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Abstract: Natural resource scarcity has accelerated considerations of return logistics in manufacturing processes. 
Most supply chain designs now consider a closed-loop design where demand can be satisfied by both newly 
manufactured goods as well as remanufactured returns, allowing for maximum value creation over the entire life 
cycle of a product. This paper proposes an inventory system where returns are constrained and returns that cannot 
be remanufactured to an as-good-as-new state of the original product can be used to satisfy a secondary demand. 
It is also assumed that some items fail during manufacturing and these items are treated as returns that can be 
remanufactured to satisfy one of two types of demand. Returns are remanufactured to one of two states such that 
items that may not be remanufactured to an as-good-as-new state of the first product can satisfy a secondary 
customer demand at a lower grade. The remanufacturing processes require some other components to be procured 
in order to bring the returned items back to either of the two states of reuse. A modified Wagner/Whitin model 
for the alternate application of remanufacturing and manufacturing for the satisfaction of the top range item 
demand and supplemented by a modified reverse Wagner/Whitin model for the remanufacturing of the lower 
variety items is derived to solve the dynamic lot sizing model proposed in this paper. The model aims to minimize 
cost across a horizon and the total cost proves to be very sensitive to the manufacturing setup cost and the 
proportion of demand returned for remanufacturing. 
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2. INTRODUCTION 

Reverse logistics is seen as an environmentally friendly way to deal with products at the end of their life span and 
has attracted an increasing amount of attention in the last couple of years (Zhalechian et al., 2016; Govindan and 
Soleimani, 2017; Rajeev et al., 2017; Govindan and Bouzon, 2018). Integrating the remanufacturing process into 
the manufacturing process is seen as an opportunity to improve profits and confirm sustainability by many 
companies (Wei and Zhao, 2014). Although traditional production planning and inventory management models 
do not typically consider the return and remanufacturing of an item to satisfy the same demand, remanufacturing 
of end-of-life products to an as-good-as-new state has attracted considerable attention in recent years (Jiang et al., 
2016; Lee et al., 2017; Paterson et al., 2017; Zlamparet et al., 2017; Jin et al., 2018; Lu et al., 2018). Models that 
consider the use of remanufactured products to satisfy demand for a different product are still relatively 
uncommon. The paper industry is a typical example where returned products can be remanufactured to satisfy 
demand of the original product as well as a secondary demand. At the start of the paper recycling process, returned 
paper is divided into types and grades, where the higher-grade returns can be remanufactured to the same high-
grade product such as office paper and lower grade returns are remanufactured to produce a lower grade paper 
product such as newsprint, tissues, toilet paper and cardboard. Returned paper is washed to remove any remaining 
film, glue, ink and other contaminants after which it is mixed with water to create the pulp from which recycled 
paper is made (Isustainrecycling.com, 2021). The objective of this paper is to develop a dynamic lot sizing model 
in return logistics, where two types of demand are satisfied. The first type is that of a top variety item that can be 
satisfied by newly manufactured items as well as remanufactured returns. The second demand type is that of a 
lower variety item that can be satisfied by the remanufacturing of the top variety returns that cannot be 
remanufactured to an as-good-as new top variety item as well as remanufactured lower variety items.  

Reverse supply chain models can be broadly classified into two groups namely deterministic (Atasu and 
Çetinkaya, 2006; Feng et al., 2014; Konstantaras and Papachristos, 2008; Özceylan et al., 2014; Tang and Teunter, 
2009; Teunter et al., 2009; Zanoni et al., 2012) and stochastic (Aras et al., 2004; Behret and Korugan, 2009; 
Fleischmann et al., 2002; Karaer and Lee, 2009; Timmer et al., 2013; van Donselaar and Broekmeulen, 2013; 
Vlachos and Dekker, 2003; Zolfagharinia and Haughton, 2012), where stochastic models can be further classified 
as continuous or periodically reviewed models. Akçali and Çetinkaya (2010) went even further in classifying 
periodic review models based on the number of stock points, dependency of return rates on demand, length of 
planning horizon and the consideration of lead time. Most of the models published thus far assume that demand 
and return rates are independent (Fleischmann and Kuik, 2003; Heisig and Fleischmann, 2001; Karaer and Lee, 
2009; Kiesmüller and Scherer, 2003; Shi et al., 2011; Teunter and Vlachos, 2002). Although this assumption 
simplifies the model significantly, the dependency of the return rate on demand is a realistic assumption (Kim et 
al., 2013; Vercraene and Gayon, 2013). Kiesmüller and van der Laan (2001) studied a single stock model where 
the return rate is a function of product demand. The proposed problem was solved using a Markov-chain approach. 
Vlachos and Dekker (2003) proposed the first newsvendor model considering the probability of return and its 
dependency on demand. Sun et al. (2013) investigated a manufacturing and remanufacturing system where the 
return rate is dependent on demand and solved the proposed problem using a three-stage stochastic dynamic 
programming model. Schulz and Ferretti (2011) considered the meticulousness of the remanufacturing process 
itself, by including the disassembly process as an explicit recovery step. The remanufacturing process thus consists 
of two sub processes, the disassembly process in which returns are disassembled and a rework process, where 
items are reworked to an as-good-as-new state. Schulz and Ferretti considered random yield in components 
recovered from the disassembly process in conjunction with the demand dependency in the return rate. 
Zolfagharinia et al. (2014), was the first to explicitly consider the dependency of return rate on demand in a two-
stock system where used or damaged products are returned to the original manufacturer and backordering is 
allowed. The two-stock system results in two types of inventories, namely serviceable and recoverable inventory. 
Serviceable inventory is used to satisfy demand and replenished either by a manufacturing batch or a 
remanufacturing batch with the assumption that remanufactured goods are as-good-as-new. Recoverable 
inventory is the returned goods inventory used for remanufacturing. By incorporating two stock points to separate 
serviceable and recoverable inventory, remanufacturing can be postponed as far as possible to take full advantage 
of the lower recoverable inventory holding cost. Zolfagharinia et al. used a simulation-based hybrid variable 
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neighbourhood search to solve the proposed problem. Piñeyro and Viera (2015) considered a new theoretical 
approach that can be considered a generalisation of the well-known zero-inventory property. An optimized version 
of the existing Tabu Search algorithm was suggested to solve the problem. The model proposed in this paper takes 
into account that the return rate is dependent on demand in a two stock system. 

The first deterministic lot sizing model was introduced by Richter and Sombrutzki (2000) as an extension to the 
well-known Wagner/Within model (Wagner and Whitin, 1958). Richter and Sombrutzki solved for the optimal 
manufacturing and remanufacturing lot size heuristically by first deriving a modified reverse Wagner/Whitin 
model. The model operates in a simplified environment where used products at the beginning of the decision 
period is sufficiently large to allow for a full remanufacturing batch. They then considered a modified 
Wagner/Whitin model to heuristically solve for the alternate application of manufacturing and remanufacturing. 
The reason for the modified heuristic is due to the weakness in the standard Wagner/Whitin model to consider 
two supply types. Richter and Sombrutzki made the assumption that a remanufacturing batch can be executed at 
any time because the returned item inventory at the start of any given period is greater than or equal to the demand 
in that same period. In each period, the cost of remanufacturing is weighed against the cost of manufacturing, 
where the less of the two drives the decision on whether to remanufacture or manufacture. The manufacturing 
cost considers the holding cost incurred on the returned items that will not be remanufactured in a period of 
manufacturing. The model was extended by Richter and Weber (2001) to consider variable costs in the 
manufacturing and remanufacturing processes. Dekker et al. (2004), formulated a mixed integer linear 
programming model where customers return used items in each period. Teunter et al. (2006) proposed two models, 
the first considers one setup cost for both manufacturing and remanufacturing and the second considers different 
setup costs for the two processes. Zouadi et al. (2014) proposed two metaheuristic-based approaches in a hybrid 
manufacturing and remanufacturing system. This work was later extended by Zouadi et al. (2017) to consider the 
returns collection and supplier selection phase. The proposed model here allows for the manufacturing and 
remanufacturing of the top variety item to share a resource as the end product is the same. A dedicated resource 
will be used in the remanufacturing of the lower variety items.  

