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Abstract: Additional information and borrowing strength from the related sites and other sources
will improve estimation in small areas. Generalized linear mixed-effects models (GLMMs) have
been frequently used in small area estimation; however, the relationship between the response
variable and some covariates may not be linear in many cases. In such cases, using semiparametric
modeling, incorporating some nonlinear symmetric/asymmetric functions to the predictor seems
more appropriate due to their flexibility. In addition, spatial dependence is observed between areas
in many cases. Thus, using the semiparametric spatial models for small areas is of interest. This
paper presents semiparametric spatial GLMMs and approximates the nonlinear component using
splines to estimate the linear part. We apply our proposal for analyzing insurance data obtained from
an Iranian insurance company. Our numerical illustrations will support the use of our proposal in
situations where the spatial GLMMs may not be appropriate.

Keywords: insurance data; semiparametric model; small area; spatial analysis; spline

1. Introduction

Comprehensive information and appropriate statistical data are essential for planning,
decision-making, and policymaking. Knowing the population requires having enough
statistical information. Such information is generally obtained through surveys or censuses,
typically designed for scientific purposes or population parameters (big areas). Neverthe-
less, for some reason, the available sample might not be enough to obtain a valid estimation
in a small area or subdomain. These reasons include the lack of sufficient information in
the target areas, the absence of pre-arranged planning while obtaining information, the lack
of funding resources, statistical capacities, long periods between recording information,
and some privacy laws. In such cases, the need for small area estimation is felt. The small
area is a subdomain such as provinces, counties, and sub-populations such as specific
age–sex race groups and health regions for which the sample size is not enough to obtain a
valid estimation.

Statistically, the small amount of data in the small area (sometimes the sample size is
zero) increases the prediction error. In such cases, the direct estimators are not accurate
enough. To obtain a reliable estimation in the small area, the auxiliary information of the
corresponding regions or the information of the same small area in previous study periods
or extra information in the recorded statistics, administrative surveys, or a combination of
these methods are used. The effect of areas on each other, which can be emerged by spatial
correlation, can also be considered a valuable measure to increase estimation capabilities.
In practice, the small area boundaries are contractual, and there is no reason why the effects
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in adjacent areas are not correlated. Therefore, it seems meaningful to test the assumption
of spatial correlation of the closed regions.

In modeling the small area, valuable efforts have been made. Some of them are
summarized as follows. Morales et al. [1] used the linear mixed model (LMM) to obtain
the poverty ratio and the mean square prediction error (MSPE) of the small area estimator.
Boubeta [2] used the Poisson regression model to estimate the small area parameter. Malee
and Muller [3] present a semiparametric model to describe the geographic variability
component. Chandra et al. [4] used a nonparametric generalized linear mixed model
(GLMM) for non-Gaussian response variables when the data are spatially non-stationary
in the small area and obtained MSE estimation for the nonlinear spline spatial model.
Zhu et al. [5] considered the small area effect as an unknown function, estimated the
small area using the semiparametric model, and represented the small area effect by the
penalized spline. Torabi and Jiang [6] obtained an estimation of small area parameters
using a spatial LMM. They used the conditional autoregressive (CAR) model to consider
the spatial random effect. Torabi [7] studied the area-level spatial models in the small area.
He used the proper CAR model to consider the spatial random effect of the areas and
obtained the small area parameters using the spatial generalized linear model.

In this paper, our primary focus is on modeling insurance data. The insurance industry
is one of the sectors for which the data analysis is placed in the category of the small area
because data collecting is frequently encountered with many limitations. Life insurance
has a special place among the various branches of the insurance industry due to its range
of services. We intend to analyze life insurance data obtained from the database of Iran
insurance companies in IRAN. These data were measured province-specifically from April
to June 2018 for 32 provinces of Iran. The data include 466,759 observations. The response
variable of interest for modeling is the provinces’ provincial per capita number of life
insurance contracts. The explanatory variables in our analysis include the work experience
of the insurance sales branch.

