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Abstract

Seitz’s theorem asserts that a finite group has exactly one non-linear irreducible
character of degree greater than one if and only if the group is either an extraspe-
cial 2-group or the group is isomorphic to a one-dimensional affine group over some
field. An extension of Seitz’s theorem is Thompson’s celebrated theorem which
states if the degrees of all non-linear irreducible characters of a group are divisible
by a fixed prime 𝑝, then the group contains a normal 𝑝-complement. More recently,
in 2020, as an extension to Thompson’s theorem, Giannelli, Rizo, and Schaeffer Fry
showed that if the character degree set of a group 𝐺 contains only two 𝑝′-character
degrees (where 𝑝 > 3 is a prime), then 𝐺 contains a normal subgroup 𝑁 such that
𝑁 has a normal 𝑝-complement and 𝐺/𝑁 has a normal 𝑝-complement. Moreover, 𝐺
is solvable. In this dissertation, we explore a variation of Thompson’s Theorem. We
explore the structure of finite groups that have exactly one non-linear irreducible
character whose degree is non-divisible by a fixed prime 𝑝. We call such groups
(∗)-groups (𝑝 divides the order of the group). In 1998, Kazarin and Berkovich char-
acterized the structure of (∗)-groups. We give a detailed proof of their work for
solvable groups. Moreover, we produce a classification of (∗)-groups of order less
than or equal to 100.



Nomenclature

ℤ, ℤ+ set of integers, set of positive integers

𝑎 | 𝑏 𝑎 divides 𝑏 where 𝑎 and 𝑏 are integers

𝐺 a finite group

|𝐺| order of the finite group 𝐺

𝑜(𝑔) where 𝑔 ∈ 𝐺 order of the element 𝑔

𝐶𝑛 cyclic group of order 𝑛

𝐺 ≅ 𝐻 𝐺 is isomorphic to the group 𝐻

Sym(Ω), 𝑆𝑛 the symmetric group on Ω, the symmetric group on 𝑛 letters

𝐴𝑛 alternating group on 𝑛 letters

Aut(𝐺) the automorphism group of 𝐺

𝐹, 𝐹 × a field, the multiplicative group 𝐹 − {0}

𝑄8 quaternion group of order eight

𝐷2𝑛 dihedral group of order 2𝑛

Dic𝑛 dicyclic group of order 4𝑛

GL(𝑛, 𝐹) the general linear group of degree 𝑛 over a field 𝐹

GL(𝑛, 𝑝𝑛) the general linear group of degree 𝑛 over a field of order 𝑝𝑛

𝐻 ≤ 𝐺,𝐻 < 𝐺 𝐻 is a subgroup of 𝐺, 𝐻 is a proper subgroup of 𝐺

𝐻 ⊴ 𝐺 𝐻 is a normal subgroup of 𝐺

|𝐺 ∶ 𝐻| index of 𝐻 in 𝐺

⟨𝑋⟩ the subgroup of generated by a set 𝑋

𝐺′, 𝐺′′, 𝐺′′′ first, second, and third derived subgroup of 𝐺, respectively

𝐺(𝑛) 𝑛th derived subgroup of 𝐺

dl(𝐺) the derived length of 𝐺

𝐻 char 𝐺 𝐻 is characteristic in 𝐺

𝐙(𝐺), 𝐍𝐻 (𝐺) center of 𝐺, normalizer of 𝐻 in 𝐺

𝐺/𝐻 factor group of 𝐺 by 𝐻

Syl𝑝(𝐺), 𝑛𝑝 set of Sylow 𝑝-subgroups of 𝐺, number of Sylow 𝑝-subgroups

𝐻 × 𝐾 , 𝐻 ⋊ 𝐾 direct product of 𝐻 and 𝐾 , semidirect product of 𝐻 by 𝐾

Orb(𝑥) = 𝑥 the orbit of 𝑥

Stab(𝑥) = 𝐺𝑥 the stabilizer of 𝑥 in 𝐺

AGL1(𝑝𝑛) one-dimensional affine group over a field of order 𝑝𝑛
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Nomenclature

𝑔𝐺 where 𝑔 ∈ 𝐺 conjugacy class of 𝑔 in 𝐺

𝐹[𝐺] a group algebra

1𝐺 principal character of 𝐺

[𝜙, 𝜓] 1
|𝐺|∑𝑔∈𝐺 𝜙(𝑔)𝜓(𝑔)

Irr(𝐺) set of complex irreducible characters of 𝐺

𝜒𝐻 the restriction of 𝜒 to 𝐻

𝜙𝐺 class function 𝜙 induced on 𝐺

cd(𝐺) {𝜒 (1) ∶ 𝜒 ∈ Irr(𝐺)}

cd𝑝(𝐺) {𝜒 (1) ∶ 𝜒 ∈ Irr(𝐺) and 𝑝|𝜒 (1)}

cd𝑝′(𝐺) {𝜒 (1) ∶ 𝑝 ∤ 𝜒 (1) and 𝜒 ∈ Irr(𝐺)}

𝑜(𝜒 ) the determinantal order of 𝜒

𝐺̂ group of linear characters of 𝐺

O𝑝(𝐺) smallest normal subgroup 𝑁 of 𝐺 such that 𝐺/𝑁 is a 𝑝-group

Irr1(𝐺) set of non-linear irreducible characters of 𝐺

Irr1(𝐺, 𝑝′) set of non-linear irreducible characters of 𝐺 with 𝑝′-character degree

𝐄𝐒(𝑚, 𝑝) extraspecial 𝑝-group of order 𝑝2𝑚+1

Deg(𝐺) character degree sequence of a group 𝐺
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Introduction

A group is defined as a set together with an associative binary operation such that every ele-
ment has an inverse and an identity exists within the set. Groups are defined very abstractly,
and it can sometimes be problematic when trying to prove statements regarding them. Rep-
resentation theory and character theory aim to remedy this problem by representing the
elements of groups as familiar objects–matrices. More specifically, a homomorphism, called
a representation of 𝐺, is defined from a group 𝐺 to the group GL(𝑛, 𝐹) (the group of 𝑛 × 𝑛
invertible matrices over a field 𝐹 under matrix multiplication). The information within a rep-
resentation is condensed by defining a function that maps each group element to the trace
of its associated matrix under the representation. These functions are called characters of the
group.

Representation and character theory, respectively, have proven useful in answering group-
theoretic questions. An example of this is Burnside’s 𝑝𝛼𝑞𝛽 theorem; this is a purely group-
theoretic statement that asserts that a group of order 𝑝𝛼𝑞𝛽 is solvable. It took nearly 70 years
to find a proof of this theorem that does not involve representation theory [18, pg 71]. Char-
acters, and even more so, irreducible characters, which are a basis for the vector space of
class functions (characters are also class functions), play an essential role in determining the
structure of a group. The most trivial example is that a group 𝐺 is abelian if and only if every
irreducible character of 𝐺 is of degree one—the degree of a character being the number pro-
duced when evaluating the character at the identity. More closely related to this dissertation
is the famous Ito-Michler theorem which asserts that the degrees of all non-linear (degree
greater than 1) irreducible characters of a group 𝐺 are non-divisible by a prime 𝑝 if and only
if the group contains a normal abelian Sylow 𝑝-subgroup. Note from the above-stated the-
orems that the relationships established are between purely group-theoretic properties and
purely character-theoretic properties.

The celebrated Thompson’s theorem states if the degrees of all non-linear irreducible
characters of a group are divisible by a prime 𝑝 (𝑝 is a fixed prime), then the group contains a
normal 𝑝-complement. In this dissertation, we explore a variation of Thompson’s Theorem.
We explore the structure of groups that have exactly one non-linear irreducible character whose
degree is non-divisible by a fixed prime 𝑝. We call such groups (∗)-groups (𝑝 divides the order
of the group). In 1998, Kazarin and Berkovich [12] characterized the structure of (∗)-groups.
We give a detailed proof of their work for solvable groups (Chapter 5). More recently, in 2020,
Giannelli, Rizo, and Schaeffer Fry [2] showed that if the condition of Kazarin and Berkovich
is relaxed, that is, ||cd𝑝′(𝐺)|| = |{𝜒 (1) ∶ 𝜒 ∈ Irr(𝐺) and 𝑝 ∤ 𝜒(1)}| = 1 where Irr(𝐺) denotes the
set of irreducible characters of 𝐺, then 𝐺 contains a normal subgroup 𝑁 such that 𝑁 has a
normal 𝑝-complement and 𝐺/𝑁 has a normal 𝑝-complement. Moreover, 𝐺 is solvable.

This dissertation is divided into two parts, namely the preliminaries and the main work
regarding (∗)-groups.

Part I, Preliminaries: In Chapter 1, we provide some general group theoretic results and
introduce groups of interest in this dissertation—solvable, nilpotent, and Frobenius groups.
Chapter 2 gives an overview of character-theoretic results. We define modules, representa-
tions, and characters (irreducible characters). We state some essential theorems for Part 2,
including Frobenius reciprocity, Clifford’s theorem and Ito’s theorem.

Part II, Groups with few 𝑝′-character degrees: Chapter 3 is devoted to proving Thompson’s
theorem. The normal 𝑝-complement of a group is defined here. We define the 𝑝-residue of
a group 𝐺, O𝑝(𝐺), and show how this is used to characterize a group containing a normal
𝑝-complement. Seitz [17], in 1968, showed that, loosely speaking, a group has exactly one

1
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non-linear irreducible character if and only if either the group is a 2-group or it is isomorphic
to some specific Frobenius group. We use his result to show that nilpotent (∗)-groups do not
exist (it is essential to realize that for a group to be called a (∗)-group, we require 𝑝 to divide
the order of the group!). In Chapter 5, we prove the result[12, Theorem A] given by Kazarin
and Berkovich; that is, we give a characterization of (∗)-groups (the solvable case). We then
give examples of (∗)-groups in Chapter 5. We find all (∗)-groups of order up to 100, applying
the result by Kazarin and Berkovich.
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Part I

Preliminaries
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1 Groups

Mathematics is the art of giving the same name to
different things.

– Henri Poincaré

1.1 Finite groups

This chapter gives a basic overview of the required group theory notions. We introduce,
briefly, solvable, nilpotent and Frobenius groups. Well-known and readily accessible results
will not be proved but referenced. Most of these results can be found in [10], [6] and [9].

A binary operation on a set 𝐺 is a function that assigns each ordered pair of elements of
𝐺 an element in 𝐺.

Definition 1.1.1. A group 𝐺 is a set together with a binary operation, which we will denote 𝑎𝑏
for 𝑎, 𝑏 ∈ 𝐺, such that:

1. (𝑎𝑏)𝑐 = 𝑎(𝑏𝑐) for all 𝑎, 𝑏, 𝑐 ∈ 𝐺;

2. There exists an element in 𝐺, denoted by 1 (called the identity), such that 𝑎1 = 1𝑎 = 𝑎 for
all 𝑎 ∈ 𝐺;

3. For all 𝑎 ∈ 𝐺 there exists 𝑏 ∈ 𝐺 (called the inverse of 𝑎) such that 𝑎𝑏 = 𝑏𝑎 = 1 (the inverse
of 𝑎 is usually denoted by 𝑎−1).

Remark 1.1.2.

1. The cardinality of a group 𝐺 is called the order of 𝐺 and is denoted by |𝐺|. If the order of
a group is finite, we call the group a finite group. We will henceforth only deal with finite

groups. Thus when reading statements such as “let 𝐺 be a group”, “consider the group 𝐺,
etc., we can always assume the group to be finite. Further, the letter 𝐺, without context,
is always assumed to be a finite group.

2. If 𝑔 ∈ 𝐺, the order of 𝑔 , denoted by 𝑜(𝑔), is the smallest positive integer 𝑛 such that 𝑔𝑛 = 1.
Further, if 𝑛 is the smallest positive integer such that 𝑔𝑛 = 1 for all 𝑔 ∈ 𝐺, we call 𝑛 the

exponent of 𝐺. An abelian group (𝑔ℎ = ℎ𝑔 for all 𝑔, ℎ in the group) of prime exponent (for

some prime 𝑝 we have that 𝑔𝑝 = 1 for all elements 𝑔 in the group) is said to be elementary

abelian.

Definition 1.1.3. Given groups 𝐺 and𝐻 . A function 𝜙 ∶ 𝐺 → 𝐻 such that 𝜙(𝑎𝑏) = 𝜙(𝑎)𝜙(𝑏) for
all 𝑎, 𝑏 ∈ 𝐺, is called a homomorphism. A surjective homomorphism is called an epimorphism.

A bijective homomorphism is called an isomorphism. Moreover, if there exists an isomorphism

from 𝐺 to 𝐻 , then 𝐺 and 𝐻 are said to be isomorphic, denoted by 𝐺 ≅ 𝐻 .

4



1.1. Finite groups

Example 1.1.4. The following are some examples of groups:

∙ If Ω is a set, then the set of bijections from Ω to Ω, under the composition of functions,

forms a group, denoted by Sym(Ω), called the the symmetric group on Ω. If Ω = {1, … , 𝑛}
we denote Sym(Ω) by 𝑆𝑛.

∙ The set of isomorphisms from 𝐺 to 𝐺, under the composition of functions, forms a group,

denoted by Aut(𝐺), called the automorphism group of 𝐺.

∙ The set of 𝑛×𝑛 invertible matrices over a field 𝐹 , under matrix multiplication, forms a group

called the general linear group of degree 𝑛 over 𝐹 . This group is denoted by GL(𝑛, 𝐹).

A subset 𝐻 within a group 𝐺 such that 𝐻 under the same operation of 𝐺 is itself a group,
is called a subgroup of 𝐺. If 𝐻 is a subgroup of 𝐺, we will write 𝐻 ≤ 𝐺 and 𝐻 < 𝐺 if 𝐻 ≠ 𝐺 (a
proper subgroup of 𝐺). This subgroup will be called a normal subgroup of 𝐺, written 𝐻 ⊴ 𝐺,
if 𝑔ℎ𝑔−1 ∈ 𝐻 for all 𝑔 ∈ 𝐺 and ℎ ∈ 𝐻 . Lagrange’s theorem [10, Theorem 2.23] states that the
subgroup’s order always divides the group’s order. Moreover, if 𝐻 ≤ 𝐺, the integer |𝐺| / |𝐻 | is
denoted by |𝐺 ∶ 𝐻| and called the index of 𝐻 in 𝐺.

Remark 1.1.5. If 𝐺 is a group, the set {1} is a subgroup of 𝐺 called the trivial subgroup. We

will denote it as 1. From the context, whether 1 refers to the identity within a group or the trivial
subgroup should be clear.

Now it is easily shown that if 𝐻, 𝐾 ≤ 𝐺, then 𝐻 ∩𝐾 ≤ 𝐺. With this in mind, we can define
the following.

Definition 1.1.6. Let 𝑋 ⊆ 𝐺. The subgroup of 𝐺 generated by 𝑋 , denoted by ⟨𝑋⟩, is defined by

⟨𝑋⟩ = ⋂
𝐻∈

𝐻,

where  is the set of all subgroups of 𝐺 containing 𝑋 . Note that  ≠ ∅ since 𝐺 ∈ .

Lemma 1.1.7. [10, Lemma 2.4] Let 𝑋 ⊆ 𝐺. Then ⟨𝑋⟩ is the set of all finite products

𝑥1𝑥2 ⋯𝑥𝑘,

where either 𝑥𝑖 or 𝑥−1𝑖 is in 𝑋 for all 𝑖.

Definition 1.1.8. Let 𝐺 be a group. The conjugacy class of 𝑔 ∈ 𝐺 in 𝐺, denoted by 𝑔𝐺 (𝐜𝐥(𝑔)
when convenient) is the set

𝑔𝐺 = 𝐜𝐥(𝑔) =
{
𝑥 ∈ 𝐺 ∶ 𝑥 = ℎ𝑔ℎ−1 for some ℎ ∈ 𝐺

}
.

Remark 1.1.9. Conjugacy classes of 𝐺 partition 𝐺.

5



1.1. Finite groups

Proposition 1.1.10. [11, Proposition 12.19] A subgroup 𝑁 of a group 𝐺 is normal in 𝐺 if and

only if 𝑁 is the union of conjugacy classes of 𝐺.

Definition 1.1.11. Let 𝐺 be a group. The elements of 𝐺 of the form 𝑎𝑏𝑎−1𝑏−1, denoted by [𝑎, 𝑏],
are called commutators of 𝐺. Further, if 𝑋 is the set of all commutators of 𝐺, then ⟨𝑋⟩ is called
the derived subgroup of 𝐺 and is denoted by 𝐺′.

Given that 𝐻, 𝐾 ≤ 𝐺, then [𝐻, 𝐾] , called the commutator of 𝐻 and 𝐾 , is defined by

[𝐻, 𝐾] = ⟨[ℎ, 𝑘] ∶ ℎ ∈ 𝐻, 𝑘 ∈ 𝐾⟩ .

Note that [𝐺, 𝐺] = 𝐺′.

Remark 1.1.12.

∙ The notation [∗, ∗] will be used frequently for different objects. Depending on the object/-
context, the meaning should be clear.

∙ Instead of writing (𝐺′)′, we write 𝐺′′ or 𝐺(2). Moreover, ((𝐺′)′)′ = 𝐺′′′ = 𝐺(3) and so on.

Lastly, 𝐺(𝑛) where 𝑛 ∈ ℕ is called the 𝑛th derived subgroup of 𝐺.

Definition 1.1.13. If 𝐻 ≤ 𝐺, we say 𝐻 is characteristic in 𝐺, denoted by 𝐻 char 𝐺, if 𝜃(𝐻) = 𝐻
for all 𝜃 ∈ Aut(𝐺).

Remark 1.1.14. Loosely speaking, if 𝐺 is a group, then subgroups that can be described as “the

something” are characteristic in 𝐺. However, it is essential for there to be no ambiguity with this

description. For example, the set of all elements 𝑔 ∈ 𝐺 such that 𝑔𝑥 = 𝑥𝑔 for all 𝑥 ∈ 𝐺, denoted
by 𝐙(𝐺) and called the center of 𝐺, is a characteristic subgroup of 𝐺. The derived subgroup

of 𝐺, 𝐺′, is characteristic in 𝐺. However, given 𝐻 ≤ 𝐺, the normalizer of 𝐻 in 𝐺 (denoted by

𝐍𝐺(𝐻)), that is, the set of all 𝑔 ∈ 𝐺 such that 𝐻 𝑔 =
{
𝑔ℎ𝑔−1 ∶ ℎ ∈ 𝐻

}
= 𝐻 , is not characteristic

in 𝐺. This is because the normalizer is dependent on the subgroup 𝐻 . Similarly, the centralizer

of an element 𝑔 ∈ 𝐺, defined 𝐂𝐺(𝑔) = {𝑥 ∈ 𝐺 ∶ 𝑥𝑔 = 𝑔𝑥}, or the centralizer of a subgroup 𝐻
in 𝐺, defined 𝐂𝐺(𝐻) = {𝑥 ∈ 𝐺 ∶ 𝑥𝑔 = 𝑔𝑥 for all 𝑔 ∈ 𝐻}, are not characteristic in 𝐺. Finally, if
𝐻 char 𝐺, then 𝐻 ⊴ 𝐺.

Lemma 1.1.15. [10, Lemma 2.16] If 𝐻 char 𝑁 ⊴ 𝐺, then 𝐻 ⊴ 𝐺.

Definition 1.1.16. For 𝐻 ≤ 𝐺, the set containing elements 𝑔ℎ, where 𝑔 ∈ 𝐺 is fixed and ℎ ∈ 𝐻 ,

is called a coset of 𝐻 in 𝐺, and is denoted by 𝑔𝐻 . Further, if 𝐻 ⊴ 𝐺, the set of cosets of 𝐻 in

G, denoted by 𝐺/𝐻 , is called the factor/quotient group of 𝐺 by 𝐻 . The operation of elements in

𝐺/𝐻 is defined:

𝑎𝐻𝑏𝐻 = 𝑎𝑏𝐻 for 𝑎𝐻, 𝑏𝐻 ∈ 𝐺/𝐻 .

Theorem 1.1.17. [10, Theorem 3.10] If 𝐻 ⊴ 𝐺, then 𝐺/𝐻 is abelian if and only if 𝐺′ ⊆ 𝐻.

6



1.2. Solvable Groups

Theorem 1.1.18. (First isomorphism theorem)[10, Theorem 3.3] Let 𝐺 and 𝐻 be groups such

that 𝜙 ∶ 𝐺 → 𝐻 is a homomorphism. Then

𝐺/ker 𝜙 ≅ 𝜙(𝐺).

Remark 1.1.19. Given the homomorphism 𝜙 in the theorem above. The normal subgroup

ker 𝜙 ⊴ 𝐺 is defined by ker 𝜙 = {𝑔 ∈ 𝐺 ∶ 𝜙(𝑔) = 1}.

Theorem 1.1.20. (Correspondence)[10, Theorem 3.7] Suppose that 𝜙 ∶ 𝐺 → 𝐻 is a surjective

homomorphism and 𝑁 = ker 𝜙. Given  = {𝐾 ≤ 𝐺 ∶ 𝑁 ≤ 𝐾} and  = {𝑉 ∶ 𝑉 ≤ 𝐻}, then the

mapping 𝜙( ) and 𝜙−1( ) define bijections from  to  and  to  , respectively. Moreover, these

mapping respects containment, normality, indices, and factor groups.

Theorem 1.1.21. (Diamond)[10, Theorem 3.6] Let 𝑁 ⊴ 𝐺 and 𝐻 ⩽ 𝐺. Then 𝐻 ∩ 𝑁 ⊴ 𝐻 and

𝐻/(𝐻 ∩ 𝑁) ≅ 𝑁𝐻/𝑁 .

Theorem 1.1.22. (Third isomorphism theorem)[10, Corollary 3.9] Let 𝑁 ⊆ 𝑀 ⊴ 𝐺 where 𝑁 ⊴
𝐺. Then

(𝐺/𝑁)/(𝑀/𝑁) ≅ 𝐺/𝑀.

1.2 Solvable Groups

Definition 1.2.1. For a group 𝐺, a subnormal series of 𝐺 is a chain of subgroups

1 = 𝐺0 ⊴ 𝐺1 ⊴ ⋯ ⊴ 𝐺𝑛 = 𝐺.

If 𝐺𝑖 ⊴ 𝐺 for all 𝑖, the series is called normal. Each 𝐺𝑖+1/𝐺𝑖 is called a factor of the series.

Definition 1.2.2. If a group has a subnormal series with abelian factors, then it is called a

solvable group.

Example 1.2.3. Consider the series
𝑆3 > 𝐴3 > 1.

Note that |𝑆3/𝐴3| = 2, thus 𝑆3/𝐴3 ≅ 𝐶2 (see [3, Chapter 5] for a definition of 𝐴𝑛). Similarly

𝐴3/1 ≅ 𝐶3.We have produced a subnormal series with abelian factors and so 𝑆3 is solvable.

Remark 1.2.4. We will denote cyclic groups of order 𝑛 by 𝐶𝑛 (see [10, page 16] for a definition
of a cyclic group).

Theorem 1.2.5. [10, Theorem 8.3] If 𝐺 is a group, then 𝐺 is solvable if and only if there exists

an integer 𝑛 ∈ ℤ+ such that 𝐺(𝑛) = 1.

If a group 𝐺 is solvable, then 𝑛 ∈ ℤ+ exists, such that 𝐺(𝑛) = 1. The smallest possible such
integer is called the derived length of 𝐺, denoted by dl(𝐺).
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1.3 Nilpotent groups

If 𝜋 is a set of primes, an integer is called a 𝜋-number if all of its prime factors are in 𝜋. A group
(subgroup) whose order is a 𝜋-number is called a 𝜋-group (𝜋-subgroup). If none of the prime
factors within the group’s (subgroup’s) order are in 𝜋, we call the group (subgroup) a 𝜋′-group
(𝜋′-subgroup). Furthermore, if 𝐻 ≤ 𝐺 and 𝐻 is a 𝜋-subgroup such that gcd(|𝐻 | , |𝐺 ∶ 𝐻|) = 1,
then𝐻 is called a Hall 𝜋-subgroup of𝐺 (Hall subgroup if we need not specify the set of primes
𝜋).

Given 𝜋 = {𝑝} for a prime 𝑝, we opt for the terms 𝑝-group (𝑝-subgroup) and 𝑝′-group
(𝑝′-subgroup). Every group contains a 𝑝-subgroup (for 𝑝| |𝐺|). A maximal 𝑝-subgroup of 𝐺 is
called a Sylow 𝑝-subgroup.

For reference, the following is a more formal definition of a 𝑝-group and Sylow 𝑝-subgroup.

Definition 1.3.1. Let 𝐺 be a group and 𝑝 a prime. We call 𝐺 a 𝑝-group if the group has an

order which is of power 𝑝. Now if we let |𝐺| = 𝑝𝑘𝑚 where 𝑝 ∤ 𝑚, then any subgroup of order 𝑝𝑘

is called a Sylow 𝑝-subgroup. The set of all Sylow 𝑝-subgroups of 𝐺 is denoted by Syl𝑝(𝐺). It is

well known that 𝑛𝑝 =
|||Syl𝑝(𝐺)

||| = |𝐺 ∶ 𝐍𝐺(𝑃)| where 𝑃 ∈ Syl𝑝(𝐺) (see [10, Corrolary 5.9]).

Remark 1.3.2. We note that if 𝐺 is not finite, then 𝐺 is defined to be a 𝑝-group if the order

of every element (if it exists) is of prime power. When the group is finite, this definition is a

characterization of the one we gave above.

Theorem 1.3.3. (The Sylow theorems) Let 𝐺 be a group of order 𝑝𝑘𝑚 where 𝑝 ∤ 𝑚 and 𝑘 ∈ ℤ+.

The following then holds:

1. 𝐺 has a subgroup of order 𝑝𝑘;

2. If 𝑃, 𝑄 ∈ Syl𝑝(𝐺), then there exists 𝑔 ∈ 𝐺 such that 𝑃 = 𝑄𝑔 ;

3. 𝑛𝑝 (the number of Sylow 𝑝-subgroups) satisfies the following:

𝑛𝑝 | 𝑚 and 𝑛𝑝 ≡ 1 mod 𝑝.

Definition 1.3.4. A group 𝐺 is said to be nilpotent if there exists a normal series

1 = 𝐺0 ⊴ 𝐺1 ⊴ ⋯ ⊴ 𝐺𝑛 = 𝐺,

such that 𝐺𝑖+1/𝐺𝑖 ⊆ 𝐙(𝐺/𝐺𝑖) for all 𝑖.

Example 1.3.5. The following are some examples of nilpotent groups.

∙ From the definition, it is obvious that all abelian groups are nilpotent.

8



1.4. Frobenius Groups

∙ Consider the quaternion group of order eight (see [10, Problems 1.9] for a definition)

𝑄8 = {1, −1, 𝑖, −𝑖, 𝑗 , −𝑗, 𝑘, −𝑘} .

Note that 𝑍(𝑄8) = {1, −1} = ⟨−1⟩ and so we have the series

1 ⊴ ⟨−1⟩ ⊴ 𝑄8.

Clearly, ⟨−1⟩ / {1} is contained 𝑍(𝑄8/ {1}) since ⟨−1⟩ is the centre of 𝑄8.

We can show that

𝑄8/ ⟨−1⟩ = {⟨−1⟩ , 𝑖 ⟨−1⟩ , 𝑗 ⟨−1⟩ , 𝑘 ⟨−1⟩} ≅ 𝑉4,

which is an abelian group. Thus

𝑄8/ ⟨−1⟩ = 𝑍(𝑄8/ ⟨−1⟩),

and we have a non-abelian nilpotent group.

∙ 𝑝-groups are nilpotent groups [10, Corollary 8.14].

Remark 1.3.6. The Klein-4 group, denoted by 𝑉4, is one of the two groups of order 4, the other
being a cyclic group.

Theorem 1.3.7. [10, Theorem 8.19] Let 𝐺 be a group, then the following are equivalent:

1. 𝐺 is nilpotent;

2. If 𝐻 < 𝐺, then 𝐻 < 𝐍𝐺(𝐻);

3. Every Sylow subgroup of 𝐺 is normal;

4. 𝐺 is a direct product of Sylow subgroups.

1.4 Frobenius Groups

Definition 1.4.1. Let 𝐺 be a group, 𝑁 ⊴ 𝐺 and 𝐻 ≤ 𝐺.We say 𝐺 is the semidirect product of

𝑁 by 𝐻 , which we denote by 𝐺 = 𝑁 ⋊ 𝐻, if

𝐺 = 𝑁𝐻 and 𝑁 ∩ 𝐻 = 1.

Remark 1.4.2. If, additionally, 𝐻 ⊴ 𝐺, then we call the semidirect product a direct product of

𝑁 and 𝐻 , denoted by 𝐺 = 𝑁 × 𝐻 .
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1.4. Frobenius Groups

Definition 1.4.3. Let 𝐺 be a group and Ω a non-empty set. If for each 𝑔 ∈ 𝐺 and 𝑥 ∈ Ω, we
define an operation, denoted 𝑔 ⋅ 𝑥 , such that for 𝑔, ℎ ∈ 𝐺 and 𝑥 ∈ Ω

1. 1 ⋅ 𝑥 = 𝑥 ;

2. (𝑔ℎ) ⋅ 𝑥 = 𝑔 ⋅ (ℎ ⋅ 𝑥);

we then call 𝐺 a permutation group on Ω. The operation ⋅ is called the action of 𝐺 on Ω.

