Supplementary information

Effects of varying Al_x moles on the structure and luminescence properties of $ZnAl_xO_{1.5x+1}$:0.1% Tb³⁺ nanophosphor prepared using citrate sol-gel method

V.M. Maphiri^{a*}, L.T. Melato^b, M.R. Mhlongo^a, T.T. Hlatshwayo^c, T.E. Motaung^{d,e}, L.F. Koao^f, S.V. Motloung^{a,g**}

^aDepartment of Physics, Sefako Makgatho Health Science University, P. O. Box 94, Medunsa, 0204, South Africa

^bDepartment of Mathematics, Non Destructive Testing and Physics, Vaal University of Technology, Andries Potgieter Blvd, Vanderbijlpark, 1900, South Africa

^cDepartment of Physics, University of Pretoria, Pretoria, 0002, South Africa

^dDepartment of Chemistry, School of Science in the College of Science Engineering and Technology,

University of South Africa, Preller Street, Muckleneuk Ridge, City of Tshwane, P. O Box 392, UNISA 0003, South Africa

^eDepartment of Chemistry, Sefako Makgatho Health Science University, P. O. Box 94, Medunsa, 0204, South Africa

^fDepartment of Physics, University of the Free State (Qwaqwa Campus), Private Bag X13, Phuthaditjhaba 9866, South Africa

^gDepartment of Chemical and Physical Sciences, Walter Sisulu University, Mthatha, South Africa

*Corresponding author: * V.M. Maphiri (vusanimuswamaphiri@gmail.com) and **S.V. Motloung (cchataa@gmail.com)

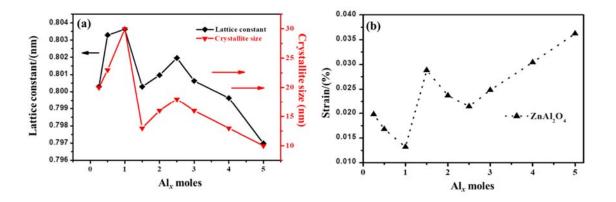


Fig. S1 The (a) lattice constant and crystallite size (nm); and (b) strain of $ZnAl_2O_4$ phase as a function of Al_x moles.

The Scherrer's formula equation S1

$$D = \frac{0.9\lambda}{\beta\cos\theta} \qquad \dots \text{S1}$$

where λ is the radiation wavelength (0.15406 nm), β is the full width at half maximum (FWHM) (in radians) and θ is the angle of diffraction (degrees).

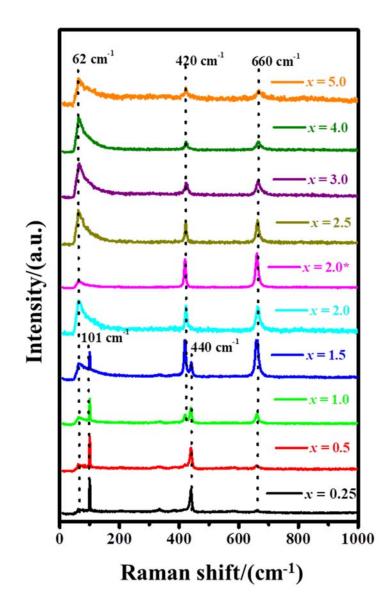


Fig. S2 Spectra for the $x = 2.0^*$ (un-doped ZnAl₂O₄) and ZnAl_xO_{1.5x + 1}:0.1% Tb³⁺ (0.25 $\le x \le 5.0$).

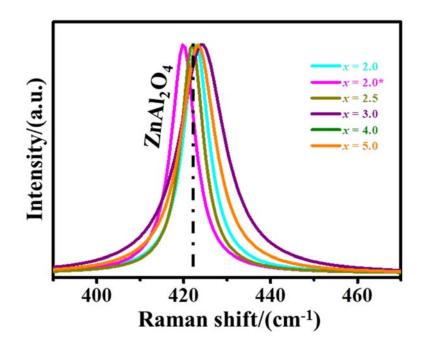
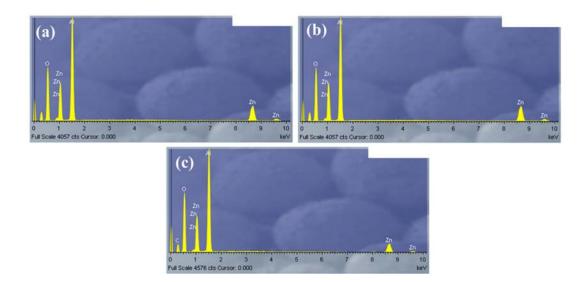



Fig. S3 The zoomed version of the E_g of $ZnAl_2O_4$

Fig. S4 EDS spectrum of the $ZnAl_xO_{1.5x + 1}$: 0.1% Tb³⁺ where (a) x = 2.0* (un-doped ZnAl₂O₄), (b) 2.0, and (c) 4.0 nano-phosphors.