There are a few points to note in this data. (i) The small area estimation is generally
divided into two categories: unit-level and area-level. For this data, the area level is
considered due to the availability of the collected data. (ii) Due to the structure of the
response variable in the study, which does not follow the normal distribution, using a
kind of generalized linear models (GLMs) is unavoidable. (iii) Since the acceptance of life
insurance in the basket of goods is related to income status and economic culture, and the
borders between regions and provinces are contractual, there is no reason for the effects
not to be interrelated in economic culture and income condition. Therefore, it seems logical
to consider the correlation of regions in this study under the spatial dependence concept.
(iv) As shown in Figure 1, the scatter plot of response versus explanatory variable depicts
drastic fluctuations, which means that a linear trend cannot explain the relationship well.
Moreover, since the relationship between response and covariate is unknown, it does not
make sense to consider the parametric model. Thus, regression modeling must consider
a nonlinear relationship between the response and the explanatory variable under the
non-parametric component.

The points (i)–(iii) provide conditions to follow the work in [7]. However, the last point
leads us to add a nonparametric part as a symmetric/asymmetric function to the model
in [7]. Therefore, our main contribution is to propose a semiparametric spatial generalized
linear mixed model in a small area, thereby increasing flexibility in the prediction. We
derive the empirical best prediction (EBP) for the small area predictor and the mean
squared prediction error (MSPE) for the EBP. We also consider the small area’s spatial
random effects (SRE).

This paper is organized as follows: In Section 2, we present EBP to the small area
predictor and obtain the MSPE of the EB estimator. In Section 3, the proposed methodology
is applied to the real data on the provincial per capita number of life insurance contracts. Af-
ter that, in Section 4, we present two simulation experiments and evaluate the performance
of the proposed method. Section 5 offers some results and provides concluding remarks.
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Figure 1. Scatterplot of the provincial per capita number of life insurance contracts (response) versus
the work experience of insurance sales branches in Iran.

2. Semiparametric Mixed-Effects Model

Semiparametric mixed-effects modeling, combining a nonlinear function with the
linear predictor, has a long history and dates back to Zeger and Diggle [8]. They used a
semiparametric random intercept model to analyze the CD4 cell numbers in HIV serocon-
verts and estimated the nonparametric component by the backfitting method. Discussions
about semiparametric models can be founded in Roozbeh [9,10], Akdeniz and Roozbeh [11],
Taavoni and Arashi [12], and Taavoni et al. [13].

Suppose that the number of small areas and the number of explanatory variables are
denoted by m and p, respectively. Under an area-level small area model, and in the frame-
work of GLMs, it is assumed that the response variables are conditionally independent
given the latent variable ηi, and follow the exponential families with the probability density:

f (yi|ηi, φ) = exp{[yiηi − a(ηi)]/φ + b(yi, φ)}, i = 1, · · · , m, (1)

where yi is the interested response variable in the ith small area, ηi is the ith latent variable,
and φ is the scale parameter. Furthermore, a(·) and b(·) are known functions. Implement-
ing statistical inferences on the latent variable ηi is the objective of the small-area estimation.
The model of the latent variable is defined as follows:

ηi = x>i β + z>i u + f (ti), (2)

where ηi is a function of E(yi|u), x>i is the ith row of the design matrix Xm×p, α1 = βp×1 is
the vector of unknown regression coefficients, and z>i is the ith row of the identity matrix
Zm×m. The u = (u1, . . . , um)|α2 is the vector of spatial random effect accompanied by
distribution MVN(0, Σu(α2)) and α = (αT

1 , αT
2 ). In this model, we assume that the relation

of the f (t) with the response variable is nonlinear. Thus, it is considered a nonparametric
component. The function f (·) is generally unknown, but it is assumed that it is a smooth
nonlinear function and has the second derivative. The estimation of nonparametric function
f is presented as below:

f (t) = B0 + B1t + B2t2 + · · ·+ Bdtd + Bd+1(t− t1)
d
+ + · · ·+ Bd+k(t− tk)

d
+, (3)
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which is called a d-order spline estimator function with knots t1, . . . , tk. In this function,
B0, . . . , Bd+k are spline regression coefficients (refer to [14] for more details). Further, (.)d

+

denotes the truncated polynomial basis function of order d defined as:

(t− ti)
d
+ =

{
(t− ti)

d, t > ti,
0, O.W.

