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Abstract: The cryptocurrency market has grown exponentially since its inception in 2009. Asset price movements in this emerging

market have been the subject of several research studies aimed at explaining their patterns. This article proposes a robust fractional

time spectral method for studying a three-dimensional fractional differential equation which describes the flow and stability of

cryptocurrency assets. The method relies on the fractional spectral integration matrix operator. We demonstrate the efficiency of the

numerical method with comparison to existing methods.
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1 Introduction

In the recent years, the concept of cryptocurrency has
become more and more understood by a large group of
people. By definition, a cryptocurrency is essentially a
type of digital asset used as currency within the meaning
of the Austrian School of Economics, that is to say, that
the currency emerges from a competition of means of
exchange [1,2]. The value of cryptocurrency is primarily
driven by supply and demand. It develops ideally in a free
economy where the intervention of an entity or a
government is not possible in the issuance of these new
units. Unlike fiat currencies which, for their part, follow
the Keynesian school of economics, i.e. a sovereign
government, their organization can have a positive effect
on an economy, especially when the latter begin to slow
down or take a blow [3,4].

The technology that forms the basis of cryptocurrency
is called the blockchain. It is a distributed public ledger
that records all the transactions since inception in a safe,
secure, verifiable and non-editable manner. Newly issued
units of a cryptocurrency is realized through a process
called mining. Miners verify transactions in a block by
solving of complex hard mathematical problems which
requires an enormous amount of computing power. This
concept is known as the proof of work. During this

process, the most competitive miner receives mining
rewards and transactions fees. This is how new coins are
issued [5]. Bitcoin uses the proof of work verification
process to ensure the integrity of the system. There exist
other types of verification processes such proof of stake,
delegated proof of stake, proof of authority, etc. [6,7].

A lot of research has been carried out to gain insights
into the dynamics of the bitcoin price. However, most of
the work focuses on time series modelling [8]. Bitcoin
prices and derivatives are barely studied from a modelling
point of view. Some papers dealing with option pricing
are available but an extensive empirical analysis is
missing. A dynamical approach instead is performed by
Caginalp [9] to analyse stability of cryptocurrency
markets. The model describes a system of nonlinear
ordinary differential equations.

However, due to high variability in the dataset, total
differentiation can in some instance leave some
challenges in the degree of the accuracy of the model and
by using fractional differentiation, the accuracy on pricing
models may be improved. We extend the study of the
model proposed by Caginalp [9] to fractional differential
equations (FDE).

Fractional derivatives are unfortunately not unique.
The classical ones are the Riemann-Liouville fractional
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derivatives and the Caputo fractional derivative [10]. One
challenge with classical fractional calculus is to handle
nonlinear phenomena [11,12]. Various fractional
derivative operators have been introduced. Recently
among them, the Atangana-Baleanu (AB) fractional
derivative. Fractional derivatives have been tested with
success in many fields including chaotic behavior and
epidemiology [13,14,15]. Since our cryptocurrency
model also is valid on a short period of time, singularities
are not observed. Hence a Caputo fractional operator is
preferred in order to facilitate the introduction of
fractional integration. A fractional dynamical approach
for cryptocurrency in the Caputo sense is therefore
proposed. Attempts to solve FDEs has been an ongoing
active topic of research. There are several analytical
methods such as Adomian decomposition methods,
homotopy- perturbation methods, variational iteration
method and homotopy analysis methods [16,17,18,19].
In general, most FDEs do not have exact analytical
solutions, so approximations and numerical techniques
must be used. Most works developed in numerical
methods for solving FDEs have focused on lower (or
classical) methods which include the class of finite
difference and finite element methods. These methods
have shown a slow convergence.

Higher order (or spectral) methods, however, have the
advantage of being fast converging methods. Though only
sparely explored in the context of FDEs, high order
methods have the potential to reduce computational cost
by allowing the use of fewer points, while achieving the
same accuracy as that of lower order methods [20]. In this
paper we intend to solve the fractional dynamical system
governing the price process of cryptocurrency by means
of a spectral method, following the footsteps of [21,22]
with an extension to the three dimensional problem. More
precisely the Caputo fractional operator is used for
handling fractional differentiation.

This paper is organised as follows. Section 2 presents
some basic concepts of fractional integrals and fractional
derivatives. In Section 3, we introduce the fractional
spectral integral method that will be used, then we apply
this to the cryptocurrency problem in Section 4. In the
same section we present results and conduct an error
analysis. The last section is devoted to the conclusion.

