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Summary 

Background: Polyploidy is a major factor in the adaptation and speciation of  many plant 

lineages. Many evolutionary factors may contribute to autopolyploid frequency within plant 

populations, including rates of  new polyploid formation, the ability of  new polyploids to 

establish successfully, long-term persistence of  polyploids in the environment, and the ability 

of  new polyploids to expand their range.  Despite recent progress, there are still many 

questions regarding polyploid success, in spite of  the challenges posed by minority cytotype 

exclusion, and relatively little is known about ploidy variation in the South African Flora.  

Aims and objectives: Oxalis obliquifolia Steud. ex A.Rich. is notable for its large distribution 

range (from the Cape to Ethiopia) and high degree of  morphological variability. The aims of  

this investigation were to document the occurrence of  different cytotypes of  O. 

obliquifolia across Gauteng Province, South Africa, and assess the impact of  empirical data on 

theories that attempt to explain polyploid persistence in populations. The objectives of  the 

study were: firstly, to sample individuals of  O. obliquifolia  across Gauteng and assess their 

cytotype using flow cytometry and chromosome squashes; secondly, to determine if  there 

were differences in abiotic niches occupied by different cytotypes; thirdly, to determine the 

morphological and phenological traits associated with polyploidy; fourthly, to assess the 

degree of  reproductive isolation between different cytotypes; and finally, to assess the degree 

of  relatedness between individuals of  different ploidy-levels across mixed-ploidy sites. 

Methods: Over 320 samples from 25 sites were collected and cytotyped, using standard flow 

cytometric and ploidy confirmed using meiotic chromosome squashes. Individuals were 

mapped and abiotic variables assessed for correlations with cytotype distribution using GIS, 

climate data, field observations, soil data, and ordinations and PerMANOVAs.  Different 

cytotypes (100 individuals, including diploids, tetraploids and hexaploids) were grown under 

identical conditions to assess the associations between polyploidy and morphology  and 

phenology, and results were analysed using linear models and discriminant 

analyses.  Reproductive isolation and frequency of  polyploidisation were assessed using 

crossing experiments (1140 crosses, with different maternal cytotypes), as well as AMOVA 

analyses based on Internal Transcribed Spacer DNA sequences. 

Results:  Remarkably, six distinct cytotypes were identified, with over 50% of  sites 

comprising multiple ploidies. Abiotic variables were not associated with cytotype distribution 
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possibly due to scale. The common garden experiment demonstrated a clear Gigas effect, 

which may confer a competitive advantage for polyploids over their smaller diploid 

progenitors. Larger flowers and differences in flowering phenology suggest pollinator 

interactions may play a role in enabling polyploid persistence. Crosses between cytotypes are 

possible under artificial settings, however DNA analysis suggests diploids and polyploids are 

reproductively isolated in the wild, and that polyploidisation is not a frequent enough event to 

explain the high levels of  cytotype sympatry observed. Diploids and polyploids are behaving 

as separate species, despite high sympatry and non-zero potential inter-cytotype seed set. 

Tests on biotic interactions may provide insights into how polyploids have flourished in this 

system. 
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GENERAL INTRODUCTION 

i. Polyploidy, evolution and novelty 

Mutation is the fundamental mechanism by which evolution occurs, and provides the most 

basic material on which natural selection can act (Dobzhansky, 1938; Carlin, 2011). There are 

three general categories of  chromosome-level mutations, namely chromosome 

rearrangements (the alteration of  the structure of  chromosomes), aneuploidy and polyploidy 

(Pierce, 2017). Aneuploidy describes the condition whereby one or more chromosomes have 

been added or deleted, and such occurrences have been known to produce unstable, and 

often lethal results (Ehrendorfer, 1980; Guerra, 2008). In contrast, polyploidy, or Whole 

Genome Duplication (WGD), involves the addition of  one or more sets of  chromosomes, in 

other words a polyploidy is defined as the possession of  more than two complete chromosome 

sets (Winge, 1917;  Wendel, 2000; Tate et al., 2005; Pierce, 2017).  

Three primary types of  polyploids are recognised, based on their origins (Stebbins, 1947): 

autopolyploids, allopolyploids and segmental allopolyploids. Autopolyploids are polyploid 

organisms “in which all of  the chromosome sets are derived from the same species” (Stebbins, 

1947; Lewis, 1980; McGrath and Lynch, 2012). Allopolyploids, on the other hand, are 

organisms that have multiple chromosome sets originating from different species (Stebbins, 

1947; Grant, 1975; Kihara and Ono, 1926). And finally, segmental allopolyploids, which 

possess two or more  copies of  partially differentiated genomes (Stebbins, 1947; Levin, 2002). 

Other explanations for intraspecific variation in chromosome number include dysploidy and 

Beta-chromosomes. Dysploidy (sometimes also referred to as pseudoaneuploidy; Winterfeld et 

al., 2018) refers to the alteration of  the base chromosome number via chromosome 

rearrangements such as chromosome breakages (fissions) and chromosome fusions (Siljak-

Yakovlev, 1996; Schubert and Lysak, 2011; Vallès et al., 2011; 2012; De Storme and Mason, 

2014).  

Polyploidy has been widely acknowledged as an important factor in adaptation and speciation 

in many plant lineages (Blanc and Wolfe, 2004; Soltis and Soltis, 2009) and was first 

introduced as a mechanism of  adaptation and speciation by Winkler (1916). Studies suggest 

that the majority of  land plant genomes harbour some evidence of  at least one 

polyploidisation event (Doyle et al., 2008; McGrath and Lynch, 2012) in their evolutionary 
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histories. An early WGD event is known in the common ancestor of  seed plants (Jiao et al., 

2011), as well as in the ancestral angiosperm (De Bodt et al., 2005), which may be directly 

related to the rapid radiation of  the angiosperms (De Bodt et al., 2005). In addition to early 

polyploidisation events (such as in Vision et al., 2000; Jaillon et al., 2007;  Barker et al., 2008; 

Tang et al., 2008; Tang et al., 2009; Shi et al., 2010; Chen et al., 2022), polyploidy has been 

extensively recorded in many extant angiosperm species (Soltis and Soltis, 1993; Leitch and 

Bennett, 1997; Soltis, et al., 2009; Wood et al., 2009; Fawcett and Van der Peer, 2010; Wu et al., 

2020), including in speciose families such as the Asteraceae, where polyploidy occurs in all 

major clades, and which boasts an impressive number of  ploidy levels, ranging from 2n to 48n 

(Semple and Watanabe, 2009). Furthermore, many angiosperm lineages with very small 

genomes, and/or few chromosomes, are derived from ancient polyploids, through a process 

of  rediploidisation (Otto, 2007; MacKintosh and Ferrier, 2018), for example Arabidopsis 

thaliana (L.) Heynh., which is believed to be an example of  a paleohexaploid (Blanc et al., 

2003).  

Polyploids can arise by different mechanisms, such as somatic chromosome doubling (deWet, 

1979; Ramsey and Schemske, 1998), but the general consensus is that unreduced gamete 

formation following meiosis is the most frequently occurring mechanism, which gives rise to 

the occurrence of  higher ploidy-level cytotypes (Ahloowalia and Garber, 1961; Bretagnolle 

and Thompson, 1995; Suda and Herben, 2013). Unreduced gamete formation, as the model 

of  the origin of  polyploids was originally applied to autopolyploids, but is also a valid 

mechanism for the formation of  allopolyploids (Suda and Herben, 2013).  

It has been previously been suggested that allopolyploids are usually more stable than 

autopolyploids, in other words hybrid genotypes are more likely to become successfully 

established over the course of  successive generations, due to the complete sets of  parental 

chromosomes that enable appropriate pairing and segregation of  chromosomes during 

meiosis (Ramsey and Schemske, 2002; McGrath and Lynch, 2012). However, later research 

has established that autopolyploids are more stable and persistent than previously thought 

and may in fact be capable of  effective chromosome pairing, and thus capable of  producing 

viable offspring (Soltis et al., 2007; McGrath and Lynch, 2012). Recent data has also suggested 

that autopolyploids may play an important ecological and evolutionary role within natural 

populations of  many species and that their frequency has previously been underestimated 

(Soltis et al., 2007; Otto, 2007; Parisod et al., 2010; Suda and Herben, 2013; Barker et al., 

2016).  
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There have been many views expressed on the potential evolutionary implications of  

polyploidy (Winge, 1917; Müntzing, 1936; Madlung, 2013). These range from theories that 

suggest polyploidy plays a significant role in the facilitation of  rapid rates of  evolution and 

diversification in many plant lineages (Ohno, 1970; Soltis and Soltis, 1993; 2000; Mayfield et 

al., 2011), to the opposite view where polyploids are viewed as evolutionary dead ends, with 

little contribution to longterm diversification (Stebbins, 1950; Wagner, 1970; Levin, 1975; 

Mayrose et al., 2011; Arrigo and Barker, 2012). Regarding the latter view, Wagner (1970) 

argued that polyploids are not important in plant lineage diversification or play a key role in 

plant evolution, since they are “blind alleys that go nowhere”, and Stebbins (1971) described 

polyploidy as “a hindrance to the evolutionary success of  higher plants”. It was argued that 

while polyploids may be an important factor for plant diversity over shallow evolutionary 

timescales, they had little long-term evolutionary impact, since they were viewed as 

genetically depauperate (Stebbins, 1950; Wagner 1970; Soltis et al., 2014a), and that the 

majority of  evolutionary change was at the level of  the diploid parents. Stebbins (1950) 

argued that the multiple genome copies resulted in masking both deleterious effects and 

beneficial mutations, and since polyploidy was often found to increase self-fertilisation, novel 

combinations of  genes were rarely formed, thereby reducing the rate of  adaptive evolution 

(Weiss-Schneeweiss et al., 2013). 

However, the former view, that polyploidy may constitute a more important factor in plant 

evolution has since gained broader acceptance (Soltis et al., 2014b). This is due to 

advancements in molecular techniques that have revealed the occurrence of  multiple 

polyploidisation events within many diverse plant lineages (Soltis and Soltis, 1993; 2000; 

Leitch and Bennett, 1997; Fawcett and Van der Peer, 2010). This lead to the realisation that 

recurrent polyploidisation potentially resulted in the possible maintenance and incorporation 

of  higher levels of  genetic variation, acquired from multiple diploid parent populations (for 

example in Soltis and Soltis, 2000; Tate et al., 2005; Sampson and Byrne, 2011), which may 

offer certain advantages to polyploids.  

Other authors have directly explored the advantages associated with being polyploid, many 

of  which are derived from multiple gene copies (for example in Soltis and Soltis, 1993; 

Wendel, 2000; Gu et al., 2003; Adams and Wendel, 2005; Lynch, 2007; Madlung, 2013). 

Most often, the ultimate fate of  many gene copies is nonfunctionalisation (Lynch and Conery 

2000; 2003) or silencing (Pikaard, 2001; Adams et al., 2003; Wang et al., 2004; Adams and 

Wendel, 2005). However, there are mechanisms by which duplicate genes may be preserved 
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(Hughes, 1994; Lynch, 2007; Innan and Kondrashov, 2010; Soltis and Soltis, 2012). One is 

neofunctionalisation, whereby genes diverge due to the acquisition of  a novel function by the 

duplicate (Rastogi and Liberles, 2005; Conant and Wolfe, 2008; Futuyma and Kirkpatrick, 

2017; Van Hieu, 2019). Subfunctionalisation occurs when duplicate genes diverge and each 

retains only a portion of  the several functions of  the original gene (Cusack and Wolfe, 2007; 

Futuyma and Kirkpatrick, 2017). Another mechanism involves the selection for increased 

gene product, due to changes resulting from dosage affects arise from duplicate genes 

(McGrath and Lynch, 2012). The overall preservation of  these duplicate genes serves to 

increase the genetic repertoire among species’ populations, which can have profound effects 

on the expression of  plant morphology, physiology, ecology, and ultimately the ability of  a 

newly formed polyploid individual to survive, and persist.  

ii. Polyploid establishment and persistence 

A newly formed polyploid individual, by necessity, must emerge into the context of  an 

existing diploid parent population. This results in the immediate creation of  a majority 

cytotype (the parent diploid) and a minority cytotype (the newly emergent polyploid). It is 

generally assumed that in such circumstances, the newly formed polyploid will become 

subject to the effects of  Minority Cytotype Exclusion (Levin, 1975). The principle of  Minority 

Cytotype Exclusion refers to the frequency-dependent process whereby the minority cytotype 

individual is constrained by a reproductive disadvantage, as a result of  the compounded 

effects of  high frequencies of  between-cytotype crosses (since initially only the majority 

cytotype is available to breed with; Chrtek, et al., 2017) and often substantial reproductive 

incompatibility between the majority and minority cytotypes (often manifesting as a triploid 

block; Bretagnolle and Thomson, 1995; Felber and Bever, 1997; Köhler, et al., 2010). 

Therefore, it might be expected that Minority Cytotype Exclusion poses a major obstacle to 

polyploid evolution and long term persistence (Husband, 2000; Ramsey and Schemske, 2002; 

Otto, 2007; Fowler and Levin, 2016). 

Polyploids are more likely to become established through the attenuation of  the effects of  

Minority Cytotype Exclusion (Stebbins, 1950). There are four primary ways by which this 

may occur (Van Drunen and Friedman, 2022). Firstly, by way of  a modification to the extent 

and potential for successful intracytotype and intercytotype reproduction. Secondly, the 

GENERAL INTRODUCTION 4

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



challenge of  limited available reproductive partners can be bypassed entirely by reducing  

dependence on sexual reproduction. The third way, is by the emergence of  more polyploid 

individuals in the population, in other words, high rates of  polyploidisation. And finally, by 

increasing the time that the newly formed polyploid is able to endure, and persist in the 

population. 

Regarding the ability of  newly formed polyploids to successfully reproduce, initially 

opportunities for reproduction are largely limited to crosses between the minority and 

majority cytotype. In the event that successful reproduction between cytotypes is possible, it 

may result in the production of  higher-ploidy level cytotypes, through the creation of  a 

triploid bridge (Burton and Husband, 2001; Yamauchi et al., 2004; Peckert and Chrtek, 2006). 

The triploid bridge hypothesis views triploids as a key factor in the polyploidisation process, 

and it describes the process of  tetraploid formation as a two step process, involving a triploid 

intermediary. The process is described as the initial fusion of  reduced and unreduced gametes 

derived from diploid parents, resulting in a triploid offspring.  This is followed by backcrosses 

between the triploid offspring and its diploid parents, or crosses among other triploids, 

resulting in the generation of  tetraploids. Ultimately, this may allow for subsequent interploid 

crosses between tetraploids and triploids, thus increasing the prevalence of  unreduced 

gametes in a population, thereby facilitating the increased likelihood of  tetraploids becoming 

established, within existing diploid populations  (Yahara, 1990; Ramsey and Schemske, 1998; 

Husband, 2004; Peckert and Chrtek, 2006), and potentially allowing for the generation of  

other higher-ploidy level cytotypes. However, in many cases polyploidisation events are 

frequently known to confer instant reproductive isolation between the diploid parents and the 

polyploid offspring (Thompson and Lumaret, 1992; Husband and Schemske, 2000; Husband 

and Sabara, 2004).  

In the absence of  the potential for successful intercytotype crosses, polyploid success would 

depend on the polyploid individual possessing a trait that either allows it to minimise 

competition with, or out-compete, the majority parent cytotype (Levin, 1975). In such 

circumstances, it has been determined that there are major roles for polyploids to achieve 

higher levels of  fitness through increased potential for self-fertilization (Levin, 1975; 

Rodríguez, 1996; Mable, 2004;  Rausch and Morgan, 2005), clonality and asexual/apomictic 

pathways of  reproduction (Nakayama et al., 2002; Yamauchi et al., 2004; Hörandl and 

Hojsgaard, 2012; Hojsgaard et al., 2014; Van Drunen and Husband, 2018; 2019; Hojsgaard 

and Hörandl, 2019; Spoelhof  et al., 2020), and potentially prolonged lifecycles/iteroparity 
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(Rodríguez, 1996) and perenniality (Gustafsson, 1948; Stebbins, 1950; Rodríguez, 1996; te 

Beest et al., 2012; Chrtek et al., 2017). Any of  these different strategies would allow new 

polyploids to either pass on genetic material to subsequent generations, while avoiding the 

need for outcrossing sexual reproduction altogether, or to survive long enough until suitable 

homoploid mates arise. 

The rate at which polyploidisation events occur in a lineage can have a major impact on the 

ability of  polyploids to persist in populations. It has been argued that the rate of  

polyploidisation must necessarily exceed the rate of  successful polyploid establishment in a 

population (Ramsey and Schemske, 2002). This suggests that polyploidisation events are 

potentially far more frequent than is apparent based on extant polyploids, particularly in 

those lineages known to already have multiple higher-ploidy level cytotypes. This may be due 

to the fact that once a polyploid has formed, it increases the amount of  unreduced gametes in 

a population (Felber and Bever, 1997; Burton and Husband, 2001; Husband, 2004), thereby 

potentially facilitating the emergence of  more polyploids. However, rates of  polyploidisation 

have also been shown to be unevenly distributed, even in lineages where polyploidy is 

widespread. For example, Otto and Whitton (2000) observed that, within the angiosperms, 

polyploidy was more frequently occurring within dicots than within monocots. 

In the case that polyploids are able to become established, the long-term persistence of  the 

higher-ploidy level cytotype would depend on its ability to expand its distribution range. This 

would depend not only on the successful reproductive capacity of  the higher-ploidy cytotype, 

as described above, but also on it’s ability to successfully occupy a particular environmental or 

ecological niche, potentially different from that of  its diploid parents. In those species that are 

self-incompatible, the conditions that would enable new polyploids to persist can be described 

by two distinct strategies (Levin, 1975; Fowler and Levin, 1984; Felber, 1991). The first 

strategy is that polyploid persistence could be achieved by avoiding direct competition with 

their diploid parents through niche separation/differentiation (Maceira et al., 1993). Secondly, 

through the polyploid individual possessing a distinct competitive advantage over their diploid 

progenitors, which would in the long-term lead to single-ploidy (ie. not mixed) populations.

(Maceira et al., 1993). 

Diploid parents and their polyploid offspring may possess fundamentally different 

requirements, both in terms of  their physiology and biochemistry, thus resulting in them 

potentially occupying separate ecological niches (Lewis, 1980; Tal, 1980; Levin, 1983; 

Stebbins, 1985; Marchant et al., 2016). This has been observed in many species for aspects of  
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both abiotic (for example, Borrill and Linder, 1971; Lumaret, 1985; Lumaret et al., 1987) and 

biotic (for example, Lumaret, 1988; Lumaret and Barrientos, 1990) niche requirements. It has 

also been observed that polyploids may exhibit a higher degree of  adaptability, than their 

diploid parents, which can sometimes manifest as an increased tolerance to abiotic stress 

factors (McIntyre, 2012; Allario et al., 2013; Van de Peer et al., 2021). Indeed, polyploidy has 

also been linked with invasiveness in some species, where it is largely seen as facilitating 

invasions of  new habitats by the ability of  polyploids to better adapt to, or tolerate, 

environmental pressures and stress (for example in Lafuma et al., 2003; Mandák et al., 2005; 

Treier et al., 2009; te Beest et al., 2012). 

It has also been argued that a competitive advantage may be conferred on polyploids, due to 

direct changes in phenotype and/or morphology, associated with increased genome size. One 

direct effect of  polyploidisation is that it results in an increase in cell size (Müntzing, 1936; 

Stebbins, 1971; Masterson, 1994). This has immediate consequences for the physiological 

traits of  the plant that, as discussed above, may impact ecological niche requirements. The 

increased cell size is also often correlated with changes in morphology (te Beest et al., 2012). In 

particular, polyploids are often observed to be larger and more vigorous, with larger floral 

structures and seeds (Garbutt and Bazzaz, 1983; Levin, 1983; Bretagnolle et al., 1995; 

Segraves and Thompson, 1999). This increased size of  the adult polyploid plant, and more 

vigorous seedlings, may facilitate enhanced competitiveness (Blossey and Nötzold, 1995; 

Jakobs et al., 2004; te Beest et al., 2012; Van de Peer, 2021), over its diploid parents (for 

example in Dactylis glomerata (Maceira et al., 1993). It has been proposed that this enhanced 

competitiveness of  polyploids is a crucial factor governing polyploid occurrence and patterns 

of  distribution (Lumaret et al., 1997).  

