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Abstract

The autonomous vehicles concept and development were founded in the 1980s, but they

became more famous and advanced more than a decade ago. Autonomous vehicles were

created due to the advancement of different technologies, and it was believed to portray

the progress of the 21st century. This idea led people to think these autonomous ve-

hicles might help reduce or mitigate road accidents. However, firstly, according to the

National Law Review, early accidents were recorded, and some were deadly. Secondly,

the African continent has been left behind concerning technological advancement; hence,

it is currently not ready for so-called smart cities. Therefore, the problem this disser-

tation looked into is that there is an issue of complexity associated with autonomous

vehicles (with independent levels 4 and 5). The study aimed to objectively understudy

the reliability of the intelligent autonomous vehicle amidst inter- and intra-complexities

associated with autonomous ground vehicle navigation requirements. Therefore, an ap-

propriate methodology had to be selected to fulfil the aim. Thus, two research method-

ologies were considered for this dissertation, which is (1) design science research and (2)

systems thinking methodologies.

Additionally, a unification of these two methods was established, and a framework

was designed. An optimal physical structure was developed using the established frame-

work and analysing autonomous vehicles’ sensor fusions. Furthermore, the reliability

analysis model was formulated. The use of systems and reliability engineering theories

and applications were adopted to develop and model the optimal structure and reliabil-

ity model. Finally, the reliability of the autonomous vehicles with respect to traffic rules

was calculated. It was found that there is a 99.94% chance that the autonomous vehicle

will fail at least one of the traffic rules in 20 minutes.
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Chapter 1

Introduction

The Autonomous Vehicle (AV)’s concept and development were founded in the 1980s

(Wikipedia contributors, 2022b). Still, it became more famous and advanced over a

decade ago (Grigorescu et al., 2020). The advancement of the AV was due to the advances

in deep learning and Artificial Intelligence (AI). The AVs were created due to the rise

of different technologies. That idea led people to believe that AVs might help reduce

or mitigate road accidents. Furthermore, it was believed that having AVs portrays the

advancement of the 21st century. However, early accidents were recorded according to

the National Law Review’s website (www.natlawreview.com). The first accident that

led to death was in 2016, May 7th. Furthermore, an Uber AV had about 37 crashes

before having a collision that led to a pedestrian’s death in 2018, November 20th, and

it was found that a human driver caused the error and the AV Uber could not react

appropriately.

These results caused concerns to the public since there was already an issue of re-

liability towards the AVs. However, these fatal accidents do not rule out the need to

produce reliable AVs and ultimately reduce road accidents or further portray the ad-

vancements of the 21st century. According to Grigorescu et al. (2020) and Chy et al.

(2022), AVs have been positively developing to improve how they predict situations

and how they should react to complex conditions and unknown/unforeseen situations.

The improvements were possible due to the method called deep learning or smart deep

learning and the advancements of AI technology and its applications. Given these ad-

vancements, it can be noted that there is good progress in this field (AI environment).

Therefore, there is a need to look at how these AVs are built from the functional level,

performance level, and physical design level so that a critical analysis is conducted and

consequently a reliability analysis is provided. Furthermore, the study focuses on the AV

1
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components with intelligence embedded in them. But there is little research regarding

the reliability of AVs available. Therefore, this dissertation focused on providing more

insight concerning the reliability of AVs related to traffic rules.

Regarding the analysis of AVs, it should be noted that there are six different levels

of driving automation (Casado-Herráez, 2020; Singh and Saini, 2021), please see section

1.1. However, this dissertation focused on the last two levels, level 4 and level 5, since

they both have the latest technology features, including the ones found in the lower

levels (levels 0 to 3). The AV in levels 4 and 5 can be argued that they can produce

reliable performance on the road. Therefore, an assessment on the AVs in levels 4 and 5

was conducted with respect to the traffic rules—this will was done to assess if the AVs

in levels 4 and 5 do obey the traffic rules. The assumption is that if an AV obeys all

the traffic rules, then it is reliable. The traffic rules used to assess the AVs are defined

in Chapter 3.

The AVs assessed in this dissertation are from different automotive industry compa-

nies, such as Tesla, Waymo (by Google), Yandex, etc—i.e., the AV were not built in a

laboratory for the purpose of this research.

It should be noted that some insight of how autonomy works was withdrawn from

Defence Advanced Research Projects Agency (DARPA) grand challenge. The In the

summer of 2002, DARPA officially announced the DARPA grand challenge (Behringer

et al., 2004). The goal was to race fully autonomous road vehicles from Los Angeles to

Las Vegas (at the United States of America) without controls or user intervention. In the

first challenge, the distance to be covered was expected to be 400 km and completed in 10

hours. Unfortunately, in all of the AVs they tested, the maximum distance reached was

11.91 km (Behringer et al., 2004). The short distance was due to the short preparation

time they had. What can be noted about DARPA grand challenge is that they already

had the technology in the early 2000s. Therefore, the grand challenge provided solid

background of what an AV is and what is expected to do.

1.1 Six different driving automation levels

The six different driving automation levels are grouped into two main categories, that is,

human driver monitors the road and automated driving system monitors the road (see

Figure 1).

2
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Figure 1: Six levels of driving automation (adopted from (Serban et al., 2020))

It can be seen in Figure 1 that these levels are based on the level of human involvement

during the driving process. These levels are further described as follows (by Singh and

Saini (2021)).

• Level 0: There is no automation of any sort, the driver performs all the tasks.

• Level 1: There are at least stand-alone vehicle components such as Automated

Braking, here the driver assists on a lot of operations.

• Level 2: There is partial automation such that the vehicle is capable of steering and

accelerating by itself to keep the vehicle accurately on the lane(s) and adaptively

moving around other vehicles. However, the human driver should always be there

to monitor the operation.

• Level 3: There is a conditional automation such that the human driver can take

total control in certain complex situations, that is, the vehicle can drive itself in

less complex situations until there is a need for human intervention.

• Level 4: There is high automation control in the vehicle, such that it can perform

all needed driving functions by itself. Such vehicles might provide options for

human intervention or might not provide it.

• Level 5: There is full automation such that the vehicle can perform all driving

functionalities in any given situation (complex or easy) and condition.

3
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Considering levels 4 and 5, it is crucial to look at how such systems (in terms of

the functional capabilities that is linked to intelligence) are designed. With the focus on

looking at how the levels 4 and 5 AVs are developed, the theory of reliability engineering,

systems engineering, and AI were adopted to address the problem described in section

1.6. A further description of these theories is provided in sections 1.2, 1.3, and 1.4.

1.2 AV sensors

Sensors are tools that translate environmental events or changes into quantitative mea-

surements that can then be processed further. Typically, sensors are divided into two

categories based on their core principles of operation. Firstly, the proprioceptive sen-

sors, also known as internal state sensors, record a dynamic system’s state and internal

values—these sensors relate to encoders, Inertia Measurement Unit (IMU), inertial sen-

sors (gyroscopes and magnetometers), and positioning sensors (Global Navigation Satel-

lite System (GNSS) receivers, such as Global Positioning System (GPS)). Secondly, the

exteroceptive sensors, also known as external state sensors, they sense and gather data

such as distance measurements or light intensity from the system’s surroundings—these

sensors relate to Cameras, ultrasonic sensors, Radio Detection and Ranging (RADAR),

and Light Detection and Ranging (LIDAR). Furthermore, in consideration of AVs, sen-

sors play a key role in the perception of the environment and localisation of the vehicles

(the perception system or layer) for path planning and decision-making, all of which are

necessary prerequisites for directing the motion of the vehicle. (Yeong et al., 2021)

The overview of where the sensors are installed in a vehicle to make it an AV can be

seen in Figure 2.

It can be noted that Figure 2 gives brief explanations of each of the sensors shown.

However, it is still necessary to give more insight into the sensors by providing more

details to provide an understanding of what is meant by the individual sensors that

describe the two kinds of sensors (the proprioceptive sensors and exteroceptive sensors).

Therefore, further details on the sensors are provided as follows.

LIDAR

LIDAR is a distance sensing method based on the idea that laser or infrared light pulses

are produced and reflect off the targets. The apparatus picks up these reflections, and

distance estimation is possible between the light pulse’s emission and receipt. Since

its creation in the 1960s, LIDAR has been extensively used to map the topography

for use in aviation and aerospace. Manufacturers of laser scanners produced and used

4
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Figure 2: The AV sensor installation location overview (adapted from (Vargas et al.,
2021))

the first commercial LIDARs with 2000 to 25,000 Pulses Per Second (PPS) for topo-

graphic mapping applications in the middle of the 1990s. In One-Dimensional (1D),

Two-Dimensional (2D), and Three-Dimensional (3D) spaces, LIDAR sensors generate

a point cloud data (also known as a Point Cloud Data (PCD)), which contain data on

object intensity. (Ignatious et al., 2022; Yeong et al., 2021)

RADAR

In a wide range of military and civilian applications, such as aerial or terrestrial threat

detection systems, shooting systems, airports, or meteorological systems, RADAR sys-

tems are utilised—which operate in wavelengths on the order of millimetres. This kind

of technology usage in the automobile industry has been driven by the rise of smart

vehicles and the need to improve road safety. The Millimetre Wave (MMW) RADAR,

used in intelligent vehicle RADAR systems, operates at frequencies of 24/07/79 Giga-

5
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Hertz (GHz). By computing the duration of flight of the sent signal and the returned

echo, the RADAR determines the distance between the emitter and the object. The

radars can correctly provide the direction and speed of the objects in addition to detect-

ing the distance to multiple targets. (Rosique et al., 2019)

According to Ignatious et al. (2022), the doppler effect, often known as the doppler

shift, illustrates how changes or modifications in wave frequency result from relative

motion between a wave source and its targets. The frequency of the detected signal

increases as the object moves in the direction of the RADAR system—which are the

shorter waves. The general mathematical formula for the Doppler frequency shift of a

RADAR may be expressed as follows.

fD =
2Vrf

c
=

2Vr

λ
, (1.1)

Where

fD = Doppler frequency, in Hertz (Hz),

Vr = relative speed of the target,

f = frequency of the transmitted signal,

c = 3 × 108 meters per second (m/s)—speed of light, and

λ = wavelength of the emitted energy.

Camera

Cameras are the main sensors for high-resolution tasks, including object classification,

semantic picture segmentation, scene perception, and activities requiring color percep-

tion, like a traffic light or sign identification. The fundamental idea behind how cameras

function is that they use a lens to detect light from things placed on photosensitive

surfaces. The photosensitive surfaces measure the quantity of light they receive and

transform that into electron motions. The cameras can locate any object. An object’s

location may be described as a vector in space with three components (x, y, z), which

will be projected via a lens to a point on the picture plane (x, y). The projected points

are transformed from the metric unit to pixels to use the image for additional processing

and information extraction, such as item recognition, categorisation, and tracks in our

autonomous vehicle’s route. (Campbell et al., 2018; Shahian Jahromi et al., 2019; Yeong

et al., 2021)

6
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Ultrasonic sensor

Ultrasonic sensors determine the distance to an object by using sonic waves in the 20

Kilo-Hertz (KHz) to 40 KHz frequency range produced by a magnetoresistive membrane.

It works by measuring the sonic wave’s Time of Flight (ToF) from the moment it is

released until the echoes are picked up. The distance is calculated as follows. (Rosique

et al., 2019)

d =
c

2
(ToF ), (1.2)

where

c = velocity of the wave, in m/s.

Furthermore, according to Vargas et al. (2021), ultrasonic sensors can find solid,

liquid, granular, or powdered items. Finally, they argued that ultrasonic sensors rely

on sonic transducers to emit sonic waves in the 40 to 70 KHz range for automotive

applications. This is a significant difference from Rosique et al. (2019), and a logical

reason would be that they probably commented on different types of ultrasonic sensors

with different properties.

GNSS

The most popular technique for obtaining precise location data on the earth’s surface is

the GNSS. The GPS system, which offers positioning, navigation, and timing services

to users, is the most well-known GNSS system. The GPS was created by the U.S.

Department of Defense in early 1970 and consists of three elements—the space segment,

the control segment, and the user segment. Furthermore, a minimum of 24 of the 31

active satellites in the space segment are available 95% of the time. Each of these

satellites circles the planet twice daily in medium earth orbit at a height of 20,200

kilometres (km). This makes the AVs to require this kind of service as it is free and very

efficient for positioning, navigation, and timing at any given time. (Vargas et al., 2021)

1.3 Reliability and analysis

Reliability is when a product (or an item or a system or a service) is capable of performing

a given task following specified conditions in a given set period, and it can be expressed

as the number of failures over a certain period (Misra, 2008; O’Connor and Kleyner,
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2012). Consequently, a reliable product (or system or service) can perform its given tasks

with certain conditions and in a specified period without failure. Given the reliability

definition, it follows that reliability analysis is when a product (or an item or a system or a

service) is tested using the terms and conditions outlined in the reliability definition. The

test is conducted by calculating several commonly used measures of scale in reliability

(see Chapter 3.1 ).

According to Denoël (2007), there are six different reliability analysis methods. These

methods are described as follows.

First Order Second Moment (FOSM)

This method is rigorous in cases when the failure function is linear only (see Figure 3).

The method focuses on replacing the actual failure function with a linearised relation,

which means that the failure function remains unchanged when any transformation is

applied (also known as lack of invariance). The method depends on the linearity of the

failure conditions.

Figure 3: FOSM linear failure function example (adapted from (Denoël, 2007))

Please note that R and S (in Figure 3) are resistance and load, respectively, which

are used to assess a failure condition of a product or system such that S > R when the

product or system is reliable.

Advanced First Order Second Moment (AFOSM)

This method was developed due to the lack of invariance in the FOSM method. The

development made in this method is that it considers the beginning of the linearity of
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the failure function and does not depend on the linearity of the failure condition. This

can be seen in Figure 4 below.

Figure 4: AFOSM linear failure function example (adapted from (Denoël, 2007))

Advanced First Order Second Moment for Correlated variables (AFOSMC)

This method is a modification of the AFOSM method, such that the involved variables

are correlated; that is, the variables involved should have a mutual relationship or con-

nection, and they affect each other.

Second-Order Reliability Methods (SORM)

This reliability method focuses on analysing products or systems with random variables

interacting in a non-linear fashion.

First-Order Gaussian Second Moment Method (FOGSM)

This method deals with products or systems with Gaussian random variables. The

Gaussian random variable is known to follow a normal distribution, and its shorthand

definition can be written as

X −N(µ, σ2).

First-Order Gaussian Approximation Method (FOGAM)

This method was developed to improve the results on the FOGSM method by replac-

ing the actual probability density functions with the equivalent Gaussian probability

distribution.
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Given the above outlined six different reliability analysis methods, the AFOSMC was

adopted for this study. This method deals with variables with some relationship that

will affect each other’s performance or response. For this to be possible, another method

is required, which is the needs and requirement analysis method, which was integrated

with AFOSMC method (see Section 1.4).

