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Abstract

Incorporating multicomponent, multiphase, high-temperature, complex chemical equilibrium calcula-
tions into process and multiphysics models can provide significant insights into materials, processes and
equipment. We refer to applications where the inclusion of these calculations provided insights that would
otherwise be difficult to obtain. From these examples, the advantages and importance of including complex
equilibria into models are clear for cases where more accurate descriptions of practically relevant systems
are needed.

Equilibrium calculations are, in general, omitted or incorporated in a simplified manner due to their
computational expense. The equilibrium state of a complex chemical system is determined by minimising
the Gibbs free energy for a given set of system component concentrations, temperature, and pressure. This
minimization routine is computationally expensive and makes direct integration of chemical equilibrium
calculations into models infeasible.

There have been many attempts to, in one way or another, accelerate these calculations. This includes
methods such as creating look-up tables prior to the simulation or in-situ, fitting piecewise polynomial
functions to thermochemical properties, phase diagram discretisation, sensitivity derivatives, machine-
learning algorithms, and parallelisation. Pre-calculated databases tend to become very large and require
much storage space, even when unstructured grids are used or piece-wise polynomials fitted. Neural network
results do not adhere to physical laws such as mass conservation and large training sets are required to
reduce this error.

In-situ or on-demand methods of creating a database shows great promise because only the thermochem-
ical regions that are of interest to the model are captured in the database, reducing the storage size and
the amount of data to search through. No prior knowledge of the system is required to create the database.

The Gibbs phase rule can be used to determine which geometrical features of a phase diagram to discretise
and create a sparse database that covers large temperature, pressure and compositional ranges. The lever
rule can then be used for fast and accurate interpolation between data points. Established thermochemical
theory provides security for the decisions made within the discretisation and interpolation algorithms.
Based on this review, an in-situ phase diagram discretisation method strongly based on thermochemical
theory such as the Gibbs phase rule and the lever rule holds potential for significant acceleration of complex
chemical equilibrium calculations.
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1. Introduction

Incorporating multicomponent, multiphase, high-
temperature, complex chemical equilibrium calcula-
tions (equilibrium calculations) into multiphysics and
process models (models) can provide valuable in-
sight. Equilibrium calculations provide phase frac-
tions, phase compositions, heat capacity, and en-
thalpy as functions of temperature, pressure, and
composition. Material property models can estimate
additional properties such as viscosity, density and
electrical conductivity based on equilibrium calcu-
lation results. Although this approach can provide
more accurate material properties to models, equilib-
rium calculations are computationally expensive and
are usually omitted or incorporated in a simplified
manner. As seen in Figure 1, there is a high-order
non-linear relationship between a system’s number of
components and equilibrium calculation time – can
become computationally expensive if large number
of calculations have to be performed. Although other
software than ChemAppPy[1] can be used to perform
equilibrium calculations of the systems presented in
Figure 1, and show different performances, the trend
will remain the same; the more system components
considered, the more computationally expensive the
equilibrium calculations, and unfortunately, it does
not scale linearly.
Multiphysics models can have thousands or even

millions of mesh cells and an equilibrium calculation
may need to be performed in each cell for every it-
eration [2] – a significant fraction of the simulation
calculation time is spent thereon [3]. When the 10-
component system is considered at roughly 17 s per
equilibrium calculation, as shown in Figure 1, and a
multiphysics model with one million mesh cells have
to be solved, the total solving time of a single it-
eration can take up to 200 days. Multiple iterations
are, however, required for convergence and even more
when a transient model is solved. When only 10 itera-
tions of this multiphysics model are solved, almost 5.5
years would have passed. In cases with many system
components, mesh cells, iterations, and time steps,
direct integration of equilibrium calculation software
into a model to perform equilibrium calculations at
a specified system state and provide thermochemical
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Figure 1: Third-order increase in equilibrium calculation time
with number of system components. Initial system was Fe-O,
and Si, Al, Mg, Ca, N, Mn, Na, K were added. 250 randomly
distributed equilibrium calculations per C-component system.
Calculated with ChemAppPy[1], and data from the FToxid
database in FactSage 7.2.0. The calculations were done on an
Intel Core i7-3770 with a clock speed of 3.4GHz and had 8GB
of RAM available.

data to the model (simply referred to as direct inte-
gration) can result in infeasible solving times.

The same high-order non-linear relationship be-
tween a system’s number of components and equilib-
rium calculation time is seen in process models. The
difference is that these models do not have mesh cells
to consider, but still have many equilibrium calcu-
lations that have to be performed each iteration for
various chemical reactions that are included in the
model. Many iterations may be required to ensure
convergence, and even more when a transient models
is solved. Again, many system components, itera-
tions, and time steps, direct integration can result in
infeasible solving times.

Models that use direct integration with reduced
numbers of components may be feasible, but may not
show details that more system components can. Sev-
eral methods have been developed, as discussed in
Section 4, to improve the computational efficiency of
including equilibrium calculations into models so that
more representative and accurate simulations can be
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performed in a reasonable time. These methods ei-
ther improve the efficiency of equilibrium calculations
or store calculation results for later recall and inter-
polation, which is less costly than direct integration.
Conceptually, an equilibrium calculation accelera-

tor, together with result data stored in its database,
acts as an intermediary between a model and equilib-
rium calculation software, as illustrated in Figure 2.
The result database can be populated prior to solv-
ing the model, or while the model is being solved (in-
situ). The accelerator recalls stored data and then
interpolates to determine thermochemical and physi-
cal property values requested by the model at a given
system state rather than performing a more compu-
tationally expensive equilibrium calculation.