The approximation function in (3) can be summarized by f (t) = w>B, which B> =
(B0, B1, . . . , Bh); h = d + k + 1 is a vector of spline regression coefficients and W =
(1, t, . . . , td, (t− t1)

d
+, . . . , (t− tk)

d
+)
>. Thus, Equation (2) can be rewritten as:

ηi = x>i β + z>i u + w>i B. (4)

By combining the fixed and spline effects in (4), the following equation is resulted:

ηi = x̃>i θ+ z>i u, (5)

wherein x̃i = (xi, Wi) is the mixed design (p + h)×m matrix of the fixed effects and spline
effects, and θ = (β, B)> is the (p+ h)× 1 vector of the regression coefficients corresponding
to fixed and spline effects.

In order to predict the latent variable ηi, the conditional density is calculated using the
equation below:

g(ηi|yi, α) ∝ exp
{−η2

i
2σ2

ηi

+
ηi(x̃iθ)

σ2
ηi

+
[yiηi − a(ηi)]

ηiφ

}
, (6)

where σ2
ηi

= z>i Σzi and α is the vector of parameter of random effects. The Laplace
approximation centered around the point η0

i = arg maxηi
g(ηi|y, α) is used to approximate

the conditional density of ηi [15]:

[yiηi − a(ηi)] ≈
[
yiη

0
i − a(η0

i )
]
+
(
ηi − η0

i
)[

yi − a′
(
η0

i
)]
− 1

2
(
ηi − η0

i
)
2a′′
(
η0

i
)
, (7)

Proposition 1. Under the conditions that the first and second derivatives of α(ηi) in Equation (7)
are available in the closed-form, the conditional density of ηi becomes a normal approximation with
conditional mean E(ηi|yi, α) and conditional variance var(ηi|yi, α), given by:

E(ηi|yi, α) = x̃>i θ+ z>i ΣuR−1
[
l(y, η0)− X̃θ

]
, (8a)

var(ηi|yi, α) = z>i
[
Σu − ΣuR−1ZΣu

]
zi, (8b)

where R = ZΣuZ> + P, P is a diagonal matrix with entries Pi,i =
φ

a′′(η0
i )

, η0 = (η0
1, . . . , η0

m)
>,

and l(yi, η0
i ) =

[
yi − a′(η0

i )η
0
i a′′(η0

i )
]
/a′′(η0

i ) for i = 1, . . . , m and η0 = arg maxηi
f (yi|ηi, φ).

For the proof, refer to Appendix A.

If α is known, the best predictor of the ηi is the conditional expectation (E(ηi|yi, α) =
η̃B

i = η̃B
i (α, yi)) and the second-order unbiased mean squared prediction errors is var(ηi|yi, α),

which was defined in Equation (8a,b). However, when α is the vector of unknown parame-
ters, we obtained the best empirical prediction of ηi by replacing α by α̂. Frequentist and
Bayesian methods are generally used to process spatial generalized linear mixed models
(SGLMMs). Due to the computational complexity in calculating maximum likelihood
estimation (MLE), frequency methods require numerical solutions of high-dimensional
and intractable integrals. In this paper, the MLE method is impossible due to the need to
solve high-dimensional integrals. In addition, using Bayesian methods always faces the
problem of selecting the appropriate prior. According to the problems mentioned in the
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two Frequency and Bayesian methods, the data cloning (DC) approach (see [16]) has been
used to estimate the unknown parameters. DC is a computational method for calculating
MLE, using MCMC (Markov chain Monte Carlo) algorithm and Bayesian methods. This
method does not require numerical maximization and derivation of a complex function,
which is robust to the prior choice. To see more Bayesian studies, refer to [17–19].

To understand the logic of the DC method, consider that the observations of
y = (y1, ..., ym) and the explanatory variables are independently repeated exactly k times.
The vector of random effects, by using their probabilistic explanations, generated k times,
so that yk = (yT , yT , ..., yT) represents the data at k times of repetition. The maximum
likelihood function yk is L(α; y)k = Lk(α; y) where the likelihood function L(α; y) is the
likelihood of original data. Since the DC method is based on the asymptotic behavior of
posterior density, the theoretical conditions of asymptotic posterior density can be estab-
lished by increasing the sample size. In this approach, the posterior distribution of the
clone answer is shown as:

Πk(α|yk) =
Lk(α; y)Π(α)

c(yk)
, (9)

where c(yk) =
∫

Lk(α, y)Π(α)dα and Π(α) are the normalized constant and prior distribu-
tion, respectively. Lele et al. [16] show that under some regular conditions, the posterior
distribution of

√
kΣ−1/2(α− α̂)|yk converges to a multivariate normal distribution with

mean 0 and identity covariance matrix I. Thus, the estimation of α is the mean of posterior
density under the squared error loss function. The mean squared empirical prediction error
is approximately calculated as below:

MSPE(η̂EB
i ) = E

{(
η̂EB

i − ηi
)2
}

= E
{(

η̃B
i − η̃B

i + η̂EB
i − ηi

)2
}

= E
{(

η̃B
i − ηi

)2
}
+ E

{(
η̃EB

i − η̃i
)2
}

= g1i(α) + tr

{
E
[(

∂η̃B
i (α, yi)

∂α

)(
∂η̃B

i (α, yi)

∂α

)>]
E(α̂− α)(α̂− α)>

}
+ o
(
m−1).

In the above relation, o
(
m−1) is the “little-o” notation for the asymptotic behaviour so that

a(n) = o(n) means limn→∞
a(n)

n = 0. Further, E{·} denotes the mathematical expectation
with respect to ηi. Then,

MSPE
(
η̂EB

i
)
= g1i(α) + g2i(α) + o

(
m−1), (10)

where,

g1i(α) = E
{(

η̃B
i − ηi

)2
}

, (11)

g2i(α) = tr

{
E
[(

∂η̃B
i (α, yi)

∂α

)(
∂η̃B

i (α, yi)

∂α

)>]
E(α̂− α)(α̂− α)>

}
,

where tr{A} denotes the trace of matrix A. It can be seen that MSPE of η̂EB
i is a function of

unknown parameters α. By replacing α by α̂, Torabi [7] noticed that in this estimation, the
rough value for MSPE

(
η̂EB

i
)

is approximately equal to E
(
M̂SPE

(
η̂EB

i
))

, where

M̂SPE
(
η̂EB

i
)

= g1i(α̂)−
[

∂g1i(α)

∂α

]>
E(α̂− α)− 1

2
tr
{[

∂2g1i(α)

∂α∂α>

]
E(α̂− α)(α̂− α)>

}
+tr
{

E
[( ∂η̃B

i (α, y)
∂α

)( ∂η̃B
i (α, y)
∂α

)>]
E(α̂− α)(α̂− α)>

}
. (12)

It is noticeable that sometimes the calculated value of E
(
M̂SPE

(
η̂EB

i
))

can be negative. In
this case, Prasad and Rao [20] replaced negative values with positive values.
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3. Life Insurance Data Analysis

Here, we model the above-mentioned number of life insurance contract data using the
proposed semiparametric spatial generalized linear mixed-effects model. We consider the
following spatial Poisson regression model:

yi ∼ Poisson(λi),

log(λi) = β + z>i u + f (Ei),

where yi is the reported mean number of life insurance contracts of the ith province in
Iran, β is defined as an intercept, z>i is the ith row of the identity matrix, and u is taken
from an ICAR(intrinsic conditional autoregressive) model [21]. Further, Ei is the mean of
work experience of the insurance sales branch of the ith province. It seems that the Ei and
the response variable have a nonlinear relationship, and it is not meaningful to insert it
as a parametric component. Therefore, we consider it as a nonparametric function f (Ei)
into the model where f is a smooth and unknown function of duration. We use the spline
approximation method to approximate the nonparametric component.

Here, the function f (E) is a cubic spline with evenly spaced knots in the range of E, at
the points of 22.53918, 23.43646, and 24.35712. This can be summarized by f (E) = B>W,
in which B> = (B0, B1, . . . , Bh); h = d + k + 1 = 3 + 3 + 1 = 7 are spline regression
coefficients and

W = (1, t, t2, t3, (t− 22.53918)3
+, (t− 23.43646)3

+, (t− 24.35712)3
+).

Hence, the semiparametric spatial mixed model is derived as:

log(λi) = x>i β + z>i u + B>i W.