1.4 Needs and requirement analysis

To provide a reliability analysis of the intelligence of AVs concerning traffic rules, the

functional capabilities that are linked to the intelligence of the AV should be outlined

first. Therefore, the Systems Engineering theory and method were utilised to identify

the functional capabilities that speak to the intelligence of the AV.

Kossiakoff et al. (2011) describes how the systems engineering theory and method

can be applied in needs and requirements analysis. Needs and requirements analysis

is the first phase of the origin of a new system that is either driven by technological

opportunity or unique needs. This study focuses on the AV that is caused by techno-

logical opportunities, that is, AI (this is further explained in the next section, Section

1.5). The needs and requirements analysis has two inputs, the operational deficiencies

and technological opportunities, so that a system can be studied, its technology can be

assessed, and its operation can be assessed. Finally, there are two outputs, that is, the

system operational effectiveness and system capabilities (see Figure 5). These outputs

were used to develop further a reliability model that calculates the reliabilities of indi-

vidual components that speak to intelligence to provide the overall reliability of the level

4 to 5 automation vehicle.

The needs and requirements analysis have four activities that should be considered

during its execution (Kossiakoff et al., 2011). These activities are briefly discussed as

follows.

• Operations Analysis. This activity is also known as a requirement analysis. This

activity results are knowing the operational objectives and identifying the system

capabilities.

• Functional Analysis. This activity is also known as a functional definition; here,

the operational objective are translated into functions and allocated into subsys-

tems. The results of this activity are the list of functional requirements of the

system/subsystem/components.
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Figure 5: The needs and requirements analysis phase (adopted from (Kossiakoff et al.,
2011))

• Feasibility Definition. This activity is also known as a physical definition; here,

the physical nature of the subsystems is visualised to check if they can perform the

required functions. Furthermore, a feasibility concept should be defined consider-

ing the costs and capabilities of the system/subsystem/component. The result of

this activity is a list of initial physical requirements.

• Needs Validation. This activity is also known as a design validation. It is when a

model or a validation criterion is designed or adapted to check the validity of the

suggested solution(s).

These activities have been used to identify the operational objectives and system

capabilities of the AVs. In addition, it is done to determine the functional and physical

abilities of AVs to compute the reliability of an AV with driving automation between

levels 4 and 5.

1.5 Problem context

The problem context of this study focused on the automotive industry, more specif-

ically on the vehicles with AVs with levels 4 and 5 of autonomy (see section 1.1 for

the descriptions of the levels). This focus relates to the reliability analysis of AVs. To

accomplish the objectives stated in section 1.7, the theory of AI technology, Systems

Engineering, and Reliability Engineering were incorporated into the study. Simulation

modelling could have added value in evaluating the reliability of AVs. However, the data

11

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



to conduct simulation modelling was unavailable; therefore, simulation was not utilised.

1.6 Problem statement

The problem is that there is an issue of complexity associated with autonomous vehicles

(autonomous in levels 4 and 5). The associated complexities are a diversity of navigation

requirements on the road, connectivity (inter- and intra-connectivity) of the intelligent

system, intelligent interaction (inter- and intra-interaction), swift decision-making, and

obedience to road rules. It should be noted that these complexities are viewed from the

Systems Engineering point of view.

1.7 Research aim and objectives

This dissertation aims to objectively study the reliability of the intelligent autonomous

vehicle amidst inter- and intra-complexities associated with autonomous ground vehicle

navigation requirements. Given the research aim, three objectives were derived and

outlined as follows.

Objective 1: Model and analyse the reliability of the intelligence of autonomous ve-

hicles with respect to traffic rules.

Objective 2: Model and analyse the inherent complexity associated with autonomous

vehicles.

Objective 3: Validate the reliability (analysis with respect to the traffic rules) model

using a reliability engineering technique.

1.8 Research questions

Three research questions were formulated, which were derived from the research objec-

tives outlined in section 1.7. The search questions are now described.

Research question 1: What is the state-of-the-art of autonomous vehicles?

Research question 2: What is the reliability of the intelligence of autonomous vehi-

cles with respect to traffic rules?
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Research question 3: What is the inherent complexity associated with autonomous

vehicles?

1.9 Scope limitation, demarcation and assumptions

This study only focused on the automotive industry’s driving automation of levels 4 and

5; from the outlined driving automation levels in section 1.1, levels 0 to 3 are excluded.

The theories and methods adopted for this study are systems engineering methods in

the needs analysis phase of the system life cycle and reliability engineering.

1.10 Significance and justification

The industrial revolution is essential, and it helped with the development of cities/provinces,

countries, and continents. However, during the development of the industrial revolution

(the Fourth Industrial Revolution (4IR)), Africa was left behind (Ndung’u and Signe,

2020). Since there is a new developing era of technology whereby cities need to be more

intelligent, that is, the era of globalisation with smart cities (Komninos, 2008; Mishra,

2020), Africa is almost two industrial revolutions behind. It should be noted that in-

dustrial revolution is still the currently revolution around the world, however, the era

of globalisation is emerging. Smart cities can be defined as a network of interconnected

technologies that communicate with each other and transfer and analyse essential data

so that urban operations are improved and maintained (Mishra, 2020). Moreover, smart

cities include smart transportation, such as autonomous vehicles. Hence, this study is

significant as it provides help to automotive industries in Africa that intend to adapt or

start to (re)design autonomous vehicles.

1.11 Table of definitions

The definitions in Table 1 are not general definitions, they relate to how the terms have

been utilised in this dissertation.
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Table 1: The table of definitions.

Term Definition

Inter-connectivity Refers to the connectivity of components within
an AV—the components that makes the AV in-
telligent.

Reliability Refers to ability of a system to accomplish a task
required under the conditions provided for a cer-
tain time interval

Reliability analysis Refers to investigating the characteristics of
measuring scales and the components that make
up the scales.

Inherent complexity The inherent complexity of an AV refers to what
makes it difficult for the vehicle to understand,
especially in its design, to comply with certain
conditions in a certain given period. Further-
more, the inherent complexity of an autonomous
vehicle also refers to how difficult it is for an
autonomous vehicle to be deployed in a certain
country, city, or province.

Intelligence Refers to the capability for knowledge and skill
acquired to be applied by a component.

Intelligent inter-interaction Refers to interactions of intelligent components
within an AV.

Intelligent intra-interaction Refers to interactions of the AV—vehicle to ve-
hicle communication.

Intelligent system Refers to machines with cutting-edge technol-
ogy that can perceive their surroundings and re-
spond accordingly.

Swift decision-making The intelligent system has to make a decision on
the given conditions without unnecessary delay.

1.12 Document structure

The rest of the chapters are now discussed. First, Chapter 2 answers the research ques-

tions (research questions 1 and 3) outlined in section 1.8. Next, Chapter 3 defines the

research methodology used in this study, provides an in-depth analysis of the problem

described in section 1.6 and the requirements to provide a solution, and provides the

solution development and design. Next, the results obtained after assessments and eval-

uations are provided in Chapter 4. Finally, this dissertation’s conclusion and future work

are provided in Chapter 5.
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Chapter 2

Literature Review

The purpose of this chapter is to provide comprehensive answers to the research questions

outlined in section 1.8. Firstly, section 2.1 answers the question about state-of-the-art

autonomous vehicles (i.e., research question 1). Secondly, section 2.2 answers the ques-

tion about the inherent complexity associated with autonomous vehicles (i.e., research

question 3).

2.1 Autonomous vehicle state-of-the-art

The state-of-the-art refers to the most recent or highest developments due to a certain

level of development according to Wikipedia contributors (2022c). Therefore, state-of-

the-art of autonomous vehicles is the up-to-date developments an autonomous vehicle has

reached. However, the state-of-the-art discussed in this section focuses on the functional

requirements, physicality (the design), and performance of the autonomous vehicle.

Literature research was conducted to address state-of-the-art of autonomous vehicles,

and the results are now discussed.

2.1.1 Autonomous vehicle functional requirements

The functional requirements refer to what a system should do based on described tasks or

activities it should perform during its operation (Kossiakoff et al., 2011). Consequently,

Matthaei and Maurer (2015) conducted a study to present a functional system archi-

tecture for an autonomous vehicle. The study was developed in a top-down approach

based on the functional requirements of autonomous vehicles, and these requirements

are described as follows.
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• Operating: The vehicle needs instructions (these refer to the mission of the vehicle),

and usually, human beings write out these instructions.

• Mission accomplishment: Now that the mission has been described, the vehicle

should be able to accomplish the mission or the instructions – these include be-

haviour, navigation, and the control of the actuators.

• Map data: This data is required for route planning.

• Localisation: The vehicle should know its location or position on a global scale

for map data, such as navigation, and the purpose of communication in vehicle-to-

vehicle or vehicle-to-infrastructure communication.

• Environmental perception: The vehicle should know its environment, whether it

is stationary or moving, and it is expected to know the dynamics of the moveable

elements.

• Cooperation: The vehicle is expected to respond as required in such a way that

it reacts accordingly based on other traffic participants. The vehicle should also

communicate its intentions to those other traffic participants.

• Safety: The vehicle is expected to cause no harm or danger to its environment.

• Self-perception: The vehicle is expected to know its state at all times, it should

know its state in terms of its motion, functional capabilities, etc.

Furthermore, Vaicenavicius et al. (2020) conducted a study focused on a rigorous

modular statistical approach for reasoning with the safety of an autonomous vehicle.

The study aimed to explain the component level of the importance of the vehicle’s safety.

An iterative approach was adopted to accomplish their aim, as seen in Figure 6. In their

problem development, a system specification was provided, highlighting one important

functional requirement: the ability to stop to avoid harm or danger. This requirement

sums up a couple of requirements. Matthaei and Maurer (2015) outlined (cooperation,

environmental perception, safety, and operating – this requirement is implied since the

vehicle may need to be halted if it was operational).

Sviatov et al. (2021) described a structural and functional model of an autonomous

vehicle control system intending to generate several mathematical problems. Figure 7

shows the developed model, and this model is crucial as it provides the link between

the structure and functions of the vehicle. In addition, the study identified the control
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Figure 6: The iterative process approach (adopted from (Vaicenavicius et al., 2020)).

system of an autonomous vehicle as a functional requirement. This requirement refers

to the vehicle’s ability to control itself – hence Autonomous Vehicle (AV).

Figure 7: The structural and functional control system of an autonomous vehicle
(adopted from (Sviatov et al., 2021)).

It can be noted that this control system covers six of the functional requirements

outlined by Matthaei and Maurer (2015), leaving out the operating and mission accom-
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plishment functional requirements. However, it can be deduced that these requirements

are seen as primary, and without them, the control system will not accomplish its purpose

– to control (conduct all necessary tasks) the vehicle from point A to point B.

Badue et al. (2021) surveyed search on AVs that focused on vehicles with the au-

tonomous driving capability of level 3 and above (section 1.1 describes the levels). The

study identified two main functional requirement categories, that is, the perception sys-

tem and the decision-making system of AV. The perception system of AV consists of the

following functional requirements, (1) the vehicle should have different methods of lo-

calisation – these methods are Light Detection and Ranging (LIDAR)-based localisation,

LIDAR plus camera-based localization, and camera-based localization; (2) the vehicle

should be able to map obstacles offline – these can be accomplished by regular spacing

metric representation and varied spacing metric representation; (3) should be able to

conduct road mapping – ways to accomplish this are metric representation and topolog-

ical representation; (4) should be able to track moving obstacles – the following can be

done to track moving obstacles, traditional-based Ministry of Transport (MOT), model

based MOT, stereo vision based MOT, grid map based MOT, sensor fusion based MOT,

and deep learning based MOT; and (5) should be able to detect and recognise traffic

signalisation – these can be achieved by traffic light detection and recognition, traffic

sign detection and recognition, and pavement marking detection and recognition.

Regarding the decision making system of an AV, Badue et al. (2021) described the

following functional requirements, the vehicle should be able to (1) conduct a route

planning – the vehicle can achieve this by using the following techniques goal-directed,

separator-based, hierarchical, and bounded-hop, or combining any of the techniques; (2)

select its expected behaviour – the techniques that can be adopted for this requirement

are Finite State Machines (FSM)-based (Jo et al., 2015), ontology-based (Zhao et al.,

2017, 2015), and Markov decision process based ; (3) plan its motion – the motion

planning consists of graph search based, sampling-based, interpolating curve based such

as clothoid curves (González et al., 2015), and numerical optimisation based techniques

that can be adopted; (4) control its systems – the methods used for this are direct

hardware actuation control and path tracking.

2.1.2 Autonomous vehicle design

This section focuses on the designs of autonomous vehicles – the architecture design that

may contain system parts or components and/or subsystems’ parts or components. This

helps link the functional requirements and the physical design of autonomous vehicles

in their design stage.
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Berger (2014a) conducted a study focusing on an effective way to test AVs with

minimal cost. It proved the need to use a miniature AV (miniature AV examples can

be seen in Figure 8) instead of using simulation-based evaluation. In doing this, the

study required a design of a AV to accomplish their objective. The hardware design

of the miniature vehicle can be seen in Figure 9. Consequently, other studies were

conducted utilising the miniature AVs (Deac et al., 2018; Kannapiran and Berman,

2020). The study by Kannapiran and Berman (2020) further demarcated a testing area

to give perspective on how the testing area should look, as seen in Figure 10 – the area

simulates the real-life kind of environment for vehicles to manoeuvre. It further provided

the exploded vehicle with labelled parts (Figure11). The parts that have been provided

in Figure 11 are similar to the parts provided in Figure 7 – which is a real-life tested

control structure, and this proves that using miniature AVs to test how actual AVs might

perform in real-life can be useful. Furthermore, the use of miniature AVs has proven

useful in testing the development and improvement of self-driving (Al Mamun et al.,

2014; Berger, 2014b; Zug et al., 2014).

(a) Miniature AV example 1 (adopted
from (Kannapiran and Berman, 2020)).

(b) Miniature AV example 2
(adopted from (Berger, 2014a)).

Figure 8: The miniature AV examples
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Figure 9: The hardware architectural design for the miniature vehicle (adopted from
(Berger, 2014a)).

Figure 11: The exploded miniature self-driving miniature vehicle that shows the impor-
tant parts that make up the vehicle and its labels are provided on the right (adapted
from (Kannapiran and Berman, 2020)).
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Figure 10: The demarcated miniature driving area for testing the self-driving miniature
vehicles (adopted from (Kannapiran and Berman, 2020)).

It should be noted that the important parts in the design are the intelligent parts as

they are also used the same way in AVs that carry human beings as passengers.