Model
Equilibrium
calculation
software

Model Accelerator
Equilibrium
calculation
software

Direct-integration

Integration via accelerator

Database

Figure 2: Schematic representation of direct and indi-
rect integration between models and equilibrium calculation
software.[4]

In this article, we first discuss equilibrium calcula-
tions in short and why they are so computationally
expensive, whereafter we look at a few cases where
inclusion of equilibrium calculations in models pro-
vided valuable insight, showing the importance of
including equilibrium calculations into models. We
then review methods found in literature developed
to improve the efficiency of equilibrium calculations
and make it more feasible to include them into mul-

tiphysics and process models.

2. Equilibrium Calculations

Spontaneous physical change is governed by the
second law of thermodynamics, which states that
such change will only occur when it results in an in-
crease in an isolated system’s entropy. For constant-
pressure systems, Gibbs free energy (or Gibbs energy)
is a useful quantity that allows us to describe entropy
change in terms of properties of the system alone; we
can conveniently disregard the surroundings. Ther-
mochemical equilibrium is reached when Gibbs en-
ergy reaches a minimum; also the state of maximum
entropy.

This physical optimisation problem can be cast
into mathematical and numerical formulations, and
ultimately into computer software that we can use to
simulate a system’s drive towards equilibrium. This
is however an iterative process and, as displayed in
Figure 1 become more computationally expensive as
more system components are considered and the op-
timisation problem become more intricate.

Many different methods have been developed to
calculate thermochemical equilibrium by determin-
ing the minimum Gibbs energy for a system state.
Simultaneous and decoupled equation-solving meth-
ods have been developed and used. Teh and Ranga-
iah [5] discussed and evaluated the various equation-
solving methods in more detail. Piro et al. [6] em-
ployed another method, Gibbs energy partitioning,
in the Thermochimica library. Convex hulls have
been used as a geometrical approach to determine
the state with minimum Gibbs energy [7]. The most
popular method, however, has been the Gibbs en-
ergy minimization routine, which has been imple-
mented in a variety of open-source[8, 9, 10, 11] and
commercial[12, 13, 14, 15, 16] software packages. The
OpenCalphad software also provides the capability to
perform multiple equilibrium calculations in parallel
[9].

3. Applications

In the development of models, it is often adequate
to make simplifications regarding thermochemical be-
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haviour and physical properties. In other cases it is
essential to incorporate these details, since they are
core to the investigation. Here we focus on the latter.

3.1. Multiphysics Models

Incorporating equilibrium calculations into mod-
els have been used extensively in casting design by
studying the mechanisms contributing to macroseg-
regation [17]. The solidification, shrinkage, air-gap
development, stresses, and temperature distribution
of a casting have also been modelled by incorporating
equilibrium calculations into models [18].
Refractory materials are often subjected to high

temperature gradients, corrosive environments, and
mechanical loads [19] in an attempt to protect equip-
ment or operators nearby. Models have been used
to investigate different materials and how they de-
grade due to oxidation, corrosion, vaporization, sub-
limation, ablation, and dissolution [19], [20]. There
are clear signs in the work done by Blond et al.
[19] that the inclusion of equilibrium calculations im-
proves insight into stresses and strains in furnace
refractories. Equilibrium calculations have been in-
cluded into models with adaptive meshes by Tabiei
and Sockalingam [20] to investigate the lifespan of dy-
namic refractory linings of hypersonic vehicles during
their re-entry through Earth’s atmosphere.
Biomass-based energy technologies have been im-

proved significantly when equilibrium calculations
were incorporated into multiphysics models [21].
Multiphase reactors are widely used, but their de-
signs are primarily based on experimental data due
to process complexity. The understanding of these
processes is limited because dense and erosive flows
encumber measurement tools. Even when measuring
tools are used, system dynamics are altered, leading
to measurement inaccuracy [21]. Models that incor-
porate equilibrium calculations can bridge the gap
between experimental data and the actual behaviour
of these reactors [21], which can be used to improve
reactor design.
Equilibrium calculations allowed phase composi-

tions, oxygen chemical potential and other thermo-
chemical properties to be included into models that
were essential for investigating and estimating per-
formance, safety, and behaviour of nuclear fuel that

could not be determined through experimentation
during operation [22], [23].

Complex chemical reactions, heat and mass trans-
fer, phase changes, and multiphase flows make it ex-
tremely challenging to model pyrometallurgical pro-
cesses. Molten slags are usually produced, in some
cases it is the desired product [24], and can be very
corrosive, which can cause refractory lining damage.
To combat this, furnace sidewalls are cooled with the
intent to solidify slag onto the refractory lining, form-
ing a freeze lining [25]. Including equilibrium calcula-
tions into models make it possible to describe chemi-
cal reactions, heat and mass transfer, phase changes,
and multiphase flow, which can then be used to esti-
mate freeze lining condition.

3.2. Process Models

Process models of ilmenite-smelting DC
furnaces[24, 25], have been used to investigate
the interaction between slag bath and freeze lining.
This was done by determining the influences of
thermal and chemical changes and changes in oper-
ational parameters on these interactions. Insights
from these investigations were used to improve and
refine the operational strategies of the process.

There is continual interaction between the flow of
molten slag and freeze lining as remelting and solid-
ification occurs. It is important to maintain a freeze
lining at all time, but it is near impossible to mea-
sure the geometry within molten liquid to ensure its
presence. Monitoring of the freeze lining thickness
can be done by following the trends of thermocou-
ples in the sidewalls [26]. The thermocouple data is
used to calculate heat flux through the freeze lining
and estimate its thickness.

