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Abstract

A mathematical model of a continuous Kraft wood digester was developed and tested.

The model relies heavily on the work done previously by Christensen, Albright & Williams

(1982). The batch Kraft digester model developed by Christensen et al (1982) was

adapted to model a continuous Kraft wood digester at Ngodwana, South Africa. This

adaptation centres around utilizing the method of lines to account for changes in both

time and height of the digester simultaneously. The model was able to simulate the

Kappa number of the digester accurately to an average absolute error of 7.88 that was

reduced to 2.87 after certain process parameters were optimized for. A moving horizon

state estimator was introduced into the model in an effort to keep internal state predic-

tion accurate. This addition brought the average absolute error down further to 2.75.

Adaptive control was also implemented into the model. The plant data the model was

compared against to determine its accuracy was filtered with the use of a rolling median

filter to reduce the influence introduced by noisy and infrequent measurements.

Keywords:Kappa number, Kraft digester, Continuous digester model, Sappi, Ngodwana
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1 Introduction

Since the dawn of the paper making process, one of the first steps involve creating a pulp

from a fibrous substance such as wood. In modern times, this pulping step is often done

with the use of a wood pulp digester. This is no different at Sappi, South Africa, where

around 700 000 tons of paper is produced annually.

1.1 Background

Since 1999, the University of Pretoria’s Chemical Engineering Department has been in-

volved with the Saiccor mill in KwaZulu-Natal, South Africa owned by Sappi. Saiccor

utilizes batch digesters to create wood pulp. In an effort to reduce variability in the

pulp quality, it was deemed necessary to control various variables in the batch process.

These are variables such as: the time the batch takes, the amount of solvent added and

the temperature of the batch, to name a few. In order to control such a large, highly

interacting system it was decided that a mathematical model of the reaction kinetics of

the process would be helpful. With this, control systems such as model predictive control

(MPC) could be implemented to control the quality of the pulp (Kilian, 1999). This

model was developed by Kilian (1999) and is known as the UP model (named after the

University of Pretoria). It is used to model the DP throughout the batch (also called a

cook). This model had been greatly expanded on since 1999 and, in its current state, it

is reasonably accurate for the system (Stephens, 2017).

Sappi owns 5 mills in South Africa. Two of these are the aforementioned Saiccor mill and

the Ngodwana mill in Mpumalanga. This second mill has been dissolving wood for paper

since its construction in 1966. These are the two mills of concern for this dissertation

as the viability of adapting the UP model for use on the Ngodwana plant will be inves-

tigated. One of the differences between the Ngodwana mill and the Saiccor mill is that

Ngodwana utilizes continuous digesters while Saiccor relies on batch digesters (Sappi,

2020). Ngodwana also uses the Kraft process, whereas Saiccor uses the Sulphite process.

Wood consists of 3 main components, cellulose, hemicellulose and lignin (Ek, Gellerstedt

& Henriksson, 2009a). To make paper pulp, wood needs to be reduced to individual

cellulose fibres. Lignin serves to bind cellulose fibres together and needs to be removed

during the pulping process (Ek et al, 2009a). Chemical pulping dissolves most of the

lignin and the hemicellulose from the wood, resulting in better separation of the cellu-

lose fibres and better quality pulp. The pulping process takes place in a pulping reactor,

1
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called a digester. The quality of the pulp is determined by either measuring the amount of

residual lignin in the pulp, or by measuring the length of the cellulose chains in the pulp.

This length is often referred to as the degree of polymerization (DP) (Ek, Gellerstedt &

Henriksson, 2009b). From the residual lignin the Kappa number can be determined. The

Kappa number gives an indication of the residual lignin content of the pulp and is often

used to report pulp quality.

1.2 Problem statement

After wood has been pulped, there will still be some residual lignin remaining. This is

because the cellulose fibres are degraded too much if all the lignin is removed (Ek et al,

2009b). The lignin content of paper is what gives it its strength, therefore paper with

higher lignin content is going to be stronger but less refined. This quality of the produced

pulp can be measured in various ways, the most common of which being the measurement

of the residual lignin content. The Kappa number of pulp is related to the residual lignin

content of the pulp and therefore the Kappa number is often used to represent the quality

of the pulp.

It was found that the Kappa number output variability on Sappi’s Ngodwana mill is too

large. Because of this, they tend to yield products that have Kappa numbers outside the

acceptable range of specification. The result is lower predictability of pulp quality as well

as a lower yield. In order to reduce the residual lignin variance, it will be necessary to

implement better control schemes on the digester. It was decided that a model will allow

for better simulation of the process and aid in making decision regarding the operation

of the digester.

1.3 Aim

A kinetic model of the batch process already exist as the UP model. It was suggested

that the UP model be adapted for use in predicting the dynamics of the continuous

digesters at Ngodwana. It is believed that the wood being used in both digesters are

similar enough that the reaction kinetics section of the model would remain the same for

both. Therefore, only the spatial section of the model would need to be adapted to suit

the continuous nature of the Ngodwana digester. The aim of the project is to either adapt

the batch digester model of Saiccor for use on the continuous process at Ngodwana, or if

the differences in the systems are too extreme, implement a model from literature. This

model will then be used to predict the Kappa variance and these predictions will then be

used to reduce the Kappa variability.

2
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1.4 Method

The problem needs to be addressed with the development of a model. A literature study

will be done to become acquainted with the relevant knowledge on the subject of wood

pulping as well as digester modelling (Both Kraft and Sulphite and Batch as well as

continuous). The further aim of the literature study will be to compare the UP model

to pre-existing continuous Kraft digester models. This comparison will then be used

to determine whether the UP model will be adapted or if a model will need to be de-

veloped from an alternative source. The relevant starting model will be selected and

adapted. These adaptations will likely involve adding hydraulic mass balance equations

to batch models, as well as expanding energy balances to account for mass flow. The

model will then be coded into simulation software (using Python). This resulting simu-

lation will then be compared to measured plant data to determine the model accuracy.

The model parameters and variables will then be optimized to ensure the best possible

model accuracy. Further model improvements will be investigated to improve accuracy.

The main technique that will be investigated will be to use a state estimator to ensure

reasonable initial values to the simulation as well to ensure that the model state drift is

limited. Adaptive control will also be investigated to ensure that variables assumed to

be parameters change at some after some time to better reflect the true system.

1.5 Scope and issues

The scope of this project only extends to the adaption and development of a model. The

following items are explicitly not included in the scope.

• Any design or implementation of any control system.

• Implementation and change management

• Hardware and bespoke software that might become necessary.

As with any project, there are potential limitations of the project are. These are:

• Quality and quantity of available plant data

• Available computational power of the control computer to simulate a complex

model.

3
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2 Theoretical background

The paper pulping process was first described by Cai Lun, a 2nd-century CE Han court

eunuch (Eliot & Rose, 2009). Since then, the technology of paper pulp production had

been refined to produce the quality of paper available today. In modern times, the

chemistry and physical mechanisms of paper pulp production is well-established, allowing

for greater control over paper quality as well as allowing for the mass scale production of

quality paper. Sappi, South Africa provides the world with around 700 000 tons of paper

annually.

2.1 Sappi

South African Pulp and Paper Industries Limited (Sappi) is a global company that pro-

duces dissolving wood pulp (DWP), paper pulp, paper and various other paper-based

products. They own 5 mills across South Africa. They are the Saiccor mill, Tugela mill,

Stranger mill, Ngodwana mill and Lomati sawmill. Sappi has access to over 5000 square

kilometres of forests, and they produce over 600 kilotons of paper, over 600 kilotons of

paper pulp and more than a million tons of DWP annually. With this, they are the

world’s largest manufacturer of DWP. Sappi acquired Saiccor in 1989 where DWP was

produced to export. Sappi finished building Ngodwana in 1966. Ngodwana now produces

330 000 tons per annum of paper pulp for their own consumption, 250 000 tons of DP

per annum and 380 000 tons of paper mainly used for newsprint and kraft liner board

that is used for packaging per annum. About 70 % of the mill’s product is exported with

the rest being used locally.

The mill generates its own power in the form of steam and electricity from renewable and

other sources. On average, the mill produces more energy than it uses and therefore it

exports power to the national grid.

2.2 Wood

All woods contain the same 3 basic components: cellulose, hemicellulose and lignin (Ek

et al, 2009a). These all lend their unique properties to wood, making wood the durable

and strong material it is. These properties are, however, not always desired in paper.

This leads to a demand for understanding the physical and chemical properties of both

wood and paper.

4
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2.2.1 Cellulose

Cellulose is the main structural component of the cell walls of all true plants. Because of

the abundance of plant material, cellulose is the single most common bio-compound on

earth (Ek et al, 2009a). Cellulose is a natural polymer with glucose as its monomers. The

degree of polymerization of glucose tend to be very high. Values of 15 000 residues in one

chain are reported and this makes cellulose one of the longest of known polysaccharides.

These long fibre strands are the main component in paper and it owes its strength to the

length of the polymer chain. Celluloses consist of very straight and unbranched molecule

and are often referred to as fibres. Cellulose typically make up 40 % to 50 % of the wood

(Rydholm, 1965)

2.2.2 Hemicellulose

Hemicellulose usually make up 20 % to 35 % of the dry mass of wood, depending on

the species of tree used. While cellulose has a crystalline structure with long chains

(7000 units to 15 000 units), hemicellulose is amorphous and has shorter chains (500 units

to 3000 units) (Gibson, 2012). Hemicellulose is found in the matrix between cellulose

fibrils in the cell walls. It has been proved in several processes that hemicellulose is

difficult to separate from cellulose and lignin without modifying the hemicellulose (Ek et

al, 2009a). There is a wide variety of different types of hemicellulose. The main monomers

of hemicellulose are, hexoses (glucose, mannose and galactose) and or pentoses (xylose and

arabinose) along with small quantities of other organic components. The chemical and

thermal stability of hemicellulose is generally lower than those of cellulose. Hemicellulose

(especially arabinogalactans) tend to branch much easier than cellulose which tends to

be unbranched.

2.2.3 Lignin

Lignin makes up 15 % to 35 % of the dry mass of wood. Lignin is a hydrophobic polymer

that fills the space between cellulose microfibrils and hemicellulose. This fixes them to

each other. Lignin hereby stiffens the wood and gives it rigidity. In contrast, cotton, for

example, is a lot softer and more flexible than wood, even though cotton is also mostly

cellulose. This is because cotton lacks great amounts of lignin. With lignin in the wood

matrix, wood is often referred to as a micro-composite type material, with cellulose being

the enforcing fibres and lignin playing the role of a phenolic plastic. Even though lignin is

a very abundant polymer, it is quite complex biochemically speaking. Lignin is neither a

polysaccharide, a lipid, a protein, nor a nucleotide. Rather, it is polymer with a mixture

of aromatic and aliphatic moieties. It is not a linear polymer like cellulose, nor a branched

polymer like hemicellulose but rather it is a three-dimensional web with the monomers

connected with a number of different ether and carbon-carbon bonds that are randomly
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distributed (Ek et al, 2009a).

2.2.4 Wood types

Wood is generally divided into 2 categories based on its botanical classification. These

categories are hardwoods (often called angiosperms) and the coniferous softwood trees

(often referred to as gymnosperms). The classification is based on the seed type of the

tree, rather than on the hardness of the wood. That being said, the wood from hardwoods

are typically harder than the wood from softwoods. There are many differences between

hard- and softwoods. The main differences that influence pulping are discussed below:

Softwood

Softwoods tend to grow faster than hardwoods and because of this they are typically more

readily available (Patt & Kardsachia, 1991). Softwoods are typically a more uniform raw

material, they have better stem formation, and they are also easier to debark. Their wood

consist of longer fibres than those of hardwoods, and they produce higher yields in acidic

cooking. The pulp from softwoods posses better wet web strength and better drainage

properties than their hardwood counterparts. The paper from softwoods typically posses

high strength properties, especially when looking at tear strength, and better runability.

Hardwood

Hardwoods on the other hand also have numerous positive qualities, such as higher stock

stability and extremely high growth rate in some cases. Hardwoods posses a higher

specific weight, leading to lower transport costs, higher digester capacity as well as higher

pulp output. They also have a lower lignin content, leading to easier pulping that is

cheaper, looking at both energy consumption and chemical chemicals consumed. They

produce high yields in alkaline pulping. The pulp from hardwoods requires less beating

energy, shows rapid strength development during beating and has better bleachability.

This leads to fewer bleaching stages, lower chemical demand and less pollution.

Wood composition

The average composition of hard- and softwoods are given in Table 1 below:
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Table 1: Hard- and softwood ODW compositions (Rydholm, 1965).

Component % hardwood % softwood

Lignin 22 % 29 %

Cellulose 40-50 % 40-50 %

Glucomannan & Galactoglucomannan acetate 20-35 % 12-20 %

Methylglucuronoarabinoxylan 2-5 % 10-14 %

Galactan or Arabinogalactan 1-2 % 2 %

Glucomannan, galactoglucomannan, methylglucuronoarabinoxylan, galactan, arabino-

galactan and methylglucuronoxylan acetatem in Table 1 are all different types of hemi-

cellulose. It is clear that there is no ‘best’ wood type for paper pulping, but rather that

the wood used would depend on numerous factors that are specific for each plant such,

as wood availability and pulping process used. The timber consumption of the Saiccor

Mill consists primarily of eucalyptus hardwoods whereas Ngodwana Mills use primarily

pine softwoods (Sappi, 2020).

2.3 Pulping

Pulping technology centres around the freeing the wood fibres from the wood matrix (Ek

et al, 2009b). Pulping can be done in one of two ways, those being mechanical pulping

or chemical pulping.

2.3.1 Mechanical pulping

Since Sappi utilizes chemical pulping (Sappi, 2020), mechanical pulping will not be dis-

cussed in great detail. Mechanical pulping relies on crushing and grinding wood such that

the fibres are separated from the wood matrix. This gives a very high yield of between 90

% and 100 % since a very large proportion of the initial wood is grounded. Mechanical

pulp fibres are normally stiff and apart from the fibres they also tend to contain a large

portion of smaller material called fines. This is from fibre wall fragments and broken

fibres. These give mechanical fibres unique optical properties. However, increased pulp

strength is obtained if the pulp consists of a higher portion of long fibres. It has been

found that mechanical pulping under higher temperatures (around 400 K) yield longer

fibres and less fine formation. Because of this, chips are often pre-treated with steam.

2.3.2 Chemical pulping

The chemical way to produce pulp is to remove most of the lignin from the wood. This

releases the cellulose fibres from the wood matrix (Ek et al, 2009b). The process of delig-

nification relies on degrading lignin molecules and on introducing charged groups. The
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lignin is dissolved into the solvent liquor and washed off during later stages. No pulping

chemicals can only target lignin. Rather, the chemicals dissolve some of the carbohy-

drates (cellulose and hemicellulose) as well and this results in a loss of these compounds

to a varying extent. Normally about half of the wood material is dissolved in chemi-

cal pulping. No chemical pulping method removes all the lignin from the pulp during

pulping. Even though this would theoretically be possible, it does severely damage the

carbohydrates and as such it is seldom done. The delignification is therefore ended before

all lignin is removed from the pulp. The Kappa number of the pulp can be measured

and this can in turn be used to estimate the residual lignin in the pulp. Ngodwana uses

the T236 Tappi test, and they define the Kappa number as “the volume (in millilitres)

of 0.1N potassium permanganate solution consumed by one gram of moisture-free pulp

under specified conditions”. It does however have a straight line relationship to lignin

content and therefore residual lignin content can be calculated by using the straight line

equation, Equation 1 below:

%Lignin = 0.13× κ (1)

The T236 Tappi test is done at regular intervals during the day. It is a chemical analysis

with oxidation. This measurement is used to calibrate the three online UV-light Kappa

sensors. The three online UV-light Kappa measurement devices work by measuring the

absorption of UV-light (254 µm) that has been reflection at the fiber surface of the

pulp. The correlation between the UV-Kappa measurement and the Oxidation-Kappa

measurement is not constant but is rather a function of the type of wood species. It

is then the Sappi process engineers’ responsibility to use this correlation along with the

current wood type to calibrate the UV-Kappa measurement devices to ensure minimum

deviation between the online and the lab Kappa measurements.