2 Basic definitions and notation on fractional

calculus

2.1 Fractional Integral

In order to define fractional integral and differential
operators, we need to first introduce the following Euler’s
Gamma function.

Definition 21The function Γ : (0,+∞)→R defined by:

Γ (x) :=

∫ +∞

0
tx−1e−t , (1)

is called the Euler’s Gamma function (or Euler’s integral

of second kind), in particular we have Γ (n) = (n−1)! for

any positive integer n.

Assuming that a function f (x) is well defined where
x > 0, we can form the definite integral from 0 to x. Let
call this

(J f )(x) =

∫ x

0
f (t)dt. (2)

Repeating the process gives

(J2 f )(x) =
∫ x

0
(J f )(t)dt =

∫ x

0

(

∫ t

0
f (s)ds

)

dt, (3)

and this can be extended arbitrarily.
The Cauchy formula for repeated integration, namely

(Jn f )(x) =
1

(n− 1)!

∫ x

0
(x− t)n−1 f (t)dt, (4)

leads to a straightforward way to the generalisation for n

being a real number. However, instead of the factorial, let
us insert the Gamma function defined in (1) into (4). In
this way, we get a natural candidate for the definition of
fractional integral operator.

(Jα f )(x) =
1

Γ (α)

∫ x

0
(x− t)α−1 f (t)dt. (5)

This is in fact a well-defined operator. It can be shown that
J operator is both commutative and additive, that is,

Jβ Jα f = JαJβ f

= Jα+β f =
1

Γ (α +β )

∫ x

0
(x− t)α+β−1 f (t)dt. (6)

A more difficult question is how to define a fractional
derivative operator D.

2.2 Fractional Derivative

The Riemann-Liouville fractional order derivative of f is
defined as the mth derivative of the fractional integral of
order m− q. That is:

Definition 22Let f (t) be an integrable function on [a,T ].
For all a < t < T the Riemann-Liouville fractional

derivative of order q > 0 of f is given by:

RL
a D

q
t f (t) =

dm

dtm

[

1

Γ (m− q)

∫ t

a
(t − τ)m−q−1 f (τ)dτ

]

,

m = [q]+1. (7)

And for the case q = k ∈N then m = k+1, we recover the

normal differentiation formula

RL
a Dk

t f (t) =
1

Γ (1)

dk+1

dtk+1

∫ t

a
f (τ)dτ =

dk

dtk
f (t).
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The classical integer derivatives becomes like
singularities among the Riemann-Liouville fractional
derivatives. They turn out to be the only fractional
derivatives that do not depend on the lower bound a. Note
that if f is a monomial i.e. f (t) = tr then,

RL
a Dα tr =

Γ (r+ 1)

Γ (r+ 1−α)
tr−α , α, t > 0, r >−1. (8)

Thus, for a constant function f we have the remarkable
fact that its fractional derivative will not be zero as with
any normal integer differentiation. In fact from (8) and
taking r = 0 we have,

Dα 1 =
t−α

Γ (1−α)
, α ≥ 0, t > 0. (9)

Similarly to the Riemann-Liouville fractional
derivative, let introduce another fractional derivative, the
Caputo derivative. Which is defined as the fractional
integral of the mth-derivative, That is:

Definition 23Let q be a positive number,

f ∈ Cm[0, t] and 0 ≤ τ ≤ t. Then the Caputo fractional

derivative of f (t) is defined as

C
a D

q
t f (t)=

1

Γ (m− q)

∫ t

a

f (m)(τ)

(t − τ)q+1−m
dτ, m−1≤ q<m

(10)
and for the case k ∈ N then m = k+ 1 thus we recover the

usual derivative

C
a Dk

t f (t) =
1

Γ (1)

dk+1

dtk+1

∫ t

a
f (τ)dτ =

dk

dtk
f (t).

With the Caputo derivative we recover the fact that the
derivative of a constant function is indeed zero, however
we have pay the price that f has to be m-differentiable.
The following relations allow us to see the equivalence
between the Riemann-Liouville and the Caputo fractional
derivatives:

RL
a Dα f (t) = C

a Dα f (t)+
m−1

∑
k=0

tk−α

Γ (k−α + 1)
f (k)(0+), (11)

Consequently,

RL
a Dα f (t) := DmJm−α f (t) 6= Jm−α Dm f (t) := C

a Dα f (t),
(12)

unless the function f (t) along with its first m − 1
derivatives vanishes at t = 0+.