The electric arc furnace (EAF) is the main process
used to recycle iron and steel and the second-most
important process in terms of global steel production
[27]. Process models have been used to improve the
understanding and control of the EAF process as well
as optimizing its energy and resource efficiency [28].
These EAF process models include equilibrium cal-
culations that provide composition and temperature
estimations throughout the process that cannot be
measured directly due to the harsh conditions within
the furnace.
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EAF process models can be used to automatically
create operational charts in real-time and can be ad-
justed based on furnace operating conditions [27].
Scenarios such as new control strategies, different in-
jection or charging materials, and installation of new
equipment can be evaluated virtually and adjusted
with a process model before any changes are imple-
mented. Hay et al. [27] and Hay et al. [28] sum-
marised the different EAF process models that have
been developed and their continual improvements.

3.3. Conclusion

Being able to include equilibrium calculations into
a model that accurately represented the thermochem-
ical system allowed for virtual prototyping and test-
ing of new processes, control strategies and equip-
ment before any costly physical tests had to be per-
formed, new plants had to be built or changes made
to existing plants, or new equipment purchased. Us-
ing models were equilibrium calculations have been
included to monitor and control processes were con-
ventional monitoring methods are infeasible have
been found to be invaluable. Discussed here were
only a few examples of where the implementation of
equilibrium calculations provide insight into systems
and processes that would otherwise be difficult or im-
possible to obtain.

4. Accelerating Equilibrium Calculations for
Modelling

The incorporation of equilibrium calculations in
models can provide more accurate results, but at a
cost of longer computational time. To reduce equi-
librium calculation times in models and make solv-
ing times more feasible, several acceleration meth-
ods have been developed. The golden thread that
runs through the majority of these methods is based
on a pre-calculated or in-situ calculated database of
the specific thermodynamic system and utilising the
stored data in an interpolation routine to accelerate
equilibrium calculations.

4.1. Uniform Discretisation of System Space
The feasibility of uniformly discretising the tem-

perature and compositional space of a thermochemi-
cal system was investigated by ten Cate et al. [17]. At
each discretisation node, an equilibrium calculation
had to be performed and thermochemical properties
stored for later recall. The composition in a system
with C number of components can be described by
the concentration of C−1 components. An isobaric 4-
component system was considered with varying tem-
perature. Therefore, a thermodynamic property of
the 4-component system was dependent on four in-
dependent variables; temperature and the concentra-
tion of three components. The system range of each
independent variable was divided into 600 nodes to
form a uniform grid. To store two thermodynamic
properties as functions of the four independent vari-
ables with single precision (32 bit per value) on each
of the grid nodes, 2 × 4 × 6004× 32 bit = 4TB of
storage would have been needed [17]. The size of a
uniform grid pre-calculated database can become too
large for the memory of computers [17] to use and
searching through that amount of data can be very
time-consuming. The space complexity is of order
O(nd) where d is the dimension of the grid [17].

A similar tabulation method was developed by
Saad et al. [29]. A known alloy was chosen and the
composition variation intervals were identified. These
intervals were not known before the model was solved
and had to cover the alloy composition extremes – in-
formed estimations had to be made. A temperature
interval also had to be identified, but in general was
chosen from the initial melting temperature to room
temperature. Systematic checks were done within
these intervals at predefined step sizes and equilib-
rium calculations were performed at each tempera-
ture and compositional combination. The number
of phases, together with the fractions and compo-
sitions of each, were determined from each equilib-
rium calculation. This allowed the temperature and
compositional interval of the phase region boundary
associated with each phase to be determined. There-
after, the composition and temperature intervals of
each phase was systematically checked to determine
thermochemical properties of the phase at different
temperatures and compositions. Interpolation can
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then be performed between phase composition and
temperature nodes to obtain phase properties for an
equilibrium calculation.

4.2. Liquidus Surface Mapping

A method was used to store the liquidus and
solidus surfaces of solid and eutectic phases in a 3-
component system [30], [31]. A number of equilib-
rium calculations were done prior to the simulation of
the model for combinations of various temperatures
pressures, and system component concentrations to
be used to describe the surfaces.
The concentration of one component was kept con-

stant and the liquidus surface mapping along the iso-
pleth was completed by ranging the other component
between its minimum and maximum concentration
by a fixed increment. Two partial slopes of the liq-
uidus surface; ml,A = ∂T/∂cl,A relative to system
component A concentration and ml,B = ∂T/∂cl,B
relative to system component B concentration, and
two partition coefficients; kA and kB were stored for
a fixed concentration cl,C of component C. Partition
coefficients are used to describe tie-lines between the
solidus and liquidus surfaces [31]. The first system
component’s concentration was then adjusted by a
fixed increment and the mapping repeated.
The primary phase’s liquidus temperature, Tf , to-

gether with the liquidus surface’s slopes, ml,A and
ml,B , are used to describe the liquidus surface for a
given composition, as described by Equation (1) and
illustrated with Figure 3, [31].

T = Tf +ml,A × cl,A +ml,B × cl,B (1)

Given the phase composition on the liquidus surface,
the corresponding phase’s composition on the solidus
surface – that is found on the same tie-line – is de-
scribed by the partition coefficients, as described by
Equation (2) and illustrated in Figure 3, [31].

c∗s,A = kA × c∗l,A

c∗s,B = kB × c∗l,B (2)

With this method a global mapping file was com-
piled. Bilinear interpolation was used to calculate

Figure 3: Liquidus surface of two-phase region described by
stored partial derivative values of temperature with respect
to system component concentrations. Tie lines described by
stored partition coefficients used to determine the solidus sur-
face. Taken from [31]

the liquidus temperature, the slopes of the liquidus
surface, and the partition coefficients for given com-
ponent concentrations.