Some chemical pulping methods include (Ek et al, 2009b):

Kraft cooking: It is the most popular chemical pulping method used globally. In this

method, sodium hydroxide (NaOH) and sodium sulphide (Na2S) are used as cooking

chemicals to degrade the lignin molecules.

Soda cooking: Similar to the Kraft process but without sodium sulphide, using only

sodium hydroxide as the active chemical.

Sulphite pulping: It utilizes sulphurous acid (H2SO3) and bisulphite ions (HSO –
3 ) as

active chemicals to degrade and dissolve lignin. In acid sulphite pulping, the pH

range between 1-2 and in neutral sulphite pulping, the pH range between 7-9.

Organic solvents: Organic solvents are often used as the sole degrading chemical, as in

organosolv processes. They are also commonly used as reinforcement chemical and
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added to the sulphite, sulphate or soda processes. The most common solvents are

ethanol (C2H5OH), methanol (CH3OH) and peracetic acid (C2H4O3).

The pulp fibres produced by chemical pulping differ from those produced by mechanical

pulping. Chemical fibres are more flexible, they conform better to one another, and they

offer good strength properties to the pulp. It is very common that plants which use

digesters have a recovery cycle to retrieve some dissolving chemicals after the pulp has

been washed. The organic component of the spent liquor (mainly dissolved lignin and

hemicellulose) are then burnt in furnaces to ensure that as much as possible of the raw

materials are used and waste is minimized. This is then used to create steam to heat the

rest of the processes in the plant.

2.3.3 Sulphite pulping

At the Saiccor mill, DWP is produced with the use of the acid sulphite process of chemical

pulping. This is a good choice of pulping method since it produces good quality DWP

from the typical wood species at Saiccor (Kilian, 1999).

The main component in the cooking liquor used in the sulphite process is bisulphite

(HSO –
3 ), from where the process gets its name. Normally it is magnesium, calcium,

sodium or ammonium that acts as the cation bonded to bisulphite. The sulphite process

has some advantages over the sulphate process such as ease of pulping, higher yields of

cellulose and higher cellulose content in the pulp (Gullichsen & Fogelholm, 1999).

The dissolving liquor consists of a magnesium or calcium base together with between 6

% and 7 % of dissolved sulphur dioxide (SO2) gas and 1.2 % combined SO2. It is present

in the cooking liquor in the form of disulphide and it corresponds to the base content

of the dissolving liquor (Sandrock, 2003). The liquor composition is quantified by the

total and combined SO2. Combined SO2 is defined by the amount of SO2 that is bound

as neutral sulphite in the liquor (Watson, 1992). The combined SO2 concentration is

not measured directly but is rather calculated from the measured concentration of the

metal oxide. During the reaction process strong acids are produced. ‘Strong acids’ is an

umbrella term used to describe the lignosulphonic, α-hydroxysulphonic, sugar-sulphonic,

sulphuric aldonic, formic, acetic and carbonic acids formed. The reaction involves the

formation of anions from the complete dissociation of strong acids.

2.3.4 Sulphate (Kraft) process

At the Ngodwana mill, paper pulp is produced with the use of the sulphate process of

chemical pulping. Kraft pulping is the dominant chemical pulping method worldwide

(Ek et al, 2009b) and therefore a well-established process. Kraft pulping utilizes white
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liquor, also known as strong white liquor (SWL), as the cooking liquor. It consists of

sodium hydroxide, NaOH, and sodium sulphide, Na2S, with the active cooking species

being OH– (measured as effective alkali(EA)) and HS– (measured as sulphidity). The

hydrogen sulphide serves as the main delignifying agent while the hydroxide serves to

keep the lignin fragments in the solution. The name “Kraft cooking” originates from the

German and Swedish word meaning “strength”. This was associated with the sulphate

process that yielded paper with a high lignin content. These papers have extremely high

strength. They are often used for liner-board and sack-paper because of their strength.

These days, however, Kraft pulp refers to any pulp produced by the sulphate process,

including bleachable grades of paper with very low lignin content.

2.3.5 Cooking procedure

The cooking procedure can take place either continuously or in batch. Both of these have

their own advantages and disadvantages.

Batch process

In batch processing, a sequence of one or more steps is performed in a certain order. This

yields a specific quantity of a finished product. This can take place in a single vessel or

in multiple. The benefits of a batch process include (Seborg et al, 2011):

• Relatively small production sizes and separated batches lead to shorter response

times.

• If something goes wrong with a batch, only that batch is faulty and the mistake is

contained in a single batch.

• In some cases it is possible to mix batches with differing qualities to obtain the

desired product quality.

Disadvantages of batch processes are:

• Downtime between batches as vessels drain or equipment needs to be cleaned or

reset.

• Batch control systems are notoriously difficult.

Continuous process

Continuous processes are used to manufacture, produce or process materials without

interruption. The materials, either dry bulk or fluids that are being processed, are con-

tinuously in motion, undergoing chemical reactions, heating or mechanical processes.
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Continuous processes normally operate around the clock with infrequent maintenance

shutdowns, such as semi-annual or annual. Advantages of continuous processing include:

• Continuous processes rarely suffer downtime. Because of this, they are usually more

effective and deliver a higher yield.

• Because of the constant steady state that most continuous processes strive towards,

control of continuous processes tend to be relatively simple.

Disadvantages of continuous processes are:

• Continuous processes often rely on maintaining a steady state. This sometimes lead

to difficulties when there is a state that differs greatly from steady state such as

startup or shut down.

• Continuous processing equipment tend to be more expensive than batch equipment,

resulting in higher capital costs.

An additional challenge of continuous digesters specifically is that the operation needs to

be controlled more finely than batch. If channeling occurs, for example, the liquid does

not interact with the fibers, leading to high Kappa values. On the other hand, if hang

ups occur at the walls or screens, this can cause overexposure to the liquid resulting in

very low Kappa values. These challenges are minimal with batch digesters. It is clear

from the arguments above that there is no process that is objectively the best for the

use of production. The choice between batch or continuous will rely on numerous factors

and some plants may opt for batch while others might opt for continuous depending on

their objectives. Since continuous operation are easier to control and give better product

consistency in large-scale plants, there has been a shift towards continuous digesters

globally in recent years (Pikka & Andrade, 2015).

2.4 Modelling and control

In any processing plant there is an ever-increasing need to improved performance, to

improve safety, to lessen environmental impact and, therefore, to tighten product qual-

ity specification. Combine this with the ever-increasing complexity and high levels of

integration of processes, it becomes clear why many modern processing plants would be

unable to meet all their specifications without the aid of computer based process control

systems. These controllers are able to take readings and measurements from key plant

variables and these are then used to manipulate other plant variables (usually flow rates

by manipulation of valve positions) to ensure stable, safe and efficient operation.
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2.4.1 Modelling

Most processing plants have a fairly accurate steady state model of their plant. This

involves a basic mass balance of components assuming that the system will exhibit zero

dynamics. This can be sufficient for very basic manual control of a simple plant, however

it becomes inadequate when the system experiences large changes such as during startup

or during shut down. Because of this, most plants also have a dynamic model of some sort

with which they can predict the effect of large changes. This dynamic model, sometimes

referred to as an unsteady state model, play an integral role in the subject of process

dynamics and control. These models are used to:

• Improve the understanding of the system: Dynamic models and computer simula-

tions (that simulate the dynamic models) of the process allow for the investigation

of transient responses without causing a disturbance to production. It can also give

valuable information regarding the behaviour of the process (both dynamic and

steady state) even before the construction of the plant.

• Train the personnel operating the plant: Plant operators can be trained to run

complex, counter-intuitive units and to deal with emergency situations by utilizing

a computer simulation, rather than placing the process unit or plant at risk. The

simulation can be interfaced with standard process control equipment to create

a realistic training environment, making simulations a valuable asset. Running

a model simulator along with process control is also often valuable as it teaches

the operator about the interaction between the true plant operation and how the

control system affects it. This then allows operators to understand difficult plant

behaviours and they can practice dealing with them in a safe environment.

• Develop a control strategy: A dynamic model of the system allows for the evaluation

of alternative control strategies. A dynamic model can help with the identification

of important variables that need to be maintained or controlled and can give insight

into the variables that can be manipulated to ensure that the previously mentioned

variables are controlled. Dynamic models also give insight to the interactivity of

the process, aiding in the choices that need to be made regarding the pairings

of variables. In the event of a highly interacting system where multiple inputs

affect multiple outputs (also called a MIMO system), models are often the only

way to evaluate if the costs of a complex control system (such as a model predictive

controller (MPC)) will be justified. For MPC control strategies, the dynamic model

of the process plays an integral role in the design of the controller.

• Optimize process operating conditions: It is advised that optimum operating con-

ditions be recalculated periodically to ensure maximum profit and minimum cost.

12

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



A process model and economic data are important tools to calculate the optimal

operating conditions.

In many processes, especially when new, hazardous, complex or difficult to operate, the

development of an appropriate process model can be crucial for success. There are three

types of models, and they are classified based on how they are obtained. These are:

1. Theoretical models: They are obtained by using the principals of chemistry, physics

and chemistry. They are often called first principal models.

2. Empirical models: They are developed by approximating a fit to experimental data.

3. Semi-empirical models: They are a combination of the two models above. The

values of some parameters in a theoretical model are derive using experimental

data.

Theoretical models have two great advantages. Firstly, they provide insights into the

physical behaviour of the process. This can be of great value when trying to understand

the process. Secondly, they are applicable over wide ranges of conditions since they use

first principals. The disadvantages associated with theoretical models are that they tend

to be expensive, difficult and time-consuming to develop. They also typically include

model parameters that are not always readily available, such as heating coefficients and

reaction rate coefficients.

Empirical models are easier to develop than theoretical models, however they come with

serious disadvantages. The data set used to fit the model is typically quite small and

the model is only expected to be accurate over the range covered by the model. This

mean that the models don’t extrapolate well and might miss notable dynamics outside

the range of the data set. This could cause quite drastic prediction errors when used in

operating conditions other than the ones that was used in the data set.

Semi-empirical models have three advantages. Firstly, they use theoretical knowledge.

Secondly, the range of operating conditions over which they can be extrapolated is wider

than that of empirical models. Thirdly, they don’t require as much development effort as

theoretical models do. Because of this, semi-empirical models are used to a great extent

in industry.

A model of a process is nothing more than a mathematical approximation of the process.

No model is perfect and no model has perfect prediction capabilities. This is because

any real process has too many features (both microscopic and macroscopic) to include

all of them. Because of this, no model is perfectly accurate. Modelling always involves a
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compromise between the complexity and accuracy of the model, on the one hand, versus

the cost and effort required to develop the model, on the other hand. This is because

complex models (although generally more accurate and giving better predictions) tend

to be difficult and therefore expensive to develop. On top of that, complex models often

require greater computational power than more simple models, further increasing costs.

A number of factors need to be considered when looking at the compromise. These in-

clude: modelling objectives, the expected benefits from model use and the intended users

of the model (for example, plant engineers or research specialists). The main tool to aid

in the compromise is that of simplifying assumptions. The model should display all the

main dynamic behaviour, whilst at the same time, being no more complex than is needed.

Because of this, less important features and phenomena are not accounted for to keep the

model equations, variables and parameters to a minimum. This yields a simpler model,

which is easier to work with and cheaper to design. If an inappropriate set of simplifying

assumptions are chosen, the model tends to be either extremely rigorous but excessively

complicated, or overly simplistic. Both of these have their own sets of disadvantages and

should be avoided.

Seborg suggests a systematic approach to the development of dynamic models (Seborg

et al, 2011):

1. Decide upon the modelling objectives and end use of the model. Decide upon the

required levels of model detail and accuracy required.

2. Draw the process schematic diagram and label all variables in the process.

3. List all the model assumptions. Remember that the model should not be more

complicated than necessary to meet the objective stated above.

4. Determine if spatial variations are of concern to the model. If it is the case, a partial

differential equation will be necessary.

5. Write the necessary conservation equations (normally mass, energy, component,

etc.). These are normally differential equations.

6. Write down equilibrium relations and other algebraic equations. These are nor-

mally from thermodynamics, chemical kinetics, equipment geometry or transport

phenomena.

7. Do a Degrees of Freedom (DOF) analysis. This ensures that there are enough

equations in the model to solve for all the unknowns.

8. Simplify the model. This can be done by rearranging the model equations such

that the output variable is on the left side of the equation and the input variables
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are on the right side. This form allows for convenient solving by computers and for

easier subsequent analysis.

9. Classify the inputs to the model as either disturbances variables or manipulated

inputs. In general, disturbance variables are determined by the environment or by

other process units.

To simulate a process, it needs to be ensured that the model equations (both differential

and algebraic) together constitutes a set of relations that can be solved. This means

that all the output variables can be solved in terms of the input variables. For example,

take y = Ax, a set of linear equations. For x to have a unique solution, vectors x and y

must contain the same number of elements. Also, matrix A needs to be non-singular (it

should have a nonzero determinant). It is not always easy to make a similar evaluation

for large and complex models, however, one rule needs to be obeyed. Only if the number

of unknown variables are equal to the number of independent model equations, can the

model have a unique solution. This is to say that all the available degrees of freedom are

utilized. The number of degrees of freedom (NF ) are given by Equation 2 below:

NF = NV −NE (2)

With NV being the total number of process variables and NE the number of independent

model equations. This means that the degrees of freedom of a system can either be equal

to, greater than, or less than zero. In the event that:

• NF = 0, the number of model equations is equal to the number of process variables.

The set of equations will have a solution and the process model is exactly specified.

• NF > 0, there are more process variables than there are equations. This means that

the independent equations have an infinite number of solutions. This is because the

degrees of freedom process variables can arbitrarily be specified. The process is

underspecified.

• NF < 0, There are fewer process variables than equations and because of that the

set of equations does not have a solution. The process model is over specified.

The only satisfactory case is the exactly specified model. If the process is underspecified, a

sufficient number of input variables need to be assigned numerical values. If the process is

over specified, additional independent model equations should be developed if the model

is to have an exact solution. The steps taken to analyse the degrees of freedom are listed

below:

1. All known constants or parameters in the model are listed. These values are ob-

tained from equipment dimensions, known physical properties etc.
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2. Determine the number of process variables as well as the number of independent

process equations. Note that t denoting time is not included since it’s neither a

process input, nor process output.

3. Calculate the degrees of freedom using Equation 2

4. Identify the number of equation output variables that will result from solving the

process model. This includes the dependant variables from the ordinary differential

equations.

5. Determine the number remaining variables that should be specified as disturbance

and manipulated variables, to achieve zero degrees of freedom.

Once a model is exactly specified, it can be evaluated and further expanded on if deemed

inaccurate or too complicated. The model however, should be solvable if and only if it is

exactly specified.

2.4.2 Batch models vs continuous models

It is often thought that batch process models and continuous process models are very

similar, with both having a dynamic element and, in the majority of cases, some non-

linear equations as well (Kilian, 1999). One of the main differences however, is that

continuous models work around a single steady state value, whereas a batch process

normally has a much wider range of operation. Because of this, continuous models tend

to concentrate a lot of attention on a fairly small area, whereas, batch process models

are a lot more rigorous to equip them for prediction over the whole range of conditions

encountered. These process conditions may vary wildly from the beginning of the process

to the end (Rippen, 1982). Even though continuous process models tend to focus on

smaller ranges of operation, the penalties for inaccurate predictions are usually higher in

a continuous plant than in a batch plant.