A mutual assumption across existing models is that all returned or defective items should be remanufactured to 
an as-good-as-new state, sold at a reduced rate or disposed of. The typical remanufacturing cost is between 40 to 
60% of the manufacturing cost with 20% of the effort required (Dowlatshahi, 2000). In some cases, 
remanufactured products are perceived as a lower quality by the market compared to new products (Abbey et al., 
2014). Hasanov et al. (2012), Helmrich (2013) and Jaber and El Saadany (2009) assumed the quality of 
remanufactured products to be incomparable with newly manufactured products, resulting in two demand streams. 
Piñeyro and Viera (2010) introduced a novel lot sizing model for a hybrid manufacturing and remanufacturing 
model. They proposed a one-way substitution option where demand for remanufactured items can be satisfied by 
newly manufactured items should there be a shortage of remanufactured products. Zouadi et al. (2019) 
investigated a joint pricing and lot sizing problem in a hybrid manufacturing and remanufacturing system with 
one-way substitution where the manufacturing and remanufacturing processes use the same resource. The 
remanufacturing process produces products of a lower quality, thus resulting in two demand streams for newly 
manufactured products and remanufactured products respectively. In the case of a shortage of remanufactured 
products, the demand for the lower quality product can be satisfied by newly manufactured products. Zouadi et 
al. proposed a mixed integer programming model to find the optimal production and pricing strategy over the 
planning horizon and a novel adaption of a cost benefit evaluation heuristic and memetic algorithm is proposed 
to find the near optimal solution. The model derived in this paper takes into consideration that the remanufacturing 
process does not always yield as-good-as-new items. These items that could not be remanufactured to an as-good-
as-new state satisfy a lower variety product demand. 

The possibility of producing defective items during the manufacturing process was introduced by Porteus (1986). 
A manufacturing process can go ‘out of control’ with a given probability every time a unit in a lot is produced, 
resulting in the production of defective items. These defective units are either scrapped, sold at a lower price, 
reworked or other remedial actions are taken. The defective yield models reviewed thus far either assume that 
once a process reaches an ‘out of control’ state, all items produced thereafter will be defective up until the point 
where the process is returned to an ‘in control’ state or alternatively, a process does not enter a complete ‘out of 
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control’ state but rather produces a defective item occasionally. Defective items in this case can be identified by 
making use of a threshold policy where items are classified as good, reworkable or non-reworkable with known 
probabilities. Good or non-reworkable items leave the system completely after inspection, whereas reworkable 
items are returned to be remanufactured (So and Tang 1995a, 1995b; Liu and Yang, 1996; Chern and Yang, 1999). 
The latter is assumed for this work.  

The model proposed in this paper considers that total returns consists of products returned by the customer as well 
as the proportion of items that fail during manufacturing. A comparison of the proposed inventory system and 
previously published relevant inventory models for return items in literature is provided in Table I. 

TABLE I: GAP ANALYSIS OF RELATED LITERATURE WORKS AND THE CONTRIBUTION OF THIS PAPER 

References Characteristics of the inventory system  
 

Remanufactured 
product satisfies 
original product 

demand  

Remanufactured 
product satisfies 

secondary 
demand 

Imperfect 
manufacturing 

yield 

Return rate 
is a 

function of 
product 
demand 

Shared 
resources 

Remanufacturing 
process require 

dependent 
demand input 

Chern and Yang, 
(1999) 

✓  ✓    

Dekker et al. 
(2004) 

✓      

Hasanov et al. 
(2012) 

✓ ✓     

Helmrich (2013) ✓ ✓     
Jaber and El 
Saadany (2009) 

✓ ✓     

Kiesmüller and 
van der Laan 
(2001) 

✓   ✓   

Liu and Yang 
(1996) 

✓  ✓    

Porteus (1986) ✓  ✓    
Richter and 
Sombrutzki 
(2000) 

✓      

Richter and 
Weber (2001) 

✓      

So and Tang 
(1995a) 

✓  ✓    

So and Tang 
(1995b) 

✓  ✓    

Sun et al. (2013) ✓   ✓   

Teunter et al. 
(2006) 

✓    ✓  

Vlachos and 
Dekker (2003) 

✓   ✓   

Zolfagharinia et 
al. (2014) 

✓   ✓   

Zouadi et al. 
(2014) 

✓    ✓  

Zouadi et al. 
(2017) 

✓    ✓  

Zouadi et al. 
(2019) 

✓ ✓   ✓  

This paper ✓ ✓  ✓      ✓    ✓ ✓ 
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A review of current literature suggests that no work has been published on inventory modelling which considers 
remanufacturing to satisfy a primary and secondary demand, while also taking into consideration that a 
manufacturing process can yield defective items which are returned to be remanufactured. Additional dependent 
input items required in remanufacturing is also not considered in the extant literature. An attempt is made here to 
develop an inventory system that considers remanufacturing as an alternative to manufacturing for a top variety 
item. Where items cannot be remanufactured to a top variety item, they are remanufactured to a lower variety item 
to satisfy a secondary demand. Recoverable inventory consists of customer returns as well as a proportion of 
defective items produced during the manufacturing process, which is returned for remanufacturing to either one 
of the two item variety types depending on the extent of defect, which is a given proportion of new items 
manufactured. The model also considered that there may be dependent demand items for the remanufacturing 
processes, and such items need to be procured from outside the manufacturing system, and this process also needs 
optimisation. This integrated dependent demand structure is also not considered in extant literature. 

The remainder of this paper is organised as follows: Section 3 provides a brief description of the proposed system. 
The notation adopted and mathematical representation of the inventory system considered is given in Section 4. 
Numerical results are presented in Section 5 to illustrate the proposed solution procedure and to provide 
managerial insights through a sensitivity analysis. The paper is then concluded in Section 0. 

3. SYSTEM DEFINITION 

The material flow of the proposed model is depicted in Fig. I, where the flow of the top range items is illustrated 
by a solid line and the flow of the lower range items is illustrated by the dotted line. Two inventory types are 
considered, namely serviceable and recoverable inventory. Serviceable inventory is inventory available to service 
the demand of the end user and can be further split into two types, namely Type A and Type B, where Type A is 
inventory of the top range product and Type B is inventory of the lower range product. Recoverable inventory 
consists of repairable products which includes items returned by the end user as well as defective products 
produced by an occasional ‘out of control’ manufacturing process. Recoverable inventory is also split into Type 
A and Type B items respectively. Demands for Type A and Type B are satisfied under the following conditions: 

 The manufacturing and remanufacturing processes for Type A items are performed on the same resources 
and the manufacturing and remanufacturing batches are alternated in such a way as to minimize the total cost 
over the planning horizon; 

 Items are remanufactured into Type B products on a separate resource; 

 The manufacturing process produces Type A items only; 

 Some items may fail during manufacturing and are sent to recoverable inventory for possible 
remanufacturing; 

 Both Type A and Type B used items can be returned by the end user to recoverable inventory for possible 
remanufacturing; 

 A reparable Type A item can either be remanufactured to an as-good-as-new state to satisfy Type A demand 
once again, or alternatively, a reparable Type A item can be remanufactured to a Type B item;  

 Type B items can only be remanufactured to an as-good-as-new Type B item; 

 Demand for both items is deterministic, but may vary over time; 

 The rates of return are deterministic, but may vary over time; 

 Reparable items need some other input items that need to be procured to bring the returned items back to one 
of two states of reuse; 

 Lower variety input items are used to produce Type B items during the remanufacturing process; 

 Top variety input items are used during the remanufacturing processes of Type A items; 

 Ordering and setup costs are known and constant; 

 Shortages in remanufactured and new products to fulfil demand is not allowed; 

 Stock holding costs of Type A and Type B serviceable inventory as well as the holding costs of items waiting 
to be repaired are known; 

 Lead times for both manufacturing and remanufacturing processes are negligible. 
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4. MODEL FORMULATION 
The model of this inventory system is developed in this section, but the notations adopted for the model 
development is presented first. 