Remark 1.4.4. We say the action is faithful if 𝑔 = 1 ∈ 𝐺 is the only element such that 𝑔 ⋅ 𝑥 = 𝑥
for all 𝑥 ∈ Ω.

If 𝐺 is a permutation group on Ω. The orbit of 𝑥 ∈ Ω is defined to be the set

Orb(𝑥) = 𝑥 = {𝑔 ⋅ 𝑥 ∶ 𝑔 ∈ 𝐺} .

The stabilizer of 𝑥 in 𝐺 is defined to be the subgroup of 𝐺 given by

Stab(𝑥) = 𝐺𝑥 = {𝑔 ∈ 𝐺 ∶ 𝑔 ⋅ 𝑥 = 𝑥} .

If Ω = 𝑥 , we call 𝐺 a transitive permutation group or say that 𝐺 acts transitively on Ω.
The following well-known theorem is of fundamental importance in finite group theory

and we state it here for reference:

Theorem 1.4.5. (Orbit-Stabilizer theorem) Let 𝐺 act on Ω and 𝑥 ∈ Ω. Then the following holds
|𝑥 | = |𝐺 ∶ 𝐺𝑥 |.

Definition 1.4.6. A transitive permutation group𝐺 on a setΩ (with |Ω| > 1) is called a Frobenius
group if the following holds:

1. 𝐺𝑥 ≠ 1 for all 𝑥 ∈ Ω;

2. 𝐺𝑥 ∩ 𝐺𝑦 = 1 for all 𝑥 ≠ 𝑦 in Ω.

Remark 1.4.7. By definition, Frobenius groups are non-trivial.

If 𝐺 is a Frobenius group on Ω and 𝑥 ∈ Ω, then 𝐺𝑥 is called a Frobenius complement of 𝐺.
The Frobenius kernel N of 𝐺, is a normal subgroup of 𝐺 [6, Corollary 9.1.5] which contains
all points which do not fix any other point in Ω together with the identity of 𝐺.

Lemma 1.4.8. A Frobenius complement is a proper subgroup of a Frobenius group.

Proof. Consider 𝐺 to be a Frobenius group on Ω and 𝑥, 𝑦 ∈ Ω where 𝑥 ≠ 𝑦. Now if 𝐺𝑥 = 𝐺,
since 𝐺𝑥 , 𝐺𝑦 ≠ 1 by definition, we have that 𝐺𝑥 ∩𝐺𝑦 = 𝐺𝑦 ≠ 1, a contradiction. Thus Frobenius
complements are proper subgroups of 𝐺.

Proposition 1.4.9. [6, Proposition 9.1.3] Let 𝐺 be a Frobenius group with kernel 𝑁 and com-

plement 𝐻 , then |𝑁 | = |𝐺 ∶ 𝐻| > 1.
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Theorem 1.4.10. [6, Corollary 9.1.6] Let 𝐺 be a Frobenius group with kernel𝑁 and complement

𝐻 , then

𝐺 = 𝑁 ⋊ 𝐻.

Proposition 1.4.11. [6, Proposition 9.1.8] Let 𝐺 be a Frobenius group with kernel 𝑁 and com-

plement 𝐻 , then

|𝐻 | | (|𝑁 | − 1).

Proposition 1.4.12. [6, Corollary 9.1.2.] If 𝐺 is a Frobenius group with a Frobenius complement

𝐻 , then

𝐍𝐺(𝐻) = 𝐻.

Lemma 1.4.13. Frobenius groups are not nilpotent.

Proof. Suppose 𝐺 is a Frobenius group on Ω. If 𝐻 = 𝐺𝑥 for some 𝑥 ∈ Ω, then 𝐻 < 𝐺 by
Lemma 1.4.8. For a contradiction, let 𝐺 be nilpotent. Thus 𝐍𝐺(𝐻) < 𝐻 by Theorem 1.3.7 (2).
But 𝐍𝐺(𝐻) = 𝐻 , since 𝐺 is Frobenius, a contradiction.

Theorem 1.4.14. [6, Proposition 9.1.1] A group 𝐺 is Frobenius if and only if it has a non-trivial

proper subgroup 𝐻 such that

𝐻 ∩ 𝐻 𝑔 = 1 for all 𝑔 ∈ 𝐺 − 𝐻 .

Remark 1.4.15. The 𝐻 in the theorem above is a complement of the Frobenius group 𝐺.

Theorem 1.4.16. [8, Problem 7.1] Let 𝐺 = 𝑁 ⋊ 𝐻 . The following are equivalent:

1. 𝐺 is a Frobenius group with a complement 𝐻 and kernel 𝑁 ;

2. 𝐂𝐺(𝑛) ⊆ 𝑁 for all 1 ≠ 𝑛 ∈ 𝑁 ;

3. 𝐂𝐻 (𝑛) = 1 for all 1 ≠ 𝑛 ∈ 𝑁 .

Proposition 1.4.17. If 𝐺 is a Frobenius group, then 𝐙(𝐺) = 1.

Proof. Let 𝐺 be Frobenius with kernel 𝑁 and complement 𝐻 . For any 1 ≠ 𝑔 ∈ 𝑁 we have

𝐙(𝐺) ⊆ 𝐂𝐺(𝑔) ⊆ 𝑁 .

For a contradiction, choose 1 ≠ 𝑥 ∈ 𝑍(𝐺). Note that 1 ≠ 𝑔 ∉ 𝐻 , thus we must have

𝐻 ∩ 𝐻 𝑔 = 𝐻 ∩ 𝐻 = 𝐻 ≠ 1,

this contradicts Theorem 1.4.14. Thus 𝑔 = 1 and 𝐙(𝐺) = 1.

We offer some examples of Frobenius groups.

11
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Example 1.4.18.

∙ 𝑆3 = {(1), (1 2), (2 3), (1 3), (1 2 3), (1 3 2)} (see [3, Chapter 5] for a definition of the “cycle

notation” used here) is an example of a Frobenius group. The stabilizers are given by

𝐺1 = {(1), (2 3)}, 𝐺2 = {(1), (1 3)} and 𝐺3 = {(1), (1, 2)}.

We easily see that the two properties in our definition of a Frobenius group are satisfied.

Moreover, since Frobenius groups have trivial centers and all non-trivial groups with order

less than six are abelian, 𝑆3 is the smallest example of a Frobenius group.

∙ We now show that 𝐴4 is a Frobenius group. The conjugacy classes of 𝐴4 (see [11, Examples

12.8]) are given by:

1, (1 2)(3 4)𝐴4 , (1 2 3)𝐴4 and (1 3 2)𝐴4 .

The Klein 4-group can be written as 𝑉4 = {1, 𝑎, 𝑏, 𝑐} where 𝑎 = (1 2)(3 4), 𝑏 = (1 3)(2 4)
and 𝑐 = (1 4)(2 3). Note that 𝑉4 ⊴ 𝐴4 since it is the union of the conjugacy classes 1 and
(1 2)(3 4)𝐴4 . Now set 𝐻 = ⟨(1, 2, 3)⟩ = {1, (1 2 3), (1 3, 2)}. We see that 𝐻 is not normal in

𝐴4 since it is not the union of conjugacy classes of 𝐴4.

Now 𝑉4 ∩ 𝐻 = 1, and

|𝑉4𝐻| =
|𝑉4| |𝐻 |
|𝑉4 ∩ 𝐻|

=
4 ⋅ 3
1

= 12 = |𝐴4| .

Since 𝑉4𝐻 ⊆ 𝐴4, it follows 𝐴4 = 𝑉4𝐻 . Thus we have shown that,

𝐴4 = 𝑉4 ⋊ 𝐻.

Now by the Third Sylow theorem (𝐻 is a Sylow 3-subgroup), 𝑛3 | 4 and 𝑛3 ≡ 1 mod 3.
Thus 𝑛3 ∈ {1, 4}. Now 𝑛3 ≠ 1 since 𝐻 is not normal in 𝐴4. Thus 𝑛3 = 4 and |𝐴4 ∶ 𝐍𝐴4(𝐻)| =
4, or 𝐍𝐴4(𝐻) = 𝐻 since 𝐻 ⊆ 𝐍𝐴4(𝐻).

That is, 𝐻 𝑔 = 𝐻 if and only if 𝑔 ∈ 𝐻 . Hence for any 𝑔 ∈ 𝐺 − 𝐻 , we must have

𝐻 𝑔 ∩ 𝐻 = 1,

since the only subgroups of their intersection must be either of order one or three; but their

intersection can not be of order three since 𝐻 𝑔 ≠ 𝐻 . By Theorem 1.4.14, 𝐴4 is Frobenius.

Proposition 1.4.19. [5, Proposition 3.7] Let 𝐹 be a field. Any finite subgroup of the group 𝐹 ×

(multiplicative group 𝐹 − {0}) is cyclic

Example 1.4.20. Consider a subgroup 𝐺 of Sym(𝐹), the symmetric group on a field 𝐹 (the field

being of order 𝑝𝑛 > 2where 𝑝 is prime and 𝑛 a positive integer). We define 𝐺 to contain mappings

𝑇𝑎,𝑏 ∶ 𝑥 ↦ 𝑎𝑥 + 𝑏,
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where 𝑎, 𝑏 ∈ 𝐹 and 𝑎 ≠ 0.
Now let

𝑁 =
{
𝑇1,𝑏 ∶ 𝑏 ∈ 𝐹

}
and 𝐻 =

{
𝑇𝑎,0 ∈ 𝐺 ∶ 0 ≠ 𝑎 ∈ 𝐹

}
.

It follows that 𝑁 and 𝐻 are abelian (𝐹 is abelian) subgroups of order 𝑝𝑛 and 𝑝𝑛 − 1, respectively.
We now state some easily confirmed facts about elements in𝐺. For any 𝑇𝑎,𝑏, 𝑇𝑐,𝑑 ∈ 𝐺, the following
hold:

∙ 𝑇𝑎,𝑏𝑇𝑐,𝑑 = 𝑇𝑎𝑐,𝑏𝑐+𝑑 ;

∙ 𝑇 −1
𝑎,𝑏 = 𝑇𝑎−1,−𝑎−1𝑏.

Since, 𝑇𝑎,𝑏 = 𝑇1,𝑏𝑇𝑎,0, we see that 𝐺 = 𝑁𝐻 . Further, 𝑁 ⊴ 𝐺 since

𝑇𝑎,𝑏𝑇1,𝑑𝑇𝑎−1,−𝑎−1𝑏 = 𝑇1,𝑎−1𝑏+𝑑𝑎−1−𝑎−1𝑏 = 𝑇1,𝑎−1𝑑 ∈ 𝑁 .

Moreover, 𝑁 ∩ 𝐻 = 1; that is,
𝐺 = 𝑁 ⋊ 𝐻.

If we choose 𝑇1,0 ≠ 𝑇1,𝑑 ∈ 𝑁 and 𝑇𝑎,𝑏 ∈ 𝐂𝐺(𝑇1,𝑑), then

𝑇𝑎,𝑏𝑇1,𝑑𝑇𝑎−1,−𝑎−1𝑏 = 𝑇1,𝑎−1𝑑 = 𝑇1,𝑑 ,

which implies 𝑎−1𝑑 = 𝑑 and so 𝑎 = 1. Thus 𝑇𝑎,𝑏 ∈ 𝑁 and 𝐂𝐺(𝑇1,𝑑) ⊆ 𝑁 . By Theorem 1.4.16, 𝐺 is

Frobenius group with kernel 𝑁 and complement 𝐻 .

Consider a mapping 𝜙 ∶ 𝐻 → 𝐹 × defined by

𝑇𝑎,0 ↦ 𝑎.

This mapping is clearly a homomorphism and 𝑇𝑎,0 ∈ ker 𝜙 if and only if 𝑇𝑎,0 = 𝑇1,0. Thus by the
First isomorphism theorem,

𝐻 ≅ 𝐻/ker 𝜙 ≅ 𝜙(𝐻) ≤ 𝐹 ×,

and so, by Proposition 1.4.19, 𝐻 is cyclic group of order 𝑝𝑛 − 1.
This group 𝐺 is usually denoted by AGL1(𝑝𝑛) and called the one-dimensional affine group

over 𝐹 . In conclusion, the one-dimensional affine group over a finite field 𝐹 (of order 𝑝𝑛) is a
Frobenius group. This group is a semidirect product of the abelian subgroup 𝑁 , of order 𝑝𝑛, by
a cyclic group 𝐻 , of order 𝑝𝑛 − 1.

Remark 1.4.21. For a Frobenius group with complement 𝐻 and kernel 𝑁 , 𝑁 ⊆ 𝐺′. Thus if

the complement 𝐻 is abelian, then 𝐺/𝑁 ≅ 𝐻 is abelian and by Theorem 1.1.17 𝑁 = 𝐺′. In

particular, if we look at Example 1.4.20, where AGL1(𝑝𝑛) = 𝑁 ⋊ 𝐻 , we have 𝑁 = 𝐺′. That is,

the derived subgroup is just the subgroup of all translations 𝑇1,𝑏.
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2 Character Theory

Give me a fruitful error anytime, full of seeds,

bursting with its own corrections. You can keep your

sterile truth for yourself.

– Vilfredo Pareto

In this chapter, we introduce modules, representations and characters. We give an overview
of some essential character theory and prove those results that do not detract from the dis-
sertation.

As alluded to in the introduction of this dissertation, a representation contains informa-
tion on the structure of a group. However, the problem with representations is that they
contain “too much” information. For instance, similarity of representations (and, in turn, an
isomorphism between modules) encapsulates the idea of “sameness” between representations
(and modules). Some of the data produced by representations distinguish between represen-
tations within the same similarity class and thus can be ignored [8, page 14]. Character
theory aims to throw out most of this data and only keep enough that may still influence the
structure of a group.

2.1 Modules and Representations

Definition 2.1.1. Let 𝐹 be a field. An 𝐹 -algebra 𝐴 is a vector space over 𝐹 (𝐹 -space) which is

also a ring with unity 1, such that the following holds:

𝜆(𝑥𝑦) = (𝜆𝑥)𝑦 = 𝑥(𝜆𝑦) for all 𝑥, 𝑦 ∈ 𝐴 and 𝜆 ∈ 𝐹 .

Example 2.1.2. Let 𝐹 be a field, 𝐺 a group, and let 𝐹[𝐺] denote a set of formal sums

∑
𝑔∈𝐺

𝜆𝑔𝑔.

Given 𝑢 = ∑𝑔∈𝐺 𝜆𝑔𝑔 and 𝑣 = ∑ℎ∈𝐺 𝜇ℎℎ, we define addition as:

𝑢 + 𝑣 = ∑
𝑔∈𝐺

(𝜆𝑔 + 𝜇𝑔)𝑔,

scalar multiplication as:

𝜆𝑢 = ∑
𝑔∈𝐺

(𝜆𝜆𝑔)𝑔 for 𝜆 ∈ 𝐹 ,

and multiplication as:

𝑢𝑣 = ∑
𝑔,ℎ∈𝐺

(𝜆𝑔𝜇ℎ)(𝑔ℎ).
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𝐹[𝐺] with the operations above can be easily shown to be an 𝐹 -algebra. This algebra is called a

group algebra.

Definition 2.1.3. Let 𝑉 be a finite dimensional vector space over 𝐹 and 𝐴 an 𝐹 -algebra. We

define a multiplication 𝑣𝑥 for 𝑥 ∈ 𝐴 and 𝑣 ∈ 𝑉 . If the following hold:

1. 𝑣𝑥 ∈ 𝑉 ,

2. 𝑣(𝑥 + 𝑦) = 𝑣𝑥 + 𝑣𝑦 (𝑦 ∈ 𝐴),

3. (𝑣 + 𝑢)𝑥 = 𝑣𝑥 + 𝑢𝑥 (𝑢 ∈ 𝑉 ),

4. 𝑣(𝑥𝑦) = (𝑣𝑥)𝑦,

5. 𝜆(𝑣𝑥) = (𝜆𝑣)𝑥 = 𝑣(𝜆𝑥) (𝜆 ∈ 𝐹 ),

6. 𝑣1 = 𝑣 (1 ∈ 𝐴),

then we call 𝑉 an 𝐴-module.

Remark 2.1.4. If 𝐴 is an 𝐹 -algebra and 𝑉 is an 𝐴-module, a subalgebra of 𝐴 is a subset which is

also an 𝐹 -algebra under the same operations as that in 𝐴. A submodule of 𝑉 is defined similarly.

Lemma 2.1.5. [8, page 3] Let 𝑉 be an 𝐴-module and 𝑥 ∈ 𝐴. The mapping 𝑥𝑉 ∶ 𝑉 → 𝑉 , defined
by

𝑥𝑉 (𝑣) = 𝑣𝑥,

is an endomorphism (linear transformation from 𝑉 to 𝑉 ).

Remark 2.1.6. Since 𝑥𝑉 is a an endomorphism, we can consider its matrix (see [1, Definition

3.32]), which we will denote [𝑥], where  is a basis of 𝑉 .

Definition 2.1.7. Let 𝑉 and 𝑊 be 𝐴-modules. A linear transformation 𝜙 ∶ 𝑉 → 𝑊 such that

𝜙(𝑣𝑎) = 𝜙(𝑣)𝑎 for all 𝑎 ∈ 𝐴 and 𝑣 ∈ 𝑉 ,

is called an 𝐴-homomorphism. If 𝜙 is a bijection, then 𝜙 is called an 𝐴-isomorphism and we say

𝑉 and 𝑊 are isomorphic and denote by 𝑉 ≅ 𝑊 .

Definition 2.1.8. Let 𝑉 be an 𝐴-module. We say 𝑉 is irreducible if its only submodules are {0}
and 𝑉 . Otherwise, 𝑉 is said to be reducible.

Definition 2.1.9. Let 𝑉 be an𝐴-module. If for every submodule 𝑈 of 𝑉 there exists a submodule

𝑊 such that

𝑉 = 𝑈 ⊕ 𝑊 ,

then we say that 𝑉 is completely reducible.
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2.1. Modules and Representations

Remark 2.1.10. Here 𝑉 = 𝑈 ⊕ 𝑊 is taken to mean 𝑉 is a direct sum of 𝑈 and 𝑉 (see [1,

Definition 1.40]).

Theorem 2.1.11. (Maschke)[8, Theorem 1.9] Let 𝑉 be an 𝐹[𝐺]-module where 𝐹 is a field whose
characteristic does not divide |𝐺|, then 𝑉 is completely reducible.

Theorem 2.1.12. [8, Theorem 1.10 and Lemma 1.11] Let 𝑉 be an 𝐴-module. 𝑉 is completely

irreducible if and only if it is a direct sum of irreducible submodules.

The two theorems above are, to a large extent, why there is a deep interest in irreducible
modules (and, by extension, irreducible representations, and irreducible characters). We are
able to reduce the study of 𝐹[𝐺]-modules (𝐹 being an appropriate field, of course) to that of
irreducible 𝐹[𝐺]-modules.

Definition 2.1.13. Let 𝐴 be an 𝐹 -algebra. A representation of 𝐴 is a homomorphism X ∶
𝐴 → 𝑀𝑛(𝐹). The integer 𝑛 is called the degree of the representation. If N ∶ 𝐴 → 𝑀𝑛(𝐹) is a
representation of 𝐴, we say X is similar to N if there exists a non-singular matrix 𝑃 such that

X(𝑎) = 𝑃−1N(𝑎)𝑃 for all 𝑎 ∈ 𝐴.

Let 𝑉 be an 𝐴-module with a basis . If 𝑥 ∈ 𝐴, then the mapping X ∶ 𝑥 ↦ [𝑥] de-
fines a representation (see [6, Theorem 4.12]). Further, if ′ is another basis of 𝑉 , then the
representation 𝑥 ↦ [𝑥]′ is similar to X (see [6, Theorem 4.12]).

Conversely, suppose X ∶ 𝐴 → 𝑀𝑛(𝐹) is a representation and 𝑉 is the 𝑛-dimensional
𝐹 -space 𝐹 𝑛. Define 𝑣𝑥 = 𝑣X(𝑥) for 𝑣 ∈ 𝑉 and 𝑥 ∈ 𝐴. Then 𝑉 defines an 𝐴-module.

If we start with a representation X and construct a module 𝑉 as above; we can construct
the original representation X from the module 𝑉 with the choice of an appropriate basis.

Finally, let 𝑉 and 𝑊 be 𝐴-modules with basis  and ′, respectively. Then 𝑉 ≅ 𝑊 if and
only if the representations

𝑥 ↦ [𝑥] and 𝑥 ↦ [𝑥]′

are similar [11, Theorem 7.6]. This offers some insight as to why representations and modules
are considered “one and the same”. Ideas in character theory can be presented from a module
or representation-theoretic point of view.

Definition 2.1.14. Let 𝐴 be an 𝐹 -algebra and let X ∶ 𝐴 → 𝑀𝑛(𝐹) be a representation. We say

X is irreducible(reducible) if its corresponding 𝐴-module is irreducible(reducible).

Let 𝐺 be a group and 𝐹 a field. Consider a representation X (of degree 𝑛) of the group
algebra 𝐹[𝐺]. For each 𝑔 ∈ 𝐺 ⊆ 𝐹[𝐺], X(𝑔) is non-singular. Thus the restriction of X to 𝐺 is a
group homomorphism from 𝐺 into GL(𝑛, 𝐹). We therefore define the following:

Definition 2.1.15. Let 𝐺 be a group and 𝐹 a field. A representation of 𝐺 is a homomorphism

X ∶ 𝐺 → GL(𝑛, 𝐹). The integer 𝑛 is called the degree of the representation.
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2.1. Modules and Representations

Now if X0 ∶ 𝐺 → GL(𝑛, 𝐹) is a representation of 𝐺, then we can obtain a corresponding
representation of 𝐹[𝐺] by defining

X
(
∑
𝑔∈𝐺

𝜆𝑔𝑔)
= ∑

𝑔∈𝐺
𝜆𝑔X0(𝑔).

The adjectives “similar”, “reducible” and “irreducible” are used on the representation of 𝐺 as
if they were used on the corresponding representation.

Theorem 2.1.16. Let 𝑁 ⊴ 𝐺. Suppose that is a set of representations of 𝐺/𝑁 and let be

a set of representations of 𝐺 such that the representationX of 𝐺 is in if and only if𝑁 ⊆ kerX.
Then the mapping 𝜙 ∶ X ↦ X, where X ∈  and X is defined by

X ∶ 𝑔 ↦ X(𝑔𝑁 ),

defines a bijective correspondence from to.

Proof. Define a mapping 𝜙 ∶ X ↦ X where X is given by

X ∶ 𝑔 ↦ X(𝑔𝑁 )

and X is in  . Clearly, X is a representation of 𝐺. Further, if 𝑔 ∈ 𝑁 , then X(𝑔) = X(𝑔𝑁 ) =
X(1𝑁 ) = X(1) = 𝐼 . That is, 𝑁 ⊆ kerX. Thus 𝜙 is indeed a mapping from  to .

Surjectivity: Consider X ∈ . Choose X, defined by

X ∶ 𝑔𝑁 ↦ X(𝑔).

Now since 𝑁 ⊆ kerX, X is well-defined. Further, X is easily shown to be a representation of
𝐺/𝑁 (since X is a representation of 𝐺); that is, X ∈  . Finally, if 𝑔 ∈ 𝐺, then

𝜙(X)(𝑔) = X(𝑔𝑁 ) = X(𝑔) by definition.

Thus 𝜙(X) = X.
Injectivity: If X,N ∈  , suppose X = 𝜙(X) = 𝜙(N) = N. Thus X(𝑔𝑁 ) = X(𝑔) = N(𝑔) =

N(𝑔) for all 𝑔 ∈ 𝐺, and X = N. Hence 𝜙 is a bijection and the proof is complete.

Remark 2.1.17. The representation X in  is irreducible if and only if its corresponding rep-

resentation X is irreducible (see [11, page 170]).
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2.2. On characters of a group

2.2 On characters of a group

Definition 2.2.1. Let X ∶ 𝐺 → 𝐺𝐿(𝑛, ℂ) be a representation of 𝐺. Then a character 𝜒 of 𝐺
afforded by X is a function from 𝐺 to ℂ defined by

𝜒(𝑔) = trX(𝑔) for all 𝑔 ∈ 𝐺.

Further, 𝜒 is said to be irreducible (reducible) if and only ifX is irreducible (reducible). We denote

the set of irreducible characters of 𝐺 as Irr(𝐺).

Remark 2.2.2.

1. Alternatively, we can define characters as follows. Let 𝑉 be a ℂ[𝐺]-module with a basis .
A character 𝜒 of 𝐺 afforded by 𝑉 is a mapping defined by

𝜒(𝑔) = tr [𝑔] for all 𝑔 ∈ 𝐺.

2. The value 𝜒(1), is called the degree of 𝜒 . If 𝜒(1) = 1, then 𝜒 is called a linear character;

otherwise 𝜒 is called a non-linear character. In particular, linear characters form homo-

morphisms from 𝐺 to ℂ×.

3. For each group 𝐺, the mappingX ∶ 𝐺 → GL(1, 𝐹), defined by 𝑔 ↦ (1), defines a represen-
tation of 𝐺. The character afforded by X, denoted by 1𝐺, is called the principal character

of 𝐺.

4. A class function on a group 𝐺 is a function from 𝐺 to ℂ which is constant on the conjugacy

classes of 𝐺. Characters of a group are class functions (see [8, Lemma 2.3]).

5. Every class function of𝐺 can be expressed as a linear combination of irreducible characters.

Further, a linear combination of irreducible characters of 𝐺 is a character of 𝐺 if and only

if its coefficients are positive integers (see [8, Theorem 2.8]).

Theorem 2.2.3. [8, Theorem 3.11] Let 𝐺 be a group and 𝜒 ∈ Irr(𝐺), then

𝜒(1) | |𝐺| .

Definition 2.2.4. Let 𝜒 be a character of 𝐺. The kernel of 𝜒 , denoted by ker 𝜒 , is a normal

subgroup of 𝐺 (see [8, Lemma 2.19]), defined by

ker 𝜒 = {𝑔 ∈ 𝐺 ∶ 𝜒(𝑔) = 𝜒(1)} .

Further, we define 𝐙(𝜒) to be the set

𝐙(𝜒) = {𝑔 ∈ 𝐺 ∶ |𝜒 (𝑔)| = 𝜒(1)} .
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2.2. On characters of a group

Remark 2.2.5. Given 𝜒 ∈ Irr(𝐺), it can be shown that 𝜒(1) | |𝐺 ∶ 𝐙(𝜒)| (see [8, Theorem 3.12]).

Lemma 2.2.6. [8, Corollary 2.7] A group 𝐺 has 𝑘 conjugacy classes if and only if |Irr(𝐺)| = 𝑘.
Furthermore, given Irr(𝐺) = {𝜒1, … , 𝜒𝑘}, it follows that

|𝐺| =
𝑘

∑
𝑖=1

𝜒𝑖(1)2.

Corollary 2.2.7. A group 𝐺 is abelian if and only if all of its irreducible characters are linear.

Proof. ( ⟹ ) Suppose that 𝑘 is the number of conjugacy classes of 𝐺 and let Irr(𝐺) =
{𝜒1, … , 𝜒𝑘}. If 𝐺 is abelian then 𝑔𝑎 = 𝑔 for all 𝑎, 𝑔 ∈ 𝐺; that is, 𝑔𝐺 = {𝑔}. Thus |𝐺| = 𝑘.
Therefore 𝑘 = ∑𝑘

𝑖=1 𝜒𝑖(1)2. But 𝜒𝑖(1) ≥ 1 for all 𝑖, thus 𝜒𝑖(1) = 1 for all 𝑖.
( ⟸ ) Conversely, suppose that 𝜒𝑖(1) = 1 for all 𝑖. For a contradiction, suppose 𝐺 is not

abelian. Thus there exists a conjugacy class of 𝐺, say 𝑔𝐺 for 𝑔 ∈ 𝐺, of size greater than 1. But
𝑘 = ∑𝑘

𝑖=1 𝜒𝑖(1)2 = |𝐺| . Further, 𝐺 must have 𝑘 conjugacy classes. Thus

|𝐺| = 𝑘 <

𝑘 − 1 terms⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
∑

ℎ∈𝐺−{𝑔}

||ℎ
𝐺|| + ||𝑔

𝐺|| ,

since ||𝑔
𝐺|| > 1, a contradiction. Thus each conjugacy class of 𝐺 must be of size 1 and 𝐺 is

abelian.

If 𝑁 ⊴ 𝐺, then Theorem 2.1.16 can be given in terms of characters and so we get the
following:

Lemma 2.2.8. Let 𝑁 ⊴ 𝐺.

1. If 𝜒 is a character of 𝐺 with 𝑁 ⊆ ker 𝜒 , then 𝜒 is constant on the cosets of 𝑁 in 𝐺 and the

function 𝜒 , defined by
𝜒(𝑔𝑁) = 𝜒(𝑔) for all 𝑔𝑁 ∈ 𝐺/𝑁 ,

is a character of 𝐺/𝑁 .

2. If 𝜒 is a character of 𝐺/𝑁 , then the function 𝜒 defined by

𝜒(𝑔) = 𝜒(𝑔𝑁) for all 𝑔 ∈ 𝐺,

is a character of 𝐺.

