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The Sentinel-2 Level 2 Prototype Processor (SL2P) allows the generation of 

biophysical estimates at high spatiotemporal resolution from Sentinel-2 imagery 

and could be a solution for generating products in natural environments. This study 

validated the SL2P estimates of leaf area index (LAI), fractional vegetation cover 

(FVC) and canopy chlorophyll content (CCC) over the savanna and grassland 

environments using field measurements. The performance of the SL2P estimates 

in Marakele and Golden Gate Highlands National Parks were comparatively poor 

and linearly biased coupled with moderate-to-high errors. The SL2P estimates in 

the two study sites had low accuracy with relative root mean squared error’s in the 

range 61.63% to 85.26% and possible systematic underestimations with pBias's 

ranging from 32.17% to 63.16%. These findings gave insight about the 

performance of the SL2P estimates over the considered heterogenous 

environments, and suggest the need for extensive validation and re-calibration of 

the system using long-term field measurements.  
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Introduction 

Estimation of vegetation biophysical variables is important for understanding vegetation 

condition and structure, growth status, nutritional stress, disease or insect infestation and 

gross primary productivity. In light of biodiversity loss and ecosystem restoration, these 

variables can be used to assess and monitor vegetation state and biodiversity at large. 

Climate change, invasive species, over-utilization of natural resources and land use 

change are cited as key causes of biodiversity loss (IPBES, 2019, GBO05, 2020, Living 

Planet Report, 2020, Climate change, 2021, GCOS, 2011). It is critical to continuously 

assess and monitor biodiversity to effectively and proactively plan its sustainable use and 

management.  

The leaf area index (LAI) defined as the one-sided leaf area per unit of horizontal 

surface area (Jonckheere et al., 2004) is a key indicator of vegetation structure and 

growth, and also forms an essential input in climate models to determine ecosystem 

productivity, the surface energy balance and evapotranspiration (GCOS, 2011). Another 

biophysical variable called the leaf chlorophyll concentration (LCC), can be obtained 

through averaged SPAD (unit-less) leaf chlorophyll measurements. LCC carries valuable 

information about vegetation physiology and could be regarded as a key indicator of the 

actual plant health status. Accurate measurements of LCC can be helpful for precision 

management of natural resources and agricultural fields (Bei et al., 2019). Furthermore, 

the canopy chlorophyll concentration (CCC), which refers to the overall amount of 

chlorophyll a and b pigments in a compact group of plants per unit ground area (Gitelson 

et al., 2005) is derived from the product of the LCC, μg.cm-2 and the corresponding LAI, 

m2.m-2 in a subplot (Darvishzadeh et al., 2008). CCC is an important indicator of 
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vegetation health condition, plant species diversity and forage quality assessment (Ali et 

al., 2020). Another key vegetation biophysical variable is called the fractional vegetation 

cover (FVC) and corresponds to the fraction of combined photosynthetic and non-

photosynthetic vegetation separated from the exposed soil background within the total 

study area in the nadir direction. FVC is a key indicator of the spatial distribution of the 

vegetated area and the density of vegetation growth, and as a result plays a vital role in 

energy balance processes, development of terrestrial ecosystems and studying the 

interactions between climate change and vegetation (Wang et al., 2017, Liang and Wang, 

2019). Therefore, the collection of vegetation biophysical properties such as the LCC, 

CCC, LAI and FVC provides critical information that could facilitate effective 

monitoring and management of natural vegetation at different spatial scales (Ali et al., 

2020, Gitelson et al., 2006).  

Natural heterogeneous canopies like the grasslands of South Africa, are 

characterized by native grasses of different mixture of species in varying proportions, 

often distributed across fluctuating terrain slopes (Masemola et al., 2016, Ramoelo et al., 

2015). Such an environment, analogous to rangelands, is favourable for livestock 

production and grazing by animals (Svinurai et al., 2021). Therefore, it is critical to (i) 

assess areas where there is a change in response to climate and/or anthropogenic effects, 

(ii) quantify the amount of aboveground biomass and vegetation cover, and (iii) monitor 

the functional status and diversity of the rangeland vegetation communities in-order to 

enhance ecosystem productivity and stability, guided by effective resource management 

strategies and policies.  

These aforementioned processes are measurable through indicators such as LAI, 

LCC, CCC and FVC which can be estimated in the field or through modelling procedures 

applied to satellite remote sensing observations. Estimates of biophysical variables 
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acquired through field campaigns have proven to be reliable and are often used as 

authentic inputs in model calibration and validation studies (Lv et al., 2021, Brown et al., 

2021, Hu et al., 2020, Kganyago et al., 2020). However, field-based estimates are 

expensive, time consuming and laborious to acquire especially for large geographic areas 

over a long-term temporal period. On the other hand, satellite remote sensing provides an 

alternative approach in estimating these biophysical variables over broad spatial extents 

on a regular basis, spanning a long period of time (Myneni et al., 2002). These four 

variables are also listed and ranked as some of the top 30 biodiversity metrics measured 

from space, using satellite remote sensing (Skidmore et al., 2021). 

A number of available global biophysical products are generated from coarse to 

moderate spatial resolution satellite sensors such as, Advanced Very High Resolution 

Radiometer (AVHRR) (García-Haro et al., 2018), Moderate Resolution Imaging 

Spectroradiometer (MODIS) (Jia et al., 2018, Disney et al., 2016), PROBA-Vegetation 

(Baret et al., 2013), ENVISAT Medium Resolution Imaging Spectrometer (MERIS) 

(Dash and Curran, 2004, Bacour et al., 2006) on a regular basis over different time 

periods. In addition, given the lapsed ENVISAT mission for nearly 10 years, the Sentinel-

3 Ocean and Land Colour Instrument (OLCI) provides continuity in the generation of 

global biophysical products (Pastor-Guzman et al., 2020).  These biophysical products 

provide modelled estimates of for example LAI, FVC and CCC; and are widely used for 

monitoring and modelling of agricultural activity (Kganyago et al., 2020) and ecosystem 

dynamics (Hill et al., 2006, Cho et al., 2014). Notwithstanding the utility of these products 

particularly at regional to global scales, their spatial resolutions, which range from 

approximately 300 m to 1000 m could make it difficult for the products to provide reliable 

estimations of vegetation biophysical properties in heterogenous landscapes on a local 

scale (Lv et al., 2021).  
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In recent times, there has been a successful attempt to generate vegetation 

biophysical products that provide modelled estimates of LAI, FVC, CCC and Fraction of 