4.1 LIST OF VARIABLES 

4.1.1 LIST OF DECISION VARIABLES 

𝑄௉೟   is the manufacturing batch size in time bucket t; 

𝑄௉ಲ೟   is the product yield quantity for Type A items from a manufactured batch of size 𝑄௉೟  in time bucket t; 

𝑄௥ಲ೟   is the remanufacturing batch size of Type A items in time bucket t; 

𝑄௥ಳ೟  is the remanufacturing batch size of Type B items in time bucket t; 

𝐼ௌಲ೟   is the serviceable inventory level of Type A items at the start of time bucket t; 

𝐼ௌಳ೟  is the serviceable inventory level of Type B items at the start of time bucket t; 

𝐼௥ಲ೟  is the recoverable inventory level of Type A items at the start of time bucket t; 

𝐼௥ಳ೟  is the recoverable inventory level of Type B items at the start of time bucket t; 

𝑞஺೟  is the Type A input item procurement batch size for use in the remanufacturing of Type A items in time 

bucket t; 
𝑞஻೟  is the Type B input item procurement batch size for use in the remanufacturing of Type B items in time 

bucket t; 
𝑖஺௧  is the Type A remanufacturing input item inventory level at the start of time bucket t; 

𝑖஻௧  is the Type B remanufacturing input item inventory level at the start of time bucket t; 

𝛾௉೟ is the binary variable indicating the release of a manufacturing batch in time bucket 𝑡; 
𝛾௥ಲ೟  is the binary variable indicating the release of a Type A remanufacturing batch in time bucket 𝑡; 

𝛾௥ಳ೟ is the binary variable indicating the release of a Type B remanufacturing batch in time bucket 𝑡; 

𝜔஺೟ is the binary variable indicating the release of a Type A remanufacturing input item procurement batch 

in time bucket 𝑡; 
𝜔஻೟ is the binary variable indicating the release of a Type B remanufacturing input item procurement batch 

in time bucket 𝑡. 

4.1.2 LIST OF PARAMETERS 

𝐷஺  is the demand rate for Type A items; 
𝐷஻  is the demand rate for Type B items; 
𝑟஺ಲ  is the recovery rate of used Type A items that will be remanufactured to an as-good-as-new Type A item 

state, expressed as a percentage (or proportion) of the demand rate 𝐷஺; 
𝑟஻ಲ  is the recovery rate of used Type A items that will be remanufactured to a Type B item, expressed as a 

percentage (or proportion) of the demand rate 𝐷஺; 
𝑟஻ಳ  is the recovery rate of Type B items that will be remanufactured to an as-good-as-new Type B item state, 

expressed as a percentage (or proportion) of the demand rate 𝐷஻; 
𝛼  is the failure rate of the manufacturing process for items that can be remanufactured to an as-good-as-

new Type A item, expressed as a percentage (or proportion) of the manufacturing batch size 𝑄௉; 
𝛽  is the failure rate of the manufacturing process for items that can be remanufactured to a Type B item 

only, expressed as a percentage (or proportion) of the manufacturing batch size 𝑄௉; 
𝑧஺  is the number of Type A dependent demand items required in the remanufacturing of each Type A item; 
𝑧஻  is the number of Type B dependent demand items required in the remanufacturing of each Type B item; 
𝑡  is the length of a manufacturing/remanufacturing time (time bucket); 
𝑇 is the total planning horizon (made up of 𝑡 time buckets); 
ℎ௦ಲ  is the holding cost rate of Type A serviceable inventory (per item per time);
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𝛼𝑄௉೟ 

𝛽𝑄௉೟ 

𝐼௥ಲ೟  

𝐼௥ಳ೟  

𝑄௉೟ 

𝑄௥ಲ೟  

𝐼ௌಲ೟  𝐷஺೟ 

𝑟஻ಲ೟𝐷஺೟ 

𝑟஻ಳ೟𝐷஻೟ 

𝑄௥ಳ೟  
𝐼ௌಳ೟  𝐷஻೟ 

𝑖஺೟ 

𝑖஻೟ 

𝑞஺೟ 

𝑞஻೟ 

 

𝑄௉ಲ೟ 

FIG. I MATERIAL FLOW DIAGRAM CONSIDERING REVERSE LOGISTICS IN SATISFYING THE DEMAND FOR A TOP RANGE ITEM AS WELL AS A LOWER RANGE ITEM 
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ℎ௦ಳ  is the holding cost rate of Type B serviceable inventory (per item per time); 

ℎ௥ಲ  is the holding cost rate of Type A recoverable inventory (per item per time); 

ℎ௥ಳ  is the holding cost rate of Type B recoverable inventory (per item per time); 

𝑣஺ is the holding cost rate of Type A dependent demand item inventory (per item per time); 
𝑣஻ is the holding cost rate of Type B dependent demand item inventory (per item per time); 
𝐾௣ is the manufacturing batch setup cost; 

𝐾௥ಲ   is the Type A remanufacturing batch setup cost; 

𝐾௥ಳ  is the Type B remanufacturing batch setup cost; 

𝑃஺ is the Type A remanufacturing input item ordering cost; 
𝑃஻ is the Type B remanufacturing input item ordering cost; 

4.2 THE TOTAL COST FUNCTION 

The cost of holding recoverable inventory ℎ௥  is assumed to be lower than or equal to the cost of holding 
serviceable inventory ℎ௦. Serviceable and recoverable inventory for Type A and Type B items attract different 
costs, due to the different values of the items. The value of Type B serviceable inventory is also assumed higher 
than the value of Type A recoverable inventory, the holding cost relationship is expressed in (1). 

ℎ௦ಲ ൒ ℎ௦ಳ ൒ ℎ௥ಲ ൒ ℎ௥ಳ  
(1) 

Similarly, it is assumed that the cost of holding inventory of dependent demand items for remanufacturing of Type 
B items, 𝑣஻, is lower than or equal to the cost of holding inventory of dependent demand items used during the 
remanufacturing of Type A items, 𝑣஺ since lower variety input items are used in the remanufacturing of Type B 
items. The holding cost relationship for the dependent demand items is expressed in (2). 

𝑣஺ ൒ 𝑣஻ 
(2) 

A dynamic lot sizing model is proposed. The proposed model is expressed as an integer linear programming model 
and will be solved with a modified Wagner/Whitin dynamic programming algorithm. The mixed integer linear 
programming formulation with the objective of minimising the total cost over the planning horizon is given in (3) 
constrained by (4)  to (16).  

min𝐶 ൌ  ෍ቆ
𝐾௣𝛾௉೟ ൅ 𝐾௥ಲ𝛾௥ಲ೟ ൅ 𝐾௥ಳ𝛾௥ಳ೟ ൅  ℎ௦ಲ𝐼ௌಲ೟ ൅ ℎ௦ಳ𝐼ௌಳ೟ ൅ ℎ௥ಲ𝐼௥ಲ೟ ൅ ℎ௥ಳ𝐼௥ಳ೟

൅𝑃஺𝜔஺೟ ൅ 𝑃஻𝜔஻೟ ൅ 𝑣஺𝑖஺೟ ൅ 𝑣஻𝑖஻೟
ቇ

்

ఛୀଵ

 

(3) 

subject to: 

𝐼ௌಲ೟ ൌ 𝐼ௌಲ೟షభ ൅  𝑄௉ಲ೟ ൅ 𝑄௥ಲ೟ െ 𝐷஺೟  ;  𝑡 ൌ 1,2, …𝑇 

(4) 

𝐼ௌಳ೟ ൌ 𝐼ௌಳ೟షభ ൅  𝑄௥ಳ೟ െ 𝐷஻೟  ; 𝑡 ൌ 1,2, …𝑇 

(5) 

𝐼௥ಲ೟ ൌ 𝐼௥ಲ೟షభ െ  𝑄௥ಲ೟ ൅ 𝑑஺೟  ; 𝑡 ൌ 1,2, …𝑇 

(6) 

𝑑஺೟ ൌ 𝑟஺ಲ𝐷஺೟ ൅ 𝛼𝑄௉೟  ; 𝑡 ൌ 1,2, …𝑇 
(7) 

𝐼௥ಳ೟ ൌ 𝐼௥ಳ೟షభ െ  𝑄௥ಳ೟ ൅ 𝑑஻೟  ; 𝑡 ൌ 1,2, …𝑇 

(8) 
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𝑑஻೟ ൌ 𝑟஻ಲ𝐷஺೟ ൅ 𝑟஻ಳ𝐷஻೟ ൅ 𝛽𝑄௉೟  ; 𝑡 ൌ 1,2, …𝑇 
(9) 