Studies that assess changes in chromosome numbers and/or genome sizes, the mechanisms by 

which these emerge, their frequency of  occurrence across lineages, and the relationships 

between different cytotypes and their morphological, ecological and reproductive traits, offer 

an effective approach to understanding the patterns of  multiple cytotype occurrences and 

distributions among natural species populations. 
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iii. Polyploidy in sub-Saharan Africa 

Global patterns of  polyploid distribution suggest a latitudinal trend, with polyploid frequency 

increasing with higher latitudes. This pattern has been known for some time, particularly for 

the Northern Hemisphere (see Hagerup, 1931; Brochmann et al., 2004; Martin and Husband, 

2009). Recent studies at a global scale (Rice et al., 2019) have robustly supported this pattern, 

and this suggests that climate, in particular temperature, may be one of  the most influential 

factors influencing patterns of  polyploid distribution. Tropical and subtropical regions have 

also been observed to be generally polyploid poor. It is notable from the information provided 

in Rice et al. (2019), that there is a general lack of  available data on the occurrence and 

distribution of  polyploids in sub-Saharan Africa, when compared with other regions around 

the world. One notable exception is the Greater Cape Floristic Region (GCFR) of  South 

Africa. The GCFR, although highly species rich (Goldblatt, 1978; Linder, 2003; Manning 

and Goldblatt, 2012), has also been shown to have relatively low proportions of  polyploidy 

(Oberlander et al., 2016). It has previously been suggested that the relatively stable climate of  

the region may be the cause for general lack of  polyploid plants (Dynesius and Jansson, 2000). 

However, evidence also suggests some lineages possess higher levels of  polyploidy than others 

(for example see Goldblatt and Johnson, 1979; Krejčíková et al., 2013a; 2013b; Rice et al., 

2014; Linder et al., 2017).  

Many Oxalis L. species found in the GCFR have been shown to include substantial ploidy 

variation across their distributions (see Heitz, 1927; Marks, 1956), with evidence suggesting a 

large number of  different cytotypes have established and persist in existing populations. Oxalis 

obtusa Jacq., a widespread and highly variable species (Salter, 1944), was found to have seven 

distinct cytotypes (Krejčíková et al., 2013b). Although little cytogeographic pattern was 

observed, there was some correlation between different cytotypes and environmental 

conditions, including vegetation type (where hexaploids were most common in the Fynbos 

biome, while tetraploids were most common in the Succulent Karoo biome) and precipitation 

(Krejčíková et al., 2013b). Similar cytotype distribution patterns have also been observed in 

Oxalis purpurea L., with at least five cytotypes identified (Becker et al., 2022). Polyploidy has also 

been linked to invasiveness in Oxalis pes-caprae L., which is native to the GCFR, but has also 

become a problematic invasive species in many other parts of  the world (Randall, 2012; Sanz 

Elorza et al., 2004). Evidence suggests that only diploid, triploid and tetraploid cytotypes are 

found across indigenous populations, whereas only tetraploid and pentaploid cytotypes have 
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been recorded across their the invaded range (Krejčíková et al., 2012). Unpublished data 

suggests that this pattern of  remarkable ploidy diversity is common throughout GCFR Oxalis 

(R. Schmickl and K. Oberlander, pers.comm.).  

However, despite recent progress, there is a notable paucity of  information and data 

regarding ploidy variation in the flora of  subtropical southern Africa (Rice et al., 2019) outside 

the GCFR in general and non-GCFR African Oxalis in particular. To date there has only 

been a limited number of  investigations into the occurrence of  polyploidy in non-GCFR 

African Oxalis, and there is much that is still unclear regarding the frequency and distribution 

of  whole genome duplication events within these species populations.  

iv. Study species 

Oxalis obliquifolia Steud. ex A. Rich., which belongs to a predominantly GCFR clade 

(Oberlander, 2011) and is a close relative of  O. obtusa, has the largest distribution range of  all 

African Oxalis, extending throughout the eastern, summer-rainfall regions of  South Africa 

(Exell et al., 1963), all the way northward, through eastern Africa to Ethiopia (Raimondo et al., 

2009), Eritrea (Edwards et al., 2000) and Sudan (Darbyshire et al., 2015). This is unique 

among southern African Oxalis and makes this species a particularly promising candidate for 
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Figure I: Selected images of  Oxalis obliquifolia found across different sites (A- Prime View, 

Olifantsfontein; B- Legends Mountain Bike Trails, Pretoria East; C- Hennops Hiking Trails, 
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A B C

20 mm20 mm20 mm

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



studying the occurrence of  polyploidy and geographic patterns of  cytotype distribution. 

Furthermore, there is evidence to suggest that it also harbours substantial ploidy variability (J. 

Suda, unpublished data), and the lack of  close relatives of  O. obliquifolia over the vast majority 

of  its range implies that polyploids in this species are most likely autopolyploids.  

This species occurs abundantly in grasslands and wooded grasslands (Exell et al., 1963), with 

the most recent assessment identifying its population risk-level as “Stable” and of  “Least 

Concern” (Raimondo et al., 2009). From an ethnobotanical perspective, it has been reported 

that the leaves are known to be harvested and eaten (both cooked and fresh)  in northwestern 

Ethiopia (Abera, 2022).  

Like all other members of  the southern-African Oxalis lineage (Gebregziabher, 2004; 

Oberlander et al., 2011), Oxalis obliquifolia (Figure I) is a bulbous perennial with a vertically 

growing, subterranean rhizome, which grows from an ovoid shaped bulb, covered with a dark 

brown tunic (Salter, 1944). The leaves are borne on the emergent rhizome, in a rosette 

arrangement at the soil surface. The leaves are trifoliolate, with the petiole wider at the base 

than at the apex, and with trichomes occurring along its entire length (Salter, 1944). 

Vegetative propagation occurs via bulbils that grow from the underground rhizome, which 

grow to establish clusters of  clonal adult plants. 

It flowers during the rainy months of  the austral summer, and enters a state of  dormancy by 

dying back to the subterranean bulb during the colder, dry winter periods. Flowers are 

solitary on erect peduncles (technically a reduced, single-flowered inflorescence), that are 

often longer than the surrounding petioles. Petals range from white to bright-pink, with a 

yellow corolla tube, and often bear distinct markings that may be nectar guides (UV 

reflectance has not been assessed for this species). The fruit is a globose, loculicidal, five-

parted capsule terminated by the persistent styles. Sexual reproduction in O. obliquifolia is 

influenced by heterostyly (tristylous flower morphs, where legitimate crosses between plants 

requires pollen transfer from flowers with long-, mid-, or short-level anthers to flowers on the 

corresponding long-, mid-, or short styles, respectively; Barrett, 1990; Krug et al., 2012), as 

well as generalist insect pollination (specific pollinators for this species and close relatives are 

unknown). Short-distance ballistic seed dispersal is characteristic of  this species, on the scale 

of  several meters. Seeds are small with faint markings/ribbing and with a waxy cuticle over 

the seed coat. 
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v. Scope of  investigation, aims and objectives 

Research Question:  

How do polyploids persist within local populations of  Oxalis obliquifolia in Gauteng?  

The aims of  this investigation were to document the occurrence of  different cytotypes of  

Oxalis obliquifolia across Gauteng province, South Africa, and to assess the assess the impact of  

empirical data on proposed theories that may explain the persistence of  polyploids in species 

populations. 

In order to achieve these aims, four key questions were investigated:

1. Do different cytotypes co-occur, and do they occupy different abiotic niches?  

2. Is polyploidy associated with changes in plant morphology and/or phenology, in this 

system?  

3. Is there evidence of  higher or lower reproductive isolation between different cytotypes?  

4. How frequently do polyploidisation events occur in this system? 

Each of  these questions is addressed as part of  the different chapters in the following 

document, each with its own experimental procedure and statistical analyses, and discussion. 

The first chapter identifies and maps cytotypes across the study area, and includes assessing 

whether, or not, there are any differences in abiotic variables associated with the distribution 

of  different cytotypes. The second chapter focuses on possible character differences, both 

morphological and phenological, between cytotypes. Finally, the third chapter focuses on the 

degree of  reproductive isolation between cytotypes, and frequency of  polyploidisation. Due to 

the structure of  this thesis there is a degree of  repetition in terms of  references and discussion 

points throughout the different chapters, as each chapter provides a general context for the 

specific aspects addressed under each section, which pertains to each particular direction of  

enquiry. It is intended that individual chapters provide enough information to stand-alone 

and potentially be published individually, while still forming part of  one larger comprehensive 

investigation into the main research question. 
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CHAPTER 1: Cytotype identification and cytogeography of  
Oxalis obliquifolia in Gauteng 

1.1. Introduction 

Polyploidisation events can have profound effects on plant physiology, and thus plant ecology 

(Levin, 2002; Ramsey and Ramsey, 2014; Duchoslav et al., 2020). The generation of  many 

duplicate gene copies (genetic redundancy), offers the potential to evolve novel or slightly 

varied functions that can facilitate changes in the expression of  genes in higher-ploidy level 

cytotypes (Adams, 2007; Yoo et al., 2014; Jiao and Patterson, 2014; Saminathan et al., 2015; 

Coate et al., 2016; Gallagher et al., 2016). This can result in marked changes to phenotype (see 

Chapter 2; Garbutt and Bazzaz, 1983; Levin, 1983; Lumaret, 1988; Bretagnolle et al., 1995; 

Balao et al., 2011; te Beest et al., 2012), subsequently having instantaneous consequences for 

polyploid ecology (Ramsey, 2011; Hahn et al., 2012; Ramsey and Ramsey, 2014; Gallagher et 

al., 2016; Van de Peer, 2021), selection (Bretagnole and Thompson, 1996; Jiang et al., 1998; 

Otto and Whitton, 2000; Otto, 2007; Balao et al., 2011), their response to environmental 

conditions (Adams and Wendel, 2005; Lynch, 2007; te Beest et al., 2012; Duchoslav et al., 

2020) and ultimately their patterns of  cytotype distribution. Studies that describe the 

structure of  cytotype diversity and distribution within species populations are critical for 

advancing our understanding of  the evolutionary factors that impact and determine the 

successful establishment of  cytotypes. 

Competition between individuals is a prominent factor in the determination of  ecological 

niches of  species (Berendse, 1983; Schwinning and Kelly, 2013), and can likewise be applied 

to cytotypes (as they can be considered as distinct taxa; Suda et al., 2007a). Since polyploids, 

by necessity, ultimately emerge from within existing diploid-parent populations, they must 

overcome the challenge posed by Minority Cytotype Exclusion (see Introduction Chapter; 

Levin, 1975). Once established, neopolyploids are then further confronted by the prospect of  

competition with their diploid parents (Karunarathne et al., 2018), which are already present 

in larger numbers (Baack, 2005) and already occupying available niche space. Neopolyploids 

can either compete directly with, and attempt to out-compete, their diploid parents to survive, 

or they must avoid direct competition by ecological and niche differentiation (Hegarty and 

Hiscock, 2008; Raabová et al., 2008; Treier et al., 2009; Parisod et al., 2010; Zozomová-Lihová 
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et al., 2015), which in some instances can be achieved through spatial/habitat segregation 

(Levin, 2003; Duchoslav et al., 2020). 

Competition avoidance may be accomplished by ecological displacement (the divergent 

evolution of  ecological traits, as a result of  selection, to avoid competition by acting on traits 

associated with the use of  particular resources; adapted from Pfennig and Pfennig, 2009), 

and/or spatial segregation (Fowler and Levin, 1984; 2016; Van Dijk and Bijlsma, 1994; 

Ramsey and Schemske, 1998; Levin, 2003; Baack, 2004; Schönswetter et al., 2007; Rieseberg 

and Willis, 2007; Sonnleitner et al., 2010; Husband et al., 2013; Karunarathne et al., 2018). 

Niche differentiation and spatial segregation, are major factors that enable neopolyploids to 

expand their distributions (Fowler and Levin, 2016) and can often be viewed as a consequence 

of  ecological differentiation along abiotic and/or biotic (see Chapter 2) environmental 

gradients (Endler, 1977; Johnson et al., 2003; Brito et al., 2016). 

Changes to niche occupancy and requirements are well documented in polyploid plants, with 

habitat segregation being common in many polyploid complexes (for example in Lumaret et 

al., 1987; Johnson et al., 2003; Stuessy et al., 2004; Hülber et al., 2009). Polyploids can inhabit 

conditions at the same, or even beyond, the environmental tolerance of  their diploid 

progenitors (see Hagerup, 1932; Soltis and Soltis, 1995; 2000; Soltis et al., 2007; Kearney, 

2005; Parisod et al., 2010; Weiss-Schneeweiss et al., 2013; Diallo, et al., 2016; Fox et al., 2020; 

Baniaga et al., 2020), thus resulting in polyploids often possessing broader environmental 

tolerance, and facilitating ecological flexibility (Adams and Wendel, 2005; Dubcovsky and 

Dvorak, 2007; Lynch, 2007; Fawcett et al., 2009; McIntyre, 2012; Madlung, 2013; Diallo, et 

al., 2016; López-Jurado et al., 2019). In other words, many polyploids not only inhabit harsher 

environments, but are also often better adapted to respond to abiotic environmental 

fluctuations. 

Polyploid establishment and its association with increased environmental stochasticity (Leitch 

and Leitch, 2008; Oswald and Nuismer, 2011; Duchoslav et al., 2020) suggests that polyploids 

may possess the ability to better colonise new environments (Baack, 2005; Treier et al., 2009), 

and an increase in invasion potential (Pandit et al., 2006; 2011; te Beest et al., 2012; Rosche et 

al., 2016). Additionally polyploids have been observed to be better equipped to endure 

extremes in abiotic factors, particularly in the context of  extremes in temperature and rainfall 

conditions, often described in relation to latitude (Stebbins, 1984; Brochmann et al., 2004;  

Burnier et al., 2009; Rice et al., 2019), elevation (Schinkle et al., 2016; Dai et al., 2020), and 
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environmental aridity (Ramsey, 2011; Liu et al., 2011; Deng et al., 2012; Manzaneda et al., 

2012; Duchoslav et al., 2020). 

The interactions between different cytotypes, and the results of  direct competition and 

competition avoidance interactions between diploids and polyploids, can result in complex 

large- and small-scale distribution patterns (Stebbins, 1985; Thompson and Lumaret, 1992; 

Petit et al., 1999; Buggs and Pannell, 2007; Kolář et al., 2009; Martin and Husband, 2009; 

Trávníček et al., 2011; Husband et al., 2013; Kolář et al., 2017). This suggests that patterns of  

cytotype distribution are a consequence of  complex ecological processes and interactions. 

When polyploids initially arise, by necessity they occur in sympatry with existing diploid 

populations. While this pattern may change over time, there are instances where sympatric 

cytotype occurrence has endured and continues to persist (for examples see Husband and 

Schemske, 1998; Suda et al., 2007b; Trávníček et al., 2011). However, it is often the case that 

following the emergence of  neopolyploids, cytotype distribution expansion or shrinkage can 

result in parapatric (cytotypes have distinct distributions that abut one another, with 

sometimes some small overlap) or allopatric (completely mutually exclusive and disjunct) 

distribution patterns (Krejčíková  et al., 2013a). It is also often the case that where cytotypes 

are observed to co-occur, they are in fact part of  contact zones between larger parapatric 

cytotype distributions (Lexer and van Loo, 2006; Duchoslav et al., 2010; Šafářová et al., 2011; 

Castro et al., 2012; Duchoslav et al., 2020). 

The study of  geographic distributions of  polyploids, in comparison to their diploid parents, 

can potentially provide valuable insights into the dynamics of  polyploid population biology. 

This includes insights into factors that influence the patterns of  cytotype distribution, such as 

environmental factors and habitat separation, and the development of  larger polyploid 

complexes (Lo et al., 2009). In particular, regions of  cytotype co-occurrence at the local scale 

can offer unique opportunities to investigate intercytotype interactions, and assess the 

evolutionary forces that influence polyploid persistence in natural populations (Lewis and 

Suda, 1976; Burton and Husband, 1999;  Krejčíková  et al., 2013a).  

In this study, standard flow cytometric techniques, in addition to meiotic chromosome 

squashes, were used to assess cytotype variation among populations of  Oxalis obliquifolia. In 

particular, the following questions were investigated: (1) What is the degree of  cytotype 

diversity of  O. obliquifolia across Gauteng Province? (2) What is the extent to which cytotype 

co-occur, or are they spatially segregated, in Gauteng? (3) Are abiotic variables correlated 

with cytotype distribution/occurrence?
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1.2. Materials and Methods 

Field sampling 

A total of  28 sites across Gauteng Province were selected for investigation, which were 

identified based on documented occurrence data available on the Global Biodiversity 

Information Facility (GBIF, 2021: https://www.gbif.org/species/3627864) and iNaturalist 

(2021: https://www.inaturalist.org/taxa/591238-Oxalis-obliquifolia), and covering an area of  

approximately 9 500 km2. Fresh leaf  material from 10 to 15 individuals per site was 

harvested, during the summer growing season, for analysis and cytotype identification. In 

order to avoid sampling individuals of  the same genet (clonal individuals arising asexually 

from bulbils) and to collect individuals across a larger area for each site, individuals were 

sampled a minimum of  35 meters apart from one another, and different flower morphs 

(long-, middle- and short-styled) were identified and included whenever possible. All 

occurrences and sample materials were recorded with coordinate data (with an accuracy of  

between 8m and 12m) for later mapping and analysis. Voucher specimens for each site were 

collected and deposited in the H.G.W.J. Schweickerdt Herbarium (University of  Pretoria, 

PRU; Appendix 1A and 1B). 

Flow cytometry 

DNA ploidy levels were identified using relative fluorescence intensities of  4′,6-diamidino-2-

phenylindole (DAPI)-stained nuclei using standard flow cytometric techniques (adapted from 

the procedure described by Krejčíková et al., 2013b). Fresh leaf  material from each individual 

was analysed within 3 days of  collection, and stored under refrigerated conditions (4 degrees 

Celsius). A two-step procedure using buffers Otto I (0.1M citric acid, 0.5% Tween 20; Otto, 

1990) and Otto II (0.4M Na2HPO4.12H2O) was used, where tissues were co-chopped 

together with an equal amount of  an internal reference standard. This was done using a 

sharp razor blade in a Petri dish, which contained 1 mL of  the Otto I buffer. In this case, 

Oxalis articulata was selected as the internal standard based on the availability of  approximate 

genome size information from Vaio et al. (2016), and it was obtained from the Manie van der 

Schijff  Botanical Gardens at the University of  Pretoria. The suspension with co-chopped 

sample and internal standard was then filtered through a 30 μm mesh into a sample tube, and 

allowed to incubate at room temperature for at least 20 minutes. Subsequently, 1 mL of  Otto 
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II buffer along with 10 µL DAPI per mL and 2 µL β-mercaptoethanol per mL was added to 

the solution, and allowed to incubate for 10 minutes to facilitate nuclei staining. Relative 

fluorescence of  at least 5000 particles were captured using a CyFlow Space cytometer 

(Sysmex Europe GmbH), housed in PRU, equipped with a UV laser (wavelength set at 

352nm; Doležel et al., 2007) as the light excitation source. The resulting fluorescence 

histograms were analysed using ‘FloMax®’ software (version 2.4, Sysmex Partec GmbH). 

Samples were re-analysed in instances where a coefficient of  variation (CV) value for any 

peak was above 5%. In some cases CV's of  < 5% could not be achieved; in these cases, if  

after three separate runs the resulting peaks were found to consistently lie within a range of  

values associated with a particular genome size, then that individual was assigned to that 

cytotype. 

Chromosome counts 

The chromosome numbers of  diploid and tetraploid individuals were confirmed utilising  

meiotic chromosome squash techniques, based on the approach described by Windham et al. 