Guanetti et al. (2018) and Sell et al. (2018) introduced a control system highlighting

the intelligent parts for the AVs. The control system designed by Guanetti et al. (2018)

was also designed to be a planning architecture for an autonomous vehicle that led

to optimised-based vehicle control. Furthermore, Sell et al. (2018) designed the control

system for educational purposes. The provided architecture design can be seen in Figure

35 in Appendix A. Badue et al. (2021) provided a typical architecture of an autonomous

system while conducting a survey on AVs, please see Figure 36 in Appendix A.

Autonomous vehicles need both hardware and software architecture, and they need

to be in-sync so closely to avoid any miscommunication. Most architectural designs

integrate both the software and hardware, but Sharma et al. (2021) provided a software

architecture design for autonomous vehicles (Figure 12). However, it can be seen that

there are some hardware parts labelled to support the design. This design provided
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important insight for this dissertation to assist in modelling a hardware structure that is

directly and intentionally linked to a software structure of an autonomous vehicle during

the planning and designing of the vehicle.

Figure 12: The architectural software design for an autonomous vehicle (adopted from
(Sharma et al., 2021)).

2.1.3 Autonomous vehicle performance

A number of performances can be tested or reviewed since they can all be seen as impor-

tant due to the expectations that come with autonomous vehicles. This section reviews

performances that communicate the intelligence of the vehicles. The performances are

now discussed.
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Object detection

According to Shelhamer et al. (2016) and Wu (2017), the Convolutional Neural Network

(CNN)-based approach is a promising real-time object detection method—CNN can be

defined as a multilayer neural network which can also be referred to as deep learning

architecture. It uses Artificial Intelligence (AI), inspired by the visual system of living

beings and commonly used to analyse images (Chandana, 2020; Ghosh et al., 2020).

The use of CNN-based approach was reviewed by Hnewa and Radha (2020) (though

other approaches were included in the study). It was found that the CNN-based approach

performed well in clear weather conditions – that is, the object detection performed as

expected. However, rainy weather conditions yield less accurate detection of objects

than clear weather conditions; this does not mean the method does not work in rainy

conditions or is poor. The problem that caused less accuracy in rainy conditions is the

inability to detect and locate the objects as expected at some point, which is caused

by the rain covering or obscuring the important details on the objects (Hnewa and

Radha, 2020). The main performance metric used in the test was the Mean Average

Precision (mAP)—which is said to be the most popular performance measure since 2012.

The results obtained can be seen in the table provided in Figure 13. It can be seen that

there was a noticeable change for mAP using the Faster R-CNN (also known as CNN)

and You Only Look Once (YOLO) methods—this means the accuracy to detect the

objects in rainy conditions decreases in both methods (YOLO and CNN).

Figure 13: The object detection results obtained using the CNN and the YOLO methods
for different mitigating techniques (more especially the mAP performance measure) to
show the object detection differences between the clear and rainy conditions (adopted
from (Hnewa and Radha, 2020)).

Some mitigating techniques, as in Figure 13, are defined as follows. V-AP stands for

vehicle average performance, P-AP stands for pedestrian average performance, TL-AP

stands for traffic light average performance, and TS-AP stands for traffic sign average

performance.
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Decision making

Autonomous vehicles can plan how to behave or react normally and sometimes in com-

plex situations. However, complex situations are usually more difficult to handle, and

hence mistakes occur. Complex situations in decision-making come with a dynamic

environment. The dynamic environment brings about uncertainty in data acquisition

handling – data acquisition helps in understanding an environment in real-time to plan

appropriately to avoid dangerous situations. Data acquisition and analysis in real-time

is still a challenge. (González et al., 2015)

The study conducted by Guanetti et al. (2018) (discussed in section 2.1.2) highlighted

that decision-making and motion planning of Connected and Automated Vehicle (CAV)

generated a reference trajectory for longitudinal and lateral motion. As a result, the

trajectory is expected to follow traffic rules, be feasible for lower-level controllers, be

comfortable for the passengers, and be capable of accurately following high-level direc-

tions (Guanetti et al., 2018; Paden et al., 2016).

The ultimate goal in decision-making is for the autonomous vehicle to move from

point A to point B without accidents. However, this has been an issue to achieve

(accidents still occur). Consequently, problem formulation related to decision-making

had to be conducted to minimise the number of hazardous situations and ultimately

reduce the number of accidents. Two problem planning were utilised, which are path

planning and trajectory planning ; these plannings were conducted using mathematical

modelling. The number of accidents has been proven to have reduced, but they still

occur, which is still a problem that needs great attention. (Badue et al., 2021; Paden

et al., 2016)

When considering real-life situations in road driving, there are few simple situations

– this means most situations in real-life autonomous vehicles will be involved in complex

situations more than in easy situations. This triggers and requires autonomous vehicles

to make quick, smart, and reliable decisions accurately and precisely. However, this

is still a problem in real-life situations. Though it can be noted that the decision-

making of autonomous vehicles depends on the method used to formulate the decisions

for particular situations, there can be a generic way to follow in the formulation (Figure

14). (Schwarting et al., 2018)

Sensors

The sensors play one of the most important roles in the AV’s performance—it provides

data to the perception system and then to the rest of the other systems to make the
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Figure 14: The generic decision-making formulation for autonomous vehicles (adopted
from (Schwarting et al., 2018)).

vehicle act or react as expected. Therefore, the sensors’ performance has to be very

accurate to avoid any mistakes that would injure the passengers, pedestrians, and the

environment. In Figure 15, it can be seen that these sensors use different electromagnetic

spectrums in their operations; consequently, their performance is different, and they can

be combined to do different things. The definitions of these sensors can be seen in section

1.2.

Yan et al. (2016) described the ranges of these sensors in their study that explored

the reliability of the AV’s eyes and the security of the sensors used by AVs. The ranges

are discussed as follows.

• Proximity (≈ 5m). Ultrasonic proximity sensors are designed to find obstacles

within a few meters of the AV’s body. They are mostly intended for situations

with low speeds.

• Short Range (≈ 30m). In this range, lane departure warning and traffic sign

recognition are done with forward-looking cameras, and parking assistance is done

with backward-looking cameras. Cross-traffic alert and blind spot identification

are two functions of Short-Range Radars (SRR).

• Medium range (≈ 80 to 160m). These ranges are associated with LIDAR and

Medium-Range Radars (MRR) and aid in the identification of pedestrians and

collision avoidance.

• Long Range (≈ 250m). These are Long-Range Radars (LRR) which were devel-

oped to support adaptive cruise control at high speed.
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Figure 15: The electromagnetic spectrum of AV’s sensors (adopted from (Vargas et al.,
2021)).

Furthermore, the kind and placement of sensors that allow an autonomous vehicle

to perceive its surroundings are crucial in the performance of the AV. The placement of

the sensors and their expected distance range are shown in Figure 16. The red regions

show the LIDAR coverage, the grey areas display the camera coverage surrounding the

vehicle, the blue areas show the coverage of short-range and medium-range radars, and

the green areas show the coverage of long-range radar.

With these sensor placements and range descriptions in place, it is necessary to de-

termine what factors they can detect. Ignatious et al. (2022) and Yeong et al. (2021)

provided a comparison of some of the sensors, which looked the same, except that Ig-

natious et al. (2022) did not specify if the fusion of the sensors concerning the range is

possible or not. The comparison by Yeong et al. (2021) can be seen in Figure 17. Fur-

thermore, before Ignatious et al. (2022) constructed their comparison table (provided in

Appendix B), they firstly tabulated different types of sensors with different properties

that can be used to select the best performing sensor(s) (these can be found in Appendix

B).

In addition, Vargas et al. (2021) conducted a study that focused on the effects of

various meteorological conditions (such as precipitation, fog, lightning, etc.) on the per-

ception systems of AVs. The most popular AV sensor and communication kinds, includ-
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Figure 16: The sensor placement overview on AVs with regards to the range detection
for perception system (adopted from (Ignatious et al., 2022; Yan et al., 2016; Yeong
et al., 2021)).

ing Radio Detection and Ranging (RADAR), LIDAR, ultrasonic, camera, and Global

Navigation Satellite System (GNSS), were the main focus. Therefore, a comparison of

these sensors was conducted (excluding the GNSS); please see Figure 18.

In consideration of Figure 17, the ✓ symbol denotes that sensors operate completely

under specific conditions, the ∼ symbol denotes that sensors perform reasonably well

under specific conditions, and the ✗ symbol denotes that sensors do not operate well

under the specific factor relative to other sensors.

There are different kinds of AV sensors (RADAR, LIDAR, ultrasonic, camera, GNSS,

etc.), and there are different types of sensors of the same AV sensor kind. Therefore,

different AV sensor kinds’ performance depends on their types.

2.2 Inherent complexity of autonomous vehicles

The inherent complexity of an AV refers to what makes it difficult for the vehicle to

understand, especially in its design, to comply with certain conditions in a certain given

period. Furthermore, the inherent complexity of an autonomous vehicle also refers to
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Figure 17: The AV sensor comparison (adopted from (Yeong et al., 2021)).

Figure 18: The comparison of AV sensors based on their characteristics (adopted from
(Vargas et al., 2021)).

how difficult it is for an autonomous vehicle to be deployed in a certain country, city,

or province. This part of the literature review focuses on both aspects regarding the

inherent complexity of an autonomous vehicle. Literature research was conducted on

this subject matter, and the results are discussed in sections 2.2.1 through 2.2.3. Please

note that this section answers Research Question 3 outlined in section 1.8.
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2.2.1 Technological competency

In consideration of Africa’s technology, the Fourth Industrial Revolution (4IR) is not

evident (Ndung’u and Signe, 2020), and this is not a good sign as it must be evident since

it brings about the advanced lifestyle that every continent needs. Moreover, the emerging

technology that comes with the autonomous vehicle is complex and has risks associated

with it, that is, geopolitical and socio-economic risks (Tan and Taeihagh, 2021). With

this in consideration, any continent, country, province, or city that wants to introduce

autonomous vehicles will experience difficulties, especially the African continent since it

lacks the 4IR technology, and the technology associated with the autonomous vehicle is

getting more advanced than the 4IR technology. Therefore, technological incompetency

in continents such as Africa is an inherent complexity that needs close attention.

2.2.2 Sensor functionality issues

Autonomous vehicles can self-drive since it has an embedded AI technology in them,

specifically, the sensors that have been programmed to function in a certain way. All

the decisions made by a fully autonomous vehicle are directly from the data gathered

by the sensors and analysed. Therefore, the sensors must function as expected to avoid

obvious disasters (accidents). Now, if any of the sensors in an autonomous vehicle fail

or provide unclean data, then that will be a big problem, and that is one of the inherent

complexity found in the autonomous vehicle – the sensors do gather dirty data when

there is a bad or abnormal weather condition (such as snow, heavy rain, etc.), this can

occur in any sensor category (see Table 2 for sensor categories). Human drivers also

experience similar problems with bad or abnormal weather conditions. (Ma et al., 2020)

There are three categories that autonomous vehicle sensors fall under as described by

Ma et al. (2020); please see Table 2, which provides these categories and their respective

definitions.

There is a security problem with the sensors—sensors are being attached using a

phenomenon called physical channel as stated by Yan et al. (2016). Using physical

channels is the key distinction between sensor attacks and cyberattacks. Most of the

time, sensor assaults use the same physical channels as the targeted sensor, which might

tamper with or alter sensor results. Falsified readings could have unintended system

effects since sensors are typically trusted and categorised as the lowest control system

layers. Further, Sensor attacks are less advantageous than cyberattacks because they

require more technology, have a longer exploitation time, and require a higher level of

knowledge. Distinct sensors may rely on very diverse physical principles, which necessi-
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Table 2: Autonomous vehicle sensor category definitions

Category Definition

Self-sensing Measures the current state of the geo-vehicle using proprioceptive
sensors. These include the autonomous vehicle’s acceleration, ve-
locity, and steering angle.
Note: Proprioceptive information is usually determined by units
such as Inertia Measurement Unit (IMU)s and/or odometers, which
are pre-installed.

Localisation The determination of the autonomous vehicle’s location on a global
and local scale by using tools such as Global Positioning System
(GPS) and dead reckoning by IMU readings

Surrounding sens-
ing

Perceives road markings, road slopes, weather conditions, traffic
signs, and the state of obstacle (such as other surrounding vehicles)
by using exteroceptive sensors

tates using quite different strategies to combat them, resulting in low transplantability.

(Yan et al., 2016)

Therefore, to combat this type of attack, Yan et al. (2016) examined some of the

sensors by analysing jamming and spoofing attacks in their physical channels. In the

jamming attack, the sensors are made to withstand environmental noise that occurs

during typical working circumstances. In the spoofing attack, when sensors are positioned

incorrectly, it is possible to get real physical signals from the incorrect source. All this was

done so that the vehicle’s sensors might result in crashes and jeopardise the security of

AVs. Consequently, Yan et al. (2016) provided hardware and software countermeasures

that may strengthen sensor resilience against the attacks to relieve the problems.

2.2.3 Accident accountability

Accidents are inevitable, especially when human beings are involved. Furthermore, ac-

countability when it comes to accidents is an issue, and that is why legal framework

and regulations are integrated – this is one of the most important requirements for au-

tonomous vehicles’ deployment (Singh and Saini, 2021). The main question in this situ-

ation is who should be held liable for either fatal or none fatal accidents? This question

does not have a straightforward answer. According to Borenstein et al. (2019), if there

was an accident that involves an autonomous vehicle, it does not make sense that the

technology itself can be held responsible but the designers, car dealer(s), manufacturers,

and/or other people that could be identified as guilty. This claim supports what Mackie

(2018) stated, that is, human drivers should remain liable for the accident depending on

the automation installed in the vehicle. For example, suppose the automation is in level

4 or 5 (highly or fully automated). In that case, the plaintiffs are responsible for identi-
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fying who should be held accountable, which could be the manufacturers, maintainers,

or who contributed to the autonomous vehicle.

2.3 Reliability analysis

To define what is meant by reliability analysis, the term reliability should be defined.