𝑄௉ಲ೟ ൌ ሾ1 െ ሺ𝛼 ൅ 𝛽 ሻሿ 𝑄௉೟  ; 𝑡 ൌ 1,2, …𝑇 

(10) 

𝛾௉೟ ൅  𝛾௥ಲ೟ ൑ 1 

(11) 

𝑖஺೟ ൌ 𝑖஺೟షభ ൅  𝑞஺೟ െ  𝑧஺𝑄௥ಲ೟  ;  𝑡 ൌ 1,2, …𝑇 

(12) 

𝑖௥ಳ೟ ൌ 𝑖௥ಳ೟షభ ൅ 𝑞௥ಳ೟ െ  𝑧஻𝑄௥ಳ೟  ; 𝑡 ൌ 1,2, …𝑇 

(13) 

𝑄௉೟ ,𝑄௥ಲ೟ ,𝑄௥ಳ೟ , 𝐼ௌಲ೟ , 𝐼ௌಳ೟ , 𝐼௥ಲ೟ , 𝐼௥ಳ೟ , 𝑞஺೟ ,𝑞஻೟ , 𝑖஺೟ , 𝑖஻೟ ൒ 0 ;  𝑡 ൌ 1,2, …𝑇  
(14) 

𝛾௉೟ , 𝛾௥ಲ೟ , 𝛾௥ಳ೟ ,𝜔஺೟ ,𝜔஻೟ ∈ ሼ0,1ሽ ;  𝑡 ൌ 1,2, …𝑇 

(15) 

𝑞஺ ൑ 𝑀𝜔஺, 𝑞஻ ൑ 𝑀𝜔஻ ,𝑄௉ ൑ 𝑀𝛾௉ ,𝑄௥ಲ ൑ 𝑀𝛾௥ಲ ,𝑄௥ಳ ൑ 𝑀𝛾௥ಳ ; 𝑡 ∈ ሼ1,𝑇ሽ 

𝑤ℎ𝑒𝑟𝑒 𝑀 𝑖𝑠 𝑎 𝑠𝑢𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑙𝑦 𝑙𝑎𝑟𝑔𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 
(16) 

A finite planning horizon of 𝑇 discrete time periods, 𝑡 ൌ 1,2, …𝑇, is assumed. Customer demands 𝐷஺೟ and 𝐷஻೟ 

need to be satisfied in each time period 𝑡. Backordering is not allowed. Customers return 𝑟஺ಲ𝐷஺೟ , 𝑟஻ಲ𝐷஺೟  and 

𝑟஻ಳ𝐷஻೟ used items in each period 𝑡. Although customer returns are expressed as a proportion of demand within a 

period, this does not mean that the exact item that has satisfied customer demand within period t is returned for 
remanufacturing in period t, this is simply a method of realistically constraining customer returns. Returns are 
thus, considered, to be available at the beginning of a period to be used in the remanufacturing process and not at 
the end. The feasibility of this assumption is guaranteed by the inclusion of sufficient opening balance at the 
beginning of the first period of the planning horizon. This can be construed to include the returns from the previous 
periods that have been carried over as the opening balance. This is a typical assumption of dynamic programming 
and aggregate planning models. A proportion of newly manufactured products 𝛼 is returned to Type A recoverable 
inventory and a proportion 𝛽 is returned to Type B recoverable inventory for remanufacturing due to imperfect 
manufacturing yield in each period 𝑡 . The inventory balances of the four inventory types, namely Type A 
serviceable, Type B serviceable, Type A recoverable and Type B recoverable items at the end of each period, 𝑡, 
are expressed in (6) and (8) respectively.  

The serviceable manufacturing quantity per manufactured batch size is given in (10). Initial inventory levels for 
𝐼ௌಲబ ,  𝐼௥ಲబ ,  𝐼ௌಳబ  and 𝐼௥ಳబ  are given. Type A serviceable, Type A recoverable, Type B serviceable and Type B 

recoverable inventory are subject to holding costs of ℎ௦ಲ , ℎ௥ಲ ,  ℎ௦ಳ  and ℎ௥ಳ ,  per unit item per unit of time 

respectively. Setup costs of 𝐾௣, 𝐾௥ಲ  and 𝐾௥ಳ  are associated with each manufacturing batch and remanufacturing 

batch of Type A and Type B items respectively. The release of a batch is indicated by the respective binary 
variables 𝛾௉೟, 𝛾௥ಲ೟ and 𝛾௥ಳ೟. The variable is equal to one if a batch of the respective type is released at time 𝑡, 

otherwise zero. The manufacturing and remanufacturing processes for Type A items are performed on the same 
resources and only one of the two batches are, thus, allowed per period. The release of a Type A manufacturing 
or remanufacturing batch is constrained by (11) in every period 𝑡. 

The Type A dependent demand component inventory level, 𝑖஺೟  is, therefore, given by (12) and the Type B 

dependent demand component inventory level, 𝑖஻೟ is given by (13). 
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Initial inventory levels, 𝑖஺బ and 𝑖஻బ are given. An ordering cost of 𝑃஺ is applicable when purchasing a batch of 

input items used in the Type A remanufacturing processes. An ordering cost of 𝑃஻ is applicable when purchasing 
a batch of input items used in the Type B remanufacturing process. The release of a purchasing batch is indicated 
by the respective binary variables 𝜔஺೟ and 𝜔஻೟. The variable is equal to one if a batch of the respective type is 

released at time 𝑡, otherwise zero. Dependent demand items used in the Type A remanufacturing process is subject 
to holding costs of 𝑣஺ per unit item per unit of time and dependent demand items used in the remanufacturing of 
Type B items are subject to holding costs of 𝑣஻ per unit item per unit of time.  

4.3 A DYNAMIC PROGRAMMING SOLUTION TO THE PROBLEM 

A dynamic programming algorithm is formulated to aid in solving the optimization problem in this paper. In doing 
this, the optimization problem is broken down into simpler sub problems utilizing the fact that the optimal solution 
to the overall problem depends on the optimal solution to its sub problems. In the heuristic based on a modified 
Wagner/Whitin algorithm presented by Richter and Sombrutzki (2000) for the alternate application of 
manufacturing and remanufacturing batches, the assumption is made that 𝑑஺೟ ൒ 𝐷஺೟ and thus every period has a 

chance of manufacturing or remanufacturing occurring. In the model presented in this paper, returns consists a 
combination of customer returns and items that fail during manufacturing. Customer returns are expressed as a 
proportion of demand and items that fail during manufacturing is expressed a proportion of the manufacturing 
batch size. The possibility of a remanufacturing batch is thus dependent on the accumulation of returns being 
enough to satisfy demand. The 𝑑஺೟ ൒ 𝐷஺೟ equation is thus modified for this paper and used to test whether a 

remanufacturing batch is possible in a period. Available recoverable inventory is calculated at the start of each 
period based on the manufacturing versus remanufacturing decision made in previous periods. Based on the 
available recoverable inventory at the start of the period, the possibility of a remanufacturing batch in that period 
can be determined as well as the possibility of remanufacturing to satisfy demand in future periods. The cost of 
manufacturing is compared to the cost of remanufacturing and the less of the two is selected as the preferred 
option.  

A heuristic that builds on the modified Wagner/Whitin solution approach proposed by Richter and Sombrutzki is 
presented in (17) to (24). 

