Lastly,
future work will include checking the sensitivity of the SPHH to its parameters.
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Appendix A. Deep Neural Network Pipeline

Appendix A.1. Preprocessing

This section describes the options for each of the processes that make up the deep learn-
ing pipeline. Different preprocessing is needed for image processing and text processing.

Appendix A.1.1. Image Processing

Preprocessing options include:

1. Mean normalization [11]: This technique will first calculate the mean pixel value
across the entire dataset, then preprocess each image in the dataset by subtracting the
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mean pixel value from each pixel in the image. In the case of images that have multiple
channels (i.e., RGB or HSV) the mean pixel value can be calculated per channel.

2. Gaussian blur [62]: This technique is commonly used to remove unwanted noise.
This filtering technique will consider a single pixel at a time, then set the value of the
pixel to be the weighted average of the pixels surrounding it. The number of pixels
considered is determined by the kernel size of the filter, and the weighting of pixel
values is given by a Gaussian distribution. The resulting output of a Gaussian blur
filter is an image that is smoother than the original.

3. Moving an image from RGB to HSV colour space [62]: This technique is commonly
used, as HSV allows for separation of the colour itself from the intensity of the colour,
while RGB does not. Additionally, for certain datasets, the RGB representation can be
found to be noisier than the HSV representation.

4. Segmenting an image using K-means clustering [62]: This technique is most commonly
used to isolate important foreground information from meaningless background
information. K-means clustering will be performed with a cluster size of 2. Once the
pixels belonging to the background are identified, they will have their pixel value set
to be black.

5. Enhance contrast [63]: This technique can be applied to both greyscale and colour
images. In both cases, the pixel values of the images will be changed in order to
enhance image intensity. Contrast enhancement is carried out in an attempt to make
features in the image that could be important to the classifier stand out more.

Appendix A.1.2. Text Processing

This section describes the options for each of the processes that make up the deep
learning pipeline for text processing. Preprocessing options include:

1. Spelling correction: Correcting the spelling of words in the text according to a dictio-
nary that matches the language of the text.

2. Lemmatization: Converting similar words to a single word that encompasses the
same concept. The difference between stemming and lemmatization is that stemming
converts similar words to their stem and lemmatization converts words to their lemma.
The lemma of a word takes the morphological origin of a word into account.

3. Stemming: Transforming words to their specific stem by cutting off the extra characters
from the end of the word. For example, the words “games”, “gamer” and “gamest”
will all be transformed to the single stem “game”.

4. Removal of stop words: Removing words that occur very often in texts but can be
seen as neutral in terms of the meaning they add to a text. Stop words can include
words such as: “the”, “a”, “was”, “on” and so forth.

5. Removal of hash tags: Converting hashtags into normal words. The reason why this
is done is due to the leading pound sign ie “#weekend”. Hashtags will be seen as
unique words.

6. Removal of URLs and URI-type strings: Removing these strings where an example of a
URL is ‘http://example.com’ and an example of a URI is ‘urn:oasis:names:specification:
docbook:dtd:xml:4.1.2’.

7. Removal of punctuation: Removing punctuation is often carried out to combine
multiple sentences into a single sentence.

8. Conversion of all text to lowercase: Converting all uppercase letters to their lowercase
equivalent is carried out to decrease variance in the dataset.

Appendix A.2. Data Augmentation

This process in the pipeline is specific to image processing and is not needed for text
processing. Research has shown that data augmentation techniques can result in better
performance of subsequent classification [64] and segmentation [65] of deep neural network
techniques. Methods for data augmentation include:
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1. Flipping of the image [10].
2. Rotation of an image [10].
3. Cropping an image to be smaller than the original [10].
4. Changing the position of the centre point of the image [10].
5. Changing the colour space of an image [10].
6. Adding noise to an image [66].
7. Sharpening the image [66].

Appendix A.3. Feature Engineering

Feature engineering is specific to text processing. Techniques generally used include:

1. One hot encoding creates a vector representation for each word within the text. The
vector representation will have elements that are either zero or one only, and each
position in the vector corresponds to a position within the text. If the word for which
we are creating the vector appears in a specific position in the text, the same position
in the vector will have a one. Conversely, if the word for which we are creating the
vector does not appear in a specific position within the text, the same position in
the vector will have a 0. A vector representation is created for each and every word
within the text, including punctuation, if it was not removed during preprocessing.
The resulting collection of vectors will be the feature representation.

2. Term frequency—inverse document frequency (TF-IDF) [67] calculates how frequently
a word occurs in a single textual instance (term frequency) and then multiplies that
value by the inverse of how frequently that word occurs across multiple texts (inverse
document frequency).

3. Word2Vec (CBOW model) [68] uses cosine similarity to group similar words together.
A word vector (the context) will represent the words that are most similar to the word.
Each unique word in the text as a whole will have a word vector generated for it.
Word2Vec makes use of a two-layer neural network to generate the word vectors
and has two distinct variations in architecture, the first being the continuous bag of
words (CBOW) architecture and the second the Skip-gram architecture. In the CBOW
architecture, the neural network is given a specific context (collection of words) from
the text as a whole and attempts to predict the single word that would fit that context.
If the prediction is incorrect, the vector for the single word is adjusted accordingly.