By combining the fixed and spline effects, the above model can be rewritten as:

log(λi) = x̃>i θ+ z>i u,

where the 8× 32 design matrix x̃i = (xi, wi) is the mixed of the fixed effect and Spline
effects matrices, and θ = (β, B)> is an eight-dimensional vector of parameters of the
regression coefficients and spline coefficients.

The estimation of the model parameters, which were found by data cloning, are pre-
sented in Table 1. Here, the estimate of regression coefficient, spline coefficients (B0, . . . , B5),
and spatial parameter λu along with the respective standard errors are given.

Table 1. Model parameter estimates for the semiparametric spatial GLMM.

Parameter Estimate Standard Error

β −0.1498 0.02699
B0 −0.1915 0.06451
B1 0.06252 0.01494
B2 −0.01838 0.06013
B3 −0.0603 0.0588
B4 −0.01853 0.07475
B5 0.02873 0.04812
λu 0.2397 0.01419

To evaluate the flexibility and the effect of the duration contract in a nonlinear manner,
which leads to an increase in the flexibility of the model, we compare the above-suggested
model with the following alternative model:

log(λi) = Ei + β + z>i u.
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Figure 2 depicts the boxplot of MSPE of the ηEB
i for the number of life insurance

contracts in IRAN. As can be seen, the MSPE of EBP in the proposed model is smaller
than the spatial generalized linear mixed model, thus, the suggested model transparently
provides a smoother prediction attaining better results.

Figure 2. Boxplot of the EMSPE of η̂EB
i of the number of life insurance contracts in IRAN under

semiparametric model (1) and parametric model (2) under the semiparametric spatial GLMM.

4. Simulation Study

This section uses the semiparametric mixed-effect model to evaluate the proposed
method. Since this article expands Torabi’s proposed model [7], we have utilized the same
Minnesota country map to compare our proposed model accuracy with the parametric
model. The simulated data are obtained from the following model:

yi ∼ Poisson(λi),

log(λi) = log ni + β + z>i u + f (xi),

where u is generated from the ICAR model. The other components of this pattern have
the following specifications: ni = 30 is the offset and β = 0.001 is the intercept. f (x) =
1+ 2x− 3 sin(x) is the nonlinear function and xi is the fixed duration of the study generated
from the uniform distribution on (−3, 3). First, we generate u from the ICAR distribution
with parameters λu = 0.5 for i = 1, . . . , 87. We do this job independently for R = 1000
steps and denote u(r), r = 1, . . . , R as the rth spatial random variable generated by u.

Inserting u(r) in the formula log
(

λ
(r)
i

)
= log ni + β + z>i u(r) + f (x) and getting λ

(r)
i for

each step, y(r)i is generated from the Poisson distribution with mean λ
(r)
i for i = 1, . . . , 87

and r = 1, . . . , R.
For each simulation run, based on (2), we find:

η̂r
i = log ni + β + z>i u(r) + f (xi).

By using the data cloning approach, η̂EB
i is given by:

η̂EB
i = E(ηi|yi, α) = x>i θ+ z>i ΣuZ>R−1[l(y, η0)− X̃θ

]
, i = 1, . . . , 87,
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where θ is a vector of regression and spline coefficients, zi is the ith row of the identity
matrix, Σu is the ICAR covariance matrix and x̃i is the ith row of the 87× 8 matrix X̃. The
η̂EB

i is obtained for each of the 1000 steps. R and l(.) are calculated as follows:

f (yi|ηi, φ) =
[
e−λλyi

]
/yi!

= exp{yilnλ− λ− lnyi!},

a′(η0
i ) =

∂a′(ηi)

∂ηi

∣∣∣
ηi=η0

i

=
∂eηi

∂ηi

∣∣∣
ηi=η0

i

= eη0
i ,

Pii =
φ

a′′(η0
i )

=
1

eη0
i

,

R = ZΣuZ> + P,

l(yi, η0
i ) = [yi − a′(η0

i ) + η0
i a′′(η0

i )]/a′′(η0
i ) =

yi − η0
i + η0

i eη0
i

eη0
i

,

also the empirical MSPE (EMSPE) of η̂EB
i is calculated by using the following formula:

EMSPE
(
η̂EB

i
)
=

1
R

R

∑
r=1

[
η̂

EB(r)
i − η

(r)
i

]2
,

To evaluate the performance of the proposed model, we compare it with the model
log(λi) = β0 + x>i β + z>i U. The estimation of model parameters by the DC method
is reported in Tables 2 and 3 for the proposed and parametric models.