Absorbed Photosynthetically Active Radiation (FAPAR) at an increased spatial 

resolution of up to 10 m. In particular, Weiss and Baret (2020) developed the Sentinel-2 

Level 2 Prototype Processor (SL2P) tool using a combination of artificial neural networks 

(ANNs) and physically-based modelling methods. The SL2P tool is integrated in the 

Sentinel Application Platform (SNAP) software version 8.0 

(https://step.esa.int/main/download/snap-download/) and is freely accessible to users to 

generate biophysical products from atmospherically-corrected Sentinel-2 multi-spectral 

instrument (MSI) data. Sentinel-2 MSI data has 13 spectral bands, characterised by fine 

spatial resolutions i.e. 10-60 m and a high temporal resolution of up-to 5 days (Frampton 

et al., 2013). Furthermore, Sentinel-2 data is freely available, cover large spatial extents 

(i.e. 290 km x 290 km per scene) regularly throughout all seasons and as a result, has the 

potential for improved estimation of vegetation biophysical variables on a local scale (Hu 

et al., 2020, Hauser et al., 2021, Darvishzadeh et al., 2019, Ramoelo and Cho, 2018).  

There have been recent numerous attempts to validate the SL2P derived 

biophysical variables over different vegetation types in various parts of the globe. For 

example Xie et al. (2019) validated the SNAP SL2P-derived LAI and CCC biophysical 

variables over winter wheat in Beijing, China and found the SL2P being applicable for 

accurate winter wheat crop LAI and CCC estimation. Brown et al. (2019) assessed the 

accuracy of the SL2P-derived LAI and CCC biophysical variables over a deciduous 

broadleaf forest site in Southern England. In particular, the study found that the 

aforementioned SL2P biophysical variables revealed moderate inaccuracies, and 

suggested using alternative model inversion methods such as the invertible forest 

reflectance model (INFORM) that are optimised for forest environments. Furthermore, 
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Djamai et al. (2019) validated three SL2P biophysical variables i.e. LAI, FVC and canopy 

water content (CWC) derived from Sentinel-2 MSI and Landsat-8 Operational Land 

Imager (OLI) imagery over different crop types such as soybeans, wheat, canola, oats 

black beans and alfalfa located in Manitoba, Canada. The SL2P showed satisfactory 

performances in estimating LAI and FVC (except for CWC which is a matter for further 

investigation) across all crop types on both MSI and OLI imagery. A virtually similar 

study was undertaken by Filipponi (2021) who compared SL2P-derived LAI estimates 

from Sentinel-2 MSI and Landsat-8 OLI images over croplands, grasslands, broadleaved 

and needleleaf forests in Italy. The study reported a general underestimation of LAI over 

the aforementioned test site classes, however higher overestimations were noted for the 

grasslands.  

However, the opposite result was reported in Brown et al. (2021) whereby, an 

extensive validation of the SL2P LAI estimates against numerous ground samples of LAI 

over homogenous canopies comprising for example, grasslands and crops revealed 

overall satisfactory performance compared to in forest canopies, where the SL2P LAI 

retrievals experienced underestimation. Hu et al. (2020) evaluated the SL2P-derived LAI, 

FAPAR and FVC estimates using ground measurements of different vegetation types 

located in five countries and found that, the Bias and root mean squared error (RMSE) 

values of all SL2P biophysical estimates for forests and grasses were better than for crops. 

These findings were limited to a relatively small number of ground measurements 

especially over grasses (8 samples) and forests (19 to 20 samples) compared to crops with 

samples that ranged from 70 to 100. A more recent study in South Africa by Kganyago 

et al. (2020) validated the SL2P-derived LAI estimates over sunflower and maize crop 

types using ground LAI measurements. Notwithstanding the reported moderate 

agreements (coefficient of determination, R2 of about 0.70), the computed errors (Bias 
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and RMSE) of the SL2P LAI estimates were found to be relatively high in an African 

semi-arid agricultural landscape.  

While some of the SL2P biophysical variables have demonstrated satisfactory 

performance over agricultural environments (Hu et al., 2020, Kganyago et al., 2020) the 

performance of different SL2P derived biophysical estimates particularly over natural 

heterogenous landscapes characterised by diversity of land cover, species diversity and 

varying terrain slopes remains largely untested (Brown et al., 2021). Moreover, there is a 

need to broaden the assessment of errors in different biophysical estimates, derived from 

the SL2P tool across different regions, vegetation types and temporal periods. This 

exercise may not only be critical for identifying the sources of error in deriving these 

biophysical estimates, but also in providing better insights on their performances.  

As a result, the aim of this study was to validate three SL2P-derived biophysical 

estimates over a heterogenous savanna and grassland environment in South Africa using 

field measurements of grass biophysical variables. Our key question is, could the SL2P-

derived biophysical parameters capture the variability of the vegetation state in the study 

area and significantly relate to field ground measurements? The specific objectives of this 

study were to: (i) quantify the error of SL2P-derived LAI, CCC, and FVC using ground 

measurements during the wet season in the grassland areas of two South African national 

parks i.e. Golden Gate Highland National Park (GGHNP) and Marakele National Park 

(MNP); (ii) Compare the reliability and consistency of the three SL2P-derived 

biophysical estimates in the grassland areas of GGHNP and MNP. 
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Materials and methods 

Study Area 

Two heterogenous study sites were selected in two South African National Parks namely, 

the GGHNP located in the Free State province near the Lesotho border, and MNP located 

in the Waterberg mountains of the Limpopo province, as shown in Figure 1. The study 

sites were selected based on key location attributes, which encompassed the savanna and 

grassland biomes and different vegetation communities, according to the national 

vegetation map (Mucina and Rutherford, 2006). Furthermore, the GGHNP and MNP sites 

are mountainous and characterized by surface height variation i.e. elevations that range 

between approximately 1639 m to 2815 m and 976 m to 2091 m respectively, estimated 

from the 30 m resolution Shuttle Radar Topography Mission (SRTM) data acquired from 

the United States Geological Survey (USGS) Earth Explorer 

(https://earthexplorer.usgs.gov/). Both sites fall within the summer rainfall region of 

South Africa. In particular, the GGHNP receives average rainfall of approximately 700 

mm per year (Mucina and Rutherford, 2006) whereas, the MNP site can receive average 

rainfall of up to around 630 mm annually (Van Staden and Bredenkamp, 2005).  
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Figure 1. The location of the two selected study sites in South Africa (a) and (b) where LAI, CCC 
and FVC sample field measurements were taken. Site (a) represents the Marakele National Park 
(MNP) whereas site (b) represents the Golden Gate Highlands National Park (GGHNP) on 8 – 10 
April 2021 and 18 – 21 March 2021 respectively. 