4. Word2Vec (Skip-gram model) [68] uses cosine similarity to group similar words
together. A word vector (the context) will represent the words that are most similar to
the word. Each unique word in the text as a whole will have a word vector generated
for it. Word2Vec makes use of a two-layer neural network to generate the word
vectors, and has two distinct variations in architecture, the first being the continuous
bag of words (CBOW) architecture and the second the Skip-gram architecture. In
the Skip-gram architecture, the neural network is given a single word and attempts
to predict the context (collection of words) within the text as a whole that the single
word would occur in. If the prediction is incorrect, the vector for the single word is
adjusted accordingly.

5. GloVe [69] makes use of unsupervised learning and, like TF-IDF, makes use of word
frequency vectors for each word. The GloVe technique will then calculate the dot
product of two word vectors and compare it to the log of the amount of times the two
words occur near one another. The two word vectors are then adjusted based on how
different the dot product is from the log result. The concept of how “near” two words
are to one another is controlled by a hyper-parameter.

6. FastText [70] extends the Word2Vec model by encoding the individual words into their
n-gram representation before training the neural network. An n-gram is created by
sampling a number of contiguous characters from a word. The number of characters
to be sampled is greater than one and smaller than or equal to n. The use of n-grams
for the representation allows for longer words to be broken up into their prefixes and
suffixes and shorter words to be better explicated.
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Appendix A.4. Neural Network Architecture Selection

This section describes the process of the pipeline involving selection of the neural
network for the problem at hand. The section provides an overview of the networks
generally used for image processing and text processing based on a review of previous
work in the field.

Neural networks that have been used for text processing include convolutional neural
networks (CNNs), deep neural networks (DNNs), recurrent neural networks (RNN) and
long-short-term memory (LSTM).

Neural networks used for segmentation for image processing include: Poly YOLO [71],
U-Net [72] and Mask R-CNN [73]. Neural networks used for classification for image
processing include: Xception [74], VGG16 and VGG19 [75], ResNet50, ResNet101 and
ResNet152 [76], ResNet50V2, ResNet101V2 and ResNet152V2 [77], InceptionV3 [78], In-
ceptionResNetV2 [79], MobileNet [80], MobileNetV2 [81], DenseNet121, DenseNet169 and
DenseNet201 [82].

Appendix A.5. Hyperparameter Tuning

For both image processing and text processing, each of the deep neural network
architectures have the following hyper-parameters that will also be tuned as part of the
automated design process:

1. Optimizer algorithm, which can take one of the following values: Stochastic gradient
descent, RMSProp, Adam, Adadelta, Adagrad, Adamax, NAdam and Ftrl.

2. Loss function, which can take one of the following values: Binary crossentropy,
Poisson, Mean squared error, Mean absolute error, Mean absolute percentage error,
Mean squared logarithmic error, Cosine similarity, Squared hinge, Categorical hinge
and hinge.

3. Activation function, which can take one of the following values: ReLU, Sigmoid,
Softmax, Softplus, Tanh, SeLU, eLU, Exponential and softsign.

4. Kernel initializer, which can take one of the following values: Random normal,
Random uniform, Truncated normal, Zeros, Ones, Glorot normal, Glorot uniform
and constant.

5. Bias initializer, which can take the same values as specified for the above kernel
initializer.

Appendix B. Selection Hyper-Heuristic for Automated Design (SPHH)—Heuristic Selection

The hyper-heuristic consists of two components, the heuristic selector and move
acceptor. This section describes the choice function [7] used for heuristic selection. The
choice function is used to rank each perturbative heuristic using the following formula:

f (hi) = α f 1(hi) + β f 2(hi) + δ f 3(hi)

The low-level perturbative heuristic is represented as hi. f 1 represents hi’s perfor-
mance over the previous n times that it was applied. In(hi) is the change in the deep neural
network pipeline’s testing accuracy from the last invocation. Tn(hi) is the time difference
in seconds between the last application of hi.

f 1(hi) = ∑
n

αn−1 In(hi)
Tn(hi)

The second constituent part of f is f 2, which represents a comparison between hi and
all other low-level perturbative heuristics in the heuristic space hj, in the instances where
hi and hj were applied in succession. In(hj, hi) is now the difference in the deep neural
network pipeline’s testing accuracy from one successive application of hj and hi to the
next. Tn(hj, hi) is the time difference in seconds between the last successive invocation of
hj and hi.
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f 2(hj, hi) = ∑
n

βn−1 In(hj, hi)
Tn(hj, hi)

The last part f 3 is the time in CPU seconds since hi was last applied.

f 3(hi) = δ(hi)

The equation f has three extra parameters: α, β and δ. Both α and β are used to
increase or decrease the influence that hi’s recent performance has. The δ parameter is used
to increase diversity.