Reliability is defined as the ability of a system to accomplish a task required under the

conditions provided for a certain time interval. Although the term reliability can be

used to refer to a product’s or system’s overall performance, in engineering disciplines,

reliability refers to a specific measure that can be quantitatively evaluated. Since several

reliabilities can be calculated for a systems or subsystem, it is crucial to identify the

various jobs that make up the system or subsystem. Reliability can be calculated for

each task independently because a subsystem may have many tasks. (Ahmadi et al.,

2020; Bastidas-Arteaga and Soubra, 2014)

Numerous analyses used to assess and enhance the quality of goods, services, and

systems are collectively referred to as reliability analysis. One could think of reliability

as a potential for equipment failure. Data is therefore required to calculate equipment

failure rates. The Time Between Failures (TBF) and the Time To Repair are the two

most frequently required pieces of data to calculate dependability (TTR). According to

the definitions given above, the probabilistic behaviour of an item’s reliability can be

summarised as follows (Ahmadi et al., 2020):

Pr(T ≤ t) =

∫ t

0
f(t) dx = F (t) for t ≥ 0 (2.1)

While (t) is the probability density function of the time between failures, F(t) rep-

resents the likelihood that the item will fail from time zero to t. The reliability can be

expressed as follows given that F(t) is a function of uncertainty:

R(t) = 1− F (t) =

∫ ∞

t
f(t) dxR(t) = Pr(T ≤ t). (2.2)

The failure rate is a crucial component of reliability analysis because it shows the

likelihood that a component will fail over the course of its lifespan, and it is defined as

follows:

h(t) =
f(t)

R(t)
. (2.3)

To perform an analysis of the dependability of engineering systems, numerous tech-
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niques have been developed. These techniques are especially helpful for analysing more

intricate engineering configurations than those with standard reliability. The following

are the most significant and widely utilised reliability analysis techniques (Ahmadi et al.,

2020; Dhillon, 2009):

• Statistical analysis method—this method typically performs reliability assessment

for both repairable and non-repairable systems using MTBF and MTTF, respec-

tively.

• Failure mode and effects analysis method—this is a method for analysing data that

leverages the pre-occurrence prevention law to find possible sources of failure. By

preventing failures, this strategy aims to increase security.

• Markov method—The Markov model includes a list of the system’s potential states,

potential routes between them, and the parameter rates governing those transi-

tions. Transition typically entails failures and repairs in reliability analysis. Each

state is typically depicted as a bubble when a graphical Markov model is given,

with arrows denoting the direction of transition between the states.

• Fault tree analysis—A top-down logical and graphical representation illustrating

the failure and its causes is used in the fault tree analysis method. A set of signs

and symbols are used to depict the connections between the failures and their

causes in the fault tree analysis diagram, which displays all system, subsystem,

and collection faults.

2.4 Chapter summary

Considering the discussed findings presented in this chapter, autonomous vehicle state-

of-the-art highlighted functional requirements as the starting point when designing.

Though there is a precise integration between functional requirements, physical design,

and the related/expected performance of the vehicle, it is essential to start with the

requirements, followed by design, and finally, the performance. When considering the

vehicle’s designs, they can vary, and this dissertation analysed all the provided designs so

that an optimal and standard design is provided. The vehicle’s performance is assessed

when the vehicle’s prototype has been fully designed and built. Additionally, this disser-

tation reviewed essential performances related to the vehicle’s intelligence. Furthermore,

though different kinds of sensors can have various performances, it is still necessary to
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identify and select sensor types that yield the best performance for more efficient sensor

data gathering.

The complexities that can be found in autonomous vehicles can threaten people’s

safety, but they are controllable and manageable. The two main issues discussed in

this chapter that poses threats are technological inconsistency and sensor functionality

issues. Sensor functionality issues, for example, pose a significant threat if there is a

functional error such that the decision made by the vehicle is incorrect due to the wrong

readings by the sensor(s). Such error could cause a fatal accident – for example, if the

autonomous vehicle detects a pedestrian as not moving. Still, they were moving, and

the vehicle was supposed to stop at that moment.

Reliability analysis was discussed, there are a lot different kind of reliability analysis

methods that can be utilised. This dissertation maintained the reliability definition

provided in this chapter, and an analysis utilised was the statistical analysis method as

discussed in Chapter 3.
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Chapter 3

Research methodology

The purpose of this chapter is to provide an in-depth methodology that was followed

during the cause of this study. Two research methodologies were adopted for this disser-

tation, which is (1) Design Science Research (DSR) and (2) Systems Thinking method-

ologies. Two methodologies were utilised in this dissertation because the theories and

methods utilised needed both methodologies in terms of how to understand systems

(using systems thinking methodology) and how to come up with an appropriate model

(using DSR methodology). A unification of these methods was therefore established, as

discussed in this chapter.

Looking closer first at DSR methodology, Goecks et al. (2021) and Aken (2004)

defined DSR as an artifact-oriented discipline that seeks to either design a solution to

an existing problem or a new problem. The artefact associated with this dissertation

is the reliability model that was created to provide explanatory solution to an existing

problem of complexity as described in section 1.6. The approach itself is best described

in the book by Dresch et al. (2015) (see Figure 19 for details with regards to the actual

steps with explanations).

Some steps shown in Figure 19 were utilised in this dissertation; that is, some of the

steps were adjusted to suit this dissertation’s actual methodology that was followed (see

Figure 20). In addition, the following steps were omitted or modified to support the

methodology in this dissertation.

• Systematic literature review (modified). This step was modified to Literature

review because a non-systematic literature review was conducted in this disserta-

tion.

• Identification of the artefacts and configuration of the classes of prob-
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Figure 19: The DSR methodology with detailed steps (adapted from (Dresch et al.,
2015)).

lems (modified). There is no multiple class of problems that were considered.

Hence, renamed to Identify the artefacts.

• Proposition of artefacts to solve a specific problem (omitted). No multiple

artefacts were proposed for this dissertation; hence, this step was irrelevant.

• Generalisation for a class of problems (omitted). There is only one class of

problem considered in this dissertation.

Therefore, the adjusted DSR methodology followed by this dissertation with the

above-mentioned changes can be seen in Figure 20. Furthermore, the added field (in

Figure 20) named outputs shows the corresponding outputs provided by this document

to address all the steps of the methodology.
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Identification of
the problem

Problem awareness Literature
review

Identify the
artefacts

Design the
artefact

Develop the
artefact

Evaluate the
artefact

Clarification of
learning achieved

Conclusions

Communicate the
results

The problem is that there is an issue of
complexity associated with autonomous
vehicles (autonomous in levels 4 and 5)

Literature review was fully
conducted in Chapter 2.

A model was needed to be
developed.

The used theories and methods to design
the model are systems engineering (using
life cycle of a system -- Needs Analysis

phase), reliability engineering, and
artificial intelligence. Find more

information in Chapter 5

The model development
was conducted in Chapter

5.

The evaluation of the model
is shown in Chapter 6.

Findings and lessons learnt are
provided in Chapter 6 and 7

The conclusion was can be found
in Chapter 6 and 7.

The results were communicated
in Chapter 6

OutputsAdjusted DSR Methodology Steps

Figure 20: The adjusted DSR methodology followed by this dissertation.
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It should be noted that the methodology depicted in Figure 20 is iterative. During

the evaluation of the artefact, corrections can be made by going back to previous steps

to modify them as needed. Furthermore, when conducting the results and conclusion of

the research, they should be made sure to address the identified problem.

Looking at the systems thinking approach, the definition provided by Arnold and

Wade (2015) is systems thinking is a collection of complementary analytical skills that

helps to get better at recognising and comprehending systems, forecasting their behaviours,

and coming up with changes to them that will have the intended results and these abilities

function as a system. Systems thinking must have aspects such as interconnectivity,

feedback loops, stocks and flow, non-linearity relationship, modelling, and it must be

system-related (Figure 21) (Arnold and Wade, 2015).

Figure 21: The systems thinking framework (adopted from (Arnold and Wade, 2015)).

Provided that the systems thinking approach is also a good approach to be utilised

in the systems engineering discipline (this dissertation focuses mainly on systems en-

gineering and Artificial Intelligence (AI) theories as discussed in the previous chapters

– Chapter 1 and 2). Consequently, the integration (or unification) of this approach

and DSR methodology was established. Furthermore, the integration was expanded by

adding the framework (Figure 22) that was created using the application of systems

engineering theory (adopted from Dresch et al. (2015))—which was developed to fulfil

the steps in Figure 19 that are as labelled Design of the selected artefact, development
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of the artefact, and Evaluation of the artefact.

Figure 22: The solution approach framework using the systems engineering theories
(application of Reliability Engineering, AI/Robotics, and Needs analysis – the life-cycle
of a system).

In Figure 22, it can be noted that the first part of the framework (the top part with

inputs and outputs) is the Needs analysis phase of the system engineering life cycle of a

system (discussed in depth in section 1.4). To apply this part of the framework (mainly

the inputs), systems thinking methods had to be adopted. Then the internal analysis
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in the needs analysis was created (the second part of the framework). The link between

the two parts is initially established with the black-dotted line; therefore, the first step

to the analysis is the requirement analysis. The last step is the needs validation which

is directly linked to the application of the reliability analysis. The complete analysis of

these phases was done in Chapter 3.1.

Furthermore, the integration of the DSR methodology, systems thinking approach,

and framework can be seen in Figure 23.

The purple dotted lines represent the indirect and strong link between the steps

conducted in the DSR methodology. The relationship can be interpreted as follow:

• [Purple Dotted Links] The DSR steps that have this type of link require that

particular systems thinking stage to be completed first before the step can be

fulfilled. For instance, the step labelled develop the artefact from the DSR steps

is indirectly completed by conducting modelling the system conceptually (it can

be noted that this DSR step is also connected to a solid green line, which is

directly completed by conducting reliability analysis (the evaluation of the model)

and providing system operational effectiveness, the output of conducting needs

analysis).

The solid green lines represent a strong and direct relationship between the solu-

tion approach framework and the DSR methodology steps. The relationship can be

interpreted as follows.

• [Green Solid Links] The DSR steps are directly fulfilled or completed by the

linked outcomes from the solution approach framework. For instance, the step

labelled evaluate the artefact from the DSR steps is directly completed by providing

systems’ capabilities written out starting with the words the ability to, which is the

output of conducting needs analysis.

The main methodology is the adjusted DSR; however, the integration was necessary

for completing the dissertation, as explained earlier in the chapter. Therefore, the ap-

plication of the integrated methodology (Figure 23) as it appears in this dissertation is

outlined as follows.

• Step 1: Identification of the problem. The identified problem can be seen in

section 1.6—the problem of Autonomous Vehicle (AV) complexity.

• Step 2: Literature review (and problem awareness). The literature review

was conducted in Chapter 2.
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Figure 23: The integration of DSR methodology, systems thinking approach, and the
solution approach framework.

• Step 3: Identify the artefact. The identified artefact in Chapter 1—the reli-

ability analysis (and functional analysis) model. Systems thinking was integrated

into this step by following steps 1 to 6 of the systems thinking method in Figure
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20.

• Step 4: Design the artefact. The artefact was designed in Chapter 3.1 through

Chapter 3.1.2. Systems thinking was integrated into this step by following steps 1

to 6 of the systems thinking method in Figure 20.

• Step 5: Develop the artefact. The artefact was developed in Chapter 3.1.2.

Systems thinking was integrated into this step by following step 7 of the systems

thinking method in Figure 20.

• Step 6: Evaluate the artefact. The evaluation of the artefact was conducted

using RStudio and Anaconda (Python) programming platform, which can be seen

in Chapter 4.

• Step 7: Clarification of learning achieved. The lessons learnt from the eval-

uation are in Chapter 4.

• Step 8: Communicate the results. The results were communicated in Chapter

4.

• Step 9: Conclusions. The conclusions related to lessons learned that were drawn

are in Chapter 4.

The problem and requirements analysis whereby the basis and foundation of devel-

oping the model using the described methodology can be seen in section 3.1.

3.1 Research approach

The purpose of this section was to provide the approach taken to address the objectives

outlined in section 1.7. Furthermore, the related models (functional and physical) were

developed and discussed.

3.1.1 Functional and physical elements modelling

This section focuses on the system (the Autonomous Vehicle (AV)’s system) require-

ments, that is, the functional and non-functional requirements of the system. Functional

requirements are the tasks or processes that the system must do or perform, and the

physical requirements are the behavioural properties that a system must exhibit. Such as

physical and technical operating environment, performance, legal requirements, and se-

curity (Kossiakoff et al., 2011). The solution approach framework (Figure 22, in Chapter
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3) consists of the processes that were deployed in this chapter to provide the functional

and physical requirements. Figure 24 presents these processes (shaded in peach colour).

Figure 24: The functional and non-functional requirement processes.

The processes in Figure 24 are now discussed relating them to the AV’s state-of-the-

art design and reviews (as discussed in section 2.1). The definitions for performance and

critical analysis processes were described in this chapter, but the other four processes

were described in section 1.4.

3.1.1.1 Requirement analysis

The requirement analysis produces two sets of outcomes, the systems capabilities and

the operational objectives.

Firstly, the systems capabilities (the capacity of a system to carry out a specific

action or produce a desired result under a specific set of circumstances or conditions)

identified are related to the intelligence of the AV system. The conditions that a level

4 or 5 AV should meet using the intelligent components or subsystems are: (1) move

the vehicle from point A to B; (2) control the vehicle (steer, slow down, accelerate,

etc.)—this condition is the most complicated as it also involves obeying traffic rules and

introduces ethics when an accident occurs; (3) keep passengers safe; and (4) arrive at

the destination on time. For these conditions to be fulfilled, the following intelligent

capabilities were identified.

1. Ability to combine a range of sensors, including Global Positioning System (GPS),

odometry, radar, Light Detection and Ranging (LIDAR), Sound Navigation Rang-

ing (SONAR), thermographic cameras, and inertial measurement units, to sense

their environment.
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2. Ability to control systems and analyse sensory data to determine the best routes

to take, as well as barriers and essential signage in a more advanced manner.

3. Ability to detect lanes using a camera system to read the marking on the road and

keep the vehicle within its right (or safe) lane.

4. Ability to make safe decisions based on how other vehicles surrounding the AV

are behaving using a vehicle to vehicle communication technique. Whereby the AV

must be aware of the position, velocity, and trajectory of any close vehicles.

5. Ability to use a decision-making system built into it (the AV) to make informed

decisions, such as reacting when other vehicles behave abnormally, to prevent ac-

cidents.

Secondly, the operational objectives focuses on the goals of a technology-driven de-

velopment (in this case) which must include an operational concept. Therefore, the

operational objectives for the AV should be in-line with the following aspects.

1. The final state of the operational environment or scenario should be addressed in

the objectives; this concentrates on what the system will achieve in a broad sense.

2. The system’s goal and what constitutes a need’s satisfaction should be covered in

the objectives.

3. When taken as a whole, the objectives explains the why for the system’s necessity

(why is this system needed).

4. The verb provide, which is the infinitive in most objectives, is commonly used but

it is not a necessity.

With these four aspects outlined, the operational objectives associated with AV

(gathered from the literature provided in Chapter 2) are as follows.

• Operational objective 1 Provide advancement to vehicles to bring about the new

era of smart cities and integration of Artificial Intelligence (AI) to vehicles.

• Operational objective 2 Transport human beings from one point (location) to

another without any harm and on time.