2.5 UP model

At Saiccor, Sappi uses batch digesters to produce DWP. They have 23 synchronized batch

digesters.

Kilian (1999) developed the preliminary UP model for the batch digesters at Saiccor from

first principals. These parameters, that the model uses, are optimized to fit data obtained

experimentally from the plant. The assumptions of the model are (Sandrock, 2003):

1. The components accounted for are cellulose, hemicellulose, lignin and strong acids.

2. The pressure and temperature of the digester are known at discrete times.
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3. The conditions of the system initially are determined by analysing a liquor sample.

The kinetics of the cellulose is emphasized since the quality of the product is based on

its quality. The temperature and pressure in the reactor affects the equilibrium state of

SO2, which, in turn, affects the composition of the cooking liquor (Stephens, 2017).

2.5.1 Reaction rates

The UP model is modelled after a batch reactor. It is therefore modelled under the as-

sumption of constant volume. Under this assumption, the rate of change of concentration

is given by Equation 3 (Levenspiel, 1999).

ri =
1

V

dNi

dt
(3)

Numerous studies have been done on acid pulping. The reaction kinetics suggested by

Hagberg & Schöön (1973) are used in this model. The kinetic parameters of the rate

equation are reliant on the process conditions and the properties of the wood. Because

of this, the parameters are adapted regularly to accurately model the plant. The kinetic

equations that describe lignin dissolution, cellulose degradation, hemicellulose degrada-

tion and strong acid formation are given below.

− d[L]

dt
= kL[L]a[HSO –

3 ]α[H+]β (4)

− d[C]

dt
= kC [H+]δ (5)

d[HC]

dt
= kHC[HC]d[H+]γ (6)

d[SA–]

dt
= {(g

ν
+

2h

ν
)([L]0 − [L])}rL +

kSA(T )

ν
([L]0 − [L])q[HSO –

3 ]b[H+]c (7)

In the original model the concentration of hemicellulose was calculated using Equation

6, however, in the current model, the degradation rate of hemicellulose is implicitly

calculated in these equations above (de Vaal & Sandrock, 2007). The rate constants (ki)

used in Equation 4-7 above are known to have a temperature dependence. They follow

the Arrhenius equations given by Equation 8-11 below: (Hagberg & Schöön, 1973)

kL = k0
L exp(

−EL
a

RT
) (8)

kC = k0
C exp(

−EC
a

RT
) (9)

kHC = k0
HC exp(

−EHC
a

RT
) (10)
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kSA = k0
SA exp(

−ESA
a

RT
) (11)

Since both Ea and R are constants, the expression −Ea

RT
is sometimes written as −E

T
.

Important assumptions regarding the kinetics of the system are:

1. It would be close to impossible to describe a different reaction rate equation for

every different type of lignin and hemicellulose. Therefore, even though lignin

and hemicellulose are both collective nouns for numerous similar compounds, their

reactions will be treated as single degradation reactions.

2. The concentration of the reactants inside the wood chip will be assumed to be the

same as the concentration of the reactants in the bulk liquor. The rate of diffusion

into and out of the chip is therefore assumed to be negligible. It is known that the

diffusion path is very short once the cooking liquor completely penetrated the wood

chip (Kilian, 1999).

3. The digester was divided into 10 volumes to calculate the temperature gradient.

Ideal mixing of each these volumes is assumed.

4. The heat of reaction of the degradation reactions are assumed to be negligible in

the temperature calculations of the digester. This is because literature on this is

hard to come by and the heat of reaction seems to be small in comparison to the

energy required to heat the digester. It seems that the exothermic reactions do

little to heat up the digester.

2.5.2 Liquor composition

It is clear that all the reaction rate equations (Equations 4-7) are dependent on the

concentration of hydrogen ions. Because of this, the liquor composition needs to be

modelled. It is modelled using the equilibrium equations for the SO2 concentration in

the liquor as well as the vapour pressure of the volume above the liquor. This yields

Equations 12 and 13 below.

KSO2f
=

[H+][HSO –
3 ]

[SO2f ]
(12)

KP =
[H+][HSO –

3 ]

pSO2f

(13)

Both KSO2f
and KP are temperature dependant. They can be calculated by using the

Antoine equation and this is described by Equations 14 and 15

log10KSO2f
= BSO2f

+
CSO2f

T
(14)
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log10Kp = Bp +
Cp
T

(15)

The metal ion concentration in the batch is to be modelled by using electron-neutrality

arguments as described in Equations 16 and 17 below:

[M+] + [H+] = [HSO –
3 ] + [SA–] (16)

[M+] = 2[SO2fC] (17)

Where SO2fC denotes the combined free SO2 concentration. Assuming that the volume

above the liquor in the batch consist of only water vapour and SO2, the total pressure of

the digester can be determined by summing the partial pressures of the components in

the vapour phase. This is shown in Equation 18 below.

P = pSO2f
+ pH2Of

(18)

Table 2: Variables used by the UP model.

Symbol Description Unit

[L] Residual Lignin concentration mass %

[C] Cellulose concentration kmol
m3

[HSO –
3 ] Sulfite concentration kmol

m3

[H+] Hydrogen ion concentration kmol
m3

[SA] Strong acid concentration kmol
m3

T Temperature K

P Pressure Paa

pSO2
Partial pressure of SO2 Pa

pH2O Partial pressure of water Pa

KSO2
Dilution constant of SO2

kmol
m3

KP Vapour-liquid equilibrium constant kmol
m3

2
/Pa

SO2C Combined SO2
kmol
m3

SO2f Free SO2
kmol
m3

[M+] Total positive charge kmol
m3

ν Specific volume of liquor m3

Ea Activation energy J
mol

R Universal gas constant J
molK

It is clear from the model that there are 18 variables and 13 equations. These 18 variables

are the first 15 variables in Table 2 along with the three rate constants (kL, kC and

kSA). The 13 equations are Equations 4 to 18, omitting Equations 6 and 10 since the

degradation rate of hemicellulose is implicitly calculated in these equations above in the
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current model (de Vaal & Sandrock, 2007). Therefore, 5 additional variables need to be

specified to completely specify the system. The 5 input variables are: the temperature

and pressure from the cook, the liquor-to-wood ratio, and the free and combined SO2

concentrations. The cook temperature and pressure are read from the measurements

during the cook while the liquor-to-wood ratio is known at the start of the process and

the free and combined SO2 concentrations are obtained at the start of the cook during the

1-h test (de Vaal & Sandrock, 2007). Specifying these five variables as inputs completely

specifies the problem.

It should be noted that the reaction kinetics of a digester are very complex, with a

multitude of reagents reacting differently, creating various substances. These models (the

UP model and the rest that will be discussed) were therefore developed by empirically

fitting equations to measurements that were made. This gave the reaction kinetics.

Although they are all thoroughly studied and predict the reactions well, they are not first

principal models with chemistry in mind. This means that, although the reaction kinetics

predict the main wood components well, the model does not predict the rate of reaction

of all the byproducts that form. These include but are not limited to what you mentioned

namely: liquefied organic compounds, Na2CO3 and Na2SO4. These models do not have

equations for the byproducts and will therefore not be able to track their concentrations.

If they are deemed important enough, they can be added to the model, although some

experimentation might be needed to determine these lesser reaction kinetics.

2.6 Continuous model history

There exists an extensive history of digester modelling. This is because it is such a

difficult process to accurately model and it has many factors that can be accounted for.

The first proposed model for a continuous digester is the Purdue model.

2.6.1 Groundwork of the Purdue model

The foundation work of continuous Kraft digester modelling was done by Smith &

Williams (1974). They developed the well-known Purdue model (so called as it was

developed at the Purdue University). They developed kinetic models to describe the

delignification process. Their models have the form:

Rs,i = −[k1,i(T )Ca
OH + k2,i(T )Cb

OHC
c
HS](Cs,i − C∞s,i) (19)

with the temperature dependant rate constants determined using the Arrhenius law:

ki,j(T ) = Ai,j exp

(
−Ei,j
RT

)
(20)
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They described wood as consisting of 5 parts. These are high reactive lignin (s1), low

reactive lignin (s2), cellulose (s3), galactoglucomman (s4), and araboxylan (s5). The last

2 account for hemicellulose. Index i refer to the 2 rate constants while index j refer to

the 5 solid components in the chips. From there, model constants (a, b, c, Ai,j, Ei,j) were

evaluated by trial and error with the aid of pulping chemistry data. They approximated

the digester as a series of continuously stirred tank reactors (CSTRs). With this they

could obtain dynamic mass balances for each of the main components in the pulping

reactions. There are 3 phases assumed to be contained in each of these CSTRs, namely:

1. The solid phase consisting of the solid wood.

2. The entrapped liquor phase consisting of the liquor in the pores of the wood.

3. The bulk free liquor phase consisting of the free liquor surrounding the wood chips.

This model formed the framework for numerous other models to follow.

2.6.2 Further innovation

One of the first to follow was the model of Christensen et al (1982). They improved the

kinetic parameters by using an optimization search. This increased the validity of the

model over a larger range of wood species. The new model predicted blow-line Kappa

numbers as well as free liquor concentration profiles, both being important for quality

control.

Gustafson et al (1983) described the delignification reaction by developing alternate ki-

netic expressions. These expressions use fewer wood and liquor components. It utilizes

the functional relationship between cellulose and lignin consumption rate. Greater atten-

tion is paid to liquor penetration into the wood chips.

Kayihan et al (1996) developed a Weyenhaeuser benchmark model for a Kamyr (Kraft)

digester that has two vessels, one for impregnation of steam and one for the reaction. The

Weyerhaeuser Benchmark Digester Problem is a simplified digester model, which captures

the main characteristics of a continuous digester. The model assumes two phases (non-

porous solids and free liquor) in thermal equilibrium. This differs from the 3 phases used

by Smith & Williams (1974). The kinetic model uses an adaptation of the work done by

Christensen et al (1982) to describe dynamic mass balances.

Wisnewski, Doyle & Kayihan (1997) redefined the mass concentrations and volume frac-

tions. This allowed for some relaxation in the Purdue model assumptions, which increased

the reliability of the model. This model compared well to the original Purdue model,
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capturing the same range of behaviours. It also compared well to the Weyenhaeuser

benchmark model, capturing the same range of behaviours.

All the models discussed so far neglect to account for a change in chip density throughout

the column. They all assume an unchanging compaction profile and none of them provide

a dynamic description of the chip level. This is because the momentum balance has been

neglected.

Härkönen (1987) was one of the first to give a hydraulic description of a continuous di-

gester. This entailed a detailed description of the compaction as well as the chip and

liquor flow dynamics in addition to mass and energy transports. His work laid the foun-

dation for the integration of digester hydraulics with existing models that were based on

mass and energy transport.

Michelsen (1995) proposed the integration of the work by Christensen et al (1982) and

Härkönen (1987) to result in a model with mass, energy and transport balances. The

work by Bhartiya, Dufour & Doyle (2003) then integrated the work of Michelsen (1995)

and Wisnewski et al (1997) to yield a detailed model giving the best results of both

models.

2.7 Kraft model

Since it is the aim to adapt the UP model to accommodate the dynamics and kinetics of

a continuous Kraft pulping process, it was decided to take a look into an existing Kraft

model to be able to compare models. The model by Christensen et al (1982) was chosen

as it gives a reasonable model of the kinetics without being too complex. The aim is

mainly to compare the models to see where differences exist. This model by Christensen

et al (1982) will therefore be discussed below.

The kinetic equations used are given as:

dL1

dt
= −[k1(OH) + k2(OH)0.5(HS)0.5]× L1 (21)

dL2

dt
= −[k3(OH) + k4(OH)0.5(HS)0.5]× L2 (22)

dC1

dt
= −[k5(OH) + k6(OH)0.5(HS)0.5]× (C1 − C1U) (23)

dC2

dt
= −[k7(OH) + k8(OH)0.5(HS)0.5]× (C2 − C2U) (24)
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dC3

dt
= −[k9(OH) + k10(OH)0.5(HS)0.5]× C3 (25)

C1U and C2U refer to unreactive cellulose and unreactive galactoglucomannan respec-

tively. Christensen et al, 1982 suggests that around 70% of cellulose and around 25%

of galactoglucomannan may be unreactive. Reasons for this include that some of the

galactoglucomannan and cellulose do not posses aldehydes as end groups, meaning that

they are not easily attacked by the hot alkali. Other cellulose and galactoglucomannan

seem to be protected from the hot alkali by the wood morphology. Lastly the pulping

process may result in carboxylic end groups on the cellulose and galactoglucomannan,

which are also alkali stable. Because of this the unreactive components are included in

the model.

The rate of change in concentration of hydroxide and hydrosulphide in the entrapped

liquor can be given by the equations below:

d(OH)

dt
=

1

Ve

[
KA((OH)f − (OH)) + (bCOHL − 0.5× bCSHL)× (

dL

dt
+ bCOHC ×

dC

dt
)

]
(26)

d(HS)

dt
=

1

Ve

[
KA((HS)f − (HS)) + 0.5× bCSHL)× (

dL

dt
)

]
(27)

with:

KA =


3.8× 10−5(Tc − 273)− 1.1× 10−3 Tc ≤ 373K

6.6× 10−5(Tc − 273)− 3.9× 10−3 373K ≤ Tc ≤ 423K

1.2× 10−4(Tc − 273)− 1.2× 10−2 423K ≤ Tc

(28)

The accumulation of dissolved solids (X) in the entrapped liquor is given by:

dX

dt
=

1

Ve

[
KA(Xf −X)− dW

dt

]
(29)

With W as the total wood mass. The rate of change in concentration of hydroxide,

hydrosulphide and dissolved solids in the free liquor is, in turn, related to rate of diffusion

as follows:
d(OH)f
dt

= −KA
Vf

[(OH)f − (OH)] (30)

d(HS)f
dt

= −KA
Vf

[(HS)f − (HS)] (31)

d(Xf )

dt
= −KA

Vf
[Xf −X] (32)

The variables used in the model above will be detailed in Table 3 below:
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Table 3: Christensen, Albright & Williams (1982) model variables.

Variable Description type Units

L1 high reactivity type lignin Input kg
kgODW

L2 low reactivity type lignin Input kg
kgODW

C1 cellulose Input kg
kgODW

C2 galactoglucomannan Input kg
kgODW

C3 araboxylan Input kg
kgODW

C1U unreactive cellulose Parameter kg
kgODW

C2U unreactive galactoglucomannan Parameter kg
kgODW

OH entrapped hydroxide concentration Input kg
m3

HS entrapped hydrosulphide concentration Input kg
m3

ki Aie
−∆Ei/RT Output

Ai frequency factor Input m3h
kg

∆Ei activation energy Parameter kJ

R universal gas constant Parameter kJ
molK

T temperature Input K
dL
dt

dL1

dt
+ dL2

dt
Output kg

h
dC
dt

dC1

dt
+ dC2

dt
+ dC3

dt
Output kg

h

KA mass transfer coefficient × area Output m3h
kg

OHf hydroxide concentration of free liquor Input kgNaOH

m3

HSf hydrosulphide concentration of free liquor Input kgNaOH

m3

bCOHL OH consumption by lignin Parameter kgNaOH

kglignin

bCSHL consumption of HS by lignin Parameter kgNaOH

kglignin

bCOHC OH consumption by carbohydrates Parameter kgNaOH

kgcarb

X dissolved solids in the entrapped liquor Input kg
m3

Xf dissolved solids in the free liquor Input kg
m3

dW
dt

dL
dt

+ dC
dt

Output kg
h

Ve Entrapped volume Output m3

Vf Free volume Output m3

ρ liquid density Parameter kg
m3

mcrit Critical moisture content Parameter kgwater

kgw

LtW Liquor to wood ratio Parameter kgl

kgw

The initial conditions for Equations 21 to 25 are lignin-, cellulose, galactoglucoraannan

and araboxylan in wood, as follows

L1(0) = 0.2× (L) (33)
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L2(0) = 0.8× (L) (34)

C1(0) = C (35)

C2(0) = H1 (36)

C3(0) = H2 (37)

with L being the lignin content of the wood, C the cellulose content of the wood, H1 the

galactoglucoraannan content of the wood and H2 the araboxylan content of the wood.