Appendix C. Experimental Setup—Datasets

Appendix C.1. Text Processing Datasets

Appendix C.1.1. Sentiment Analysis

• ACL IMDB movie reviews dataset [28]. This dataset is made up of movie reviews
made on the IMDB website. Importantly, only highly polarized reviews—reviews with
less than or equal to 4 stars or reviews with more than or equal to 7 stars—are included.
This dataset comprises of 50,000 instances, where 25,000 have positive sentiment and
25,000 have negative sentiment.

• Amazon product reviews dataset [29]. This dataset is made up of user reviews on the
Amazon website. The following categories from the “unprocessed.tar” folder were se-
lected: apparel, automotive, baby, beauty, books, camera_&_photo, cell_phones_&_service,
computer_&_video_games, dvd, electronics, gourmet_food, grocery, health_&_personal_care,
jewelry_&_watches, kitchen_&_housewares, magazines, music, musical_instruments, of-
fice_products, outdoor_living, software, sports_&_outdoors. tools_&_hardware, toys_&_
games and video. This resulted in a total of 38,548 instances. Of those instances, 21,972
had positive sentiment and 16,576 had negative sentiment.

• Coronavirus tweets dataset [30]. This dataset is made up of tweets gathered from
Twitter from March 2020 onwards and contains tweets relating to COVID-19. The full
dataset is continually growing, as the COVID-19 pandemic is an ongoing event. For
this reason, only a subset of the full dataset was used, namely the dataset file named
“coronavirus_tweets_01.csv”. This contains a total of 831,328 instances, in which the
sentiment score ranges between −1.0 to 1.0.

• Sentiment 140 dataset [31]. This dataset is made up of tweets gathered from Twitter,
in which the emoticons within the tweets decided the sentiment of the tweet. This
dataset contains a total of 1.6 million instances, in which 800,000 of those instances
had a positive sentiment and 800,000 of those instances had a negative sentiment.

• Yelp reviews dataset [32], this dataset is made up of user reviews for businesses, as
recorded on the website Yelp. A total of 342,858 instances were used from the Yelp
academic reviews dataset, where the stars attribute given for each instance was used to
determine sentiment. The stars attribute is an integer within the range 1 to 5, inclusive.

Appendix C.1.2. Spam Detection

• Enron email dataset [39], this dataset contains a subset of the total Enron dataset,
which is made up of leaked emails from employees that worked at Enron in 2002. This
dataset specifically focuses on six users: farmer-d, kaminski-v, kitchen-l, williams-w3,
beck-s, and lokay-m. The total amount of instances in this dataset is 33,716, where
17,171 of these emails are spam and 16,545 of these emails are ham.

• SMS spam dataset [40], this dataset consists of a collection of short messaging system
(SMS) messages. This dataset has a total of 5575 instances where 4850 of those instances
are ham and 725 of those instances are spam.

• Spam assassin dataset [41], this dataset was created from a selection of email messages
made available publicly for the express purpose of testing spam filtering systems for
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email clients. This dataset has a total of 6047 instances, where 1897 of those instances
are spam and 4150 of those are ham.

• YouTube comments spam dataset [42]. This dataset contains comments from five
YouTube videos. The total amount of instances in this dataset comes to 1956, with
951 instances being ham and 1005 instances being spam.

Appendix C.2. Image Processing Datasets

Appendix C.2.1. Image Classification

• Oral lesion dataset [48]. This dataset consists of 352 colour photos of patients’ mouths
that show some kind of oral lesion, in which 165 of the images are classified as benign
lesions and 187 of the images are classified as malignant lesions. The Oral Lesion
Dataset also contains 2622 augmented images, where 1156 of the augmented images
are classified as benign and 1115 of the augmented images are classified as malignant.

• University of Pretoria (UP) oral lesion images dataset [49]. This dataset consists of
colour photos taken of patients’ mouths that display both benign and malignant
lesions. The photos were provided by the Periodontics and Oral Medicine department
at the University of Pretoria. The dataset consists of 69 images, where 60 of the images
were classified as benign and 9 of the images were classified as malignant.

Appendix C.2.2. Image Segmentation

• Iowa State University (ISU) maize disease dataset—first version [47], this dataset was
created from maize plants grown in a greenhouse at Iowa State University. The maize
plants were inoculated by spraying the leaves with common rust urediniospores. At
different stages of infection, maize leaves were removed and scanned on a flatbed
scanner at 1200 DPI. This dataset consists of 1040 images in total.

• Iowa State University (ISU) maize disease dataset—Rp1D inoculation method. This
dataset was created from maize plants grown in a greenhouse at Iowa State University.
The maize plants were inoculated by means of the Rp1D method. At different stages
of infection, maize leaves were removed and scanned on a flatbed scanner at 1200 DPI.
This dataset consists of 167 images in total.

• Iowa State University (ISU) maize disease dataset—Tilt inoculation method. This
dataset was created from maize plants grown in a greenhouse at Iowa State University.
The maize plants were inoculated by means of the Tilt method. At different stages of
infection, maize leaves were removed and scanned on a flatbed scanner at 1200 DPI.
This dataset consists of 1114 images in total.
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