(2020). Sample material was collected from multiple diploid and tetraploid individuals, as 

identified using flow cytometry. In order to ensure the presence of  anthers at the required 

stage of  meiosis a variety of  flowers at different stages of  development, erring towards the 

younger material, were sampled. Samples were fixed using a freshly prepared 3:1 95% 

ethanol : glacial acetic acid solution (“Farmer’s fixative”, stored on ice before and after use). 

After 24 hours the fixative was decanted and replaced with 70% ethanol, and stored in a 

−20°C freezer until further use. Samples were then placed onto a clean glass Petri dish and 

submerged in 70% ethanol to prevent drying out (adding more during the process as needed). 

Using a dissecting microscope, anthers were removed from the immature buds and broken 

open and isolated using a dissecting needle tip. A clean microscope slide, with a droplet of  

dilute acetocarmine stain, was then placed under a dissecting microscope. The isolated anther 

material was transferred into the droplet and further isolated without being allowed to dry 

out. A small droplet of  full-strength acetocarmine was then added and the dissected anthers 

mixed into the stain. The anthers were crushed/mashed using the dissection needle 

positioned almost horizontally, until the majority of  the sample was homogenised and 

individual cells were dispersed throughout the stain droplet. Excess tissue material was then 

removed, with the final droplet size, containing the individual cells and anther material, no 

more than 1 cm in diameter. A single droplet of  Hoyer’s solution (Anderson, 1954), 
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approximately equal in volume as the acetocarmine droplet, was added and mixed 

thoroughly. Under a dissecting microscope, the cleaned cover slip was lowered into position 

and gently tapped with the dissecting needle to removed the bubbles, and excess liquid. The 

sample was subsequently squashed vertically for about 15 seconds, gently released, then 

squashed for another 15 seconds on alternate corners, and in the centre of  the cover slip. 

Excess Hoyer’s solution was carefully removed using a wipe with 70% ethanol and cleaned. 

Countable chromosomes were then identified using a Nikon Eclipse E200 light microscope 

equipped with a mounted Nikon E950 digital camera, manufactured by Tochigi (Nikon 

Corporation, Japan). 

Mapping and data collection 

A total of  320 individuals with known cytotypes were mapped using ArcGIS Pro (GIS 

software; Version 10.0: Environmental Systems Research Institute, Inc., 2010) across 25 sites. 

GIS layers were then used to extract values to each coordinate point for specific abiotic 

variables relating to: climate, topography, and underlying geology. Climatic data (mean 

annual precipitation, minimum temperature during mid-winter (July), and maximum 

temperature during mid-summer (January)) were obtained from the WorldClim 2 data set 

(1970–2000; version 2.1) at 30 arc-s resolution (approximately 1 km2) (Fick and Hijmans, 

2017). Topographical variables were obtained by retrieving elevation data from the Shuttle 

Radar Topography Mission (SRTM; Jarvis et al., 2008), at 30 arc-s (approximately 1 km2) 

resolution, and subsequently this data was used to calculate slope and northness utilising the 

Slope and Aspect tools, respectively, in ArcGIS Pro. Geological data was obtained using the 

Chronostratigraphic map (created by the Council for Geoscience of  South Africa) shapefile 

available for download through the Esri online portal (https://www.arcgis.com/home/

item.html?id=739c8b22b99b47bb81c2bed660d6c5de). Additionally, microclimate variables 

relating to exposure (sun or shade conditions) and soil were also obtained for each individual. 

Soil samples were collected (about 50ml by volume) and thoroughly air dried before being 

analysed.  During the period between soil sample collection and analysis, samples were stored 

in air tight containers (sealed immediately after air drying) and kept below -20℃, in line with 

standard practice (International Organization for Standardization; ISO 18512, 2007). Due to 

cost constraints detailed soil features such as pH, Nitrogen content,  and Phosphorus content, 

could not be included in the study. However, to include at least some soil variables, simple 
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assessments of  soil texture were included. Soil characterisation was done by separating the 

coarse fraction from the soil fraction (by using a 2mm sieve) and calculating the percent of  

coarse material by total dry mass. The soil fraction was then further characterised by texture 

following the ribbon method, as described by Natural Resources Conservation Service, 

United States Department of  Agriculture (https://www.nrcs.usda.gov/wps/portal/nrcs/

detail/soils/edu/?cid=nrcs142p2_054311), which is a modified approach based on the 

methods described by Thien (1979) for soil texture classification (see Appendix 1C). 

Statistical analysis 

A Multiple Factor Analysis (MFA, Appendix 1D) using the FactoMineR package (Lê et al., 

2008), which combined a Principal Component Analysis (PCA) with a Multiple Component 

Analysis (MCA), was conducted in R version 4.2.0 (R Core Team, 2022). This allowed both 

continuous and categorical variables to be assessed for explanatory power in identifying the 

specific cytotype groups using abiotic conditions as predictor variables (10 abiotic variables in 

total, Appendix 1E). Statistical support for abiotic variable associations between cytotypes and 

sites were determined using Gower’s distance (Gower, 1971) with the daisy() function in the 

cluster package (), and by using a PerMANOVA analysis (Appendix 1D) with the adonis() 

function in the vegan package (Oksanen et al., 2022). Prior to the PerMANOVA analysis, 

traits were assessed for autocorrelation (Appendix 1D) using Pearson’s correlation coefficient 

and the cor() function (R Core Team, 2022), and correlated traits were excluded, using a 

degree of  correlation number of  |0.7| as a cut-off  for identifying strong correlations. 

Elevation was found to be highly correlated with both maximum temperature (|r| = 0.94) 

and minimum temperature (|r| = 0.72) were found to be highly correlated with one another, 

and so only elevation was retained for analysis. 

1.3. Results 

Cytotype identification 

A total of  320 individual specimens of  Oxalis obliquifolia from across Gauteng Province were 

assessed using standard flow cytometry techniques, and classified according to their relative 

genome size (measured against the internal standard, O. articulata (Table 1.1; Figure 1.1A-D), 

with an approximate genome size of  2C-x = 0.91 pg (based on Vaio et al., 2016). Of  those, 
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255 individuals were deemed to have good (below 5%) CVs, and were used for the 

construction and identification of  cytotype categories/associated values. The mean CVs for 

the sample (G1) fluorescence peaks was 4.19 % (range 2.38 – 4.99 %). Six distinct cytotypes 

were identified (Figure 1.1E; Table 1.1), including diploids (2x; relative genome size = 0.849 ± 

0.039), tetraploids (4x; relative genome size = 1.621 ± 0.048), pentaploids (5x; relative 

genome size = 1.944 ± 0.043), hexaploids (6x; relative genome size = 2.514 ± 0.068) and 

octoploids (8x; relative genome size = 3.266), and possibly an instance of  aneuploidy (5x+; 

relative genome size = 2.197 ± 0.037). The mean relative monoploid genome size (1Cx-value; 

mean ± s.d.), for the three majority cytotypes, was found to be approximately 0.38 ± 0.009 

pg. 

In order to verify the flow cytometry results, meiotic chromosome squashes were performed 

using sample material harvested from individuals assumed to be diploids (20 individuals) and 

tetraploids (25 individuals). Chromosome counts for both diploids (Figure 1.2A) and 

tetraploids (Figure 1.2B) were determined to be 2n = 14 and 4n = 28 respectively, yielding a 

base chromosome number of  n = 7, for the species Oxalis obliquifolia, while also confirming the 

accuracy of  the relative genome sizes determined using flow cytometry. Chromosomes were 

mostly metacentric to submetacentric in structure (Appendix 1F). 
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Table 1.1: Results of  flow cytometric analysis of  Oxalis obliquifolia samples

Ploidy level Relative genome size (mean 
± s.d.)*

n Number of  sites 
encountered

2x 0.849 ± 0.039 53 10

4x 1.621 ± 0.048 137 21

5x 1.944 ± 0.043 4 3

5x+ 2.197 ± 0.037 2 1

6x 2.514 ± 0.068 55 9

8x 3.266 1 1

* Calculated as a ratio of  sample to internal standard (sample/standard); Internal standard = Oxalis articulata (2C-x = 0.91 pg)
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Figure 1.1: Selected fluorescence histograms showing different relative genome sizes (A- diploid, 
2n; B- tetraploid, 4n; C- hexaploid, 6n; and D- octoploid, 8n) of  Oxalis obliquifolia individuals, 
compared to the internal standard O. articulata (2C-x = 0.91 pg). E- Relative genome sizes of  255 
individual Oxalis obliquifolia plants, with good CV values (below 5%), collected from across Gauteng 
province, South Africa, with 6 distinct cytotypes identified. 
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Cytotype mapping 

In total, 28 sites were investigated for the occurrence of  O. obliquifolia,, covering an area of  

approximately 9500 km2. In total 320 individuals were mapped across Gauteng (Figure 1.3A) 

and out of  the 28 sites investigated, three had no O. obliquifolia individuals. Remarkably, over 

half  (fifteen localities) of  the remaining sites (Figure 1.3B) were found to have mixed-ploidy 

populations, with the remaining sites being either uniformly diploid (two sites), tetraploid 

(seven sites) or hexaploid (one site, Suikerbosrand Nature Reserve). These three cytotypes 

made up the largest portion of  individuals encountered (Figure 1.3C), with the remaining 

individuals comprising minority cytotypes, including pentaploids and octoploids. Tetraploids 

were found to be the most commonly encountered cytotype, making up over half  of  all the 

individuals assessed. 

CHAPTER 1 38

Figure 1.2: Meiotic chromosome squashes and chromosome counts in pollen mother cells of  two of  
two Oxalis obliquifolia individuals (A- a diploid individual; B- a tetraploid individual), and 
chromosomes stained with acetocarmine solution and viewed under a light microscope.
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Environmental niche differentiation 

The MFA showed a substantial degree of  overlap between cytotypes (Figure 1.4). Based on 

the ten sampled abiotic variables, clusters based on cytotypes are not identifiable, with 

tetraploids overlapping with both diploids and hexaploids (Figure 1.4A). Total explanatory 

power of  the MFA for the first two axes was very low, accounting for only 19.98% of  the 

variation. It was further found that only after reaching dimension 8 (out of  a total of  34 

dimensions), did the cumulative percentage of  variation reach 50%. This strongly suggests 

that abiotic variables do not significantly contribute to determining the cytotype distribution 

patterns observed in this system, and at the scale of  this investigation. Characters with the 

largest contribution to the construction of  dimension 1 on the x-axis of  the MFA were 

minimum temperature and maximum temperature (Figure 1.4 D; Appendix 1G). These 

variables are strongly correlated with latitude suggesting site, and not cytotype, is better 

described by these data. It is worth noting that the supplementary variable “Site”, and not 

“Cytotype” was most strongly associated with the variation accounted for by dimensions 1 

and 2 (Figure 1.4C), which implies very little association between the abiotic variables 
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Figure 1.3: A- The cytogeography of  Oxalis obliquifolia across Gauteng Province (indicated in grey), 
with the proportion of  different cytotypes identified at each locality. B- Proportion of  sites with no 
O. obliquifolia (grey), only one cytotype (purple) or mixed cytotype (brown) individuals. C- Total 
proportion of  cytotypes encountered across Gauteng Province.
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included in this study and the distribution of  cytotypes encountered in the field. Indeed, 

individual clusters suggest local conditions are more informative than broad-scale variables., 

as shown in Figure 1.4B. This observation was supported by the statistical analysis results 
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Figure 1.4: A- Multiple factor analysis (MFA) based on 10 abiotic environmental variables as 
predictors of  cytotype distribution of  Oxalis obliquifolia across Gauteng Province, with dimensions 1 
and 2 only accounting for a cumulative 19.98% of  the variation observed, colours grouped by 
cytotype.  B- The same MFA plot with colours grouped by site.  C- Contribution of  each group of  
active (red) and supplementary (green) variables, in the construction of  the first and second 
dimensions of  the MFA. D- Correlation circle showing the 7 continuous variables used in the 
construction of  the MFA.
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(Table 1.2), which showed that although abiotic differences between both cytotypes and sites 

were statistically significant, site as the response variable had a far greater sum of  squares 

value (21.858 vs 3.169), indicating that it accounted for the vast majority of  the variation 

observed. 

1.4. Discussion 

This investigation presents a detailed look at local ploidy variation in a plant species known to 

have a very large geographic range, larger than any other southern African Oxalis. Despite 

only a small portion of  the overall distribution being included in this research, a surprising 

number of  cytotypes were found in this species. Even more surprising, was the degree to 

which these different cytotypes co-occur. 

Chromosome number in Oxalis obliquifolia 

Genome size, chromosome number and ploidy level are fundamental genomic variables of  

plant taxa, and are of  great importance when it comes to understanding species evolution and 

intraspecific diversity. Previous studies concerning the karyology of  the genus Oxalis, have 

demonstrated a large degree of  variation in chromosome number across different lineages 

and species, with a range of  base chromosome numbers, including x = 5, 6, 7, 8, 9,11, 12, 14 

and 17 (Moura et al., 2020), with the majority having a base number of  x = 7. Additionally, 

these chromosomes have been observed to exhibit a range of  diverse morphologies with 

Table 1.2: Results of  PerMANOVA analysis of  abiotic variables associated 
with Oxalis obliquifolia cytotypes and collection sites

Degrees of 
freedom

Sum of 
Squares

R 2 F statistic P-value

Cytotype 5 3.169 0.09840 27.0309 1.0x10-3 *

Site 24 21.858 0.67869 38.8416 1.0x10-3 *

Cytotype:Site 16 0.590 0.01833 1.5735 1.0x10-3 *

Residual 281 6.589 0.20458

Total 326 32.206 1.00000

* indicates significant p-values 
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regards to centromere placement, including metacentric, submetacentric, telocentric and 

acrocentric (de Azkue, 2000; de Azkue and Martinez, 1983; 1984; 1988; 1990). 

For the first time, a base chromosome number of  x = 7 is provided for the species Oxalis 

obliquifolia, with mostly metacentric to submetacentric morphology. This is consistent with 

what was expected based on published chromosome counts for closely related taxa, including 

O. obtusa, which likewise has been found to possess a base chromosome number of  x = 7 

(Krejčíková et al., 2013b). Additionally, chromosomes were largely observed to be metacentric 

to submetacentric. Among some of  the challenges posed in obtaining these counts for the O. 

obliquifolia included the very early stage of  development of  the inflorescence that was required 

in order to obtain pollen mother cells at just the right stage of  meiosis. This meant that 

immature buds needed to be harvested, for dissection and anther isolation, when they were 1 

mm, or less, in length. Additionally the chromosomes of  O. obliquifolia were observed to be 

very small, and often difficult to clearly visualise, even under high magnification (at 1000x 

magnification). These data contribute to the growing body of  karyological knowledge for the 

genus Oxalis (Heitz, 1927; Marks, 1956; Mathew, 1958; Sharma and Chatterji, 1960; de 

Azkue, and Martinez, 1990; Dreyer and Johnson, 2000; de Azkue, 2000;  Sato et al., 2008; 

Krejčíková et al., 2013b; Vaio et al., 2013; Moura et al., 2020). 

Intraspecific ploidy variation in Oxalis obliquifolia 

The detailed approach to sampling employed in this investigation (10-15 individuals per 

locality) for 25 different sites across an area of  roughly 9500 km2, has shown that local 

populations of  O. obliquifolia harbour an impressive amount of  cytotype diversity. The 

cytotype diversity found is comparable to that encountered across the entire distribution of  a 

closely related species, O. obtusa (Krejčíková et al., 2013a; 2013b). Five distinct cytotypes (2x, 

4x, 5x, 6x and 8x) and one possible case of  aneuploidy (5x+) were encountered across the 

study area. This is exceptionally high, even when compared with cytotype distributions of  

other species at larger geographical scales (for example in Marhold et al., 2010; Frajman et al., 

2015). The very close estimates of  relative genome sizes for diploids, tetraploids, hexaploids 

and octoploids, suggest that these higher-level cytotypes are most likely autopolyploid in 

origin, which supports previous suggestions of  very limited-to-no hybridisation events in the 

southern African Oxalis lineage (Salter, 1944). Although less likely, it is also possible that such 

close estimates for relative genome size may indicate possible hybridisation of  species with 
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very close genome sizes, such as hybridisation events in polyploid complexes of  other species 

(for example, in the genus Sorbus; Pellicer et al., 2012). 

Geographic distribution of  cytotypes in Gauteng 

This investigation has revealed a very complex pattern of  cytotype distribution of  O. 

obliquifolia across Gauteng, and a remarkable degree of  sympatry (more than half  of  sampled 

sites) across different cytotypes. This high degree of  co-occurrence made it difficult to discern 

any distinct patterns of  cytotype distribution, an observation supported by the MFA results, 

which were unable to separate cytotypes based on abiotic variables. It is possible that more 

distinct patterns of  cytotype distribution may be observed across larger parts of  the 

distribution range (as seen in other studies such as: Hijmans et al., 2007; Manzaneda et al., 

2012; Sutherland and Galloway, 2018; Semple et al., 2021), as this would allow for larger 

variation and gradients in abiotic variables to be assessed. Indeed many studies have also 

shown that whole genome duplication has been directly linked to range expansion (for 

example in McIntyre, 2012; Voss et al., 2012; Maguilla et al., 2021), and can even result in 

increased invasiveness (te Beest et al., 2012).  

However, as demonstrated in this study, extensive sampling (more than just 3 or 4 individuals 

per site) is necessary to get an accurate idea of  cytotype variation at individual sites, and thus 

the presence of  mixed-cytotype populations may be underrepresented in existing studies that 

only have limited numbers of  samples per site. It should also be noted that there are instances 

where studies on ecological (often climatic) differentiation between polyploids and diploids, 

have not always supported habitat segregation (for example in Godsoe et al., 2013; Glennon et 

al., 2014). Additionally, it is also possible that the resolution of  abiotic variables used to assess 

cytotype distribution in this investigation, was at a scale that was too coarse to detect more 

subtle, or fine-grained differences in habitat (as noted by Kirchheimer et al., 2016). It may be 

the case that if  finer-scale data (perhaps at the level of  individual accessions, or at a resolution 

of  tens of  meters) for abiotic variables were used, it would allow for the identification of  

micro-site level variability, which could potentially be correlated to cytotype. 

While there was no definite patterns observed in the geographic distribution of  cytotypes of  

O. obliquifolia in this system, there are some general trends that can be discerned, such as the 

higher frequency of  diploids in the northern to western regions of  Gauteng, and hexaploids 

occurring in higher numbers throughout regions in the south-east. These observations were 
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supported by statistically significant p-values for differences in abiotic variables associated 

with different cytotypes and sites. Tetraploid individuals were relatively evenly distributed 

across the entire study area. Overall, eight different cytotype combinations were encountered, 

three involving only the three majority cytotypes (i.e. 2x + 4x, 4x + 6x, 2x + 4x + 6x) and five 

more cytotype combinations that include at least one minority cytotype (i.e. 2x + 4x + 8x, 4x 

+ 5x + 6x, 4x + 5x + 5x+, 4x + 8x, 6x + 8x). The occurrence of  mixed-cytotype populations 

is well documented in many species (for example, in Burton and Husband, 1999; Weiss et al., 

2002; Španiel et al., 2008) and have often been observed to indicate contact-zones between 

broader distinct distributions of  single ploidy populations (such as those observed in, Husband 

and Schemske, 1998; Mráz et al., 2012; Sabara et al., 2013; Zozomová-Lihová et al., 2015; 

Castro et al., 2012). It remains to be seen whether this is the case in O. obliquifolia - future work 

should focus on a larger study area to reveal any discernible cytogeographic patterns. 

However, the high degree of  cytotype co-occurrence (up to three at a single locality) suggest a 

highly complex system, where abiotic variables are not the primary drivers of  observed 

cytotype distribution patterns. 