𝑓௧ ൌ 𝑓஺೟ ൅𝑓஻೟ െ෍𝛽𝑄௉೔ℎ௥ಳ೔,೟

௧

௜ୀଵ

,𝑓଴ ൌ 0 

(17) 

𝑓஺೟ ൌ min
ଵஸ௜ழ௧

൛𝑓஺೔೟ ൅ 𝑐஺೔೟൅𝑓஺೔ൟ 

(18) 

𝑓஺೔೟ ൌ 𝑚𝑖𝑛

⎩
⎪
⎨

⎪
⎧

𝐾௉೔ ൅෍𝛽𝑄௉ೕℎ௥ಳೕ,೟

௜

௝ୀଵ

൅ ሺ𝛼𝑄௉೔ ൅ 𝑟஺ಲ𝐷஺೔,೟ሻℎ௥ಲ೔,೟

൅𝐼௥ಲ೔షభℎ௥ಲ
ሺ𝑡 െ 𝑖ሻ,𝐾௥ಲ೔ ൅ 𝐼௥ಲ೔ℎ௥ಲ೔,೟ ൅ 𝑚𝑖𝑛ቄ𝑃஺೔ ൅ 𝑖஺೔𝑣஺೔,೟ቅ⎭

⎪
⎬

⎪
⎫

 

(19) 

where 𝐼௥ಲ೟ ൌ 𝐼௥ಲ೟షభ െ  𝑄௥ಲ೟ ൅ 𝑑஺೟  and 𝐼௥ಲ೟ ൒ 0  

(20) 

𝑐஺೔೟ ൌ 𝐷஺೔,೟ℎௌಲ೔,೟  

(21) 

𝑓஻೟ ൌ min
ଵஸ௜ழ௧

൛𝑓஻೔೟ ൅ 𝑓஻೔ൟ 

(22) 



11 
 

𝑓஻೔೟ ൌ 𝐾௥ಳ೔ ൅ 𝐷஻೔,೟ℎௌಳ೔,೟ ൅ 𝐼௥ಳ೔ℎ௥ಳ೔,೟ ൅ 𝑚𝑖𝑛ቄ𝑃஻೔ ൅ 𝑖஻೔𝑣஻೔,೟ቅ 

(23) 

 where 𝐼௥ಳ೟ ൌ 𝐼௥ಳ೟షభ െ  𝑄௥ಳ೟ ൅ 𝑑஻೟ and 𝐼௥ಳ೟ ൒ 0 

(24) 

The pseudo code for the main algorithm of the modified Wagner/Whitin algorithm is given in Fig. IIError! 
Reference source not found.. The pseudo code for each of the functions implementing the main algorithm can 
be seen in Appendix A: Algorithms for optimisation of item types and components plan  
 

 

FIG. II PSEUDO CODE FOR MAIN ALGORITHM OF MODIFIED WAGNER/WHITIN HEURISTIC 

The total cost to manufacture for Type A demand also considers the Type B recoverable inventory cost incurred 
due to items that fail during manufacturing. Total Type B recoverable inventory is also taken into account in the 
cost minimization of remanufacturing for Type B demand. The calculation of 𝑓௧ in (17) thus needs to correct for 
the duplication in Type B recoverable inventory cost due to items that fail during manufacturing. After the 
optimization of 𝑓஺೟  in (18), the total recoverable inventory holding cost incurred on items that failed during 

manufacturing and can only be remanufactured to an as-good-as-new Type B item is subtracted for the calculation 
of 𝑓௧ in (17) as the recoverable inventory holding cost of these failed items is considered in the total recoverable 
inventory cost in the optimization of 𝑓஻೟, in (22), along with the usage of recoverable inventory to remanufacture. 

The possibility of remanufacturing for Type A demand is dependent on the availability of sufficient recoverable 
stock to make at least a batch of remanufactured Type A items, this is expressed in (20). If Type A recoverable 
inventory is not up to the quantity required for a remanufacturing batch of Type A items, a manufacturing batch 
will have to be released. A Type B remanufacturing batch is dependent on the availability of recoverable Type B 
stock that is at least enough to make a batch of remanufactured Type B items, as expressed in (24). In the case of 
a shortage of Type B recoverable inventory, a Type A manufacturing batch will have to be released in order to 
replenish Type B recoverable inventory with defective yield items from the Type A manufacturing process. This 
could potentially lead to 𝑓஺೟ being reoptimized to ensure that there are no shortages in satisfying Type A and Type 

B demand. 

4.4 TIME COMPLEXITY ANALYSIS OF THE SOLUTION ALGORITHM 

The worst-case time complexity of each of the algorithms are: 𝑂ሺ𝑛ଶሻ  for optimising the 
manufacturing/remanufacturing of type A, 𝑂ሺ𝑛ሻ for requirement planning for components of type A, 𝑂ሺ𝑛ଶሻ for 
optimising the procurement plan of components of type A, 𝑂ሺ𝑛ଶሻ for optimising the remanufacture of type B (this 
includes the reoptimisation algorithm, which is 𝑂ሺ𝑛ሻሻ,  𝑂ሺ𝑛ሻ for requirement planning for components of type B, 
and 𝑂ሺ𝑛ଶሻ for optimising the procurement plan of components of type B. Overall, the algorithm is 𝑂ሺ𝑛ଶሻ, and 
consequently, should be much faster than the Linear Programming solution when the size of the input data, 𝑛, 
gets very large, and would be quite advantageous if the quality of the solution produced is not too bad, compared 
to the LP solution approach which in its basic form may be exponential in the worst case. 

5. NUMERICAL ANALYSIS 
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Data is simulated for the purpose of the numerical work. The assumptions about the structure of the data are 
guided by Dekker et al. (2004), Dowlatshahi (2000), Richter and Sombrutzki (2000) and Zolfagharinia et al. 
(2014). The numerical example using the modified Wagner/Whitin heuristic was solved using Microsoft Excel. 
The sensitivity analysis was however done using the linear programming model coded in Python 3.8 to calculate 
the result of numerous parameter value changes. Each run was timed, and an average runtime of 0.7 seconds was 
observed for the linear programming model over the same planning horizon of 5 time buckets. Results of the two 
respective models are also compared in Section 5.3. For the numerical experiments performed in Section 5.4, 
more than one parameter is varied in each scenario. Each scenario is performed 5 times in which the demand for 
each scenario is varied, the same distribution is used for the demand generation.  

5.1. NUMERICAL EXAMPLE 

Let  

𝐾௉ ൌ 5 000,𝐾௥ಲ ൌ 2 000,𝐾௥ಳ ൌ 250,ℎௌಲ ൌ 1, ℎௌಳ ൌ 0.9,ℎ௥ಲ ൌ 0.8,ℎ௥ಳ ൌ 0.7,𝑃஺ ൌ 2,𝑃஻ ൌ 1,  

𝑣஺ ൌ 0.5, 𝑣஻ ൌ 0.2,𝛼 ൌ 0.1,𝛽 ൌ 0.05, 𝑟஺ಲ ൌ 0.5, 𝑟஻ಲ ൌ 0.1, 𝑟஻ಳ ൌ 0.25, 𝑧஺ ൌ 1, 𝑧஻ ൌ 1, 

𝐷஺ ൌ ሺ1 726, 1 596, 1 941, 1 693, 1 149ሻ,𝐷஻ ൌ ሺ199, 198, 193, 196, 141ሻ.  

Then  

𝑟஺ಲ𝐷஺ ൌ ሺ863, 798, 971, 847, 575ሻ, 𝑟஻ಲ𝐷஺ ൌ ሺ173, 160, 194, 169, 115ሻ,  

𝑟஻ಳ𝐷஻ ൌ ሺ50, 50, 48, 49, 35ሻ. 

A remanufacturing batch of Type A items is only possible in a period where Type A recoverable inventory is 
equal to or exceeds demand for Type A items in the same period. Based on the decision to manufacture or 
remanufacture in the previous period, Type A recoverable inventory is recalculated at the start of each period to 
determine if a remanufacturing batch is possible. Total recoverable inventory is shown in the first section of  
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Table II. The result of 𝑓஺೔೟ ൅ 𝑐஺೔೟ is provided in the second section of   
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Table II, where the cost of manufacturing and remanufacturing is compared in a period and the less of the two 
costs determine whether a manufacturing or remanufacturing batch will be executed in a period. The purchasing 
and holding cost of the dependent demand items required in the remanufacturing process is also minimised for 
each period in which a remanufacturing batch is executed and shown separately in the remanufacturing cost 
calculation in the second section of   
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Table II. The total cost of producing Type A items, 𝑓஺೟, is provided in the third section of   
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Table II. 

Due to a constraint in Type A returns in period 𝑡 = 1, the five-period cycle has to start with a manufacturing batch. 
The solution consists of a manufacturing batch of 3,322 units according to the Type A demand of the first two 
periods, including the provision for items that fail during manufacturing. The Type A demand in period 𝑡 = 3 and 
𝑡 = 4 is satisfied by a remanufacturing batch of 1,941 and 1,693 units respectively, while the Type A demand in 
the last period is satisfied by a newly manufactured batch size of 1,149 units manufactured in period 𝑡 = 5. Type 
A dependent demand for the remanufacturing batches in period 𝑡 = 3 and 𝑡 = 4 is satisfied by a purchasing batch 
of 3,634 units ordered in period 𝑡 = 3.  