3. In both (1) and (2), 𝜒 ∈ Irr(𝐺) if and only if 𝜒 ∈ Irr(𝐺/𝑁).

Remark 2.2.9. We often do not distinguish between the character 𝜒 of 𝐺 where 𝑁 ⊆ ker 𝜒 and

the corresponding character 𝜒 .
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For each group 𝐺 there is an associated “invertible matrix”, called the character table of
𝐺. Loosely speaking, the rows of this matrix correspond to irreducible characters of 𝐺 and
the columns correspond to the conjugacy class representatives of 𝐺. The following example
is used to illustrate the concept expressed in Lemma 2.2.8 through the character table of 𝑆4.

Example 2.2.10. Consider the character table of 𝑆4 given below.

Table 2.1: Character table of 𝑆4 (see [11, Chapter 18
(18.1)]):

(1) (1 2) (1 2 3) (1 2)(3 4) (1 2 3 4)

1𝑆4 1 1 1 1 1

𝜆 1 -1 1 1 -1

𝜒1 2 0 -1 2 0

𝜒2 3 1 0 -1 -1

𝜒3 3 -1 0 -1 1

Let 𝑁 = 𝑉4 = {1, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)} which is a normal subgroup of 𝑆4. It is easily
shown that 𝐺/𝑁 ≅ 𝑆3. Note that all of the elements of 𝑁 , excluding (1), belong in the conjugacy
class (1 2)(3 4)𝑆4 and the column corresponding to (1 2)(3 4) evaluate to the degree (for the first

three characters). Thus 𝑁 lies in the kernel of 1𝑆4 , 𝜆 and 𝜒1, respectively. So we expect the first

three characters in Table 2.1 to correspond to the character of 𝑆3.
The following table confirms this to be the case.

Table 2.2: Character ta-
ble of 𝑆3 (see [11, Examples
16.3]):

(1) (1 2) (1 2 3)

1𝑆3 1 1 1

𝜆 1 -1 1

𝜒 2 0 -1

Proposition 2.2.11. [8, Corollary 2.3] If 𝐺 is a group with the derived subgroup 𝐺′, then there

are |𝐺 ∶ 𝐺′| linear characters of 𝐺.

Let 𝜙, 𝜓 be class functions of 𝐺. We define an inner product (see [1, Definition 6.3]) of the
class functions by

[𝜙, 𝜓] = ∑
𝑔∈𝐺

𝜙(𝑔)𝜓(𝑔).

If 𝜓 is a character of 𝐺 and 𝜒 an irreducible character of 𝐺, we say 𝜒 is an irreducible con-
stituent of 𝜓, if [𝜓, 𝜒 ] ≠ 0.
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Proposition 2.2.12. [8, Corollary 2.17] If 𝜒 and 𝜓 are characters of 𝐺, then [𝜒 , 𝜓] is a non-

negative integer. Moreover, 𝜒 ∈ Irr(𝐺) if and only if [𝜒 , 𝜒 ] = 1.

2.3 Characters of direct products

For characters 𝜒 and 𝜓 of 𝐺, we define 𝜒𝜓 to be the function from 𝐺 to ℂ given by

𝜒𝜓 ∶ 𝑔 ↦ 𝜒(𝑔)𝜓(𝑔) for all 𝑔 ∈ 𝐺.

Proposition 2.3.1. Let 𝜒 be a character of 𝐺 and 𝜆 a linear character of 𝐺. Then, 𝜆𝜒 is a

character of 𝐺. Moreover, 𝜆𝜒 ∈ Irr(𝐺) if and only if 𝜒 ∈ Irr(𝐺).

Proof. Let 𝜒 be afforded by X. Define 𝜆X ∶ 𝐺 → GL(𝑛, 𝐹) by

𝜆X ∶ 𝑔 ↦ 𝜆(𝑔)X(𝑔).

Since linear characters are homomorphisms and X is a homomorphism, 𝜆X is a homomor-
phism. Moreover, tr 𝜆(𝑔)X(𝑔) = 𝜆(𝑔) trX(𝑔) = 𝜆(𝑔)𝜒(𝑔). Thus 𝜆𝜒 is a character of 𝐺 afforded
by the representation 𝜆X. Now

[𝜆𝜒 , 𝜆𝜒] =
1
|𝐺|

∑
𝑔∈𝐺

𝜆(𝑔)𝜒(𝑔)𝜆(𝑔)𝜒 (𝑔)

=
1
|𝐺|

∑
𝑔∈𝐺

𝜒(𝑔)𝜒(𝑔)𝜆(𝑔)𝜆(𝑔)

=
1
|𝐺|

∑
𝑔∈𝐺

𝜒(𝑔)𝜒(𝑔) (note 𝜆(𝑔) is a root of unity)

= [𝜒 , 𝜒 ] .

Thus, by Proposition 2.2.12, 𝜆𝜒 ∈ Irr(𝐺) if and only if 𝜒 ∈ Irr(𝐺).

Proposition 2.3.2. [8, Corollary 4.2] Let 𝜒 and 𝜓 be characters of 𝐺, then 𝜒𝜓 is a character of

𝐺.

Definition 2.3.3. Let 𝐺 = 𝐻 × 𝐾 and 𝜒 , 𝜓 be characters of 𝐻 and 𝐾 , respectively. The direct
product of 𝜒 and 𝜓, denoted by 𝜒 × 𝜓, is defined by

(𝜒 × 𝜓)(ℎ𝑘) = 𝜒(ℎ)𝜓(𝑘),

where ℎ𝑘 ∈ 𝐺.

Lemma 2.3.4. Let 𝐺 = 𝐻 × 𝐾 and 𝜒 , 𝜓 be characters of 𝐻 and 𝐾 , respectively. Then 𝜒 × 𝜓 is a

character of 𝐺.
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Proof. Now 𝐺/𝐻 ≅ 𝐾 and 𝐺/𝐾 ≅ 𝐻 , thus 𝜒 and 𝜓 are characters of 𝐺 (see Remark 2.2.9).
Thus, by Proposition 2.3.2, 𝜒 × 𝜓 is a character of 𝐺.

Theorem 2.3.5. Let 𝐺 = 𝐻 × 𝐾 . Then the characters of the form 𝜒 × 𝜓 for 𝜒 ∈ Irr(𝐻) and
𝜓 ∈ Irr(𝐾) are exactly the irreducible characters of 𝐺.

Proof. Let 𝜙, 𝜙1 be distinct in Irr(𝐻) and 𝜓, 𝜓1 be distinct in Irr(𝐾). Further, let 𝜒 = 𝜙 × 𝜓 and
𝜒1 = 𝜙1 × 𝜓1. Then

[𝜒 , 𝜒1] =
1

|𝐻 | |𝐾 |
∑
𝑔∈𝐺

𝜙(𝑔)𝜓(𝑔)𝜙1(𝑔)𝜓1(𝑔)

=
1
|𝐻 |

∑
𝑔∈𝐺

𝜙(𝑔)𝜙1(𝑔)
1
|𝐾 |

∑
𝑔∈𝐺

𝜓(𝑔)𝜓1(𝑔)

= [𝜙, 𝜙1] [𝜓, 𝜓1] .

Similarly, [𝜒 , 𝜒 ] = [𝜙, 𝜙] [𝜙1, 𝜙1] and [𝜒1, 𝜒1] = [𝜓, 𝜓] [𝜓1, 𝜓1] . Thus, by Proposition 2.2.12,
we see that 𝜒 × 𝜓 for 𝜒 ∈ Irr(𝐻) and 𝜓 ∈ Irr(𝐾) form a set of distinct irreducible characters
of 𝐺. Further,

∑
𝜒∈Irr(𝐻),𝜓∈Irr(𝐾)

(𝜒 × 𝜓)(1)2 = ∑
𝜒 , 𝜓

𝜒(1)2𝜓(1)2 = ∑
𝜒
𝜒(1)2 ∑

𝜓

𝜓(1)2 = |𝐻| |𝐾 | = |𝐺| .

Thus {𝜒 × 𝜓 ∶ for 𝜒 ∈ Irr(𝐻) and 𝜓 ∈ Irr(𝐾)} forms the set of all irreducible characters of 𝐺

2.4 Normal subgroups

In this section, we introduce the ideas of induction and restriction of characters. We present
results showing how we can obtain more information on the restricted character when the
subgroup is normal. The situation is more complicated when restricting to a subgroup which
is not normal. Most, if not all, of these results are well known in literature and are readily
proved in [8]. A select few are proven here.

2.4.1 Restriction and induction

Let𝐻 ≤ 𝐺 and suppose that 𝜒 is a character of𝐺. The restriction of 𝜒 to𝐻 (𝜒 is evaluated only
on 𝐻 ), denoted by 𝜒𝐻 , is a character of 𝐻 . Note that if 𝜒 is afforded by X, then X restricted
to 𝐻 , is a homomorphism of 𝐻 ; this homomorphism affords 𝜒𝐻 .

Definition 2.4.1. Let𝐻 ≤ 𝐺 and let 𝜙 be a class function of𝐻 . We define 𝜙𝐺, called the induced
class function on 𝐺 by 𝜙, by

𝜙𝐺(𝑔) =
1
|𝐻 |

∑
𝑥∈𝐺

𝜙◦(𝑔−1𝑥𝑔),
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2.4. Normal subgroups

where 𝜙◦(ℎ) = 𝜙(ℎ) for all ℎ ∈ 𝐻 and 𝜙◦(𝑥) = 0 for all 𝑥 ∈ 𝐺 − 𝐻 .

Remark 2.4.2. Note that 𝜙𝐺(1) = |𝐺 ∶ 𝐻| 𝜙(1).

Theorem 2.4.3. (Frobenius reciprocity)[8, Lemma 5.2] Let 𝐻 ≤ 𝐺 and let 𝜙 be a class function

on 𝐻 and 𝜃 a class function on 𝐺, then

[𝜙𝐺, 𝜃] = [𝜙, 𝜃𝐻 ] .

Proof. By definition,

[𝜙𝐺, 𝜃] =
1
|𝐺|

∑
𝑔∈𝐺

𝜙𝐺(𝑔)𝜃(𝑔)

=
1
|𝐺|

∑
𝑔∈𝐺 (

1
|𝐻|

∑
𝑥∈𝐺

𝜙◦(𝑔𝑥)
)
𝜃(𝑔)

=
1
|𝐺|

1
|𝐻 |

∑
𝑔∈𝐺

∑
𝑥∈𝐺

𝜙◦(𝑔𝑥)𝜃(𝑔)

But since 𝜙◦ and 𝜃 are class functions evaluating on the same conjugacy class 𝑔𝐺 for each
𝑥 ∈ 𝐺, while 𝑔 varies in 𝐺, we can rewrite this equation as:

[𝜙𝐺, 𝜃] =
1
|𝐺|

1
|𝐻 |

∑
𝑦∈𝐺

∑
𝑥∈𝐺

𝜙◦(𝑦)𝜃(𝑦).

But
∑
𝑥∈𝐺

𝜙◦(𝑦)𝜃(𝑦) = |𝐺| 𝜙◦(𝑦)𝜃(𝑦),

and so

[𝜙𝐺, 𝜃] =
1
|𝐻 |

∑
𝑦∈𝐺

𝜙◦(𝑦)𝜃(𝑦)

=
1
|𝐻 |

∑
𝑦∈𝐺−𝐻

𝜙◦(𝑦)𝜃(𝑦) +
1
|𝐻 |

∑
𝑦∈𝐻

𝜙(𝑦)𝜃(𝑦) (recall that 𝜙◦ evaluates to 0 on 𝐺 − 𝐻 )

= 0 +
1
|𝐻|

∑
𝑦∈𝐻

𝜙(𝑦)𝜃(𝑦) = [𝜙, 𝜃𝐻 ] .

Corollary 2.4.4. Let 𝐻 ≤ 𝐺 and let 𝜙 be a character of 𝐻 , then 𝜙𝐺 is a character of 𝐺.
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2.4. Normal subgroups

2.4.2 Clifford theory

Definition 2.4.5. Let 𝑁 ⊴ 𝐺 and suppose 𝜓 is a character of 𝑁 , then the conjugate of 𝜓 in 𝐺
by 𝑔 ∈ 𝐺, denoted by 𝜓𝑔 , is defined by

𝜓𝑔(𝑥) = 𝜓(𝑥𝑔) for 𝑥 ∈ 𝑁 .

The following properties follow easily.

Theorem 2.4.6. [8, Lemma 6.1] Let 𝑁 ⊴ 𝐺 and suppose 𝜙, 𝜓 are characters of 𝑁 . If 𝑎, 𝑏 ∈ 𝐺,
then

1. 𝜙𝑎 is a character of 𝑁 ;

2. 𝜙𝑎𝑏 = (𝜙𝑎)𝑏;

3. [𝜙𝑎, 𝜓𝑎] = [𝜙, 𝜓];

4. [𝜒𝑁 , 𝜓𝑎] = [𝜒𝑁 , 𝜓] for a character 𝜒 of 𝐺.

From Theorem 2.4.6 (3), we see that if 𝜓 ∈ Irr(𝑁 ), then 𝜓𝑎 ∈ 𝐼 𝑟𝑟(𝑁 ). Furthermore, we note

that the degrees of 𝜓 and 𝜓𝑎 are equal.

Theorem 2.4.7. (Clifford)[8, Theorem 6.2] Let 𝑁 ⊴ 𝐺, 𝜒 ∈ Irr(𝐺) and 𝜓 a constituent of 𝜒𝑁
such that 𝜓 = 𝜓1, 𝜓2, … , 𝜓𝑛 are all distinct conjugates of 𝜓 in 𝐺. Then,

𝜒𝑁 = 𝑐
𝑛

∑
𝑖=1

𝜓𝑖

where 𝑐 = [𝜒𝑁 , 𝜓].

Proof. We consider (𝜓𝐺)𝑁 . Now for 𝑎 ∈ 𝑁 , we have

𝜓𝐺(𝑎) =
1
|𝑁 |

∑
𝑥∈𝐺

𝜓◦(𝑎𝑥) =
1
|𝑁 |

∑
𝑥∈𝐺

𝜓(𝑎𝑥) =
1
|𝑁 |

∑
𝑥∈𝐺

𝜓𝑥(𝑎)

since 𝑁 ⊴ 𝐺. Thus |𝑁 | (𝜓𝐺)𝑁 = ∑𝑥∈𝐺 𝜓𝑥 . Thus if 𝜙 ∈ Irr(𝑁 ) is such that 𝜙 is not conjugate to
𝜓, then [(𝜓𝐺)𝑁 , 𝜙] = 0. But by assumption and [𝜒𝑁 , 𝜓] = [𝜒 , 𝜓𝐺] ≠ 0. It follows, [𝜒𝑁 , 𝜙] = 0;
that is, the only irreducible constituents of 𝜒𝑁 are 𝜓 = 𝜓1, 𝜓2, … , 𝜓𝑛. Further, if 𝑐 = [𝜒𝑁 , 𝜓],
then by Theorem 2.4.6 (4) we have

𝜒𝑁 = 𝑐∑𝜓𝑖.

Definition 2.4.8. Let 𝑁 ⊴ 𝐺 and 𝜓 ∈ Irr(𝑁 ). The inertia group of 𝜓 in 𝐺 is defined by

𝐈𝐺(𝜓) = {𝑔 ∈ 𝐺 ∶ 𝜓𝑔 = 𝜓} .

Note that 𝑁 ⊆ 𝐈𝐺(𝜓) since 𝜓𝑛 = 𝜓 for 𝑛 ∈ 𝑁 (𝜓 is a class function).
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Remark 2.4.9. Let Ω = Irr(𝑁 ) and 𝐺 act on elements of Ω by conjugation (see Definition
2.4.5). By Theorem 2.4.6 (2) and noting that the conjugate of any 𝜙 ∈ Irr(𝑁 ) by 1 ∈ 𝐺 is equal

to 𝜙, we see that we have indeed defined an action. Further, by definition of the inertia group,
it follows for 𝜓 ∈ Ω, that 𝐺𝜓 = 𝐈𝐺(𝜓) and so the inertia group is a subgroup of 𝐺. Moreover, the

Orbit-Stabilizer theorem states that

||𝜓 || = |𝐺 ∶ 𝐈𝐺(𝜓)| ,

where 𝜓 is the set of distinct conjugates of 𝜓. Thus if 𝑛 and 𝑐 are given as in Theorem 2.4.7,
we see that

𝑛 = |𝐺 ∶ 𝐈𝐺(𝜓)| .

Moreover, 𝑛 | |𝐺 ∶ 𝑁 | since |𝐺 ∶ 𝑁 | = |𝐺 ∶ 𝐈𝐺(𝜓)| |𝐈𝐺(𝜓) ∶ 𝑁 |. Further, it can be shown that

𝑐 | |𝐺 ∶ 𝑁 |.

Lemma 2.4.10. [8, Theorem 6.11] Let 𝑁 ⊴ 𝐺 and 𝜓 ∈ Irr(𝑁 ). Suppose𝐻 = 𝐈𝐺(𝜓) (𝑁 ⊆ 𝐻 ⊆ 𝐺),
 is the set of all irreducible characters 𝜙 of 𝐻 such that 𝜙𝑁 has 𝜓 as an irreducible constituent,

and  is the set of all irreducible characters 𝜒 of 𝐺 such that 𝜒𝑁 has 𝜓 as an irreducible con-

stituent. Then the following holds:

1. 𝜙𝐺 ∈ Irr(𝐺) for 𝜙 ∈ ;

2. The mapping 𝑓 ∶  →  defined by 𝜓 ↦ 𝜓𝐺 is a bijection;

3. If 𝜒 = 𝜙𝐺 where 𝜙 ∈ , then 𝜒𝐻 has 𝜙 as its unique irreducible constituent;

4. If 𝜒 = 𝜙𝐺 where 𝜙 ∈ , then [𝜒𝑁 , 𝜓] = [𝜙𝑁 , 𝜓].

Theorem 2.4.11. (Ito)[8, Theorem 6.15] Let 𝑁 ⊴ 𝐺 is abelian, then 𝜒(1) | |𝐺 ∶ 𝑁 | for all 𝜒 ∈
Irr(𝐺).

Proof. Let 𝜒 ∈ Irr(𝐺). Now let 𝜆 be an irreducible constituent of 𝜒𝑁 . Note that 𝜆 is linear
since 𝑁 is abelian. Set 𝐻 = 𝐈𝐺(𝜆). By Lemma 2.4.10 (2), there exists 𝜓 ∈ Irr(𝐻) (where

[𝜓𝑁 , 𝜆] = [𝜒𝑁 , 𝜆] ≠ 0 by Lemma 2.4.10 (4)) such that 𝜓𝐺 = 𝜒 .
Now, by Theorem 2.4.7,

𝜓𝑁 = 𝑐∑𝜆𝑖,

where [𝜆, 𝜓𝑁 ] ≠ 0 and 𝜆 = 𝜆1, … , 𝜆𝑛 are the distinct conjugates of 𝜆 in H. So 𝜆ℎ = 𝜆 for all
ℎ ∈ 𝐻 by definition. Thus we can write

𝜓𝑁 = 𝑐𝜆.

Thus, if 𝑎 ∈ 𝑁 , then |𝜓(𝑎)| = |𝜓𝑁 (𝑎)| = |𝑒𝜆(𝑎)| = 𝑒(1) = 𝑒𝜆(1) = 𝜓(1). That is, 𝑎 ∈ 𝐙(𝜓) and
𝑁 ⊆ 𝐙(𝜓). If we consider the fact that |𝐻 ∶ 𝑁 | = |𝐻 ∶ 𝐙(𝜓)| |𝐙(𝜓) ∶ 𝑁 | and 𝜓(1) | |𝐻 ∶ 𝐙(𝜓)|
(see Remark 2.2.5), then 𝜓(1) | |𝐻 ∶ 𝑁 |; and so 𝜓(1) | |𝐺 ∶ 𝑁 | (|𝐺 ∶ 𝑁 | = |𝐺 ∶ 𝐻| |𝐻 ∶ 𝑁 |). Now

25



2.4. Normal subgroups

𝜒(1) = 𝜓𝐺(1) = |𝐺 ∶ 𝐻| 𝜓(1), where |𝐺 ∶ 𝐻| and 𝜓(1) both divide |𝐺 ∶ 𝑁 |; thus 𝜒(1) | |𝐺 ∶ 𝑁 |.
The proof is complete.

Theorem2.4.12. (Gallagher)[8, Theorem 6.17] Let𝑁 ⊴ 𝐺 and 𝜒 ∈ Irr(𝐺) such that 𝜒𝑁 ∈ Irr(𝑁 ),
then the characters 𝜇𝜒 ∈ Irr(𝐺) are distinct for each 𝜇 ∈ Irr(𝐺/𝑁). Further, each 𝜇𝜒 is an

irreducible constituent of (𝜒𝑁 )𝐺.

Recall that in a group 𝐺, a chief series is a normal series

1 = 𝐺0 ⊴ 𝐺1 ⊴ ⋯ ⊴ 𝐺𝑛 = 𝐺,

such that for each 0 ≤ 𝑖 < 𝑛, there exists no normal subgroup 𝐻 of 𝐺 with 𝐺𝑖 < 𝐻 < 𝐺𝑖+1. The
factors of this series are called chief factors. It can be shown that every normal subgroup is a

term in some chief series!

Theorem 2.4.13. [8, Theorem 6.18] Let 𝑁/𝑀 be an abelian chief factor of 𝐺 and 𝜒 ∈ Irr(𝑁 ) be
invariant in 𝐺. Then one of the following holds:

1. 𝜒𝑀 ∈ Irr(𝑀);

2. 𝜒𝑀 = 𝑐𝜓 where 𝜓 ∈ Irr(𝑀) and 𝑐2 = |𝑁 ∶ 𝑀|;

3. 𝜒𝑀 = ∑𝑡
𝑖=1 𝜓𝑖 where 𝜓𝑖 ∈ Irr(𝑀) are distinct and 𝑡 = |𝑁 ∶ 𝑀|.

Corollary 2.4.14. [8, Corollary 6.19] Let 𝑁 ⊴ 𝐺, 𝜒 ∈ Irr(𝐺) and |𝐺 ∶ 𝑁 | = 𝑝, where 𝑝 is a

prime. Then one of the following holds:

1. 𝜒𝑁 ∈ Irr(𝑁 );

2. 𝜒𝑁 = ∑𝑝
𝑖=1 𝜓𝑖 where 𝜓𝑖 ∈ Irr(𝑁 ) are distinct.

Proof. Since 𝐺/𝑁 is of prime order, it follows that 𝐺/𝑁 is simple; that is, there exists no
non-trivial normal proper subgroup 𝐻/𝑁 of 𝐺/𝑁 . Or by the Correspondence theorem, there
exists no normal proper subgroup 𝐻 of 𝐺 which contains 𝑁 . It follows that 𝐺/𝑁 is an abelian
(cyclic) chief factor of 𝐺. We note that the prime 𝑝 = |𝐺 ∶ 𝑁 | can not be a square number,
thus by Theorem 2.4.13, the result follows.
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Groups with few 𝑝′-character degrees
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3 Thompson’s theorem

The definition of a good mathematical problem is the

mathematics it generates rather than the problem

itself.

– Andrew Wiles

In this chapter, we introduce and prove a theorem that perhaps lies at the heart of this
dissertation—Thompson’s theorem. This remarkable theorem was first proved by John Griggs
Thompson, in 1970, in a paper[19] titled “Normal p-complements and irreducible characters.”
We first introduce some terms and notation. If 𝐺 = 𝑁 ⋊ 𝑃 where 𝑃 ∈ Syl𝑝(𝐺) and 𝑁 ⊴ 𝐺,
we call𝑁 a normal 𝑝-complement or, say𝐺 is 𝑝-nilpotent. The character degree set of𝐺 is de-
fined to be the set cd(𝐺) = {𝜒(1) ∶ 𝜒 ∈ Irr(𝐺)}. Further, cd𝑝(𝐺) = {𝜒(1) ∶ 𝑝 | 𝜒 (1) and 𝜒 ∈ Irr(𝐺)}
and cd𝑝′(𝐺) = {𝜒(1) ∶ 𝑝 ∤ 𝜒 (1) and 𝜒 ∈ Irr(𝐺)}. Thus, the statement of Thompson’s theorem
is as follows:

Theorem. (Thompson) Let 𝐺 be a group and 𝑝 a fixed prime. If ||cd𝑝′(𝐺)|| = 1, then 𝐺 contains

a normal 𝑝-complement.

Before we prove Thompson’s theorem, we have to go through some preliminaries. Let 𝜒
be a character of a group 𝐺 afforded by the representation X. Now if N(𝑔) = detX(𝑔), then
N(𝑔ℎ) = detX(𝑔ℎ) = det(X(𝑔)X(ℎ)) = detX(𝑔) detX(ℎ) = N(𝑔)N(ℎ). Thus N defines a
representation of 𝐺. The character afforded by the representation N is denoted det 𝜒 . This
character is linear since det 𝜒 (1) = detX(1) = 1.

Proposition 3.1. The set of linear characters of a group 𝐺, denoted by 𝐺̂, forms a group.

Proof. If 𝜒 and 𝜓 are in Irr(𝐺), we define 𝜒𝜓 by

𝜒𝜓 ∶ 𝑔 ↦ 𝜒(𝑔)𝜓(𝑔).

Set 𝐺̂ = {𝜆 ∈ Irr(𝐺) ∶ 𝜆 is linear} . For 𝜆1, 𝜆2 ∈ 𝐺̂, 𝜆1𝜆2 is a character of 𝐺 by Proposition 2.3.2.
Further, 𝜆1(1)𝜆2(1) = 1 thus 𝜆1𝜆2 ∈ 𝐺̂. For 𝜆 ∈ 𝐺̂, clearly 𝜆1𝐺 = 𝜆, thus an identity exists in
𝐺̂. Finally, for 𝜆 ∈ 𝐺̂ afforded by the representation X, consider the mapping N ∶ 𝑔 ↦ X(𝑔).
Now N(𝑔ℎ) = X(𝑔ℎ) = X(𝑔)X(ℎ) = N(𝑔)N(ℎ), thus N is a representation of 𝐺. Let 𝜆 be the
character afforded by N. We see that 𝜆(1) = trN(1) = trX(1) = 1 = 1, thus 𝜆 ∈ 𝐺̂. Clearly,
𝜆 ∶ 𝑔 ↦ 𝜆(𝑔). So 𝜆(𝑔)𝜆(𝑔) = 𝜆(𝑔)𝜆(𝑔−1) = 𝜆(𝑔𝑔−1) = 𝜆(1) = 1 (see Remark 2.2.2 (2)). Thus
𝜆𝜆 = 1𝐺. In conclusion, 𝐺̂ forms a group.

Given that 𝐺̂ is a group, we can now define the following.

Definition 3.2. Let 𝐺 be a group and 𝜒 a character of 𝐺. If det 𝜒 = 𝜆 (which is in 𝐺̂) we define
the determinantal order of 𝜒 as 𝑜(𝜒) = 𝑜(𝜆).

Proposition 3.3. Let 𝐺 be a group. If 𝜒 ∈ Irr(𝐺), then 𝑜(𝜒) = |𝐺 ∶ ker 𝜆| where det 𝜒 = 𝜆.
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Proof. Let det 𝜒 = 𝜆. Since 𝜆 is linear, 𝜆 ∶ 𝐺 ↦ ℂ× is a homomorphism. So, by the First

isomorphism theorem, 𝐺/ker 𝜆 ≅ 𝜆(𝐺). So 𝜆(𝐺) is a finite subgroup of ℂ×; thus, by Proposition

1.4.19, 𝜆(𝐺) is cyclic (𝜆(𝐺) = ⟨𝜆(𝑔0)⟩) of order |𝐺 ∶ ker 𝜆| = 𝑛. Thus, for all 𝑔 ∈ 𝐺, 𝜆(𝑔)𝑛 = 1;
that is, 𝜆𝑛 = 1𝐺. Now if 𝑘 ≤ 𝑛 is a positive integer, such that 𝜆𝑘 = 1𝐺, then 𝜆(𝑔0)𝑘 = 1. But
𝑜(𝜆(𝑔0)) = 𝑛, implies 𝑛 ≤ 𝑘 and so 𝑘 = 𝑛. Thus 𝑜(𝜆) = 𝑛 and the proof is complete.

Remark 3.4. When 𝜒 is linear (afforded by X), then

det 𝜒 (𝑔) = detX(𝑔) = trX(𝑔) = 𝜒(𝑔) for all 𝑔 ∈ 𝐺.

So 𝑜(𝜒) = |𝐺 ∶ ker 𝜒 | .

Let 𝐺 be a group and 𝜋 a set of primes. The 𝜋-residue of 𝐺, denoted by O𝜋(𝐺), is the
smallest normal subgroup of 𝐺 such that 𝐺/O𝜋(𝐺) is a 𝜋-group. If 𝜋 = {𝑝}, we write O𝑝(𝐺)
and call it the 𝑝-residue of 𝐺. The 𝜋-residue of 𝐺 is a characteristic subgroup of 𝐺.

Theorem 3.5. (Cauchy’s theorem) If 𝐺 is a group such that 𝑝 is a prime which divides the order

of 𝐺, then 𝐺 contains an element of order 𝑝.