Literature does not explicitly provide these operational objectives, they are a result

of the requirement analysis on the literature provided in Chapter 2. Now, with the

operational objectives in place, the functional analysis was conducted and the functions

needed to accomplish these objectives were provided.
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3.1.1.2 Functional analysis

The product of conducting this analysis are the functional requirements that describes

the actions that should be taken to fulfil the system-wide operational objectives. These

requirements were extracted from the literature discussed in Chapter 2, mainly from

Matthaei and Maurer (2015), Vaicenavicius et al. (2020), and Badue et al. (2021). The

functional requirements identified and discussed in this dissertation focused on two type

of systems that consists of the intelligence that is integrated in the AVs. These systems

are, the perception system—the vehicle should always know how to identify its environ-

ment, and the decision-making system—a system that deals with what the AV should

do and how it should do it. The functional requirements are outlined in Table 3.

Table 3: The AV system-wide functional requirements related to the intelligent compo-
nents and subsystems.

System type Functional requirement

Perception
1. The system should be able to perform localisation by using dif-
ferent methods.
2. The system should be able to map obstacles offline using metric
representation methods or any other available method.
3. The system should be able to conduct road mapping using meth-
ods such as metric representation and topological representation.
4. The system should be able to track moving obstacles—several
methods are used to accomplish this task.
5. The system should be able to detect and recognise traffic
signs—traffic light detection and recognition, traffic sign detection
and recognition, and pavement marking detection and recognition
are the commonly used methods.

Decision-making
1.The vehicle should be able to plan route using goal-directed,
separator-based, hierarchical, bounded-hop, or any combination of
the abovementioned techniques. It needs a lot of data and data
mapping might have to be executed.
2. The vehicle should be able to select its expected behaviour when
faced by a situation, regardless of the complexity of the situation.
3. The vehicle should be able to plan its motion.

4. The system should control the vehicle using direct hardware
actuation control and path tracking.
5. The vehicle should be able to know its state at all times (self-
perception) so that it reacts appropriately.
6. The system should be able to learn from previous encounters so
that it can react more quickly and naturally in complex situations—
this triggers the need for extensively integrating machine learning.

It can be argued that a control system is crucial and is needed in AV, which is correct.
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However, in this dissertation the control system was concluded to be a subsystem of the

decision-making system since the control system’s actions are only executed whenever a

certain decision has been made by the decision-making system.

With the functional requirements outlined, the physical requirements of AV can also

be provided, however, it is more effective to conduct performance and critical analysis

beforehand. This will allow the recommended physical requirements to be the best

selected requirements based on how and if the functional requirements were met. It can

be noted that this approach would still work the same if it was applied to a non-existing

system or a newly created system. This is due to the fact the newly created system

would need to have parts or components that best fit the new system and will provide

optimal system performance. This means components or parts will have to be evaluated

to test their performance before they are utilised.

3.1.1.3 Performance and critical analysis

The performance this dissertation focused on is directly linked to both operational ob-

jectives discussed above in this chapter. Therefore, if the AVs obey traffic rules, that

means the vehicle is capable of meeting the operational objectives that were discussed

in the operational objectives’ phase. This is due to the fact that if an AV is capable of

transporting a passenger from point A to B without any harm to anyone or anything

(successfully protecting both its passenger(s) and its external environment), and doing

that consistently, it can be deduced that it obeys all the traffic rules. This will allow

AVs to be commercialised to the cities that are capable of providing what these vehicles

require to function as desired. Further, this provides the opportunity for cities to have

more advanced vehicles and hence moving to or closer to a smart city era, depending on

the technological state of that particular city.

Consequently, the reliability of intelligence of AVs was conducted focusing on some

of the vehicle brands that have worked on the AV concept, manufactured, and tested

them. The analysis of these brands based on the categories in Table 4 is provided in

section 3.1.2.1. It should be noted that Table 4 provides two types of K53 traffic rules

as described by Hoole (2013), though there are three types of traffic rules described by

Hoole (2013). This dissertation focused only on two types as the third rule type focuses

on knowing the controls of a vehicle and an AV is assumed to know what controls it has

and how to use them.
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Figure 25: The summary of road signs, signals, and markings (adopted from Hoole
(2013)).

Table 4: Category descriptions that focus on checking the reliability of AV with respect
to traffic rules

Category type Traffic rule

Road signs, signals, and

markings—the purpose is to safely

regulate traffic flow, warn drivers or

motorists of the circumstances on

the road ahead, provide useful and

necessary information, and provide

guidance on routes and destinations.

Figure 25 provides the summary of the sym-

bols and short descriptions of each symbol

type. The following is the summary of what

the AV should do or is expected to do regard-

ing the types of symbols or sign groupings.

Rule 1. Regulatory signs—must obey.

Rule 2. Traffic signals—must obey.

Rule 3. Warning signs—must heed to avoid

potential danger.
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Rule 4. Hazard marker plates—must heed to

avoid potential danger.

Rule 5. Information signs—must understand

to react appropriately.

Rule 6. Guidance signs—must be built in the

AV, for instance, using a GPS.

Rule 7. Tourism signs—not important sim-

ply because AVs must have built-in GPS

which they can use to navigate to a desired

tourist’s destination.

Rule 8. Diagrammatic signs—must heed to

select an appropriate lane.

Rule 9. Road surface markings—must obey.

Rule 10. Hand signals—must obey if it is

traffic officer, and must heed if it is other mo-

torists.

Rules of the road—the purpose

of the rules of the road is to

control traffic, provide safety, and

safeguard each individual’s rights

to use the road. Speed

restrictions, lane discipline,

parking, and lighting all have

regulations that must be adhered

to. Following the traffic laws is

required, and doing so will

significantly lower the likelihood

of accidents, injuries, and

fatalities on the roadways.

The following must be obeyed.

Rule 1. The vehicle must drive on the correct

side (left or right) of a two-way road.

Rule 2. The vehicle can travel on the right

or left side of a one-way road if it is safe to do

so.

Rule 3. The vehicle must prioritise a traf-

fic officer’s instructions above the rules of the

road and road signs.

Rule 4. The vehicle must keep a following

distance that is appropriate and prudent, tak-

ing into consideration the speed of the vehicle

being followed, the amount of traffic, and the

state of the road.

Rule 5. Speed limit (in km per hour) of 60,

100, and 120 for when the vehicle is on ur-

ban area, outside urban area, and on freeway,

respectively.
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Rule 6. The vehicle should not cross over

the solid driving marking (yellow or white in

colour).

Rule 7. The vehicle should drive over to the

left lane and not accelerate when it is being

overtaken.

Rule 8. The vehicle should always signal its

intentions in time before it executes it, and it

should execute only when it is safe to do so.

Rule 9. The vehicle should not stop on the

road, unless an accident had to be avoided, a

traffic officer or road sign(s) has instructed, or

it was caused by an unavoidable cause (such

as a mechanical problems).

Rule 10. At a roundabout or mini-circle, the

vehicle must give way to other vehicle that

approach from the right (the other vehicle(s)

should be already approaching from the right

or it stopped on the yield sign first). The ve-

hicle should know when to yield in other inter-

sections as well (such as four-way, three-way,

etc.).

Rule 11. The vehicle may not enter a traffic

lane or cross it if it is likely to cause a danger-

ous situation or disrupt the flow of traffic.

Rule 12. The vehicle should not turn if it

will obstruct or cause danger to other traffic.

Therefore, before turning, the vehicle must

move to the right lane, indicating necessary

intentions and turn when it is safe to do so

Rule 13. The vehicle should never park on

the side-walk or the verge, therefore, it should

park within a designated parking space (see

more parking rules in Figure 26).

48

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



Rule 14. The vehicle should always give

way to the emergency vehicles, rescue vehi-

cles, traffic officers vehicles, etc., when they

signal with the siren.

Rule 15. The vehicle must stop for pedestri-

ans on, or about to enter, a pedestrian cross-

ing on its side of the road, or if it is involved

in an accident.

Rule 16. The vehicle must make use of hoot-

ers for safety reasons only, and the hooter

must be audible enough for a distance of at

least 90 meters. Furthermore, the tone of the

pitch should not vary for any reason

Rule 17. The vehicle must have headlights

that are white, they should be switched on

between sunset and sunrise, and they should

be switched on if visibility is not clear in a

distance of greater or equals to 150 meters.

Rule 18. The vehicle may not drive in a

way that endangers the lives of other drivers,

pedestrians (the vehicle will always be liable

if it hits a pedestrian regardless of who had

the right to way in the road), or damage any

property.

Rule 19. The vehicle should ensure that

the passenger(s) fasten the seatbelts before it

starts moving.

Rule 20. The vehicle should stop immedi-

ately after an accident and if someone died

or got injured in the event then the vehicle

should not move without a traffic officer’s au-

thorisation.

The traffic rules that are provided in Table 4 were carefully selected to assess the

reliability of the AVs that have already been manufactured. However, these rules can also
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Figure 26: Some of the parking rules the vehicle should always adhere to (adopted from
Hoole (2013)).

be used for AVs that are not yet manufactured (whereby the assessment of these rules for

non-manufactured vehicles can be done through simulation modelling, or prototypes—

like miniature vehicles, etc.). With these rules in place, section 3.1.2.1 provides the

analysis indicating which rule(s) were passed, failed, and/or not tested during the testing

of the AVs.

Furthermore, looking at the quality of the AV’s performance, firstly, the sensors of the

vehicles should be chosen in such a way that optimal performance is achieved. Secondly,

an appropriate and optimal fusion of sensors should be established. Thirdly, the data

(provided by the sensors) should be interpreted correctly. Fourthly, the system should

plan on what should be done on what the sensors have read in. Finally, the correct

manoeuvre should be executed. With all this in place, it can be noted that all other

stages or operations of the intelligence of AV depends on the sensors and the quality of

data they provided. Therefore, sensors that were specified by Ignatious et al. (2022),

Vargas et al. (2021), and Yeong et al. (2021) were used to select the best three for camera

and LIDAR, and best two for Radio Detection and Ranging (RADAR) (Table 5, 6, and

7).

Table 5: The top three best performing LIDAR sensor in terms of vertical Field-of-
View (FOV), horizontal FOV and Range.

LIDAR sensor vertical FOV (°) horizontal
FOV (°)

Range (m)

Velodyne Alpha Prime 40 360 245

Velodyne VLP-32C 40 360 200

Velodyne RoboSense 40 360 200
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Table 6: The top three best performing Camera sensor in terms of lens’ baseline–it
provides optimal view range, Range, and lenses resolution.

Camera sensor Baseline (mm) Range (m) Resolution (MP)

Intel D15 55 10 3

RealSense D435 50 10 3

Framos D435e 55 0.2–10 2

Table 7: The top three best performing RADAR sensor in terms the overall frequency.

RADAR sensor Overall frequency (Giga-Hertz (GHz))

Smartmicro UMRR-96 T-153 79 (usually in 77 to 81)

Continental ARS 408-21 76 to 77

Additionally, the fusion of sensors were analysed to identify the best fusion option

of the LIDAR, camera, and RADAR sensors. A sensor fusion relates to sensors being

fitted into one AV for optimal results in terms of performance (Vargas et al., 2021; Yeong

et al., 2021). Yeong et al. (2021) and Vargas et al. (2021) already provided analysis of

these sensors, however, in this dissertation the fusion of lesser sensors (fusion of only

two sensors) was also analysed. This was necessary since these sensors are expensive

(especially the LIDAR and RADAR). According to the Neuvition website, Velodyne

64-line LIDAR is $80,000 (≈R1.5 million). The Smartmicro RADAR sensor is £2,725.00
to £2,995.00 (≈ R55,712.92 to R61,233.10) according to Level Five Suppliers website.

The Continental ARS 408 is between R729.06 and R13,155.87 according to AliExpress

website. Finally, the Intel D415 costs $317.95 (≈ R5,750.39), RealSense D435 costs

$317.50 (≈ R5,742.25), and Framos D435e costs €945.10 (≈ R16,861.39) according to

Sparkfun, B & H Photo Video Audio, Mouser Electronics websites. It can be argued

that the camera sensor is necessary since it is the only sensor with the highest image

resolution and can see colour, the RADAR is also a necessary sensor as it provides

the longest range detection. Therefore, the analysis of two sensor fusion (camera and

RADAR) and three sensor fusion (camera, LIDAR and RADAR) was conducted as seen

in Table 8 and 9. The goal was to check if the two sensor fusion would meet the minimum

requirement of fusing all factors or features of each sensor so that they produce optimal

results.

Considering Figure 17 and 18, the sensor fusion analysis was conducted. Sensor fusion

aims to provide insight into which sensors can be exploited for automotive industries still

new in developing AVs. To perform the analysis, the symbols seen in Figure 17 were

redefined as follows.
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✗ : 0
∼ : 0.5
✓ : 1

Table 8: The comparison of AV sensor fusion based on the comparison provided by
Yeong et al. (2021).

Factors Camera LIDAR RADAR 2-Fusion 3-
Fusion

Range 0.5 0.5 1 1.5 2

Resolution 1 0.5 0 1 1.5

Distance Accuracy 0.5 1 1 1.5 2.5

Velocity 0.5 0 1 1.5 1.5

Colour Perception
(traffic lights etc.)

1 0 0 1 1

Object Detection 0.5 1 1 1.5 1.5

Object Classification 1 0.5 0 1 1.5

Lane Detection 1 0 0 1 1

Object Edge Detection 1 1 0 1 2

Illumination Conditions 0 1 1 1 2

Weather Conditions 0 0.5 1 1 1.5

Total 13 19

Good Fusion (≥ 11) Yes Yes

It can be noted that the last row in Table 8 assessed if the fusion of two or three

sensors is good or not. A criteria of ≥ 11 was used on the ground that there are 11

factors that were assessed and all values in blocks representing 2-Fusion and 3-Fusion

are ≥ 1. Furthermore, to further conduct the analysis of the comparison seen in Figure

18, the keywords (such as Good, Yes, etc.) were redefined as follows.

Poor, Yes: 0
Average: 0.25

Good, 200m: 0.5
Very good, No, 250m: 1

The criteria used in the last row in Table 9 is the same as the one used for Table 8.

However, a value of ≥ 6 was used instead of ≥ 7 since there are seven rows, this is due

to fact that the third factor tested consisted of zeros. Therefore, both sensor fusions will

always result in a zero (sensor fusion is always poor).
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Table 9: The comparison of AV sensor fusion based of the comparison provided by
Vargas et al. (2021).

Factors Camera LIDAR RADAR 2-Fusion 3-
Fusion

Range 0.5 0.5 1 1.5 2

Resolution 1 0.5 0.25 1.25 1.75

Affected by weather
conditions

0 0 0 0 0

Affected by lighting
conditions

0 1 1 1 2

Detects speed 0 0.5 1 1 1.5

Detects distance 0 0.5 1 1 1.5

Interference susceptibil-
ity

1 0.5 0 1 1.5

Total 6.75 10.25

Good Fusion (≥ 6) Yes Yes

Looking at the results in Tables 8 and 9, automotive industries in Africa should opt

for two sensor fusions. One LIDAR sensor is more expensive compared to RADAR and

camera sensors combined. Therefore, considering a two-sensor fusion would be more

beneficial as a start.