Table 2. Model parameter estimates and corresponding standard errors using the MLE approach for
the semiparametric spatial Poisson model.

Parameter Estimate Standard Error

β −76.0308 22.10532
B0 69.5480 22.31195
B1 75.4873 22.03408
B2 73.3040 22.15233
B3 72.5719 22.08202
B4 77.8309 22.12026
B5 78.4698 22.10168
λu 1.2003 0.17648

Table 3. Model parameter estimates and corresponding standard errors using the MLE approach for
the parametric spatial Poisson model.

Parameter Estimate Standard Error

β0 −2.4955 0.05152
β1 0.8918 0.03687
λu 0.1378 0.01313

Table 2 contain the estimates of regression coefficients, spline regression coefficients,
and spatial parameter λu for the semiparametric spatial Poisson model. Moreover, the
results of the parametric model are shown in Table 3.

To evaluate the performance of the semiparametric spatial Poisson model, the box
plots of EMSPE of η̂EB

i values are depicted in Figure 3, which shows the distribution of the
mean square prediction error. As can be seen, the EMSPE of η̂EB

i in the proposed model is
smaller than the parametric counterpart. The third quantile and maximum point of EMSPE
of η̂EB

i in the proposed model are less than the parametric model. The maximum outlier
points of EMSPE of η̂EB

i in the proposed model is less than the parametric model, which
shows that the proposed model has better performance even in the outlier. Furthermore,
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the MSPE and ISQR values for these two models are listed in Table 4. This table shows the
superiority of our proposed model. As a result, the semiparametric model improves the
model in terms of prediction.

Figure 3. Boxplots of the EMSPE of η̂EB
i for the semiparametric and parametric spatial Poisson models.

Table 4. Value of the EMSPE of η̂EB
i and ISQR for the semiparametric and parametric spatial Poisson models.

Semiparametric Parametric

MSPE 0.009085778 0.02691221
ISQR 0.009277414 0.02369608

In Figure 3, the box plot of MSPE of η̂EB
i is shown in total areas. In a small area, MSPE

of η̂EB
i is important not only in all areas but also in each area. In some cases, in the small

area approach, some regions are more important, and those regions should be investigated
more carefully. Hence, in order to compare the performance of the proposed model against
the parametric model, the heat map of EMSPE of η̂EB

i is drawn separately by the province
in Minnesota in Figure 4.

Figure 4. Heat map of the MSPE of η̂EB
i per provinces in the proposed model (left) and parametric

model (right).

As shown in Figure 4, in some provinces, the MSPE of η̂EB
i in the proposed model are

less than the MSPE of η̂EB
i in the parametric model and they are equal in some provinces.

There is no area in which the MSPE of η̂EB
i in the proposed model is more than the para-

metric model.
In addition to comparing the MSPE of η̂EB

i , plotting the predicted values of two
models versus simulated data can provide a better understanding of the performance of
two models. As shown in Figure 5, the semiparametric model is more efficient than the
parametric model in estimating the nonparametric component.
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Figure 5. Predicted values of the nonparametric component for the two semiparametric (Spline) and
parametric (Linear) models in the simulated data.

5. Conclusions

The GLMMs and linear mixed-effects models are the models that are frequently used
in small areas. As we demonstrated in the analysis of life insurance data obtained from an
Iran Insurance Company in IRAN, a nonlinear relation may exist between the response
variable and some of the covariates. In such cases, the GLM models do not have the
necessary capability, and new models are needed to analyze such a data set in a small area.
A semiparametric spatial generalized linear mixed-effects model (GLMM) is proposed in
the small area for normal and non-normal responses. The empirical best predictor for the
small area parameters and the MSPE of the EBP of small area predictors were obtained.
Life insurance data analysis demonstrated the superiority of the proposed model compared
to the parametric spatial Poisson model. There is still room to explore more for the future.
Other estimation methods, such as backfitting and kernel approaches, can be considered
for future directions. In this paper, only one nonlinear element was added to the linear
predictor of the spatial model. It is worth considering an additive structure for the nonlinear
component and developing an additive semiparametric spatial GLMM.
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Appendix A