An acceleration factor of 4 was observed in 3-
component systems with a mapping filesize of a few
MB [30]. When a mapping file was created in a 4-
component system, the filesize was found to be in the
order of 100MB. As seen in the feasibility study on
uniform discretisation of temperature-compositional
space done by ten Cate et al. [17] and the liquidus
and solidus surface mapping by [30], as more com-
plex systems with more components are considered,
more storage space is required and can become infea-
sible.

4.3. In-situ Tabulation

Instead of performing a large number of equilib-
rium calculations and tabulating the results prior to
solving a model, an initially empty table can be popu-
lated as the model is solving – in-situ – as presented
by Pope [32]. As the model requires thermochemi-
cal properties at a specified system state, an equilib-
rium calculation is performed, and results stored to
the table. At a later stage, when the model requires
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thermochemical properties near stored results, inter-
polation, rather than an equilibrium calculation, is
performed and the results returned. The advantage is
that the table is populated only in regions of the sys-
tem space that is accessed by the model, known as the
accessed regions, and no unnecessary equilibrium cal-
culations have to be performed beforehand. This re-
duces the number of computationally expensive equi-
librium calculations that need to be performed and
reduces the storage requirement of the table.
It was found that the use of in-situ adaptive ta-

ble completed 109 queries in 54 h, compared to more
than 6 years (theoretically) when direct integration
was considered – an acceleration factor of about 103.
It roughly took 1.5 h of the computational time to
complete all the additions to the table and in the
remaining computational time only table retrievals
were made and interpolation performed [32].
Analysis of the in-situ adaptive tabulation

method’s performance as well as an improvement to
the searching algorithm was done by Chen [33]. An
improvement on the algorithm was made by Lu and
Pope [34] in terms of the table-searching strategies
and the addition of error checking and correction.
In comparison to the previous implementation ([32]),
the computational time has been halved and the stor-
age requirements have been reduced by a factor of
five.
In-situ tabulation was also used in the work of

Larsson and Höglund [35] where the system space
was divided into a structured reference frame but
no equilibrium calculations were performed before-
hand – only the nodes’ temperature and composi-
tions were determined. When thermochemical prop-
erties were required at a specified state, the nodes of
the structured reference frame nearest to the spec-
ified state were identified, equilibrium calculations
performed at their corresponding temperature and
compositions, and the results stored to the database.
From the results obtained, interpolation is performed
to determine thermochemical properties at the spec-
ified state. When another specified state is found
between reference frame nodes where equilibrium cal-
culations have been performed, they are simply used
again to interpolate towards the specified state. In
the case where some identified reference frame nodes

do not have any results available, equilibrium calcu-
lations are performed, results stored to the database,
and interpolation performed. A database storage size
limit is also specified and when new results have to
be stored, the results that has not been used for the
longest period is overwritten.

The in-situ tabulation scheme of Larsson and
Höglund [35] was implemented by [3] and its perfor-
mance evaluated. In one test, an acceleration factor
of 2 was observed. In another test, the compositional
space accessed by the model was larger and therefore
more equilibrium calculations were required, and an
acceleration factor of 0.6 was observed.

As noticed in the work by Pope [32], initially only
computationally expensive equilibrium calculations
are performed and little to no acceleration is ob-
served, or even a deceleration due to the extra over-
head computations required to tabulate the data. As
the table is populated more densely, the frequency
of recalls and interpolations increase up to the point
where only recalls and interpolation is performed and
large accelerations are observed.

4.4. Parallelisation

Although continuous improvement of the different
algorithms reduce the computational time of equi-
librium calculations, another method of achieving
large acceleration is by performing these calculations
in parallel across multiple central processing unit
(CPU) cores. A comparison between single-core and
parallel computed equilibrium calculations were per-
formed [3] where a number of equilibrium calculations
were performed with the Thermo-calc [15] software.
These equilibrium calculations were divided equally
between a number of CPU cores with the MPI (Mes-
sage Passing Interface) protocol and a close-to-linear
scaling was observed [3]. This scaling continued up to
a number of cores where the time required to transfer
data between all cores became comparable to equi-
librium calculations themselves – no longer advanta-
geous to use more cores.

In one case where the equilibrium calculations were
less computationally expensive, a linear scaling was
found up to 24 cores. In another case where the equi-
librium calculations were more computationally ex-
pensive, a linear scaling was found up to 48 cores.
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Acceleration of equilibrium calculations are possible
by dividing them amongst numerous CPU cores, but
there are limits to the scaling and it differs from case
to case. This method focuses on distributing the equi-
librium calculations between a number of cores rather
than storing the data for later recall and potentially
avoiding performing each equilibrium calculation.
The in-situ tabulation and interpolation scheme of