3.1.1.4 Physical analysis

This phase focuses on the physical definition of the needs and requirements analysis as

defined in section 1.4. When considering the nature of the AVs, more specifically on

what makes it autonomous, the primary aspect is the components that gathers data—

the sensors. Furthermore, when we consider the AV architectures or structural designs in

Figures 12 and 35—the only physical components (that are directly linked to automation

and the intelligence of the AVs) are the sensors, the rest of the structures are the softwares

that trigger controls.

Consequently, the analysis of sensors provided in the Performance and critical analy-

sis phase was utilised, and a recommendation of an efficient AV structural and functional

design was developed (Figure 27).

3.1.1.5 Needs validation

In this phase, typically the aim is to assess the fundamental validity of the argument

put forth regarding the existence of a need for a new system as well as the viability of
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Perception

Data fusion

Global map
Simultaneous

Localisation and
Mapping (SLAM)

Semantic
segmentation

Computer vision
algorithms

Path planning with GIS
or IMU

Scene objects
classification for each

object

Current and predicted
scene state

Behavioural analysis

Decision making Motion planning

Vehicle state control

Vehicle controlEmergency stop

Ultrasonic
sensor

Predicting and planning layer

Decision making layer

Control layer

Environmental perception layer

Camera RADAR LIDAR
(Optional)

GNSS

GPS IMU
Physical Sensors

Raw data

(1) Intel D415 
(2) RealSense D435
(3) Framos D435e

(1) Smart Micro UMRR-96vT-153 
(2) Continental ARS 408-21

(1) Velodyne Alpha Prime 
(2) Velodyne VLP-32C
(3) Velodyne RoboSense

Best performing
sensors

Figure 27: The recommended AV structural and functional design ((re)designed from
Sviatov et al. (2021)’s design).
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meeting this need at a cost that is both feasible and risk acceptable (Kossiakoff

et al., 2011). In consideration of this dissertation, this phase focused on validating the

reliability of AVs obeying traffic rules. The details associated with this phase can be

seen in section 3.1.2.

Considering Figure 27 and the results in Tables 8 and 9, automotive industries in

Africa should opt for two sensor fusions. One LIDAR sensor is more expensive compared

to RADAR and camera sensors in the development of the AV. Hence LIDAR is high-

lighted in red and marked as optional in Figure 27. Therefore, considering a two-sensor

fusion would be more beneficial as a start.

3.1.2 Reliability design data and analysis

This section focused on providing details regarding the Needs validation by providing

the reliability analysis of Autonomous Vehicle (AV)s. The Reliability Engineering and

statistics theories were utilised to achieve this objective (see section 3.1.2.1). Further-

more, the theory of Artificial Intelligence (AI) was also a major contribution since it was

necessary to understand how machine learning works when the AVs were analysed in

section 3.1.2.1.

3.1.2.1 Reliability design data

The purpose of this section is to provide the reliability of AV concerning traffic rules

by conducting a reliability analysis using Reliability Engineering and statistics theories.

Furthermore, this analysis addresses the complexity of the AVs to obey road rules and

swift decision-making when necessary. Two main analyses were conducted to provide

the reliability of AV. Firstly, videos of AVs were analysed—these videos showed different

AVs of different brands and companies. In addition, these videos showed how the AVs

are currently performing, and the video links can be seen in Table 10.

The purpose of using videos to conduct the assessment is that there is no raw data

on the performance of the AV available in the published literature. In addition, Africa

does not have AV automotive industry yet, and there was no access to an AV to do

the tests. However, some people already did the tests and posted the videos online on

YouTube (accessible for free). Therefore, it was more efficient to access those videos and

assess whether the AVs obeyed traffic rules. Furthermore, it can be noted in the videos

provided that the reviewers focused on how the AVS is performing without hiding the

mistakes of the vehicle. Therefore, this provided good quality data for a reliable analysis

of AV performance.
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Table 10: Video links related to AV

Vehicle brand Video link

Tesla models

Video Test 1

Video Test 2

Video Test 3

Video Test 4

Video Test 5

Video Test 6

Video Test 7

Deeproute Video Test 1

Cruise Video Test 1

Waymo

Video Test 1

Video Test 2

Video Test 3

Video Test 4

AutoX

Video Test 1

Video Test 2

Video Test 3

Video Test 4

Pony AI

Video Test 1

Video Test 2

Video Test 3

Video Test 4

Yandex
Video Test 1

Video Test 2

Video Test 3

The video links provided in Table 10 can be accessed with a simple click. These

videos were treated as tests from time 0 (t0) to time n (tn) and observed which rule was

tested (further assessed if the rule was passed or failed) and if the rule was not tested.

If the rule was not tested, it was given a value of zero since there’s a 50% chance that

the rule will pass. All rules are supposed to be 100% passed, meaning, in a given period,

a particular rule should be passed in any situation the AV encounters. Two tables were

created relating to the outcome of accessing the videos in Table 10 (see Chapter 4).

The reliability of AVs concerning the traffic-rules formula was estimated using a reli-

ability engineering plotting method. To provide the estimated formula, a mathematical

reliability model was formulated using Weibull distribution and its application. How-

ever, before achieving this goal, the time-stamps of when the traffic rules were disobeyed
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https://www.youtube.com/watch?v=JWXgSpeKz_k&ab_channel=DirtyTesla
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https://www.youtube.com/watch?v=TFEvkmvIjVo&ab_channel=AutoX
https://www.youtube.com/watch?v=2WQ6Guiyebg&ab_channel=AutoX
https://www.youtube.com/watch?v=swwdaKotXT8&ab_channel=BloombergQuicktake%3ANow
https://www.youtube.com/watch?v=UfP5BMI3QcM&ab_channel=Pony.ai
https://www.youtube.com/watch?v=Uux4baMCpmk&ab_channel=Pony.ai
https://www.youtube.com/watch?v=smgy34A7c9k&ab_channel=Pony.ai
https://www.youtube.com/watch?v=ZWvqanxc3nM&ab_channel=Pony.ai
https://www.youtube.com/watch?v=Bx08yRsR9ow&ab_channel=%D0%AF%D0%BD%D0%B4%D0%B5%D0%BA%D1%81Go
https://www.youtube.com/watch?v=gfWjsKsEry0&ab_channel=MarquesBrownlee
https://www.youtube.com/watch?v=Nn_i6Mxc_Pw&ab_channel=%D0%AF%D0%BD%D0%B4%D0%B5%D0%BA%D1%81Go


from the analysed videos in Table 10 were recorded—these time-stamps represent time-

to-failure of AVs concerning the traffic-rules. This was done so that further analysis

would be conducted; therefore, the time-to-failure data was generated (see Table 11).

The analysis of time-to-failure data can be seen in section 3.1.2.2.

3.1.2.2 Time-to-failure data analysis

This section provides the time-to-failure data analysis related to the AVs as they fail to

obey some of the traffic rules. To conduct the analysis, some assumptions had to be put

in place, and these assumption are outlined as follows.

1. All AVs of different brands are considered to be just one AV society. This is because

this dissertation focused on providing the reliability of AVs jointly. Therefore, if

one of the AV brands fails one traffic rule, all AV brands are affected.

2. The AVs are tested for 20 minutes, though some videos are shorter than 20 minutes,

and some are barely longer than 20 minutes.

3. The tests conducted in each AV brand represent one of the tests of AV as a whole—

that is, video one represents test one, video two represents test two, and so on,

disregarding the AV’s brand.

To analyse the data, two programming environments or platforms and languages were

utilised, which are RStudio platform using with R programming language, and Anaconda

platform using Python programming language. These are freely available platforms to

download, write, and run codes.

To formulate the mathematical reliability model, it is necessary to know which sta-

tistical distribution the time-to-failure data closely follow. The word closely emphasises

that it can be challenging to tell which distribution a certain data accurately follows.

Furthermore, uncertainty is associated with how the AVs operate, especially in difficult

conditions. Therefore, the way they fail is associated with uncertainty; hence, the prob-

ability of the AVs failing at a certain time-stamp should be calculated —this serves as

an estimate of how reliable these AVs in public. The following lines of code (R language)

were used to check the statistical distribution of the time-to-failure dataset.
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Table 11: Time-to-failure of AVs observed in the analysed videos

Number of observation (n) Time-to-failure (ti, in minutes)

1 0.19

2 0.32

3 0.32

4 0.40

5 1.04

6 1.14

7 1.50

8 1.54

9 2.08

10 2.10

11 2.13

12 2.15

13 2.21

14 2.29

15 2.46

16 2.52

17 2.56

18 2.59

19 3.14

20 3.37

21 3.47

22 4.41

23 5.03

24 5.29

25 5.47

26 5.57

27 6.24

28 6.55

29 7.22

30 7.39

31 11.04

32 13.37

33 17.07

time_to_failure <- read.csv(file = "TimeToFailure_Data.csv")

y <- time_to_failure$TimeToFailure_Minutes
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time_to_failure_hist <- hist(y, breaks = 20, col = gray(0.001), main = "",

xlab = "Time to failure (minutes)", xlim=range(0, 20), ylim = range(0,

15))

abline(v = mean(y), col = "red", lwd = 3) # Add line for mean

text(x = mean(y) * 1.6, y = mean(y) * 3, paste("Mean =", round(lambda,

digits = 3)), col = "red", cex = 1) # Add text for mean

After running the above code, the distribution produced can be seen in Figure 28.

A poisson distribution can be fitted with a lambda (λ) value of at least one traffic-

rule failure by an AV every 4.066 minutes. The Poisson distribution can be fitted as

there is close relation in terms of how it appears and the characteristics of the Poisson

distribution. The Poisson distribution can be seen in Figure 29, and it can be noted how

the shape changes as the λ value changes. The AV time-to-failure distribution seems to

have some bins that are far from each other compared to the ones in Figure 29. This is

because the number of observations relating to the time at which AVs failed traffic rules

is small (n = 33). Though n = 33 is statistically acceptable since n ≥ 30, they are good

enough to assess the current reliability of AVs with respect to the traffic rules.
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Figure 28: Time-to-failure distribution
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Figure 29: Poisson distribution (adopted from Kissell and Poserina (2017))

When comparing Figure 28 and 29, it can be seen that the AV time-to-failure dis-

tribution is closely related to the orange poisson distribution (with λ = 3). However, it

can be noted that the time-to-failure distribution is also closely related to a right skewed

normal distribution (see Figure 30).

Figure 30: Right skewed normal distribution (adopted from Figueiredo and Gomes
(2013))

Furthermore, we can observe how the probability density function (red fitted line)

of the right skewed normal distribution closely look like the Weibull distribution (see

Figure 31).

These distributions look similar, but it is a must to select a distribution that will help

construct a model that gives a good representation of how the AVs are reliable in traffic

rules. With this in mind, it is necessary to shift focus to look at which distribution(s)

mostly deals with time-to-failure data to provide an estimate of a system or component’s

reliability.

Since the data used to produce the distribution in Figure 28 is directly linked to

time-to-failure of AVs concerning traffic rules, it is more appropriate to utilise and fit
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Figure 31: Probability density function of Weibull distribution (adopted from Rinne
(2008))

the Weibull distribution. This is because it is one of the most well-known lifetime

distributions and accurately describes observed failures of a wide range of components

and occurrences (Lai et al., 2006). Furthermore, the Weibull distribution can adapt

to many different conditions and take various distributions as its parameters change;

hence it is fit for the type of distribution seen in Figure 28. This dissertation focused on

the occurrence (which is the probability) at which the AV will fail to adhere to one of

the traffic rules. Consequently, a model was formulated using the Weibull distribution’s

application (a reliability engineering method); this can be seen in section 3.1.2.3.

3.1.2.3 Reliability analysis model

TheWeibull distribution has been found to appear in five different forms, three-parameter

and two-parameter being the two common forms (Hallinan Jr, 1993; Lai et al., 2006).

The three-parameter has the τ , β, and α (or η) parameters. When the τ = 0, the Weibull

distribution is a two-parameter.

The three-parameter Weibull distribution was chosen for this dissertation since the

parameter τ was found to be useful as the vehicle cannot fail one of the traffic rules at

zero minutes (i.e., t0 ̸= 0, this means the graph of the time-to-failure’s values do not

start from zero or the origin). τ is known as a location or a threshold parameter; in

this case, the threshold applies. The reliability model was created using the probability
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plotting approach as it is the least mathematically demanding method for parameter

estimation (it is easy to understand). The following are three simple ideas involved in

conducting the probability plotting approach.

• A visual representation of the data is produced on a specialised probability plotting

paper (different for each statistical distribution).

• Utilise a probability plotting paper with transformed axes to ensure that a genuine

Cumulative Density Function (CDF) plots as a straight line (linearisation).

• The data is deemed to suit the appropriate distribution if a straight line can fit

the plotted data —this can be interpreted as an assumption.

To implement the method, the failure times’ data should be obtained so that it can

be analysed and linearised by calculating the median ranks of the data, and this is one of

the methods. The median rank is the cumulative percentage of a population of a given

data sample with a 50% confidence level. To calculate the median ranks, Bernard’s

approximation was utilised. The second method uses the median ranks and the actual

failure times without being linearised. The two methods are now discussed. (Firdos

et al., 2020; Lai et al., 2006)

Method 1: The linearised approach

Median rank (rti) = 100

(
iti − 0.3

n+ 0.4

)
(3.1)

Where:

iti = iti−1 +Nti (3.2)

Nti =
(n+ 1)− iti

1 + (n− number of preceding items)
(3.3)

i = order number of failed items, 0 > i ≤ n

n = sample size

It should be noted that i = ti when conducting the calculations.

The values produced by rti (see Equation 3.1) are in %, which are further used to

calculate the y-axis of the Weibull probability plot. The x- and y-axis of the Weibull
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probability plot are formulated in Equation 3.7 and 3.8. Before that, Equation 3.4 is the

reliability function for a two-parameter Weibull distribution, which was manipulated to

derive a linear function (Equation 3.6).

F (t) = Q(t) = 1− e
−
(

t
η

)β

(3.4)

To linearise Equation 3.6, the double natural logarithms were taken to produce the

following equation.

ln

(
ln

(
1

1−Q(t)

))
= βln(t)− βln(η), (3.5)

but, y = ln
(
ln

(
1

1−Q(ti)

))
and x = ln(t), therefore,

y = βx− βln(η). (3.6)

When conducting calculation for every time-to-failure observed (t1 to tn), the corre-

sponding xi and yi are calculated as follows.

xi = ln(ti) (3.7)

and

yi = ln(−ln(1− rti)) (3.8)

Given Equation 3.7 and 3.8, one may use the specialised Weibull probability plotting

graph or sheet (this can be achieved by manually plotting or using computer software

tools such as Microsoft Excel, RStudio, Python, etc.). It should be noted that Equation

3.8 was derived from a two-parameter Weibull distribution by manipulating Equation

3.4.