1.5. Conclusion 

Local populations of  Oxalis obliquifolia harbour an exceptional amount of  cytotype variation 

across a relatively small part of  its overall distribution range. These findings support 

suggestions of  higher polyploid incidence in the genus Oxalis, and that polyploid incidence in 

the sub-Saharan African region may be higher than previously thought. The remarkably high 

degree of  sympatry in this system provides a unique and promising opportunity to investigate 

cytotype interactions and factors influencing cytotype distributions. Broad scale habitat 

segregation between diploids and polyploids was not observed, however further research 

across a larger portion of  the distribution range of  O. obliquifoloia, and taking into account 

more microclimatic variables as cytotype predictors, is crucial to determine whether the high 

degree of  sympatry is a local phenomenon, or part of  a broader pattern of  the cytogeography 

of  this species.  
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CHAPTER 2: Morphological and phenological effects of  
polyploidy in Oxalis obliquifolia 

2.1. Introduction 

Polyploidisation events can have considerable consequences for factors that govern 

phenotypic expression. The instantaneous doubling, or multiplication, of  DNA content 

following polyploidisation can result in substantial changes in epigenetic and transcriptomic 

regulation of  gene expression (Schranz and Osborn, 2004; Adams and Wendel, 2005; Parisod 

et al., 2010; Gao et al., 2016), although the degree to which this occurs in some autopolyploids 

is not always clear, with observations in some synthetic autopolyploids demonstrating fewer 

than expected changes to gene expression (Martelotto et  al., 2005; Albertin et  al., 2005). 

Despite this, it is generally acknowledged that possessing multiple gene copies has the 

potential to result in lasting consequences for gene expression, and thus morphological, 

physiological, and phenological effects, giving rise to the manifestation of  novel phenotypes 

(Wendel, 2000; Ramsey and Schemske, 2002; Bennett and Leitch, 2005; Comai, 2005; Balao 

et al., 2011; Weiss-Schneeweiss et al., 2013; Bigl et al., 2019).  

Gene expression can be described as either dosage-dependent or dosage independent (Feng et 

al., 2020). There are a number examples where phenotypic expression is governed by genes 

that exhibit an allele-dosage dependency effect, and thus are directly impacted by 

polyploidisation events (Osborn et al., 2003; Shi et al., 2015), since the expression levels of  

dosage-dependent genes correlate with the number of  copies of  those genes (Osborn et al., 

2003). It has previously been suggested that the majority (two-thirds; Shi et al., 2015) of  alleles 

are subject to dosage-dependency effects, and that these genes are closely related to essential 

processes such as cell division, photosynthesis and metabolic functions (Shi et al., 2015; Feng et 

al., 2020). Dosage-independant genes (Shi et al., 2015) have instead been associated with 

response to abiotic and biotic stress factors (Feng et al., 2020). This creates ample opportunity 

for increased phenotypic variation (through multiple copies of  dosage-dependent and dosage 

independent alleles on which selection can act) across different cytotypes (Bennett and Leitch, 

2005; Chen, 2007). This topic has been the subject of  numerous investigations since the 

beginning of  the 20th century (Gates, 1909; Winge, 1917; Stebbins, 1947; DeMaggio and 

Stetler, 1971; DeMaggio and Lambrukos, 1974; Guo et al., 1996;  Balao et al., 2011; Shi et al., 

2015; Tan et al., 2016; Van Hieu, 2019). Investigations into the link between polyploidisation 
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and subsequent changes to phenotypic expression is important for understanding the 

evolution and ecological role of  polyploids (Müntzing, 1936; Otto and Whitton 2000; 

Paterson, 2005; Otto, 2007; Flagel and Wendel, 2010; Van de Peer, 2017) in species 

populations. 

This phenotypic variation among polyploids is one of  the primary reasons that so many crop 

species are cultivated as polyploid varieties (Eigsti, 1957; Sattler et al., 2016). Higher-ploidy 

crops often exhibit an increase in growth rate and/or size (Sattler et al., 2016), as well as other 

variations that make polyploids more suitable for agriculture, such as their ability to better 

respond to abiotic (Stebbins, 1971; Ramsey and Schemske, 2002; Liu et al., 2011) and biotic 

stresses, such as their improved resistance to pathogens (Oswald and Nuismer, 2007; 

Mehlferber, et al., 2022), and their resistance and susceptibility to herbivory (Edger et al., 2015; 

Hull-Sanders et al., 2009; Segraves and Anneberg, 2016), and ability to cope with a lack of  

pollinator availability (through increase selfing ability; Stebbins, 1950;  Hedrick, 1987). 

Furthermore, the study of  artificial neopolyploids has demonstrated that polyploidisation has 

instantaneous and pronounced morphological, anatomical and physiological consequences 

(for example in Stanys et al., 2006; Gaikwad et al., 2009; Baker et al., 2017; Wei et al., 2019).  

Polyploidy, and its associated physiological changes, have been linked to broader shifts in 

ecological tolerances and niche occupancy (Felber-Girard et al., 1996; Levin, 2002; Baack, 

2004; Adams and Wendel, 2005; Sonnleitner et al., 2010). Some of  these physiological 

changes can include changes in transpiration rates, water balance, hormone levels (Levin, 

1983; 2002; Warner and Edwards, 1993), chlorophyll content (Dong et al., 2017; Greer et al., 

2018), and response to abiotic stress, for example higher tolerance to increased salinity stress 

in Robinia L. polyploids (Wang et al., 2013). The higher tolerance to environmental stresses 

may offer polyploids a competitive advantage over their diploid parents in circumstances 

where they co-occur. In particular, polyploids have been observed to have higher 

photosynthetic capacity (Coate et al., 2012; Chen et al., 2021) than diploids, thereby resulting 

in increased growth rates and more vigorous plants.  

Changes in growth rates and photosynthetic capacity are often associated with changes in 

other anatomical and morphological features, including the thickness of  the leaves (Sun et al., 

2015), the size of  stomata (Speckmann et al., 1965; Laere et al., 2011; Marinho et al., 2014; 

Zhang et al., 2017), and the composition of  photosynthetic pigments (Liu et al., 2018). With 

regards to the effects of  polyploidisation on morphology there have been extensive studies 
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and reviews on the topic (see Knight et al., 2005; Doyle and Coate, 2019). Previous studies 

have shown that polyploids tend to display changes in the size or number of  particular cell 

types, including changes in the length of  guard cells, epidermal cell area, and changes in the 

density of  stomata (Beaulieu et al., 2008). Polyploidisation can also alter the size and shape of  

entire plant organs, for example alterations in the over-all size of  shoots and leaf  dimensions/

shape (Sugiyama, 2005; Trojack-Goluch and Skomra, 2013; Lan et al., 2020; Trojack-Goluch 

et al., 2021), changes in the size and shape of  flowers and floral parts (Segraves and 

Thompson, 1999; Anssour et al., 2009; Nghiem et al., 2011; Trojack-Goluch and Skomra, 

2013), and changes in seed size (Anssour et al., 2009; Chan et al., 2022).  

The most well-known effect of  polyploidisation is the “Gigas” effect (Randolph, 1941; 

Stebbins, 1971; Levin, 2002; Knight and Beaulieu, 2008; Sattler et al., 2016; Becker et al., 

2022). First described by Gates (1909) it was named after the plant species Oenothera 

lamarckiana mut. gigas, and refers to polyploid size increase as a result of  nucleotypic effects 

(Doyle and Coate, 2019), in other words the size effect derived from the increase in genomic 

DNA content on nuclei, independent of  the effect of  genes (Bennett, 1971; 1987; Levin, 

2002). This nuclear size increase results in a cascading effect, whereby the size of  individual 

cells also increase in response (Bennett, 1987; Balao et al., 2011; Snodgrass et al., 2017), and 

also manifesting at other higher organisational levels (Ramsey and Schemske, 2002).  

The positive correlation between nuclear DNA content and cell size (Otto and Whitton, 

2000; Doyle and Coate, 2019) has often been measured based on the size of  stomatal guard 

cells or individual pollen grains (Masterson, 1994; Funamoto et al., 2006; Beaulieu et al., 2008; 

Marinho et al., 2014; Becker et al., 2022). Furthermore, if  individual cells are found to be 

larger in higher ploidy-level cytotypes, measurements relating to cell density are likely to be 

negatively correlated with polyploidy (Levin, 2002; Chen et al., 2009). At higher 

organisational levels, such as at the tissue level, quantitative changes like decreased stomatal 

density (del Pozo and Ramirez-Parra, 2014; Monda et al., 2016; Robinson et al., 2018; Doyle 

and Coate, 2019) or hairs have been reported (Sosa and Dematteis, 2014; Chansler et al., 

2016), in conjunction with larger cells and tissues. Ultimately, polyploidisation has generally 

been shown to result in a larger organ structures (including flowers, fruits, and leaves; Tang et 

al., 2010; Feng et al., 2017), or even in the size of  the whole individual (Balao et al., 2011; Sosa 

et al., 2012; Hodálová et al., 2015).  
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Although, polyploidy does not always result in larger individuals, since increased cell size can 

conversely result in the decreased occurrence or rate of  cell divisions (Noggle, 1946; Stebbins, 

1971) in polyploids, and may in fact result in phenotypes that have more compact growth 

forms (Horn, 2002; Liu et al., 2007; Blasco et al., 2015; Sattler et al., 2016; Hias et al., 2017). 

However, it has generally been observed that polyploids most often do tend to exhibit larger 

organ structures and increased size (Porturas et al., 2019). There is another consequence to 

increase cell size in polyploids, which involved cell division. Larger cells result in an increase 

in the time it takes for cell division (Bennett 1987, Francis et al. 2008), which can have the 

knock-on effect of  decreasing growth rates (Levin, 2002; Otto, 2007; Maherali et al., 2009). It 

has also been previously been suggested that this change in growth rate, as a result of  

prolonged divisions of  larger cells, has been associated with changes in plant phenology 

(Noggle, 1946; Stebbins, 1971). 

Many polyploids have been observed to exhibit distinct differences in phenology in 

comparison to their diploid parents (Stebbins, 1971; Segraves and Thompson, 1999; Pires et 

al., 2004), and very often this manifests a direct consequence of  slower growth rates, resulting 

in prolonged or delayed biological events, such as germination times (Keeble, 1912). One of  

the more common instances of  this change in phenology relates to changes in flowering 

phenology (for example in Schranz and Osborn, 2000; Petit et al., 1997). In particular, some 

studies have shown that polyploids exhibit prolonged (Bose and Choudhury, 1962) or delayed 

(Smith, 1946; Garbutt and Bazzaz, 1983) flowering, as was expected in the case of  decrease 

growth rates. However, it has also been observed that changes in phenology, particularly 

flowering, do not always follow this pattern, and instead polyploid flowers may occur earlier 

than diploid flowers (Segraves and Thompson, 1999). It has been suggested that in such cases 

natural selection is the driver that effects phenological differences, after polyploidisation has 

occurred (Nuismer and Cunningham, 2005). Additionally, changes in phenology, in particular 

shifts to earlier flowering, have been associated with competition avoidance behaviour (Levin, 

2009; Wolkovich and Cleland, 2010), and can even promote invasiveness in some species (te 

Beest et al., 2012). 

The effects of  polyploidisation of  phenotypic variation, including physiological, 

morphological and phenological changes, makes polyploidy an important factor in 

determining the interactions of  polyploids with their biotic and abiotic environments, and 

have the potential to directly impact polyploid competition with their diploid parents, or 

competition avoidance behaviours. For this reason, changes to polyploid phenotype can 
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provide a mechanism for ecological niche differentiation (Müntzing, 1936). It is therefore 

important that research into the effects of  polyploidistaion on phenotype in neopolyploids are 

undertaken to better understand cytotype establishment and persistence. 

In this study, the morphological and phenological effects of  polyploidy in Oxalis obliquifolia  

were assessed utilising different cytotypes (including diploids, tetraploids and hexaploids 

identified using standard flow cytometric techniques; see Chapter 1) grown in the context of  a 

common garden experiment. In particular, the following questions were investigated: (1) Are 

there morphological differences between different cytotypes of  Oxalis obliquifolia? (2) Is 

polyploidy associated with changes in phenology in Oxalis obliquifolia? 

2.2. Materials and Methods 

Sample Collection and Common Garden 

A total of  98 individuals were collected from 12 different sites (between 6 and 10 per site) 

across 4000 km2 in Gauteng (from December 2020 to March 2021), and comprising all three 

major cytotypes (diploids from 4 sites, tetraploids from 10 sites and hexaploids from 2 sites, 

with a particular focus on individuals from 5 mixed ploidy sites). A common garden 

experiment was set up and cytotypes were determined using standard flow cytometry 

protocols (see protocol described in Chapter 1, 1.2 Methods) as described by Doležel et al. 

(2007). Plants were then potted into 13 cm diameter plastic pots containing a homogenised 

mixture of  sand and potting soil, with each being planted at a depth of  5 cm below the soil 

surface. Plants were then allowed to acclimate and enter dormancy for a full season (over-

winter, beginning from the end of  March 2021, to the end of  August 2021). Over the course 

of  a full growing season (334 days in total, beginning 28 August 2021 and ending 28 July 

2022) plants were watered every second day (beginning 28 August 2021), with exactly the 

same amount of  water per pot (using a 100ml beaker, filled to the brim for consistency), and 

ending when each plant re-entered dormancy. Plants were grown outside, under full sun 

conditions and were shuffled/rotated once a week to minimise the effect of  possible micro-

climate variation on individual plants. 
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Morphological Traits 

A total of  17 plant morphological traits were measured at two separate time intervals, at the 

same point in time (over the course of  two consecutive days) at the peak of  the growing 

season (end of  January 2022; Appendix 2A), and again two months after the emergence of  

each individual (Appendix 2B), in order to account for the possible effect of  age on individual 

morphology. In total, morphological data were obtained for 98 individuals (24 diploids, 55 

tetraploids and 19 hexaploids), including two qualitative and 15 quantitative characters. 

Quantitative measurements of  size-related characters were collected manually using callipers, 

and a ruler with an accuracy of  1 mm. These included both foliar (petiole length, middle-

leaflet length, middle-leaflet width, lateral-leaflet length, lateral-leaflet width) and floral 

(flower diameter, petal length, petal width, sepal length, sepal width, bract length, peduncle 

length) traits. The first flower to open (from the date of  measuring) and the largest, mature 

leaf  was consistently used to collect measurement data. Additionally, other quantitative data 

captured included the bract position (measured from the base of  the peduncle), number of  

leaves (excluding those that had already completely senesced and/or detached, and no longer 

photosynthetically active) and number of  inflorescences (including those that had already 

formed fruit, and immature inflorescences that were clearly identifiable). Shape characters 

were recorded as ratios between size measurements of  principle organs, which were then log 

transformed prior to analysis. These included the ratio of  middle-leaflet length to middle-

leaflet width, lateral-leaflet length to lateral-leaflet width, petal length to petal width, sepal 

length to sepal width, and flower diameter to flower length. The investigation also included 

qualitative traits, specifically flower colour and the colour of  the abaxial surface of  the leaf. 

These were assessed and categorised using printed colour charts for comparison (Appendix 

2C) and performed under full sunlight conditions to minimise inconsistency. 

Phenological Shifts 

Phenological data were also captured from plants included in the common garden 

experiment, beginning from the date of  first watering on 28th August 2021. Records of  the 

timing of  biological events were recorded, with each individual being inspected for the timing  

phenological events at the beginning of  each day. Recorded phenological events included the 

date of  emergence, date of  first anthesis, date of  last flower senescence, as well as the date of  

final senescence, here defined as when the last leaf  turned yellow. The monitoring period 
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continued until final senescence of  the last green leaf  of  the last individual on the 29th of  July 

2022. These dates were used to generate count data, for both vegetative phenology (Appendix 

2D) and flowering phenology (Appendix 2E). Vegetative phenology included the number of  

days to plant emergence from date of  first watering, and number of  days to final senescence 

from date of  first watering, and the number of  days to final senescence from date of  

emergence. Flowering phenology included days to first anthesis from date of  first watering, 

and days from first anthesis to final flower senescence. For flowering phenology, due to the 

addition of  the trait date of  last flower (defined as the last flower senescing with no more 

inflorescences developing) later in the study, flowering phenology was analysed only based on 

those plants for which a date of  first anthesis and date of  last flower were available (this 

included 9 diploids, 14 tetraploids and 8 hexaploids).

Statistical analysis: 

All analyses were conducted using R version 4.2.0  (R Core Team, 2022). Traits were assessed 

for autocorrelation (Appendix 2F) using Pearson’s correlation coefficient and the cor() 

function (R Core Team, 2022), and correlated traits were excluded from the univariate 

analyses, using a degree of  correlation number of  |0.7| as a cut-off  for identifying strong 

correlations (excluded and retained characters are shown in Table 2.1). High levels or 

correlation were observed within two sets of  traits (Table 2.1), most of  which related to sizes 

of  different structures measured on the same organ. Out of  the nine pairs of  correlated traits 

identified, two (middle leaflet length and petal width) were randomly selected to be retained 

for further analysis. To test for differences in morphological traits between cytotypes, 

univariate analyses (Appendix 2F) were conducted using the base R Generalised Linear 

Model (GLM; glm() function; R Core Team, 2022) function. Traits that were retained were 

randomly selected from correlated sets of  traits. In order to select the optimal data 

transformation and distribution families (see Appendix 2G) for each GLM, traits were initially 

assessed based on the type of  data. For continuous variables (such as size measurements), a 

Shapiro-Wilk test  (using the function shapiro.test(); Royston, 1982) was used to assess the 

normality of  the data. Additionally, the boxcox() function (Box and Cox, 1964; Venables and 

Ripley, 2002) was used to estimate values of  Lambda, in order to identify possible data 

transformations required to normalise the data, in cases where there were severe violations of  

model assumptions. GLMs for these continuous traits were then constructed by comparing Q-

Q plots of  residuals, AIC values, and residual deviance values, for each combination of  data 
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transformation and distribution family (Gaussian, inverse Gaussian and Gamma). For count 

data, negative-binomial distributions were used (instead of  Poisson distributions) in order to 

accommodate over-dispersion of  the data. Ratios were modelled using a quasi-Poisson 

distribution, and in some cases the data were log transformed, where these resulted improved 

model fit (see Appendix 2G). All p-values were adjusted using the Benjamini and Hochberg 

(1995) post-hoc correction method for multiple comparisons, which is seen as a more 

conservative approach to account for the False Discovery Rate (FDR; Benjamini and 

Hochberg, 1995), using the p.adjust() function (R Core Team, 2022). Additionally, in order to 

identify significant differences between each pairwise combination of  the three cytotypes 

included, a Tukey post-hoc test was performed, using the glht() function (in the multcomp 

package; Hothorn et al., 2008). 

Multivariate statistics (Appendix 2H), in the form of  a Factor Analysis of  Mixed Data 

(FAMD) and a Linear Discriminant Analysis (LDA), were also used to assess the differences in 

traits between different cytotypes, specifically using the FactoMineR package (Lê et al., 2008), 

and MASS package (Venables and Ripley, 2002). Ordinations were visualised using ggplot2 

(Wickham, 2016). These ordinations allowed for the inclusion of  all covariate traits, and to 
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Table 2.1: Strong (|P| ≥ 0.7) trait correlations, indicating traits retained and 
removed for the univariate analysis of  morphological trait variation among 
cytotypes of  O. obliquifolia. Since the results show two sets of  correlated 
traits (first six pairs and second three pairs), all traits except two (Retained 
trait) were removed.

Correlated traits

Retained trait Trait 1 Trait 2 r

Middle leaflet length Middle leaflet width Middle leaflet length 0.81

Lateral leaflet length Middle leaflet length 0.83

Lateral leaflet width Middle leaflet length 0.82

Lateral leaflet length Middle leaflet width 0.88

Lateral leaflet width Middle leaflet width 0.93

Lateral leaflet width Lateral leaflet length 0.89

Petal width Petal length Flower diameter 0.80

Petal width Flower diameter 0.77

Petal length Petal width 0.75
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assess the relationship between multiple traits as predictors of  cytotype. The FAMD (using the 

res.FAMD() function; Appendix 2I; Lê et al., 2008) was conducted in order to test if  

differences in foliar and floral traits (both quantitative and qualitative) were correlated with 

different cytotypes, with individual plant IDs (Accession) and cytotype as supplementary 

variables. However, the two qualitative variables included did not contribute  substantially to 

explaining the variability observed. Subsequently, the quantitative traits were further 

analysed, using a LDA (using the lda() function; Venables and Ripley, 2002), for associations 

with cytotype. The LDA is a guided approach that allowed for the maximisation of  existing 

variability in the quantitative data, based on pre-defined groupings (in this case, cytotype). 