Proposition 3.6. Let 𝐺 be a group and 𝜋 a set of primes. If 𝑋 ⊆ 𝐺 contains all the elements of

𝐺 whose orders do not have prime divisors in 𝜋, then O𝜋(𝐺) = ⟨𝑋⟩.

Proof. Let 𝑁 = ⟨𝑋⟩. Now note that 𝑁 char 𝐺. We now show that 𝐺/𝑁 is a 𝜋-group. For a
contradiction, let 𝑞 be a prime such that 𝑞 | |𝐺 ∶ 𝑁 | and 𝑞 ∉ 𝜋. Then 𝐺/𝑁 contains an element

[𝑔] (we use this notation instead of 𝑎𝑁 ) of order 𝑞 (Cauchy’s theorem). Thus 𝑔𝑞 ∈ 𝑁 but 𝑔 ∉ 𝑁
(note that if 𝑔 ∈ 𝑁 , then the order of [𝑔] would be less than 𝑞). It follows 𝑜(𝑔) = 𝑞𝑘𝑚 where
𝑞 ∤ 𝑚; that is, there exists integers 𝑎, 𝑏 such that 1 = 𝑎𝑞 + 𝑏𝑚. So we can write 𝑔𝑎𝑞+𝑏𝑚 ∉ 𝑁 .
Further, 𝑔𝑚 ∉ 𝑁 (as if it was, then 𝑔𝑎𝑞+𝑏𝑚 ∈ 𝑁 ). By order of 𝑔 , (𝑔𝑚)𝑞

𝑘
= 1 and there exists no

smaller integer 𝑡 such that (𝑔𝑚)𝑡 = 1 since this would mean 𝑜(𝑔) ≤ 𝑡𝑚 < 𝑞𝑘𝑚, a contradiction.
Thus 𝑜(𝑔𝑚) = 𝑞𝑘, a contradiction since 𝑁 must contain all elements whose orders do not have
prime divisors in 𝜋. Consequently |𝐺 ∶ 𝑁 | is a 𝜋-number and 𝐺/𝑁 a 𝜋-group. So O𝜋(𝐺) ⊆ 𝑁 .

Now consider 𝑔 ∈ 𝐺 such that 𝑜(𝑔) does not contain any prime divisors in 𝜋. Further,
consider [𝑔] ∈ 𝐺/O𝜋(𝐺) (here [𝑔] is the coset 𝑔O𝜋(𝐺)). Now 𝑜([𝑔]) | 𝑜(𝑔), but 𝑜([𝑔]) must be
a 𝜋-number since 𝐺/O𝜋(𝐺) is a 𝜋-group. So 𝑜([𝑔]) = 1 and 𝑔 ∈ O𝜋(𝐺). Therefore 𝑁 ⊆ O𝜋(𝐺)
and 𝑁 = O𝜋(𝐺).

By the notation O𝑝𝑝′(𝐺), we mean O𝑝′(O𝑝(𝐺)).

Lemma 3.7. A group 𝐺 contains a normal 𝑝-complement if and only if O𝑝𝑝′(𝐺) = 1.

Proof. Suppose that 𝐺 contains a normal 𝑝-complement, then 𝐺 = 𝑁 ⋊ 𝑃 where 𝑃 ∈ Syl𝑝(𝐺)
and 𝑁 ⊴ 𝐺. Now since 𝐺/𝑁 ≅ 𝑃 (Diamond isomorphism theorem), where 𝑃 is a 𝑝-group,
then O𝑝(𝐺) ⊆ 𝑁 . If, for a contradiction O𝑝(𝐺) ≠ 𝑁 , then |𝐺 ∶ O𝑝(𝐺)| > |𝐺 ∶ 𝑁 | = |𝑃| where
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|𝐺 ∶ O𝑝(𝐺)| is a larger 𝑝-power (larger than |𝑃 |) dividing the order of 𝐺, a contradiction since
𝑃 is a Sylow 𝑝-subgroup. Thus O𝑝(𝐺) = 𝑁 . Further, 𝑁/1 is a 𝑝′-group, thus O𝑝′(𝑁 ) = 1. That
is, O𝑝𝑝′(𝐺) = 1.

Conversely, suppose that O𝑝𝑝′(𝐺) = 1. Let 𝑁 = O𝑝(𝐺). It follows that O𝑝′(𝑁 ) = 1, with
𝑁 ⊴ 𝐺. Now, by definition of the 𝑝-residue, 𝐺/𝑁 is a 𝑝-group where 𝑁 is a 𝑝′-group (N/1 is
a 𝑝′-group) and |𝐺 ∶ 𝑁 | |𝑁 | = 𝐺. So 𝐺/𝑁 ≅ 𝑃 where 𝑃 ∈ Syl𝑝(𝐺). Therefore 𝐺 = 𝑁𝑃 and 𝑁 is
a normal 𝑝-complement of 𝐺.

Corollary 3.8. For a group 𝐺, if 𝑝 ∤ |O𝑝(𝐺)|, then 𝐺 contains a normal 𝑝-complement.

Proof. Note 𝑝 ∤ |O𝑝(𝐺)| implies O𝑝(𝐺) contains only elements whose orders are not divisible
by a prime 𝑝. Thus, by Proposition 3.6 and Lemma 3.7, O𝑝𝑝′(𝐺) = ⟨1⟩ = 1 and 𝐺 contains a
normal 𝑝-complement.

Lemma3.9. [8, Theorem 12.1] Let 𝑝 be a fixed prime. Define(𝐺) = {𝜒 ∈ Irr(𝐺) ∶ 𝑝 ∤ 𝜒 (1) and 𝑝 ∤ 𝑜(𝜒 )}
and (𝐺) = ∑𝜒∈(𝐺) 𝜒(1)2, then

|O𝑝(𝐺)| ≡ (𝐺) mod 𝑝.

Theorem 3.10. Let 𝐺 be a group and 𝑝 a fixed prime. If ||cd𝑝′(𝐺)|| = 1, then 𝐺 contains a normal

𝑝-complement.

Proof. Let (𝐺) = {𝜒 ∈ Irr(𝐺) ∶ 𝑝 ∤ 𝜒 (1) and 𝑝 ∤ 𝑜(𝜒 )} and (𝐺) = ∑𝜒∈(𝐺) 𝜒(1)2 and 𝑁 =
O𝑝′(𝐺). We first show that (𝐺) = Irr(𝐺/𝐺′𝑁).

If 𝜆 ∈ Irr(𝐺/𝐺′𝑁), then 𝐺′ ⊆ 𝐺′𝑁 ⊆ ker 𝜆 (see Proposition 2.2.8). Thus 𝜆 is linear. Further,
if, for a contradiction, 𝑝 | 𝑜(𝜆) = |𝐺 ∶ ker 𝜆|. Then 𝑝 | |𝐺 ∶ 𝑁 | = |𝐺 ∶ ker 𝜆| |ker 𝜆 ∶ 𝑁 | since
𝑁 ⊆ 𝐺′𝑁 ⊆ ker 𝜆—a contradiction (𝐺/𝑁 is a 𝑝′-group). Thus 𝑝 ∤ 𝑜(𝜆) and it follows 𝜆 ∈ (𝐺).

If 𝜆 ∈ (𝐺), then 𝜆 is linear by assumption (all non-linear irreducible characters have
degrees divisible by 𝑝). Further, 𝑝 ∤ 𝑜(𝜆) = |𝐺 ∶ ker 𝜆|. That is, 𝐺/ker 𝜆 is a 𝑝′-group and so
𝑁 ⊆ ker 𝜆. Thus 𝐺′, 𝑁 ⊆ ker 𝜆 and so 𝐺′𝑁 ⊆ ker 𝜆. Consequently 𝜆 ∈ Irr(𝐺/𝐺′𝑁),

(𝐺) = Irr(𝐺/𝐺′𝑁),

and (𝐺) = |𝐺 ∶ 𝐺′𝑁 | (see Proposition 2.2.6). Now since |𝐺 ∶ 𝑁 | = |𝐺 ∶ 𝐺′𝑁 | |𝐺′𝑁 ∶ 𝑁 | is a
𝑝′-number, 𝑝 ∤ (𝐺) = |𝐺 ∶ 𝐺′𝑁 | . Thus, by Lemma 3.9, 𝑝 ∤ |O𝑝(𝐺)| and 𝐺 contains a normal
𝑝-complement by Corollary 3.8.

Now let 𝑝 be a fixed prime. What happens if we change the degree of precisely one non-
linear irreducible character in the hypothesis of Thompson’s theorem? More specifically,
suppose 𝐺 is a group that contains exactly one non-linear irreducible character whose degree
is non-divisible by a prime 𝑝. What is the structure of such groups? We investigate the
question in the following chapters.

30



4 Seitz’s theorem

I like friends who have independent minds because

they tend to make you see problems from all angles.

– Nelson Mandela

Consider a finite group 𝐺. We define Irr1(𝐺) as the set of non-linear irreducible characters
of 𝐺. In particular, for a fixed prime 𝑝, we define Irr1(𝐺, 𝑝′) as the set of non-linear irreducible
characters of 𝐺 whose degrees are non-divisible by 𝑝. The primary groups of interest in this
dissertation are groups𝐺 such that |Irr1(𝐺, 𝑝′)| = 1; these groups will henceforth be called (∗)-
groups. In particular, when we use phrases like “let 𝐺 be a (∗)-group”, it should be understood
that there is a fixed prime 𝑝 such that |Irr1(𝐺, 𝑝′)| = 1.

We now address the existence of nilpotent (∗)-groups; but before this is done, we prove a
key theorem.

4.1 Seitz’s theorem

We first provide some definitions and theorems which we will use in the proof of Seitz’s
theorem.

Definition 4.1.1. A 𝑝-group 𝐺 is called an extraspecial 𝑝-group, if 𝐙(𝐺) is of order 𝑝 and

𝐺/𝐙(𝐺) is a non-trivial elementary abelian 𝑝-group.

Remark 4.1.2. Note that extraspecial 𝑝-groups have order 𝑝2𝑚+1 (see [14, Lemma 2.2.9]). We

will when convenient, use 𝐄𝐒(𝑚, 𝑝) to denote an extraspecial group of order 𝑝2𝑚+1.

Lemma 4.1.3. Given a group 𝐺 and 𝑔 ∈ 𝐺, it follows that 𝑔𝐺 ⊆ 𝑔𝐺′.

Proof. If we choose 𝑎 ∈ 𝐺, then 𝑔𝑎 = 𝑎−1(𝑔)𝑎 = 𝑔(𝑔−1𝑎−1𝑔𝑎) = 𝑔[𝑔−1, 𝑎−1] ∈ 𝑔𝐺′.

Lemma 4.1.4. If 𝑁 ⊴ 𝐺 and |𝑁 | = 2, then 𝑁 ⊆ 𝐙(𝐺).

Proof. Suppose {1, 𝑎} = 𝑁 ⊴ 𝐺. We know 1 ∈ 𝐙(𝐺). Now for any 𝑔 ∈ 𝐺, by normality, either
𝑎𝑔 = 1 or 𝑎𝑔 = 𝑎. If 𝑎𝑔 = 𝑎, then 𝑔 ∈ 𝐙(𝐺) and we are done. But if 𝑎𝑔 = 1, then 𝑎 = 1, a
contradiction. Thus 𝑁 ⊆ 𝐙(𝐺).

Lemma 4.1.5. [16, Theorem 5.2.10] If 𝐺/𝐙(𝐺) is nilpotent, then 𝐺 is nilpotent.

Below we state a well known theorem for reference.

Theorem 4.1.6. (Frattini argument) Let 𝑁 ⊴ 𝐺 where 𝑃 ∈ Syl𝑝(𝑁 ). Then 𝐺 = 𝑁 𝐍𝐺(𝑃).

In the following theorem, by a minimal normal subgroup of 𝐺, we mean a proper normal
subgroup 𝑁 of 𝐺 such that there exists no 1 < 𝐻 < 𝑁 where 𝐻 ⊴ 𝐺.
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4.1. Seitz’s theorem

Lemma 4.1.7. If𝑁 ⊴ 𝐺 and𝐺 acts transitively on𝑁−1 by conjugation, then𝑁 is an elementary

abelian group of order 𝑝𝑟 for some prime 𝑝. Moreover, 𝑁 is a minimal normal subgroup of 𝐺.

Proof. Since 𝐺 is transitive on 𝑁 −1, if we choose two elements 𝑥, 𝑦 ∈ 𝑁 −1, then there exists
𝑔 ∈ 𝐺 such that 𝑥𝑔 = 𝑦 for some 𝑔 ∈ 𝐺. That is, 𝑥 and 𝑦 have the same order (isomorphisms
preserve orders and 𝑥 ↦ 𝑥𝑔 is an isomorphism). This shows that all non-trivial element of 𝑁
have the same order 𝑛 ≠ 1. Now if 𝑝, 𝑞 are distinct prime factors of 𝑛, since 𝑛 | |𝑁 |, we have
𝑝, 𝑞 | |𝑁 |. Thus, by Cauchy’s theorem, 𝑁 contains elements of order 𝑝 and 𝑞, respectively, a
contradiction. So only one prime can divide 𝑛, say 𝑝. Now if 𝑛 = 𝑝𝑘, where 𝑘 ≥ 2, then
1 ≠ 𝑔 ∈ 𝑁 is an element of order 𝑝𝑘. But, similarly, by Cauchy’s theorem, 𝑁 contains an
element of order 𝑝, a contradiction. Consequently every non-trivial element in 𝑁 is of order
𝑝. Thus 𝑁 is a non-trivial 𝑝-group.

Since 𝑁 is a non-trivial 𝑝-group, 𝐙(𝑁) > 1. Further, note that 𝐙(𝑁) char 𝑁 ⊴ 𝐺, thus
𝐙(𝑁) ⊴ 𝐺. Now we suppose, for a contradiction, that 𝑍(𝑁) < 𝑁 . Choose a 𝑥 ∈ 𝑁 − 𝐙(𝑁)
and 𝑦 ∈ 𝐙(𝑁). By transitivity, there exists 𝑔 ∈ 𝐺, such that 𝑥 = 𝑦𝑔 ∈ 𝐙(𝑁) (𝐙(𝑁) ⊴ 𝐺), a
contradiction. It follows 𝑁 = 𝐙(𝑁). Therefore, we have shown that 𝑁 is an abelian group of
exponent 𝑝, i.e 𝑁 is an elementary abelian 𝑝-group.

We now show that 𝑁 is a minimal normal subgroup of 𝐺. Suppose, for a contradiction,
that there exists 1 < 𝐻 < 𝑁 with 𝑁 ⊴ 𝐺. Now choose 1 ≠ 𝑥 ∈ 𝐻 and 𝑦 ∈ 𝑁 − 𝐻 . By
transitivity, there exists 𝑔 ∈ 𝐺 such that 𝑥𝑔 = 𝑦. But 𝐻 ⊴ 𝐺 and so 𝑦 ∈ 𝐻 , a contradiction.
Thus no such 𝐻 can exist and 𝑁 is a minimal normal subgroup of 𝐺.

Theorem 4.1.8. (Seitz [17]) A group 𝐺 has exactly one non-linear irreducible character if and

only if one of the following holds:

1. |𝐺| = 2𝑘, |𝐺′| = 2, and 𝐙(𝐺) = 𝐺′ where 𝑘 is odd;

2. 𝐺 ≅ AGL1(𝑝𝑛).

Proof. ( ⟹ ) Since the number of irreducible characters of𝐺 equals the number of conjugacy
classes of 𝐺, 𝐺 has exactly one non-linear irreducible character if and only if 𝐺 has |𝐺 ∶ 𝐺′|+1
conjugacy classes (see Proposition 2.2.6 and Proposition 2.2.11). If we let  = {𝑔0𝐺′, … , 𝑔𝑡𝐺′}
be the set of cosets of 𝐺′, where 𝑔0 = 1. Then, since | | = |𝐺 ∶ 𝐺′| = 𝑡 + 1, we have 𝑡 + 2 =
|𝐺 ∶ 𝐺′| + 1 is the number of conjugacy classes of 𝐺.

By Lemma 4.1.3, 1 = 𝑔𝐺0 , 𝑔𝐺1 , … , 𝑔𝐺𝑡 are distinct conjugacy classes of 𝐺 (distinct cosets of
are disjoint). Now 𝐺′ ⊴ 𝐺 and so must be the union of conjugacy classes of 𝐺 (distinct
from 𝑔𝐺1 , … , 𝑔𝐺𝑡 since distinct cosets are disjoint). If 𝐺′ is the union of more than two distinct
conjugacy classes (including 1), then there are at least 𝑎 + 𝑡 > 𝑡 + 2 conjugacy classes of 𝐺
(𝑎 > 2), a contradiction. The only possibility is that 1 and 𝐺′ − 1 are the conjugacy classes
which form the union of 𝐺′. So 1, 𝐺′ − 1, 𝑔𝐺1 , … , 𝑔𝐺𝑡 are the 𝑡 + 2 conjugacy classes of 𝐺. But
since the union of all conjugacy classes of 𝐺 must equal to 𝐺, we must have 𝑔𝐺𝑖 = 𝑔𝑖𝐺′ for
𝑖 ≥ 1.
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4.1. Seitz’s theorem

We can now say 𝐺 has |𝐺 ∶ 𝐺′| + 1 conjugacy classes if and only if 𝑔1𝐺′, … , 𝑔𝑡𝐺′ are con-
jugacy classes of 𝐺 and 𝐺′ is the union of the conjugacy classes 1 and 𝐺′ − 1.

Now if 𝐺 has exactly one non-linear irreducible character, then we have shown that 𝐺′ is
the union of conjugacy classes 1 and 𝐺′−1. It follows that 𝐺 acts transitively, by conjugation,
on 𝐺′−1. Thus, by Lemma 4.1.7, 𝐺′ is an elementary abelian group (of order 𝑝𝑘) and a minimal
normal subgroup of 𝐺. Also, since 𝐺′ is abelian, 𝐺′′ = 1 and thus 𝐺 is solvable.

If we choose 1 ≠ 𝑧 ∈ 𝐺′ −1, then 𝐺′ ⊆ 𝐂𝐺(𝑧) ⊴ 𝐺 since 𝐺′ is abelian. It is easily confirmed
that for any ℎ ∈ 𝐺, 𝐂𝐺(𝑧)ℎ = 𝐂𝐺(𝑧ℎ). By normality, we have 𝐂𝐺(𝑧) = 𝐂𝐺(𝑧)ℎ = 𝐂𝐺(𝑧ℎ) for
all ℎ ∈ 𝐺. That is, all elements in 𝐺 commute with 𝑧 if and only if they commute with its
conjugates. So 𝐂𝐺(𝑧) = 𝐂𝐺(𝐺′). Since 𝐺′ − 1 = 𝑧𝐺, by the Orbit-Stabilizer theorem,

|𝐺 − 1| = ||𝑧
𝐺|| = |𝐺 ∶ 𝐂𝐺(𝑧)| = ||𝐺 ∶ 𝐂𝐺(𝐺′)|| = 𝑝𝑘 − 1.

Case 1: Suppose |𝐺′ − 1| = |𝐺 ∶ 𝐂𝐺(𝐺′)| = 1. So |𝐺′| = 2, then𝐺′ ⊆ 𝐙(𝐺) and𝐺 is nilpotent
(see Lemma 4.1.4 and 4.1.5). Now since 𝐙(𝐺) ⊴ 𝐺, 𝐙(𝐺) is the union of conjugacy classes of
𝐺. If 𝑔𝑖𝐺′ = 𝑔𝐺𝑖 ⊆ 𝐙(𝐺) (𝑖 ≥ 1), then 𝑔𝑔𝑖 = 𝑔𝑖 for all 𝑔 ∈ 𝐺. That is, 𝑔𝑖𝐺′ = {𝑔𝑖}, a contradiction.
In general, all conjugacy classes contained in 𝐙(𝐺) are the ones of size one. Thus 𝐙(𝐺) = 𝐺′.

Now choose 𝑥 ∈ 𝐺 and 𝑦2 ∈ 𝐺. Since 𝐺′ of order two and every commutator is in 𝐙(𝐺),
we have

1 = [𝑥, 𝑦]2 = 𝑥𝑦𝑥−1𝑦−1𝑥𝑦𝑥−1𝑦−1 = 𝑥𝑦 [𝑥−1, 𝑦−1] 𝑥−1𝑦−1 = 𝑥 [𝑥−1, 𝑦−1] 𝑦𝑥−1𝑦−1

= 𝑦−1𝑥𝑦𝑦𝑥−1𝑦−1 = 𝑦−1𝑥𝑦2𝑥−1𝑦−1(𝑦−1𝑦) = 𝑦 [𝑥, 𝑦2, 𝑦] = 𝑦−1𝑦 [𝑥, 𝑦2] = [𝑥, 𝑦2] .

That is, 𝑦2 commutes with an arbitrary 𝑥 in 𝐺. So 𝑦2 ∈ 𝐙(𝐺) = 𝐺′. Thus if we consider an
arbitrary 𝑦𝐺′ ∈ 𝐺/𝐺′. Then

(𝑦𝐺′)2 = 𝑦2𝐺′ = 𝐺′.

This means that 𝐺/𝐺′ is of exponent two. Since |𝐺′| = 2, we have shown that 𝐺 is a 2-group
whose center is cyclic of order two and 𝐺/𝐙(𝐺) is an elementary abelian 2-group. That is, 𝐺
is an extraspecial 2-group. Therefore |𝐺| is 2𝑘 where 𝑘 is odd, 𝐙(𝐺) = 𝐺′ and |𝐺′| = 2.

Case 2: Now suppose |𝐺′ − 1| = |𝐺 ∶ 𝐂𝐺(𝐺′)| = 𝑝𝑘 − 1 > 1. That is, |𝐺′| = 𝑝𝑘 > 2. Thus all
non-trivial conjugacy classes must be of size greater than one. It follows 𝐙(𝐺) = 1 since 1 is
the only conjugacy class which can be contained in 𝐙(𝐺).

Now let 𝑞 be a prime divisor of 𝑝𝑘 − 1 and 𝑄 ∈ Syl𝑞(𝐺). Note if 𝑄 ⊆ 𝐂𝐺(𝐺′), then

|𝐺 ∶ 𝑄| = ||𝐺 ∶ 𝐂𝐺(𝐺′)|| ||𝐂𝐺(𝐺′) ∶ 𝑄|| ,

this would imply 𝑞 | |𝐺 ∶ 𝑄|, which is impossible, thus 𝑄 ⊈ 𝐂𝐺(𝐺′). Now 𝐺′𝑄 ⊴ 𝐺 since it
contains the derived subgroup. Thus, by the Frattini argument,

𝐺 = 𝐺′𝑄 𝐍𝐺(𝑄) = 𝐺′ 𝐍𝐺(𝑄).
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Now note that if 𝐍𝐺(𝑄) = 𝐺, then 𝑄 ⊴ 𝐺. Thus for [𝑔, ℎ] = ℎ𝑔ℎ−1 in [𝐺′, 𝑄], we have

[𝑔, ℎ] ∈ 𝐺′ ∩ 𝑄,

That is, [𝐺′, 𝑄] ⊆ 𝐺′ ∩ 𝑄. But we know 𝐺′ has 𝑝-power order and 𝑞 is not of 𝑝-power since it
is a factor of 𝑝𝑘 − 1; thus 𝐺′ ∩ 𝑄 = 1 and [𝐺′, 𝑄] = 1. But [𝐺′, 𝑄] = 1 means all the elements
in 𝑄 commute with all the element in 𝐺′, i.e 𝑄 ⊆ 𝐂𝐺(𝐺′)—a contradiction. Thus 𝐍𝐺(𝑄) < 𝐺.

If ℎ ∈ 𝐺′ ∩ 𝐍𝐺(𝑄), then for any 𝑔 = 𝑎𝑏 ∈ 𝐺′ 𝐍𝐺(𝑄) = 𝐺, we have

ℎ𝑔 = (ℎ𝑎)𝑏 = ℎ𝑏 ∈ 𝐍𝐺(𝑄),

since 𝐺′ is abelian. But ℎ𝑏ℎ−1 = [𝑏, ℎ] ∈ 𝐺′, so [𝑏, ℎ] ℎ = ℎ𝑏 = ℎ𝑔 ∈ 𝐺′. That is, 𝐺′ ∩𝐍𝐺(𝑄) ⊴ 𝐺.
Moreover, 𝐺′ ∩ 𝐍𝐺(𝑄) < 𝐺′ since 𝑄 ⊆ 𝐍𝐺(𝑄) ⊆ 𝐺′ ⊆ 𝐂𝐺(𝐺′) is impossible. But we know that
𝐺′ is a minimal normal subgroup, thus 𝐺′ ∩ 𝐍𝐺(𝑄) = 1. So we have shown

𝐺 = 𝐺′ ⋊ 𝐻,

where 𝐻 = 𝐍𝐺(𝑄) is abelian (consider 𝐺/𝐺′ and see the Diamond isomorphism theorem).
Define 𝑁 = 𝐂𝐺(𝐺′) ∩ 𝐻 . We note that for arbitrary 𝑦 ∈ 𝑁 and 𝑔 = 𝑎𝑏 = 𝐺′ ⋊ 𝐻 = 𝐺, we

have

𝑦(𝑎𝑏) = (𝑎𝑦)𝑏 (𝑦 commutes with any element in 𝐺′)

= 𝑎(𝑏𝑦) = (𝑎𝑏)𝑦 (𝐻 is abelian),

that is, 𝑁 ⊆ 𝐙(𝐺) = 1. That is, 𝑁 = 1.
We now show that 𝐂𝐺(𝐺′) = 𝐺′. We already know that𝐺′ ⊆ 𝐂𝐺(𝐺′).
Now choose 𝑔 ∈ 𝐂𝐺(𝐺′). Note that 𝐺′ ⊆ 𝐂𝐺(𝐺). If 𝑔 ∈ 𝐺′, then we are done. We may

suppose that 𝑔 ∉ 𝐺′. Now 𝑔 ∈ 𝐺′ ⋊ 𝐻 , that is, 𝑔 ∈ 𝐻 𝑎 for some 𝑎 ∈ 𝐺. Thus 𝑎−1𝑔𝑎 ∈ 𝐻 ,
but 𝐂𝐺(𝐺′) ⊴ 𝐺 so 𝑎−1𝑔𝑎 ∈ 𝐂𝐺(𝐺′). Therefore 𝑎−1𝑔𝑎 ∈ 𝑁 ⊆ 𝐙(𝐺). This means 𝑎−1𝑔𝑎 = 1
consequently 𝑔 = 1, a contradiction. Therefore 𝐂𝐺(𝐺′) = 𝐺′.

We thus have |𝐺 ∶ 𝐺′| = |𝐺 ∶ 𝐂𝐺(𝐺′)| = 𝑝𝑘 − 1; that is, |𝐺| = |𝐺 ∶ 𝐺′| |𝐺′| = (𝑝𝑘 − 1)𝑝𝑘.
Further, if 𝑑 is the degree of the only non-linear irreducible character, then

|𝐺| = 𝑝𝑘(𝑝𝑘 − 1) = ||𝐺 ∶ 𝐺′|| + 𝑑2 = (𝑝𝑘 − 1) + 𝑑2 which means that

(𝑝𝑘 − 1)𝑝𝑘 − (𝑝𝑘 − 1) = 𝑑2 which implies that 𝑑 = 𝑝𝑘 − 1.

It follows that the degree of the only non-linear irreducible character is 𝑝𝑘 − 1.
Thus we have shown that,

𝐺 = 𝐺′ ⋊ 𝐻, |𝐺| = 𝑝𝑘(𝑝𝑘 − 1), ||𝐺
′|| = 𝑝𝑘, and |𝐻 | = 𝑑 = ||𝐺 ∶ 𝐺′|| = 𝑝𝑘 − 1,

where 𝐺′, 𝐻 are abelian and 𝑑 is the degree of the only non-linear irreducible character. This

34



4.1. Seitz’s theorem

group is isomorphic to AGL1(𝑝𝑘) (see Remark after [7, Theorem 7.10])
( ⟸ ) Case 1: We first suppose

||𝐺
′|| = 2, 𝐙(𝐺) = 𝐺′, and |𝐺| = 2𝑘,

where 𝑘 is odd. We again consider the cosets 𝑔0𝐺′, 𝑔1𝐺′, … , 𝑔𝑡𝐺′ (𝑔0 = 1). Since distinct cosets
are disjoint, and 𝑔𝐺𝑖 ⊆ 𝑔𝑖𝐺′, we see that 𝑔𝐺0 , 𝑔𝐺1 , … , 𝑔𝐺𝑡 are distinct conjugacy classes of 𝐺. Since
|𝐺′| = 2 and𝐺′ is the union of conjugacy classes (distinct from 𝑔𝐺𝑖 for 𝑖 > 0 since distinct cosets
are disjoint), we have 𝐺′ − 1 = 𝑔𝐺, for some 𝑔𝑖 ≠ 𝑔 ∈ 𝐺, is a conjugacy class of 𝐺. It follows
that 𝐺′ = 𝐙(𝐺) = {1, 𝑔}. Now if ||𝑔

𝐺
𝑖
|| = 1 for 𝑖 > 0, then we would have 𝑔𝑖ℎ = ℎ𝑔𝑖 for all ℎ ∈ 𝐺.