A remanufacturing batch of Type B items is only possible in a period where Type B recoverable inventory is equal 
to or exceeds demand for Type B items in the same period. Type B recoverable inventory is calculated at the start 
of each period, based on the decision to manufacture or remanufacture Type A items to determine if a 
remanufacturing batch of Type B items is possible. Total recoverable inventory is shown in the first section of  

Type B demand is satisfied by a remanufacturing batch in period 𝑡 = 1,2 and 4. Type B dependent demand for the 
Type B remanufacturing batches in period 𝑡 = 1 and 𝑡 = 2 is satisfied by a purchasing batch of 590 units ordered 
in period  𝑡 = 1. The Type B dependent demand for the Type B remanufacturing batch in period 𝑡 = 4 is satisfied 
by a purchasing batch of 337 units ordered in period  𝑡 = 4.  

The total cost of production can now be calculated with the use of (17), where the holding cost of the 𝛽 items that 
failed during the Type A manufacturing batches in period 𝑡 = 1 and 𝑡 = 5 needs to the subtracted to avoid double 
counting of these costs. This results in a total cost of R24,976. 

𝑓௧ ൌ 𝑓஺೟ ൅𝑓஻೟ െ෍𝛽𝑄௉೔ℎ௥ಳ೔,೟

௧

௜ୀଵ

 

𝑓ହ ൌ 𝑓஺ఱ ൅𝑓஻ఱ െ 𝛽𝑄௉భℎ௥ಳభ,ఱ
െ 𝛽𝑄௉ఱℎ௥ಳఱ,ఱ

 

𝑓ହ ൌ 23 627൅ 2 080 െ 0.05 ൈ 3 322 ൈ 0.7 ൈ 5 െ 0.05 ൈ 1 149 ൈ 0.7 ൈ 1 

𝑓ହ ൌ 𝑅 24 976 

Table III. The result of 𝑓஻೔೟ is provided in the second section of  

Type B demand is satisfied by a remanufacturing batch in period 𝑡 = 1,2 and 4. Type B dependent demand for the 
Type B remanufacturing batches in period 𝑡 = 1 and 𝑡 = 2 is satisfied by a purchasing batch of 590 units ordered 
in period  𝑡 = 1. The Type B dependent demand for the Type B remanufacturing batch in period 𝑡 = 4 is satisfied 
by a purchasing batch of 337 units ordered in period  𝑡 = 4.  

The total cost of production can now be calculated with the use of (17), where the holding cost of the 𝛽 items that 
failed during the Type A manufacturing batches in period 𝑡 = 1 and 𝑡 = 5 needs to the subtracted to avoid double 
counting of these costs. This results in a total cost of R24,976. 

𝑓௧ ൌ 𝑓஺೟ ൅𝑓஻೟ െ෍𝛽𝑄௉೔ℎ௥ಳ೔,೟

௧

௜ୀଵ

 

𝑓ହ ൌ 𝑓஺ఱ ൅𝑓஻ఱ െ 𝛽𝑄௉భℎ௥ಳభ,ఱ
െ 𝛽𝑄௉ఱℎ௥ಳఱ,ఱ

 

𝑓ହ ൌ 23 627൅ 2 080 െ 0.05 ൈ 3 322 ൈ 0.7 ൈ 5 െ 0.05 ൈ 1 149 ൈ 0.7 ൈ 1 

𝑓ହ ൌ 𝑅 24 976 

Table III where the cost of remanufacturing Type B items is minimised in each period. The purchasing and holding 
cost of the dependent demand items required in the Type B remanufacturing process is also minimised for each 
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period in which a remanufacturing batch is executed and shown separately when calculating the cost of 
remanufacturing in the second section of  

Type B demand is satisfied by a remanufacturing batch in period 𝑡 = 1,2 and 4. Type B dependent demand for the 
Type B remanufacturing batches in period 𝑡 = 1 and 𝑡 = 2 is satisfied by a purchasing batch of 590 units ordered 
in period  𝑡 = 1. The Type B dependent demand for the Type B remanufacturing batch in period 𝑡 = 4 is satisfied 
by a purchasing batch of 337 units ordered in period  𝑡 = 4.  

The total cost of production can now be calculated with the use of (17), where the holding cost of the 𝛽 items that 
failed during the Type A manufacturing batches in period 𝑡 = 1 and 𝑡 = 5 needs to the subtracted to avoid double 
counting of these costs. This results in a total cost of R24,976. 

𝑓௧ ൌ 𝑓஺೟ ൅𝑓஻೟ െ෍𝛽𝑄௉೔ℎ௥ಳ೔,೟

௧

௜ୀଵ

 

𝑓ହ ൌ 𝑓஺ఱ ൅𝑓஻ఱ െ 𝛽𝑄௉భℎ௥ಳభ,ఱ
െ 𝛽𝑄௉ఱℎ௥ಳఱ,ఱ

 

𝑓ହ ൌ 23 627൅ 2 080 െ 0.05 ൈ 3 322 ൈ 0.7 ൈ 5 െ 0.05 ൈ 1 149 ൈ 0.7 ൈ 1 

𝑓ହ ൌ 𝑅 24 976 

Table III. The total cost for producing Type B items, 𝑓஻೟, is provided in the third section  

Type B demand is satisfied by a remanufacturing batch in period 𝑡 = 1,2 and 4. Type B dependent demand for the 
Type B remanufacturing batches in period 𝑡 = 1 and 𝑡 = 2 is satisfied by a purchasing batch of 590 units ordered 
in period  𝑡 = 1. The Type B dependent demand for the Type B remanufacturing batch in period 𝑡 = 4 is satisfied 
by a purchasing batch of 337 units ordered in period  𝑡 = 4.  

The total cost of production can now be calculated with the use of (17), where the holding cost of the 𝛽 items that 
failed during the Type A manufacturing batches in period 𝑡 = 1 and 𝑡 = 5 needs to the subtracted to avoid double 
counting of these costs. This results in a total cost of R24,976. 

𝑓௧ ൌ 𝑓஺೟ ൅𝑓஻೟ െ෍𝛽𝑄௉೔ℎ௥ಳ೔,೟

௧

௜ୀଵ

 

𝑓ହ ൌ 𝑓஺ఱ ൅𝑓஻ఱ െ 𝛽𝑄௉భℎ௥ಳభ,ఱ
െ 𝛽𝑄௉ఱℎ௥ಳఱ,ఱ

 

𝑓ହ ൌ 23 627൅ 2 080 െ 0.05 ൈ 3 322 ൈ 0.7 ൈ 5 െ 0.05 ൈ 1 149 ൈ 0.7 ൈ 1 

𝑓ହ ൌ 𝑅 24 976 

Table III. 
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TABLE II: MODIFIED WAGNER/WHITIN HEURISTIC FOR THE CASE OF ALTERNATING MANUFACTURING AND 
REMANUFACTURING FOR TYPE A ITEM DEMAND 

  𝒕 ൌ 

 𝑖 1 2 3 4 5 

𝑰𝒓𝑨𝒕  1      

 2  268    

 3   1 081   

 4    235  

 5      

𝒇𝑨𝒊𝒕

൅ 𝒄𝑨𝒊𝒕  

1 5 924 9 514 16 739 26 228 35 548 

2  6 778 ൐  

4 214 ൅ 

2 000 

11 799 

 

2 971 

19 367 

 

4 664 

27 619 

 

6 387 

 3   7 817 ൐  

2 865 ൅ 

2 000 

13 463 

 

2 847 

20 410 

 4    7 045 ൐  

2 188 ൅ 

2 000 

10 755 

 

2 575 

 5     6 213 

𝒇𝑨𝒕   5 924 9 514 14 379 17 414 23 627 

 

Type B demand is satisfied by a remanufacturing batch in period 𝑡 = 1,2 and 4. Type B dependent demand for the 
Type B remanufacturing batches in period 𝑡 = 1 and 𝑡 = 2 is satisfied by a purchasing batch of 590 units ordered 
in period  𝑡 = 1. The Type B dependent demand for the Type B remanufacturing batch in period 𝑡 = 4 is satisfied 
by a purchasing batch of 337 units ordered in period  𝑡 = 4.  