3 Chebyshev approximation

3.1 Definition and usual properties

Let Λ = [−1,1] and Tk(x) be the standard Chebyshev
polynomial of degree k. Denote

by w(x) = 1
(1−x2)

the Chebyshev weight function.

Clearly, T0(x) = 1, T1(x) = x and

Tk+1(x) = 2xTk(x)−Tk−1(x), k = 2,3.... (13)

The set of {Tk(x)} is a complete L2
w(Λ)-orthogonal

system, namely,
∫

Λ
Tk(x)Tj(x)w(x)dx =

π

2
ck jδk j(x)dx, (14)

where δk j is the Kronecker symbol, c0 = 2 and ck = 1 for
k ≥ 1.

The points {xk} defined as

xk =−cos
(k− 1

2
)π

n
, k = 1,2, . . . ,n. (15)

are called the collocation points
Thus, any continuous function u on the interval

[−1,1] can be approximated by the following Chebyshev
expansion:

un(x) =
n

∑
k=0

ckTk(x) (16)

= c ·T (x), (17)

for some coefficients ck and c = (c0,c1, . . . ,cn) is the
vector of coefficients associated with the approximation
un.

Denote by v(x) = (u(x0),u(x1), ...,u(xn)) the physical
representation, then there exists a conversion matrix T (see
[22]) such that

v = Tc i.e. c = T−1v. (18)

3.2 Fractional Integration and matrix operator

We recall the definition of the fractional integral in (5)

Jq f (x) =
1

Γ (q)

∫ x

0
(x− t)q−1 f (t)dt. (19)

Let us consider a function f : [0,b] → R, with the
Chebyshev approximation:

f (x) =
n−1

∑
k=0

ckTk(αx+β ), α =
2

b
, β =−1. (20)

Note that c = (c0,c1, . . . ,cn) is its spectral representation.
The fractional integral of order q of the function f at any
collocation point xk is:

Jq f (x j) =
1

Γ (q)

∫ x j

0
(x j − t)q−1

n−1

∑
k=0

ckTk(αt − 1)dt

=
n−1

∑
k=0

ck

∫ x j

0
(x j − t)q−1Tk(αt − 1)dt

=
n−1

∑
k=0

ckIk(x j),
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where

Ik(x j) =

∫ x j

0
(x j − t)q−1Tk(αt − 1)dt. (21)

Thus the physical representation of the fractional integral
of f on the entire interval [0,b] is:

v(x) = Jq f (x) = (Jq f (x0),J
q f (x1), ...,J

q f (xn))

(

n

∑
k=0

c̃kTk(x0), ...,
n

∑
k=0

c̃kTk(xn)

)

=

(

n

∑
k=0

ckIk(x0), ...,
n

∑
k=0

ckIk(xn)

)

.

The above relation implies the existence of a matrix I such
that

T c̃ = I c

c̃ = T−1I c

where c̃ is the spectral representation of the fractional
integral of f , the matrix I is defined as follows

I = (Ik j), Ik j = Ik(x j), i, j = 1,2, ...,n (22)

Ik(x j) being defined as in (21). Consequently the physical

representation of the fractional integral operator is I ·T−1

and the spectral representation of the fractional integral
operator is T−1I. It remains therefore to compute the
matrix I. To this extend we have the following lemma, see
also [23,24].

Lemma 31Let f be a continuous function defined on [0,b]

and vanishing at 0, and define Ik(x) again as in (21). Then

I0(x) =
x1−q

1− q
/2,

I1(x) =
αx2−q

(2− q)(1− q)
− x1−q

k(1− q)
,

I2(x) =
4α2x3−q

(3− q)(2− q)(1− q)
− 4αx2−q

(2− q)(1− q)
+

x1−q

1− q
,

and
(

1+ 1−q
k

)

· Ik(x) =

2(αx− 1) · Ik−1(x)+
(

1−q
k−2

− 1
)

· Ik−2(x)− 2(−1)k

k(k−2)
x1−q.