That is, 1, 𝑔 ≠ 𝑔𝑖 ∈ 𝐙(𝐺), a contradiction. Thus, 𝑔𝑖𝐺′ = 𝑔𝐺𝑖 for all 𝑖 > 0. We have shown that
1, 𝐺′ − 1 = 𝑔𝐺, 𝑔𝐺1 , … , 𝑔𝐺𝑡 are all conjugacy classes of 𝐺, that is, 𝐺 has |𝐺 ∶ 𝐺′| + 1 irreducible
characters. Therefore 𝐺 has exactly one non-linear irreducible character.

Case 2: We now suppose that 𝐺 ≅ AGL1(𝑝𝑛) = 𝑁 ⋊𝐻 (we borrow the notation in Example

1.4.20). We have shown that 𝑁 = 𝐺′ (see Remark 1.4.21). We now state some easily confirmed
facts about elements in AGL1(𝑝𝑛). For any 𝑇𝑎,𝑏, 𝑇𝑐,𝑑 ∈ AGL1(𝑝𝑛), the following holds:

∙ 𝑇𝑎,𝑏𝑇𝑐,𝑑 = 𝑇𝑎𝑐,𝑏𝑐+𝑑 ;

∙ 𝑇 −1
𝑎,𝑏 = 𝑇𝑎−1,−𝑎−1𝑏.

We show that 𝐺′ contains only two conjugacy classes; namely 1 and 𝐺′−1. Consider two
arbitrary elements in 𝐺′ − 1; say, 𝑇1,𝑎 and 𝑇1,𝑏 (𝑎, 𝑏 ≠ 0). Choose 𝑇𝑎𝑏−1,0 in AGL1(𝑝𝑛). Now

𝑇𝑎𝑏−1,0𝑇1,𝑎𝑇 −1
𝑎𝑏−1,0 = 𝑇𝑎𝑏−1,0𝑇1,𝑎𝑇𝑎−1𝑏,0 = 𝑇𝑎𝑏−1,𝑎𝑇𝑎−1𝑏,0 = 𝑇1,𝑏,

and so 𝑇1,𝑎 and 𝑇1,𝑏 are conjugate in 𝐺′ − 1; that is, 𝐺′ − 1 is a single conjugacy class.
Now consider, 𝐜𝐥(𝑇𝑎,0) and 𝐜𝐥(𝑇𝑏,0) with 𝑎, 𝑏 ∉ {1, 0} and 𝑎 ≠ 𝑏 (𝐜𝐥(𝑔) defines the conju-

gacy class of and element 𝑔 in a group). If we suppose, for a contradiction, 𝑇𝑎,0 and 𝑇𝑏,0 are
conjugate. Then there exists 𝑇𝑐,𝑑 such that

𝑇𝑐,𝑑𝑇𝑎,0𝑇 −1
𝑐,𝑑 = 𝑇𝑐,𝑑𝑇𝑎,0𝑇𝑐−1,−𝑐−1𝑑 = 𝑇𝑎𝑐,𝑎𝑑𝑇𝑐−1,−𝑐−1𝑑 = 𝑇𝑎,𝑎(𝑐−1𝑑)−𝑐−1𝑑 = 𝑇𝑎,𝑐−1𝑑(𝑎−1) = 𝑇𝑏,0,

but 𝑎 ≠ 𝑏 so we have a contradiction. Thus 𝐜𝐥(𝑇𝑎,0) and 𝐜𝐥(𝑇𝑏,0), with 𝑎, 𝑏 ∉ {1, 0} and 𝑎 ≠ 𝑏, are
distinct conjugacy classes. Further, note that 𝐜𝐥(𝑇𝑎,0) is disjoint from 𝐺′, since 𝑎 ∉ {1, 0}. We
have shown that 1, 𝐺′ − 1, and all 𝐜𝐥(𝑇𝑎,0) where 𝑎 goes over 𝐹 − {1, 0}, are distinct conjugacy
classes of AGL1(𝑝𝑛). The union of these is obviously in AGL1(𝑝𝑛). But if we choose 𝑇𝑎,𝑏 ∈
AGL1(𝑝𝑛). If 𝑎 = 1, then 𝑇𝑎,𝑏 = 𝑇1,𝑏 ∈ 𝐺′. But if 𝑎 ≠ 1, then consider 𝑇𝑎−1,𝑏. We have

𝑇𝑎−1,𝑏𝑇𝑎,0𝑇 −1
𝑎−1,𝑏 = 𝑇𝑎(𝑎−1),𝑎𝑏𝑇(𝑎−1)−1,−(𝑎−1)−1𝑏 = 𝑇𝑎,𝑎𝑏(𝑎−1)−1−(𝑎−1)−1𝑏 = 𝑇𝑎,(𝑏(𝑎−1)−1)(𝑎−1) = 𝑇𝑎,𝑏.

Thus 𝑇𝑎,𝑏 ∈ 𝐜𝐥(𝑇𝑎,0), and the union of all conjugacy classes 1, 𝐺′ − 1, and all 𝐜𝐥(𝑇𝑎,0) where
𝑎 goes over 𝐹 − {1, 0} is AGL1(𝑝𝑛). Consequently 1, 𝐺′ − 1, and all 𝐜𝐥(𝑇𝑎,0) where 𝑎 goes over

35



4.2. On nilpotent groups

𝐹 − {1, 0} are all the conjugacy classes of AGL1(𝑝𝑛). But there are 𝑝𝑛 − 2 conjugacy classes of
the form 𝐜𝐥(𝑇𝑎,0) where 𝑎 goes over 𝐹 −{1, 0}. Therefore AGL1(𝑝𝑛) has 𝑝𝑛 conjugacy classes. We
know that |𝐺 ∶ 𝐺′| = 𝑝𝑛 − 1 since |𝐺′| = 𝑝𝑛 and |AGL1(𝑝𝑛)| = 𝑝𝑛(𝑝𝑛 − 1). Thus AGL1(𝑝𝑛) has
|𝐺 ∶ 𝐺′|+1 irreducible characters (conjugacy classes). That is, AGL1(𝑝𝑛) has exactly one non-
linear irreducible character. But 𝐺 ≅ AGL1(𝑝𝑛), so 𝐺 has exactly one non-linear irreducible
character. The proof is complete.

Remark 4.1.9. Consider a group 𝐺 such that |𝐺′| = 2, 𝐙(𝐺) = 𝐺′, and |𝐺| = 2𝑘 where 𝑘 is odd.
Thus 𝐺 is a 𝑝-group where 𝐙(𝐺) is of order 𝑝 (𝑝 = 2). If 𝐺/𝑍(𝐺) was trivial, then 𝐺 = 𝐙(𝐺)
which is impossible since 𝐺′ ≠ 1. Thus 𝐺/𝐙(𝐺) is non-trivial. Further, similar to “( ⟹ ) Case 1”
in Theorem 4.1.8, 𝐺/𝐙(𝐺) is of exponent two; that is, 𝐺/𝐙(𝐺) is an elementary abelian 𝑝-group.
Thus Seitz’s theorem can be stated as below:

Theorem 4.1.10. (Seitz) A group 𝐺 has exactly one non-linear irreducible character if and only

if one of the following holds:

1. 𝐺 is an extraspecial 2-group;

2. 𝐺 ≅ AGL1(𝑝𝑛).

Let 𝑝 be a fixed prime. Consider (∗)-group 𝐺 such that 𝑝 ∤ |𝐺|. All non-linear irreducible
characters of 𝐺 must be of 𝑝′-degree since if it was not the case, Theorem 2.2.3 would force
𝑝 | |𝐺|. Thus, |Irr1(𝐺)| = 1. Now by Seitz (Theorem 4.1.8), it follows that either 𝐺 is an ex-
traspecial 2-group or 𝐺 is isomorphic to AGL1(𝑝𝑛0). We see that when 𝑝 ∤ |𝐺|, (∗)-groups
have already been classified. Therefore the convention is to assume 𝑝 | |𝐺| when considering a

(∗)-group 𝐺.

4.2 On nilpotent groups

Proposition 4.2.1. Let 𝜙 ∶ 𝐺1 → 𝐺2 be an isomorphism and 𝐻 ≤ 𝐺1. Then

𝜙(𝑁𝐺1(𝐻)) = 𝑁𝐺2(𝜙(𝐻)).

Proof. We let 𝜙 ∶ 𝐺1 → 𝐺2 be an isomorphism and 𝐻 ≤ 𝐺1. Suppose 𝑦 ∈ 𝜙(𝑁𝐺1(𝐻)). Then
there exists 𝑥 ∈ 𝑁𝐺1(𝐻) such that 𝑦 = 𝜙(𝑥). This implies 𝐻 𝑥 = 𝐻 and so 𝜙(𝐻 𝑥) = 𝜙(𝐻)
which gives 𝜙(𝐻)𝜙(𝑥) = 𝜙(𝐻) since 𝜙 is a homomorphism. Therefore 𝜙(𝐻)𝑦 = 𝜙(𝐻) and
𝑦 ∈ 𝑁𝐺2(𝜙(𝐻)). We have now shown that 𝜙(𝑁𝐺1(𝐻)) ⊆ 𝑁𝐺2(𝜙(𝐻)).

Now we let 𝑦 ∈ 𝑁𝐺2(𝜙(𝐻)). This implies 𝜙(𝐻)𝑦 = 𝜙(𝐻). But since 𝜙 is surjective, there
exists 𝑥 ∈ 𝐺1 such that 𝜙(𝑥) = 𝑦. Thus we have 𝜙(𝐻 𝑥) = 𝜙(𝐻)𝜙(𝑥) = 𝜙(𝐻) since 𝜙 is a
homomorphism. But 𝜙 is an isomorphism, thus 𝐻 𝑥 = 𝐻 and 𝑥 ∈ 𝑁𝐺1(𝐻). This then implies
𝑦 = 𝜙(𝑥) ∈ 𝜙(𝑁𝐺1(𝐻)), so 𝑁𝐺2(𝜙(𝐻)) ⊆ 𝜙(𝑁𝐺1(𝐻)). It follows that 𝜙(𝑁𝐺1(𝐻)) = 𝑁𝐺2(𝜙(𝐻)).

36



4.2. On nilpotent groups

Lemma 4.2.2. Let 𝑝, 𝑞 be fixed primes and let 𝐺 be a 𝑞-group with 𝑞 ≠ 𝑝. Then |Irr1(𝐺, 𝑝′)| = 1
if and only if 𝐺 is an extra-special 2-group. Moreover, 𝑝 ≠ 2.

Proof. ( ⟹ ) Since all non-linear irreducible character of 𝐺 must have 𝑞-power degrees (see
Theorem 2.2.3). Further, 𝐺 is a group which has exactly one non-linear irreducible character
since if other non-linear irreducible characters existed they would be of 𝑝′-degree. Thus 𝐺
has exactly one non-linear irreducible character. By Seitz’s theorem (Theorem 4.1.8), either
(1) or (2) holds. Suppose, for a contradiction, that (2) holds. We have 𝐺 ≅ 𝐾 where K is a
Frobenius group. Suppose 𝜙 ∶ 𝐾 → 𝐺 is an isomorphism and 𝐻 a Frobenius complement of
𝐾. We know by Lemma 1.4.8 that 𝐻 < 𝐾. Thus it follows that 𝜙(𝐻) < 𝐺; but 𝐺 is nilpotent,
since 𝐺 is a 𝑞-group, thus 𝜙(𝐻) < 𝐍𝐺(𝜙(𝐻)) by Theorem 1.3.7 (2). That is, 𝜙(𝐻) < 𝜙(𝑁𝐾 (𝐻))
by Proposition 4.2.1. It follows that 𝐻 < 𝑁𝐾 (𝐻) = 𝐻 by Proposition 1.4.12, a contradiction.
Thus (1) must hold and 𝐺 = 𝐄𝐒(𝑚, 2). Moreover, 𝑝 ≠ 𝑞 = 2.

( ⟸ ) The converse holds trivially by Theorem 4.1.8.

Remark 4.2.3.

∙ We note that from the lemma above, 𝑞-groups are not (∗)-groups since the fixed prime 𝑝
does not divide the order of the group.

∙ It might be observed that Lemma 4.2.2 also follows from Lemma 1.4.13. However, our

proof does not rely on us proving that if 𝐺 ≅ 𝐾 and 𝐾 is Frobenius, then 𝐺 is Frobenius.

Lemma 4.2.4. If 𝐺 = 𝑃 × 𝑄 is a nilpotent group, where 𝑃 and 𝑄 are both non-trivial Sylow

subgroups, then 𝐺 is not a (∗)-group.

Proof. Suppose, for a contradiction, that 𝐺 is a (∗)-group. So 𝑝 | |𝐺|. Without loss of general-
ity, let 𝑃 be a Sylow 𝑝-subgroup. Since 𝑃 is nilpotent, it is a non-trivial solvable group. Thus
choose a linear character of 𝑃 , say 𝜃 ≠ 1𝑃 (see Proposition 2.2.11). If 𝑄 is abelian, then all
non-linear irreducible characters of 𝐺, which are of the form

𝜒 × 𝜓 (𝜒 ∈ Irr(𝑃) and 𝜓 ∈ Irr(𝑄)),

would be of 𝑝-power (see Definition 2.3.3 and Theorem 2.3.5), a contradiction. Thus 𝑄 must be
non-abelian. Then choose 𝜓 ∈ Irr(𝑄) which is non-linear and has a degree non-divisible by 𝑝
(see Theorem 2.2.3). Thus

1𝑃 × 𝜓 and 𝜃 × 𝜓,

are non-linear irreducible characters of 𝐺 whose degrees are non-divisible by 𝑝, a contradic-
tion.

Theorem 4.2.5. If 𝐺 is a nilpotent group, then 𝐺 is not a (∗)-group.
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Proof. Consider the nilpotent group 𝐺 = 𝑃1 × ⋯ × 𝑃𝑘, where each 𝑃𝑖 is a Sylow 𝑝𝑖-subgroup.
For a contradiction, let 𝐺 be a (∗)-group. Without loss of generality, let 𝑃1, 𝑃2 be non-trivial.
From Lemma 4.2.4, we can choose two distinct non-linear irreducible characters of 𝑃1 ×𝑃2, say
𝜒1 × 𝜓1 and 𝜒2 × 𝜓2 with 𝜒𝑖 ∈ Irr(𝑃1) and 𝜓𝑖 ∈ Irr(𝑃2), which have degrees non-divisible by 𝑝. It
follows that 𝜒1 × 𝜓1 × 1𝑃3 ×⋯ × 1𝑃𝑘 and 𝜒2 × 𝜓2 × 1𝑃3 ×⋯ × 1𝑃𝑘 are distinct non-linear irreducible
characters of 𝐺 whose degrees are non-divisible by 𝑝, a contradiction. Thus 𝐺 must have
exactly one non-trivial factor, say 𝑃1. That is, 𝐺 = 𝑃1 × 1 × ⋯ × 1 ≅ 𝑃1 . Now, 𝑃1 cannot be a
𝑝-group since all irreducible characters of 𝐺

𝜒 × 1𝑃2 × ⋯ × 1𝑃𝑘 (𝜒 ∈ Irr(𝑃1))

would be 𝑝-powers, a contradiction. Thus 𝑃1 must be a non-trivial 𝑞-group (𝑞 ≠ 𝑝) and 𝑝 ∤ |𝐺|,
a contradiction since (∗)-groups require 𝑝 | |𝐺|.
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5 On general (∗)-groups

If I have seen further it is by standing on the

shoulders of giants.

– Isaac Newton

This chapter will describe the structure of general (∗)-groups. Upon our investigation
(∗)-groups, we discovered that Kazarin and Berkovich [12] definitively found (and proved)
the general structure of these groups. Their result generalize Thompson and Seitz’s theorems
which we proved in the prior chapters. In this chapter, we give a proof of their findings. We
present and prove the structure of (∗)-groups. Our proof assumes solvability.

We first introduce some terminology and notation for convenience. Let 𝑝 be a fixed prime.
A group𝐺 is called a Thompson group if ||cd𝑝′(𝐺)|| = 1. Recall that we call a group𝐺 a (∗)-group
if |Irr1(𝐺, 𝑝′)| = 1. The definition of a (∗)-group requires that 𝑝 | |𝐺|. We use the ordered triple

(𝐺, 𝜒 , 𝑝) to specify a group 𝐺, 𝜒 ∈ Irr1(𝐺) and a fixed prime 𝑝. More formally, when referring
to (𝐺, 𝜒 , 𝑝) as a (∗)-group, this means Irr1(𝐺, 𝑝′) = {𝜒 }. In the following chapter, we will
frequently say (𝐺, 𝑝) is a (∗)-group instead of (𝐺, 𝜒 , 𝑝) is a (∗)-group when we do not need
to reference that 𝜒 is the only non-linear irreducible character of 𝐺 with 𝑝′-degree.

We prove the following theorem:

Theorem 5.1. [12, Theorem A] Let 𝑝 be a fixed prime such that 𝑝 | |𝐺|. Then (𝐺, 𝜒 , 𝑝) is a
(∗)-group if and only if the following hold:

1. 𝐺′ is a Thompson group;

2. 𝐺/𝐺′ is a cyclic group of order 𝑝𝑛 − 1;

3. 𝐺′′ = ker 𝜒 ;

4. 𝐺/𝐺′′ ≅ AGL1(𝑝𝑛).

Theorem 5.2. Let 𝑝 be a fixed prime such that 𝑝 | |𝐺|. If (𝐺, 𝜒 , 𝑝) satisfies condition (1) - (4) in

Theorem 5.1, then (𝐺, 𝜒 , 𝑝) is a (∗)-group.

Proof. Let (𝐺, 𝜒 , 𝑝) satisfy condition (1) - (4) in Theorem 5.1.
Case 1: Suppose that ker 𝜒 = 1. By assumption AGL1(𝑝𝑛) ≅ 𝐺/ker 𝜒 = 𝐺/1 ≅ 𝐺.

Thus, by Theorem 4.1.8, 𝐺 has exactly one non-linear irreducible character. If 𝜒 is linear, then
𝐺′ ⊆ ker 𝜒 = 𝐺′′ ⊆ 𝐺′; that is, 𝐺′′ = 𝐺′. This means that 𝐺/𝐺′ ≅ AGL1(𝑝𝑛), a contradiction
since 𝐺/𝐺′ is abelian. Thus Irr1(𝐺) = {𝜒 }. If 𝑝 | 𝜒 (1), then

|𝐺| = ||𝐺 ∶ 𝐺′|| + 𝜒(1)2 (by Lemma 2.2.6)

= 𝑝𝑛 − 1 + 𝑝𝑘 for some integer 𝑘 (𝜒(1)2 is divisible by 𝑝)

= 𝑝(𝑝𝑛−1 + 𝑘) − 1.
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That is, 𝑝 ∤ |𝐺|, a contradiction. Therefore, 𝑝 ∤ 𝜒(1) and Irr1(𝐺, 𝑝′) = {𝜒 }.
Case 2: Suppose that ker 𝜒 > 1. Now choose 𝜓 ∈ Irr1(𝐺) − {𝜒 }. Let 𝜙 be an irreducible

constituent of 𝜓𝐺′ . Since 𝐺′ ⊴ 𝐺, by Theorem 2.4.7,

𝜓𝐺′ = 𝑐
𝑡

∑
𝑖=1

𝜙𝑖 ( 𝑐 = [𝜓𝐺′ , 𝜙] ),

where 𝜙 = 𝜙1, … , 𝜙𝑡 are the distinct conjugates of 𝜙. If 𝜙𝑖 is linear, then 𝐺′′ ⊆ ker 𝜙𝑖 for all
𝑖. Now 𝜓(1) = 𝜓𝐺′(1) = 𝑐𝑡. Further, if we choose 𝑔 ∈ 𝐺′′, then 𝜓(𝑔) = 𝜓𝐺′(𝑔) = 𝑐 ∑𝜙𝑖(𝑔) =
𝑐𝑡 = 𝜓(1) since 𝐺′′ ⊆ ker 𝜙𝑖 for all 𝑖. Thus 𝑔 ∈ ker 𝜓 and ker 𝜒 = 𝐺′′ ⊆ ker 𝜓. That is,
𝜒 ≠ 𝜓 ∈ Irr(𝐺/ker 𝜒). But 𝐺/ker 𝜒 ≅ AGL1(𝑝𝑛) and Theorem 4.1.8 asserts 𝐺/ker 𝜒 can
only have exactly one non-linear irreducible character. This is a contradiction. Thus 𝜙𝑖 is a
non-linear irreducible character of 𝐺′. Now 𝐺′ is a Thompson group, therefore 𝑝 | 𝜙𝑖(1) for all
𝑖. Since 𝜓(1) = 𝜓𝐺′(1), it follows 𝑝 | 𝜓(1).

We now show that 𝜒 is in Irr1(𝐺) such that 𝑝 ∤ 𝜒(1). Similar to the argument in Case 1, 𝜒
is non-linear. If 𝑝 | 𝜒 (1), then

|𝐺| = ||𝐺 ∶ 𝐺′|| + 𝜒(1)2 +∑𝜓𝑖(1)2 (where 𝜓𝑖 are non-linear such that 𝑝 | 𝜓𝑖(1)2)

= 𝑝𝑛 − 1 + 𝑝𝑘 for some integer 𝑘 (𝜒(1)2 and ∑𝜓𝑖(1)2 are divisible by 𝑝)

= 𝑝(𝑝𝑛−1 + 𝑘) − 1.

That is, 𝑝 ∤ |𝐺|, a contradiction. Therefore, 𝑝 ∤ 𝜒(1) and Irr1(𝐺, 𝑝′) = {𝜒 }.

Lemma 5.3. [10, Corollary 5.23] Let 𝐺 be a non-trivial 𝑝-group. Then 𝐺 contains a normal

subgroup of index 𝑝.

Corollary 5.4. Let 𝑝 be a prime dividing the order of a group𝐺. If𝐺 is nilpotent, then𝐺 contains

a normal subgroup of index 𝑝.

Proof. Let 𝐺 = 𝑃1 ×⋯ × 𝑃𝑘 where each 𝑃𝑖 is a Sylow 𝑝𝑖-subgroup (see Theorem 1.3.7). Without
loss of generality, let 𝑃1 be a Sylow 𝑝-subgroup, then by Lemma 5.3, 𝑃1 contains a normal
subgroup 𝐻 of index 𝑝.

Set 𝑁 = 𝐻 × 𝑃2 × ⋯ × 𝑃𝑘. Since 𝐻 ⊴ 𝑃1 and each 𝑃𝑖 ⊴ 𝑃𝑖 for 𝑖 ≥ 2, it follows that 𝑁 ⊴ 𝐺.
Moreover,

|𝐺 ∶ 𝑁 | =
|𝑃1 × ⋯ × 𝑃𝑘 |

|𝐻 × 𝑃2 × ⋯ × 𝑃𝑘 |
= |𝑃1| / |𝐻 | = 𝑝.

The proof is complete.

If 𝜒 is a character of a group 𝐺, we say 𝜒 vanishes on 𝐴 ⊆ 𝐺 if 𝜒(𝑔) = 0 for all 𝑔 ∈ 𝐴.

Lemma 5.5. Let 𝑝 be a fixed prime such that 𝑝 | |𝐺|. If (𝐺, 𝜒 , 𝑝) is a (∗)-group and 𝐺′ < 𝐺, then

1. 𝜒 vanishes on 𝐺 − 𝐺′. Moreover, ker 𝜒 < 𝐺′;

2. 𝑝 ∤ |𝐺 ∶ 𝐺′|.
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Proof. 1. Since 𝐺′ < 𝐺, 𝐺 has a non-principal linear character (see Proposition 2.2.11). Let
𝑔 ∈ 𝐺 − 𝐺′. Now we can choose 𝜆, a non-principal linear character of 𝐺, such that
𝑔 ∉ ker 𝜆. This means that 𝜆(𝑔) ≠ 1. Since 𝜒 ∈ Irr(𝐺), it follows 𝜆𝜒 ∈ Irr(𝐺) (by Lemma

2.3.1). Further, 𝜆𝜒(1) = 𝜆(1)𝜒(1) = 𝜒(1), thus 𝜆𝜒 = 𝜒 since 𝜒 is the only non-linear
irreducible character of 𝑝′-degree. Consequently 𝜆𝜒−𝜒 = 0 and thus (𝜆−1𝐺)𝜒 vanishes
on 𝐺. Therefore (𝜆(𝑔) − 1𝐺(𝑔))𝜒 (𝑔) = (𝜆(𝑔) − 1)𝜒(𝑔) = 0; since 𝜆(𝑔) ≠ 1, this implies
𝜒(𝑔) = 0. Hence 𝜒 vanishes on 𝐺 − 𝐺′.

Moreover, if 𝜒(𝑔) = 𝜒(1) for some 𝑔 ∈ 𝐺, then 𝑔 ∈ 𝐺′; that is; ker 𝜒 ⊆ 𝐺′. Note that
since 𝜒 is not a linear character, 𝐺′ ⊈ ker 𝜒 , so ker 𝜒 < 𝐺′ as required.

2. For a contradiction, suppose that 𝑝| |𝐺 ∶ 𝐺′|. Since 𝐺/𝐺′ is nilpotent, then by Corollary

5.4, the factor group 𝐺/𝐺′ contains a normal subgroup 𝐻/𝐺′ of index 𝑝 and by the
Correspondence theorem, 𝐺′ ≤ 𝐻 ⊴ 𝐺. In particular, |𝐺/𝐺′ ∶ 𝐻/𝐺′| = |𝐺 ∶ 𝐻| = 𝑝.
Thus, by Corollary 2.4.14, either 𝜒𝐻 ∈ Irr(𝐻) or 𝜒𝐻 = 𝜓1 + ⋯ + 𝜓𝑝 where the 𝜓𝑖’s are
distinct irreducible characters of𝐻 . But if 𝜒𝐻 = ∑𝑝

𝑖=1 𝜓𝑖, then since Theorem 2.4.7 asserts
all irreducible constituents of 𝜒𝐻 must have the same degree, it follows 𝜒(1) = 𝜒𝐻 (1) =
𝑝𝜓1(1), a contradiction since 𝜒 must be of 𝑝′-degree. Thus 𝜒𝐻 ∈ Irr(𝐻). Now, by
Theorem 2.4.12, all of (𝜒𝐻 )𝐺’s distinct irreducible constituents are given by 𝜆𝜒 where
𝜆 ∈ Irr(𝐺/𝐻) (a non-trivial abelian group). Hence if we choose 𝜒 and 1𝐺/𝐻 ≠ 𝜆 ∈
Irr(𝐺/𝐻), then 𝜒 and 𝜆𝜒 are distinct non-linear irreducible characters of 𝐺 with 𝑝′-
degree, a contradiction. Therefore 𝑝 ∤ |𝐺 ∶ 𝐺′|.

Consider a group 𝐺. For an arbitrary commutator [𝑎, 𝑏] ∈ 𝐺, we have that

[𝑎, 𝑏] 𝐺′′ = [𝑎𝐺′′, 𝑏𝐺′′] . (5.1)

Thus it follows that, (𝐺/𝐺′′)′ ⊆ 𝐺′/𝐺′′. Now if 𝑥𝐺′′ is an arbitrary element in 𝐺′/𝐺′′. Then

𝑥𝐺′′ = 𝑥1 ⋯𝑥𝑟𝐺′′ = 𝑥1𝐺′′𝑥2𝐺′′ ⋯𝑥𝑟𝐺′′,

where 𝑥𝑖 is a commutator in 𝐺 (see Lemma 1.1.7). But each 𝑥𝑖𝐺′ ∈ (𝐺/𝐺′′)′ by equation (5.1)
above. That is, 𝑥𝐺′′ ∈ (𝐺/𝐺′′)′. Thus we have the following lemma:

Lemma 5.6. For a group 𝐺, the derived subgroup of 𝐺/𝐺′′ is given by 𝐺′/𝐺′′.

Theorem 5.7. Let 𝑝 be a fixed prime where 𝑝| |𝐺|. If (𝐺, 𝜒 , 𝑝) is a (∗)-group and 𝐺′′ < 𝐺′, then

condition (1) – (4) of Theorem 5.1 are satisfied.

Proof. From assumption, 𝐺′ < 𝐺 since 𝐺′ = 𝐺 would mean 𝐺′′ = (𝐺′)′ = 𝐺′, a contradiction.
That is, (𝐺, 𝜒 , 𝑝) is a (∗)-group such that 𝐺′ < 𝐺. It follows from Lemma 5.5 (2) that 𝑝 ∤
|𝐺 ∶ 𝐺′|. Further, 𝐺/𝐺′′ is abelian if and only if 𝐺′ ⊆ 𝐺′′ and 𝐺′′ ⊆ 𝐺′ (see Theorem 1.1.17).
That is, 𝐺/𝐺′′ is abelian if and only if 𝐺′′ = 𝐺′. But 𝐺′′ ≠ 𝐺′, thus 𝐺/𝐺′′ is non-abelian. Now
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choose 𝜓 ∈ Irr1(𝐺/𝐺′′). Note that 𝐺′/𝐺′′ ⊴ 𝐺/𝐺′′ where 𝐺′/𝐺′′ is abelian. Thus, by Theorem

2.4.11,
𝜓(1) | ||𝐺/𝐺

′′ ∶ 𝐺′/𝐺′′|| = ||𝐺 ∶ 𝐺′|| (Third isomorphism theorem).