The total cost of production can now be calculated with the use of (17), where the holding cost of the 𝛽 items that 
failed during the Type A manufacturing batches in period 𝑡 = 1 and 𝑡 = 5 needs to the subtracted to avoid double 
counting of these costs. This results in a total cost of R24,976. 
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𝑓௧ ൌ 𝑓஺೟ ൅𝑓஻೟ െ෍𝛽𝑄௉೔ℎ௥ಳ೔,೟

௧

௜ୀଵ

 

𝑓ହ ൌ 𝑓஺ఱ ൅𝑓஻ఱ െ 𝛽𝑄௉భℎ௥ಳభ,ఱ
െ 𝛽𝑄௉ఱℎ௥ಳఱ,ఱ

 

𝑓ହ ൌ 23 627൅ 2 080 െ 0.05 ൈ 3 322 ൈ 0.7 ൈ 5 െ 0.05 ൈ 1 149 ൈ 0.7 ൈ 1 

𝑓ହ ൌ 𝑅 24 976 

TABLE III: MODIFIED WAGNER/WHITIN HEURISTIC FOR THE CASE OF REMANUFACTURING FOR TYPE B ITEM 
DEMAND 

  𝒕 ൌ     

 𝑖 1 2 3 4 5 

𝑰𝒓𝑩𝒕  1 219 21    

 2  230 37   

 3   279 83  

 4    302 161 

 5     378 

𝒇𝑩𝒊𝒕   1 403 ൅ 

100 

604 ൅ 

178 

   

2  411 ൅ 

100 

645 ൅ 

256 

  

3   445   813   

4    461 ൅ 

100 

754 

𝒇𝑩𝒊𝒕   5     515 

𝒇𝑩𝒕   503 992 1 226 1 787 2 080 

 

5.2. SENSITIVITY ANALYSIS 

Sensitivity analysis is conducted on the output of the linear programming model based on the small sample size 
used in the numerical analysis of the heuristic. The sensitivity analysis is conducted on selected input parameters 
considered relevant in order to investigate the effects that changes in those parameters have on the expected total 
cost and the number of Type A remanufacturing batches. The sensitivity analysis was conducted on 16 input 
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parameters, serviceable and recoverable holding costs, setup costs, remanufacturing component ordering costs, 
recovery rates, remanufacturing component holding costs and manufacturing failure rates.  

 

FIG. III TOTAL COST IMPACT DUE TO PERCENTAGE CHANGE IN INPUT PARAMETERS 

The following observations are made based on Fig. III, which shows the results of the sensitivity analysis of the 
total cost: 

 The total cost is most sensitive to the manufacturing setup cost. As the manufacturing setup cost 
increases/decreases, total cost increases/decreases. This is because if all other parameters remain unchanged, 
the number of remanufacturing batches, as a possible cost reduction, cannot change due to constrained returns. 
The sensitivity to a change in the manufacturing setup cost will thus remain, whether the remanufacturing 
setup cost is higher or lower than the manufacturing setup cost. 

 The total cost sensitivity to the remanufacturing setup cost and Type A recoverable inventory holding cost is 
also significant. The percentage change in these two parameters respectively results in a similar increase in 
total cost. A decrease of more than thirty percent in Type A recoverable inventory holding cost results in a 
larger decrease in total cost compared to the same percentage decrease in remanufacturing setup cost. 

 By reducing Type A serviceable inventory holding cost, total cost decreases. 

 An increase in the Type A return rate leads to a reduction in total cost. This is not a linear relationship. This 
is because the increase in Type A return rate results in an increase in the number of periods in which demand 
is fulfilled by a remanufacturing batch. A reduction of thirty percent or more in the Type A return rate results 
in a reduced number of periods in which demand is fulfilled by remanufacturing batches. This holds true with 
the assumptions adopted from the literature on the relationship between manufacturing and remanufacturing 
setup costs in this paper. This also supports the sustainability of reverse logistics and how customers should 
be encouraged to return end-of-life products to enable the remanufacturing process. 

The impact of the change in the Type A return rate on the total cost and the number of demand periods fulfilled 
by remanufacturing is shown in Fig IV. 
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FIG IV: IMPACT OF CHANGE IN TYPE A RETURN RATE ON TOTAL COST AND NUMBER OF DEMAND PERIODS 
FULFILLED BY REMANUFACTURING 

The following observations are made based on Fig IV: 

 With an increase in the Type A return rate, there is an increase in the number of demand periods fulfilled by 
remanufactured items. This results in a lower total cost due to the reduction in total Type A and Type B 
recoverable inventory. As mentioned previously, this is not a linear relationship. 

 With a decrease in the Type A return rate, there is a decrease in the number of demand periods fulfilled by 
remanufactured items. This results in an increase in the total cost due to the increase in both Type A and Type 
B recoverable inventory from items that fail during manufacturing. 

5.3. MODEL RESULT COMPARISON 

Richter and Sombrutzki (2000) compared the result of their modified Wagner/Whitin heuristic to the result 
obtained when using the well-known Silver/Meal heuristic, the results from the Silver/Meal heuristic coincided 
with the results of the modified Wagner/Whitin heuristic. For this paper the result of the modified Wagner/Whitin 
heuristic derived in this paper is compared to the linear programming model result for the small sample used in 
the numerical analysis. The comparison made in this paper is thus superior to the comparison made by Richter 
and Sombrutzki (2000). The LP results in an exact answer, whereas comparing to the Silver/Meal heuristic is 
simply comparing to another heuristic with known weaknesses. The linear programming model resulted in a total 
cost of R 24 966, a R10 difference to the total cost result obtained by this heuristic of R 24 976. The difference is 
due to more optimal decisions made in the remanufacturing of Type B items. 

A further result comparison is conducted on selected input parameters that the linear programming model proved 
to be most sensitive to in order to investigate the effects that changes in those parameters have on the expected 
total cost output from the heuristic. This will determine whether the modified Wagner/Whitin model presented in 
this work is a suitable alternative to the LP  in finding acceptable solution to the total cost function. The 
comparison was conducted on 4 input parameters, Type A recoverable holding costs, Type A remanufacturing 
setup cost, manufacturing setup cost and Type A return rates.  
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TABLE IV: LINEAR PROGRAMMING MODEL RESULT COMPARED TO HEURISTIC RESULT 

Parameter % Change Parameter 
Value 

Heuristic Total 
Cost 

LP 
Total Cost 

% Variance in 
Total Cost 

𝒓𝑨𝑨  

-50% 0.25 25,939 25,939 0% 

0% 0.5 24,976 24,966 0% 

50% 0.75 24,607 24,607 0% 

𝑲𝒑 

-50% 2500 19,976 19,966 0% 

0% 5000 24,976 24,966 0% 

50% 7500 29,966 28,378 5% 

𝑲𝒓𝑨 

-50% 1000 25,128 22,533 10% 

0% 2000 24,976 24,966 0% 

50% 3000 26,966 26,878 0% 

𝒉𝒓𝑨 

-50% 0.4 22,740 21,839 4% 

0% 0.8 24,976 24,966 0% 

50% 1.2 30,167 26,920 11% 

The following observations are made based on Table IV: 

 With no change in the parameter values of the numerical example, the linear programming model resulted in 
a total cost of R 24 966. With only a R10 difference due to more optimal decisions made in the 
remanufacturing of Type B items. 

 A fifty percent decrease in the remanufacturing setup cost results in a ten percent variance in the total cost 
result of the two models. This is caused by a local optimum in period t = 2 of the modified Wagner/Whitin 
heuristic that recommends remanufacturing, this is however overridden by a lower cost decision to 
manufacture in period t = 1 for period t = 1,2 and 3. This increases the total cost for the full horizon, due to 
the increase in recoverable inventory. 

 A fifty percent increase in the Type A recoverable inventory holding cost results in an eleven percent variance 
in the total cost result of the two models. This is again caused by a local optimum in period t = 2 of the 
modified Wagner/Whitin heuristic recommending a remanufacturing batch. This is once again overridden by 
a lower cost decision to manufacture in period t = 1 for period t = 1,2 and 3. This increases the total cost for 
the full horizon, due to the increase in recoverable inventory and the increase in the Type A recoverable 
inventory holding cost. 

 On average the results of the two models differ by 3.33%, with the best-case scenario variance being as low 
as 0% and worst-case scenario variance being 11% on the small sample size evaluated. 