Proof of Proposition 1. We can write:

f (yi|ηi, φ) = exp{[yiηi − a(ηi)]/φ + b(yi, φ)} i = 1, . . . , m

and,
ηi = x>i β + z>i u + f (ti)

by combining the fixed effects and spline effects we can write:

ηi = x̃>i θ+ z>i u

Since u|α2 ∼ MVN(0, Σu(α2)), ηi ∼ N(x̃>i θ, z>i Σuzi), the posterior density is calculated as
follows:

g(ηi|yi, α) = f (yi|ηi, φ) f (ηi|yi, α)

g(ηi|yi, α) ∝ exp{[yiηi − a(ηi)]/φ + b(yi, φ)}

×(2πz>i Σuzi)
− 1

2 · exp
{(
− 1

2
z>i Σuzi

)− 1
2
(ηi − x̃>i θ)2

}
∝ exp

{
[yiηi − a(ηi)]

φ
+

[ηi x̃
>
i θ]

σ2
ηi

−
[η2

i ]

2σ2
ηi

}
where σ2

ηi
= z>i Σuzi. By using Laplace approximation centered around the point η◦i =

arg maxηi
g(ηi|y, α) the posterior density g(ηi|yi, α) is modeled as:

g(ηi|yi, α) ∝ exp
{

yiη
◦
i − a(η◦i )]

φ
+

(ηi − η◦i )

φ
[yi − a′(η◦i )]

−
(ηi − η◦i )

2

2φ
[a′′(η◦i )]−

η2
i

2σ2
ηi

+
ηi(x̃

>
i θ)

σ2
ηi

}
∝ exp

{
−

η2
i

2

[ a′′(η◦i )
φ

+
1

σ2
ηi

]
+ ηi

( 1
φ
[yi − a′(η◦i ) + η◦i a′′(η◦i )] +

x̃>i θ

σ2
ηi

)}
the conditional density of ηi has a normal approximation with conditional mean E(ηi|yi, α)
and conditional variance var(ηi|yi, α), given by:
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var(ηi|yi, α) =
[ a′′(ηi)

φ
+

1
σ2

ηi

]−1
=

φσ2
ηi

σ2
ηi

a′′(η◦i ) + φ

= σ2
ηi
+

σ2
ηi

a′′(η◦i )σ
2
ηi

σ2
ηi

a′′(η◦i ) + φ

= σ2
ηi
− z>i Σuz>(zΣuz> + P)−1zΣuzi

= z>i Σuzi − z>i Σuz>(zΣuz> + P)−1zΣuzi

= z>i (Σu − Σu(zΣuz> + P)−1zΣu)zi

= z>i [Σu − ΣuR−1zΣu]zi

where R = zΣuz> + P, P is a diagonal matrix with entries Pi,i =
φ

a′′(η◦i )
and,

E(ηi|yi, α) =
[ 1

φ
[yi − a′(η◦i ) + a′′(η◦i )] +

x̃>i θ

σ2
ηi

][
z>i Σuzi − z>i ΣuR−1zΣuzi

]
=

[yi − a′(η◦i ) + η◦i a′′(η◦i )]a
′′(η◦i )[z

>
i Σuzi − z>i ΣuR−1zΣuzi]

a′′(η◦i )φ

+x̃>i θ(z>i Σuzi)
−1(ziΣuzi)− x̃>i θ(z>i Σuzi)

−1(z>i ΣuR−1zΣuzi)

= x̃>i θ+ l(yi, η◦i )
a′′(η◦i )

φ

[
z>i Σuzi − z>i ΣuR−1zΣuzi

]
−x̃>i θ(z>i Σuzi)

−1(z>i ΣuR−1zΣuzi)

where l(yi, η◦i ) = [yi − a′(η◦i ) + η◦i a′′(η◦i )]/a′′(η◦i ) for i = 1, . . . , m

E(ηi|yi, α) = x̃>i θ+ z>i Σuz>[zΣuz> + P]−1l(y, η◦)− z>i Σuz>[zΣuz> + P]−1X̃>θ

= x̃>i θ+ ziΣuz>R−1[l(y, η◦)− X̃>θ].
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