Larsson and Höglund [35], as discussed in Section 4.3,
was implemented and parallelised with the MPI pro-
tocol by Pillai et al. [3]. Performance tests were done
on 4, 12 and 48 cores where the parallelised in-situ
tabulation and interpolation scheme was compared
against direct equilibrium calculations on the same
number of cores. The one test showed that the par-
allelised in-situ tabulation and interpolation scheme
was about 40% to 50% faster than parallelised direct
equilibrium calculations. In another test it was 25%
to 50% slower as the compositional space accessed by
the model was larger and therefore more equilibrium
calculations were required to populate the database
[3]. In either case, acceleration was achieved in com-
parison to single-core calculations, although the scal-
ing is less than linear.
Some CPUs can have as many as 48 cores or even

more, but graphics processing units (GPUs) can have
much more; where it is not uncommon for GPUs to
have several thousands of cores. Although a GPU
has a substantial amount of cores more than a CPU,
its cores has much less on-chip storage capabilities, a
smaller instruction set, and slower clock speeds. This
means that a single GPU core can not perform as
computational demanding calculations as a CPU core
and is not as fast as a CPU core, but because of the
vast amount of cores at its disposal, a GPU can mas-
sively parallelise operations and perform them much
quicker than a CPU can.
GPU parallelisation of equilibrium calculations was

done by Gandham et al. [36]. To avoid latency in the
equilibrium calculation being performed on a CPU or
GPU, the data required to perform the calculation
is stored within the on-chip cache which is present
on both CPUs and GPUs. However, the cache size
on a CPU is in general much larger than that of
a GPU. As the number of system components in-
crease, so does the number of registers required to

store the data required to efficiently perform an equi-
librium calculation. On a GPU, when this exceeds
the maximum number of registers per thread, the
GPU’s dynamic random access memory (DRAM) is
used for storage, leading to a reduction in perfor-
mance. In contrast, the cache of a CPU is large
enough to store all the data required for an equi-
librium calculation for the test cases considered. To
reduce the demand for the GPU on-chip resources,
a mixed-precision approach was taken where equilib-
rium calculations benefited from the performance of
single-precision floating point computations and the
accuracy of double-precision computations; majority
of computations are performed with single-precision,
requiring less on-chip storage, and double-precision
only used to refine the solution to the desired accu-
racy when needed. It was found in the test cases that
only 1% to 2% of equilibrium calculations that were
performed required double-precision calculations for
refinement. An acceleration factor of 3 was observed
when this mixed-precision approach was used com-
pared to using only double-precision computations
for every equilibrium calculation.

To compare the performance between CPU and
GPU parallelisation, Gandham et al. [36] imple-
mented the same algorithm for both processing units.
The CPU used was a Intel Xeon E5-2630 v3 with
eight cores clocked at 2.4GHz and the GPU was an
NVIDIA Tesla K80 board. Across two test cases,
the average acceleration factor obtained by the GPU
compared to the 8-core CPU (also performing equilib-
rium calculations in parallel) ranges from 5 for sys-
tems with 30 components to 17 for systems with 6
components.

4.5. Polynomial Fit to Thermodynamic properties

Thermodynamic properties can display discontinu-
ities, as seen in Figure 4, with varying temperature
as well as variations in system component concen-
trations. Instead of using a uniform grid to capture
thermochemical property data, less nodes can be used
if only these discontinuities are captured and stored
[17]. However, the locations of these discontinuities
need to be known.

A diagram showing the compositions of all stable
phases of a thermodynamic system present at equi-
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librium as a function of system component concen-
trations, temperature, and pressure is referred to as
a phase diagram. A phase diagram is a geometrical
representation of a thermodynamic system [37]. Lo-
cations of the observed discontinuities in thermody-
namic properties correspond to phase region bound-
aries found on a phase diagram, and when grid nodes
are adapted to the phase diagram shape in an un-
structured non-uniform manner, the number of nodes
used to discretise the temperature and compositional
axes are expected to decrease.

Figure 4: Dependency of heat capacity on temperature for an
Aluminium alloy with fixed composition of 5% Copper, Iron,
and Magnesium. Taken from ten Cate et al. [17]

The positions of discontinuities seen in Figure 4
were stored and first-order piecewise polynomials fit-
ted between those nodes. First-order polynomials
might not have been the most accurate simplifica-
tion, but with the addition of only one node a more
accurate second-order piecewise polynomials could be
used.
To discretise and store the heat capacity, as de-

picted in Figure 4, for varying temperature and a
fixed composition, only 17 nodes were needed if first-
order piecewise polynomials were considered and 23
nodes for second-order piecewise polynomials [17]. A
reduction factor of around 30 was found for stor-

age requirement when this method was implemented
(without a significant loss in the accuracy) in compar-
ison to the uniform grid approach where 600 nodes
were used to discretise the temperature axis – dis-
cussed in Section 4.1. The mapping was done for
a fixed composition, but the composition will sel-
dom be constant throughout the entire domain and
model. The method of fitting piecewise polynomials
to thermodynamic properties was therefore applied
at a number of different system component concen-
trations. Instead of discretising the concentration of
each component into a uniform grid, unstructured
meshing was applied by clustering more nodes at im-
portant concentrations [17]. It was estimated that
a reduction factor for storage requirement of about
3 can be obtained by applying this method to the
discretisation of a single component’s concentration
range [17].

These reductions were applied to the same 4-
component system discussed in Section 4.1 where a
uniform mesh was used and the database ended up
to be in excess of 4TB in size. If a reduction factor of
30 was found for the temperature axis and a factor of
3 for each composition axis, a total reduction factor
of 30× 33 = 810 was found. This meant that a 4TB
database would be reduced to about 5GB [17].

Using a phase diagram to intelligently decide where
to store thermodynamic data, rather than using a
large uniform mesh, reduces the storage requirement
tremendously. This reduction makes the use of such
a pre-calculated database more feasible but systems
with more components would still require a large
amount of storage space.

4.6. Polynomial Regression of Phase Region Bound-
aries

Regression has been used to fit polynomials to data
points on phase region boundaries [38]. Using poly-
nomials and linear interpolation is much less compu-
tationally intensive than Gibbs free energy minimiza-
tion used in equilibrium calculations [38].