To assess the relationship between polyploidy and phenology, Generalised Linear Models 

(GLM; Appendix 2J) were used, utilising the the glm() function (R Core Team, 2022). The 

GLMs used Poisson distributions (for count data with number of  days as the unit of  

measurement) and, as above, the Benjamini & Hochberg (1995) correction and Tukey post-

hoc tests (Hothorn et al., 2008) were used to adjust p-values for multiple comparisons. 

2.3. Results 

When comparing the two different sets of  data (individuals measured at the peak of  the 
growing season, and individuals measured after 2 months since emergence), there were subtle 
differences observed in the effects on the multivariate statistics (assessed using Principle 
Component Analyses; Appendix 2K). However, despite these slight differences, both sets of  
data yielded very similar results in term of  which types of  characters (size-related traits) were 
most useful in explaining the variability observed between cytotype clusters, and with regards 
to the degree of  separation between clusters. This means that the difference between time of  
emergence of  the individual plants did not have a large enough impact on the data to 
qualitatively change the overall results of  the analysis of  morphological traits. For this reason, 
the following results focussed only on the data set of  measurements taken at 2 months from 
the emergence of  each individual (i.e. captured at the same time since emergence). 

Univariate analysis of morphological traits 

Results from the GLM analyses showed that there were distinct associations between cytotype 

and 9 of  the 16 morphological traits included in the assessment (Table 2.2), with the 

difference observed between diploid individuals and at least one of  the higher-ploidy 

cytotypes being significant. Significant differences between cytotypes were detected for 4 of  
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Table 2.2: Cytotype morphological quantitative traits (unit), means (s.d.), and 
adjusted p-values of  Generalised Linear Model analyses, using Benjamini and 
Hochberg corrections (2x-4x, 2x-6x), and Tukey post-hoc test results (2x-4x, 
2x-6x, 4x-6x).

Trait 2x 4x 6x Bonferroni 
adjusted p-value 

2x-4x 
2x-6x

Tukey post-hoc 
2x-4x 
2x-6x 
4x-6x

Foliar traits

1. Middle leaflet length 
(mm)

12.2 (2.3) 15.4 (2.9) 16.6 (2.6) 2.56x10-7 * 
3.85x10-8 *

<1.0x10-4 * 
<1.0x10-4 * 

1.69x10-1

2. Petiole length (mm) 83.8 (24.9) 97.6 (21.1) 88.0 (24.6) 1.23x10-2 * 
4.76x10-1

1.89x10-2 * 
7.52x10-1 
2.22x10-1

3. Number of  leaves 16.5 (8.3) 11.7 (3.7) 12.8 (4.1) 7.54x10-5 * 
1.63x10-2 *

<1.0x10-3 * 
4.24x10-2 * 

6.48x10-1

4. Ratio middle leaflet 
width to length

1.33 (0.17) 1.45 (0.17) 1.41 (0.11) 8.52x10-3 * 
1.43x10-1

1.29x10-2 * 
2.99x10-1  

6.26x10-1 

5. Ratio lateral leaflet 
width to length

1.26 (0.13) 1.25 (0.11) 1.28 (0.13) 8.24x10-1 
6.88x10-1

9.73x10-1 
7.35x10-1 

5.32x10-1

Floral traits

6. Petal width (mm) 7.9 (1.1) 10.2 (1.7) 11.2 (1.5) 4.12x10-9 * 
3.57x10-10 *

<1.0x10-3 * 
<1.0x10-3 * 

6.60x10-2 

7. Sepal length (mm) 5.5 (0.9) 6.4 (1.1) 6.6 (0.6) 2.01x10-4 * 
2.01x10-4 *

2.24x10-4 * 
3.39x10-4 * 

6.78x10-1

8. Sepal width (mm) 2.3 (0.5) 2.5 (0.5) 2.8 (0.5) 7.85x10-2  
7.54x10-3 *

1.75x10-1 

1.11x10-2 * 
2.14x10-1

9. Bract length (mm) 4.8 (1.6) 5.2 (1.9) 5.6 (1.2) 5.40x10-1 
1.36x10-1

8.10x10-1 

2.00x10-1 

3.35x10-1

10. Peduncle length (mm) 89.7 (21.7) 103.9 (20.1) 107.9 (24.3) 4.24x10-3 * 
4.24x10-3 *

6.33x10-3 * 
9.30x10-3 * 

8.27x10-1

11. Ratio flower diameter 
to petal length

1.16 (0.16) 1.13 (0.09) 1.22 (0.23) 3.74x10-1 
3.56x10-1

6.43x10-1 

4.57x10-1 

6.92x10-2

12. Ratio petal length to 
width

1.91 (0.26) 1.85 (0.21) 1.75 (0.22) 2.95x10-1 
3.67x10-2 *

5.40x10-1 

5.66x10-2 

2.14x10-1

CHAPTER 2 69

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



the 5 foliar traits, and 5 of  the 11 floral traits. Many of  the size-related traits (both foliar and 

floral) were significantly different between cytotypes (Table 2.2). Count data for the number 

of  a particular organ type (both number of  leaves and inflorescences) were also significantly 

different between cytotypes (Table 2.2). There were fewer significant differences between 

cytotypes with regards to shape-related characters between diploids and higher ploidy-level 

cytotypes, except for the shape of  the middle leaflets, petals and the position of  the bracts on 

the peduncle. Diploids had smaller leaflets and higher numbers of  leaves, than both higher-

ploidy cytotypes. For two foliar traits (petiole length and middle leaflet shape), diploids were 

significantly smaller than tetraploids, but not than hexaploids. With regards to floral 

characters, diploids had smaller petal widths, sepal lengths, sepal widths, and peduncle 

lengths. Additionally, diploids had more inflorescences than polyploids, and the position of  

the bract along the peduncle was also significantly different, with diploids having the bracts 

positioned nearer to the top of  the peduncle. The shape of  the petals were also significantly 

different between diploids and hexaploids, with hexaploids having a larger petal length to 

petal width ratio than diploids.  

However, even in instances where traits were found to have significant differences between 

cytotypes, they were largely still over-lapping (Figure 2.1), resulting in no trait being identified 

as a truly reliable predictor of  cytotype, even though the general trend was that larger 

cytotypes had larger leaves, larger flowers, as well as fewer leaves and inflorescences. It is also 

interesting to note that the number of  leaves and inflorescences were generally inversely 

proportional to the size of  foliar and floral traits, when comparing cytotypes. In other words, 

diploids had smaller leaves and flowers, but more of  them, than polyploids. 

13. Ratio sepal length to 
width

2.42 (0.52) 2.58 (0.51) 2.41 (0.45) 2.61x10-1 
8.72x10-1

3.53x10-1 

9.85x10-1 

5.27x10-1

14. Ratio peduncle length 
to bract position

1.09 (0.04) 1.12 (0.11) 1.14 (0.07) 5.26x10-2 
5.26x10-2

1.05x10-1 

1.20x10-1 

9.16x10-1

15. Number of  
inflorescences

8.6 (4.8) 5.5 (2.9) 6.5 (3.0) 4.60x10-5 * 
3.34x10-2 *

<1.0x10-3 * 
8.33x10-2 

3.96x10-1

16. Difference in 
peduncle and petiole 
length (mm)

5.9 (20.5) 6.3 (23.7) 19.9 (22.0) 9.27x10-1 
1.37x10-1

9.95x10-1 

1.05x10-1 

6.18x10-2

* indicates significant p-values based on GLM results
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Figure 2.1: Box-plots of  selected foliar and floral traits measured for different cytotypes (diploids - 
green; tetraploids - blue; and hexaploids - orange) included in a common garden experiment, and 
captured during the height of  the growing season. Letters above plots denote statistically significant 
differences in values of  traits associated with different cytotypes, based on GLM results and Tukey 
post-hoc test. 
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Morphological multivariate analysis 

The results of  the LDA (Figure 2.2), in which cytotypes were included as predefined groups, 

the percentage separation of  cytotypes that is achieved by the first linear discriminant (LD1) 

axis, is 88.26%, and the percentage separation of  cytotypes that is achieved by the second 

(LD2) linear discriminant axis, is 11.74%. In other words, based on the morphological data 

and variables used to construct LD1, 88.26% of  the variation is accounted for and can be 

directionally applied to identifying a particular individual as belonging to a particular defined 

group (in this case cytotype). This LDA model had a prediction accuracy of  72.22%. This 

means that 72.22% of  the time, LD1 and LD2 could be used to classify an individual into the 

correct cytotype. Based on the coefficients of  linear discriminants the predictor variables that 

are most influential in creating the decision rule of  the LDA model (in other word those that 

contribute most to creating LD 1), include lateral leaflet width, lateral leaflet length and petal 

width. Sepal length, petal length and sepal width were the most informative traits in 

constructing LD2. The multivariate analysis are suggests that size-related traits (both floral 

and foliar) are most informative in distinguishing between cytotype clusters. 
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Phenological analysis  

Significant phenological differences were observed between different cytotypes (Table 2.3 and 

Figure 2.3). Diploids emerged earlier (an average of  66.7 days after initial watering; Table 2.3; 

Figure 2.3A and 2.3B) than tetraploids (71.0 days average) and hexaploids (79.3 days 

average). Additionally, diploids had a longer growing season (average of  226.3 days), with a 

longer period spent above ground (prior to final senescence), than tetraploids (216.3 days) and 

hexaploids (200.8 days; Table 2.3; Figure 2.3A and 2.3B). Although between-cytotype 

differences in vegetative growth were slight, differences in flowering phenology were clearly 

more distinct than differences in other phenological variables based on the GLM analyses. 

Diploids begin flowering slightly earlier (113.7 days from first watering; Table 2.3; Figure 

2.3C and 2.3D) than tetraploids (126.6 days from first watering) and hexaploids (130.5 days 
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Table 2.3: Phenological data (in days), means (s.d.), and adjusted p-values of  
Generalised Linear Model analyses, using Benjamini and Hochberg 
corrections (2x-4x, 2x-6x), and Tukey post-hoc test results (2x-4x, 2x-6x, 
4x-6x).

Phenological Trait 2x 4x 6x Bonferroni 
adjusted p-value 

2x-4x 
2x-6x

Tukey post-hoc 
2x-4x 
2x-6x 
4x-6x

Vegetative Phenology 
n = 105

1. Days to emergence 
(from date of  first 
watering)

66.7 (29.1) 71.0 (31.3) 79.3 (29.0) 2.68x10-2 * 
5.80x10-7 *

6.78x10-2 

<1.0x10-4 * 
<1.0x10-4 *

2. Days to final 
senescence (from date of  
first watering)

292.3 (26.7) 286.6 (40.2) 279.4 (38.8) 1.57x10-1 
1.46x10-2 *

3.31x10-1 

2.58x10-2 * 
2.15x10-1

3.Time above ground 
(from emergence to 
senescence)

226.3 (40.0) 216.3 (48.9) 200.8 (51.6) 4.17x10-3 * 
4.45x10-9 *

1.13x10-2 * 
<1.0x10-4 * 
<1.0x10-4 *

Flower Phenology 
n = 31

4. Days to first anthesis 
(from date of  first 
watering)

113.7 (29.3) 126.6 (33.8) 130.5 (28.5) 1.79x10-8 * 
1.65x10-15 *

<1.0x10-4 * 
<1.0x10-4 * 
1.11x10-3 *

5. Duration of  flowering 
(first anthesis to last 
flower)

137.4 (28.0) 102.9 (31.2) 116.4 (22.1) 1.14x10-13 * 
1.25x10-4 *

<1.0x10-4 * 
<1.0x10-4 * 
9.20x10-3 *

* indicates significant p-values based on GLM results
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from first watering). The largest difference was observed in the duration of  the flowering 

period - diploids had a much longer flowering period (137.4 days; Figure 2.3C and 2.3D), on 

average, than either tetraploid (102.9 days) or hexaploid (116.4 days) plants. It is interesting to 

note that the polyploids (both tetraploids and hexaploids) exhibited a narrower peak flowering 

season that occurred towards the beginning of  the longer diploid flowering season (Figure 

2.3C and 2.3D). 
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Figure 2.3: A- Proportion of  actively growing O. obliquifolia individuals, including diploids (green), 
tetraploids (blue) and hexaploids (orange) in a common garden. B- Box-plots of  plant vegetative 
growth phenology measured for different cytotypes (diploids - green; tetraploids - blue; and 
hexaploids - orange) included in a common garden experiment. C- Proportion of  flowering O. 
obliquifolia individuals, including diploids (green), tetraploids (blue) and hexaploids (orange) in a 
common garden. D- Box-plots of  flower phenology measured for different cytotypes (diploids - 
green; tetraploids - blue; and hexaploids - orange) included in a common garden experiment. Letters 
above plots denote statistically significant differences in values of  traits associated with different 
cytotypes, based on GLM results and Tukey post-hoc test. 
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2.4. Discussion  

The Gigas Effect in Oxalis obliquifolia 

The results of  this investigation showed a distinct association between the size of  foliar and 

floral structures in Oxalis obliquifolia, and the increase in genome size, a clear indication of  the 

Gigas effect. It has previously been reported that there is some degree of  evidence for the 

occurrence of  the Gigas effect in polyploids in the genus Oxalis, which are shown to have 

larger stomata, pollen and epidermal cells on average (Becker et al., 2022), although the 

overall difference in size is comparatively small, than other examples of  genera known to 

exhibit the Gigas effect (see Stebbins, 1971; Soltis et  al., 2014; Otto and Whitton, 2000, 

Porturas et al., 2019), and this pattern is observed to be surprisingly inconsistent across Oxalis 

species (Becker et al., 2022). However, here it is worth reiterating that for almost all size-related 

traits in this study, Oxalis obliquifolia polyploids showed size differences between cytotypes that 

were consistent with what was expected in the context of  a system under the Gigas effect. In 

particular, the change in the average size of  leaves and flowers between diploids and 

tetraploids were observed to be larger than 20%, which is consistent with the findings of  

Porturas et al. (2019), although in this example the size increase is shown to be consistent 

across the whole plant body (Porturas et al., 2019). 

Experimentally induced or synthetic polyploids are especially useful for understanding the 

effects of  polyploidy on phenotypic variation (Sas-Nowosielska and Bernas, 2016), since the 

resulting individuals are considered to be free of  the effects of  “long adaptation”, or are 

uninfluenced by selection (Hegarty et al., 2013). Early research suggests that ploidy induced 

phenotypic variation in traits that are functionally related show strong correlations (Conner 

and Via, 1993; Balao, et al., 2011), an idea known as “phenotypic integration” (Berg, 1960). 

Similarly, in this investigation, the effect of  polyploidy on foliar and floral traits in O. 

obliquifolia were largely correlated within particular organs (ie. generally the morphological 

effect was consistent across the entire organ structure). This reinforces the idea of  traits being 

organised into sets of  interacting features, sometimes referred to as “modules” (Vasseur, 

2022), which can generally be seen to be independent of  one another (Wagner et al., 2007; 

Klingenberg, 2008; Murren, 2012; Diggle, 2014).  

However, some traits may become “decoupled” from one another over time (Balao et al., 

2011). This may be a result of  physiological constraints (Vasseur, 2022), or trait divergence 
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driven by natural selection (Nuismer and Cunningham, 2005). One possible example of  trait 

divergence in O. obliquifolia involves the bracts. While the entire reproductive structure 

(including the flower and peduncle) was significantly larger in polyploids than diploids, this 

was not the case with bract length. This may be due to the fact that the bracts are relict 

organs (plant parts that are largely free of  selective pressure, and have lost their original 

function) on an otherwise highly modified structure with an essential, and highly specialised, 

function (that of  facilitating sexual reproduction). 

The increased size of  O. obliquifolia polyploids may have important consequences for 

physiological processes, such as changes in efficiency of  gaseous exchange, carbon fixation 

and water relations (Levin, 1983; 2002; Warner and Edwards, 1993; Vasseur, 2022), thereby 

impacting plant growth rates and plant vigour. This may have direct consequences for the 

ability of  polyploids to respond to abiotic conditions/stresses (see Chapter 1), as well as their 

competitive ability (Van de Peer, 2021). Additionally, ploidy induced changes in the size of  

particular organs may impact resource partitioning in the plant, as illustrated in this study, 

where an increase in the size of  a particular organ type (larger leaves or flowers) was also 

associated with the production of  fewer numbers of  those structures (fewer leaves or 

inflorescences). 

In the case of  trait divergence due to natural selection, natural selection can differentially 

mask the initial phenotypic effects of  polyploidisation in some traits over time, while other 

altered traits remain unchanged, or are even enhanced, in response to selective pressures. 

This phenotypic variation is seen as an important aspect in allowing polyploids to potentially 

better adapt and exploit new ecological niches (Otto and Whitton, 2000). For example, 

polyploidy is observed to result in larger, or differently shaped, flowers (Garbutt and Bazzaz, 

1983; Balao et al., 2011), which may impact pollinator interactions (Taylor and Smith, 1980; 

Segraves and Thompson, 1999). Considering this, it is possible that polyploidisation in O. 

obliquifolia may be a relatively recent event, since the expected increase in size due to the Gigas 

effect is very much still evident in extant natural populations, and thus has not yet been 

obscured over generations that have been acted upon by natural selection. Conversely, it is 

also possible that selection may have favoured, and thus preserved the Gigas effect in this 

system. 

It remains to be seen how variable these morphological traits are in situ (phenotypic plasticity; 

see Hahn et al., 2012; Sánchez Vilas and Pannell, 2017). This experiment was conducted 

under controlled conditions, but in a field setting where environmental conditions can vary 
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over a small scale, trait differentiation between different cytotypes may be less pronounced, if  

trait expression is also influenced by environmental factors. Alternatively, it may also be the 

case that competition in the wild may also result in differences in morphology. This would be 

an interesting topic for further investigation. Generally, it is expected that more environmental 

variability would result in larger variation in phenotypic traits of  different cytotypes, and a 

higher degree of  overlap in those traits. 

Phenological shifts  

Diploids emerged above-ground slightly earlier and had longer active growth periods than 

polyploids. They also displayed an earlier onset of  flowering and a much longer flowering 

season than both tetraploids and hexaploids. Both tetraploids and hexaploids had peak 

flowering times that were concentrated towards the beginning of  the diploid flowering season. 

This is contrary to other studies where polyploids show distinctly prolonged (Bose and 

Choudhury, 1962) or delayed flowering times (Smith, 1946; Garbutt and Bazzaz, 1983), 

possibly as a results of  slower growth rates associated with the Gigas effect. Shifts in flower 

phenology enable polyploids to escape direct competition with diploids for resources such as 

light and pollinators (Levin, 2009; Wolkovich and Cleland, 2010). In particular phenological 

shifts towards earlier flowering, as potentially evinced in O. obliquifolia, can potentially promote 

invasiveness in some polyploid species (Petit et al., 1997; Pyšek et al., 2009; te Beest et al., 2012). 

A number of  other studies show distinct variation in flowering phenology between adjacent 

diploid and tetraploid populations in wind-pollinated species, (for example, Borrill and 

Linder, 1971; Lumaret and Barrientos, 1990; Van Dijk, 1991). It is believed that this serves as 

a primary mechanism to maintain reproductive isolation, driven by previous environmental 

disturbances (Stam, 1983), resulting in nonrandom migration of  genes associated with the 

control of  flowering time. However, in the case of O. obliquifolia, cytotypes co-occur, which 

suggests that another driver for the shift in flowering phenology exists in this system, unless 

reproductive isolation is present despite the high degree of  cytotype sympatry (see Chapter 3). 

Differences in flowering time can exist in systems with sympatric polyploids and diploids 

(Clark, 1975; Lumaret and Barrientos, 1990; Petit et al., 1997). Although there is evidence of  

an earlier beginning in polyploids in O. obliquifolia, the flowering period between polyploids 

and diploids still overlap substantially. Selection and trait differentiation through pollinator 
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interactions, may provide the answer to directional shifts in traits associated with 

reproduction. 