All of L, C, H1, H2, L1(0), L2(0), C1(0), C2(0) and C3(0) have units of kg
kgODW

The

model is now fully defined and ready to be compared to the UP model. As with the UP

model it should be noted that the reaction kinetics were developed by empirically fitting

equations to measurements that were made. They all predict the reactions well, although

they are not first principal models with chemistry in mind. The reaction kinetics predict

the main wood components well but the model does not predict the rate of reaction of

all the byproducts that form. the model does not have equations for the byproducts and

will therefore not be able to track their concentrations. If they are deemed important

enough, they can be added to the model, although some experimentation might be needed

to determine these lesser reaction kinetics.

2.8 Method of lines as a partial derivative solution technique

First principle models of the physical world are generally described with respect to both

time and three-dimensional space. These descriptions are often times translated into

mathematics with the use of partial differential equations (PDEs) (Schiesser & Griffiths,

2009).

2.8.1 Partial differential equations

A PDE is any type of differential equation with two or more independent variables. Dif-

ferential equations with a single independent variable is simply an ordinary differential

equation (ODE) and these can be easily solved numerically with the use of Euler inte-

gration or more sophisticated numerical integration techniques that are widely available

in various software libraries and packages. The independent variables of a PDE can

be divided into two categories. They are either defined as an initial-value variable or

a boundary-value variable. In cases where physical systems are concerned, time (t) is

termed the initial-value variable. Since it starts at an initial value (t0), it is an initial-

value variable. It then moves forward over either a finite interval (t0 ≤ t ≤ tf ) or a

semi-infinite interval (t0 ≤ t ≤ ∞) without any further imposed conditions. The rest

of the variables (usual related to space, such as x, y, z position or combination thereof)

are then termed boundary-value variables. The boundary-value variables either vary over

25

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



a finite interval (x0 ≤ x ≤ xf with x being a boundary-value variable), a semi-infinite

interval (x0 ≤ x ≤ ∞) or a fully infinite interval (−∞ ≤ x ≤ ∞) and at one or more

values of x depending on the order of the PDE in terms of x, conditions are imposed on

the output. Normally, the values of x relate to physical boundaries of a system and from

this derives its name (Schiesser & Griffiths, 2009).

When looking at solving a PDE, one can look to solve it either numerically or analytically.

Although the analytical solution would be powerful, the numerical solution is normally

easier and therefore quicker to determine and for the purposes of system modelling the

numerical solution is normally sufficient. One of the possible ways to go about solving a

PDE numerically is to use the method of lines (MOL).

2.8.2 Method of lines

The main point of the MOL is to replace the boundary-value (spatial) variables and

derivatives with algebraic approximations in the PDE. After this, these derivatives are

not explicitly stated in terms of the spatial independent variables any more. Therefore,

upon rewriting, only the initial-value variable (time normally) remains and the PDE

has been simplified and approximated as an ordinary differential equation (ODE). The

challenge lies in formulating this system of ODEs that approximate the PDE. Once the

system has been reduced to a system of ODEs, any integration algorithm for initial

value ODEs can be used to calculate the approximate numerical solution to the original

ODE. This is one of the advantages of the MOL, as it allows for the use of existing and

well-established numerical ODE solving methods (Schiesser & Griffiths, 2009).

2.9 State estimation

Since the purpose of a model is to simulate the state of a system, it is essential to have

as much knowledge of the system’s state as possible. Sometimes these states are closely

measured, however, more likely than not, only noisy measurements will be available if

anything. Ideally the entire state would be measured but in most industrially relevant

cases, only a subset of the system states are measured. All models however, rely on

initial value conditions and if these conditions are not accurate the model might also be

inaccurate. Because of this, it is vital to be able to reconstruct the states of a system

using noisy measurements. Perhaps the most famous system state estimation method is

the Kalman filter. It is the statistically optimal state estimator for linear systems with

normally distributed disturbances and noises. Also, because of its linear nature, it is quite

fast and efficient. In general there are two approaches to non-linear state estimation.

These are to use the modified Kalman filter or the moving horizon estimation. These will

be discussed below:
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2.9.1 Modified Kalman filters

The modified Kalman filter entails first designing an observer (a parallel dynamic system)

that takes the outputs of the original system as its inputs and then produces, as output,

an estimate of the state of the original system. Two popular observers are the extended

Kalman filter (EKF) and the unscented Kalman filter (UKF). The EKF’s state consists

of an estimate of the actual state of the system, as well as, the estimate’s state covariance

matrix (Rakovic & Levine, 2018). Using the non-linear model, the estimated state is

propagated forward in time. The estimate is then corrected by linearizing the non-

linear model at the estimated state and by applying the Kalman filter equations to the

covariance matrix. This is easy and quick to implement but is only reliable of systems

that are nearly linear. The UKF on the other hand, is an observer that takes an ensemble

of states close to the estimated state. It runs the ensemble through the non-linear system

model, and the result statistics of the ensemble are then used for the state update.

This approach is normally better and more accurate on systems with highly non-linear

dynamics or measurements than the EKF.

2.9.2 Moving horizon estimation

The second approach takes the non-linear process model and optimizes over it to find the

state trajectory that would most likely have caused the measured outputs. In other words,

the Moving horizon estimation (MHE) forecasts the behaviour of the system with the use

of a non-linear model over a certain time horizon, based on the initial estimate of the

system of the state. It then optimizes to find the smallest disturbances to this prediction

that is necessary to account for the data of the measurements. This is illustrated, to

some extent, in Figure 1 below:
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Figure 1: Moving horizon estimation using a system model and optimization to reconcile past
measurements over a horizon of length N.

Normally two disturbances are considered, these being firstly the state disturbances and

secondly, the measurement disturbances. The state disturbances have a direct impact

on the state of the system, and, because of this, their effects propagate through the

system. The measurement disturbances however, appear to affect the state of the system

without altering it in reality. Because of this, their effect does not propagate though the

system. The stage cost of the estimator (or the optimization cost function), dictates the

likelihood of any one disturbance occurring. So, for example, a weighted least squares

cost function implies that numerous small disturbances are more likely than fewer larger

disturbances, whereas an `1 cost function implies that many small disturbances are just

as likely as fewer larger disturbances. The quadratic stage cost is the most popular,

because of its ties with the Gaussian distribution of disturbances. The initial conditions

(or prior) is taken into account with the use of a prior weighting. This prior is almost

always incorrect and, because of that, it is important to be able to move it such that

it can predict a stage trajectory that is most aligned with the measurements observed.

Without any prior weighting, the system must be observable for the estimator to converge

to an answer. A system is observable if its system state can be reconstructed using a

finite number of measurements. Decent prior weighting is therefore very important for

good MHE performance. The objective function (VN) is typically given in the form of
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Equation 38 below (Rakovic & Levine, 2018):

VN(χ,ω,ν, x̄) := ρVp(χ, x̄) +
N−1∑
k=0

`(ω(k), ν(k)) (38)

with χ denoting the predicted initial state, ω the measured system output, ν the predicted

system output, x̄ the initial states, ρ a constant chosen larger than 0 to ensure robust

stability, Vp the prior weighting, k the time of estimation, N the estimation horizon,

and ` the state function (weighted least square, `1, etc.). With this, an estimate for the

states of the system can be determined. The weighting functions also allows for decisions

regarding the likelihood of initial states being close to correct.

2.9.3 Comparison of state estimators

As mentioned previously, it is known that the UKF usually outperforms the EKF (except

in cases of near linearity). The comparison between the performance of the EKF and

the MHE was done by Haseltine & Rawlings (2005) and it was found that the MHE con-

sistently yielded better state estimation and improved robustness to poor initial guesses

as well as tuning parameters when compared to the EKF. This comes at the cost of

greater computational expense required to solve the MHE optimization. The comparison

between the performance of the UKF (and the ensemble Kalman filter — both being

Bayesian state estimation algorithms) and the MHE was done by Bavdekar, Gopaluni &

Shah (2013) and it was found that the use of MHE resulted in better state estimation

when compared to these recursive Bayesian state estimators. They did add however, that

the MHE does not help to compensate for model plant mismatch. These findings are also

yielded by Varshney et al (2019) who compared both EKF and UKF to MHE.

2.10 Adaptive control

As a system is simulated, it is normal for some assumed parameters to drift over time.

A solution to this is adaptive control, which will be discussed below:

2.10.1 Parameter drift

Any model of a physical system is likely to utilize some parameters. These parameters

can be specific to the system (such as the volume of a tank or the heat transfer area of

a pipe), or these can be universal parameters (such as the universal gas constant or the

activation energy required for a given chemical reaction). Often, however, it happens that

a variable that is fairly constant over time is labelled as a parameter, normally either to

simplify the model or because the variable is not measured. This can include variables

such as ambient temperature, heat transfer coefficient of vessel, ratios of chemicals in
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feed, flow rates, feed composition, heat capacity of a mixture etc. In the above examples

however, the ambient temperature is not constant and changes dramatically as seasons

change in some areas of the world. The heat transfer coefficient of a vessel tends to change

over time if there is fouling, scaling, corrosion or coking present in the vessel. Chemical

feed ratios as well as feed flow rates (if considered a parameter) are normally fixed with

the use of a controller. This, however does not mean that the value remains constant

throughout operation and the value will tend to vary slightly with time. In some cases,

especially for the wood pulping industry, the assumption is made that the feed (e.g. wood)

composition remains constant. The composition of any natural material is a function of

various environmental variables and might also change over time. The heat capacity of

mixtures also change as the composition of the mixture changes and, although the effect

on the heat capacity of the mixture might be small, it still changes with time. This can

potentially be a modelling challenge and can lead to model inaccuracy if not correctly

accounted for.

2.10.2 Parameter optimization

A solution to this is to use adaptive control and, in this case, it will consist of period-

ically optimizing the system parameters (VanDoren, 2003). This means that every so

often (perhaps once every month or 3 depending on the speed of parameter change),

the model will look back at the last few data points (more data points should lead to

increased accuracy but increased computational time). If MHE is employed, it is advised

to implement it from all the data points between the current time and the time of the

implementation of the MHE. Using these data points, it will then re-simulate the last

data points. During these re-simulations, certain pre-determined parameters will be var-

ied. This will then be fed to an optimization function that will compare the resulting

outputs to that of the observed data. Optimizing the parameters using the optimization

function will then yield the parameters such that the results most closely follow the data.

This can then be used to reset parameters to more adventitious values.
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3 Model decision

Various models can be employed to aid in creating the digester model. These include the

models by Christensen et al (1982), Bhartiya et al (2003), the UP model or starting from

first principles. This is an important decision that will decide the ultimate course of the

project.

3.1 Preface

The UP model was developed by the University of Pretoria and a lot of research has gone

into its development. Therefore, it would be advantageous to be able to adapt if further

for the modelling of continuous digesters. The UP model has proved successful for the

sulphite process at Saiccor (Stephens, 2017), however, the digester at Ngodwana operates

using the sulphate (Kraft) process. With differing active ingredients, not only the reac-

tion parameters but also the dependence of reaction rate on concentrations will change.

Another difference is that Saiccor uses hardwoods whereas Ngodwana uses softwoods.

This, however, should only influence some model parameters. Besides this, there are also

numerous digester specific parameters that are going to be different such as volume of the

digester and so forth. This is to be expected and should not present a challenge. Because

of all this, the UP model might not be able to adequately predict the reaction kinetics of

the digester. To solve this potential problem, it was decided to compare the UP model

against a Kraft process model to see if the equations (and specifically the reaction kinet-

ics) are similar enough that the UP model can be deployed. The Kraft process model

chosen was the model by Christensen et al (1982). This model was chosen because it is

fairly detailed with an emphasis on the kinetics of the model. However, even though it

is fairly detailed, it is not as complex as the model of Bhartiya et al (2003) for example.

It is still simple enough to use as a first comparison to the UP model.

3.2 Model comparison

Both of these models consist mainly of reaction kinetic equations for both the wood

components and the liquor reagents. The wood component reaction kinetics will be

compared first below.

UP model

The UP model only distinguishes between 3 wood components (lignin, cellulose and

galactoglucomannan, araboxylan). The reaction rate equations (Equations 4 to 6) are

given below.

−d[L]

dt
= kL[L]a[HSO –

3 ]α[H+]β
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−d[C]

dt
= kC [H+]δ

d[HC]

dt
= kHC [HC]d[H+]γ

Kraft model

The Kraft model distinguishes between 5 wood components (fast reacting lignin, slow

reacting lignin, cellulose and hemicellulose). The reaction rate equations (Equations 21

to 25) are given below.

dL1

dt
= −[k1(OH) + k2(OH)0.5(HS)0.5]× L1

dL2

dt
= −[k3(OH) + k4(OH)0.5(HS)0.5]× L2

dC1

dt
= −[k5(OH) + k6(OH)0.5(HS)0.5]× (C1 − C1U)

dC2

dt
= −[k7(OH) + k8(OH)0.5(HS)0.5]× (C2 − C2U)

dC3

dt
= −[k9(OH) + k10(OH)0.5(HS)0.5]× C3

Discussion

If the UP model would be adapted for use on the Kraft model, the reacting liquor com-

ponents would be substituted for the reagents in the Kraft process. Along with this,

parameters for the reaction kinetics will be optimized against plant data since the reac-

tion rate parameters will be different for differing reagents. For this to be done however,

it is important that the reaction rate equations be similar enough in form that a transfor-

mation can be made. From the equations above however, it is clear that there are some

large differences. These include the UP model cellulose differential equation that is not a

function of cellulose concentration whereas the Kraft model is, as well as the differential

equations for cellulose and hemicellulose in the UP model being only a function of one

reagent whereas, in the Kraft model it is a function of both reagents. These differences

were decided to be large enough to discount the option of using the UP model to model

the Kraft process.

3.3 Kraft model selection

After eliminating the UP model, the only options remaining were to either develop a

model from first principles without regarding previous work done or to choose and adapt

an already existing Kraft model from literature. Because of the added difficulty and with

no desire to ‘reinvent the wheel’, it was decided to look to the literature to identify a
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model that can be adapted to suit the needs of the model. As discussed in Section 2.6,

there are numerous Kraft process models that can be chosen from when looking to adapt

the model. It was then decided that the Purdue model (Smith & Williams, 1974) was as

simple as it came and that, although simplicity would be advantageous, it was decided

to rather opt for a slightly more advanced model. The optimal mix of complexity and

function was reached with the model by Christensen et al (1982). It is more advanced

than the Purdue model, yet not as complicated as the models by Wisnewski et al (1997),

Bhartiya et al (2003) or Michelsen (1995) for example. Also, there is an emphasis on

reaction kinetics instead of hydraulics, which also suited the desired outcome. Lastly, it

was also advantageous that the model by Christensen et al (1982) is adaptable, meaning

that, if the model was deemed to be too inaccurate, it is possible to convert the model

to a more complex model without much alteration to the existing model, but rather by

adding elements to the model. Because of all these reasons, it was decided to adapt the

model by Christensen et al (1982) for use in the continuous Kraft digester.

3.4 Kraft model

The chosen batch Kraft model by Christensen et al (1982) is given below in Table 4. This

is Equations 21 to 20 explained in Section 2.7.

Table 4: Christensen, Albright & Williams (1982) model equations.