 

The dominant underlying geology in the GGHNP includes mudstone, fine-to-

medium sandstone and basalt, based on the national geology map developed by the 

Council for Geosciences (CG, 1997). In the same site, the soils include shallow to deep 

sandy soil that is extremely gravelly as well as a clay-rich subsoil (https://data.isric.org/; 

Van Engelen and Dijkshoorn, 2013). On the other hand, in MNP the geology is largely 

characteristic of sandstone and mudstone, followed by granule stone, siltstone and 

diabase (CG, 1997). The soils in MNP range from shallow-gravel soil to low activity 

clayed soil (https://data.isric.org/; Van Engelen and Dijkshoorn, 2013). 
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Field data collection 

Field data collection in the two study sites (Figure 1) took place during the wet season of 

2021, during peak productivity for the natural heterogenous grasses (Masemola et al., 

2016). The total number of sampled locations were 80 and 68 in GGHNP and MNP, 

respectively. The sampling strategy involved a combination of stratified and purposive 

sampling methods (Lv et al., 2021). Random samples were initially taken across different 

grass vegetation communities (Figure 1) and varying slope terrains spanning the crests, 

valleys and low to mid-slopes. However, when in the field, there were certain inaccessible 

areas, which led to the use of purposive sampling where re-placement of the sampled 

locations was done, close to the randomized points. Each selected sample location 

represented a plot with a size of 20 m x 20 m and within that plot, two subplots of size 1 

m x 1 m spaced apart were taken in-order to capture variability within each plot.  

A number of recordings were taken in each subplot namely, the (i) subplot number 

and photo (ii) geographic coordinates using the Global Navigation Satellite System – Real 

Time Kinematic (GNSS-RTK) method (Schloderer et al., 2011), (iii) LAI using the 

ACCUPAR LP-80 ceptometer, (iii) LCC using the SPAD 502 Plus chlorophyll meter, 

(iv) Grass height (cm) using the disk pasture meter and (v) observed proportions of 

photosynthetic vegetation (PV), non-photosynthetic vegetation (nPV) and bare soil (BS) 

to determine FVC. Field data collection was done on 18 – 21 March 2021 and 8 – 10 

April 2021 in GGHNP and MNP, respectively. On these dates, the weather conditions 

were favourable and fairly stable characterised by sunny, warm temperatures and non-

windy conditions. Furthermore, the dates falls within the mid- to late wet season, and as 

a result, the grasses in the study sites mostly appeared green and healthy (Figure 2). 
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Figure 2. Example of the 1m x 1m subplots in GGHNP (A) and MNP (B). Within each subplot, 
the field estimates of grass biophysical parameters were taken. 

Description of field data collection procedures 

The two sampled 1 m x 1 m subplots within the Sentinel-2 20 m x 20 m pixel were 

considered sufficient to characterise the heterogeneity of the cover within the pixel. The 

chosen park sections in both GGHNP and MNP where the subplots were sampled, were 

homogenous in-terms of vegetation cover and slope (either mid-slope, valley or crest) 

(see Figure 3). It is this homogeneity which gave an indication that having two subplots 

within a 20 m x 20 m pixel is representative of the heterogeneity of the pixel cover in our 

study sites, because the vegetation cover appears less variable (Figure 3). This does not 

rule out the fact that in these surroundings there are several (more than 60) grass species 

present, and not all the sections may have a homogenous cover.  
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Figure 3. Example of the surrounding landscape in Golden Gate Highland National Park 
(GGHNP) where the subplots were sampled, characterised by a homogenous vegetation cover. 
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Figure 4. The percent cover (%) distribution of the three classes, namely non-photosynthetic 
vegetation (nPV), bare soil  (BS) and photosynthetic vegetation (PV) across the subplots sampled 
in different sections or sites of the Golden Gate Highland National Park (GGHNP: (a)) and 
Marakele National Park (MNP: (b)). 

 

To confirm the greenness of our subplots, visual inspection was conducted in the 

field by observing (in the nadir direction) the fractional covers of BS%, PV% and nPV% 

within each of the subplots. In particular, in each subplot, the fractional covers were 

estimated based on visual interpretation by three participating experts in the field, and 

thereafter an average was recorded per cover. For example, Figure 4 show the percentage 
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(%) distribution of the three covers i.e. BS, nPV and PV across the subplots located 

different sections of the parks. It is clear in GGHNP that PV (corresponding to green plant 

material) was highly dominant (greater than 70%) in most of the sampled subplots, 

whereas nPV (corresponding to brown plant material) was mostly below 10% (Figure 4 

(a)). The MNP sites had on average about 10% of nPV and appeared similar to the overall 

nPV across the GGHNP sites (Figure 4 (b)). Therefore, this analysis was important to 

ensure that the presence of the brown material within the subplots is minimal and to some 

extent had a negligible influence on the measurements of LAI using the ACCUPAR LP-

80 ceptometer (hereafter, referred to as ACCUPAR). Furthermore, the highly dominating 

green vegetation cover within our subplots, confirm that the period chosen for field data 

collection was peak productivity for the natural grasses in our study area.  