Another mechanism that can result in differentiation in flowering time involves pollinator 

interactions. Since polyploidisation can result in changes to floral structure it may also have 

an impact on plant-pollinator interactions (Muchhala and Potts, 2007; Gómez et al., 2014; 

Casazza et al., 2017). For example, an increase in flower size, as observed in O. obliquifolia, may 

directly impact pollinator attraction with changes in flower shape or larger petals (Balao et al., 

2011; Tunbridge et al., 2011; Casazza et al., 2017) making polyploids more prominent and 

noticeable than diploids in mixed-ploidy populations. Polyploidy may also impact the 

availability of  nectar to pollinators, either by altering the amount produced, or though ease of  

access due to altered flower morphology (Tunbridge et al., 2011; Balao et al., 2011). Such 

changes, in addition to phenological shifts, may encourage assortative mating within cytotypes 

(Husband and Sabara, 2004; Kennedy et al., 2006) in the context of  mixed-ploidy 

populations, such as in O. obliquifolia (Chapter 1). For example, the insect-pollinated Heuchera 

grossulariifolia Rydb. exhibits differences in both flower morphology and phenology, and the 

combination of  changes to these floral traits may have resulted in the development of  

reproductive isolation (Segraves and Thompson, 1999) between diploids and polyploids. The 

change in flower size, coupled with the earlier shift in flowering period, may have similar 

effects in the insect-pollinated O. obliquifolia, thus reducing competition for pollinators between 

diploids and polyploids. However, it is still unclear whether this is achieved by polyploids 

attracting different types of  pollinators, or if  the same pollinators are involved, but that they 

preferentially visit larger polyploid flowers that occur towards the beginning of  the flowering 

season.  

2.5. Conclusion 

There are clear indications that the Gigas effect is present in Oxalis obliquifolia, and this offers 

the opportunity for studying the impact of  morphological differences between cytotypes in 

mixed-ploidy populations. Polyploids (tetraploids and hexaploids) tend to be larger than 

diploids (for both vegetative and reproductive traits) and this may have profound 

consequences for plant physiological processes, response to abiotic environmental conditions, 

and the competitive ability of  polyploids. Additionally, the combination of  larger flowers and 

potential shifts in flowering phenology may suggest possible pollinator interactions as a key 
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factor in facilitating assortative mating and competition avoidance behaviour, thus potentially 

enabling polyploid persistence in mixed-ploidy populations. This study raises a number of  

questions regarding the impacts of  ploidy-induced phenotypic variation on different aspects 

of  plant ecology, specifically with regard to biotic interactions, and how this may influence 

cytotype occurrence and polyploid success. 
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CHAPTER 3:  The frequency of  polyploidisation and 
cytotype reproductive isolation in Oxalis obliquifolia 

3.1. Introduction 

Polyploidisation is a prime mechanism of  sympatric speciation (Briggs and Walter, 1997; Otto 

and Whitton, 2000; Husband and Sabara, 2004; Sonnleitner et al., 2013; Futuyma and 

Kirkpatrick, 2017), defined as “speciation […] in the absence of  geographical barriers” 

(Lawrence, 2011; Otto and Whitton, 2000), and additionally is believed to be a possible driver 

for instantaneous speciation events (Ramsey and Schemske, 1998; Otto, 2007). This is 

ascribed to the fact that in a single generation, the hybridisation of  two species and 

subsequent chromosome doubling (in the case of  allopolyploids), or the fusion of  unreduced 

gametes from same species parents (in autopolyploids), can result in the development of  

instant barriers to reproduction between polyploid offspring and their diploid parents 

(Ramsey and Schemske, 1998). Although historically autopolyploids have been less often 

accepted as separate species than allopolyploids, despite often being morphologically distinct 

and, importantly, reproductively isolated from their diploid parents (Soltis et al., 2007), 

autopolyploids may in fact be more important for species diversification and evolution than 

what was previously assumed (Soltis et al., 2007; Otto, 2007). 

Reproductive isolation between polyploids and their diploid parents has been the topic of  

much research concerning population dynamics and the evolution of  polyploid species 

complexes (Segraves and Anneberg, 2016). Many studies have investigated reproductive 

isolation among different cytotypes in autopolyploid populations (Thompson and Lumaret, 

1992; Petit et al., 1999; Hardy et al., 2001; Husband et al., 2002; Baack, 2005; Baldwin and 

Husband, 2010; Castro et al., 2012; Koutecký et al., 2012; Sonnleitner et al., 2013), and the 

extent of  reproductive isolation between diploids and polyploids has been shown to be a 

major factor in determining population structure, and patterns of  cytotype distribution, in 

mixed-ploidy populations or cytotype contact zones (Koutecký et al., 2012; Sonnleitner et al., 

2013). 

Reproductive isolation is a consequence of  different prezygotic and postzygotic barriers that 

exist among different taxa (see Ramsey et al., 2003; Lowry et al., 2008; Christie et al., 2022) 

and cytotypes (Husband and Schemske, 2000; Husband and Sabara, 2004; Rieseberg and 
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Willis, 2007; Widmer et al., 2009; Köhler et al., 2010; Roccaforte et al., 2015; Van de Peer et al., 

2021). It also includes he potential for complex interactions between these barriers. Some 

prezygotic barriers rely on ecological niche differentiation (Felber-Girard et al., 1996; 

Husband and Schemske, 2000; Baack and Stanton, 2005; te Beest et al., 2012; Sonnleitner et 

al., 2013) via range shifts and the establishment of  geographic isolation, differences in 

flowering phenology (Levin, 1983; Petit et  al., 1999; Husband and Schemske, 2000; Levin, 

2002), or changes to pollinator interactions (Segraves and Thompson, 1999; Thompson et al., 

2004; Kennedy et al., 2006; Laport et al., 2021). Shifts in pollinator preferences or changes in 

pollinator assemblage, may manifest as a result of  changes to flower morphology, flower 

colour, the amount of  nectar produced, and even changes in the scent of  polyploid flowers 

(Husband and Sabara, 2004; Jersáková et al., 2010; Gross and Schiestl, 2015; McCarthy et al., 

2015).  

Differentiated pollinator interactions results in assortative mating among polyploids and 

diploids, where mating patterns in a population are non-random between individuals 

(Rodríguez, 1996; Lawrence, 2011). In the polyploid context, this would mean that mating 

between same ploidy individuals is more likely to occur than between polyploids and diploids. 

The result of  this intracytotype mating between polyploids would be a polyploid lineage, 

distinct from diploids, and potentially leading to complete reproductive isolation, even in 

sympatry (Segraves and Thompson, 1999; Anssour et al., 2009; Balao et al., 2011). However, 

even in instances where pollination between diploids and polyploids does occur, other 

reproductive barriers can still prevent the production of  viable offspring, which include the 

effects of  polyploidy on chromosomal rearrangements and recombination, complications 

arising in chromosome segregation during cell divisions, and other genetic incompatibilities 

that interfere with zygote and/or endosperm formation (Williams et al., 1999; Husband et al., 

2002). 

Postzygotic barriers, reproductive barriers subsequent to successful zygote formation, are 

another important aspect of  reproductive isolation and can be generally classified as either 

intrinsic or extrinsic barriers (Coyne and Orr, 2004; Sutherland and Galloway, 2021). 

Intrinsic reproductive isolating barriers refer to the innate inability of  the F1 offspring to 

reproduce (offspring inviability or sterility; Dobzhansky, 1937; Sutherland and Galloway, 

2021). Extrinsic barriers can be viewed as those subsequent barriers to reproduction, where 

the F1 offspring have the potential to produce viable offspring of  its own, but secondary 

factors (such as ecological and/or behavioural attributes, like differences in reproductive 
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phenology and pollinator segregation) prevent this from occurring (Coyne and Orr, 2004; 

Sutherland and Galloway, 2021). Perhaps the most well known and extensively studied 

postzygotic barrier to reproduction between polyploids and diploids is known as the “triploid 

block” (Ramsey and Schemske, 1998; Petit et al., 1999; Köhler et al., 2010), where interploid 

crosses between tetraploids and their diploid parents can potentially result in triploid offspring 

that are often inviable, due to a malfunctions in endosperm and zygotic development (Köhler 

et al., 2010). 

This strong degree of  reproductive isolation between diploids and polyploids is an important 

aspect that contributes to minority cytotype exclusion (Levin, 1975; Felber, 1991; Husband, 

2000). Essentially, under a system involving a triploid block, newly emergent polyploids would 

have no compatible reproductive partners available, and are thus limited in their ability to 

successfully establish in existing diploid populations (see Introduction Chapter). However, this 

is not always the case, and in some circumstances the fate of  newly emergent tetraploids may 

in fact be reliant on the rate of  triploid formation, where a triploid bridge (Husband, 2004; 

Köhler et al., 2010; Mason and Pires, 2015; Schinkel et al., 2017) can facilitate the production 

of  higher ploidy-level cytotypes, and where reproductive isolation between polyploids and 

diploids is incomplete or absent. This means that the degree of  triploid fitness (in terms of  

both ability to reproduce and ability to survive; Stebbins, 1950) relative to parent diploids and 

tetraploids, and the ploidy-level and rate of  functional gametes produced by triploids 

(Husband, 2004; Suda and Herben, 2013), will determine if  more polyploids will enter the 

system through interploid crosses, thus impacting the rate of  polyploid formation. 

The rate of  polyploidisation is higher in many lineages than what was originally expected 

(Soltis and Soltis, 1999), and the frequency of  polyploidisation events can vary substantially, 

suggesting different predispositions for polyploidisation and polyploid establishment/

persistence between different lineages (Ramsey and Schemske, 1998; Husband et al., 2013). 

Some of  the factors that promote increased rates of  polyploidisation in populations include 

the rate at which unreduced gametes are formed (Bretagnolle and Thompson, 1995; Ramsey 

and Schemske, 2002; Ramsey, 2007) and the ability of  polyploids to overcome the limitations 

imposed on them by minority cytotype exclusion. 

With regards to the production of  unreduced gametes, or ‘gametic non-reduction’ (Harlan 

and de Wet, 1975), since polyploids can form by the fusion of  two unreduced (2n) gametes 

resulting in a tetraploid (2n + 2n, or odd ploidy-levels in the case of  the fusion of  reduced and 

unreduced gametes; Futuyma and Kirkpatrick, 2017), it could be expected that the rate of  
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polyploid formation is positively correlated to the frequency of  unreduced gamete production 

in a given population (Soltis and Soltis, 1999). The rate at which unreduced gametes are 

formed may increase in natural diploid populations in response to environmental stress 

(Bretagnolle and Thompson, 1995; Mason et al., 2011; Pécrix et al., 2011; De Storme et al., 

2012; Sora et al., 2016; Van de Peer et al., 2021). Specific individuals may exhibit 

disproportionately elevated 2n gamete production, and thus could be major contributors to 

emergent polyploid populations (Soltis and Soltis, 1999). In particular, once a polyploid 

individual arises and begin to produce viable gametes, that automatically results in the 

increased frequency of  unreduced gametes available in populations. In other words, once a 

polyploid individual emerges, it may facilitate and increase the rate of  emergence for other 

polyploid individuals.  

Alternatively, if  new polyploids are unable to reproduce with diploids, or there is no triploid 

bridge, then polyploids must overcome minority cytotype exclusion, and expand their 

occurrence, through other mechanisms. Polyploidisation overcomes this challenge either by 

facilitating the breakdown of  barriers to self-fertilisation (Rodriguez, 1996; Mable, 2004; 

Baack, 2005; Rausch and Morgan, 2005; Robertson et al., 2011; Oswald and Nuismer, 2011; 

Fowler and Levin, 2016) in out-crossing species, or by increased clonal reproduction 

(Gustafsson, 1948; Stebbins, 1957; Husband et al., 2013; Herben, et al., 2017) and increased 

perenniality (Otto and Whitton, 2000; Rice et al., 2019). These strategies would allow 

polyploids to persist in the landscape (Baack, 2005; Rausch and Morgan, 2005; McGrath and 

Lynch, 2012), increasing the chance of  persistence until sexual reproduction becomes possible 

(i.e. until another compatible polyploid mate emerges).  

In this study, the degree of  reproductive isolation, and differences in seed set (as a potential 

indicator of  fecundity) between different cytotypes (including diploids, tetraploids and 

hexaploids, identified using standard flow cytometric techniques; see Chapter 1) in Oxalis 

obliquifolia are assessed. Additionally, the rate of  polyploidisation, as a possible factor in 

determining the high degree of  sympatry in local populations, is also tested. In particular, the 

following questions were investigated: (1) Are different cytotypes of  Oxalis obliquifolia 

reproductively isolated from one another? (2) Does polyploidy degrade barriers to self-

fertilisation in O. obliquifolia? (3) Does maternal cytotype (diploid or polyploid) have an 

influence on seed set or the success rate of  crosses? (4) And finally, are polyploidisation events 

frequently occurring in this system? 
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3.2. Materials and Methods 

Crossing experiment 

In order to determine the degree of  reproductive isolation, and potential to produce hybrids, 

between the three major cytotypes including diploids, tetraploids and hexaploids; for cytotype 

identification procedure see Chapter 1, Materials and Methods) of  Oxalis obliquifolia, artificial 

pollination experiments, conducted by hand and under controlled conditions, were performed 

with individuals (including 1140 crosses, of  which 432 used maternal diploids, 499 used 

maternal tetraploids and 209 used maternal hexaploids collected from 12 different localities 

selected from across Gauteng Province, South Africa. This crossing experiment was designed 

to assess for the presence of  potential barriers to seed production, based on the procedure 

described by du Preez et al. (2018). The pollination treatments involved in crosses between 

cytotypes were as follows: (a) self-pollination (flower stigma pollinated with an anther from the 

same flower) (b) within-cytotype pollination (flower stigma pollinated using an anther taken 

from a compatible flower morph, from an individual of  the same cytotype), (c) between-

cytotype pollination (flower stigma pollinated using an anther taken from a compatible flower 

morph, from an individual of  a different cytotype). Manual pollinations were conducted from 

7am to 12pm daily during the peak flowering period (from September 2020 to March 2021) 

using accessions of  each cytotype, kept in open-air growing conditions. A fine pair of  forceps 

(sterilised with alcohol) were used to collect and transfer anthers with pollen to compatible 

and unfertilised stigmas for each of  the different crosses. As O. obliquifolia has a tristylous 

mating system, all crosses were conducted between compatible stigmas and anthers of  the 

same level in plants with compatible stylar morphs (tall-, mid- and short-styled; du Preez et al., 

2018). Each floret was then emasculated (removal of  all the remaining anthers) using alcohol 

sterilised forceps. Unwanted pollinator-vectored pollen was controlled for by the removal of  

petals and by covering the pollinated maternal flower with an empty teabag, tied at the based 

of  the flower, which also helped to retain the seed after dehiscence of  the fruit, since Oxalis 

seeds are typically explosively ejected from the capsule. All flowers that were unused on a 

particular day were removed so as to avoid confusing them with subsequent new virgin 

flowers. Unsuccessful fertilisation and seed set was measured by peduncles that withered and 

detached within two weeks (on average) of  anthesis. For successful crosses, intact teabags were 

inspected each day for fruit dehiscence and seed release, and seeds from each cross were 

counted to determine the seed set for each cross. 
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DNA extraction, sequencing and analysis

To account for relatedness between individuals and test the possible number of  polyploid 

origin events (either by independent polyploidisation or intercytotype hybridisation) 

represented in local O. obliquifolia populations, at least two representatives of  each different 

cytotype (diploids, tetraploids and hexaploids) sampled from each site, with a particular focus 

on mixed ploidy sites, were studied using molecular techniques. Fresh leaf  material from a 

total of  86 individuals was collected and placed in silica-gel for rapid drying and long-term 

storage. DNA extractions were based on the procedure described in Oberlander et al. (2004), 

using a modified 2X CTAB method of  Doyle and Doyle (1987). First, silica-dried leaf  tissue 

(approximately 0.4-0.6 g) was ground with liquid nitrogen, in a 70% alcohol-sterilised and 

thoroughly dried mortar and pestle. Subsequently, 500 µl of  2X CTAB extraction buffer (with 

0.2% mercaptoethanol) was added to ground up tissue in a 1.5 ml Eppendorf  and placed in a 

heating block at 60℃, for 45 minutes. Next, 500 µl of  chloroform-isoamylalchohol (24:1 by 

volume) was added to each sample, and gently, but thoroughly, mixed for 10 minutes. Samples 

were then centrifuged for 5 minutes at 7000 x g. The upper aqueous phase was then removed 

using a wide-bore pipette, and dispensed into a new Eppendorf  tube. A 2/3 volume of  cold 

isopropanol (stored at -20℃) was added and mixed, before the sample was stored over-night, 

at -20℃, to facilitate nucleic acid precipitation. Samples were then centrifuged at low speed 

(3000 x g) for 2 minutes, and supernatant removed. Next, 1.5 ml of  wash buffer (mixture of  

40mM ammonium acetate solution and ethanol, in a 1:3 ratio, by volume) was added to the 

pellet and gently perturbed to resuspend it. After 20 minutes, during which the pellet in the 

wash buffer was gently swirled at regular intervals, the sample was again centrifuged at low 

speed (3000 x g) for 3 minutes. The supernatant was then removed, and the remaining DNA 

pellet was allowed to air dry, by placing the Eppendorf  tube into a heating block, set at 30℃, 

for a minimum of  30 minutes, to evaporate off  all remaining ethanol. The dry pellet was then 

redissolved in 200 µl of  TE buffer, by gently swirling it and placing it in the fridge (set a 4℃) 

overnight. The quality and quantity of  DNA yielded from the extractions were then assessed 

using a NanoDrop™ 2000/2000c Spectrophotometer (Thermo Fisher Scientific Inc., USA).  

In order to assess the degree of  intraspecific diversity among cytotypes of  O. obliquifolia, four 

different genomic regions were selected for amplification and analysis, with the appropriate 

primers. These were: chloroplast intergenic regions trnH-psbA and trnS-trnG (Hamilton, 

1999); nuclear ribosomal DNA (rDNA) internal transcribed spacer region (ITS; Sun et al., 
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1994); and single-copy nuclear-encoded chloroplast-expressed glutamine synthetase (ncpGS; 

Oberlander et al., 2010). The polymerase chain reactions (PCR) consisted of  these reagents at 

the following concentrations: 12.5 μl of  Ampliqon Taq MasterMix, 8 μl distilled water, 0.5 μl 

of  50 mMol MgCl2, 1 μl of  10 μMol each primer, and 2 μl of  template DNA, totalling 

approximately 25 μl.  The PCR thermocycling protocols used for each primer pair were as 

follows:  

• trnH-psbA: an initial denaturation step of  96°C for 5 min, followed by 35 cycles of  

denaturation/ annealing/extension at 96°C for 45 s, 53°C for 1 min, and 72°C for 30 s. A 

final extension step of  72°C for 5 min was included.  

• trnS-trnG: an initial denaturation step of  96°C for 5 min, followed by 40 cycles of  

denaturation/ annealing/extension at 96°C for 45 s, 52°C for 1 min, and 72°C for 1 min. A 

final extension step of  72°C for 5 min was included.  

• ITS: an initial denaturation step of  94°C for 3 min, followed by 35 cycles of  denaturation/ 

annealing/extension at 94°C for 1 min, 58°C for 1 min, and 72°C for 2 min. A final 

extension step of  72°C for 5 min was included.  

• ncpGS: an initial denaturation step of  96°C for 5 min, followed by 35 cycles of  

denaturation/ annealing/extension at 96°C for 30 s, 52°C for 1 min, and 72°C for 1 min. A 

final extension step of  72°C for 7 min was included. 

The success of  the PCR amplifications were determined using standard agarose gel 

electrophoresis techniques. Successfully amplified PCR products were submitted for standard 

post-PCR clean-up, and dideoxy terminated Sanger sequencing, performed by the Central 

Analytical Facility at the University of  Stellenbosch (http://www.sun.ac.za/english/research-

innovation/caf). Chromas version 2.6.6 (www.technelysium.com.au) was used for 

chromatogram base calling verification, and BioEdit version 7.2.5 (Hall, 1999) was used for 

assembling of  contigs and manual DNA alignment. Nucleotide polymorphisms reflecting 

potential intraspecific diversity were coded using standard IUPAC degenerative coding. 