Equation
ki = Ai × exp(−Ei

RTc
)

dL1

dt
= −[k1(OH) + k2(OH)0.5(HS)0.5]× L1

dL2

dt
= −[k3(OH) + k4(OH)0.5(HS)0.5]× L2

dC1

dt
= −[k5(OH) + k6(OH)0.5(HS)0.5]× (C1 − C1U)

dC2

dt
= −[k7(OH) + k8(OH)0.5(HS)0.5]× (C2 − C2U)

dC3

dt
= −[k9(OH) + k10(OH)0.5(HS)0.5]× C3

Ve = 0.6mcrit

ρliq(1−mcrit)

vf = ltwratio

ρliq
d(OH)
dt

= 1
Ve

[KA((OH)f − (OH)) + (bCOHL − 0.5× bCSHL)× (dL
dt

+ bCOHC × dC
dt

)]
d(HS)
dt

= 1
Ve

[KA((HS)f − (HS)) + 0.5× bCSHL)× (dL
dt

)]
dX
dt

= 1
Ve
× [KA(Xf −X)− dW

dt
]

d(OH)f
dt

= − 1
Vf
×KA× [(OH)f − (OH)]

d(HS)f
dt

= − 1
Vf
×KA× [(HS)f − (HS)]

d(Xf )

dt
= − 1

Vf
×KA× [Xf −X]

The model parameters can be found in Christensen et al (1982) and SI values for the

reaction kinetics parameters can be found in Wisnewski et al (1997). This dissertation

will be working in SI units and, because of this, the parameters and equations will be

converted to SI units. As previously stated, this is a batch model and, therefore, the model
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focuses on reaction kinetics. To adapt this model to a continuous process will present its

own challenges, as will be discussed in Section 4 below. Although the model will undergo

considerable changes, this Kraft model will form the foundation and backbone of this

model. The model is fairly simple and elegant, without losing the ability to accurately

predict the kinetics of the digester system. One of the drawbacks of this model is that it

does not allow for the computation of the compaction factor of the pulp throughout the

cook (unlike the model of Bhartiya et al (2003) for example). It was decided however,

that this does not matter a great deal at the current phase of model implementation at

Ngodwana and it was agreed that it will be possible to add it in the future with relative

ease. Thus, this model was chosen for adaption. A similar approach was also followed

by Rahman, Avelin & Kyprianidis (2019) during the modelling of a similar continuous

digester.
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4 Continuous model

The batch Kraft model by Christensen et al (1982) will be adapted for use on the contin-

uous digester at Ngodwana. This will be done by looking at a systematic approach to the

development of dynamic models given by Seborg et al (2011) and mentioned in Section

2.4.1. Firstly, the modelling needs of the continuous digester will be determined and then

the model will be expanded to bridge the gap between this and the batch process model.

The section title will correspond to the layout given in Section 2.4.1 above.

4.1 Continuous digester modelling needs

From Section 2.4.1, the first step is to decide upon the modelling objectives and end

use of the model. Also, to decide upon the required levels of model detail and accuracy

required. To adequately model the digester at Ngodwana, a model will need to satisfy

some requirements and these will also form the modelling objectives. These include:

• Adequately model the internal dynamics of the digester. That is, capturing the

continuous nature of the digester.

• Only rely on available and measurable inputs.

• Sufficiently account for reaction kinetics in the system.

• Yield outputs that are measurable and useful (most of all, accurate Kappa values)

• Incorporate the effects of an energy balance.

• Predict well over a reasonable range of process operation.

These needs should be met by the adapted model in order to decently simulate the

continuous Kraft digester. When deciding upon the necessary levels of model accuracy

and detail, these will greatly only be as accurate as the batch model that is worked from.

From what can be told, the model by Christensen et al (1982) is accurate enough while

still being fairly simple, without overwhelmingly complex detail.

4.2 Process schematic diagram

The second step is to draw the process schematic diagram and label all variables in the

process. The process schematic diagram of the digester as received from Sappi can be

seen in Figure 2 below:
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Figure 2: Schematic of the digester layout.
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As Figure 2 illustrates, the wood enters the system and moves to the chipper. From there,

the wood chips are mixed with strong white liquor (SWL) and heated with steam. It

then enters the impregnation vessel. Here the wood is impregnated with liquor but, there

is little reaction occurring since the temperature of the vessel is relatively low. Hereafter

the impregnated chips and liquor move to the digester cook section. Here the bulk of

the reaction takes place as this section is heated with steam. The next phase is then the

washing section where the pulp is rinsed from the liquor and the spent liquor (weak black

liquor or WBL) is removed. The pulp then passes on to refiners and after the refiners their

lignin content is measured before it moves on to be processed further. This model will

focus on the cooking section of the digester. To model the system without looking into

the impregnation or washing section comes with some assumptions that will be discussed

in Section 4.3 below. Figure 3 below shows the cooking section of the digester.

Figure 3: Schematic of the cooking section.

The variables of the systems will be examined next.

4.2.1 Model inputs

The inputs to the cooking section in Figure 3 above are shown in Table 5:

Table 5: Model inputs.

Input Symbol Unit Description

Chip meter speed Swood
rev
min

Digester chip feed rate

Digester temperature Tcin K Digester liquid temperature at top

Effective alkali (EA) EA
gNa2O

L
EA Concentration entering digester

Sulphidity Sulph Na2S
Na2S+NaOH

% Sulphidity entering digester
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Using the chip meter speed with the volume of the chip meter, a volumetric flow of chips

can be determined. This, in combination with the liquor to wood ration, can be used

to determine the volumetric flow rate of the caustic solution. The EA and sulphidity

measurements give the caustic concentration and the temperature is also known from

measurements.

4.2.2 Model outputs

The main outputs of the digester are given in Table 6 below:

Table 6: Model outputs.

Output Symbol Unit Description

Kappa number of pulp Kr Measurement of end pulp lignin content

Temperature out Tout °C Temperature of pulp leaving digester

Pulp composition out mwi
kgi

kgpulp
Mass fraction wood component in pulp

WBL composition out mli
kgi

kgWBL
Mass fraction caustic component in liquor

.

The most important output of the model is the Kappa number. The main goal of the

digester is to break down the lignin from the wood pulp to a certain degree. Because

of this, the Kappa number is of utmost importance as it is an indication of the lignin

content. Furthermore, the ultimate goal of this project is to reduce the Kappa variance

of the digester. Along with this, the Kappa number prediction is very important. The

rest of the listed outputs are not of the utmost importance and many of them are not

directly measured (therefore can not be compared to plant data). They can, however,

still give insight into the state of the digester internals and are necessary in predicting

the Kappa value. With this Step 1 and 2 as outlined in Section 2.4.1 are complete.

4.2.3 Kappa Measurements

From Section 4.2.2 above, it is clear that the Kappa prediction of the model is of the

utmost importance. However, the model will predict the lignin content of the pulp leaving

the digester and does not account for changes in the lignin content brought about by the

refining section. The challenge in this is that the Kappa measurements on site can only

be done on the pulp after it has passed through the refining section. Figure 4 below

shows the locations of the three on site Kappa measurement locations.
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Figure 4: Kappa analyser 1, 2 and 3 location in relation to the digester.

4.3 Modelling assumptions

The implications of this will be discussed in greater detail in Section 7.2.1 below, however

it is important to note that the measured and predicted values are expected to differ to

some incalculable degree.

As mentioned in Section 2.4.1, any model of a physical system needs to rely on some mod-

elling assumptions. This is also part of step 3 of modelling as outlined in Section 2.4.1.

These might not hold perfectly true in all cases but it is assumed that, either the system

will only very infrequently violate these assumptions, or if the system would violate the

assumption, it will be small such that its effect is negligible. Some assumptions are better

than others, but all assumptions aid in simplifying a system for easier modelling.

The modelling assumptions for this model are as follows and are very similar to the

assumptions made by Christensen et al (1982) which is in turn similar to those made by

Smith & Williams (1974).

1. The basic kinetic equations and correlations of the laboratory (or batch) units

will hold for the continuous digester unit. This assumption is sensible, since the

operation temperatures, reagent concentrations, sulphides and liquor to wood ratio

are all similar (Christensen et al, 1982).

2. No back flow (also known as ideal plug flow) occurs for the wood chips in the

digester. Although back flow does occur in industrial units, Christensen et al (1982)

shows that there exists very little back flow in a typical digester. They also show
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that the chips in a real process move at a rate though the reactor that is similar to

what is predicted with this assumption. Therefore, the assumption is reasonable.

3. Compaction of chips in the digester is negligible. Although there would definitely

be some effects from compaction, it is not included in the model for the sake of

simplicity. It might be added in the future if it is deemed necessary. The effect

of the compaction of the chips should not be great enough to drastically alter the

results.

4. No back flow (also known as ideal plug flow) of the caustic solution occur in the

continuous digester. This assumption seems sensible and has also been made by

other investigators (Christensen et al, 1982; Bhartiya et al, 2003; Rahman et al,

2019). The assumption rests on the fact that continuous digester is totally filled

with liquor and wood chips. The liquor then fills the space between the wood chips

and move at a very low velocity down the digester. Uniform flow of liquor seems

likely because the chips follow plug flow closely. Some exceptions to this assumption

exists. These are:

(a) Liquor near the digester wall may not follow a precise plug flow pattern. This

liquor, however, accounts for a small percentage of the total liquor volume,

especially since the digester has a large diameter and therefore a high volume

to surface ratio.

(b) Around the heating streams, there is some incoming or outgoing flow that will

interfere with the liquid pattern. Here in the digester, the flow of liquor has

both vertical and radial components, however this still only accounts for a

small part of the digester.

(c) At the bottom of the digester, near the wash zone, up-flowing liquor meets

down-flowing liquor from the cooking zone. This will lead to complicated flow

patterns that are not accurately modelled, however, once again, this accounts

for a small percentage of the liquor in the digester.

(d) Near liquor inlets and outlets in the top and bottom of the digester, plug flow

seems unrealistic, however this is also a small part of the volume in question.

Thus, no backflow of liquor looks to be a sensible assumption, and can be modelled

rather easily mathematically.

5. The temperature, caustic solution and wood component concentration remains con-

stant throughout the radial direction of the digester. This assumption has also

been made by numerous other investigations (Christensen et al, 1982; Bhartiya

et al, 2003; Rahman et al, 2019). As with the previous assumption, there will be

exceptions around the areas mentioned above.
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(a) Even though digesters are typically well insulated, the wall temperature will

still likely be lower because of heat loss to the environment. This, along with

wall retention of liquid and wood alike would likely yield differing concentra-

tions at the digester wall.

(b) Around the heating streams, there is some incoming or outgoing flow that

will likely interfere with the flow patterns of both the liquid and the wood

chips, causing radial variance. The temperature will also be affected, further

interfering with the reaction and concentrations.

(c) At the bottom of the digester, near the wash zone, the up-flowing liquor meets

down-flowing liquor from the cooking zone. This leads to complicated flow

patterns. This will also inevitably cause radial variance in both the caustic

and wood compositions as well as in the temperature.

The assumption should be reasonable for between 80 and 90 % of the digester

(Christensen et al, 1982). This assumption greatly reduces the mathematical inten-

sity of the model.

6. Given the previous assumptions, the digester can be modelled as a plug flow reactor

(PFR). Since a PFR would be complex to model (yielding partial differential equa-

tions for both volume and time), the PFR will be approximated as multiple smaller

continuously stirred tank reactors (CSTRs) in series, each with the same cross-

sectional area as the digester. This method will allow for prediction of conversion

and composition throughout the digester.

7. Wood composition can be adequately modelled by only looking at lignin, cellulose,

galactoglucomannan and araboxylan. This is sensible since most of the wood con-

sists of these 5 components and the rest of the wood is also hemicelluloses which

might react similarly to either galactoglucomannan or araboxylan.

8. Liquor to wood ratio remains constant. This should be reasonable since the digester

controls the liquor to wood ratio to a specific value. If the moisture content of

the wood should vary and the chemical dosing remains constant, this could vary

significantly, however this is a simplifying assumption that needs to be made.

9. No reaction takes place in the impregnation vessel. This is a reasonable assumption

since the relatively low temperature and retention time of the impregnation vessel

doe not allow for fast reactions.

10. No reaction takes place in the washing section of the digester. This is a fair assump-

tion since the washing liquid has weak caustic concentration and the temperature

is also reduced. There is a risk of back-precipitation of lignin here if the pH drops.
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There needs to be enough alkali and temperature left to avoid this, however this is

a simplifying assumption that needs to be made.

11. The Kappa number of the pulp is not influenced by the refiners. This is very likely a

poor assumption. Kappa measurements by using UV absorption as with the online

Kappa measurement devices may be affected significantly. This is nevertheless a

necessary assumption since there is not enough data available to model the refiners

or their effects as part of the digester. The Kappa measurements are not taken

after the pulp leaves the digester, but rather after the refiners and therefore the

measurements to which the model will be compared will have been altered by the

refiners. This is discussed in greater detail in Section 7.2.1.

4.4 Spatial variations

The next step (step 4 outlined in Section 2.4.1) is to determine if spatial variations are

of concern to the model. If it is the case, a partial differential equation will be necessary.

From assumption 5 and, to a lesser extent, 6 above, it is clear that it is assumed that there

exists no radial differences in the sections. Changes through the length of the digester

are assumed and this will be addressed in Section 4.6 below.

4.5 Model composition

This Section, together with Section 4.6 below will serve as step 5 and 6 outlined in

Section 2.4.1. Since numerous conservation equations as well as equilibrium relations and

other algebraic equations from thermodynamics, chemical kinetics, equipment geometry

and transport phenomena are included from the batch model, it was decided to take

these two steps together with the adaptation to a continuous system. As mentioned in

Section 4.3 under assumption 6 the model will simulate the digester by approximating

it as multiple CSTRs in series. The model will therefore assume that the input for each

digester section is the output of the section before it and that its starting state will be

the same as its end state at the previous time step. This is clearly illustrated in Figure

5 below:
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Figure 5: Illustration of CSTR approximation of digester.

The first step is to adapt the model by Christensen et al (1982) such that it can be applied

to a single CSTR with given inputs. Hereafter, the model can be adapted to be applied

to all the sections in series to yield the desired result.

CSTR model

The batch model by Christensen et al (1982) does not need a great deal of adaption to

be applied to a CSTR. The larger challenge lies in converting the input variables into the

variables used by the model.

4.5.1 Variables used

The model described below relies on numerous variables and parameters. These variables

and parameters will be described below and parameter values will be displayed.

Parameters

The parameters used by the model are displayed in Table 7 below:
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Table 7: Model parameters.

Symbol Description Value unit

Vchipper Volume of the chip feeder 0.697 m3

rev

dt Sampling time 0.1 min

MMNaOH Molar mass NaOH 40 kgNaOH

kmolNaOH

MMNa2O Molar mass Na2O 62
kgNa2O

kmolNaOH

LTW Liquor to wood ratio 3.7 kgl

kgw

ρL Liquid density 1000 kgL

m3
L

ρC Wood density 160 kgW

m3
W

Aji Pre-exponential constant In Table 8 m3

kgmin

Eji Activation energy In Table 8 kJ
kmolK

R Universal gas constant 8.314 kJ
kmolK

V Volume of assumed CSTR 10 m3

mcrit Critical moisture content 0.65 kgL

kgODW

bcohl Consumption constant 0.166 kgNaOH

kgLignin

bcshl Consumption constant 0.395 kgNaOH

kgLignin

bcoch Consumption constant 0.039 kgNaOH

kgCellulose

Table 7 references pre exponential constants as well as activation energies. These were

obtained from Wisnewski et al (1997) since they present it in SI units whereas the paper

by Christensen et al (1982) gives it in Imperial units. These values are given in Table 8

below:

Table 8: Kinetic Reaction Parameters by Wisnewski, Doyle & Kayihan (1997).

1 2 3 4 5

A1i 2.8× 10−1 6.04× 1010 6.45 1.56 1.02× 104

A2i 9.26 4.9× 10−1 2.809× 101 1.041× 101 5.72× 1016

E1i 2.93× 104 1.15× 105 3.47× 104 2.51× 104 7.32× 104

E2i 3.14× 104 3.77× 104 4.18× 104 3.77× 104 1.67× 105

Various intermediate variables are also determined to aid in calculation. These are given

in Table 9 below:
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Table 9: Intermediate variables.