See the appendix for the proof.
Consequently let 0 < q0 < q1 < ... < qm, and consider a
general multiple order fractional differential equation
A u = f of order qm with constant coefficients. Suppose
the fractional differential operator can be written as
A = L+N where L and N are respectively the linear

part and the nonlinear part, then the equation can be
written as

Lu(t)+N u(t) = f (t) (23)
m

∑
k=0

Dqk u(t) = −N u(t)+ f (t). (24)

Taking the fractional integral of order qm to (24) and
applying relation (12) we get:

m

∑
k=0

Jqm−qk u(t) = Jqm [−N u(t)+ f (t)] . (25)

The above equation can be represented in the frequency
space as:

m

∑
k=0

Jqm−qkc = −n+ f̃

Ac = f (26)

implying c = A−1 (f)

for some A = ∑m
k=0 Jqm−qk ; where n, f̃ are the spectral

representation of JqmN u and Jqm f respectively, and
f =−n+ f̃.

4 Application and numerical results

In this section, we apply our fractional spectral integral
method (FSIM) to problems in cryptocurrency world. We
also test the convergence of our proposed method against
the existing fde12 method [25,26]. Whenever the
analytical solution is not found, we choose our FSIM with
relative tolerance 10−14 (that is 2000 collocation points)
as the benchmark solution. The error E is the maximal
error given by

||E||= ||SolBenchmark − SolNumerical||∞. (27)

All the numerical simulations are performed on an Intel
core I5, 8th Generation processor.

4.1 Benchmark problem

Here we consider the following system of fractional
differential equations [27]







Dq1x(t) =
√

t + 6
√

(y(t)− 0.5)(z(t)− 0.3)
Dq2y(t) = Γ (2.2)

Dq3z(t) = Γ (2.8)
Γ (2.2)

(28)

with q1 = 0.5 q2 = 0.2 and q3 = 0.6 together with
initial condition: x(0) = 1,y(0) = 0.5 and z(0) = 0.3, for
which the exact solution is found to be
x(t) = t + 1,y(t) = t1.2,z(t) = t1.8 + 0.3.

Applying our method and comparing with the exact
solution we get the following plot for the solutions x,y,z
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Fig. 1: plot of the variables x,y,z for T = 5 and N = 32

collocation points and convergence

in Fig. 1 obtained for T = 5 and N = 32 collocation
points. One clearly see that all 32 solution points from
numerical method lie on the exact solution. This shows
that the numerical solution from (FSIM) and the exact
solution are in good agreement.

We also run a comparison with another already
existing numerical method, here fde12 which is based on
a Taylor expansion approximation.
As we vary the number of collocation points on the
FSIM, we record again in Fig. 1, the evolution of the error
dynamics on the variable z. The log-log graph shows an
exponential decay of the error which is expected from a
spectral method. in fact, for N ranging from n = 25 to 210

ie from 16 to 1024 collocation points, the error decays
rapidly from 0.0027 to 6.08e-8. This is another
confirmation of the high precision of spectral methods.
The same result holds also for the variables x and y.

4.2 Cryptocurrency model

The behaviour of the cryptocurrency price dynamics in the
market is based on some key factors:

–P(t): The market price of cryptocurrency.
–L(t): The Liquidity price at time t.
–ζ1(t): The trend-based component of investor
preference at time t.

Caginalp [9] proposed a dynamical system based on asset
flow differential equations to describe the behaviour of

5
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those three variables in the market as :







τ0
dP
dt

= (1+ 2ζ1)L−P

c0
dL
dt

= 1−L+ q(1+ 2ζ1)L− qP

c1
dζ1
dt

= q1(1+ 2ζ1)
L
P
− q1 − ζ1

(29)

The system admits only one equilibrium point
obtained for L = P and ζ1 = 0.
It is known that integer order derivatives may fail to take
into consideration the history of the system and fails to
address some technical issues describing this system. For
this reason, let us substitute the integer derivatives by
Caputo fractional derivatives into the system. We get:







τc
0D

α1
t P = (1+ 2ζ1)L−P

cc
0D

α2
t L = 1−L+ q(1+ 2ζ1)L− qP

cc
1D

α3
t ζ1 = q1(1+ 2ζ1)

L
P
− q1 − ζ1.

(30)

Taking fractional integrals appropriately for each equation
in the system and using (12) we get







τ0P = Jα1(1+ 2ζ1)L− Jα1P

c0L = Jα2(1−L+ q(1+ 2ζ1)L− qP)
c1ζ1 = Jα3(q1(1+ 2ζ1)

L
P
− q1 − ζ1).