Furthermore, in each subplot, LAI computations were performed using the 

ACCUPAR which measures photosynthetically active radiation (PAR; 400-700 nm) 

using 80 individual sensors distributed on its probe 

(https://www.metergroup.com/environment/products/accupar-lp-80-leaf-area-index/, 

Fang et al., 2014, Francone et al., 2014, Confalonieri et al., 2014). In particular, the 

ACCUPAR assumes the leaves in a canopy volume are randomly distributed (Chen et al., 

2005), and therefore it is insensitive to leaf distribution variability when measuring LAI 

(Fang et al., 2014). In particular, the ACCUPAR measurements of LAI in this study are 

considered ‘effective’ because the ACCUPAR instrument partially accounts for foliage 

clumping using the logarithm averaging method (Lang and Yueqin, 1986), and therefore 

measures effective LAI, denoted LAIe. Throughout the paper, LAI is used 

interchangeably with LAIe. This instrument takes into cognisance the leaf angle 

distribution parameter 𝜒 and gap-fraction analysis when computing LAI by measuring 

incoming PAR above and below the vegetation canopy (Campbell, 1986). Although 
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different ranges of parameter 𝜒 values are provided in the manual to describe canopy 

angle distributions (mostly for crops), in this study the 𝜒 parameter of the ACCUPAR 

was kept to the default value of 1 meaning a spherical leaf angle distribution is assumed, 

due to the heterogenous nature of the grass species across the sampled plots in GGHNP 

and MNP. For each subplot, the incident PAR above the grass subplot was measured, 

followed by measurements of below-grass-canopy PAR in-order to calculate the average 

LAI. The assumption with the calculations of LAI using the ACCUPAR is equivocalness, 

in addition to other contributing factors such as foliage clumping, row spacing and leaf 

distribution variability (Johnson et al., 2010). In this study, LAI readings were performed 

under generally clear skies with intermittent cloud cover from the late morning hours at 

about 10:00 until early afternoon at around 14:00 in-order to minify variations of the sun 

zenith angle among the subplots. 

 Moreover, in each subplot we used the SPAD 502 Plus chlorophyll meter to take 

unit-less chlorophyll readings of five randomly selected green leaves, representing the 

dominant species and recorded the average chlorophyll reading. The average chlorophyll 

readings (i.e. SPAD measurements) of all subplots were converted into LCC per unit area, 

μg.cm-2 by applying an empirical calibration method described in Markwell et al. (1995). 

The transfer formula from SPAD to LCC is defined in Equation (1)  as: 

LCC (μg.cm-2) = 0.0893*(10SPAD^0.265)                                    (1) 

Subsequently, the LCC was multiplied by our field measured LAI to obtain the 

CCC in all subplots across the study sites. Lastly, the readings of grass height (cm) using 

the disk pasture meter were taken per subplot. For each subplot, this entailed taking one 

reading at the center of the subplot and four random readings around the perimeter of the 

subplot. All five readings were averaged into a single reading of the subplot grass height, 
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which was considered representative of the grass height variability within and around 

each subplot. 

Schematic workflow 

Figure 5 show a schematic workflow summarizing the various phases of the methodology 

that were implemented in this study. These phases are discussed in subsequent sections 

of the paper.  

 
Figure 5. Summary of the methodology to validate the biophysical estimates of leaf area index, 
chlorophyll and fractional vegetation cover from Sentinel-2 Level 2 Prototype Processor over a 
heterogeneous savanna and grassland environment in South Africa. 

Description of data-sets used 

Remotely-sensed imagery 

Sentinel-2 images were acquired free of charge from the European Space Agency data 

hub (https://scihub.copernicus.eu/dhus/#/home) on the 27th of March 2021 and the 9th of 

April 2021. The selection of the images was such that they (i) are free from any cloud 

obscuration (ii) covered the two study sites and (iii) had acquisition dates that were very 

close (i.e. <= 6 days) to the field data collection dates. The Sentinel-2 images were pre-



17 
 

processed to surface reflectance or Bottom of the Atmosphere (BOA) reflectance i.e. 

Level-2A using the SNAP Sentinel-2 atmospheric correction tool, Sen2Cor, version 2.8 

(Louis et al., 2016). Furthermore, the Sentinel-2 BOA images were resampled to the 

spatial resolution of 20 m using the resampling function within the SNAP software. This 

spatial resolution is such that the 20 m x 20 m pixels in sampled geographic areas 

correspond to single field plots of size of 20 m x 20 m that contains two subplots, each of 

size 1 m x 1 m described earlier. The SNAP SL2P tool was used in this study to generate 

the LAI, CCC and FVC grass biophysical variables using the resampled, atmospherically 

corrected Sentinel-2 reflectance bands. According to the design of the SL2P tool, the 20 

m resolution biophysical products are generated using only eight reflectance bands of 

Sentinel-2 data (Weiss and Baret, 2020). Lastly, the geographical coordinates of the field 

sublots were used to extract corresponding Sentinel-2 20 m resolution pixels of LAI, CCC 

and FVC modelled estimates in both GGHNP and MNP. The extracted pixel values were 

validated using the field biophysical estimates. 

SL2P-derived biophysical variables 

The SNAP SL2P tool developed by Weiss and Baret (2020) uses an assortment of 

backpropagation ANNs that are trained with radiative transfer model (RTM) simulations. 

The simulations of the training database takes into cognisance the leaf optical properties, 

canopy structure, soil background reflectance and acquisition geometry parameters. 

Simulations were performed on a single joint probability function of canopy variables 

(designed to reflect global conditions) over natural vegetation and cropland areas. In 

particular, during simulations, the Leaf Optical Properties Spectra (PROSPECT) (Feret 

et al., 2008) and Scattering by Inclined Leaves (SAILH) (Verhoef, 1984) models were 

used to provide retrievals and predicted errors of CWC, LAI, CCC, FVC and FAPAR 

biophysical variables. A key assumption of the embedded algorithm within the SL2P tool 
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is that any target pixel is located on a landscape patch that is homogeneous enough in-

order to avoid random fluctuations of radiation fluxes. However, in the case where the 

target pixel exhibits strong heterogeneity, the algorithm adds a flag to such a pixel, 

because it violates the assumption of the RTM used to build the neural network and 

possibly, the values of the variables used to train the database. This could result in a loss 

of accuracy in retrieving or estimating the biophysical variables (Weiss and Baret, (2020). 