Symbol Description

Fw Volumetric wood flow rate

FSWL Volumetric SWL flow rate

NaOH Concentration of OH in unused units

Na2S Concentration of HS in unused units

COHin
Concentration of OH in correct units

CSHin
Concentration of HS in correct units

miin Wood component mass flow into assumed CSTR

miout Wood component mass flow out of assumed CSTR

kji Reaction rate constant

Rsi Rate of reaction of wood component i
dL
dt

Mass change of lignin in the assumed CSTR
dC
dt

Mass change of cellulose in the assumed CSTR

mwin
Total wood mass flow into assumed CSTR

mlin Total liquid mass flow into assumed CSTR

Ve Volume of entrapped liquid

Vf Volume of free liquor

rOH Rate of reaction of OH in entrapped liquid

rSH Rate of reaction of HS in entrapped liquid

rOHf
Rate of reaction of OH in free liquid

rSHf
Rate of reaction of HS in free liquid

Egen Energy generated by reactions in assumed CSTR

KAdV mass transfer coefficient times mass transfer area per entrapped volume

KA mass transfer coefficient times mass transfer area

Table 10 contains various variables that are treated as parameters, however they are not

fixed parameters and might change from simulation to simulation however they are kept

constant throughout the simulation.
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Table 10: Input parameters.

Symbol Description Value

xin Mass fraction of component i in wood [0.15, 0.11, 0.43, 0.15, 0.17]

COH Initial entrapped OH Concentration in CSTR 0

CSH Initial entrapped HS Concentration in CSTR 0

mi Mass of component i in CSTR initially 1700xin

mw Total mass of wood in CSTR initially 1700

x∞ Mass fraction non-reactive wood component [0, 0, 0.25, 0.71, 0]

COHf
Concentration in free liquid in CSTR initially 0

CSHf
Concentration in free liquid in CSTR initially 0

Tc Temperature in CSTR initially First measurement of Tcin

The output variables are then lastly given in Table 11 below:

Table 11: Model outputs.

Symbol Description
dMi

dt
Change in mass of wood component i in assumed CSTR

dCOH

dt
Change in entrapped OH concentration in assumed CSTR

dCSH

dt
Change in entrapped HS concentration in assumed CSTR

dCOHf

dt
Change in free OH concentration in assumed CSTR

dCSHf

dt
Change in free OH concentration in assumed CSTR

dTc
dt

Change in Temperature in assumed CSTR

KappaCSTR Kappa number inside CSTR

4.5.2 Inputs

Firstly the inputs will be converted such that it can be used in the model. A detailed

account of variables used are visible in Tables 7 to 11 below. The conversion of the chip

meter speed to volumetric flow rate of wood is given in Equation 39 below:

Fw = SwoodVchipper (39)

From here, the volumetric flow rate of liquor can also be determined using Equation 40

below:

Fl =
LTW

ρL
ρCFw (40)

The incoming mass of wood components are determined using Equation 41 below:

miin = ρCFwxin (41)
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and the mass of wood components leaving the CSTR is given by Equation 42 below:

miout =
mi

V
Fw (42)

Temperature is in units of °C and needs to be converted to K. This is done in Equation

43 below:

TcinK = Tcin + 273 (43)

The more difficult conversions are for the caustic solution concentrations. The effective

alkali (EA) needs to be converted to concentration of hydroxide. Although both have

similar units, namely
gNa2O

L
(or

kgNa2O

m3 ) vs
kgNaOH

m3 , they are not equivalent. EA is defined

by Equation 44 below:

EA = NaOH +Na2S (44)

Furthermore, the sulphidity needs to be converted to concentration of hydrosulphide.

Sulphidity (Sr) is defined by Equation 45 below:

Sr =
Na2S

Na2S +NaOH
(45)

Firstly, the EA from the input (or EAin) needs to be converted from
kgNa2O

m3 to
kgNa2O

kgODW
).

This is done by Equation 47 below:

vf =
LTW

ρl
(46)

EAc = EAin × vf (47)

From here, the NaOH and Na2S concentrations can be determined. Equations 48 and 49

follow from Equations 44 and 45 above.

Na2Sc = EAc × Sr (48)

NaOHc = EAc −Na2Sc (49)

Both NaOHc and Na2Sc have units of
kgNa2O

kgODW
) and need to be converted to have units of

kgNaOH

m3 . This is done in Equations 50 and 51 below:

NaOH =
1

vf
NaOHc ×

2MMNaOH

MMNa2O

(50)

NaSH =
1

vf
(
1

2
Na2Sc)×

2MMNaOH

MMNa2O

(51)

The inputs are now converted such that they can be used in the model by Christensen

et al (1982). NaOH and NaSH are the concentrations of the incoming stream to the
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CSTR thus NaOH = COHin
and NaSH = CSHin

.

4.5.3 Reaction kinetics

The reaction kinetics are obtained directly from Christensen et al (1982) and no adjust-

ments were made. The rate of reaction of wood components are given by Equations 52

and 53 below:

kji = Aji exp
−Eji
RTc

(52)

Rsi = −(k1iCOHe + k2i(COHe)
0.5(CSHe)

0.5)(
mii

mw

− x∞)mwdt (53)

where i refers to any one of the 5 wood components and the subscript e refers to the con-

centration entrapped in the wood. This gives the change in mass of all wood components

given a certain time difference. Along with the wood components, the caustic solution

also changes. The caustics consist of 2 areas namely the free and entrapped liquor where

the free liquor refers to the liquor that moves freely between the wood chips and pulp

and the entrapped liquor refers to the liquid that has been absorbed by the wood and

is entrapped in the woody matrix. It is this entrapped liquor that is referred to with

the subscript e. The change in caustic solution is reliant on some intermittent variables

such as the KA term, volume of entrapped liquor and the likes. These equations will be

discussed below: The entrapped liquid fills a certain volume inside the wood based on

how much liquid the wood can absorb. This entrapped volume (ve) is given in units of
m3

kgODW
and is determined by Equation 54:

Ve =
0.6mcrit

ρL(1−mcrit)
(54)

The KA gives an indication of mass transfer between free and entrapped liquor. It is a

function of temperature of the wood and is calculated using Equation 55 below:

KAdV =


3.8× 10−5(Tc − 273)− 1.1× 10−3 Tc ≤ 373K

6.6× 10−5(Tc − 273)− 3.9× 10−3 373K ≤ Tc ≤ 423K

1.2× 10−4(Tc − 273)− 1.2× 10−2 423K ≤ Tc

(55)

To convert KAdV to the correct units, Equation 56 is employed.

KA = 60KAdV × dt× Ve (56)

Another useful intermediate variable is simply the sum of the mass of all the wood

components in the CSTR, effectively giving the mass of wood in the CSTR. This is
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illustrated by Equation 57 below:

mw =
∑
i

mi (57)

with mi denoting the mass of wood component i in the CSTR.

Another important variable is dL
dt

and dC
dt

given by Equations 58 and 59 below. They

denote the change in lignin (sum of change in slow and fast reacting lignin) and the

change in carbohydrates (sum of change in cellulose and hemicelluloses)

dL

dt
= Rs1 +Rs2 (58)

dC

dt
= Rs3 +Rs4 +Rs5 (59)

Finally, with all these variables defined, the reaction kinetics of the caustics can be

discussed. The exchange between the free liquor and the entrapped liquor and then

again between the entrapped liquor and the wood components are described by Equation

60 to 63 below:

rOH =
1

Ve
(KA(COHf

− COHe) + (bcohl − 0.5bcshl)
dL
dt

mw

+ bcoch

dC
dt

mw

) (60)

rSH =
1

Ve
(KA(CSHf

− CSHe) + 0.5bcshl

dL
dt

mw

) (61)

rOHf
=
−1

Vf
KA(COHf

− COHe) (62)

rSHf
=
−1

Vf
KA(CSHf

− CSHe) (63)

It should be noted again that these reaction kinetics were developed by empirically fitting

equations to measurements that were made. They all predict the reactions well, although

they are not first principal models with chemistry in mind. The reaction kinetics predict

the main wood components well but the model does not predict the rate of reaction of

all the byproducts that form. the model does not have equations for the byproducts and

will therefore not be able to track their concentrations. If they are deemed important

enough, they can be added to the model, although some experimentation might be needed

to determine these lesser reaction kinetics.

The only remaining part of the CSTR model is the flow dynamics which will be discussed

below:
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4.5.4 Reactor dynamics

Mass balance

The main mass balance equation is given below as Equation 64:

dm

dt
= min −mout +mgenerated (64)

This equation can be adapted to be used to calculate the wood component mass balance

as well as the caustic solution mass balance. The wood component mass balance is given

in Equation 65 below:
dmi

dt
= miin −miout +migenerated

(65)

with migenerated
= Rsi.

Similarly, the mass balance for the caustic solution can be determined. This is done in

Equation 66 below, however, the mass balance is set up to accept a change in concentra-

tion for generated mass:

dCi
dt

=
miin −miout +migenerated

vk ×mw

(66)

with i denoting OH, OHf , SH or SHf and vk denoting ve for entrapped concentrations

and vf for free concentrations. Equation 66 can be rewritten to Equation 67 below:

dCi
dt

=
Fl(Ciin − Ciout)

vk ×mw

+ ri (67)

with Fl being the volumetric flow rate of liquor into and out of the CSTR from Equation

40.

The energy balance needs to be described. Equation 68 below yields the change in

temperature over time:

dTc
dt

=
(mwin

cpw +mlincpl)(Tcin − Tcout)− hA(Tc − Tambient) +
∑

dmi

dt
λ

(mwcpw +mlcpl)
(68)

However, herein lies a problem. Not only is the cp of the pulp unknown (both cpw and

cpl), there is also no information on the heat loss due to convection on the outside of

the digester. Along with this, neither lignin nor hemicelluloses have well-defined molar

masses, so heat of reaction is difficult to determine. Because of this, the energy balance

equation was built with cpw, cpl and h as adjustable parameters to ensure the best fit for

optimizers etc. This is all the necessary information to model a CSTR using the model

by Christensen et al (1982).

The last part is to ensure the output is returned sensibly. Since the residual lignin content
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is described by the Kappa number, this needs to be specified. The Kappa number is

calculated using Equation 69 below:

KappaCSTR =
100(m1 +m2)

0.13mw

(69)

4.5.5 Simulation

The model equations mentioned above were transferred to a computer simulation coded

in Python. This simulation consists of two parts. The first part (called the modelling

section) consists of the model equations mentioned above, whereas the second part (called

the simulating section) of the simulation is responsible for integrating the differential

equations in the modelling section. The simulating sections utilizes Euler integration

regarding time to accomplish this. This is done creating a loop, with each instance of

the loop concerned with the following time step. Given initial conditions for the states of

the model, the differential equations are then used to determine the changes that occur

in the states of the model at this given instance. The states are then updated with

these changes and the process is repeated. Giving an adequately small time step value

ensures that the errors made by integrating over finitely large time steps (as opposed to

infinity small time steps) are negligible. It is important that the time step be chosen small

enough as mentioned, however, a too small time step could cause excessive increases in

computing and, therefore, simulation time. A time step of 0.1 minutes (or 6 seconds) was

chosen. The reason for this is that, with unknown initial conditions, high initial answers

were often obtained from the differential equations (corresponding to a large and sudden

change in the system). This is a result of the system’s initial conditions not being at

equilibrium with the inputs. This is expected and not a problem with small time steps,

since the simulation soon reaches the aforementioned equilibrium, however, as the time

steps increase, problems arise. The reason for this is that, at large time steps, the large

differential is continued for a longer time. Thus, the longer the time steps, the greater

the risk of destabilizing the system. With all this in mind, through trial and error, it

was found that 0.1 minute yields an acceptable execution time and is short enough to

ensure stability of the model. The pseudo-code below should illustrate the setup of the

simulation.

Listing 1: Pseudo-code illustrating batch simulation setup

s t a t e s = i n i t i a l s t a t e s

d e l t a t = t ime range [ 1 ] − t ime range [ 0 ]

f o r t in t ime range :

inputs = ob ta in input s ( t )

d e r i v a t i v e s = mode l s e c t i on ( inputs , s t a t e s )∗ d e l t a t

s t a t e s = s t a t e s + d e r i v a t i v e s
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Kappa = Kappa function ( s t a t e s )

save Kappa (Kappa)

p l o t ( t ime range , Kappa)

To further illustrate the method used, take the first three time steps of the simulator.

Firstly, the CSTR section uses the steady state input values as input and uses the model

equations and its current state to determine its state after six seconds. After this calcula-

tion, the CSTR as before, uses the steady state input values as input and uses the model

equations and its current state its state after a further 6 seconds. This then continues

for 200 minutes worth of simulation time 2000 time steps). The libraries utilized from

Python are listed in Table 12 below:

Table 12: Used Python libraries.

Library Version

numpy 1.19.2
pandas 1.1.3
matplotlib 3.3.2

4.5.6 Results

After the CSTR equations are set up as detailed in Section 4.5.5 above, it was used to test

the model to ensure it acts as expected. The following results were obtained (Figures 6

and 7 below). The input conditions were chosen fairly arbitrarily and are listed in Table

13 below. All variables not listed are assumed to have the values declared in Tables 7 to

11.
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Table 13: Initial values to CSTR simulation.

Symbol Description Value unit

Set parameters

V olume Volume of CSTR 1000 m3

∆t Time step used in Euler integration loop 1 min

LTW Liquor to wood ratio 3.7 kgSWL

kgODW

Initially states in CSTR

OHe0 Concentration entrapped OH in CSTR 70 kgNaOH

m3

SHe0 Concentration entrapped SH in CSTR 50 kgNaOH

m3

OHf0 Concentration free OH in CSTR 85 kgNaOH

m3

SHf0 Concentration free SH in CSTR 50 kgNaOH

m3

Tc0 Temperature of CSTR 418 K

mw10 Weight of slow lignin in CSTR 2500 kg

mw20 Weight of fast lignin in CSTR 2140 kg

mw30 Weight of cellulose in CSTR 6230 kg

mw40 Weight of araboxylan in CSTR 2500 kg

mw50 Weight of galactoglucomannan in CSTR 2700 kg

Steady state Inputs

EAin Effective Alkali to CSTR 88
kgNa2O

m3

sulphidityin Sulphidity to CSTR 0.28

Tcin Temperature to CSTR 418 K

mw1in Weight of slow lignin to CSTR 85.8 kg

mw2in Weight of fast lignin to CSTR 65.9 kg

mw3in Weight of cellulose to CSTR 245.2 kg

mw4in Weight of araboxylan to CSTR 84.1 kg

mw5in Weight of galactoglucomannan to CSTR 98.2 kg

fw Volumetric flow rate of wood to digester 3.5 m3

The simulation was run for 200 minutes of simulated time (2000 time steps) and these

plots in Figures 6 and 7 below were obtained. The plots show the respective internal

state variable of the CSTR. The reaction values here are of no value, since if different

initial values were chosen, the results would change. The main goal of this illustration is

to see if the model behaves as expected, meaning the curves are smooth and in a sensible

direction. This is to test that the model setup was successful.
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Figure 6: Wood components in CSTR over time.
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Figure 7: Caustic solution and temperature over time.