Hence 𝑝 ∤ 𝜓(1). Thus, all non-linear irreducible characters of 𝐺/𝐺′′ are of 𝑝′-degree. Moreover,
if 𝜓 ≠ 𝜙 ∈ Irr1(𝐺/𝐺′′), then 𝜓 and 𝜙 are distinct non-linear irreducible characters of 𝐺 of 𝑝′-
degrees, a contradiction. Consequently 𝐺/𝐺′′ has exactly one non-linear irreducible character.
Thus by Theorem 4.1.8, either 𝐺/𝐺′′ is 𝐄𝐒(𝑚, 2) or is isomorphic to AGL1(𝑞𝑛).

Case 1: Let𝐺′′ = 1. This implies𝐺 ≅ 𝐺/1 = 𝐺/𝐺′′. Further, Irr1(𝐺) = {𝜒 } and𝐺 = 𝐄𝐒(𝑚, 2)
or 𝐺 ≅ AGL1(𝑞𝑛).

If, for a contradiction, 𝐺 = 𝐄𝐒(𝑚, 2), then 𝑝 = 2 since 𝑝| |𝐺|. Moreover, 𝜒(1) | |𝐺| and 𝜒(1)
is a 2-power, a contradiction.

It follows that
𝐺 ≅ AGL1(𝑞𝑛) = 𝐺′/𝐺′′ ⋊ 𝐻,

where𝐺′/𝐺′′ “is the subgroup of translations” with order 𝑞𝑛 (see Lemma 5.6 and Remark 1.4.21)
and 𝐻 ≤ 𝐺/𝐺′′ is a cyclic subgroup of order 𝑞𝑛 − 1. But

𝐻 ≅
𝐺/𝐺′′

𝐺′/𝐺′′ ≅ 𝐺/𝐺′.

Thus 𝐺/𝐺′ is cyclic of order 𝑞𝑛−1. In particular, 𝑝 ∤ |𝐺 ∶ 𝐺′| = 𝑞𝑛−1 so 𝑝 | 𝑞𝑛 (|𝐺| = 𝑞𝑛(𝑞𝑛−1))
which forces 𝑝 = 𝑞 and 𝐺 ≅ AGL1(𝑝𝑛).

We see that𝐺′ is Thompson since |𝐺′| = 𝑝𝑛 (degrees of all non-linear irreducible characters
must divide 𝑝𝑛) and 𝐺/𝐺′ is cyclic of order 𝑝𝑛 − 1 (follows from paragraph above and 𝑝 = 𝑞).

If, for a contradiction, 1 < ker 𝜒 , it follows that |𝐺| > |𝐺 ∶ ker 𝜒 |. But since all linear
characters contain 𝐺′ > ker 𝜒 (see Lemma 5.5 (1)) , we must have |𝐺| > |𝐺 ∶ ker 𝜒 | = |𝐺 ∶ 𝐺′|+
𝜒(1)2 + 𝐶 where 𝐶 is a non-negative integer, a contradiction. Thus ker 𝜒 = 1 = 𝐺′′.

Case 2: Let 𝐺′′ > 1. We first show that 𝐺′′ = ker 𝜒 . Now 𝐺/𝐺′′ is non-abelian such that all
non-linear irreducible characters are of 𝑝′-degree. Choose 𝜓 ∈ Irr1(𝐺/𝐺′′). Hence 𝜓 ∈ Irr(𝐺)
such that 𝐺′′ ⊆ ker 𝜓. But Irr1(𝐺, 𝑝′) = {𝜒 }, thus 𝐺′′ ⊆ ker 𝜓 = ker 𝜒 (𝜓 = 𝜒 ). If, for a contra-
diction, 𝐺′′ < ker 𝜒 , we consider 𝐺/𝐺′′ and 𝐺/ker 𝜒 . Consequently |𝐺 ∶ 𝐺′′| > |𝐺 ∶ ker 𝜒 |.
But since all linear characters of 𝐺 contain 𝐺′ > ker 𝜒 , we must have |𝐺 ∶ 𝐺′| + 𝜒(1)2 >
|𝐺 ∶ ker 𝜒 | = |𝐺 ∶ 𝐺′| + 𝜒(1)2 + 𝐶 where 𝐶 is a non-negative integer, this is a contradiction.
Thus ker 𝜒 = 𝐺′′.

We now show that 𝐺′ is a Thompson group. Suppose that 𝜓 ∈ Irr1(𝐺′) and let 𝜙 ∈ Irr(𝐺)
be an irreducible constituent of 𝜓𝐺. By Frobenius reciprocity,

0 ≠ [𝜙, 𝜓𝐺] = [𝜙𝐺′ , 𝜓] .

That is, 𝜓 is an irreducible constituent of 𝜙𝐺′ . But 𝜙(1) = 𝜙𝐻 (1) ≥ 𝜓(1) > 1, thus 𝜙 is non-
linear. Therefore 𝜙𝐺′ has a non-linear irreducible constituent, namely 𝜓. Now, by Theorem
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2.4.7, it follows

𝜒𝐺′ = 𝑒
𝑡

∑
𝑖=1

𝜎𝑖,

where 0 ≠ [𝜒𝐺′ , 𝜎] and 𝜎 = 𝜎1, … , 𝜎𝑡 are distinct conjugates of 𝜎 ∈ Irr(𝐺′). If 𝜎 is non-linear
(all 𝜎𝑖 are non-linear), then 𝐺′′ ⊈ ker 𝜎𝑖 for all 𝑖. Thus we can choose 𝑔0 ∈ 𝐺′′ −⋂ker 𝜎𝑖 (note
⋂ker 𝜎𝑖 ⊆ 𝐺′′ = ker 𝜒). Hence for some 𝑖1, … , 𝑖𝑟 ∈ {1, … , 𝑡} we have 𝜎𝑖1(𝑔0), … , 𝜎𝑖𝑟 (𝑔0) ≠ 𝜎(1)
and

𝜒(1) = 𝜒𝐺′(𝑔0) (ker 𝜒 = 𝐺′′)

= 𝑒∑𝜎𝑖(1) + 𝑒
𝑟

∑
𝑠=1

𝜎𝑖𝑠(𝑔0),

where 𝑖 ∉ {𝑖1, … , 𝑖𝑟}. But for any 𝑔 ∈ 𝐺′′ = ker 𝜒 (including 𝑔0)

𝜒(1) = 𝜒𝐺′(𝑔) = 𝑒∑𝜎𝑖(1) + 𝑒
𝑟

∑
𝑠=1

𝜎𝑖𝑠(1) = 𝑒∑𝜎𝑖(1) + 𝑒
𝑟

∑
𝑠=1

𝜎(1),

a contradiction. This implies all irreducible constituent of 𝜒𝐺′ must be linear. So we have
𝜒 ≠ 𝜙. Now by Theorem 2.4.7 and Frobenius reciprocity,

𝜙𝐺′ = 𝑐
𝑡1
∑
𝑖=1

𝜓𝑖 where [𝜓𝐺, 𝜙] = [𝜓, 𝜙𝐺′] ≠ 0,

and𝜓 = 𝜓1, … , 𝜓𝑡1 are the distinct conjugates of𝜙. Therefore𝜙(1) = 𝑐𝑡1𝜓(1)where 𝑐, 𝑡1 | |𝐺 ∶ 𝐺′|.
Thus 𝑝 ∤ 𝑐, 𝑡1 since 𝑝 ∤ |𝐺 ∶ 𝐺′|; that is 𝑝 ∤ 𝜙(1). This is a contradiction since 𝐺 is a (∗)-group.
Thus all irreducible characters of 𝐺′ are divisible by 𝑝 and 𝐺′ is a Thompson group.

We now show that 𝐺/𝐺′′ ≅ AGL1(𝑝𝑛).
Suppose, for a contradiction, that 𝑝 > 2 and 𝐺/𝐺′′ = 𝐄𝐒(𝑚, 2). Now 𝐺′′/𝐺′′′ ⊴ 𝐺/𝐺′′′ is

abelian, thus by Theorem 2.4.11, 𝜏(1) | |𝐺 ∶ 𝐺′′| for all 𝜏 ∈ Irr(𝐺/𝐺′′′). But |𝐺 ∶ 𝐺′′| is a 2-power
and 𝑝 > 2, so 𝑝 ∤ 𝜏(1) for all 𝜏 ∈ Irr(𝐺/𝐺′′′). That is, all non-linear irreducible characters of
𝐺/𝐺′′′ are of 𝑝′-degree. Similar to the first paragraph of the proof (using Theorem 4.1.8), since
𝐺 is a (∗)-group, 𝐺/𝐺′′′ is either 𝐄𝐒(𝑚1, 2) or AGL1(𝑞𝑛11 ), a contradiction.

We may assume that 𝑝 = 2 and 𝐺/𝐺′′ = 𝐄𝐒(𝑚, 2). We already know that 𝜒 ∈ Irr(𝐺/𝐺′′)
where 𝜒 is of 𝑝′-degree. But 𝜒(1) | |𝐺/𝐺′′|; that is, 𝜒(1) is even and so is divisible by 𝑝, a
contradiction.

Thus 𝐺/𝐺′′ ≅ AGL1(𝑞𝑛). Now if we assume 𝑞 ≠ 𝑝. By, Lemma 5.5 (2), 𝑝 ∤ |𝐺 ∶ 𝐺′′|.
Similar to the argument above (using Theorem 4.1.8), 𝐺/𝐺′′′ ≅ AGL1(𝑞𝑛2); but AGL1(𝑝𝑛) is
not a proper epimorphic image of AGL1(𝑞𝑛2) thus we have a contradiction. So 𝑞 = 𝑝 and
AGL1(𝑝𝑛) ≅ 𝐺/𝐺′′.
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Lastly, we show that 𝐺/𝐺′ is cyclic of order 𝑝𝑛−1. Now since 𝐺/𝐺′′ ≅ AGL1(𝑝𝑛), we have

𝐺/𝐺′′ = 𝐺′/𝐺′′ ⋊ 𝐻,

where 𝐺′/𝐺′′ “is the subgroup of translations” with order 𝑝𝑛 and 𝐻 ≤ 𝐺/𝐺′′ is a cyclic sub-
group of order 𝑝𝑛 − 1. But

𝐻 ≅
𝐺/𝐺′′

𝐺′/𝐺′′ ≅ 𝐺/𝐺′.

Thus 𝐺/𝐺′ is cyclic of order 𝑝𝑛 − 1. The proof is complete.

Now note that Theorem 5.2 is the converse of Theorem 5.1. For the other direction we have
the extra premise that 𝐺′′ < 𝐺′. If 𝐺 is a solvable (∗)-group, then 𝐺(𝑛) = 1 for some 𝑛 ∈ ℤ+.
Thus 𝐺′ < 𝐺 since if 𝐺′ = 𝐺, we have that 𝐺(𝑛) = 𝐺 > 1 for all 𝑛, a contradiction. Similarly,
𝐺′′ < 𝐺′. Thus if 𝐺 is a solvable (∗)-group, it follows that 𝐺′′ < 𝐺′ and thus by Theorem 5.7,
condition (1) – (4) of Theorem 5.1 are satisfied.

So we have proved Theorem 5.1 when 𝐺 is solvable. Kazarin and Berkovich [12] showed
that Theorem 5.1 holds in general. In fact, they have shown that (∗)-groups are solvable.
Gianelli, Rizo, and Schaeffer Fry [2] showed the following:

Theorem 5.8. (GRS 2020) [2, Theorem A] If 𝐺 be a finite group and 𝑝 > 3 be a prime. Suppose

that | cd𝑝′(𝐺)| = 2, then 𝐺 is solvable and there exists 𝑁 ⊴ 𝐺 such that 𝑁 contains a normal

𝑝-complement and 𝐺/𝑁 contains a normal 𝑝-complement.

Theorem 5.8 is a generalization of Theorem 5.1. Assuming 𝑝 > 3 for Theorem 5.1, the
distinction is that, in Theorem 5.8, the possibility for the existence of distinct non-linear irre-
ducible characters of 𝐺 with 𝑝′-degree is allowed. The only restriction is that there can only
be one 𝑝′-number in the character degree set of 𝐺 (excluding the degrees of linear charac-
ters). Furthermore, we could also use Theorem 5.8 to conclude that (∗)-groups are solvable
(assuming 𝑝 > 3)!
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6 Examples of (∗)-groups

Example is the school of mankind, and they will learn

at no other.

– Edmund Burke

In this chapter, we provide some examples of (∗)-groups. We give a couple of expected
examples of (∗)-groups; then we take a brute force approach; that is, we test if any group of
order less than or equal to 100 is a (∗)-group.

We first present some character theory of Frobenius groups.

Lemma 6.0.1. Let 𝑁 ⊴ 𝐺 and 𝜒 ∈ Irr(𝐺). If 1𝑁 is an irreducible constituent of 𝜒𝑁 , then
𝑁 ⊆ ker 𝜒 .

Proof. By Theorem 2.4.7, we have

𝜒𝑁 = 𝑐
𝑛

∑
𝑖=1

𝜆𝑖,

where 0 ≠ 𝑐 = [𝜒𝑁 , 1𝑁 ] and 1𝑁 = 𝜆1, … , 𝜆𝑛 are conjugates of 1𝑁 in 𝐺. But (1𝑁 )𝑔 = 1𝑁 for all
𝑔 ∈ 𝐺,

𝜒𝑁 = 𝑐1𝑁 .

Hence 𝜒(1) = 𝜒𝑁 (1) = 𝑐1𝑁 (1) = 𝑐; that is,

𝜒𝑁 = 𝜒(1)1𝑁 .

Now for each 𝑛 ∈ 𝑁 , 𝜒(𝑛) = 𝜒(1)1𝑁 (𝑛) = 𝜒(1) so 𝑛 ∈ ker 𝜒 and 𝑁 ⊆ ker 𝜒 .

Proposition 6.0.2. Let 𝑁 ⊴ 𝐺 and 𝜓 ∈ Irr(𝑁 ). Then 𝜓𝐺 ∈ Irr(𝐺) if and only if 𝐈𝐺(𝜓) = 𝑁 .

Proof. ( ⟹ ) Suppose 𝜓𝐺 ∈ Irr(𝐺). Now by Frobenius reciprocity, it follows that

[(𝜓𝐺)𝑁 , 𝜓] = [𝜓𝐺, 𝜓𝐺] = 1.

Hence, by Theorem 2.4.7, we can write

(𝜓𝐺)𝑁 =
𝑛

∑
𝑖=1

𝜓𝑖,

where 𝜓 = 𝜓1, … , 𝜓𝑛 are conjugates of 𝜓 in 𝐺. Thus 𝜓𝐺(1) = 𝜓(1) |𝐺 ∶ 𝑁 | = 𝑛𝜓(1) (see Remark
2.4.2) implying that 𝑛 = |𝐺 ∶ 𝑁 |. It follows that,

|𝐺 ∶ 𝐈𝐺(𝜓)| = 𝑛 = |𝐺 ∶ 𝑁 | ,

which implies 𝑁 = 𝐈𝐺(𝜓) since 𝑁 ⊆ 𝐼𝐺(𝜓).
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( ⟸ ) Conversely, suppose 𝑁 = 𝐈𝐺(𝜓). Now let 𝜒 be an irreducible constituent of 𝜓𝐺. It
follow, by Frobenius reciprocity, that

0 ≠ 𝑐 = [𝜓𝐺, 𝜒] = [𝜓, 𝜒𝑁 ] ,

and 𝜓 is an irreducible constituent of 𝜒𝑁 . Thus by Theorem 2.4.7,

𝜒𝑁 = 𝑐
|𝐺∶𝑁 |

∑
𝑖=1

𝜓𝑖,

where 𝜓 = 𝜓1, … , 𝜓|𝐺∶𝑁 | are conjugates of 𝜓 in 𝐺. Thus,

𝑐 |𝐺 ∶ 𝑁 | 𝜓(1) = 𝜒𝑁 (1) = 𝜒(1) ≤ 𝜓𝐺(1) = |𝐺 ∶ 𝑁 | 𝜓(1),

This implies that 𝑐 = 1; moreover, 𝜒(1) = 𝜓𝐺(1) and so 𝜓𝐺 = 𝜒 ∈ Irr(𝐺).

Proposition 6.0.3. [6, Proposition 9.1.15] If 𝐺 is a Frobenius group with kernel 𝑁 and 1𝑁 ≠ 𝜓 ∈
Irr(𝑁 ), then

𝐈𝐺(𝜓) = 𝑁 .

From Proposition 6.0.3, we see that if 𝐺 is a Frobenius group with kernel 𝑁 and 1𝑁 ≠
𝜓 ∈ Irr(𝑁 ), then given a non-principal irreducible character of 𝑁 , say 𝜓, then 𝜓𝐺 ∈ Irr(𝐺) by
Proposition 6.0.2.

Theorem 6.0.4. Let 𝐺 be a Frobenius group with kernel 𝑁 and complement 𝐻 . If 𝜒 ∈ Irr(𝐺),
then either 𝑁 ⊆ ker 𝜒 or 𝜒 = 𝜓𝐺 for some 𝜓 ≠ 1𝑁 in Irr(𝑁 ).

Proof.

Let 𝜒 ∈ Irr(𝐺). Now suppose 𝜓 is a irreducible constituent of 𝜒𝑁 .
If 𝜓 ≠ 1𝑁 , then by Frobenius reciprocity,

[𝜒𝑁 , 𝜓] = [𝜒 , 𝜓𝐺] ≠ 0.

But 𝜓𝐺 ∈ Irr(𝐺), thus 𝜒 = 𝜓𝐺.
Now if 𝜓 = 1𝑁 , then by Lemma 6.0.1, 𝑁 ⊆ ker 𝜒 .

Remark 6.0.5. We know that𝐺/𝑁 ≅ 𝐻 . Therefore the irreducible characters of𝐺which contain

𝑁 in their kernel can just be viewed as irreducible characters of 𝐻 . From this point of view, we

can write Irr(𝐻) ⊆ Irr(𝐺). Thus we rewrite Theorem 6.0.4 as

Irr(𝐺) = Irr(𝐻) ∪
{
𝜓𝐺 ∶ 1𝑁 ≠ 𝜓 ∈ Irr(𝑁 )

}
.
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Example 6.0.6. We let 𝐺 = AGL1(𝑝𝑛) = 𝑁 ⋊ 𝐻 = 𝐺′ ⋊ 𝐻 as in Example 1.4.20. We recall that

|𝐺′| = 𝑝𝑛 and |𝐻 | = 𝑝𝑛 − 1.
By Theorem 4.1.8,𝐺 has precisely one non-linear irreducible character, namely Irr1(𝐺) = {𝜒 }.

Now |𝐺| = |𝐺 ∶ 𝐺′| + 𝜒(1)2 = 𝑝𝑛(𝑝𝑛 − 1). But we know that |𝐺 ∶ 𝐺′| = 𝑝𝑛 − 1. It follows that
𝜒(1)2 = 𝑝𝑛(𝑝𝑛 − 1) − (𝑝𝑛 − 1) = (𝑝𝑛 − 1)2. Thus 𝜒(1) = 𝑝𝑛 − 1.

In conclusion, Irr1(𝐺, 𝑝′) = {𝜒 } and 𝑝 | |𝐺|, thus 𝐺 is a (∗)-group as we expected.

Definition 6.0.7. Let 𝐺 be a group. An automorphism of 𝐺 is called fixed-point-free (abbrevi-

ated f.p.f as in [6, page 181]) if it only fixes 1 ∈ 𝐺.

Lemma 6.0.8. Let 𝑁 be a group and 𝐻 = Aut(𝑁 ) such that any non-trival automorphism in 𝐻
is f.p.f, then 𝐺 = 𝑁 ⋊ 𝐻 is a Frobenius group with kernel 𝑁 and complement 𝐻 .

Proof. Choose 1 ≠ 𝜎 ∈ 𝐻 . Since 𝜎 is a f.p.f it follows that 𝑛𝜎 ≠ 𝑛 for any 1 ≠ 𝑛 ∈ 𝑁 . That
is, 𝐂𝐻 (𝑛) = 1, so by Theorem 1.4.16, 𝐺 = 𝑁 ⋊ 𝐻 is a Frobenius group with kernel 𝑁 and
complement 𝐻 .

Lemma 6.0.9. [3, Theorem 6.4] For a prime 𝑝, Aut(𝐶𝑝) ≅ 𝐶𝑝−1.

Remark 6.0.10. If 𝐶𝑝 = ⟨𝑎⟩, then the group Aut(𝐶𝑝) contains the mappings 𝜎1, … , 𝜎𝑝−1 defined
by 𝜎𝑘 ∶ 𝑎 ↦ 𝑎𝑘 for 𝑘 = 1,… , 𝑝 − 1.

Lemma 6.0.11. The group 𝐺 = 𝐶𝑝 ⋊ 𝐶𝑝−1 is a Frobenius group where 𝑝 is a prime.

Proof. Suppose 𝐶𝑝 = ⟨𝑎⟩. We know that Aut(𝐶𝑝) ≅ 𝐶𝑝−1. Now 𝜎1 = 1 (in Aut(𝐶𝑝)) since
𝜎1(𝑎) = 𝑎 by definition, implying 𝜎1(𝑎𝑖) = 𝜎1(𝑎)𝑖 = 𝑎𝑖. Now consider 𝜎𝑘 ∈ Aut(𝐶𝑝) for
𝑘 = 2,… , 𝑝 − 1 (non-trivial element). It follows, for 1 ≠ 𝑎𝑖 ∈ 𝐶𝑝 we have 𝜎𝑘(𝑎𝑖) = 𝜎𝑘(𝑎)𝑖 = 𝑎𝑘𝑖

and 𝑎𝑖 ≠ (𝑎𝑖)𝑘 since 𝜎𝑘 is non-trivial. Thus 𝜎𝑘 is f.p.f and by Lemma 6.0.8, 𝐺 is Frobenius.

Example 6.0.12. We now show that the Frobenius group𝐺 = 𝐶𝑝⋊𝐶𝑝−1 is a (∗)-group. Since 𝐶𝑝−1
is abelian, it follows that 𝐺′ = 𝐶𝑝 (see Remark 1.4.21). Thus 𝐺 = 𝐺′ ⋊ 𝐶𝑝−1. Now let 1𝐺′ ≠ 𝜓 ∈
Irr(𝐺′). It follows that 𝜒 = 𝜓𝐺 ∈ Irr(𝐺) and 𝜒(1) = 𝜓𝐺(1) = |𝐺 ∶ 𝐺′| 𝜓(1) = ||𝐶𝑝−1|| 𝜓(1) = 𝑝 − 1
since 𝐶𝑝 is abelian and 𝐺/𝐺′ ≅ 𝐶𝑝−1.

Consider 1𝐺′ ≠ 𝜃 ∈ Irr(𝐺′). Similarly, 𝜎 = 𝜃𝐺 ∈ Irr(𝐺) and 𝜎(1) = 𝑝 − 1.
If, for a contradiction, 𝜒 ≠ 𝜎, then

|𝐺| = 𝑝(𝑝 − 1) = ||𝐺 ∶ 𝐺′|| + 𝜒(1)2 + 𝜎(1)2 + 𝐶 (C is non-negative)

⟹ 𝑝(𝑝 − 1) = 𝑝 − 1 + (𝑝 − 1)2 + (𝑝 − 1)2 + 𝐶

⟹ 𝑝(𝑝 − 1) = 𝑝(𝑝 − 1) + (𝑝 − 1)2 + 𝐶,

this is a contradiction. Thus 𝜒 = 𝜎. Hence by Theorem 6.0.4,

Irr(𝐺) = Irr(𝐶𝑝−1) ∪ {𝜒 } ,

where each character in Irr(𝐶𝑝−1) is linear since 𝐶𝑝−1 is abelian and 𝜒 is of 𝑝′-degree; that is, 𝐺
is a (∗)-group.
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6.1. Dihedral (∗)-groups

6.1 Dihedral (∗)-groups

By 𝐷2𝑛, we mean the Dihedral group of order 2𝑛; that is, the group given by
⟨𝑎, 𝑏 ∶ 𝑎𝑛 = 𝑏2 = 1 and 𝑏𝑎𝑏 = 𝑎−1⟩.

Lemma 6.1.1. Let 𝐺 be the dihedral group 𝐷2𝑛 = ⟨𝑎, 𝑏 ∶ 𝑎𝑛 = 𝑏2 = 1 and 𝑏𝑎𝑏 = 𝑎−1⟩, then 𝐺′ =
⟨𝑎2⟩ .

Proof. Now [𝑏, 𝑎𝑘] = 𝑏𝑎−𝑘𝑏𝑎𝑘 = (𝑏𝑎−𝑘𝑏)𝑎𝑘 = (𝑎𝑛−1)𝑘𝑎𝑘 = 𝑎2𝑘. Thus ⟨𝑎2⟩ ⊆ 𝐺′. Further, [𝑎𝑖, 𝑏𝑗] =
1, [𝑎𝑖, 𝑎𝑗𝑏] = 𝑎𝑖𝑎𝑗𝑏𝑎−𝑖𝑏𝑎−𝑗 = 𝑎𝑖+𝑗𝑎𝑖𝑏𝑏𝑎−𝑗 = 𝑎2𝑖 and [𝑎𝑖𝑏, 𝑎𝑗𝑏] = 𝑎𝑖𝑏𝑎𝑗𝑏𝑏𝑎−𝑖𝑏𝑎−𝑗 = 𝑎𝑖−𝑗𝑏𝑏𝑎𝑖−𝑗 =
𝑎2(𝑖−𝑗). That is, every commutator of 𝐺 is in ⟨𝑎2⟩, but the derived subgroup is the smallest
subgroup containing the commutators of 𝐺, thus 𝐺′ ⊆ ⟨𝑎2⟩ and so 𝐺′ = ⟨𝑎2⟩.

Lemma 6.1.2. [11, pg 108 (12.2)] The dihedral group 𝐷2𝑛 where 𝑛 = 2𝑚 (𝑛 even) has 𝑚 + 3
conjugacy classes given by:

1, {𝑎𝑚} ,
{
𝑎.𝑎−1

}
, ⋅,
{
𝑎𝑚−1, 𝑎−𝑚−1

}
and

{
𝑎2𝑗 + 1𝑏 ∶ 𝑗 = 0, 1, … , 𝑚 − 1

}
,
{
𝑎2𝑗𝑏 ∶ 𝑗 = 0, 1, … , 𝑚 − 1

}
.

Lemma 6.1.3. [3, Theorem 4.2] Let 𝑎 ∈ 𝐺 such that 𝑜(𝑎) = 𝑛 and 𝑘 ∈ ℤ+. Then

𝑜(𝑎𝑘) =
𝑛

gcd(𝑛, 𝑘)
.

Corollary 6.1.4. [3, Chapter 4, Corollary 3] Let 𝑎 ∈ 𝐺 such that 𝑜(𝑎) = 𝑛, then 𝑜(𝑎) = 𝑜(𝑎𝑘) if
and only if gcd(𝑛, 𝑘) = 1.

Example 6.1.5. Consider 𝑆3. Now 𝐷6 ≅ 𝑆3 = {(1), (1 2), (2 3), (1 3), (1 2 3), (1 3 2)} and its char-

acter table is given below:

Table 6.1: Character table
of 𝑆3:

(1) (1 2) (1 2 3)

1𝑆3 1 1 1

𝜆 1 -1 1

𝜒 2 0 -1

If 𝑝 = 3, note 𝑝 | |𝑆3| = 6. Further, 𝜒 is the only non-linear irreducible character of 𝑝′-degree,

thus (𝑆3, 𝑝) is a (∗)-group.

Proposition 6.1.6. Let 𝑞 > 3 be a prime. The dihedral group

𝐺 = 𝐷2𝑞 = ⟨𝑎, 𝑏 ∶ 𝑎𝑞 = 𝑏2 = 1 and 𝑏𝑎𝑏 = 𝑎−1⟩ is not a (∗)-group.
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6.2. The symmetric group on 𝑛 letters

Proof. Let 𝑝 be a fixed prime. For a contradiction, let (𝐺, 𝑝) be a (∗)-group. By Lemma 6.1.1,
𝐺′ = ⟨𝑎2⟩. But gcd(2, 𝑞) = 1 (see Corollary 6.1.4), thus 𝐺′ = ⟨𝑎⟩. Now |𝐺 ∶ 𝐺′| = 2. Thus,
by Theorem 5.1, 𝑝𝑛 − 1 = 2; that is, 𝑝 = 3 and 𝑛 = 1 (31 − 1 = 2). But 𝑝 = 3 ∤ 2𝑞 = |𝐺|, a
contradiction. Thus 𝐺 is not a (∗)-group.

We are able to generalize the proposition above to get the following:

Proposition 6.1.7. The only dihedral (∗)-group of the form 𝐺 = 𝐷2𝑛 where 𝑛 is odd is 𝐷6.

Proof. Suppose 𝑝 is a fixed prime and let (𝐺, 𝑝) be a (∗)-group. Now 𝐺′ = ⟨𝑎2⟩ = ⟨𝑎⟩ since
gcd(2, 𝑛) = 1 and 𝑛 is odd (see Corollary 6.1.4). Thus, by Theorem 5.1, we have that |𝐺 ∶ 𝐺′| =
2 = 𝑝𝑛 − 1 and so 𝑝 = 3. Further, 𝐺′ is abelian and thus 𝐺′′ = 1. Thus, by Theorem 5.1, G
≅ 𝐺/1 ≅ AGL1(3) ≅ 𝐷6.