The problem is that Equation 3.8 utilised the two-parameter distribution function,

but the three-parameter Weibull distribution is the desired approach. Therefore, the

correct equation should be used, which is similar to Equation 3.4 with one additional

parameter, the threshold (τ), see Equation 3.9 and 3.10.

F (t) = Q(t) = 1− e
−
(

t−τ
η

)β

, t > τ (3.9)
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and given that λ = η−β, the simplified equation is

F (t) = 1− e−λ(t−τ)β , t > τ. (3.10)

To linearise Equation 3.10, the double natural logarithms were taken to produce the

following equation (Equation 3.11).

y = βln(λ) + βln(t− τ), (3.11)

where

λ =
1

mean
. (3.12)

The value of τ is the value that cuts the x-axis after plotting the calculated linearised

values. The value of η is the x-axis value that cuts through the plotted graph when

plotted with the value ln(−ln(1− 0.6320)). The value of τ can be seen as t0. The value

of β is the slope of the fitted straight line. The value of λ in a Weibull distribution is

interpreted as the failure rate and calculated as seen in Equation 3.12. Figure 28 shows

that mean = 4.066 and the λ = 1/4.066. The question is, what is the confidence level

that the mean value is 4.066 and can be utilised in further calculations? To address this

question, a Bootstrap approach was conducted to, firstly, re-calculate the mean value,

and secondly, the lower and higher values that the mean falls within were calculated,

with 95% level of confidence.

A bootstrap method is when one generates a large number of phantom samples known

as bootstrap samples by re-sampling (with replacement) from the sample data at hand.

The sample summaries for each bootstrap sample are then calculated (usually a few

thousand or thousands). Finally, the bootstrap distribution of the statistic refers to a

histogram of the collection of these computed values. There are several ways to conduct

a bootstrap method. At times it depends on what needs to be corrected or validated

in the sample, such as the mean values, standard errors, rate parameters, distributions,

etc.

For this dissertation, the time-to-failure distribution and the λ value had to be veri-

fied for three reasons. First, the data sample has few observed sample numbers (n = 33).

Second, to conduct reliability analysis, a distribution has to be known, and the resulting

formula depends on the λ parameter. Lastly, the distribution looked like a few other sta-

tistical distributions (as discussed earlier in this chapter). The bootstrap was conducted

in RStudio and Anaconda software applications using R and Python programming lan-
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guages, respectively.

To verify the time-to-failure distribution and the mean value, firstly, in Python envi-

ronment, a function called bootstrap() was adopted to calculate where the mean value

falls in with a 95% confidence interval. Secondly, in R, two approaches were utilised;

(1) functions matrix() and sample() were used simultaneously to re-sample m number

of times and store all the re-sampled data into a matrix—m is a discrete number that

defines how many times one would re-sample from the same population (m > 0); (2) a

function called boot() was used, its format is outlined as follows.

boot(data, statistic, R, sim = "ordinary", stype = c("i", "f", "w"),

strata = rep(1,n), L = NULL, m = 0, weights = NULL,

ran.gen = function(d, p) d, mle = NULL, simple = FALSE, ...,

parallel = c("no", "multicore", "snow"),

ncpus = getOption("boot.ncpus", 1L), cl = NULL)

Several arguments need to be provided to utilise boot() function. These arguments are

well explained within RStudio software. Running the ?boot on the console provides all

the details needed.

Method 2: Auto-linearisation method

In this method, the first few steps (of calculating the median ranks ri) described in

the previous method apply. However, the values of time-to-failure (ti) are used to plot.

However, most steps should be computed using software to generate linearised values of

β, τ , and η, since these values are supposed to be utilised in a linear equation (Equation

3.11). In this dissertation, this method was adopted, and RStudio software was used

(using an R programming language). The following formulae were used to plot and fit

the three-parameter Weibull linear probability graph. The formulae take the time-to-

failure values (ti), calculate the median ranks internally, then plot and fit the linearised

data (the results can be seen in Chapter 4). It is important to manually calculate the

median ranks to verify against the values calculated by the function.

wblr(x, s=NULL, interval=NULL,...)

wblr.fit(x, modify.by.t0=FALSE, ...)

With the model formulated and discussed, the results generated in different software

platforms are all outlined and discussed in Chapter 4.
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3.2 Chapter summary

In this chapter, two research methodologies (the Design Science Research (DSR) and

Systems Thinking) were outlined, modified, and discussed. The methods were unified to

meet the objectives of this dissertation. The research approach was conducted using the

systems engineering method, specifically the needs analysis method. The five functional

capabilities of AVs were outlined, and 11 functional requirements are outlined in Table 3.

Furthermore, to analyse the AV, 30 traffic rules were carefully selected from a K53-book,

and they were used to analyse the videos in Table 10.

Sensors were analysed by conducting a sensor fusion in Tables 8 and 9. In addition,

a structural and functional design was re-designed based on sensor-fusion results (see

Figure 27.

The reliability design was then developed by firstly providing the time-to-failure

data (in Table 11 ) and analysing the data. The data analysis selected a three-parameter

Weibull distribution. Consequently, two (linearised method and non-linearised method—

a computerised method ) analysis methods were outlined and explained.
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Chapter 4

Results and discussion

The purpose of this chapter was to provide detailed results that were produced using all

the techniques discussed in section 3.1.2. Furthermore, a comprehensive discussion of

the results was provided. The results and related discussions are now looked into.

Table 12: The reliability analysis of Autonomous Vehicle (AV) with respect to traffic
rules—part A (road signs, signals, and markings rules)

Vehicle
brand

Road signs, signals, and markings traffic rule

Tesla
Model 3

AutoX
(robo-
taxi)

Waymo
(by
Google)

DeeprouteYandex Pony AI Cruise

Rule 1
1 1 1 1 1 1 1

Rule 2
1 1 1 1 1 1 1

Rule 3
0

0 0 0 0 0 0

Rule 4 0 0 0 0 0 0 0

Rule 5
1 1 1 1 1 1 1

Rule 6
1 1 1 1 1 1 1

Rule 7 0 0 0 0 0 0 0

Rule 8
0 1 1 1 1 1 1

Rule 9
0 1 1 1 1 1 1

Rule 10 0 0 0 0 0 0 0

Passed 4 6 6 6 5 6 6

In consideration of the videos in Table 10, two tables were drawn to provide the

results of the analysis; see Table 12 and Table 13. These two tables represent the
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assessment outputs of AVs obeying the traffic rules. The values (red zeros, black zeros,

and green ones) in Table 12 are described as follows (which applies to Table 13 related

to the rules of the road).

1: Rule tested and passed.
0: Rule tested and failed.
0: Rule not tested.

Table 13: The reliability analysis of AV with respect to traffic rules—part B (rules of
the road)

Vehicle
brand

Road signs, signals, and markings traffic rule

Tesla
Model 3

AutoX
(robo-
taxi)

Waymo
(by
Google)

DeeprouteYandex Pony AI Cruise

Rule 1
1 1 1 1 1 1 1

Rule 2
1 1 1 1 1 1 1

Rule 3
0

0 0 0 0 0 0

Rule 4
1 1 1 0 1 1 1

Rule 5 0
1 1

0 0 0 0

Rule 6
0 1 1 1

0
1 1

Rule 7 0 0 0
1

0
1 1

Rule 8
1 1 1 0 1 1 1

Rule 9
0 1 1 1

0
1 1

Rule 10
0 1 1 1

0
1 1

Rule 11
0 1 1 1 1 1 1

Rule 12
0 1 1 1 1 1 1

Rule 13
1

0 0 0 0 0 0

Rule 14 0 0
1

0 0 0 0

Rule 15 0
1 0 1

0
1 1

Rule 16
0 0 0 0 0 0 0

Rule 17 0 0 0 0 0 0 0

Rule 18
0 1 0 1 0 1 1

Rule 19
1

0 0 0 0 0 0

Rule 20 0 0 0 0 0 0 0

Passed 6 12 11 10 6 12 12

68

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



The totals passed number of rules (combining the totals in Table 12 and 13) for each

vehicle brand are illustrated in Table 14.

Table 14: Total passed traffic rules by different AV

Vehicle brand Tesla Model 3 AutoX (robotaxi) Waymo (by Google) Deeproute Yandex Pony AI Cruise

Total passed 10 18 17 16 11 18 18

% 0.3333 0.6000 0.5667 0.5333 0.3667 0.6000 0.6000

It can be noted that the least performing vehicle is the Tesla Model 3 (passing the

rules 33% of the time). Furthermore, this vehicle cannot be categorised as a level 4

or 5 AV, its autonomous level is less or equal to three. The highest performing ve-

hicles are AutoX (robotaxi), Pony AI, and Cruise (passing the rules at least 60% of

the time).Therefore, a more in-depth analysis had to be conducted using the reliability

analysis—the evaluation of the reliability of AV with respect to traffic-rules. This analy-

sis considered only the vehicles that have autonomous level of 4 or 5 (excludes the Tesla

Model 3).

Therefore, considering the time-to-failure reliability analysis method selected—the

Weibull distribution and application, the linearised method was followed (automated

with functions) and the results are now discussed.

The first step in applying the linearisedWeibull distribution is to calculate the median

rank. Though the weibull function used in R programming was able to calculate the

ranks from the data provided to it, it was necessary to calculate it manually to verify.

Therefore, the following manually created function in Anaconda environment (using

Python language) was used to calculated the median ranks of the data provided in

Table 11.

def median_rank( data ):

median_rank_results = []

n = len( data )

i_prev = 0

for i in range (0 , len( data ) , 1):

N = ( ( n +1) - i_prev) / (1 + (n - i) )

i_prev = i_prev + N

r = round ( ((i_prev - 0.3) / (n + 0.4)) *100 , 2 )

median_rank_results.append( r )

return median_rank_results
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This function utilises Equation 3.1 equivalent to median rank results, Equation

3.2 equivalent to i prev, and Equation 3.3 equivalent to N in the for loop. To call the

function defined above in order to view the results, the following code was created and

ran. The results are in Table 15

import numpy as np

data = [0.19, 0.32, 0.32, 0.40, 1.04,1.14, 1.50, 1.54, 2.08, 2.10, 2.13,

2.15, 2.21, 2.29, 2.46, 2.52, 2.56, 2.59, 3.14, 3.37, 3.47, 4.41,

5.03,5.29, 5.47, 5.57, 6.24, 6.55, 7.22, 7.39, 11.04, 13.37, 17.07]

median_rank_results = median_rank(data)

print("Median ranks:\n", median_rank_results,"\n")

The produced data in Table 15 can be used to further plot a linearised Weibull

graph by calculating the x- and y-axis values using Equation 3.7 and 3.8. It should be

noted that for a three-parameter distribution xi is ln(ti− τ). After the plot is complete,

the values of β and η will be read to formulate the linear equation in Equation 3.11.

However, as discussed in section 3.1.2.1, the method followed to create the graph is the

auto-linearised approach whereby an R language function was utilised, programmed as

follows.

df <- data.frame(time = failure_rate_times, event = rep(1, 33))

weibl <- wblr(df , col="Red", label="Censored dataset", dist = "weibull3p",

ylab = "Unreliability")

# Plot the data with the fitted line.

weibl_fit <- wblr.fit(weibl, col = "Blue", method.fit = "rr")

plot(weibl_fit) # Plot the data

The data-frame created from utilising failure rate time holds the values of time-

to-failure which are in Table 11, and the function wblr() used that data frame with one

most important parameter called dist. In this case because the three-parameter distri-

bution was used, dist was assigned weibull3p, this signifies that the three-parameter

weibull distribution was fitted. If a two-parameter weibull was to be fitted, then dist

would be weibull2p. The sub-function (this type of function depends on the upper

level function, in this case its weibl()) called wblr.fit() was used to further fit the

rank regression which appears as rr assigned to the parameter called method.fit. This

allows the function to calculate the the rank regression and fit it to the linearised plot

as a straight line. The graph produced can be seen in Figure 32.
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Table 15: Time-to-failure median ranks

Rank number (n) Median ranks (rti, in %)

1 2.10
2 5.09
3 8.08
4 11.08
5 14.07
6 17.07
7 20.06
8 23.05
9 26.05
10 29.04
11 32.04
12 35.03
13 38.02
14 41.02
15 44.01
16 47.01
17 50.00
18 52.99
19 55.99
20 58.98
21 61.98
22 64.97
23 67.96
24 70.96
25 73.95
26 76.95
27 79.94
28 82.93
29 85.93
30 88.92
31 91.92
32 94.91
33 97.90

From Figure 32 it can be noted that the section with the title Censored dataset

provides the most important details of the graph—the three parameters of the three-
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Figure 32: The linearised fitted Weibull distribution plot

parameter Weibull distribution (depicted in Table 16). Further, it can be noted that the

censored data confirms that the rank utilised are the median ranks.

Table 16: The calculated three parameters of the three-parameter Weibull distribution
from the AV time-to-failure data

Shape parameter
(β, minutes)

Scale parameter
(η, minutes)

Location parameter
(t0 = τ , minutes)

1.155 4.24 0.9675

These parameters are plugged into Equation 3.9, however the simplified version of it

(Equation 3.10 does not necessarily need η as there is the λ value in it. The mean value

of the time-to-failure data can be seen in Figure 28—mean = 4.066 minutes. However,

to decide whether or not to utilise that mean value it was necessary to recalculate it

after bootstrapping and then get the confidence level interval for the mean value after

bootstrapping. Bootstrap was prioritised to make sure after resampling m number of

times (m ≥ 1) from the same population (time-to-failure) if the value of the mean

is still close the the initially calculated value. The recalculated mean value from the
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bootstrap method provides a more accurate estimate when thousands of resampling are

conducted, therefore, the bootstrap method code was created in RStudio platform (using

R programming language) which is outlined in Listing 4.1.

Listing 4.1: Time-to-failure bootstrapping code

y <- time_to_failure$TimeToFailure_Minutes

set.seed(1) # set seed (default value) to reproduce the results

Sample <- function(data, i) {

sample(data[i], size = n, replace = TRUE)

}

results <- boot(y, Sample, R=10000) # Performing 10 000 replications

with boot

# Plotting the output

hist(results$t, breaks = 20, col = gray(0.001), main = "",

xlab = "Time to failure (minutes)",

xlim=range(0, 20), ylim = range(0, 120000))

abline(v = mean(results$t), col = "red", lwd = 3) # Add line for mean

text(x = mean(y)*1.7, y = mean(y)*25000,

paste("Mean =", round(mean(results$t), digits = 3)),

col = "red", cex = 1) # Add text for mean

boot_lambda_value <- mean(results$t) # Lambda value after bootstrapping

Regarding the code above, the time-to-failure data was assigned to variable y, and

fixed seed value was set to its default value of one to be able to reproduce the results

when the bootstrapping is performed. The bootstrap was performed using the function

boot(), and the number of resampling (m) was set to be 10,000. The distribution of the

bootstrapped values of time-to-failure was plotted (see Figure 33) and the mean value

can be seen in the plot, i.e., meannew = 4.058 minutes.