From the results of the CSTR, it is clear that the model is stable and able to predict the

reactions to some extent. This is shown by the fact that the curves are all smooth and

result proceed to steady state after some time. The reaction also progress as expected

(for example the fast reacting lignin reacts faster than the slow reacting lignin). The

CSTR model is sufficient to apply it to a larger simulation of various CSTRs in series as

an approximation to the digester.
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4.6 Model synthesis

This digester model proposed above contains states that change in two dimensions. The

states change over time as well as throughout the volume of the digester. Therefore,

the internal state of the digester (be it caustic concentration or temperature) will be

different at different volumes of the digester as well as at different times. Because of the

assumptions made in Section 4.3, the radial direction of the digester is an example of

a dimension that will remain constant given a certain time and volume throughout the

digester being modelled. This yields an interesting problem which, in turn, yields an

interesting solution. The model can essentially be viewed as partial differential equations

and the method of lines were chosen to ease the complexity of the solution. As mentioned

in Section 2.8, the method of lines relies on choosing one dimension and discretizing all

the others. In this case it was decided that time should be a simple dimension to keep

continuous and to discretize the volume of the digester. This then approximates the di-

gester to be a series of volumes for calculation purposes and time is then kept continuous.

These volumes, in turn, are then assumed to act as CSTRs, as mentioned in Section 4.3

and on Figure 5.

This splits the variables in the model into two broad categories. These categories are then

variables that move mainly with time and variables that changes mainly with volume.

This is perhaps better explained by looking at the effects of these variables. The variables

in the first category (which will be titled the state category), the variables that change

mainly with time, will be the states of the individual CSTRs, whereas the second category

(which will be titled the flow category) will be for variables that transport mass or energy

to the following CSTR. The variable breakdown can be seen in Table 14 below:

Table 14: Distinction between state and flow variables in CSTR.

State category (in CSTR) Flow category (Incoming)

Variable Description Variable Description

OHe0 Entrapped OH concentration OHein Entrapped OH concentration

SHe0 Entrapped SH concentration SHein Entrapped SH concentration

OHf0 Free OH concentration OHfin Free OH concentration

SHf0 Free SH concentration SHfin Free SH concentration

Tc0 Temperature Tcin Temperature

mw10 Fast lignin mass mw1in Fast lignin mass

mw20 Slow lignin mass mw2in Slow lignin mass

mw30 Cellulose mass mw3in Cellulose mass

mw40 Araboxylan mass mw4in Araboxylan mass

mw50 Galactoglucomannan mass mw5in Galactoglucomannan mass
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At the first CSTR, the Flow variables will be calculated from the inputs to the digester,

however, from there, the incoming variables need to be determined form the state vari-

ables from the previous digester at the end of the previous time step. This is then

strung together to obtain the model for the continuous digester. This effect can be seen

illustrated in Figure 8 below. Figure 8 is similar though more complete than Figure 5

Figure 8: Illustration of the CSTR approximation with respect to volume and time.

4.7 Degrees of Freedom analysis

As step 7 outlined in Section 2.4.1, a DOF analysis needs to be done. Below is the

equation for the Degrees of Freedom as given in Equation 2 in Section 2.4.1 above.

NF = NV −NE
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With NV being the total number of process variables and NE the number of indepen-

dent model equations. The first step is then to determine the total number of variables.

Looking at Table 7, there are 33 parameters (together with Table 8) and Table 9 reveals

49 intermediate variables. Do note that in both Tables mentioned, some variables are

denoted with an i as subscript, resulting in 5 variables. Table 10 yields 17 input parame-

ters and Table 11 yields 11 model outputs. Table 5 shows 4 model inputs. From Section

4.5.2, there are 13 model equations. Section 4.5.3 yields 20 model equations and Section

4.5.4 has 17 (do note that Equation 64 is not counted as it was merely used to derive

Equation 65). Taking Equation 2 as mentioned before, the resulting DOF yields:

NF = (33 + 49 + 17 + 11 + 4)− (13 + 20 + 17) = 114− 60 = 54 (70)

With 54 degrees of freedom, 54 variables are needed to fully specify the system. As

alluded to earlier, these would be the parameter and input variables mentioned above.

They account for 33 parameters, 17 input parameters and 4 inputs, fully specifying the

system and bringing the DOF to 0.

4.8 Model simplification

During the composition of the model it became clear that the complexity of the model

is adequate and it was decided that the model will not be simplified further. Another

reason for this decision was that the intermediate variables currently available, do serve

a purpose to the model. This then concludes step 8 as outlined in Section 2.4.1

4.9 Input distinction

The final step (step 9) in the process outlined in Section 2.4.1 is to distinguish between

disturbances and manipulated input variables. The inputs from Table 10 and 5 is dis-

cussed below:

Initial conditions in the digester. These include entrapped and free concentrations of OH

and HS, mass of wood and its components as well as the initial temperature. These

variables are measurable and manipulable, however they are rarely manipulated

and are rather described as parameters.

xin Mass fraction of component i in wood in the feed. This is a disturbance variable

since it is a function of the wood species and various other environmental factors

that can not be manipulated. This denotes the total of component i in the wood

feed. Not all of this will be able to react.

x∞ Mass fraction non-reactive wood component. This is not expected to change greatly

but might be regarded as a disturbance. Some of component i will be unreactive
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and will remain at the end of the digester. the reasons for this are discussed in

Section 2.7.

Digester chip feed rate is a manipulable variable.

Digester liquid temperature at top of digester is a manipulable variable.

EA Concentration entering digester is a manipulable variable.

Sulphidity entering digester is a manipulable variable.

With the last step complete, this concludes the model.

4.10 Simulation Addition

The simulation mentioned in Section 4.5.5 was only for a batch digester. The model

needed to be added upon to ensure an accurate prediction of a continuous system. This

is accomplished by adding a loop to the already existing time loop, the second one being

for volume. In keeping with the method of lines and division of the digester into numerous

smaller CSTRs, the second loop will be nested inside the first. This ensures that, for every

time step, a simulation, similar to that of Section 4.5.5, is run for every digester segment.

The input to the first digester segment will be the inputs to the digester whereas every

subsequent digester segment’s input would be the output of the previous segment at the

previous time step. The state of every section at the start of any given time step would

be the final state of that segment from the previous time step. The flow rates into and

out of the digester segments are dictated by the flow rate of wood and caustic solution

into the digester. A segment volume of 10 m3 was chosen and was deemed small enough

to give an accurate representation of the system. Given the nominal flow rates of the

digester, it was found that each digester segment has a retention time of slightly less than

a minute. With this knowledge, the time step of 0.1 minute was maintained and gave

adequate results. The pseudo-code below should illustrate the setup of the simulation.

Listing 2: Pseudo-code illustrating continuous simulation setup

d e l t a t = t ime range [ 1 ] − t ime range [ 0 ]

f o r t i , t in enumerate ( t ime range ) :

f o r vi , v in enumerate ( volume range ) :

i f v i == 0 :

inputs = ob ta in input s ( t )

e l s e :

inputs = r e s u l t [ t i , vi −1]

i f t i == 0 :

s t a t e s = i n i t i a l s t a t e s
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e l s e :

s t a t e s = r e s u l t [ t i −1, v i ]

d e r i v a t i v e s = mode l s e c t i on ( inputs , s t a t e s )∗ d e l t a t

s t a t e s = s t a t e s + d e r i v a t i v e s

r e s u l t [ t i , vi , : ] = s t a t e s

Kappa = Kappa function ( s t a t e s )

save Kappa (Kappa)

p l o t ( t ime range , Kappa)
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5 Results

After the simulation was constructed as outlined in Section 4.5.5 and expanded upon as

described in Section 4.10, it was possible to use the simulation to put the model to the

test. With this it will be possible to determine the accuracy of the model, as well as its

advantages and shortcomings.

5.1 Preliminary model testing

The model as described in Section 4 was built using the Python programming language

and was used to simulate the digester. The initial test, just to ensure that it operates

as expected, was done with constant inputs to ensure the model is stable. These initial

values are given in Table 15 below. Initially the states of the digester might not be

known and, because of this, the initial states are assumed to be chosen probable values

(comparable to values used in Table 13 above with the CSTR simulation).

Table 15: Initial values to steady input digester simulation.

Symbol Description Value unit
Set parameters
V olume Volume of CSTR sections 10 m3

∆t Time step used in Euler integration loop 0.1 min

LTW Liquor to wood ratio 3.7 kgSWL

kgODW

Initially states in all CSTRs

OHe0 Concentration entrapped OH in CSTR 70 kgNaOH

m3

SHe0 Concentration entrapped SH in CSTR 50 kgNaOH

m3

OHf0 Concentration free OH in CSTR 85 kgNaOH

m3

SHf0 Concentration free SH in CSTR 50 kgNaOH

m3

Tc0 Temperature of CSTR 418 K
mw10 Weight of slow lignin in CSTR 250 kg
mw20 Weight of fast lignin in CSTR 214 kg
mw30 Weight of cellulose in CSTR 623 kg
mw40 Weight of araboxylan in CSTR 250 kg
mw50 Weight of galactoglucomannan in CSTR 270 kg
Steady state Inputs

EAin Effective Alkali to 1st CSTR 88
kgNa2O

m3

sulphidityin Sulphidity to 1st CSTR 0.28
Tcin Temperature to 1st CSTR 418 K
mw1in Weight of slow lignin to 1st CSTR 85.8 kg
mw2in Weight of fast lignin to 1st CSTR 65.9 kg
mw3in Weight of cellulose to 1st CSTR 245.2 kg
mw4in Weight of araboxylan to 1st CSTR 84.1 kg
mw5in Weight of galactoglucomannan to 1st CSTR 98.2 kg
fw Volumetric flow rate of wood to digester 3.5 m3
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The results that followed from the test can be seen in Figures 9 to 10 below. The plots

show the various concentration and temperature profiles throughout the digester from

top to bottom. The exception is the kappa number plot. It is plotted against time and

is measured at the bottom of the digester. This shows the steady state operation of

the digester that yielded the concentration and temperature profiles. Since Kappa is

a function of lignin concentration, its curve throughout the digester will have a similar

shape as that of the lignin curves.
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Figure 9: Wood component mass over volume of digester with steady state inputs.
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(a) Entrapped OH (b) Entrapped SH

(c) Free OH (d) Free SH

(e) Temperature

Figure 10: Caustic solution and temperature over digester volume with steady state inputs.

It is clear from the results that the model does indeed work as expected. It is clear

from the wood component concentration curves that each wood component is decreasing

throughout the column (as one would expect with the wood components reacting and

breaking down). The Kappa value predicted also seems to be plausible or at least in the

expected range (between 25 and 100). The dosing chemicals curves are less straightfor-

ward than the wood concentrations. The entrapped OH concentration has a minimum

value in the middle of the column and the free SH decreases very slowly. This is surely

due to some interesting model interactions brought about by the choice of the initial

conditions. After this successful test, the model was applied to historic plant data.
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5.2 Plant data comparison

The model as was used in Section 5.1 was applied to measured inputs taken directly

from the Ngodwana digester. As mentioned in Section 4.2.3, the Kappa measured and

predicted are not the same value and they are expected to differ to some incalculable

degree. The implications of this will be discussed in Section 7.2.1. The predictions from

the plant inputs were then plotted against the true measured plan outputs. This plant

data has the same initial conditions as mentioned in Table 15, although the ‘Steady state

inputs’ referred to, are now varying with only the first input being equal to the figures in

the Table. The result is visible in Figure 11 below.
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Figure 11: Kappa number predicted compared to real plant data.
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Figure 12: Parity plot of Kappa number predicted compared to real plant data.

It is clear from the results that, although the predicted Kappa and the actual Kappa

have a similar form, they differ from one another. The average absolute error between

the two fits are 7.88. There are various possible reasons for this. These include:

1. Some parameters are not completely known. The most notable of these are the

heat transfer coefficients used in the energy balance as mentioned in Section 4.5.

These 3 parameters greatly influence the temperature of the digester, which, in

turn, greatly influences the rate of reaction and therefore the Kappa number in

the digester. These parameters are therefore of great importance and need to be

optimized to fit to real plant data.

2. None of the plant measurements are perfect. Noise, deviations and disturbances

in both the input and output measurements are present and this will result in

prediction that do not fit perfectly. The effect of this should, however, not be too

noteworthy.

3. There will be some model inaccuracies (regardless of parameter values). These

inaccuracies are mainly introduced by making simplifying assumptions about the

digester operation in order to ease the complexity of the model. It is impossible

to perfectly model every interaction in a digester and therefore, the prediction is

expected to have some deviation from the measured plant data.
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4. As will be further discussed in Section 7, the Kappa measurements, that the simu-

lation is compared against, are not measured directly as the pulp exits the digester

(as is modelled), but rather it is measured after the pulp has passed through the

refiner section of the plant. The refiners alter the Kappa value of the pulp and

the refiners have too little data to be adequately modelled. Because of this, the

model accuracy will be measured against the plant Kappa measurements, although

it is known that this is not equivalent to the Kappa number that is being modelled

(leaving the digester).

5. Among the assumptions made, assumptions are made regarding the input concen-

trations of wood components as well as critical moisture content. This along with

various other assumptions can skew the predictions away from the plant data.

In conclusion, the prediction is only as accurate as the information that can be pro-

vided. The model can, however be tuned (by altering the model parameters), to yield

a prediction with an improved fit. The list below lists the model parameters, as well as

discussing the whether they will be optimized for or not. The literature values of these

parameters are given in Table 7, 8 and 10 in Section 4.5. optimization is often a fairly

time-consuming approach and every variable (in this case, varying parameter) adds time

to finding the optimized result. Because of this it was decided that not every parame-

ter will be optimized for. Instead, the priority of varying the given parameter will be

discussed and chosen from there.

Parameters not for optimization

The following parameters will not be optimized for since the values are known from

previous studies:

Molar mass NaOH

Molar mass Na2O

Universal gas constant

Pre-exponential constants

Activation energy

Consumption constants

The pre-exponential constants, the activation energies as well as the consumption con-

stants have been studied by numerous authors (Rydholm, 1965; Christensen et al, 1982)

and have always been reported to be values similar to these.

The following Parameters will not be optimized for since the values are known and not

suspected of change:
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Volume of the chip feeder This parameter is known from the chipper geometry. In

reality there will be significant variation of the chip flow rate if the chip sizes vary

at a constant chip feeder volume. For the sake of simplicity a constant chip size,

was assumed

Liquor to wood ratio This value is controlled for by the plant. Proper control and

little variance are assumed.

Liquid density The liquid density is not suspected to vary from the known value.

Wood density The wood density is not predicted to vary greatly from the reported

value. In reality, wood density can vary depending on the size of the chips and

whether flakes from the saw mill is added.For the sake of simplicity a constant chip

size, was assumed.

Critical moisture content The critical moisture content of most wood species could

not be found, however it was found that the moisture content of freshly sawed trees

seldom exceed 66 %. The value of 65 % suggested by Smith & Williams (1974) will

thus be used.

Parameters for optimization

The following parameters will be optimized for:

Mass fraction of component i in wood This could very possibly vary from the re-

ported values since the wood types and ratios change with time. It will need to be

optimized for.

Mass fraction non-reactive wood component This could very possibly vary from

the reported values since the wood species and, therefore, composition in the plant

is not constant. Some cellulose and galactoglucomannan will not react with the

alkali and wood type has a influence on this. It will need to be optimized for.

Heat Capacities and Convective Heat Transfer Constant The heat capacity of the

wood and liquid part of the pulp as well as the convective heat transfer constant

mentioned in Section 4.5.4 are unknown and will need to be optimized for.

The result was 13 parameters that needed to be optimized for. Table 16 below contains

the parameter values of the optimized fit, as well as literature values. Along with this,

there are also a few other sets to illustrate the effects of various parameters on the fits.

These parameters will be used in the model to give five different fits of the model to the

data. This will then illustrate the effect of various parameter values on the model as well

as show the difference in fit that can be achieved by using an optimised parameter set.
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Table 16: Parameters used in fitting.