One of the main advantages of the SL2P algorithm is that, it is generic without inputs of 

specific land cover types which could facilitate efforts to estimate vegetation biophysical 

variables at regional to global scales. In this study, the SL2P tool was used to retrieve the 

LAI, CCC and FVC biophysical variables using eight pre-processed Sentinel-2 bands 

over the GGHNP and MNP sites. There are three quality indicators (QA) provided by the 

SL2P which labels the quality of the retrievals (Weiss and Baret, 2020). In our study, the 

LAI, CCC and FVC biophysical variables were categorised as best retrievals by the SL2P 

algorithm (i.e.  QA = 0). 

Field measurements of biophysical variables 

Table 1 show the summary statistics of the grass biophysical variables and terrain 

attributes over the two study sites. Generally, the field measurements across the subplots, 

resembled an approximately normal distribution, which was inferred from the proximity 

of the respective mean and median values per variable. The difference between these two 

basic statistical measures i.e. measures of central tendency, was considered in this study 

as a natural test for data distribution symmetry (Gastwirth, 1971).  
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Table 1. Summary statistics of selected terrain attributes and measured biophysical variables of 
grassland sample subplots. The statistical parameters, CV denotes the coefficient of variation, and 
StDev the standard deviation. 
 

Site 
Measured 
variables 

No. of 
Subplots Min. Max. Mean Median StDev CV 

GGHNP 
  
  
  

LAI (m2.m-2) 80 0.61 6.24 2.26 2.02 1.24 0.55
CCC (μg.cm-2) 80 7.24 162.61 46.01 37.05 32.26 0.70
FVC 80 0.47 1.00 0.86 0.87 0.11 0.13
Grass height (cm) 80 5.00 34.00 11.92 11.00 5.48 0.46
Elevation (m) 80 1832.20 2102.41 1966.04 1960.56 78.36 0.04
Slope (°) 80 0.49 12.04 3.67 3.26 2.59 0.70
Aspect (°) 80 0.00 357.51 174.36 135.00 130.72 0.75

         

MNP 
  
  
  

LAI (m2.m-2) 68 0.47 5.00 1.90 1.90 0.84 0.44
CCC (μg.cm-2) 68 9.29 132.59 42.37 42.72 20.98 0.50
FVC 68 0.25 0.97 0.62 0.60 0.18 0.28
Grass height (cm) 68 4.50 37.00 16.38 15.75 8.30 0.51
Elevation (m) 68 1307.59 1893.29 1470.54 1389.27 167.68 0.11
Slope (°) 68 0.34 14.12 3.61 3.16 2.65 0.73
Aspect (°) 68 0.00 354.81 131.63 68.11 125.11 0.95

 

Table 1 data for GGHNP (which is mainly a grassland environment) suggests the 

sampled subplots were characterised by high vegetation cover with little variability 

according to the respective mean, standard deviation and CV of the FVC. This is also 

corroborated by the high LAI values reaching a maximum of 6.24. The CCC suggests the 

grasses in the sampled areas were on average green and healthy. However, the grass 

height, LAI and CCC showed moderately high variability (i.e. according to CV that 

ranged from approximately 46% to 70%) compared to the FVC biophysical variable. This 

variability is representative of the various vegetation communities across the sections of 

the park, and in particular the heterogenous grassland environment. In addition, the 

CCC’s variability could also be controlled by the different soils and climate within 

GGHNP, for example Li Ying et al. (2018). 

On the other hand, the grasses in MNP (which is generally a mixed savanna and 

grassland environment) had on average, moderately-high vegetation cover marked by 
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FVC of 62%. The CCC was on average, moderate and showed little variability (StDev 

and CV of about 21% and 50% respectively) across the subplots in MNP compared to in 

GGHNP (Table 1). However, the LAI and grass height appeared to have a relatively high 

variability (i.e. CV of about 44% and 51% respectively) across the subplots indicating 

widespread vegetation structural differences and heterogeneity of the mountainous 

savanna and grassland environment.  

Furthermore, Table 1 include statistical information on the altitude, slope and 

aspect particularly where our subplots were located. This provides important information 

on terrain variability where our subplots were located. It is evident that our study sites are 

mountainous, characterised by high altitude ranges (Table 1). Considerable care during 

sampling design was taken to ensure that our subplots were located in fairly homogeneous 

surroundings characterised by varying slope terrains as this can be seen on the slope 

values (Table 1). On average the two sites, at least where our subplots were located had 

south to southeast facing slopes i.e. aspect (Table 1). Overall, the field measured 

biophysical variables (Table 1) were used in this study to quantify the accuracy of the 

SL2P-derived LAI, CCC and FVC variables.  

To further explore the variability of the field measurements, the grass canopy 

reflectance values from Sentinel-2 images were extracted from each subplot (Figure 6). 

The reflectance included the mean, minimum and maximum values in-order to show the 

spectral variability of the subplots in the two sites. The GGHNP spectral curves show that 

the subplots had high chlorophyll content based on the shape of the spectral profile in the 

visible, near-infrared and shortwave infrared regions respectively. The shape is more 

characteristic of greener vegetation than in MNP. This is consistent with the CCC 

presented in Table 1 for GGHNP which on average appeared higher and more variable 

than in MNP. Generally, the spectral variability may also have been influenced by the 
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various grass species within the subplots. Grass species identification within the subplots 

was carried out by the rangers in the two sites through visual interpretation, and this 

information was manually recorded and linked to the subplots. 

 
Figure 6. The Mean, mimimum and maximum (grass) canopy reflectance spectra showing the 
spectral variability of the subplots in the Golden Gate Highland National Park (a) and Marakele 
National Park (b) based on the Sentinel-2 bands B2: 458-523 nm, B3: 543-578 nm, B4: 650-680 
nm, B5: 698-713 nm, B6: 733-748 nm, B7: 773-793 nm, B8: 785-899 nm, B8a: 855-875 nm, 
B11: 1565-1655 nm and B12: 2100-2280 nm. 

Statistical analysis 

The validation of the SL2P-derived LAI, CCC and FVC modelled estimates with 

field measurements was performed using the R2, RMSE, Bias and mean absolute error 

(MAE). These represent some of the standard performance metrics (Chai and Draxler, 

2014) used in numerous validation studies to quantify overall agreement and error 

between the data sets being compared, for example Brown et al. (2021), Hu et al. (2020), 

and Kganyago et al. (2020). In this study, a linear regression model was created for each 

pair of variables comprising the dependent and independent variables; and thereafter the 
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R2 was computed for each model to measure the goodness of fit. This was followed by 

the computation of RMSE using Equation (2): 
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where ek represents the estimated value according to the SL2P, mk represents the 

field measured value, and n denotes the number of observations available for analysis. 