The modified Wagner/Whitin heuristic seems to the be slightly lacking in considering the impact of holding costs 
incurred in future period due to manufacturing versus remanufacturing decisions made in a period. However, the 
heuristic output still produces the same trends in the total cost output. With an average variance of 3.33% in total 
cost, the heuristic proves to be a suitable alternative in calculating the total cost of manufacturing and 
remanufacturing for Type A and Type B items and determining the periods in which to manufacture and 
remanufacture for Type A and Type B items. 

5.4. NUMERICAL EXPERIMENTS 

To compare the performance of the heuristic to the simplex solution, the experiment was designed at two levels. 
The first is to test the quality of solution obtained by the heuristic against that of LP, and the other is to check the 
resolution time of the heuristic against that of LP. These two experiments were separated because large number 
of replications were made to test the heuristic against the LP solution, and the resolution time for LP was getting 
quite long as the planning horizon exceeded 10 time buckets. 

To guarantee a fair comparison between the linear programming model and the proposed modified Wagner/Whitin 
heuristic, a representative number of instances were examined on 3 levels of input data for the return rates for 
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item type A and item type B, 2 levels of setup costs for manufacturing of A, remanufacturing of A and 
remanufacturing of B, 1 level for the holding cost for serviceable stock A, 2 levels each for serviceable stock B, 
recoverable stock A, and recoverable stock B. Altogether, we created 24 possible scenarios from the combinations. 
For each scenario, a planning horizon of 5 was used and each scenario was replicated 5 times (scenario sample 
size of 5). The demand was varied for each sample using the same distribution to generate demand. This leads to 
120 replications for both the heuristic approach and the LP solution (240 in total). To analyse the results, each 
replication of 5 instances for each scenario was analysed for the mean cost value and the variance of cost for the 
replications within each scenario. The sample average and standard deviation for the heuristic and LP solutions 
were then compared to understand how the heuristic differs from the exact LP solutions. 

Type A manufacturing setup cost and Type A remanufacturing setup cost can take on values of 2000 and 5000, 
while Type B remanufacturing setup cost can take on values of 250 and 2000. While the rate of keeping a Type 
A serviceable item in stock is set to one, holding a Type B serviceable item for one period can cost 0.9 and 0.7, 
holding a Type A recoverable item for one period can cost 0.8 and 0.4 and holding a Type B recoverable item for 
one period can cost 0.7 and 0.3. The return rate of Type A items can take on values of 0.6, 0.5 and 0.3, the return 
rate of Type B items from Type A items can take on values of 0.15, 0.1 and 0.05, while the return rate of Type B 
items from Type B items can take on values of 0.5 and 0.25. These values allow for groupings of instances to be 
evaluated in the numerical experiments, these groupings consists of instances with high, medium and low return 
rates, instances with high and low holding cost variances, instances where the Type A manufacturing setup cost 
is greater than the Type A remanufacturing setup cost as well as instances where the Type A remanufacturing 
setup cost is greater than the Type A manufacturing setup cost and lastly instances of high and low variance in 
the Type A and Type B setup costs. The heuristic is evaluated by using the percentage gap to the optimal solution 
as a performance measure. The results of the numerical experiments are presented in Table V.  

TABLE V: PERFORMANCE OF THE MODIFIED WAGNER/WHITIN HEURISTIC 

  % cost error to the optimal solution 
  Average Standard 

deviation 
Maximum 

All instances 3,8% 2,6% 7,6% 
Return rate    
 High return rates 5,5% 2,4% 7,2% 
 Medium return rates 1,4% 0,4% 1,8% 

 Low return rates 4,2% 2,9% 7,6% 
Holding cost    
 High holding cost variance 3,5% 3,1% 7,2% 
 Low holding cost variance 4,1% 2,5% 7,6% 

Setup cost    
 Type A manufacturing setup cost higher than remanufacturing’s  4,2% 2,9% 7,6% 
 Type A remanufacturing setup cost higher than manufacturing’s 3,5% 2,8% 7,2% 

 High variance in Type A and Type B setup costs 3,3% 3,2% 7,6% 
 Low variance in Type A and Type B setup costs 4,3% 2,4% 7,2% 

𝑲𝒑    
 5 000 4,2% 2,9% 7,6% 
 2 000 3,5% 2,8% 7,2% 

𝑲𝒓𝑨    
 5 000 3,5% 2,8% 7,2% 

 2 000 4,2% 2,9% 7,6% 
𝑲𝒓𝑩     
 2 000 4,3% 2,4% 7,2% 

 250 3,3% 3,2% 7,6% 
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The following observations are made based on Table V: 

 With an average percentage gap of 3.8% in all instances and a maximum percentage gap of 7.6%, the heuristic 
proves to be a suitable alternative in calculating the total cost of manufacturing and remanufacturing for Type 
A and Type B items and determining the periods in which to manufacture and remanufacture for Type A and 
Type B items.  

 The lowest percentage cost error is experienced with medium return rates  

 The greatest percentage cost error is experienced with high return rates. 

5.5. RESOLUTION TIME OF THE MODELS 

To evaluate the resolution time of the two solution approaches, a sample size of 5 was run for time buckets varying 
from 5 to 15 for both the heuristic and the LP solutions from which it could be seen that the resolution time of the 
LP solution picked up rapidly after about 10 time buckets when compared to that of heuristic. This implies that as 
the planning horizon becomes longer, solving with LP may gradually become unrealistic. 

The resolution time of the linear programming model is shown in Fig V. 

 

 

FIG V: RESOLUTION TIME OF THE LINEAR PROGRAMMING MODEL 

The following observations can be made based on Fig V: 

 The resolution time increases significantly from a total planning horizon of 𝑇 ൌ 12. 

 The average runtime increases by 200% with each time bucket added from 𝑇 ൌ 13. 

As the percentage cost error of the heuristic is relatively low and the resolution time of the linear programming 

model increases substantially from 𝑇 ൌ 12, the development and use of the modified Wagner/Whitin heuristic is 

supported. The runtime comparison of the two models is shown in Table VI. 
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TABLE VI: RESOLUTION TIME COMPARISON 

T Average LP runtime (seconds) Average heuristic runtime (seconds) 

5 0.7 0.0004 

6 1.0 0.0012 

7 1.1 0.0012 

8 1.9 0.0020 

9 3.9 0.0024 

10 5.8 0.0024 

11 13.0 0.0046 

12 113.6 0.0040 

13 76.1 0.0052 

14 227.1 0.0058 

15 697.0 0.0076 
 

Comparing the quality of solutions obtained, it is apparent that the heuristic result should be quite close to optimal, 
while the solution continues to produce answers quite quickly as the horizon lengthens while LP needs a lot more 
time for resolution. This shows the quality of the solution approach to the problem, and makes it a good approach 
to consider when the planning horizon is long, which is not unrealistic in a number of planning environments, and 
even more so in instances where the organisation might need to analyse their plan in more granular time units, 
e.g. when moving from weekly to daily time buckets. 

 

6. CONCLUSION 

The major contribution made by the research presented in this paper is the incorporation of constrained returns, 
considering that the remanufacturing process requires additional input items and taking into consideration that not 
all items can be remanufactured to an as-good-as-new state of the original item. These items can be used to satisfy 
a lower variety secondary demand. The model also takes into consideration that items fail during manufacturing, 
these items are returned to be remanufactured to satisfy either one of the two demand types. The proportion of 
demand that is returned for remanufacturing has a significant impact on the total cost function. This finding should 
motivate production and operations managers to encourage the customers to return and recycle used products. 

The manufacturing setup cost also has a significant impact on the total cost and can also be reduced by the increase 
in the proportion of demand that is returned. More returns result in more remanufacturing batches with a lower 
setup cost compared to that of a manufacturing batch. However, there will always be a need for manufacturing, 
as the items that fail during manufacturing are a vital input into the remanufacturing batches of both Type A and 
Type B items. 

Future research considerations include partial manufacturing and remanufacturing batches to counter constraint 
returns within a period and shared remanufacturing resources for Type A and Type B items with a shortage cost 
in the case that demand for the respective items cannot be met within the same period.  
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APPENDIX A: ALGORITHMS FOR OPTIMISATION OF ITEM TYPES AND 

COMPONENTS PLAN 

 