(31)

Equation (31) is a 3 dimensional system of nonlinear
ordinary fractional integral equations. It can be written as:

Au+Nu = f . (32)

Using our Fractional Spectral Integral Method described
in Section 3, we transport the equation in the frequency
space and it becomes

Ac = f (33)

where c and f are spectral representations of the unknown
solution vector u= (P,L,ζ1) and the nonlinear part f −Nu,
respectively. In addition, the matrix A is of the form:

A =





τ0I + Jα1 −Jα1 0
qJα2 c0I +(1− q)Jα2 0

0 0 c1I + Jα3





where I is the identity matrix and J is the integral matrix
as defined in (22). The nonlinear part will be written as:

N =





2Jα1ζ1L

Jα2(1+ 2qζ1L)
Jα3
(

q1(1+ 2ζ1)
L
P
− q1

)



 .

We run the algorithm for the following set of parameters
τ0 = 1.8, c0 = 1, q0 = 0.75, q1 = −2.5, c1 = 1;
considering an initial solution to be
P(0) = 1.8, L(0) = 0.8, ζ1(0) = −0.1, and
α1 = 0.5,α2 = 0.7,α3 = 0.9. We compare the results with
the solution from fde12 method. The solutions are plotted
in Fig. 2 for the variables x(t),y(t),z(t), for n = 32
collocation points and T = 1. Again as with Fig. 1, all
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Fig. 2: plot of the variables P,L,ζ1 for T = 1, N = 32 collocation

points and h = 10−5 for the fde12 method
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solution points from FSIM method lie on the solution
from fde12.

A long run behaviour of the solutions is plotted in Fig.
3 together with a phase plane PL,Pζ1 and Lζ1 for
T = 1000. This is an indication that the method is capable
of handling even large time scale evolution problems.
Also, these plots confirm the stability analysis announced
earlier, that is, there is no chaotic behaviour observed in
the cryptocurrency pricing problem; see also [28] for
more on the stability analysis.
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Fig. 3: Phase planes for large T = 1000

Looking at the effect of varying the fractional order of
differentiation, Fig. 4 shows that as α → 1 the solution of
the fractional differential equation converges to the
solution of the ordinary differential equation. In addition,
the numerical results demonstrate that a decrease in the
derivative order is associated with a decrease in the
minimum value of P and L and in the maximum value of
ζ1.

We investigate the convergence and efficiency of the
method compared to the fde12 method. The plot confirms
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the fast convergence of the spectral method. Indeed it
only takes 32 points and 512 points to already reach
accuracy of order 10−3 and 10−7 respectively while it
would necessitate respectively 1000 and 100,000 points to
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Fig. 4: plot of the variables x,y,z for T = 1

achieve the same order of accuracy for the fde12 method.
In terms of efficiency, again Fig. 4 shows that fde12
method takes 1.7s to achieve accuracy order 10−4

whereas our spectral method covers this same accuracy
within 0.2s. Since fde12 is mostly based on
Adams–Bashforth–Moulton and some elementary
integration rules, it turns out that such method would
struggle to reach high order of accuracy as it would
requires more points and consequently the number of
unknowns to be determined gets larger. See [29] for more
on the stability of fde12 method.

5 Conclusion

In this paper we have presented a spectral integral method
to numerically solve systems of FDEs especially in the
case of cryptocurrency models where the problem
involves multiple fractional orders. The solution obtained
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using the suggested method shows that this approach can
solve the problem effectively. Moreover, only a small
number of shifted Chebyshev polynomials is needed to
obtain a satisfactory result. The result from error analysis
shows that our method maintains its spectral convergence.
An efficiency analysis was also conducted against an
existing method, here the fde12 and results reinforced
again the ability of our spectral method to obtain high
accuracy rapidly. For further applications it would be
interesting to couple our method with a splitting method
in order to handle large time scale FDEs. Also see how
the method can be adjusted in the case of problems with
kernels that would require Atangana-Baleanu fractional
derivatives in the modeling instead of the Caputo
derivative.