RMSE can range from 0 toand the lower the value, the more accurate the SL2P-derived 

modelled estimates. To further assess the SL2P model performance, MAE was used an 

additional metric (Chai and Draxler, 2014) expressed in Equation (3): 
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The combination of MAE and RMSE metrics gave a representation of the variation 

in model error distribution, which can be normally- or uniformly distributed (Chai and 

Draxler, 2014). Another performance metric used for evaluating the SL2P biophysical 

models was the Bias calculated using Equation (4): 
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where a negative Bias implies a systematic underestimation of the field measurements by 

the SL2P biophysical modelled estimates (Brown et al., 2021). In contrast, a positive Bias 

implies a systematic overestimation. Additionally, the relative Bias (pBias%) and root 

mean square error (RRMSE%) were calculated by dividing each indicator (Bias or RMSE) 

with the mean of the field measurements. 
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Results 

Accuracy assessment 

Accuracy assessment in GGHNP 

Figure 7 shows the accuracy of the SNAP SL2P biophysical estimates that were evaluated 

based on field measurements. The performance of the SL2P biophysical estimates 

differed with the field biophysical estimates in the GGHNP. In particular, poor agreement 

(low R2 values) with field biophysical estimates was observed for the SL2P-derived LAI, 

FVC and CCC estimates. This was accompanied by the relatively high RMSE values of 

1.83 m2.m-2 and 0.53 corresponding to the SL2P derived LAI and FVC estimates, 

respectively. However, RMSE of the SL2P CCC estimate was higher at about 39.23 

μg.cm-2 when evaluated based on the field measured CCC. Furthermore, the RRMSE of 

the SL2P LAI, FVC and CCC estimates was found to be 80.97%, 61.63% and 85.26% 

respectively. This suggest, the accuracy of the SL2P modelled estimates in GGHNP was 

considerably low. On the other hand, Figure 7 reveals some level of underestimations of 

the SL2P LAI (Bias = -1.31 m2.m-2), FVC (Bias = -0.51) and CCC (Bias = -14.8 μg.cm-

2) according to our field measurements. These corresponded to pBias’s of about 57.96%, 

59.30% and 32.17% respectively. Although, the underestimations were generally high, 

the SL2P CCC provided notably lower underestimation.  
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Figure 7. The biophysical-specific comparison between field measurements and the SNAP 
Sentinel-2 Level 2 Prototype Processor modelled estimates in GGHNP on 18 – 21 March 2021. 
The solid black line and red dotted line represent the linear fit for all extracted pixels and a 1:1 
relationship, respectively for the LAI, FVC and CCC from (a) – (c). 

Accuracy assessment in MNP 

Figure 8 shows the performance of the SL2P biophysical estimates when 

compared with the field biophysical estimates in MNP. There is a relatively poor 

agreement (low R2 values) between the SL2P modelled biophysical estimates and field 

measured estimates of LAI, FVC, CCC. In particular, the computed RMSE values of 

SL2P estimates indicated a general minor decline in error compared to the results in 

GGHNP (Figure 8). This decline is also evident in the computed RRMSE values of, 

especially SL2P LAI (78.95%) and CCC (62.36%) than FVC (67.74%). This is an 

indication of the low accuracy of SL2P modelled estimates in MNP. Additionally, the 

SL2P biophysical estimates had marginal underestimations of the field based 
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measurement of LAI (Bias = -1.20 m2.m-2), FVC (Bias = -0.37) and CCC (Bias = -15.6 

μg.cm-2), compared to in GGHNP. These Bias values corresponded to pBias’s of about 

63.16%, 59.68% and 36.91% respectively. Although, the underestimations were 

generally high, the SL2P CCC provided notably lower underestimation. Overall, the 

performance of the SL2P modelled estimates in the two study sites was characterised by 

low accuracy with RRMSE values ranging from 61.63% to 85.26% (Figure 7 and Figure 

8) coupled with possible systematic underestimations with (negative) pBias values 

ranging from 32.17% to 63.16% (Figure 7 and Figure 8). Several studies on statistical 

evaluation of model accuracy categorised any RRMSE values greater than 30% as a 

reflection of poor model accuracy (Li et al., 2013, Bandyopadhyay et al., 2008, Jamieson 

et al., 1991). The same analogy can be extended to the RRMSE values revealed by the 

SL2P estimates in GGHNP and MNP.  
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Figure 8. The biophysical-specific comparison between field measurements and the SNAP 
Sentinel-2 Level 2 Prototype Processor modelled estimates in MNP on 8 – 10 April 2021. The 
solid black line and red dotted line represent the linear fit for all extracted pixels and a 1:1 
relationship, respectively for the LAI, FVC and CCC from (a) – (c). 
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Figure 9. Histograms of field and SL2P biophysical estimates in GGHNP across the visited 
subplots in different sites. 
 

Consistency of the three SL2P-derived biophysical estimates across the parks 

Figure 9 shows the histograms of corresponding field and SL2P biophysical 

estimates in GGHNP across the visited subplots in different sites characterised by varying 

vegetation communities. The SL2P-derived estimates were generally consistent in 
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underestimating the LAI, FVC and CCC biophysical variables according to the field 

estimates in the visited sites of GGHNP. However, in some sites the SL2P CCC was not 

consistent in underestimating the field measured CCC. Across all visited sites, the SL2P-

derived LAI and FVC had lower mean estimates of 0.95 m2.m-2 and 35% compared to 

field estimates of 2.26 m2.m-2 and 86% respectively. Additionally, the SL2P-derived LAI 

and FVC showed little variability across the sites with standard deviations of 

approximately 0.26 m2.m-2 and 8.7% when compared to field estimates i.e. standard 

deviations of 1.24 m2.m-2 and 11% respectively. A view of the selected pictures of the 

visited subplots across the sites show that, the areas in general had high grass coverage 

(Figure 10) which could also be seen in the high field estimates of LAI and FVC (Figure 

9). This appears to have not been well represented or captured by the SL2P-derived 

estimates.  