Sequences were screened for potential contamination using BLAST searches and Genbank 

(NCBI) submissions. An initial set of  samples (8 individuals, including 2 diploids, 4 tetraploids 

and 2 hexaploids from both the same mixed-ploidy sites and across different sites) were first 

amplified using all 4 primer pairs, and the resulting sequences were assessed for the presence 

of  single nucleotide polymorphisms (SNPs), in order to determine the usefulness of  each 
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marker, for the purpose of  this study. The marker that yielded the highest number of  SNPs 

between individuals was used for the remaining 78 accessions. 

Statistical analyses 

Unless otherwise indicated, analyses were conducted using R version 4.2.0 (R Core Team, 

2022). The effect of  different types of  crosses (self-pollination, within-cytotype pollination, 

between-cytotype pollination), and the interaction with the cytotype of  the maternal parent, 

was assessed using seed-set (the number of  seeds resulting from a particular cross; Appendix 

3A) as a proxy for the presence of  possible prezygotic barriers to reproduction, as well as an 

indicator of  potentially higher fitness between cytotypes. In order to assess the degree of  

barriers to successful seed formation, and accommodate the zero-inflated distribution of  the 

seed set data, a hurdle model was used. This was done utilising the hurdle() function (Zeileis et 

al., 2008; Appendix 3B) as part of  the “pscl” package (Jackman, 2020). A negative binomial 

distribution was used for the seed-set Count data (seed-set above 0), and a binomial 

distribution for the Zero (success vs. failure to produce seed) count data. Additionally, in order 

to identify significant differences between each pairwise combination of  the three types of  

crosses, and maternal cytotypes included, a Tukey post-hoc test was performed, using the 

emmeans() function (in the emmeans package; Lenth, 2022). 

In order to test the hypothesis that same ploidy-level cytotypes, collected from different sites, 

are in fact more closely related to one another than to individuals of  a different cytotype two 

methods were used. First, hierarchical clustering based on molecular distance/similarity and 

based on ITS sequences (Appendix 3C), was used to construct a dendrogram, to visualise the 

relatedness between individuals. A consensus tree with posterior probabilities was constructed 

using MrBayes software (parameters: nst = 6,  rates = gamma; Ronquist et al., 2012), through 

CIPRES online portal (Miller et al., 2010), and visualised using FigTree version 1.4.4. 

Additionally, A parsimony tree with bootstrap support values was constructed using PAUP 

software (Swofford, 1991; also accessed through CIPRES), and included as a figure inset. 

Secondly, in order to statistically test this relatedness between individual haplotypes, an 

AMOVA (Analysis of  molecular variance; Meirmans and Liu, 2018) was also included. In 

AMOVA, population structure was tested against cytotype and site. Statistical tests were 

conducted in the programme Arlequin version 3.5.2.2 (Excoffier and Lischer, 2010); 

Appendix 3D).
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3.3. Results 

ITS was the most suitable marker for the assessment of  intraspecific diversity in this system 

(having the largest number of  single nucleotide polymorphisms), with all other markers 

included producing mostly uniform (ncpGS) or identical (trnH-psbA; trnS-trnG) sequence 

data (as is expected in the case of  autopolyploidy). The ITS sequence alignment was 790 bp 

in length, with 15 sites found to be variable among the 82 individuals included. Within these 

variable sites, 13 were determined to be parsimoniously informative, with 2 singletons. 

Success rate of  crosses 

In total 1140 crosses were performed (see Appendix 3E for summary data/data spread). 

These included all combinations of  the interaction between the type of  cross performed (self-

pollinated, within-cytotype and between-cytotype) and the maternal cytotype (diploid, 

tetraploid or hexaploid; Figure 3.1). With regards to self-pollination success rates (calculated 

as a percentage of  total crosses performed), diploid (1 successful vs. 101 unsuccessful) and 

hexaploid (1 successful vs. 77 unsuccessful) maternal cytotypes had similar results with 
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Table 3.1: Hurdle model results of  seed set as the response variable for the 
interaction between the type of  cross (self-pollinated, within-cytotype or 
between-cytotype) and maternal cytotype (diploid(2x), tetraploid(4x) and 
hexaploid(6x)), indicating the back-transformed estimate, the back-
transformed upper and lower 95% confidence intervals (CI), z value, and p-
values.

Estimate Upper 95% CI 
Lower 95% CI

Z value P-value

Zero hurdle model coefficients

Intercept:  
Between Cytotype:2x 0.0588 0.0969 

0.03514
-10.064 < 2.0x10-16 *

Self:2x 0.0098 0.00138 
0.0663

-1.768 7.70x10-2

Within Cytotype:2x 0.6413  0.7324 
0.53867

9.557 < 2.0x10-16 *

Between Cytotype:4x 0.1625 0.2107 
0.12354

3.539 4.02x10-4 *

Self:4x 0.0354 0.0905 
0.01335

0.152 8.79x10-1

Within Cytotype:4x 0.5780 0.6670 
0.48360

-3.233 1.23x10-3 *

Between Cytotype:6x 0.1569 0.2835 
0.08044

2.304 2.12x10-2 *

Self:6x 0.0128 0.0854 
0.00180

-0.547 5.85x10-1

Within Cytotype:6x 0.8000 0.8737 
0.69814

-0.483 6.29x10-1

Count hurdle model 
coefficients

Intercept:  
Between Cytotype:2x

 5.81407 8.8658 
2.7624

6.580 4.70x10-11 *

Self:2x 1.08824 3.9822 
-1.8057

-1.214 2.25x10-1

Within Cytotype:2x 19.47950 24.1071 
14.8519

4.128 3.67x10-5 *

Between Cytotype:4x 8.46729 10.8788 
6.0558

1.240 2.15x10-1

Self:4x 3.94611  7.9866 
-0.0944

0.615 5.38x10-1

Within Cytotype:4x 15.60558 19.2284 
11.9828

-1.723 8.49x10-2

Between Cytotype:6x 8.41479 14.0683 
2.7613

0.853 3.94x10-1

Self:6x 0.00007 0.0174 
-0.0173

-0.080 9.37x10-1

Within Cytotype:6x  13.31569 16.4080 
10.2233

-1.612 1.07x10-1

* indicates significant p-values, and adjusted p-values, based on hurdle model results
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approximately 1.0% and 1.3% respectively, of  self-pollinations resulting in the production of  

seed. This is compared with an approximately 3.5% success rate (4 successful vs. 109 

unsuccessful) for self-pollinations of  tetraploid maternal cytotypes. Overall there was no 

significant difference in the self-pollination success rates (Table 3.1; Figure 3.1) between 

different maternal cytotypes. In other words, barriers to selfing appear to be intact across all 

cytotypes. It is possible that the limited successful self-pollination crosses may be due to the 

presence of  unwanted pollen (contamination) from another individual, despite measures 

taken to avoid this. 

The self-pollination success rates provide a useful basis from which to assess the other types of  

crosses, and control for errors due to the presence of  unwanted pollen and false successes of  

other types of  crosses. The success rate of  between-cytotype crosses involving diploids as the 

maternal cytotype (14 successful vs. 224 unsuccessful, or approximately 5.9%, and ) was not 

significantly different from the success rate for the self-pollination crosses with maternal 

diploids (Figure 3.1). This was also the case for between-cytoype crosses with maternal 

hexaploids (8 successful vs. 43 unsuccessful; 15.7%). However, there were significant 

differences between self-pollination success rates and between-cytotype crosses with tetraploid 

(45 successful vs. 232 unsuccessful; 16.2%) maternal cytotypes. In other words, maternal 

tetraploids were able to successfully cross with other cytotypes and produce seed (Figure 3.1). 

As expected, within-cytotype cross success rates were substantially and significantly higher 

than self-pollination and between-cytotype cross success rates, across all maternal cytotypes. 

Diploids had a within-cytotype success rate of  about 64.1% (59 successful vs. 33 unsuccessful). 

Tetraploids had a within-cytotype success rate of  about 57.8% (63 successful vs. 46 

unsuccessful), and hexaploids had the highest within-cytotype success rate of  approximately 

80.0% (64 successful vs. 16 unsuccessful). 

Seed-set among successful crosses 

Of  those crosses that did produce seed, there was a significant difference between different 

types of  crosses (Figure 3.2). In particular, seed-set was higher in between cytotype crosses 

than seed-set for successful self-pollinations, which is potentially to be expected in a species 

that is generally known to be self-incompatible. The highest number of  seeds were produced 

in within-cytotype crosses, a pattern that was consistent across all maternal cytotypes (Figure 

3.2). There was a significant difference between the number of  seeds produced by between-
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cytotype (mean of  5.5 seeds, min = 2.0, max = 13.0) and within-cytotype (mean of  19.0 

seeds, min = 1.0, max = 48.0) crosses, with diploid maternal parents (Table 3.1; Figure 3.2). 

The only successful self-pollination of  a maternal diploid plant produced two seeds.. In the 

case of  the single successful self-pollination cross with a hexaploid maternal parent, 1 seed 

was produced. Out of  the 4 successful self-pollination crosses with tetraploid maternal 

parents, a mean of  2.5 seeds (min = 1.0, max = 13.0) were produced. Self-pollination seed-set 

between all three maternal cytotypes were not significantly different from one another (Figure 

3.2). The mean number of  seeds produced by between-cytotype crosses with tetraploids as the 

maternal parent was 4.0 seeds (min = 1.0, max = 20.0), compared to the mean of  9.5 seeds 

(min = 2.0, max = 20.0) produced from between-cytotype crosses with hexaploids as the 

maternal parent. With regards to within-cytotype crosses with tetraploids and hexaploids as 

maternal parents, the mean seed-set for these crosses was 11.0 seeds (min = 1.0, max = 42.0) 

and 13.0 seeds (min = 1.0, max = 36.0), respectively. Finally, diploids produced the highest 
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seed-set for within-cytotype crosses (mean = 19.0 seeds) compared with both tetraploids 

(mean = 11.0 seeds) and hexaploids (mean = 13.0 seeds), although this was not determined to 

be significantly different than the other within-cytotype crosses with tetraploids and 

hexaploids. 

Gene flow and polyploidisation frequency 

In dendrograms constructed from ITS data, diploids and polyploids form two discrete clusters 

(Figure 3.3), with both the parsimony tree and bayesian consensus tree giving very high 

support values (bootstrap value of  94, and posterior probability of  100, respectively) for the 

separation of  these clusters. There is only one exception, of  a single diploid individual 

(accession OF016), found at a mixed-ploidy site comprising both diploids and tetraploids, that 

was found to be more similar to the polyploids. Based on similarity, individuals cluster 

according to ploidy (diploids vs polyploid) and not according to site. Furthermore, while 

diploids are largely distinct from the polyploids (suggesting that they are reproductively 

isolated in the wild), within the polyploid cluster tetraploids and hexaploids are very much 

equally resolved within the same large polytomous branch, suggesting possible gene flow 

among polyploids. 

Tests of  population structure using AMOVA on ITS data followed two approaches. In the 

first instance, haplotypes were grouped by site, thereby allowing for the existence of  distinct 

cytotype populations, within individual sites. In this scenario, the variation was largely 

explained by differences between cytotypes, within sites, rather than differences observed 

between sites. Furthermore, very little difference was observed within cytotypes, across 

individual sites. When haplotypes were grouped according to cytotype, almost all of  the 

variation was observed between cytotypes, and not site, and these differences were again 

found to be significant. When looking at the sequences in more detail, within the diploid 

lineage 12 loci were found to be variable across the 790 bp length of  sequence, with 6 sites 

being parsimoniously informative. This compared to the polyploid lineage, where only 4 sites 

were observe to be variable across tetraploids and hexaploids, with 3 sites being 

parsimoniously informative. 
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Figure 3.3: Bayesian consensus tree constructed using ITS sequence data, with branch lengths 
(branch lengths with support under 50 have been collapsed) and posterior probabilities, from Oxalis 
obliquifolia individuals of  different cytotypes (diploids - green bars; tetraploids - blue bars; hexaploids 
- orange bars) collected from different sites (same sites indicated using coloured tree tips) across 
Gauteng. Cytotype grouping shown as vertical bars. Figure inset: presents the true unrooted tree 
with branch lengths, with bootstrap support indicated.
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3.4. Discussion 

This study provides a comprehensive assessment of  the degree of  reproductive isolation,  and 

selfing ability, among different cytotypes of  Oxalis obliquifolia, with evidence of  strong, though 

not complete, barriers to hybridisation and gene flow between diploids and higher ploidy-level 

individuals. Furthermore, many shared haplotypes and the consequent lack of  population 

structure between tetraploids and hexaploids suggests substantial gene flow between polyploid 

cytotypes, but not into diploids, which exist as their own distinct lineage. 

Differences in seed-set 

It has been well established that polyploidisation can result in decreased self-incompatibility in 

out-crossing species (Oswald and Nuismer, 2011; Fowler and Levin, 2016). Barriers to selfing 

serve to prevent inbreeding (Heizmann, 1992), and thereby promote genetic diversity in 
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Table 3.2: Results of  two AMOVA analyses conducted using ITS sequences of  
82 individuals of  Oxalis obliquifolia (including diploids, tetraploids and 
hexaploids), with grouping done based of  ploidy and locality, and using a 
distance matrix constructed using the Kimura-2P model.

Source of  variation Degrees of  
freedom

Sum of  
squares

Variance 
components

Percentage 
of  variation

P-value

AMOVA analysis 1: Grouped 
by site

Among sites 13 58.255 -0.10664 -8.12 <1.0x10-4 *

Among cytotypes, within sites 9 38.310 1.31557 100.21 <1.0x10-4 *

Within cytotypes 59 6.127 0.10385 7.91 6.39x10-1

Total 81 102.693 1.31279

AMOVA analysis 2: Grouped 
by cytotype

Among cytotypes 2 81.133 1.56464 84.13 <1.0x10-4 *

Among sites, within cytotypes 20 15.433 0.19131 10.29 <1.0x10-4 *

Within sites 59 6.127 0.10385 5.58 <1.0x10-4 *

Total 81 102.693 1.85980

* indicates significant p-values
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species populations. However, a break-down in these barriers can facilitate reproductive 

success for minority cytotypes (by avoiding the need for available, compatible mates), thereby 

mitigating the challenges of  minority cytotype exclusion. In this system, polyploidy was not 

associated with a break-down of  self-incompatibility among higher-ploidy cytotypes of  Oxalis 

obliquifolia. There was minimal seed-sed and success rates for the vast majority of  self-

pollinated crosses across all cytotypes. This is consistent with observations made in previous 

studies that have found that self-incompatibility can remain intact in polyploids (for example 

in Mable, 2004), contrary to expectation based on studies that have shown otherwise (such as, 

Husband and Schemske, 1997; Cook and Soltis, 2000). 

The effects of  polyploidy on seed-set can differ dramatically between different species. In O. 

obliquifolia, diploid within-cytotype crosses yielded the highest mean seed-set, but this was not 

determined to be significantly higher than that of  polyploid within-cytotype crosses, similar to 

what was observed in studies by Münzbergová (2007) and Castro et al. (2011). However, other 

studies have shown that higher seed production by diploids is possible (for example in Burton 

and Husband, 2000; Münzbergová and Skuhrovec, 2017), which suggests a fitness advantage 

for diploids that would enable them to continue to coexist in mixed-ploidy populations, by 

virtue of  their potentially higher levels of  fecundity. In other instances polyploids may be 

capable of  producing more seeds than diploids (Černá and Münzbergová, 2013; Gross and 

Schiestl, 2015), thus facilitating potentially rapid range expansion and persistence. It is also 

worth noting that in O. obliquifolia the seed-set associated with hexaploid within-cytotype 

crosses was significantly higher than tetraploid within-cytotype crosses. This may indicate a 

fitness advantage for hexaploid individuals that could facilitate hexaploid establishment 

among mixed tetraploid and hexaploid populations. It remains to be seen however, whether 

these reproductive dynamics would follow the same general patterns under different 

environmental conditions, since the current study area only focusses on a relative small part 

of  the overall distribution of  O. obliquifolia. 

Between-cytotype crosses were generally not significantly different from the background 

selfing rate, for diploid and hexaploid maternal cytotypes in O. obliquifolia, there was some 

evidence to suggest that maternal tetraploid between-cytotype crosses did have a higher 

success rate than tetraploid self-pollinations. This was further supported by evidence of  higher 

seed-set for between-cytotype crosses with maternal tetraploids. This supports the idea that 

between-cytotype crosses are possible, but to a lesser extent between diploids and polyploids, 

and thus may potentially yield viable seed (although seed viability and germination did not 
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form part of  this investigation; Burton and Husband, 2000). The noticeably low success rate, 

and seed-set associated with between-cytotype crosses with maternal diploids in O. obliquifolia, 

may offer evidence of  strong barriers to reproduction between diploids and polyploids. 

There is precedent for sympatric diploid and tetraploid populations demonstrating strong 

interploid reproductive isolation (Coyne and Orr, 2004; Husband and Sabara, 2004). One 

major obstacle to successful hybridisation between diploids and polyploids involves the 

triploid block (Husband and Sabara, 2004; Köhler et al., 2010), or the production of  inviable, 

sterile or low fitness triploid offspring, as a product of  hybridisation between diploid and 

polyploid individuals. This is due to the fact that gametes produced by triploids are most often 

non-functional, as a result of  aneuploidy and an imbalance in the number of  chromosomes 

during meiosis (Satina and Blakeslee, 1937; Dujardin and Hanna, 1988; Hassan and 

Rehman, 2017). The triploid block is one possible explanation for the reproductive isolation 

observed between diploids and polyploids in O. obliquifolia. It is notable that no triploid 

individuals were encountered in the field (see Chapter 1 results), even at sites where diploids 

and tetraploids co-occurred. Polyploidisation can also reduce pollen viability (Ramsey and 

Schemske, 2002), which in turn can impact seed set (Galen and Gregory, 1989; Tiffin et al., 

2001), and even germination success (Ramsey and Schemske, 1998). This investigation 

showed that interploid crosses in O. obliquifolia yielded seed in an artificial context, and that 

there were clear differences in the number of  seeds produced between different types of  

crosses and maternal cytotypes (with reduced seed set in polyploid within-cytotype crosses, 

which is in agreement with findings by Galen and Gregory, 1989). Tests of  seed viability and 

germination would form a fruitful avenue for future research on polyploid fitness in this 

system. We could not test this as part of  this study, as the germination cues for O. obliquifolia 

are unknown and no natural germination of  harvested seed occurred during the study period. 

Another possible explanation for the reproductive isolation observed in wild O. obliquifolia 

populations may involve pollinator-mediated reproductive isolation (Segraves and Thompson, 

1999; Coyne and Orr, 2004) or assortative mating. There is evidence to suggest there are 

distinct differences in the size of  flowers and flower phenology in O. obliquifolia (see Chapter 2), 

both of  which are factors that could allow pollinators to differentiate between cytotypes 

(Segraves and Thompson, 1999;  Husband and Sabara, 2004; Husband and Schemske, 2000) 

in sympatry, thereby strengthening assortative mating (Kennedy et al., 2006). 
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Asymmetrical reproductive isolation 

One of  the major implications of  this investigation was that in Oxalis obliquifolia the maternal 

cytotype involved in a particular type of  cross was a significant factor in the success rate of  

between cytotype pollinations. This is consistent with recent work that suggests that 

reproductive isolation between higher ploidy-level cytotypes may be incomplete or less intact 

compared with barriers to reproduction between diploids and polyploids (Hersch-Green, 

2012; Sonnleitner et al., 2013; Hülber et al., 2015; Sutherland and Galloway, 2021). This is 

also consistent with another study on Campanula rotundifolia polyploids (Sutherland and 

Galloway, 2017), which suggested that gene flow may be asymmetric when comparing 

diploid-tetraploid crosses and tetraploid-hexaploid crosses. 