Equilibrium calculations were done at different
concentrations of system components to obtain the
liquidus and solidus temperatures of the phase re-
gion. Polynomial functions were fitted to these points
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to capture the phase region boundaries. The polyno-
mial was fitted to the data points calculated from
within the phase region, but the function could also
be used with a set of independent variables outside
the range of fitted data. The polynomial used to de-
scribe the phase region boundary therefore had to be
bounded to capture the phase region boundary lim-
its. Polynomials of a lower order were used to capture
these limits.
This regression method was tested in the Al-Si-Mg-

Fe system and compared against the thermochem-
ical calculation software Thermo-Calc [15]. It was
found that the liquidus and solidus temperatures de-
termined by this method only differed by fractions of
a degree Celsius to that calculated by Thermo-Calc
[38]. Zhao et al. [39] used a regression method in
the Al-Cu-Si system. Compared to Thermo-Calc, the
method had a maximum temperature error of 1.37 ◦C
and less than a percentage error on any of the phase
compositions. The direct integration with Themro-
Calc took 3.66 h compared to the regression method
that only took 147.54 s – an acceleration factor of al-
most 90.

4.7. Phase Diagram Discretisation

As discussed previously in Section 4.1, the number
of nodes needed to represent the phase diagram be-
come infeasible when uniform grid meshing is done,
especially for high-order systems. Meshing of a phase
region, shown in Figure 5, was performed with a mesh
generator developed by ten Cate et al. [17]. Non-
uniform meshing, shown on the right, requires fewer
nodes in comparison to a uniform mesh, shown on the
left. A distance and size function were used to deter-
mine the desired edge length of a mesh cell depending
on its distance to the nearest phase region boundary.
This allowed for a non-uniform adaptive mesh to be
applied to the region instead of a uniform mesh, re-
ducing the number of cells needed to still accurately
capture properties within the phase region. Equilib-
rium calculations were performed at each of the nodes
and thermochemical properties stored where interpo-
lation could then be used when properties were re-
quested by the model.
Fewer nodes are needed with non-uniform meshing

to describe the phase region and will reduce the stor-

age requirement when thermodynamic properties are
stored at every node, seeing that the storage require-
ments are of order O(n2) where n is the number of
discretisation cells [17].

Figure 5: Meshing of the liquid-Pb phase region. Left: Uni-
form mesh size function. Right: Distance dependent mesh size
function. Taken from ten Cate et al. [17].

The meshing of phase regions and the storage of
thermochemical data could be used effectively, but
the meshing of all phase regions are not necessary.
The phase fraction of all stable phases at equilibrium
can be calculated with the lever rule [40]. Any ex-
tensive property of the system can be determined at
a given system state within the phase region with
the same compositional and non-compositional inten-
sive properties (chemical potential, temperature and
pressure) as the stable phases at equilibrium. This is
done by taking the sum of the stable phases’ extensive
properties (properties at coordinates on the phase re-
gion boundaries) weighted by their calculated phase
fractions towards the system state (properties at a
coordinate within the phase region). For some phase
regions, only the meshing of phase region boundaries
would therefore suffice, and the lever rule can be used
to interpolate within the phase region. This was
the basis for a phase region discretisation accelera-
tor proposed by Zietsman [4]. It was shown that the
Gibbs phase rule could be used to determine whether
a phase region had to be meshed or only its bound-
aries. This would reduce the number of equilibrium
calculations that had to be performed and the storage
requirement of the database immensely – an entire
phase region can be described by its boundaries alone.
For the liquid-Pb (2-phase) phase region in the Pb-Sn
(2-component) system, seen in Figure 5, it would only
be necessary to mesh the phase region boundaries ac-
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cording to the Gibbs phase rule. The lever rule could
then been used to calculate thermodynamic proper-
ties within the phase region between the linearly in-
terpolated phase region boundary nodes – no mesh-
ing would be required inside the phase region. The
meshing of some phase regions are unavoidable, such
as single-phase regions [4]. This method can be used
to include equilibrium calculations into models more
efficiently and can even be implemented together with
the Scheil-Gulliver solidification method [41] to accel-
erate solidification models even more.

4.8. Tie-simplices

Phase diagrams are geometrical representations of
thermochemical systems. There are many geomet-
rical objects within a phase diagram, of which tie-
lines, tie-triangles, etc. are used to represent be-
haviour within phase regions in isobaric and isother-
mal sections. A simplex is the generalization of a
tetrahedral region of space in n-dimensions, such as
a tetrahedron in three-dimensions, a triangle in two-
dimensions or a line in one-dimension. Simplices can
therefore be used to describe multi-dimensional tie-
features in multi-phase regions. The vertices of a tie-
simplex are the compositions of the phases present at
equilibrium – nodes on the phase region boundaries.
A phase region with φ̂ number of phases can be dis-
cretised by a series of tie-simplices of order Rφ̂−1.
Voskov and Tchelepi [42] showed a method where,

for a given phase region, the largest tie-simplex was
first identified; for a two-phase region this would
be the longest tie-line, for a three-phase region this
would be the largest tie-triangle, etc. From the ini-
tial tie-simplex, an increment was made orthogonal
to it and the next tie-simplex calculated. This was
repeated until the entire phase region was discretised
by a set of tie-simplices, as seen in Figure 6. Tie-
simplices were created for all the phase regions in
the system. The phase compositions that are the tie-
simplex’s vertices, and the thermochemical properties
at each, were calculated by an equilibrium calcula-
tion for a given temperature and pressure within the
phase region, and then stored. Interpolation could be
done between vertices of neighbouring tie-simplices,
and together with the lever rule, could recall ther-
mochemical properties to be used in models. The

use of tie-simplex tabulation had significant gains in
computationally efficiency when compared to direct
integration methods [42].