This value (meannew = 4.058) is close enough to the initial value calculated (mean

= 4.066). Therefore, a 95% confidence interval of the mean value was calculated. The

calculation was done in Anaconda platform (using Python programming language) and

Listing 4.2 represents the created code of the 95% confidence interval values.

Listing 4.2: Time-to-failure bootstrapping code

import numpy as np
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from scipy.stats import bootstrap

# time-to-failure data

data = [0.19, 0.32, 0.32, 0.40, 1.04, 1.14, 1.50, 1.54, 2.08, 2.10, 2.13,

2.15, 2.21, 2.29, 2.46, 2.52, 2.56, 2.59, 3.14, 3.37, 3.47, 4.41,

5.03, 5.29, 5.47, 5.57, 6.24, 6.55, 7.22, 7.39, 11.04, 13.37, 17.07]

#convert array to sequence

data = (data,)

#calculate 95% bootstrapped confidence interval for median

bootstrap_ci = bootstrap(data, np.mean, confidence_level=0.95,

random_state=1, method=’percentile’)

#assign the 95% boostrapped confidence interval

conf_interval = bootstrap_ci.confidence_interval
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Figure 33: The time-to-failure distribution after bootstrapping by resampling 10,000
time
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The most important parts of the code in Listing 4.2 are the assignments of the

arguments in the bootstrap function and the assignment of the confidence interval using

a dot(.) method. In the assignment of the arguments in the bootstrap function, the 95%

confidence level had to be specified, the type of confidence value needed, in this case

the mean (λ), and the method of calculation. The assignment of the lower and upper

confidence level values, that is, the lowest and highest λ values where the calculated λ

value of the time-to-failure values should found, used an in-build .confidence interval

method of the bootstrap() function. Consequently, the confidence interval of the λ

value (in minutes) is

mean ∈ [2.87, 5.45].

Therefore, the use of meannew = 4.058 (with λ = 1/4.058 = 0.2464) is the best

approach since it was calculated using the bootstrap method and it falls within a 95%

confidence interval calculated above. With all these parameters in place, both Equation

3.10 and Equation 3.11 are fully complete as seen in Equation 4.1 and Equation 4.2.

F (t) = 1− e−0.2464(t−0.9675)1.155 (4.1)

y = 1.155ln(0.2464) + 1.155ln(t− 0.9675) (4.2)

Let x = ln(t− τ), Equation 4.2 can be re-written as follows

y = 1.155ln(0.2464) + 1.155x.

∴ y = 1.155x− 1.6179.
(4.3)

To answer the question, what is the reliability of an AV with respect to traffic-rules,

Equation 4.1 was utilised. But first, the assumption in section 3.1.2.1 were applied,

more specifically to assumption 3, i.e., the AVs are tested for 20 minutes. Therefore, the

reliability of the AV at 20 minutes is calculated as follows
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R(t) = 1−
(
1− e−0.2464(20.00−0.9675)1.155

)
= e−0.2464(20.00−0.9675)1.155

= 6.089× 10−4

= 0.06089% reliable.

This means there is 1 − R(t) = 99.94% chance that the AV will fail at least one of

the rule in 20 minutes. This is because of the increasing hazard rate (h(t)). the hazard

rate is increasing when β > 1 (in this case β = 1.155). Equation 4.4 is used to calculate

the hazard rate.

h(t) =

(
β

ηβ

)(
tβ−1

)
(4.4)

The goal is to achieve a decreasing hazard rate (with β ≤ 1), then the reliability will

increase. When β = 1,

h(t) =

(
1

η

)
=

(
1

4.24

)
=

25

106
,

this represents a constant hazard rate, there is no impact of time, therefore, at any given

time the value of the hazard rate will remain the same. To further explain the reliability

of the AV with respect to the traffic-rules, a method that utilises a Bathtub Curve was

adopted. The curve can be seen in Figure 34.

Though the hazard rate of AVs failing at least one of the rules was calculated to be

increasing since β is greater than one, the failure rate is categorised as constant. This is

due to the fact that AVs are established, but they still have failures that are observable

or constant (random) failures as seen in the bathtub curve in Figure 34.

4.1 Chapter summary

This chapter started by providing two tables that consist of the results related to the

reliability of AVs with respect to traffic rules. Table 14 contains a summary of total

passed traffic rules (in %). The linearised Weibull distribution plot was provided by

applying the techniques described in Chapter 3. The shape, scale, and location param-

eters were extracted, but to continue with the analysis, a bootstrap method had to be

applied. After the bootstrapping had been applied, a similar time-to-failure graph was
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Figure 34: The Bathtub curve (adopted from Wikipedia contributors (2022a)).

observed and a mean of 4.058 minutes was calculated—the initial mean calculated was

4.066 minutes. Then, the reliability was calculated—it was concluded that within 20

minutes an AV will fail at least one of the traffic rules.
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Chapter 5

Conclusion and recommendations

This chapter serves as the conclusion of this dissertation and recommendations regard-

ing what was learned from the research conducted and its usefulness. These are now

discussed.

The main problem is the complexity that the Autonomous Vehicle (AV)s (with au-

tonomous levels of 4 and 5) possess—in terms of the diversity of navigation requirements

on the road, connectivity of the system’s intelligence, intelligent interaction, swift de-

cision making, and obedience of road rules. It is nearly impossible to address all these

causes at once; therefore, it was necessary to first address the complexity issue in terms

of providing the functional capabilities of the AVs. Secondly, conduct a reliability anal-

ysis of the AVs concerning the traffic rules. Five functional capabilities are outlined,

and the reliability analysis highlighted that the AVs are still not yet perfected. They are

still being improved mainly in terms of performance so that they can make the correct

decision at the right time.

The AVs are in a stage where they are useful such that they can fulfil their primary

goal, which is to move from point A to B with minimal environmental harm. However,

this only applies to some companies that have had good progress in developing the

vehicles’ intelligence. The vehicles still behave like non-advanced drivers in terms of

performance and decision-making. Though some companies are doing a good job in

developing the intelligence of the vehicles, the vehicle still needs monitoring. In the case

of the Tesla AVs, a driver must be in front of the steering wheel should the vehicle fail to

make the correct decision and execute it correctly, which has proved inevitable. Other

companies do not need a driver in front of the steering wheel, but they can remotely

control the vehicles, which is why they are not sold to individuals. The results outlined

and discussed in Chapter 4 have proved this. According to the results, the reliability of
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the AVs, ,is not close to being perfect. The AVs are expected to fail at least one of the

20 rules within 20 minutes of drive. Additionally, because there are more than 20 rules

the AVs should obey, they are not doing well. There is still a lot of work to be done to

increase the reliability of AVs.

The reliability of AVs in terms of traffic rules is not available in the current litera-

ture. Furthermore, according to the literature, the application of systems and reliability

engineering has not been applied to AVs. Therefore, the results in this dissertation have

addressed the mentioned points, which closes the gap in the available literature regarding

the reliability of AVs and the application of systems and reliability engineering. Further-

more, this dissertation will assist African automotive companies planning to build AVs,

and this will assist Africa in becoming more technologicallytechnologically advanced.

In terms of fulfilling the objectives outlined for this dissertation (see section 1.7),

Table 17 outlines where the objectives were addressed and met. The first objective

was achieved by assessing the AV’s reliability and secondly by modelling the reliability

analysis model to evaluate the reliability of AVs. The second objective was achieved by

assessing the sensors’ fusion and re-designing the functional structure of AVs. The last

objective was achieved by evaluating the reliability of the AV concerning traffic rules.

Furthermore, the research findings and the recommendations related to the future work

of the study are provided in section 5.1 and section 5.2, respectively.

Table 17: The objectives and their related sections where they were addressed and
fulfilled.

Objective Section Page

1. Model and analyse the reliability of the intel-
ligence of autonomous vehicles with respect to
the traffic rules.

3.1.2.1 62 – 64

2. Model and analyse the inherent complexity
associated with autonomous vehicles.

3.1.1 42 – 53

3. Validate the reliability (analysis with respect
to the traffic rules) model using a reliability en-
gineering technique.

4 67 – 76

5.1 Research findings

The focus of this section is to provide findings discovered from the research conducted in 
this dissertation and future work of the research. There are four research findings
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discovered, and they are outlined as follows:

Findings

1. AV’s reliability. The reliability of an AV depends on many factors, such as the

performance of the sensors, the performance of the systems (perception, decision-

making, and control), and weather conditions.

• The sensors’ performance depends firstly on the type of sensors used (the

good ones are usually expensive) and secondly on the placement (the area

and angles around the vehicle). Finally, the sensors’ performance depends on

their fusion.

• The systems of the AV are responsible for analysing the data and making the

vehicle react in every possible way. Therefore, the programming and decisions

made in those systems contribute a lot to an AV’s performance.

• The weather condition has proved to be a problem in all AVs. A bad weather

condition affects the sensors, dirty data is read in, and unreliable decisions

are made by the vehicle. Therefore, the performance is affected.

2. Reality simulation. It has proved to be a problem to simulate reality perfectly.

That is because it is hard to simulate all possible human behaviours when they

drive or walk. There is a lot of freedom associated with reality, and hence, it would

help to test AVs in an environment where there is more other AV to assess their

behaviour.

3. AV’s capability limitations. From the current tested AVs, and they seem not to

have reached complete (level 5) automation since these vehicles can be controlled

remotely when they misbehave. They seem unable to fix themselves sometimes,

making it not quite easy to trust them.

4. AV’s decision-making system. Though autonomous in AVs depends on dif-

ferent aspects (such as the sensors and the built-in functional systems), there is

one aspect that needs more attention. The decision-making system needs a lot of

attention since it should be able to make a reliable decision still when the read-in

data is clean or not. The AV can read clean data and understand its environment

and situation correctly, but if its decision-making system is faulty, people will be

in danger.
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Future work

1. Though Defence Advanced Research Projects Agency (DARPA) grand challenge 
provided solid insight of what is meant by the AVs’ performance, it is necessary 
to further research about their competitions and assess or review them.

2. The analysis of the reliability of signal transmission between the AVs transmission 
and receiver subsystems is another important aspect of AVs’ performance. The 
signals are received from the external world with the aid of designated internal 
devices. These devices can be visual sensors, proximity sensors, e.t.c. which are 
capable of reading road signs, sign posts, sensing or sighting of other vehicles, or 
objects. Based on this, the AV is meant to respond by reacting. The efficiency and 
effectiveness of this interaction is quite significant, though it was slightly 
assessed in the traffic rules, it needs more research and assessment attention.

3. The effect of partial failure of a functional element would be assessed and analysed 
in a future research work. Fuzzy logic would be deployed to achieve this. The 
current research has focused on the reliability analysis of a functional element 
from the Boolean logic point of view i.e. fully operational or non-operational 
functional elements.

5.2 Recommendations

The presented results depend on the data gathered through analysing different AVs

from other companies (videos online). That made the analysis less biased since some

reviewers showed off the exciting news related to the existence of AVs. Therefore, it was

possible to identify the mistakes the AVs would exhibit. However, the videos analysed

could have been edited to make them shorter, to look professional, or maybe comply

with the rules of the AV companies. Hence, it is recommended to test one or more AV

of different companies in person and gather data from in-person experience. Therefore,

two recommendations were deduced relating to the future work of this dissertation and

are outlined as follows.

Recommendation 1 When looking at the fusion of sensors, it is recommended to use

the camera and Radio Detection and Ranging (RADAR) since their fusion was proved to

theoretically satisfy the AV’s perception data gathering. Excluding the Light Detection

and Ranging (LIDAR) sensor in the AVs saves a long of money (saving about R1.5 million

per vehicle, as discussed in Chapter 3). It should be noted, though, that a comparison of
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theoretically excluding LIDAR will not drastically affect the performance of the AV since 
excluding LIDAR could mean other different sensors are n eeded. Therefore, this theory 
has to be verified, and the best way to very it without spending money on manufacturing 
and other related things is to utilise simulation modelling.

Recommendation 2 Regarding the reliability of the AVs, it is recommended that 
the companies should aim to make their AVs obey all of the traffic ru les. Ag ain, us-
ing simulation modelling can help different t est s cenarios on how t he vehicle(s) should 
perform. Furthermore, the use of systems and reliability engineering will further help 
construct the correct functional capabilities of the vehicles and calculate their reliability. 
Hence, it is recommended to test the AVs in a simulation construct with correct 
functional capabilities, and calculate their reliability before deploying them to the 
public.
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Appendix A

Architecture design

The design in Figure 35 represents the architectural design for a Connected and Auto-

mated Vehicle (CAV).

Figure 35: The architectural design for CAV (adopted from (Guanetti et al., 2018)).
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The typical architecture of an autonomous system of a AV can be seen in Figure 36

as designed by Badue et al. (2021).

Figure 36: The typical architectural design for a AV (adopted from (Badue et al., 2021)).
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Appendix B

AV sensor comparison

This chapter focused on different kind of sensors that were compared against their dif-

ferent type of sensors that have unique characteristics and have different level of perfor-

mance. Ignatious et al. (2022) constructed three tables of three different kind of sensors

(camera, LIDAR, and RADAR) that are related. The tables (Figure 37 through 40)

focused on the different specifications of the three sensors.

Figure 37 and 38 provides the specifications of LIDAR sensors. The acronyms that

appears in those figures are defined as follows.

VFoV: Vertical-Field-of-View
HFoV: Horizontal FoV
FPS: Frames per second
RNG: Detecting Range
Acc: Accuracy
HR: Horizontal Resolution
VR: Vertical Resolution
λ: Wavelength
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Figure 37: Different type of LIDAR compared—part A (adopted from Ignatious et al.
(2022)).

The table in Figure 37 was split into two parts, the other part can be observed in

Figure 38.

Figure 38: Different type of LIDAR compared—part B (adopted from Ignatious et al.
(2022)).
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Figure 39: Different type of LIDAR compared (adopted from Yeong et al. (2021)).

Figure 40: Different type of RADAR compared (adopted from Vargas et al. (2021)).

The comparison of what different sensors can can do according to Ignatious et al.

(2022) can is provided in Figure 41. Here it can be noted that the sensor fusion of the

resolution of camera, LIDAR, and/or RADAR was omitted as discussed in Chapter 2.
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Figure 41: Different sensor comparison according to Ignatious et al. (2022).
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