Run xi x∞ cpw cpl h

Literature [0.15, 0.11, 0.43, 0.15, 0.17] [0, 0, 0.25, 0.71, 0] 4 4 0.25

optimized [0, 0.11, 0.51, 0.12, 0.27] [0, 0.02, 0.01, 0.81, 0.05] 3.9 3.8 0.26

Set 1 [0, 0.11, 0.51, 0.12, 0.27] [0, 0, 0, 0, 0] 4 4 0.25

Set 2 [0.15, 0.11, 0.43, 0.15, 0.17] [0, 0, 0.25, 0.71, 0] 2 2 0.3

Set 3 [0.15, 0.11, 0.43, 0.15, 0.17] [0, 0.02, 0.01, 0.81, 0.05] 4 4 0.25

Below is the results of the various fits, along with their average absolute error, to illustrate

the accuracy of the fit. For the literature values and the optimized values there will also

be a parity plot for additional analysis
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Figure 13: Kappa number predicted by optimized parameters compared to real plant data.
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Figure 14: Parity plot showing Kappa number predicted by optimized parameters compared
to real plant data.

From comparing the Kappa plots in Figures 11 and 13 it is clear that optimized param-

eters does not exhibit the bias that is seen in the literature values. This also shows clear

when comparing the parity plots in Figures 12 and 14. In Figure 12 that shows the parity

plot of the literature values, it is clear that the majority of the data points are above the

x = y line, whereas in Figure 14, the data points are shared almost equally between the

top and bottom of the x = y line, showing a clear reduction in bias. This is also reflected

in the average absolute error that is reduced from 7.88 for the literature values, to 2.87

for the optimized values for this data set.

It is known that R2 is a valuable tool for determining the goodness of a linear fit, however

it is not valid for non-linear fits, such as this one (Spiess & Neumeyer, 2010). Because of

this, the absolute average error will be used as measure of goodness of fit instead.

The results of other sets with their parameters tabled in Table 16, is visible below:
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Figure 15: Kappa number predicted by Set 1 parameters compared to real plant data.

Set 1 was simulated with the assumption that all the wood components would react

completely. This was done by reducing all the values of x∞ to zero. The result is a Kappa

number prediction that is a lot higher than the plant data. It is because, with the limit

f reaction removed, both cellulose and araboxylan can now react more completely. They

both react quicker than slow lignin, therefore, using the caustic solution and resulting in

more unreacted lignin and a higher Kappa number.

Set2
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Figure 16: Kappa number predicted by Set 2 parameters compared to real plant data.

Set 2 was simulated with a lower heat capacity and higher h value. The result is that

the pulp slurry cools down faster throughout the column, both because of the lower heat

capacities well as the higher convective heat transfer constant. The resulting cooling

slows down the rate of reaction of all components in the digester, resulting in less lignin

reacting and raising the Kappa value. This is why the Kappa value is higher than the

plant data.
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Set3
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Figure 17: Kappa number predicted by Set 3 parameters compared to real plant data.

Set 3 used the x∞ of the optimized parameters with the wood composition of literature.

The result is a higher Kappa than what was seen with the literature plot. This is be-

cause, similarly to set 1, the x∞ value of cellulose came down and although araboxylan’s

went up, it makes up a much smaller part of the wood than cellulose. Because of this,

the cellulose reaction could run faster and longer than with the literature values and use

more caustic solution, leaving less for the reaction of lignin, raining the Kappa number.

It is clear that none of these 3 sets are better than literature vales, however it does

show the large differences even small changes in parameter values can make.
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6 Model enhancements

From Section 5.2 above, it is clear that the model predicts the true process quite accu-

rately. In any model however, there are some improvements that can be made, above

and beyond tuning the parameters to obtain a good fit. The methods that will be im-

plemented here are state estimation (as discussed in Section 2.9) and adaptive control

(as discussed in Section 2.10). The design and implementation of these methods will be

discussed below.

6.1 State estimation

In systems such as this, where not all the states are closely measured, the need sometimes

arises to estimate the states of the system, to ensure that the states used by the model

are still accurate. State estimators are discussed in more detail in Section 2.9 above.

6.1.1 Need for state estimation

In this model there are numerous internal states throughout the column that are not

measured. These states are: mass of wood component i in CSTR, caustic concentrations

in entrapped and free liquor in the CSTR as well as CSTR temperature. This yields 10 (5

wood components, 2 entrapped concentrations, 2 free concentrations and temperature)

per CSTR and currently the 430 m3 of the digester are divided into 10 m3 sections,

yielding 43 CSTRs and therefore 430 states. Of these states, only the lignin mass fraction

(sum of wood component 1 and 2 per kg pulp) can be deduced from the Kappa number

measurement. The large number of unmeasured states pose a problem. If some or other

internal state variable in the model, due to some modelling inaccuracy or assumption,

changes in a way that is different to the true changes in the digester, that state might

become a source for inaccuracy in itself. This tends to become worse and worse over time

of the simulation, as the state variable deviates further and further from the true value,

eventually becoming absurd and driving the model to uselessly low accuracy. A solution

to this problem is to periodically (perhaps daily or weekly depending on the intensity

of the problem) use the measurements obtained from the various outputs and use this

to estimate the states of the system. The inferred model states then replace the model

states used by the model up and to that point. This then updates the states of the model

to reasonable values and ensures that the system predictions does not drift away from

the true value too drastically.

The two main options for state estimation of a non-linear system are, using modified

Kalman filters (EKF or UKF) or using moving horizon estimation (as mentioned in

Section 2.9). From the literature in Section 2.9 it is clear that the MHE approach is

superior to the modified Kalman filters in terms of performance. Because of this, it was
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decided that it would be used as the state estimator in this model.

6.1.2 Method

The internal states of the model can be seen in Table 15 and is summarized in Table 17

below. These states refer to the internal variables of every one of the discritized volume

sections (or CSTRs).

Table 17: States of every CSTR segment in digester.

Symbol Description Unit

OHe Concentration entrapped OH in CSTR kgNaOH

m3

SHe Concentration entrapped SH in CSTR kgNaOH

m3

OHf Concentration free OH in CSTR kgNaOH

m3

SHf Concentration free SH in CSTR kgNaOH

m3

Tc Temperature of CSTR K

mw1 Weight of slow lignin in CSTR kg

mw2 Weight of fast lignin in CSTR kg

mw3 Weight of cellulose in CSTR kg

mw4 Weight of araboxylan in CSTR kg

mw5 Weight of galactoglucomannan in CSTR kg

As mentioned above, there are ten states for every CSTR segment in the digester and

typically 43 CSTRs, yielding 430 internal states. 430 variables would require an enormous

amount of computational time to solve. To cut down on the number of required variables,

it was decided to approximate the internal states of the various CSTRs. After looking at

Figure 9, it became clear that most of the states of the digester follow a smooth curve

through the CSTRs. This presented an opportunity to reduce the number of parameters

that needed to be optimized for. It was decided to rather fit the parameters of the

various curves and approximate the CSTR values using it than to fit each and every

CSTR parameter value. For simplicity, it was decided to approximate these curves as

exponential functions, allocating 3 variables to each curve such that each curve resemble:

ab−x + c (71)

with a, b and c being these variables. Alternative forms, such as polynomials were also

considered, however the exponential form showed the best correlation. This resulted in

10 states (outlined in Table 17), each with 3 variables (a, b and c) to fit their continuous

curve profile. This results in 30 variables to be optimized for in total vs. the initial

430. This made a vast improvement in terms of simulation time. It is also believed that

the values obtained using this method would be representative of reality and therefore it
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should not greatly impact the accuracy of the prediction. The initial 430 variables can

in turn then be calculated using the curves as given by the 30 optimized parameters. It

should be noted again that the model reaction kinetics were developed by empirically

fitting equations to measurements that were made. The reaction kinetics predict the

main wood components well but the model does not predict the rate of reaction of all the

byproducts that form. the model does not have equations for the byproducts and will

therefore not be able to track their concentrations.

6.1.3 Results

After implementation of the MHE it was applied such that the initial conditions of the

simulation was optimized for before starting the simulation, instead of using sensible

guessed values as initial conditions. The result is visible in Figure 18 below:

0 2500 5000 7500 10000 12500 15000 17500 20000
time (min)

55

60

65

70

75

80

Ka
pp

a 
#

Set3
Plant Data

Figure 18: Kappa number predicted by optimized parameters with MHE initial values com-
pared to real plant data.

The resulting average absolute error is 2.75, which is better than without the MHE,

although it would seem from both the plot and the error, that it did not make a very

large difference. However, although the difference is not large, it is important to ensure

the internal states are accurately estimated at regular intervals.

6.2 Adaptive control

As discussed in Section 2.10, not all parameters truly stay constant at all times. While

there are some parameters, such as the rate of reaction, pre-exponential constants as well

as the activation energies, many other do change (very little normally) over time. There

are various possible reasons for this, such as for example:

• Wood composition could gradually change as the season change.

• Ambient temperatures with the seasons.
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• Different wood types might be used or mixed with assumed wood type.

• The critical moisture content of wood might change as wood type change.

• The unreacted fraction of wood components might change.

All of these and similar situations could change the assumed parameters over time. Be-

cause of this, it is valuable to periodically (typically once every month or three), take a

historic data set and optimize the parameters to fit the data. This will ensure that the

parameter drifts are accounted for and that changing parameters do not cause inaccura-

cies in the system. Another idea that builds on this is to rather optimize for one variable

at a time over a much shorter time. This is less accurate, however it has the advantage

that there is no need to run one large optimization instance that could take a relatively

long time to complete. Rather it runs faster, smaller optimizations more frequently. This

should also keep the predictions closer to optimal for the greater part of digester oper-

ation resulting in greater long-term model accuracy. This also allows for the possibility

to optimize certain parameters, such as those that are known to drift more rapidly, more

frequently than others, such as parameters that are known to drift less frequently, less

drastically or whose drift has a smaller effect on the overall model accuracy.

It was implemented on the model, however the data sets that were available were not for

long enough periods that a significant change in parameters could be noticed over the

time available. Figure 19 below shows an extreme example of how this would look. Figure

19 is created by simulating the model with erroneous parameters and then optimizing

parameters at 4800 minutes to illustrate the difference that it would make. Parameter

optimization yielding different parameters should find benefit in also running a MHE close

to this time, otherwise the ill effect of the old parameters will be propagated further, even

though the parameters are now corrected.

(a) Kappa number (b) Fast lignin content

Figure 19: Exaggerated examples of the possibilities introduced by adaptive control.
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7 Data handling

To achieve the aforementioned results, numerous datasets needed to be chosen, refined

and cleaned to ensure a precise measure of the model accuracy. This is mainly due to in-

consistencies in plant measurements, such as measurement noise, measurement downtime

as well as general measurement inaccuracies.

7.1 Data processing

All the relevant input and output data from the plant were obtained from the digester

historian at Ngodwana. This yielded a year and 6 months worth of data. As is common

with data obtained from an industrial process, the data was not ready for use in the form

it was received. The data needed to be cleaned and scrubbed before it could be used to

test the model. This cleaning process consisted of 2 parts.

1. At various times it would happen that certain measurements yielded no or nonsensi-

cal measurements. At other times it would also happen that the same measurement

output is reported for several days on end and this measurement was often non-

sensical. This is common on industrial plants but it creates difficulty when testing.

To solve this the large data set was divided into data sections that did not contain

these values. This yielded a subset of smaller data sets without this problem.

2. At some times, some measurements would measure values that were clearly higher

or lower than can be reasonably expected. It only measured these values for short

intervals before continuing as expected. It is also known that measurement devices

are prone to measurement noise that need to be rectified. Because of the slow

dynamics of the system, it was decided that both of these problems can be mitigated

by subjecting the data to a rolling median filter. This filter moves (or rolls) over

the data and adjust any value to be equal to the median of the previous N data

points (where N is the filter range). The rolling median filter was chosen above the

rolling mean filter because the rolling mean is less susceptible to outliers and quick

changes in variables are not expected. This smoothed out the noise as well as the

outliers of the system.

7.2 Kappa number measurements

As mentioned briefly in Section 4.2.3, the Kappa number of the pulp (the main model

output) is measured at three different locations on the plant. These locations are visible

in Figure 20. The model is designed to predict the Kappa number of the pulp as it exits

the digester. None of these however, measure the Kappa number directly as the pulp

exits the digester. Instead, two of the measurements are taken directly after the refiners,
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with the third being taken after several additional processes. Because of the distance of

the third analyser from the digester, it is suspected that it will be of little use, however

it will still be investigated. The measurement locations of the first two can be seen on

Figure 20 below. The third measurement is too deep into the plant to reasonably show

alongside the first two in a figure.

Figure 20: Kappa analyser 1, 2 and 3 location in relation to the digester.

7.2.1 Kappa measurement inconsistency

This caused a challenge since the first two do not yield the same results (since the refiners

are not operated identically and the refining process alters the Kappa number). The third

analyser was only installed fairly recently and therefore does not have a large amount

of data for comparison. What could be compared, however, seemed to indicate that its

reading also differs from the other two. The comparison of the data can be seen in Table

18 below. These comparisons were done for all three over the same time period. Three

data sets were chosen to represent the data.
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Table 18: Measures of Kappa measurement similarity.

Number Measure Data sets being compared

K1 and K2 K1 and K3 K2 and K3

1 Average relative error 0.087 0.208 0.130

Average absolute error 5.1 11.2 6.1

2 Average relative error 0.071 0.157 0.081

Average absolute error 5.3 11.7 6.4

3 Average relative error 0.058 0.263 0.195

Average absolute error 3.7 16.6 13.0

The plot of the first case along with the three parity plots are given in Figures 21 and 22

below. This serves as a visual representation of some of the data in Table 18 above.
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Figure 21: Kappa measurements over time for a randomly chosen data set.
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Figure 22: Parity plot showing similarity between Kappa measurements over time for a ran-
domly chosen data set.

From this it is clear that none of the Kappa numbers resemble each other enough to

assume them equal to one another. The model accuracy is measured against the plant

Kappa number, adding weight to this challenge.
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7.2.2 Solution

Numerous attempts were made to correct for these measurement inaccuracies, however,

since not enough data was available to model the refiners with any amount of detail,

none were deemed to improve the accuracy of the measurement obtained from the Kappa

analysers. However, since the model will primarily be used predicatively, it was decided

that the ability to detect changes in Kappa is more important than accurately predicting

Kappa. Because of this and the inconsistent data, it was decided to compare the plant

data to a single measurement. For this measurement, the Kappa measurement of analyser

1 was chosen. This was because it had larger sections of usable measurements than its

counterpart on the other refiner. It also had more available data than the third analyser,

therefore making the choice more appealing. All the results from Sections 5 and 6 are

given with the plant Kappa number equal to this first Kappa measurement.
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8 Conclusion

A mathematical model of a continuous Kraft wood digester was constructed and tested.

This model relies heavily on the work done previously by Christensen et al (1982). The

batch Kraft digester model developed by Christensen et al (1982) was used and adapted

to model a continuous Kraft wood digester at Ngodwana, South Africa. The adaptation

centres around utilizing the method of lines to account for changes in both time and

height of the digester simultaneously. The results from the model were able to simulate

the Kappa number of the digester accurately to an average absolute error of 7.88 that

was reduced to 2.87 after certain process parameters have been optimized for. A moving

horizon state estimator was introduced into the model in an effort to keep internal state

prediction accurate. This addition brought the average absolute error down further to

2.75. Adaptive control was also additionally implemented into the model. The plant

data, that the model was compared against to determine its accuracy, was filtered with

the use of a rolling median filter to reduce the influence introduced by noisy and infrequent

measurements. The model provides Sappi with numerous insights. First and foremost,

the model is used to predict the future Kappa number. This enables the plant operator

to take earlier action to correct the control conditions of the digester when it is predicted

that the Kappa number will deviate from the specified controlled value, reducing Kappa

variability. The model also supplies Sappi with a mathematical representation of the

digester that can be used to increase understanding of its operation. This is an advantage

of using a first principles model as opposed to, for instance, a neural algorithm or other

machine learning modelling alternatives.
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