Figure 6: Tetrahedral diagram of 4-component system with
simplices capturing phase regions. Taken from [42].

An adaptive strategy was developed where only the
necessary tie-simplices were computed when a large
number of these calculations were required [43]. If
sufficient tie-simplex data was not available to pro-
vide the model with information regarding a query,
equilibrium calculations would be performed and the
database updated with corresponding tie-simplices.

4.9. Support Vector Data Description

A support vector data description (SVDD), simi-
lar to a support vector machine, is a non-probabilistic
machine-learning classifier that has been used to es-
timate the location of phase region boundaries of a
thermochemical system [44]. Initial temperature and
composition coordinates, either obtained from prior
knowledge or an optimisation routine, are used to
determine phase composition coordinates on phase
region boundaries and create a crude support vec-
tor data description of the phase region boundaries.
Thereafter, an adaptive sampling scheme is employed
to determine more phase composition coordinates on
the phase region boundaries where it is currently least
defined, and the support vector data description is
grown until a maximum number of coordinates are
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reached. In a case study performed by Kirk et al. [44],
a support vector data description, together with the
adaptive sampling scheme, required just 1,000 equi-
librium calculations to represent phase region bound-
aries. A total of 505,000 direct equilibrium calcula-
tions were performed, as would be done in a tradi-
tional method, to verify the accuracy of the support
vector data description and only a 5% misclassifica-
tion rate was observed – this is considered relatively
accurate for its application [44] considering the reduc-
tion in the number of equilibrium calculations that
need to be performed.

4.10. Sensitivity Derivatives

An on-demand machine learning algorithm was
developed that could quickly and accurately esti-
mate thermochemical equilibrium states based on
stored results of previous equilibrium calculations
[45]. When an equilibrium calculation was per-
formed, sensitivity derivatives with respect to tem-
perature, pressure and system component concentra-
tions where determined. These derivatives could be
used, together with changes in input conditions such
as temperature differences or change in the concen-
tration of a system component, to estimate the out-
put state.
Stored sensitivity derivatives can only be used to

estimate an equilibrium state if the requested input
state is close to the reference state – the state at
which the stored sensitivity derivatives were calcu-
lated. The most performance-critical step of this
method is searching for an acceptable stored refer-
ence state [45]. An acceptability test is first done on
a reference state and only when the error was found
to be within a specified tolerance could the reference
state and its sensitivity derivatives be used in a first-
order Taylor approximation to estimate the equilib-
rium state.
If no acceptable reference states were found an

equilibrium calculation would be performed and the
accompanying sensitivity derivatives stored. No
prior knowledge of the system or large pre-calculated
databases were therefore required.
This method was tested and an acceleration factor

of one to two orders of magnitude was achieved. Of
the 1,000,000 equilibrium state calculation requests

from the model, only 258 equilibrium calculations
had to be performed. The remaining equilibrium
states were estimated by the on-demand machine
learning algorithm. From these 258 equilibrium cal-
culations, 91% had been completed within the first
250 of the total 10,000 time steps.

4.11. Artificial Neural Networks

Artificial neural networks (ANNs) were trained on
thermochemical properties obtained from equilibrium
calculations done for sets of compositions and tem-
peratures. ANNs have been used together with em-
pirical models [46] and integrated with probability
density functions [47]. The difficulty with selecting
a composition range to be used as a training set is
that the range is unknown prior to the simulation. A
large training composition range can lead to unneces-
sary time-consuming equilibrium calculations to cre-
ate the training set. If the training set composition
range is too small then the ANN will not adequately
represent the system.

To best capture the used compositional ranges of
the model, statistical mapping was done; the sys-
tem components were selected and small-scale models
were done by direct integration of equilibrium cal-
culations [47]. The small-scale models were used to
generate a training set for the ANN that was repre-
sentative of the larger system and its compositional
ranges. The neural network was then trained on the
automatically generated training set. The statisti-
cally mapped training sets were about 10% of a tab-
ulated database for the same system [47].

ANNs were used to accelerate equilibrium calcula-
tions by Guérillot and Bruyelle [48] and an accelera-
tion factor of 10 to 20 was achieved for most of the
time steps. However, it was stated that ANNs do not
conserve mass and the error increases with every time
step and is highly dependent on how well the ANN
is trained. To reduce the error a larger training set
would be required. A suggestion was made to use the
ANN’s result as the initial guess for the equilibrium
calculation solver, potentially reducing the number
of iterations required before convergence is achieved,
reducing the computational cost.

ANNs were used to accelerate equilibrium calcula-
tions by Strandlund [49] as well where an acceleration
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factor of 70 was observed with a 5% maximum rela-
tive error allowed. Strandlund [49] mentions that the
number of hidden units should be reduced as much
as possible in order to train ANNs as fast as possi-
ble, but the more hidden units are used, the more
complicated functions the ANN can represent – ther-
mochemical properties with more complex behaviour
can be represented more accurately. Knowledge of
the system is therefore important; knowledge of the
behaviour of the thermochemical properties as tem-
perature, pressure, and composition of the system
varies can be used to intelligently select the number
of hidden units required – reducing the amount of
training data required and the time spent on train-
ing the ANN to accurately estimate thermochemical
properties.