 
Figure 10. Selected sample of pictures of the visited subplots taken at Nadir across the sites in 
GGHNP (a) and MNP (a). 
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However, interestingly the varying shape distribution of the histograms suggests 

a trend of agreement between the fluctuating estimates of SL2P and field observed, in 

that, higher and lower SL2P-derived estimates followed the trend of the field estimates 

across all sites for CCC, FVC and LAI. Furthermore, the field-based CCC was 

overestimated, more especially in sites 2 and 3 (including a few subplots in sites 1 and 4) 

according to the SL2P-derived estimates of CCC. On average, the SL2P-derived CCC 

had a mean estimate of approximately 31.21 μg.cm-2, which was lower compared to that 

of the field-based CCC at 46.01 μg.cm-2. Furthermore, the SL2P-derived CCC showed 

low variability with a standard deviation of 14.77 μg.cm-2 across the sites, compared to 

the field-based CCC with a standard deviation of 32.26 μg.cm-2. This higher variability 

in the field measured CCC is probably reflective of the different vegetation species and 

their composition across the visited subplots (see Figure 10 as well as the spectral plots 

in Figure 6). This variability may not have been well represented by the SL2P. 

Notwithstanding the observed discrepancy between the estimates, the histogram (Figure 

9) reveals a trend of agreement between the fluctuating estimates of SL2P and field 

observed CCC across the sites in GGHNP. Overall, this trend suggests that the SL2P 

model has the potential to capture the changes in the CCC, LAI and FVC present in the 

varying vegetation communities across the natural heterogenous landscape.  

Figure 11 shows the histograms of corresponding field and SL2P biophysical 

estimates in MNP across the visited subplots in different sites characterised by varying 

vegetation communities. The SL2P-derived biophysical estimates were generally 

consistent in underestimating the LAI, FVC and CCC according to the field estimates in 

the visited sites of MNP. In all visited sites, the SL2P-derived LAI and FVC had lower 

mean estimates of 0.70 m2.m-2 and 25.60% compared to field-based estimates at 1.90 

m2.m-2 and 62.24% respectively. Furthermore, the SL2P-derived LAI and FVC revealed 
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little variability across the sites (Figure 11) with standard deviations of approximately 

0.16 m2.m-2 and 6.98% when compared to field estimates i.e. standard deviations of 0.84 

m2.m-2 and 17.62% respectively. A view of the selected pictures of the visited subplots 

across the sites show that, MNP in general had moderately-high fractional cover of 

grasses that appeared taller (see grass height information in Table 1), with more portions 

of exposed background soil compared to in GGHNP (Figure 4). These observations can 

also be seen in the histograms of field-based FVC and LAI estimates (Figure 11).  

In particular, the variability and magnitude of the field-based FVC and LAI 

estimates appears not to have been well represented by the SL2P-derived estimates. The 

histograms suggests a rather non-responsive trend of agreement between the fluctuating 

estimates of SL2P and field observed LAI and FVC. However, it is only in sites 4 and 

5/6/7 where the SL2P- and field-based LAI and FVC fluctuations (histograms) revealed 

a subtle trend of agreement, despite the discrepancy in the magnitude of the estimates. 

On the other hand, the field-based CCC was generally underestimated according to the 

SL2P-derived estimates of CCC in all the sites. The histograms (Figure 11) showed a 

clear trend of agreement coupled with intermittent overlaps between the fluctuating 

estimates of SL2P and field-observed CCC in MNP across all the sites. This trend 

suggests, the SL2P in MNP responded fairly well by capturing the variability of the CCC 

field estimates across the sites.  
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Figure 11. Histograms of field and SL2P biophysical estimates in MNP across the visited 
subplots in different sites. 

 

On average, the SL2P-derived CCC had a mean estimate of approximately 26.74 

μg.cm-2, which was lower compared to that of the field-based CCC at 42.37 μg.cm-2. The 

SL2P-derived CCC showed lower variability with a standard deviation of 8.56 μg.cm-2 

across the sites, compared to the field-based CCC with a standard deviation of 20.98 



32 
 

μg.cm-2 (Figure 11). This variability could be attributed to the variety of vegetation 

communities (Figure 1 and Figure 4), grass species (Figure 6) and terrain changes (Table 

1) across the visited subplots.  

 
Discussion 

The results of the performance and consistency of the SL2P-derived LAI, FVC 

and CCC biophysical estimates over the heterogenous grassland canopy and landscape of 

two national parks in South Africa i.e. GGHNP and MNP, indicate that these estimates, 

derived at a spatial resolution of 20 m had moderate-to-high errors and appeared linearly 

biased. In particular, we explore a variety of potential underlying reasons that caused the 

discrepancies between the SL2P- and field-based biophysical estimates, in an attempt to 

better comprehend the performances of Sentinel-2 biophysical estimates.  

Firstly, the Sen2Cor atmospheric correction procedure used in this study to pre-

process the GGHNP and MNP Sentinel-2 data, reportedly has residual uncertainty for 

surface reflectance products in the approximate range from 0.012 to 0.017 which 

corresponds to the spectral domain of the following eight bands B3, B4, B5, B6, B7, B8a, 

B11 and B12 (Hu et al., 2020, Djamai and Fernandes, 2018, Li Yingjie et al., 2018, 

Martins et al., 2017). These bands are used by the SNAP SL2P for generation of the 20 

m resolution biophysical estimates (Weiss and Baret, 2020) and therefore the magnitude 

of uncertainties or errors in the SL2P biophysical estimates of LAI, FVC and CCC found 

in this study, can to some extent be attributed to the residual error of the atmospheric 

correction procedure.  

Secondly, some of the errors in the SL2P estimates found in this study, could be 

attributed to known uncertainties associated with the SL2P adopted ANNs that are trained 

with RTM simulations. According to Weiss and Baret (2020) the SL2P algorithm provide 

estimations of LAI, FVC and CCC with RMSEs of 0.90 m2.m-2, 0.041, 57.99 μg.cm-2 
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respectively. Perhaps this could be used to explain the generally high uncertainties found 

in the SL2P-derived LAI and CCC estimates, while the FVC errors (RMSE and RRMSE) 

in the two parks were the lowest coupled with Bias values that were closest to zero. For 

example, based on the SL2P algorithm evaluation by Weiss and Baret (2020), the errors 

of LAI and CCC estimates were found to escalate with increasing LAI and CCC values. 