We naturally ask the same question for an even number: Is the dihedral group 𝐷2𝑛 (𝑛 is
even) a (∗)-group? The following proposition addresses this.

Proposition 6.1.8. No dihedral of the form 𝐷2𝑛 (𝑛 is even) is a (∗)-group.

Proof. Consider a dihedral (∗)-group of the form 𝐺 = 𝐷2𝑛 (𝑛 = 2𝑚) ((𝐺, 𝑝) is a (∗)-group for
a fixed prime 𝑝). Now 𝐺′ = ⟨𝑎2⟩, so by Lemma 6.1.3, we can write

||𝐺
′|| =

2𝑚
gcd(2, 2𝑚)

= 𝑚.

It follows that |𝐺 ∶ 𝐺′| = 2(2𝑚)/𝑚 = 4. But by Theorem 5.1, 𝑝𝑛 − 1 = 4. That is, 𝑝 = 5 and
𝑛 = 1 (51 − 1 = 4). But, 𝐺′ is abelian and so 𝐺′′ = 1. Thus, by Theorem 5.1, 𝐺 ≅ 𝐺/1 =
𝐺/𝐺′′ ≅ AGL1(5). This implies that |𝐺| = 5(5 − 1) = 20 = 2 ⋅ 10 (𝑚 = 𝑝 = 5). Consequently
𝐺 = 𝐷20. Now by Proposition 6.1.2, 𝐺 has 5+ 3 = 8 conjugacy classes, thus 𝐺 has 8 irreducible
characters (see Proposition 2.2.6), 4 of them linear since |𝐺 ∶ 𝐺′| = 4. Let 𝜒1, ⋯ 𝜒4 be the
distinct non-linear irreducible characters of 𝐺, then |𝐺| = 20 = 4 + 𝜒1(1)2 + ⋯ + 𝜒4(1)2 this
implies that 16 = 𝜒1(1)2 ⋯+𝜒4(1)2. Since each 𝜒𝑖(1) > 1, this implies 𝜒𝑖(1) = 2 for all 𝑖. Which
means all non-linear irreducible characters are of degree 2. That is, all non-linear irreducible
character of 𝐺 are of 𝑝′-degree. Thus 𝐷20 is not a (∗)-group.

In conclusion, we have shown that the only dihedral (∗)-group is 𝐷6. Now, it is well
known that 𝐷6 ≅ 𝑆3, thus we could, in turn, ask when is 𝑆𝑛 a (∗)-group?

6.2 The symmetric group on 𝑛 letters

Example 6.2.1. Now consider 𝐺 = 𝑆4. We know that |𝐺 ∶ 𝐺′| = 2 (𝐺′ = 𝐴4), so if we sup-

pose (𝐺, 𝑝) is a (∗)-group (𝑝 is a fixed prime), then Theorem 5.1 implies |𝐺 ∶ 𝐺′| = 2 = 𝑝𝑛 − 1
which implies 𝑝 = 3. Now 𝐺 has 5 conjugacy classes ([11, Examples 12.16]) and so has 5 irre-

ducible characters, two of them being linear since |𝐺 ∶ 𝐺′| = 2. Thus 22 = 𝜒1(1)2 + 𝜒2(1)2 +
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𝜒3(1)2 (see Lemma 2.2.6) where 𝜒𝑖 ∈ Irr1(𝐺), for all 𝑖, are distinct. By inspection we see the only

positive-integer solution (each integer is greater than 1) is 𝜒1(1) = 2, 𝜒2(1) = 3, and 𝜒3(1) = 3.
Thus we see that 𝑆4 is a (∗)-group since 𝜒1 is the only non-linear irreducible character of 𝑝′-

degree.

Example 6.2.2. Let 𝐺 = 𝐴4 = 𝑉4 ⋊ ⟨(1 2 3)⟩. Now by Remark 1.4.21, 𝐺′ = 𝑉4. It follows that
𝐺 must have |𝐺 ∶ 𝐺′| = 3 linear characters (see Proposition 2.2.11). It is easily shown that 𝐺 has

four conjugacy classes (see [11, Examples 12.18]), thus 𝐺 must have four irreducible character.

Hence 12 = 1𝐴4(1)2 + 𝜆1(1)2 + 𝜆2(1)2 + 𝜒(1)2 = 12 + 12 + 12 + 𝜒(1)2 (see Lemma 2.2.6), were
1𝐴4 , 𝜆1 and 𝜆3 are the linear characters of 𝐺 and 𝜒 the only non-linear irreducible character. Thus

𝜒(1)2 = 9 and 𝜒(1) = 3. If 𝑝 = 2, then 𝑝| |𝐺| = 12 and 𝜒 is the only non-linear irreducible

character of 𝑝′-degree. Thus 𝐺 is a (∗)-group.

We now state some well known facts on the symmetric group.

Proposition 6.2.3. [10, Corollary 6.19] For 𝑛 ≥ 5, the only non-trivial proper normal subgroup

of 𝑆𝑛 is 𝐴𝑛.

Proposition 6.2.4. [11, Example 17.12] Let 𝐺 = 𝑆𝑛, then 𝐺′ = 𝐴𝑛.

Proposition 6.2.5. [13, Theorem 5.5] If 𝑛 ≥ 5, then 𝐴𝑛 is simple.

Note, for 𝑛 ≥ 4 𝐴𝑛 is non-abelian, since 𝐴4 ≤ 𝐴𝑛 and (1 2 3)(2 3 4) = (1 2)(3 4) whereas
(2 3 4)(1 2 3) = (1 3)(2 4).

Proposition 6.2.6. For 𝑛 ≥ 5, 𝐺 = 𝑆𝑛 is not a (∗)-group.

Proof. Now 𝐺′ = 𝐴𝑛 by Proposition 6.2.4. If (𝐺, 𝑝) is a (∗)-group for some fixed prime 𝑝, then
𝑝 ∤ |𝐺 ∶ 𝐺′| and so 𝑝 | |𝐺′| (Lemma 5.5). Further, by Theorem 5.1, 𝐺′ is a Thompson group and
so 𝐺′ contains a normal 𝑝-complement (see Theorem 3.10). That is, 𝐺′ = 𝑁 ⋊ 𝑃 for some
𝑃 ∈ Syl𝑝(𝐺′). Also, 𝑁 < 𝐺′ since 𝑝 | |𝐺′| which implies that 𝑃 ≠ 1. By simplicity of 𝐺′

(Proposition 6.2.5), it follows that 𝑁 = 1. Thus 𝐺′ = 𝑃 and 𝐺′ is a 𝑝-group. Now 𝐺′ is simple,
but 𝐺′ is a non-trivial 𝑝-group which implies 1 < 𝐙(𝐺′) ⊴ 𝐺′; thus 𝐺′ = 𝐙(𝐺′) by simplicity,
this is a contradiction since 𝐺′ = 𝐴𝑛 is non-abelian for 𝑛 ≥ 4. This proves the theorem.

Remark 6.2.7. Note the conclusion of the proposition above could be reached by observing that
all (∗)-groups are solvable and 𝑆𝑛 is non-solvable for 𝑛 ≥ 5. However, the proof demonstrates the

utility of the established theorems in Chapter 3 and 5.

Proposition 6.2.8. The only symmetric groups on 𝑛 letters which are (∗)-groups are 𝑆3 and 𝑆4.

We note that, 𝑆3 and 𝐴4 are Frobenius groups.
Now consider 𝑆4. The normal subgroups of 𝑆4 are 𝑉4, 𝑆4, 𝐴4 and 1. If 𝐺 is Frobenius group,

then the either𝐴4 or 𝑉4 must be its kernel since the kernel must be a non-trivial normal proper
subgroup (note 𝑉4 ⊴ 𝑆4 since 𝑉4 ⊴ 𝐴4 char 𝑆4 where (𝑆4)′ = 𝐴4). However for a Frobenius group
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with kernel 𝑁 and complement 𝐻 we must have |𝐻 | | (|𝑁 | − 1). If 𝑆4 is Frobenius and has the
kernel 𝐴4, then the order of any complement must divide |𝐴4| − 1 = 11, a contradiction.
Further, if the kernel is 𝑉4, then the order of any complement must divide |𝑉4| − 1 = 3, a
contradiction since the order of 𝑆4 would be too large. Thus 𝑆4 is not Frobenius! We see that
not all (∗)-groups are Frobenius.

6.3 (∗)-groups of small order

As mentioned in the introduction, we now take the brute force approach. We test if each
group of order up to 100 is a (∗)-group. This process is somewhat cumbersome, so we need
to develop some methods to pre-emptively rule out some groups so that we do not have to
go through all groups of order up to 100. The abelian group is the most prominent class of
groups we can immediately rule out. This follows from the fact that (∗)-groups have a non-
linear irreducible character. Nilpotent groups are also not (∗)-groups as shown in Chapter

4. The following lemma gives us a necessary condition that all (∗)-groups (up to an order of
100) must satisfy.

Lemma 6.3.1. If 𝐺 is a (∗)-group of order up to 100, then |𝐺| must be divisible by either of the

following numbers,

2 ⋅ 3, 22 ⋅ 3, 22 ⋅ 5, 2 ⋅ 3 ⋅ 7, 23 ⋅ 7, or 23 ⋅ 32.

In particular, |𝐺 ∶ 𝐺′′| must be exactly one of these numbers.

Proof. Let 𝑝 be a fixed prime dividing the order of 𝐺 and suppose (𝐺, 𝑝) is a (∗)-group. By
Theorem 5.1, we have that 𝐺/𝐺′′ ≅ AGL1(𝑝𝑛) and so 𝐺 must be divisible by |𝐺 ∶ 𝐺′′| = 𝑝𝑛(𝑝𝑛−
1).

Case 1: Let 𝑝 = 2. If 𝑛 is 2 or 3, then 𝑝𝑛(𝑝𝑛 − 1) is 12 or 56, respectively (note that 𝑛 ≠ 1
since the underlying field of an affine linear group must contain more than two elements).
But, if 𝑛 ≥ 4, then 𝑝𝑛(𝑝𝑛 − 1) ≥ 240 > 100, a contradiction. In conclusion, when 𝑝 = 2, then
|𝐺| is divisible by either of the following,

22 ⋅ 3, or 23 ⋅ 7.

Case 2: Let 𝑝 = 3. Similar to Case 1, it follows that |𝐺| is divisible by either of the following,

2 ⋅ 3, or 23 ⋅ 32.

Case 3: Let 𝑝 = 5. Similar to Case 1, it follows that |𝐺| is divisible by 22 ⋅ 5.
Case 4: Let 𝑝 = 7. Similar to Case 1, it follows that |𝐺| is divisible by 2 ⋅ 3 ⋅ 7.
Case 5: Let 𝑝 be a prime greater than 7, then for each positive integer 𝑛 it follows that

𝑝𝑛(𝑝𝑛 − 1) > 100, this is a contradiction. Hence the result then follows.
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Remark 6.3.2. We see that a (∗)-group of order up to 100 must be divisible by the numbers,

2 ⋅ 3, 3 ⋅ 4, 4 ⋅ 5, 6 ⋅ 7, 7 ⋅ 8, or 8 ⋅ 9.

Thus (∗)-groups of order up to 100 must be divisible by two consecutive numbers.

Note a corollary of Lemma 6.3.1 would be: If 𝐺 is a group of odd order under 100, then 𝐺 is
not a (∗)-group. Moreover, if (𝐺, 𝑝) is a general (∗)-groupfor some prime 𝑝, then by Theorem

5.1, |𝐺 ∶ 𝐺′| = |AGL1(𝑝𝑛)| = 𝑝𝑛(𝑝𝑛 − 1). Hence the following lemma holds:

Lemma 6.3.3. There are no (∗)-groups of odd order.

Corollary 6.3.4. Let 𝑝 and 𝑞 be primes such that 𝑝𝑞 ≤ 100. With the exception of 𝑆3, no
non-abelian group of order 𝑝𝑞 is a (∗)-group.

Proof. Let 𝐺 ≇ 𝑆3; furthermore, let 𝐺 be (∗)-group such that 𝐺 is a non-abelian group of order
𝑝𝑞 ≤ 100. Since the order of 𝐺 cannot be divisible by more than three primes, then by Lemma

6.3.1, it follows that 2 ⋅ 3 | 𝑝𝑞. But this implies |𝐺| = 2 ⋅ 3 and since 𝐺 is non-abelian, it follows
that 𝐺 ≅ 𝑆3. This is a contradiction.

Remark 6.3.5. Let 2 < 𝑞 < 𝑝 be primes. It can be shown that any non-abelian group of order

𝑝𝑞 is Frobenius with the kernel of order 𝑝 and a complement of order 𝑞. We now let 𝐺 be a

Frobenius group with kernel 𝑃 of order 𝑝 and complement 𝑄 of order 𝑞. Since 𝑄 is abelian, we

have that 𝐺′ = 𝑃 (see Remark 1.4.21). If we let (𝐺, 𝑝) be a (∗)-group, then by Theorem 5.1, it
follows that |𝐺 ∶ 𝑃| = 𝑞 = 𝑝𝑛 − 1. But for any positive integer 𝑛, we have that 𝑝𝑛 − 1 > 𝑞, this is
a contradiction. Similarly, (𝐺, 𝑞) cannot be a (∗)-group.

In conclusion, Corollary 6.3.4 can be generalized by removing the condition that 𝑝𝑞 ≤ 100.

Proposition 6.3.6. Let 𝐺 = 𝐻 × 𝐾 where 𝐻 and 𝐾 are non-trivial, then 𝐺 is not a (∗)-group.

Proof. Let 𝑝 be a fixed prime dividing the order of𝐺 and let (𝐺, 𝜒 × 𝜓, 𝑝) be a (∗)-group where
𝜒 ∈ Irr(𝐻) and 𝜓 ∈ Irr(𝐾) (see Theorem 2.3.5). Hence (𝜒 × 𝜓)(1) is a 𝑝′-number. This implies
that 𝜒(1) and 𝜓(1) are 𝑝′-numbers. Moreover, either, 𝜒(1) > 1 or 𝜓(1) > 1. Without loss of
generality, suppose 𝜒(1) > 1. Since 𝐾 is non-trivial, choose 1𝐾 ≠ 𝜃 ∈ Irr(𝐾), then

𝜒 × 1𝑁 and 𝜒 × 𝜃,

are distinct non-linear irreducible character of 𝐺 with 𝑝′-degree, this is a contradiction.

Corollary 6.3.7. A group which is a direct product of at least two non-trivial groups is not a

(∗)-group.

For a positive integer 𝑛, the dicyclic group of order 4𝑛 is a group (non-abelian for 𝑛 > 1)
with the presentation given by

Dic𝑛 = ⟨𝑎, 𝑏 ∶ 𝑎2𝑛 = 1, 𝑏2 = 𝑎𝑛 and 𝑏−1𝑎𝑏 = 𝑎−1⟩ .
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In some texts, this group is called the generalized quaternion group and is denoted by𝑄4𝑛. This
alternative name is justified by the fact that when 𝑛 = 2, it follows that Dic𝑛 is isomorphic
to the quaternion group. It is well known that the dicyclic group Dic𝑛 is indeed of order 4𝑛
and contains elements of the form 𝑎𝑖𝑏𝑗 where 1 ≤ 𝑖 < 2𝑛 and 𝑖 = 0, 1. Furthermore, it can be
shown that 𝑜(𝑎𝑘) = 2𝑛/𝑘 for 1 < 𝑘 ≤ 2𝑛.

Proposition 6.3.8. Let 𝐺 = Dic𝑛, then 𝐺′ = ⟨𝑎2⟩. Moreover, 𝐺/𝐺′ ≅ 𝑉4.

Proof. For a positive integer 𝑛 > 1, consider𝐺 = Dic𝑛 = ⟨𝑎, 𝑏 ∶ 𝑎2𝑛 = 1, 𝑏2 = 𝑎𝑛 and 𝑏−1𝑎𝑏 = 𝑎−1⟩.

Let 𝑁 = ⟨𝑎2⟩. Note 𝑁 ⊴ 𝐺 as 𝑏−1𝑎2𝑘𝑏 =

2𝑘 factors⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
(𝑏−1𝑎𝑏)⋯ (𝑏−1𝑎𝑏) = (𝑎2)−𝑘 ∈ 𝑁 . Since [𝑎, 𝑏] =

𝑎−1𝑏−1𝑎𝑏 = 𝑎−1𝑎−1 = (𝑎−1)2 ∈ 𝑁 , it follows that 𝑁 ⊆ 𝐺′. But by Proposition 6.1.3, it follows
that |𝑁 | = 𝑛 and so

|𝐺/𝑁 | =
4𝑛
𝑛

= 4.

This implies that 𝐺/𝑁 is abelian and so by Theorem 1.1.17, it follows that 𝐺′ ⊆ 𝑁 and 𝐺′ = 𝑁 .
Furthermore, 𝐺/𝑁 is of order 4 where 𝑎𝑁 and 𝑏𝑁 are distinct elements in 𝐺/𝑁 of order

2, thus 𝐺/𝑁 ≅ 𝑉4.

Corollary 6.3.9. The dicyclic group Dic𝑛 is not a (∗)-group.

Proof. Let 𝐺 = Dic𝑛 = ⟨𝑎, 𝑏 ∶ 𝑎2𝑛 = 1, 𝑏2 = 𝑎𝑛 and 𝑏−1𝑎𝑏 = 𝑎−1⟩ and let 𝑝 be a prime. Suppose

(𝐺, 𝑝) is a (∗)-group. Then by Theorem 5.1, we have that 𝐺/𝐺′ ≅ 𝐶4; contradicting Proposition

6.3.8. The proof is complete.

We now go through every group of an order less than 100 (a list of these groups can be
found in [15]). We will not consider abelian groups, nilpotent group (namely 𝑝-groups), or
groups of an odd order as these are not (∗)-groups. Moreover, Lemma 6.3.1 implies we can
only consider groups whose orders are multiples of 2 ⋅ 3, 22 ⋅ 3, 22 ⋅ 5, 2 ⋅ 3 ⋅ 7, 23 ⋅ 7, or 23 ⋅ 32.

We use GAP (see [4] for details on the GAP system) to find the information needed to assess
whether the group under consideration is a (∗)-group or not. The list of “small groups” found
in [15] conveniently has the unique identifiers given to each “small group” in the GAP system.
The group 𝑆4 has the identifier [24,12], and so the following code allows us to find its derived
subgroup easily (where 𝐺 = 𝑆4 and 𝐻 = 𝐺′):

gap> G := SmallGroup(24,12);

gap> H := DerivedSubgroup(G);

Notes on the notation used for these groups can be found in [15, page 23], with the excep-
tion of groups isomorphic to the dicyclic group of order 4𝑛, which we denote by Dic𝑛 (when
convenient) or the one-dimensional affine group over a field of 𝑝𝑛 elements, which we denote
by AGL1(𝑝𝑛) (when convenient). For a group 𝐺, at certain points in our arguments we will
consider all degrees of the characters in Irr(𝐺). The notation Deg(𝐺) will be a sequence of
the degrees of characters in Irr(𝐺) and will be called the character degree sequence of 𝐺. As
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an example Deg(𝑆3) = (1, 1, 2). The GAP system can also be used to easily find Deg(𝐺) for
any group 𝐺. For instance, the code below can be used to find the components of Deg(𝑆4) by
viewing the character table of 𝑆4.

gap> G := SmallGroup(24,12);

gap> T = CharacterTable(G);

gap> Display(T);

∙ (|𝐺| = 6): There is only one non-abelian group of order 6, that is 𝑆3. This group is a
(∗)-group (see Example 6.1.5).

∙ (|𝐺| = 12) There are three non-abelian groups of order 12. These are,

𝐶3 ⋊𝜙 𝐶4, 𝐷12 and 𝐴4.

The group 𝐴4 has been shown to be a (∗)-group in Example 6.2.2, and by Proposition

6.1.8, 𝐷12 is not a (∗)-group.

Consider 𝐺 = 𝐶3⋊𝜙𝐶4. The derived subgroup of 𝐺 is of order 3 and so |𝐺 ∶ 𝐺′| = 4 = 22.
If 𝑝 is a fixed prime dividing |𝐺|, then by Theorem 5.1, if (𝐺, 𝑝) is a (∗)-group, then
|𝐺 ∶ 𝐺′| = 4 = 𝑝𝑛−1. This implies that 𝑝 = 5, a contradiction since 5 ∤ 12. Thus 𝐶3⋊𝜙𝐶4

is not a (∗)-group.

∙ (|𝐺| = 18) There are three non-abelian groups of order 18, given by:

𝐷18, 𝐶3 × 𝑆3 and (𝐶3 × 𝐶3) ⋊𝜙 𝐶2.

By Proposition 6.3.6 and Proposition 6.1.7 it follows that 𝐷18 and 𝐶3 × 𝑆3 are not (∗)-
groups.

Consider 𝐺 = (𝐶3 ×𝐶3) ⋊𝜙 𝐶2. By Theorem 1.1.17, it follows that 𝐺′ ⊆ 𝐶3 ×𝐶3. But 𝐶3 ×𝐶3

is abelian, so 𝐺′′ = 1. Hence

|𝐺| = ||𝐺 ∶ 𝐺′′|| = 2 ⋅ 32,

Thus by Lemma 6.3.1, 𝐺 is not a (∗)-group.

∙ (|𝐺| = 20) There are three non-abelian groups of order 20 given by:

Dic5, 𝐶5 ⋊𝜙 𝐶4 and 𝐷20.

By Example 6.0.12, 𝐶5 ⋊𝜙 𝐶4 ≅ AGL1(5) is a (∗)-group. Furthermore by Proposition 6.1.8

and Proposition 6.3.9, the groups 𝐷20 and Dic5 are not (∗)-groups.
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∙ (|𝐺| = 24) There are 12 non-abelian groups of order 24, 2 of these 12 groups are nilpotent
and thus we do not consider them. The groups under consideration are:

1. 𝐶3 ⋊𝜙 𝐶8

2. SL(2, 3)

3. Dic6

4. 𝑆3 × 𝐶4

5. 𝐷24

6. Dic3 × 𝐶2

7. 𝐶3 ⋊𝜙 𝐷8

8. 𝑆4

9. 𝐴4 × 𝐶2

10. 𝐷12 × 𝐶2

By Proposition 6.3.6 and Proposition 6.1.8, the only possible (∗)-groups of order 24 are

𝐶3 ⋊𝜙 𝐶8, SL(2, 3),Dic6, 𝐶3 ⋊𝜙 𝐷8 and 𝑆4.

Moreover, the group Dic6 is not a (∗)-group by Proposition 6.3.9, this leaves the groups

𝐶3 ⋊𝜙 𝐶8, SL(2, 3), 𝐶3 ⋊𝜙 𝐷8 and 𝑆4.

With reference to Example 6.2.1, 𝑆4 is a (∗)-group.

Consider 𝐺 = 𝐶3 ⋊𝜙 𝐶8. Let 𝑝 be a fixed prime and suppose (𝐺, 𝑝) is a (∗)-group. The
index of𝐺′ in𝐺 is |𝐺 ∶ 𝐺′| = 8. Thus by Theorem 5.1, it follows that |𝐺 ∶ 𝐺′| = 8 = 𝑝𝑛−1.
Hence 𝑝 = 3 (𝑛 = 2). The second derived subgroup of 𝐺 is trivial, thus by Theorem 5.1,
it follows that 𝐺 ≅ 𝐺/1 ≅ AGL1(32), this is a contradiction. Thus 𝐺 is not a (∗)-group.

Now let 𝐺 = SL(2, 3). Further, let 𝑝 be a prime dividing the order of 𝐺 and suppose

(𝐺, 𝑝) is a (∗)-group. The index of 𝐺′ in 𝐺 is given by |𝐺 ∶ 𝐺′| = 3. By Theorem 5.1,
|𝐺 ∶ 𝐺′| = 3 = 𝑝𝑛 − 1 which implies 𝑝 = 2 (𝑛 = 2). The character degree sequence of 𝐺
is Deg(𝐺) = (1, 1, 1, 2, 2, 2, 3). Thus we see that SL(2, 3) is a (∗)-group.

Suppose 𝐺 = 𝐶3 ⋊𝜙𝐷8 and let 𝑝 be a fixed prime. Similarly, if (𝐺, 𝑝) is a (∗)-group, then
𝑝 = 5. This is a contradiction since 5 ∤ 24.

∙ (|𝐺| = 30) There are 3 non-abelian groups of order 30. These are given by

𝐶5 × 𝑆3, 𝐶3 × 𝐷10 and 𝐷30.

By Propositions 6.1.7 and 6.3.6, these are not (∗)-groups.

∙ (|𝐺| = 36) There are 14 groups of order 36. Most of these are direct products and one is
dihedral and thus are these not (∗)-groups. We consider the groups

𝐶9 ⋊𝜙 𝐶4, (𝐶2 × 𝐶2) ⋊𝜙 𝐶9, (𝐶3 × 𝐶3) ⋊𝜙 𝐶4 and (𝐶3 × 𝐶3) ⋊𝜙 𝐶4.

Let 𝐺 = 𝐶9 ⋊𝜙 𝐶4. Since 𝐶9 and 𝐶4 are abelian, it follows that 𝐺′′ = 1 (see Theorem
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1.1.17). That is, |𝐺| = |𝐺 ∶ 𝐺′′| = 22 ⋅ 32. Hence by Proposition 6.3.1, 𝐺 is not a (∗)-group.
Similarly, none of the other considered groups are (∗)-groups.

∙ (|𝐺| = 40) There are 11 non-abelian groups of order 40. Of these 11 groups, 7 of them are
direct products and and one of them is a dihedral group and hence are not (∗)-groups.
The groups which will be under consideration are given by:

𝐶5 ⋊𝜙 𝐶8, 𝐶5 ⋊𝜙 𝐶8, 𝐶5 ⋊𝜙 𝑄8 and (𝐶10 × 𝐶2) ⋊𝜙 𝐶2.

Note 40 = 23 × 5. Similar to the argument used when |𝐺| = 36; for each of these groups,
the second derived subgroups is always trivial. Thus by Lemma 6.3.1, these groups are
not (∗)-groups.

∙ (|𝐺| = 42) There are 5 non-abelian groups of order 42. One is a dihedral group and 3
are direct products and so these are not (∗)-groups. The only candidate is the group
AGL1(7) which is a (∗)-group by Example 6.0.6.

∙ (|𝐺| = 48) There are a total of 52 groups of order 48, 29 of these groups are direct
products and are thus not (∗)-groups. The list of groups under consideration, excluding
𝐷48 and Dic12 as these are not (∗)-groups, is as follows:

1. 𝐶3 ⋊𝜙 𝐶16

2. (𝐶4 × 𝐶4) ⋊𝜙 𝐶3

3. 𝐶24 ⋊𝜙 𝐶2

4. 𝐶24 ⋊𝜙 𝐶2

5. (𝐶3 ⋊𝜙 𝐶8) ⋊𝜙 𝐶2

6. (𝐶3 ⋊𝜙 𝐶4) ⋊𝜙 𝐶4

7. 𝐶12 ⋊𝜙 𝐶4

8. (𝐶12 × 𝐶2) ⋊𝜙 𝐶4

9. (𝐶2 × 𝐷8) ⋊𝜙 𝐶2

10. (𝐶3 ⋊𝜙 𝐶8) ⋊𝜙 𝐶2

11. (𝐶3 × 𝑄8) ⋊𝜙 𝐶2

12. 𝐶3 ⋊𝜙 Dic4

13. (𝐶2 × (𝐶3 ⋊𝜙 𝐶4)) ⋊𝜙 𝐶2

14. SL(2, 3).𝐶2

15. GL(2, 3)

16. 𝐴4 ⋊𝜙 𝐶4

17. SL(2, 3) ⋊𝜙 𝐶2

18. (𝐶12 × 𝐶2) ⋊𝜙 𝐶2

19. (𝐶2 × (𝐶3 ⋊𝜙 𝐶4)) ⋊𝜙 𝐶2

20. (𝐶4 × 𝑆3) ⋊𝜙 𝐶2

21. (𝐶2 × 𝐶2 × 𝐶2 × 𝐶2) ⋊𝜙 𝐶3

Consider the groups numbered 1,2,3, 4,7,8,18 and 21. Similar to the groups considered in
groups of order 40, the second derived subgroup of these groups is trivial. In particular,
the index of the second derived subgroups in each of these groups is the order of the
group itself. Thus by Lemma 6.3.1, the groups numbered 1,2,3, 4,5,6,7,8,10,18 and 21 are
not (∗)-groups.