4.12. k-Nearest Neighbours

A k-NN (k-nearest neighbour) algorithm [50] was
used to construct a thermochemical property model.
Many equilibrium calculations were performed to cre-
ate a training set of thermochemical properties as a
function of the specified states. After training was
complete the k-NN algorithm could estimate thermo-
chemical properties based on a specified system state
by determining the nearest neighbours to the speci-
fied state and performing a weighted average between
them. The error made by the k-NN model was within
1% from the direct calculation results and showed an
acceleration from 15.28 days to 4 minutes – a factor
of about 5500. Other machine-learning methods, as
referred to in [50], were considered when this method
was developed.

5. Conclusion

Insights were obtained into systems and processes
that, without the inclusion of thermochemical equi-
librium calculations into models, would otherwise be
difficult or impossible.
The computationally expensive Gibbs free energy

minimization routine to obtain the equilibrium state
of these complex systems is the main culprit to why
these calculations are not incorporated into more
models. As more system components are included in

the equilibrium calculations to model complex sys-
tems, the more computationally expensive the Gibbs
free energy minimization routine – the relationship
between the number of components and calculation
time is unfortunately a high-order non-linear rela-
tionship. Several methods have been developed in
an attempt to accelerate equilibrium calculations and
make it feasible to include into models.

Pre-calculated databases have the drawback of pos-
sibly becoming too large for computers to use. A
pre-calculated uniform grid database of two thermo-
chemical properties in a 4-component system was es-
timated to be in excess of 4TB in size. By clustering
nodes to important concentrations that correspond
to discontinuities in thermodynamic properties this
database could be reduced to 5GB, which is signifi-
cantly smaller but could still present recalling prob-
lems. For this reason, it would be better to have
a database that is populated in-situ as the model is
being solved – the model creates its own database
of the accessed region for later recall. Initially this
method is slower than direct integration, but as the
database is populated the frequency of recalls and
linear interpolation increase and the time spent on
equilibrium calculations decrease, especially if many
iterations and time steps are taken by the model. The
database of an in-situ method only contains data of
the system that the model has accessed before and
no unnecessary data is generated and stored.

Using a system’s phase diagram as a guide to dis-
cretise the temperature-compositional space allowed
non-uniform discretisation of phase regions. Ther-
mochemical data could be stored at the nodes of the
non-uniform mesh for later recall. The non-uniform
discretisation allowed for less nodes to be used, com-
pared to uniform discretisation, as the nodes could
be concentrated at the phase region boundaries.

The discretisation of phase regions are however not
always necessary. By utilising thermochemical tools
such as the Gibbs phase rule it could be determined
whether an entire phase region had to be discretised
or if it was only necessary to discretise its boundaries
and store the resulting tie-simplices. The lever rule
could be used with the stored tie-simplices to deter-
mine the thermochemical properties within the entire
phase region without there being a single data point
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stored inside the phase region. This lead to a remark-
able decrease in the amount of data that had to be
stored. Because the lever rule is only another form of
linear interpolation the acceleration of this method
shows great promise.
There are great advantages in using concepts from

thermochemistry theory such as phase diagrams, the
Gibbs phase rule, and the lever rule in creating an
accelerator. The thermochemical theory is a strong
base that provides security for the decisions taken
when the system is discretised and interpolation is
done with the stored data. Combining this with
an in-situ method of discretisation would produce a
sparse database that covers large temperature, pres-
sure and compositional ranges. An accelerator that
utilises these thermochemical tools to build an in-situ
database consisting of tie-simplices created by equi-
librium calculations could show great promise and
should be investigated.
The acceleration of equilibrium calculations is only

one hurdle that has to be overcome to include thermo-
chemistry into models. Additional PDEs are required
in the models to ensure the mass balance of sys-
tem components and phases throughout the model.
Other hurdles may present themselves as we investi-
gate larger systems, but there are very good methods
developed to help address the current hurdle we are
facing – the acceleration of equilibrium calculations
for more feasible model solution times.
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Utilising artificial neural network and repro-
modelling in turbulent combustion, Proceedings
of ICNN’95 - International Conference on Neural
Networks (1995) 911–916.

[47] F. Christo, A. Masri, E. Nebot, S. Pope, An in-
tegrated pdf/neural network approach for sim-
ulating turbulent reacting systems, Sympo-
sium (International) on Combustion/The Com-
bustion Institute 26 (1996) 43–48.

[48] D. Guérillot, J. Bruyelle, Geochemical equi-
librium determination using an artificial neural
network in compositional reservoir flow simula-
tion, Computational Geosciences 24 (2020) 697–
707.

[49] H. Strandlund, High-speed thermodynamic cal-
culations for kinetic simulations, Computational
Materials Science 29 (2004) 187–194.

[50] R. Jha, N. Chakraborti, D. Diercks, A. Steb-
ner, C. Ciobanu, Combined machine learning
and calphad approach for discovering process-
structure relationships in soft magnetic alloys,
Computational Materials Science 150 (2018)
202–211.

17


	Introduction
	Equilibrium Calculations
	Applications
	Multiphysics Models
	Process Models
	Conclusion

	Accelerating Equilibrium Calculations for Modelling
	Uniform Discretisation of System Space
	Liquidus Surface Mapping
	In-situ Tabulation
	Parallelisation
	Polynomial Fit to Thermodynamic properties
	Polynomial Regression of Phase Region Boundaries
	Phase Diagram Discretisation
	Tie-simplices
	Support Vector Data Description
	Sensitivity Derivatives
	Artificial Neural Networks
	k-Nearest Neighbours

	Conclusion