A similar effect was observed in our findings whereby the SL2P-derived LAI and CCC 

estimates in GGHNP had higher errors (i.e. RMSEs of 1.834 m2.m-2 and 39.23 μg.cm-2) 

than those found in MNP with RMSEs of 1.50 m2.m-2 and 26.42 μg.cm-2 respectively 

(Figure 7 and Figure 8). In particular, our field measurements of LAI and CCC in GGHNP 

revealed the highest maximum values of 6.24 m2.m-2 and 162.61μg.cm-2  compared to the 

maximum values in MNP of 5.00 m2.m-2 and 132.59 μg.cm-2, respectively (Table 1). A 

study by Brown et al. (2021) found that the SL2P-derived LAI appears to perform 

comparatively poorly, particularly over heterogenous canopies with LAI values greater 

than 3. Furthermore, Hu et al. (2020) found that the SL2P-derived LAI and FVC estimates 

tend to systematically underestimate grasses (i.e. giving negative Bias values), and 

suggested increasing the number of ground measurements for a comprehensive 

evaluation of the SL2P biophysical products. This observation on possible systematic 

underestimation corroborates the findings of this study. Similarly, the SL2P-derived CCC 

underestimated field-based CCC in both GGHNP and MNP with Bias values of -14.80 

μg.cm-2  and -15.64 μg.cm-2  (Figure 7 and Figure 8). It remains an exercise for further 

investigation on whether this underestimation is systematic, particularly over 

heterogeneous grassland canopies and landscapes (Ali et al., 2020). Furthermore, it is 

worth mentioning that the empirical calibration method described in Markwell et al. 

(1995) is for soybean and maize leaves, so there could be some species-specific biases 

when applying to other grass species. An interesting observation was that the variability 



34 
 

of the SL2P CCC estimates, appeared to be representative of the grass species 

heterogeneity over the visited sites, more especially in GGHNP (Figure 9) where about 

36 different grass species were detected within the subplots. For example, in the 36 grass 

species identified within the subplots in GGHNP, the most dominant were found to be, 

in chronological order: Eragrostis curvula, Elionurus muticus, Aristida adscensionis, 

Stiburus alopecuroide, Sporobolus africanus, Heteropogon contortus, Tristachya 

leucothrix, Microchloa caffra, Themeda triandra, Urochloa decumbens, Helichrysum 

rugulosum and Helichrysum pilosellum. 

Thirdly, the temporal mismatch between the Sentinel-2 data acquisition dates and 

the field data collection dates is also another factor, which may have contributed to the 

SL2P biophysical estimates presented in this study. Although considerable efforts were 

made in this study to minimize as much as possible the temporal gaps between the data 

sets.  

Lastly, since the SL2P biophysical estimates of LAI, FVC and CCC had the lower 

errors in MNP compared to in GGHNP according to the field-based measurements; it 

may be premature to conclude at this stage whether the SL2P biophysical estimates are 

more reliable in MNP. More field-based measurements ought to be obtained in future to 

confirm the consistency and reliability of the SL2P estimates in the two parks. For 

example, 68 and 80 samples were obtained in MNP and GGHNP respectively, and 

therefore more samples (field measurements of biophysical estimates) should be acquired 

not only in MNP where fewer samples were obtained in this study, but also in both parks 

in-order to ameliorate the robustness of the validation results. Recent validation studies 

showed that the performance of SL2P biophysical estimates generally satisfy user 

requirements in various vegetation types that are characterised by homogenous canopies 

(Brown et al., 2021). However, the performance of the SL2P biophysical estimates in the 
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grasses located in heterogeneous natural environments is yet to be fully understood; hence 

the need for more multi-date and well-distributed ground measurements of biophysical 

estimates in such environments (Cho et al., 2014, Hu et al., 2020).    

 

Conclusion 

The aim of this study was to validate the SL2P retrieved LAI, FVC and CCC 

estimates over a heterogenous savanna and grassland environment for the wet season of 

2021 in South Africa using field measurements. Overall, the results show that the current 

high-resolution Sentinel-2 derived biophysical estimates demonstrated comparatively 

poor performance over the grasslands in both study sites i.e. MNP and GGHNP. The 

SL2P biophysical estimates of LAI, FVC and CCC had the lowest errors in MNP 

compared to in GGHNP according to the field-based measurements. Furthermore, the 

SL2P LAI, FVC and CCC estimates appeared to systematically underestimate the grasses 

(i.e. indicated by negative Bias values) in both study sites according to our field estimates. 

Nonetheless, we noted that the variability of the SL2P-derived CCC estimates, appeared 

to be responsive of the grass species heterogeneity over the visited sites. The performance 

of the SL2P-derived biophysical estimates in both study sites was consistent in that the 

estimates appeared to be linearly biased, coupled with moderate-to-high errors. Other 

existing validation studies of the SL2P estimates made virtually similar remarks regarding 

their performance over grasses, especially in a heterogenous canopy for example, Brown 

et al. (2021), and Hu et al. (2020).   

Several underlying reasons that could have potentially contributed the 

discrepancies between the SL2P- and field-based biophysical estimates were identified 

as follows: (i) the residual uncertainties emanating from the Sen2Cor atmospheric 

correction procedure, (ii) the inherent uncertainties associated with the SL2P adopted 



36 
 

ANNs that are trained with RTM simulations, (iii) the temporal mismatch between the 

Sentinel-2 data acquisition dates and the field data collection dates, and (iv) limited 

samples in-terms of quantity and spatiotemporal distribution, and (v) field data collection 

procedures especially with regards to using the ACCUPAR for LAIe estimation, which 

partially corrects the effect of foliage clumping and could have possibly overestimated 

the actual green LAI. The reasons above suggests the need for extensive validation of the 

SL2P LAI, FVC and CCC estimates over natural heterogenous canopies using long-term 

field measurements in different regions. In addition, there may also be a need for 

improving the current SL2P algorithm and/ or investigating other inversion methods to 

provide better estimates with reduced biases and error over the aforementioned canopies.     
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