The authors are grateful to the anonymous referee for a
careful checking of the details and for helpful comments
that improved this paper.
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Appendix

We are interested in computing the following integral

Ik(x) =

∫ x

0

Tk(αt − 1)

(x− t)q−1
dt (34)

We have
∫ x

0

1

(x− t)1−q
dt =

xq

2q
, (35)

∫ x

0

t

(x− t)1−q
dt =

xq+1

q(q+ 1)
, (36)

∫ x

0

t2

(x− t)1−q
dt =

2xq+2

q(q+ 1)(q+ 2)
. (37)

Thus,

I0(x) =

∫ x

0

1

(x− t)1−q
dt =

xq

2q
,

I1(x) =

∫ x

0

(αt − 1)

(x− t)1−q
dt

= α

∫ x

0

t dt

(x− t)1−q
+

∫ x

0

dt

(x− t)1−q

= α
xq+1

q(q+ 1)
− xq

2q
,

I2(x) =

∫ x

0

2(αt − 1)2 − 1

(x− t)1−q
dt

= 2α2
∫ x

0

t2dt

(x− t)1−q

−4α

∫ x

0

t dt

(x− t)1−q
+

∫ x

0

1

(x− t)1−q
dt

= 4α2 xq+2

q(q+ 1)(q+ 2)
− 4α

xq+2

q(q+ 1)
+

xq

q
.

Using the recurrence relation
Tn(x) = 2xTn−1(x)− Tn−2(x), n = 2,3, ... , we get the
following

Ik(x) =

∫ x

0

Tk(αt − 1)

(x− t)q
dt

=

∫ x

0

2(αt − 1)Tk−1(αt − 1)−Tk−2(αt − 1)

(x− t)q
dt

= 2α

∫ x

0

tTk−1(αt − 1)

(x− t)1−q
dt − 2

∫ x

0

Tk−1(αt − 1)

(x− t)1−q
dt

−
∫ x

0

Tk−2(αt − 1)

(x− t)1−q
dt

= 2α

[

t

∫ x

0

Tk−1(αt − 1)

(x− t)1−q
dt

]t=x

t=0

− 2α

∫ x

0

Tk−1(αt − 1)

(x− t)1−q
dt − 2Ik−1(x)− Ik−2(x)

= 2αxIk−1(x)− 2α

∫ x

0

Tk−1(αt − 1)

(x− t)1−q
dt − 2Ik−1(x)

−Ik−2(x).

On the other hand,

Ĩk−1(x) =

∫ x

0
(x− t)qTk−1(αt − 1)dt

=

∫ x

0
(x− t)q

[

T ′
k (αt − 1)

2k
−

T ′
k−2(αt − 1)

2(k− 2)

]

dt

=
1

2k

∫ x

0
(x− t)qT ′

k (αt − 1)dt

− 1

2(k− 2)

∫ x

0
(x− t)qT ′

k−2(αt − 1)dt

That is,

=
1

2k

{[

1

α
(x− t)qTk(αt − 1)

]t=x

t=0

+
∫ x

0

q

α
(x− t)q−1Tk(αt − 1)dt

}

− 1

2(k− 2)

{[

1

α
(x− t)qTk−2(αt − 1)

]t=x

t=0

+

∫ x

0

q

α
(x− t)q−1Tk−2(αt − 1)dt

}

=
1

2k

[

−xq

α
Tk(−1)

]

+
q

2kα

∫ x

0

Tk(αt − 1)

(x− t)1−q
dt

− 1

2(k− 2)

[

−xq

α
Tk−2(−1)

]

− q

2α(k− 2)

∫ x

0
(x− t)q−1Tk−2(αt − 1)dt

Ĩk−1(x) =
xq

2α

[

Tk−2(−1)

k− 2
− Tk(−1)

k

]

+
q

2kα

∫ x

0
(x− t)q−1Tk(αt − 1)dt

− q

2α(k− 2)

∫ x

0
(x− t)q−1Tk(αt − 1)dt

=

[

(−1)k−2

k− 2
− (−1)k

k

]

xq

2kα
+

q

2kα
Ik(x)

− q

2α(k− 2)
Ik−2(x)

=
(−1)kxq

αk(k− 2)
+

q

2kα
Ik(x)−

q

2α(k− 2)
Ik−2(x).

Therefore

Ik(x) = −2α

[

(−1)kxq

αk(k− 2)
+

qIk(x)

2kα
− qIk−2(x)

2α(k− 2)

]

+2(αx− 1)Ik−1(x)− Ik−2(x)

=
−2(−1)kxq

k(k− 2)
− q

k
Ik(x)+

q

k− 2
Ik−2(x)

+2(αx− 1)Ik−1(x)− Ik−2(x)
(

1+
q

k

)

Ik = 2(αx− 1)Ik−1(x)+

(

q

k− 2
− 1

)

Ik−2(x)

−2(−1)kxq

k(k− 2)
.
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