We are then left with the groups given by:
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1. (𝐶3 ⋊𝜙 𝐶8) ⋊𝜙 𝐶2

2. (𝐶3 ⋊𝜙 𝐶4) ⋊𝜙 𝐶4

3. (𝐶2 × 𝐷8) ⋊𝜙 𝐶2

4. (𝐶3 ⋊𝜙 𝐶8) ⋊𝜙 𝐶2

5. (𝐶3 × 𝑄8) ⋊𝜙 𝐶2

6. 𝐶3 ⋊𝜙 Dic4

7. (𝐶2 × (𝐶3 ⋊𝜙 𝐶4)) ⋊𝜙 𝐶2

8. SL(2, 3).𝐶2

9. GL(2, 3)

10. 𝐴4 ⋊𝜙 𝐶4

11. SL(2, 3) ⋊𝜙 𝐶2

12. (𝐶2 × (𝐶3 ⋊𝜙 𝐶4)) ⋊𝜙 𝐶2

13. (𝐶4 × 𝑆3) ⋊𝜙 𝐶2

Let𝐺 = GL(2, 3). The derived subgroup of𝐺 is given by𝐺′ = SL(2, 3) and so |𝐺 ∶ 𝐺′| = 2.
Let 𝑝 be a fixed prime and let (𝐺, 𝑝) be a (∗)-group. Then by Theorem 5.1, it follows that
𝑝𝑛 − 1 = 2, thus 𝑝 = 3 and 𝑛 = 1. But Deg(𝐺) = (1, 1, 2, 2, 2, 3, 3, 4). Hence, 𝐺 is not a
(∗)-group.

Consider Table 6.2 below. This table has four columns which contain the GAP ID of the
group 𝐺 under consideration, group name, the prime 𝑝 such that |𝐺 ∶ 𝐺′| = 𝑝𝑛 − 1 and
the character degree sequence of the group 𝐺.

Table 6.2: Table with character degree sequence:

GAP ID Group name 𝑝 Deg(G)

[48,10] (𝐶3 ⋊𝜙 𝐶8) ⋊𝜙 𝐶2 3 (1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2)

[48,12] (𝐶3 ⋊𝜙 𝐶4) ⋊𝜙 𝐶4 3 (1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2)

[48,15] (𝐶3 × 𝐷8) ⋊𝜙 𝐶2 5 (1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 4)

[48,16] (𝐶3 ⋊𝜙 𝐶8) ⋊𝜙 𝐶2 5 (1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 4)

[48,17] (𝐶3 × 𝑄8) ⋊𝜙 𝐶2 5 (1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 4)

[48,18] 𝐶3 ⋊𝜙 Dic4 5 (1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 4)

[48,19] (𝐶2 × (𝐶3 ⋊𝜙 𝐶4)) ⋊𝜙 𝐶2 3 (1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2)

[48,28] SL(2, 3).𝐶2 3 (1, 1, 2, 2, 2, 3, 3, 4)

[48,29] GL(2, 3) 3 (1, 1, 2, 2, 2, 3, 3, 4)

[48,30] 𝐴4 ⋊𝜙 𝐶4 5 (1, 1, 1, 1, 2, 2, 3, 3, 3, 3)

[48,33] SL(2, 3) ⋊𝜙 𝐶2 7 (1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3)

[48,39] (𝐶2 × (𝐶3 ⋊𝜙 𝐶4)) ⋊𝜙 𝐶2 3 (1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 4)

[48,41] (𝐶4 × 𝑆3) ⋊𝜙 𝐶2 3 (1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 4)

In conclusion, we see that no group of order 48 is a (∗)-group.

∙ (|𝐺| = 54) There are a total of 15 groups of order 54, 9 of these are direct products and
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hence are not (∗)-groups. Further, the dihedral group 𝐷54 is not a (∗)-group. Thus the
groups under consideration are as follows:

1. ((𝐶3 × 𝐶3) ⋊𝜙 𝐶3) ⋊𝜙 𝐶2

2. (𝐶9 ⋊𝜙 𝐶3) ⋊𝜙 𝐶2

3. (𝐶9 × 𝐶3) ⋊𝜙 𝐶2

4. ((𝐶3 × 𝐶3) ⋊𝜙 𝐶3) ⋊𝜙 𝐶2

5. (𝐶3 × 𝐶3 × 𝐶3) ⋊𝜙 𝐶2

Since 54 = 2 ⋅ 33, similar to the argument used for groups of order 36, the group (𝐶3 ×
𝐶3 × 𝐶3) ⋊𝜙 𝐶2 is not a (∗)-group.

Constructing a table similar to Table 6.2 we obtain the following:

Table 6.3: Table with character degree sequence:

GAP ID Group name 𝑝 Deg(G)

[54,5] ((𝐶3 × 𝐶3) ⋊𝜙 𝐶3) ⋊𝜙 𝐶2 7 (1, 1, 1, 1, 1, 1, 2, 2, 2, 6)

[54,6] (𝐶9 ⋊𝜙 𝐶3) ⋊𝜙 𝐶2 7 (1, 1, 1, 1, 1, 1, 2, 2, 2, 6)

[54,7] (𝐶9 × 𝐶3) ⋊𝜙 𝐶2 3 (1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2)

[54,8] ((𝐶3 × 𝐶3) ⋊𝜙 𝐶3) ⋊𝜙 𝐶2 3 (1, 1, 2, 2, 2, 2, 3, 3, 3, 3)

Therefore, we see that there are no (∗)-groups of order 54.

To quicken the process of looking for (∗)-groups, we will henceforth rule out groups
which are quickly identified not to be (∗)-groups and use a table similar to Table 6.2.

∙ (|𝐺| = 56) There are a total of 13 groups of order 56, 8 of these groups are direct products
and one is 𝐷56, thus these groups are not (∗)-groups.

Hence we consider the following groups:

1. 𝐶7 ⋊𝜙 𝐶8

2. 𝐶7 ⋊𝜙 𝐶8

3. (𝐶14 × 𝐶2) ⋊𝜙 𝐶2

4. AGL1(23)

By Example 6.0.6, AGL1(23) is a (∗)-group. Below, Table 6.4 displays that the groups
number 1,2 and 3 are not (∗)-groups.

Table 6.4: Table with character degree sequence:

GAP ID Group name 𝑝 Deg(G)

[56,1] 𝐶7 ⋊𝜙 𝐶8 3 (1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2)

[56,3] 𝐶7 ⋊𝜙 𝐶8 5 (1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2)

[56, 7] (𝐶14 × 𝐶2) ⋊𝜙 𝐶2 5 (1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2)
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In conclusion, AGL1(23) is the only (∗)-group of order 56.

∙ (|𝐺| = 60) A total of 9 of the 13 groups of order 60 are not (∗)-groups since they are
direct products. Furthermore, we know that 𝐷60 is not a (∗)-group.

If 𝐺 = 𝐶15⋊𝜙𝐶4 (there are two non-isomorphic groups with this structure), then 𝐺′′ = 1
and so similar to the argument for groups of order 36, 𝐺 is not a (∗)-group.

Finally, if 𝐺 = 𝐴5, then 𝐺/𝐺′′ ≅ 1 since 𝐺′ = 𝐴5. If we let (𝐺, 𝑝) be a (∗)-group for some
prime 𝑝, then by Theorem 5.1, it follows that𝐺/𝐺′′ is non-abelian, this is a contradiction.
Hence, 𝐺 is not a (∗)-group.

Therefore, there are no (∗)-groups of order 60.

∙ (|𝐺| = 66) A total of 3 of the 4 groups of order 66 are direct products, the other being
𝐷66. Hence there are no (∗)-groups of order 66.

∙ (|𝐺| = 72) Of the 50 groups of order 72, we consider the 18 (excluding 𝐷72) that are not
direct products. These 18 groups are listed below:

1. 𝐶9 ⋊𝜙 𝐶8

2. 𝑄8 ⋊𝜙 𝐶9

3. 𝐶9 ⋊𝜙 𝑄8

4. (𝐶18 × 𝐶2) ⋊𝜙 𝐶2

5. (𝐶3 × 𝐶3) ⋊𝜙 𝐶8

6. ((𝐶2 × 𝐶2) ⋊𝜙 𝐶9) ⋊𝜙 𝐶2

7. (𝐶3 × 𝐶3) ⋊𝜙 𝐶8

8. (𝐶3 × (𝐶3 ⋊𝜙 𝐶4)) ⋊𝜙 𝐶2

9. (𝐶6 × 𝑆3) ⋊𝜙 𝐶2

10. (𝐶6 × 𝑆3) ⋊𝜙 𝐶2

11. (𝐶3 × 𝐶3) ⋊𝜙 𝑄8

12. (𝐶3 × 𝐶3) ⋊𝜙 𝑄8

13. (𝐶12 × 𝐶3) ⋊𝜙 𝐶2

14. (𝐶6 × 𝐶6) ⋊𝜙 𝐶2

15. AGL1(32)

16. (𝑆3 × 𝑆3) ⋊𝜙 𝐶2

17. (𝐶3 × 𝐶3) ⋊𝜙 𝑄8

18. (𝐶3 × 𝐴4) ⋊𝜙 𝐶2

By Example 6.0.6, we have that AGL1(32) is a (∗)-group.

Now the groups numbered 1,4,5,7,13 and 14 have a derived length of 2 since they are
a semidirect product of an abelian group by an abelian group (see Theorem 1.1.17). If
these groups where (∗)-groups then by Theorem 5.1, these groups would have to be
isomorphic to AGL1(32) as it must hold that

72 = |𝐺| = |𝐺 ∶ 1| = ||𝐺 ∶ 𝐺′′|| = |AGL1(𝑝𝑛)| ,

which forces 𝑝 = 3 and 𝑛 = 2, where 𝐺 is each of these groups (1,4,5,7,13 or 14). But
none of these groups are isomorphic to AGL1(32), hence the groups numbered 1,4,5,7,13
and 14 can not be (∗)-groups.

Thus the remaining groups are given by:
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1. 𝑄8 ⋊𝜙 𝐶9

2. 𝐶9 ⋊𝜙 𝑄8

3. ((𝐶2 × 𝐶2) ⋊𝜙 𝐶9) ⋊𝜙 𝐶2

4. (𝐶3 × (𝐶3 ⋊𝜙 𝐶4)) ⋊𝜙 𝐶2

5. (𝐶6 × 𝑆3) ⋊𝜙 𝐶2

6. (𝐶6 × 𝑆3) ⋊𝜙 𝐶2

7. (𝐶3 × 𝐶3) ⋊𝜙 𝑄8

8. (𝐶3 × 𝐶3) ⋊𝜙 𝑄8

9. (𝑆3 × 𝑆3) ⋊𝜙 𝐶2

10. (𝐶3 × 𝐶3) ⋊𝜙 𝑄8

11. (𝐶3 × 𝐴4) ⋊𝜙 𝐶2

Table 6.5: Table with character degree sequence:

GAP ID Group name 𝑝 Deg(G)

[72,1] 𝑄8 ⋊𝜙 𝐶9 3 (1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2)

[72,3] 𝐶9 ⋊𝜙 𝑄8 5 (1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3)

[72,15] ((𝐶2 × 𝐶2) ⋊𝜙 𝐶9) ⋊𝜙 𝐶2 3 (1, 1, 2, 2, 2, 2, 3, 3, 6)

[72,21] (𝐶3 × (𝐶3 ⋊𝜙 𝐶4)) ⋊𝜙 𝐶2 3 (1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4)

[72,22] (𝐶6 × 𝑆3) ⋊𝜙 𝐶2 5 (1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4)

[72,23] (𝐶6 × 𝑆3) ⋊𝜙 𝐶2 5 (1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4)

[72,24] (𝐶3 × 𝐶3) ⋊𝜙 𝑄8 5 (1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4)

[72,31] (𝐶3 × 𝐶3) ⋊𝜙 𝑄8 5 (1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2)

[72,40] (𝑆3 × 𝑆3) ⋊𝜙 𝐶2 5 (1, 1, 1, 1, 2, 4, 4, 4, 4)

[72,41] (𝐶3 × 𝐶3) ⋊𝜙 𝑄8 5 (1, 1, 1, 1, 2, 8)

[72,43] (𝐶3 × 𝐴4) ⋊𝜙 𝐶2 3 (1, 1, 2, 2, 2, 2, 3, 3, 6)

Hence we see that the only (∗)-group of order 72 is AGL1(32).

∙ (|𝐺| = 78) There are a total of 6 group of order 78, 4 of these group are direct products
and hence no (∗)-groups. The group 𝐷78 is also not a (∗)-group.

For the group 𝐺 = (𝐶13 ⋊𝜙 𝐶3) ⋊𝜙 𝐶2, we have |𝐺 ∶ 𝐺′| = 6. Hence if (𝐺, 𝑝) is a (∗)-group
for some prime 𝑝, it follows by Theorem 5.1, that 𝑝 = 7 since 71 − 1 = 6 = |𝐺 ∶ 𝐺′|. This
is a contradiction since 7 ∤ 78. Thus 𝐺 is not a (∗)-group.

In conclusion, there are no (∗)-groups of order 78.

∙ (|𝐺| = 80) Of the 52 total groups of order 80, 28 are direct products and so are not (∗)-
groups. The group 𝐷80 is also not a (∗)-group. The list of the remaining groups is given
below:
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1. 𝐶5 ⋊𝜙 𝐶16

2. 𝐶5 ⋊𝜙 𝐶16

3. 𝐶40 ⋊𝜙 𝐶2

4. 𝐶40 ⋊𝜙 𝐶2

5. 𝐶5 ⋊𝜙 𝐶16

6. (𝐶5 ⋊𝜙 𝐶8) ⋊𝜙 𝐶2

7. (𝐶5 ⋊𝜙 𝐶4) ⋊𝜙 𝐶4

8. 𝐶20 ⋊𝜙 𝐶4

9. (𝐶20 × 𝐶2) ⋊𝜙 𝐶2

10. (𝐶5 × 𝐷8) ⋊𝜙 𝐶2

11. (𝐶5 ⋊𝜙 𝐶8) ⋊𝜙 𝐶2

12. (𝐶5 × 𝑄8) ⋊𝜙 𝐶2

13. 𝐶5 ⋊𝜙 Dic4

14. (𝐶2 × (𝐶5 ⋊𝜙 𝐶4)) ⋊𝜙 𝐶2

15. (𝐶5 ⋊𝜙 𝐶8) ⋊𝜙 𝐶2

16. (𝐶5 ⋊𝜙 𝐶8) ⋊𝜙 𝐶2

17. 𝐶20 ⋊𝜙 𝐶4

18. (𝐶5 ⋊𝜙 𝐶8) ⋊𝜙 𝐶2

19. (𝐶2 × (𝐶5 ⋊𝜙 𝐶4)) ⋊𝜙 𝐶2

20. (𝐶20 × 𝐶2) ⋊𝜙 𝐶2

21. (𝐶2 × (𝐶5 ⋊𝜙 𝐶4)) ⋊𝜙 𝐶2

22. (𝐶4 × 𝐷10) ⋊𝜙 𝐶2

23. (𝐶2 × 𝐶2 × 𝐶2 × 𝐶2) ⋊𝜙 𝐶5

The groups numbered 1,2,3,4,5,8,9,17,20 and 23 are of derived length 2, hence since 80 =
24 × 5 it follows by Lemma 6.3.1, that these groups are not (∗)-groups. The remaining
group are listed below:

1. (𝐶5 ⋊𝜙 𝐶8) ⋊𝜙 𝐶2

2. (𝐶5 ⋊𝜙 𝐶4) ⋊𝜙 𝐶4

3. (𝐶5 × 𝐷8) ⋊𝜙 𝐶2

4. (𝐶5 ⋊𝜙 𝐶8) ⋊𝜙 𝐶2

5. (𝐶5 × 𝑄8) ⋊𝜙 𝐶2

6. 𝐶5 ⋊𝜙 Dic4

7. (𝐶2 × (𝐶5 ⋊𝜙 𝐶4)) ⋊𝜙 𝐶2

8. (𝐶5 ⋊𝜙 𝐶8) ⋊𝜙 𝐶2

9. (𝐶5 ⋊𝜙 𝐶8) ⋊𝜙 𝐶2

10. (𝐶5 ⋊𝜙 𝐶8) ⋊𝜙 𝐶2

11. (𝐶2 × (𝐶5 ⋊𝜙 𝐶4)) ⋊𝜙 𝐶2

12. (𝐶2 × (𝐶5 ⋊𝜙 𝐶4)) ⋊𝜙 𝐶2

13. (𝐶4 × 𝐷10) ⋊𝜙 𝐶2

For these groups, consider the following table:
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Table 6.6: Table with character degree sequence:

GAP ID Group name 𝑝 Deg(G)

[80,10] (𝐶5 ⋊𝜙 𝐶8) ⋊𝜙 𝐶2 3 (1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2)

[80,12] (𝐶5 ⋊𝜙 𝐶4) ⋊𝜙 𝐶4 3 (1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2)

[80,15] (𝐶5 × 𝐷8) ⋊𝜙 𝐶2 5 (1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4)

[80,16] (𝐶5 ⋊𝜙 𝐶8) ⋊𝜙 𝐶2 5 (1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4)

[80,17] (𝐶5 × 𝑄8) ⋊𝜙 𝐶2 5 (1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4)

[80,18] 𝐶5 ⋊𝜙 Dic4 5 (1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4)

[80,19] (𝐶2 × (𝐶5 ⋊𝜙 𝐶4)) ⋊𝜙 𝐶2 3 (1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2)

[80,28] (𝐶5 ⋊𝜙 𝐶8) ⋊𝜙 𝐶2 17 (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 4, 4, 4)

[80,29] (𝐶5 ⋊𝜙 𝐶8) ⋊𝜙 𝐶2 3 (1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 4, 4, 4, 4)

[80,33] (𝐶5 ⋊𝜙 𝐶8) ⋊𝜙 𝐶2 3 (1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 4, 4, 4, 4)

[80,34] (𝐶2 × (𝐶5 ⋊𝜙 𝐶4)) ⋊𝜙 𝐶2 3 (1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 4, 4, 4, 4)

[80,40] (𝐶2 × (𝐶5 ⋊𝜙 𝐶4)) ⋊𝜙 𝐶2 3 (1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4)

[80,42] (𝐶4 × 𝐷10) ⋊𝜙 𝐶2 3 (1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4)

Thus since none of the groups in Table 6.6 are (∗)-groups, it follows that there are no
(∗)-groups of order 80.

∙ (|𝐺| = 84) Of the 15 total groups of order 84, 11 of them are direct products and one is
𝐷84; hence these 12 groups are not (∗)-groups. The remaining groups are given by

1. (𝐶7 ⋊𝜙 𝐶4) ⋊𝜙 𝐶3

2. 𝐶21 ⋊𝜙 𝐶4

3. (𝐶14 × 𝐶2) ⋊𝜙 𝐶3

The groups numbered 2 and 3 are of derived length 2 and so are not (∗)-groups by
Lemma 6.3.1 (84 = 22 ⋅ 3 ⋅ 7).

Furthermore, we have that Deg((𝐶7⋊𝜙𝐶4)⋊𝜙𝐶3) = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 6, 6), thus
since the non-linear irreducible characters of (𝐶7 ⋊𝜙 𝐶4) ⋊𝜙 𝐶3 have the same degrees,
this group can not be a (∗)-group.

Therefore, there are no (∗)-groups of order 84.

∙ (|𝐺| = 90) Excluding 𝐷90, which is not a (∗)-group, 8 of the 10 groups of order 90 are
direct products and hence not (∗)-groups. Now (𝐶15 × 𝐶3) ⋊𝜙 𝐶2 is of derived length 2
and so cannot be a (∗)-group by Lemma 6.3.1 (90 = 2 ⋅ 32 ⋅ 5).

Thus there are no (∗)-groups of order 90.
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∙ (|𝐺| = 96) There are 231 groups of order 96. Due to the sheer number of groups we will
not list groups which are we can readily rule out. These groups include groups which
are direct products and groups of derived length 2 (note that 100 = 25×3 and see Lemma

6.3.1) as these can not be (∗)-groups. We thus have the following remaining groups:

1. ((𝐶4 × 𝐶2) ⋊𝜙 𝐶4) ⋊𝜙 𝐶3

2. ((𝐶4 × 𝐶4) ⋊𝜙 𝐶3) ⋊𝜙 𝐶2

3. 𝐴4 ⋊𝜙 𝐶8

4. SL(2, 3) ⋊𝜙 𝐶4

5. SL(2, 3) ⋊𝜙 𝐶4

6. ((𝐶8 × 𝐶2) ⋊𝜙 𝐶2) ⋊𝜙 𝐶3

7. 𝐴4 ⋊𝜙 𝑄8

8. (𝐶2 × 𝑆4) ⋊𝜙 𝐶2

9. (𝐶2 × SL(2, 3)) ⋊𝜙 𝐶2

10. (SL(2, 3).𝐶2) ⋊𝜙 𝐶2

11. (SL(2, 3).𝐶2) ⋊𝜙 𝐶2

12. (SL(2, 3) ⋊𝜙 𝐶2) ⋊𝜙 𝐶2

13. (𝐶2 × 𝐶2 × 𝐴4) ⋊𝜙 𝐶2

14. (SL(2, 3) ⋊𝜙 𝐶2) ⋊𝜙 𝐶2

15. (𝐶2 × SL(2, 3)) ⋊𝜙 𝐶2

16. (𝐶2 × 𝐶2 × 𝑄8) ⋊𝜙 𝐶3

17. ((𝐶2 × 𝐷8) ⋊𝜙 𝐶2) ⋊𝜙 𝐶3

18. ((𝐶2 × 𝐶2 × 𝐶2 × 𝐶2) ⋊𝜙 𝐶3) ⋊𝜙 𝐶2

Now consider the table below:

Table 6.7: Table with character degree sequence:

GAP ID Group name 𝑝 Deg(G)

[96,3] ((𝐶4 × 𝐶2) ⋊𝜙 𝐶4) ⋊𝜙 𝐶3 2 (1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3, 6)

[96,64] ((𝐶4 × 𝐶4) ⋊𝜙 𝐶3) ⋊𝜙 𝐶2 3 (1, 1, 2, 3, 3, 3, 3, 3, 3, 6)

[96,65] 𝐴4 ⋊𝜙 𝐶8 3 (1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3)

[96,66] SL(2, 3) ⋊𝜙 𝐶4 5 (1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4)

[96,67] SL(2, 3) ⋊𝜙 𝐶4 5 (1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4)

[96,74] ((𝐶8 × 𝐶2) ⋊𝜙 𝐶2) ⋊𝜙 𝐶3 13 (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3)

[96,185] 𝐴4 ⋊𝜙 𝑄8 5 (1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 6)

[96,187] (𝐶2 × 𝑆4) ⋊𝜙 𝐶2 5 (1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 6)

[96,190] (𝐶2 × SL(2, 3)) ⋊𝜙 𝐶2 5 (1, 1, 1, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4)

[96,191] (SL(2, 3).𝐶2) ⋊𝜙 𝐶2 5 (1, 1, 1, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4)

[96,192] (SL(2, 3).𝐶2) ⋊𝜙 𝐶2 5 (1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4)

[96,193] (SL(2, 3) ⋊𝜙 𝐶2) ⋊𝜙 𝐶2 5 (1, 1, 1, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4)

[96,195] (𝐶2 × 𝐶2 × 𝐴4) ⋊𝜙 𝐶2 5 (1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 6)

[96,201] (SL(2, 3) ⋊𝜙 𝐶2) ⋊𝜙 𝐶2 13 (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 3, 4, 4, 4)

[96,202] (𝐶2 × SL(2, 3)) ⋊𝜙 𝐶2 13 (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 3, 4, 4, 4)

[96,203] (𝐶2 × 𝐶2 × 𝑄8) ⋊𝜙 𝐶3 2 (1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3, 6)

[96,204] ((𝐶2 × 𝐷8) ⋊𝜙 𝐶2) ⋊𝜙 𝐶3 2 (1, 1, 1, 3, 3, 3, 3, 3, 4, 4, 4)

[96,227] ((𝐶2 × 𝐶2 × 𝐶2 × 𝐶2) ⋊𝜙 𝐶3) ⋊𝜙 𝐶2 3 (1, 1, 2, 3, 3, 3, 3, 3, 3, 6)
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Thus from the table on the previous page, the groups ((𝐶4 × 𝐶4) ⋊𝜙 𝐶3) ⋊𝜙 𝐶2 and ((𝐶2 ×
𝐶2 × 𝐶2 × 𝐶2) ⋊𝜙 𝐶3) ⋊𝜙 𝐶2 are (∗)-groups.

We confirm, using Theorem 5.1, that 𝐺 = ((𝐶2 × 𝐶2 × 𝐶2 × 𝐶2) ⋊𝜙 𝐶3) ⋊𝜙 𝐶2 is a (∗)-group.
A similar analysis can be carried out for ((𝐶4 × 𝐶4) ⋊𝜙 𝐶3) ⋊𝜙 𝐶2.

Using GAP, we are able to get the following information on the group 𝐺. The derived
subgroup of 𝐺 is given by 𝐺′ = (𝐶2 × 𝐶2 × 𝐶2 × 𝐶2) ⋊𝜙 𝐶3. This implies that 𝐺/𝐺′ ≅ 𝐶2;
that is, we have that 𝐺/𝐺′ is cyclic of order 2 = 31 − 1. Moreover, the character degree
sequence of 𝐺′ is Deg(𝐺′) = (1, 1, 1, 3, 3, 3, 3, 3). Hence 𝐺′ is a Thompson group.

The second derived subgroup of 𝐺 is given by 𝐺′′ = 𝐶2 × 𝐶2 × 𝐶2 × 𝐶2. This implies
that |𝐺 ∶ 𝐺′′| = 6. If 𝐺/𝐺′′ is abelian, then by Theorem 1.1.17 it follows that 𝐺′ =
(𝐶2 × 𝐶2 × 𝐶2 × 𝐶2) ⋊𝜙 𝐶3 = 𝐶2 × 𝐶2 × 𝐶2 × 𝐶2 = 𝐺′′, which is a contradiction. Thus it
follows that 𝐺/𝐺′′ ≅ 𝑆3 ≅ AGL1(3).

Let Irr1(𝐺, 3′) = {𝜒 }. Using the following GAP commands:

gap> G := SmallGroup(96,227);

gap> x := Irr(G);

gap> K := Kernel(x[3]);

gap> StructureDescription(K);

we are able to find that ker 𝜒 = 𝐶2 × 𝐶2 × 𝐶2 × 𝐶2 = 𝐺′′. From the facts established for
the group 𝐺, Theorem 5.1 also confirms 𝐺 to be a (∗)-group.

∙ (|𝐺| = 100) There are a total 16 group of order 100. Of these 16 groups 9 are direct
products and one is𝐷100 and hence are not (∗)-groups. The remaining groups are shown
below:

1. 𝐶25 ⋊𝜙 𝐶4

2. 𝐶25 ⋊𝜙 𝐶4

3. (𝐶5 × 𝐶5) ⋊𝜙 𝐶4

4. (𝐶5 × 𝐶5) ⋊𝜙 𝐶4

5. (𝐶5 × 𝐶5) ⋊𝜙 𝐶4

6. (𝐶5 × 𝐶5) ⋊𝜙 𝐶4

7. (𝐶5 × 𝐶5) ⋊𝜙 𝐶4

These numbered groups are of derived length 2 and so by Lemma 6.3.1, they are not
(∗)-groups.

We have thus shown that there are no (∗)-groups of order 100.

Therefore, we have the following theorem:

Theorem 6.3.10. Let 𝐺 be a (∗)-group such that |𝐺| ≤ 100, then 𝐺 is one of the following

groups:
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GAP ID Group name

[6,1] 𝑆3
[12,3] 𝐴4

[20,3] AGL1(5)

[24,3] SL(2, 3)

[24,12] 𝑆4
[42,1] AGL1(7)

[56,11] AGL1(23)

[72,39] AGL1(32)

[96,64] ((𝐶4 × 𝐶4) ⋊𝜙 𝐶3) ⋊𝜙 𝐶2

[96, 227] ((𝐶2 × 𝐶2 × 𝐶2 × 𝐶2) ⋊𝜙 𝐶3) ⋊𝜙 𝐶2

Closing remarks

We have seen that not all (∗)-groups are Frobenius. We could ask, what is the general struc-
ture of Frobenius (∗)-groups? Are they always a semidirect product of a group of its derived
subgroup of order 𝑝𝑛 by some abelian group of order 𝑝𝑛 − 1? Can we classify such groups?
A metacyclic group is defined as a group 𝐺 which has a normal cyclic subgroup 𝑁 such that
𝐺/𝑁 is cyclic. A supersolvable group is a group that contains a normal series with cyclic fac-
tors. A Metacyclic group can be shown to be supersolvable. The Frobenius group 𝐶𝑝 ⋊ 𝐶𝑝−1
is metacyclic and thus supersolvable. Thus we have an example of an infinite family of su-
persolvable (∗)-groups. Since we have an example of a supersolvable (∗)-group and know
that all (∗)-groups are solvable; could we classify supersolvable (∗)-groups? Is the class of
supersolvable (∗)-groups strictly smaller than the class of general (∗)-groups? (Yes, consider
the (∗)-group 𝑆4). Regrettably, these are worthwhile questions I could not incorporate into
this dissertation.

Groups having one irreducible character of 𝑝′-degree have a fascinating structure. We
see a strong interplay between Thompson groups, that is, groups having characters whose
degrees are of 𝑝-power and these (∗)-groups. The derived subgroup of these groups is Thomp-
son. Moreover, (∗)-group can be separated into a “top part” which has exactly one non-linear
irreducible character (which is of 𝑝′ degree), namely 𝐺/𝐺′′, and a “bottom part” 𝐺′′. We see
how Seitz’s theorem begins to materialise here. Considering all these ideas together is far
from alien in hindsight, but translating these ideas into a concrete mathematical fact is a
sight to behold. The work by Kazarin and Berkovich is remarkable.
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