Evidence for this was not only demonstrated in the crosses performed under controlled  and 

artificial conditions, but was also supported by ITS population structure, which suggested a 

clear distinction in the degree of  gene flow between the polyploid and diploid lineages in wild 

populations of  O. obliquifolia (as was also the case in Greiner and Oberprieler, 2012). However, 

ITS markers are subject to the effects of  concerted evolution (Alvarez and Wendel, 2003), 

whereby the often multiple copies of  this marker display high degrees of  uniformity as a result 

of  different sequence homogenisation processes (Alvarez and Wendel, 2003), which ultimately 

can mask original ITS haplotypes via introgression. In the context of  O. obliquifolia, this 

concerted evolution may ultimately have the effect of  overwriting the signal of  multiple 

polyploidisation events. However, this was deemed unlikely, given that it would require the 

polyploid ITS haplotype to consistently overwrite all other new polyploid haplotypes, in every 

case where a new polyploidisation events occurred.  

The distinctly separate lineages of  diploids and polyploids observed in this study suggests that 

the frequency of  independent polyploidisation events (arising from diploid progenitors) are 

not occurring rapidly enough to explain the high degree of  cytotype sympatry (see Chapter 1) 

observed in O. obliquifolia, at least within the study area. However, within the polyploid lineage 

the numerous shared haplotypes across cytotypes suggest possible hybridisation events, or 

possibly independent polyploidisation events, resulting in the rapid production of  higher-

ploidy level cytotypes. Among polyploids the fusion of  reduced and unreduced gametes can 

generate cytotypes of  higher ploidy-levels, or by successful reproduction between tetraploids 

of  independent origin (Ramsey and Schemske, 1998). It is worth noting that the one diploid 

individual with a polyploid haplotype (accession OF016) was found at the same site as 

another polyploid individual (accession OF101), which displayed evidence in its sequence 
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data (Appendix 3F) of  a second minority haplotype (a discernible background sequence) with 

clear similarities to that of  the other diploids. Importantly, these individuals were found at a 

site where diploids and polyploids co-occur (see Chapter 1), and may potentially indicate a 

rare instance of  in situ gene flow, between the polyploid lineage and the diploid lineage. 

However, since this was the only instance where this phenomenon was encountered, and it is 

unknown if  crosses including these individuals among other diploids would result in viable 

offspring, it remains to be seen if  there is more evidence to support this potential backward 

introgression of  polyploid genetic material. It is also worth noting that this particular site 

(Faerie Glen Nature Reserve in Pretoria) was one of  the more disturbed sites included in this 

study, which may have an impact on these findings. This may potentially be due to changes in 

environmental/ecological factors in this context (such as pollinator interactions, or abiotic 

stress) that could, for example, result in changes to the frequency of  unreduced gamete 

production and patterns of  intercytotype pollination events. 

As found in this system, unidirectional gene flow amongst polyploids has also been observed 

in other polyploid complexes (Greiner and Oberprieler, 2012; Hülber et al., 2015). If  there is 

strong reproductive isolation between polyploids and their diploid parents, it may result in 

differences in diversification rates between the two distinct lineages, particularly when there is 

homogenising gene flow among higher ploidy-level cytotypes, which could result in lower 

diversification rates (Costa et al., 2014; Sutherland and Galloway, 2017). Additionally, diploids 

and polyploids may develop secondary reinforcement to reproductive isolation (Husband and 

Sabara, 2004), through assortative mating or pollinator-mediated selection, while higher 

ploidy-level cytotypes engage in local hybridisation in sympatry. This implies that localities 

with sympatric tetraploids and hexaploids have the potential for increased between-cytotype 

gene flow when compared with those sites with co-occurring diploids and tetraploids. It is also 

worth noting, that the only pentaploid individuals encountered in the field (see Chapter 1 

results), were encountered at a site with both tetraploid and hexaploid individuals. This may 

indicate a “pentaploid bridge” (Peskoller et al., 2021; Šemberová et al., 2021) involved in the 

production of  higher ploidy-level cytotypes, and coincides with increased seed set for 

between-cytotype crosses involving tetraploids and hexaploids, than tetraploids and diploids. 
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Autopolyploids and species concepts 

The above findings highlight a number of  aspects of  autopolyploid biology that directly relate 

to the ongoing debate of  whether autopolyploids may be considered as different species to 

their diploid progenitors. Soltis et al. (2007) identified two major reasons why autopolyploids 

have not been recognised as distinct species, or afforded their own nomenclature under the 

current taxonomic system. The first reason is simply that traditionally different cytotypes have 

been subsumed under a single recognised species. This has been attributed to the fact that 

speciation by autopolyploidy was originally viewed as a rare occurrence (Stebbins, 1947). 

However, the current prevailing paradigm recognises autopolyploidy as a far more more 

widespread and important factor in land plant evolution. In fact, Soltis et al. (2007) further 

suggested that the previously assumed rarity of  autopolyploidy may have been linked to the 

fact that taxonomists did not adequately recognise polyploids as distinct biological enities. 

The second reason for autopolyploids not being assigned their own name or classification 

concerns the long-standing tradition of  employing phenetic or morphological species 

concepts (Soltis et al., 2007), which is largely viewed as an out-dated approach in light of  

contemporary molecular techniques. However, it has long been recognised that species can be 

defined according to many different species concepts (Coyne and Orr, 2004), depending on 

the philosophical inclination of  the taxonomist. Indeed, many autopolyploids meet the 

prerequisites to be recognised as distinct taxa under different species concepts (Soltis et al., 

2007), and it has further been suggested that autopolyploids may give rise to cryptic species 

(Parisod et al., 2010; Eriksson et al., 2017). In the case of  Oxalis obliquifolia, it could be argued 

that it conforms to the requirements of  the biological species concept (being largely 

reproductively isolated), potentially the diagnostic and phylogenetic concepts, and even 

arguably the morphological (based on size characters) species concepts, if  the Gigas effect can 

be shown to consistently express in natural systems, and also wether these patterns are 

consistent across other parts of  the species’ geographic distribution, given that this 

investigation was limited to a relatively small area. However, it remains to be seen whether 

ecological distinctions would support this recognition. Furthermore, not recognising the 

polyploids as separate entities, in this system at least, would undercount the number of  

separate gene pools, with potential management and conservation implications as well. 
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3.5. Conclusion 

Reproductive isolation between diploids and higher-ploidy level cytotypes is an important 

factor in determining polyploid establishment and success. In out-crossing species, such as 

Oxalis obliquifolia, this is especially important, as new polyploids are limited in their ability to 

reproduce in the absence of  compatible mates. However, previous studies have shown that 

once one polyploid arises more are likely to follow, often due to the increase in the proportion 

of  unreduced gametes in a system. This may also be due to interploid hybridisation, however 

it remains to be seen if  seeds produced from interploid crosses in O. obliquifolia are able to 

germinate, reach reproductive maturity and produce viable offspring at levels capable of  

sustaining triploid bridges to the generation of  new polyploids. This study has also revealed 

that the degree of  reproductive isolation in an artificial setting and in the wild may be 

different. Given the high degree of  sympatry, along with other morphological and 

phenological evidence, one possibility is that pollinators may play a substantial role in 

facilitating assortative mating, and reinforcing reproductive isolation between diploids and 

polyploids. Despite remarkable morphological similarity, remarkable sympatry, and marked 

potential gene flow, diploids and polyploids are behaving as if  they exist as entirely separate 

biological entities. This raises the question of  whether current practices of  taxonomy and 

nomenclature are sufficient to adequately recognise the true diversity present among 

polyploid complexes, and consideration should be given as to how this may impact our 

assumptions of  polyploidy in the context of  plant evolution and speciation. 
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GENERAL CONCLUSIONS 

The purpose of  this study was to investigate some of  the primary factors governing polyploid 

establishment and persistence, specifically in the context of  local populations of  Oxalis 

obliquifolia. This topic was chosen to address some of  the fundamental questions regarding 

polyploid success in the face of  minority cytotype exclusion, and factors that contribute to 

patterns of  cytogeography in polyploid complexes. Additionally this project contributes 

valuable data and findings on the occurrence of  polyploidy in a widely distributed species in 

sub-Saharan Africa (outside of  the Greater Cape Floristic Region), a region that has been 

generally lacking in studies that have focused on polyploidy, and its ecological and 

evolutionary significance. 

This study has offered some unique insights into the patterns of  cytogeography and cytotype 

diversity of  a widespread grassland geophyte. For the first time, a chromosome count is 

provided for O. obliquifolia, and this investigation has revealed a substantial degree of  cytotype 

diversity across a relatively small portion of  the its overall distribution, which is comparable to 

that observed across other species entire distributions. This extraordinary degree of  cytotype 

sympatry is very unlike those patterns of  cytotype distribution observed in the Global North 

(where the majority of  such studies have been conducted), where polyploid complexes have 

largely exhibited a pattern of  distinctly separate cytotype distribution ranges, with varying 

degrees of  overlap at contact zones. It is possible that the high degree of  sympathy observed 

in this system may be part of  a much larger contact zone, but more research across a much 

broader part of  the distribution range would be required to verify this. This also immediately 

raises the question, why are these different cytotypes able to co-exist so successfully, and have 

not followed the expected pattern where one cytotype eventually excludes another, depending 

on their relative fitness? Future studies should focus on questions relating to how recently 

these polyploids have arisen, and also to what degree vegetative propagation of  this species 

has enabled the persistence of  higherploidy cytotypes, and impact distribution patterns in this 

polyploid complex. 

Diploids and polyploids of  O. obliquifolia display a remarkable degree of  cytotype diversity and 

sympatry in local populations. Diploids and polyploids seem to share the same abiotic niche, 

however evidence provided in Chapter 3 shows that diploids and polyploids are effectively 

reproductively isolated from one another in the wild, despite interploid crosses resulting in 
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non-trivial seed set under artificial conditions. This raises many questions regarding the 

possible mechanisms through which reproductive isolation is maintained in situ, and how 

polyploids have become so successfully established within the existing set of  diploid 

populations. This also highlights the inherent limitations to current taxonomic practices in 

recognising real diversity patterns in polyploid complexes, such as in O. obliquifolia. 

The results of  Chapter 2 suggest strong evidence of  the Gigas effect in this system, with 

polyploids having larger leaves and flowers in common garden conditions. Larger flowers 

combined with some evidence of  slight phenological shifts in flowering time, where polyploids 

tend to flower at the beginning of  the season, provides compelling possibilities for pollinator 

mediated assortative mating as a potential prezygotic barrier to interploid crosses, although 

post-zygotic effects such as interploid seed fitness also need to be investigated. This may also 

suggest pollinator driven selection for particular reproductive characteristics that are favoured, 

thereby possibly reinforcing the prominent size differences observed in floral structure 

between diploids and polyploids. However, it remains to be seen whether the Gigas effect is 

still discernible in the wild, where environmental-induced size variation will also amplify 

variability in phenotypic expression, and thus also potentially obscure pollinator 

discrimination. 

While there are some limits to the scope of  this investigation, it is clear that African polyploid 

systems, such as explored here, have the potential to offer much insight regarding whole 

genome duplication and its ecological and evolutionary consequences. It provides a valuable 

system for the study of  various aspects of  polyploidy, as a major contributor to the evolution 

of  angiosperms, and has the potential to contribute much to the existing literature on regional 

studies regarding the role of  polyploidy in intraspecific diversity. In this context, the short-

comings of  this investigation can rather be viewed as exciting avenues for potential further 

investigations. In particular, pollinator interactions and intercytotype competition are two 

unexplored, yet potentially crucial biotic factors that may facilitate polyploid success in 

mixed-ploidy populations. The phenotypic differences observed in this investigation, and the 

potential associated physiological consequences of  these, may have profound effects on 

polyploid competitive ability, and pollinator interactions. Both of  these biotic factors, 

ecological niche shifts and direct competition, provide promising directions of  enquiry for 

further investigations into the intricate mechanisms underlying this complex system. 
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APPENDICES 

Appendix 1A: Voucher specimen of  a diploid individual, Oxalis obliquifolia, found near Donkerhoek 
(east Gauteng). PRU129795.
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Appendix 1B: List of  Oxalis obliquifolia voucher specimens, cytotype and associated call numbers and 
locality details for each site. 

Sample 
number

Site Local 
Municipality

Locality 
description

Cytotype Geographic 
coordinates

PRU* call 
number

OA015 Sable Ranch Mogale City Along hiking 
trail on rocky 
slope

Diploid (2n) S25.93487 
E27.61824

PRU129335

OB001 Miertjie le 
Roux 

City of  
Tshwane

Along side of  
road on the 
farm

Tetraploid (4n) S25.78102 
E28.54816

PRU128128

OC015 Carlswald 
Estate

City of  
Johannesburg

Next to jogging 
path in 
grassland

Tetraploid (4n) S25.97627 
E28.10171

PRU129949

OD001 Klipkraal 
Trails

Midvaal Along 
boundary fence 
on farm

Tetraploid (4n) S26.79635 
E28.22789

PRU129942

OE001 Krugersdorp Mogale City Along hiking 
trail in open 
grassland

Tetraploid (4n) S26.04579 
E27.78981

PRU129943

OF001 Faerie Glen City of  
Tshwane

Along hiking 
trail in open 
grassland

Diploid (2n) S25.7742 
E28.29369

PRU128127

OG001 Magaliesburg City of  
Tshwane

Along hiking 
trail on rocky 
slope

Diploid (2n) S25.80123 
E27.99029

PRU129796

OH003 Hazeldean 
Trails

City of  
Tshwane

Along hiking 
trail in open 
grassland

Tetraploid (4n) S25.77355 
E28.40455

PRU129951

OI008 Alberton City of  
Johannesburg

On rocky slope 
in open 
grassland

Tetraploid (4n) S26.30157 
E28.07494

PRU129944

OJ001 Fochville Merafong City Found on base 
of  rocky 
outcrop.

Diploid (2n) S26.56123 
E27.50775

PRU129945

OK001 Kloofendal 
Nature Reserve

City of  
Johannesburg

Along hiking 
trail on rocky 
slope

Tetraploid (4n) S26.13077 
E27.88219

PRU129952

OL008 Olifantsfontein City of  
Johannesburg

Found in open 
grassland

Diploid (2n) S25.94517 
E28.17904

PRU129946

OM001 Moreleta 
Kloof  Nature 
Reserve

City of  
Tshwane

Along hiking 
trail in open 
grassland

Diploid (2n) S25.81608 
E28.28964

PRU129950

ON001 Klipreviersberg 
Nature Reserve

City of  
Johannesburg

Along hiking 
trail on rocky 
slope

Hexaploid (6n) S26.303649 
E28.012772

PRU129953

OO001 Cradle Moon 
Lakeside 
Lodge

Mogale City Found in open 
grassland

Tetraploid (4n) S25.95757 
E27.86028

PRU129947

OP001 University of  
Pretoria 
Grassland

City of  
Tshwane

Found in open 
grassland

Tetraploid (4n) S25.74191 
E28.26113

*

Sample 
number
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OQ009 Windy Brow 
Game Reserve

City of  
Tshwane

On hiking trail 
in grassland

Tetraploid (4n) S25.68804 
E28.50303

PRU129794

OR004 Sandton City of  
Johannesburg

Found on rocky 
slope

Tetraploid (4n) S26.03108 
E28.04206

PRU129954

OS004 Smuts Koppie City of  
Tshwane

Along hiking 
trail on rocky 
slope

Tetraploid (4n) S25.8913 
E28.23862

PRU128130

OT001 Muningi 
Gorge

City of  
Tshwane

Found in open 
grassland

Diploid (2n) S25.57704 
E28.59107

PRU129334

OU001 Legends 
Adventure 
Farm

City of  
Tshwane

Next to dirt-
road

Diploid (2n) S25.82375 
E28.55128

PRU129795

OV001 Kempton Park City of  
Ekurhuleni

Next to bike 
trail in open 
grassland

Tetraploid (4n) S26.06965 
E28.26629

PRU129797

OW001 Wonderboom 
east

City of  
Tshwane

Along hiking 
trail on rocky 
slope

Tetraploid (4n) S25.69308 
E28.20577

PRU128129

OX008 Happy Acres Mogale City Along hiking 
trail on rocky 
slope

Tetraploid (4n) S26.02610 
E27.54644

PRU130792

OY001 Suikerbosrand 
Nature Reserve

Midvaal On rocky slope 
in open 
grassland

Hexaploid (6n) S26.48166 
E28.21008

PRU129948

* Missing PRU numbers will be added when reproductive material becomes available for submission

Site Local 
Municipality

Locality 
description

Cytotype Geographic 
coordinates

PRU* call 
number

Sample 
number
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Appendix 1C: Copy of  the flow diagram used in the soil texture characterisation of  soil samples 
collected for each individual Oxalis obliquifolia individual collected across Gauteng, created by Thien 
(1979). 
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Appendix 1D: R script for Multiple Factor Analysis (MFA) and PerMANOVA of  abiotic variables 
associated with cytotype distribution patterns. 

#### Install packages #### 
> install.packages(“FactoMineR")  
> install.packages(“Factoshiny") 
> install.packages(“cluster”) 
> install.packages(“vegan”) 

#### Add libraries #### 
> library(FactoMineR)  
> library(Factoshiny) 
> library(readxl) 
> library(cluster) 
> library(vegan) 

#### Load and view data from excel table #### 
> read_excel(“FileName.xlsx")  
> ObjectName <- read_excel(“FileName.xlsx") 
> View(ObjectName) 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  
##### MFA Analysis ##### 

#### Prepare data for analysis, identify columns/variables and assign to object #### 
> DF <- ObjectName[,c(“Cytotype”, “Ploidy", “Site", “Elevation", “Northness", “Slope", 
“MinTemp", “MaxTemp", “Precipitation", “SoilGravel", “Geology", “SoilTexture", “SunShade")] 

#### Identify groups of  variables, assigned variable types (categorical (“n”) or continuous (“s”), run 
MFA and assign out-put to object #### 
> res.MFA <- MFA(DF, group = c(2, 1, 3, 3, 1, 2, 1),  type = c(“n", “n", “s", “s", “s", “n", “n"), 
name.group = c(“Cytotype" ,”Site" ,”Topography" ,”Climate" ,”Substrate" ,”Soil" ,”Exposure" ), 
num.group.sup = c(1, 2), graph = FALSE) 

#### Plot MFA, individuals labelled by cytotype ##### 
> plot.MFA(res.MFA, choix = “ind", lab.par = FALSE, invisible = c(‘quali', ‘quali.sup'), habillage = 
‘Cytotype', title = "Individual factor map") 

#### Plot variables #### 
> plot.MFA(res.MFA, choix = “var", habillage = ‘group’, title = "Correlation circle") 

#### Plot partial axes plot #### 
> plot.MFA(res.MFA, choix = “axes", habillage = 'group') 
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- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  
##### PerMANOVA Analysis ##### 

#### Isolate abiotic variables #### 
> DF2 <- DF[,3:13] 

#### Check for autocorrelation using Pearson’s correlation matrix #### 
> round(cor(Df2, method = “pearson”), digits = 2) 

#### Remove autocorrelated variables #### 
> DF2[, -4: -5] 

#### Create Gower’s distance matrix #### 
> Dist1 <- daisy(DF2, metric = c("gower")) 

#### Run PerMANOVA #### 
> adonis2(Dist1 ~ Cytotype*Site, data = DF) 

Appendix 1E: Data matrix of  abiotic variables (climate, topology and substrate) for each individual 
plants mapped and cytotyped 

DOI: 10.25403/UPresearchdata.21509226 
Alternative link: https://figshare.com/s/7648875559a814a5033f  
File name: “Appendix_1E_AbioticVariables.xlxs” 
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Appendix 1F: Original size and colour microscope images of  chromosome squashes used to 
determine chromosome number and morphology in Oxalis obliquifolia. 
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Appendix 1G: Abiotic variable contribution to construction of  MFA dimensions 1 and 2 

Table 1G: The contribution of  active groups of  abiotic variables to the 
construction of  dimensions 1 and 2 of  the MFA, and the explanatory power/
association of  supplementary variables to those dimensions

Variable Groups Contribution to Dim 1 Contribution to Dim 2

Active

Topography  
- Elevation 
- Northness 
- Slope

30.968 15.552

Climate 
- Minimum temperature 
- Maximum temperature 
- Mean annual precipitation

37.953 27.099

Substrate 
- Underlying Geology 
- Soil texture

1.521 4.395

Soil 
-Percentage of  coarse fragments

27.155 40.034

Exposure 
- Sun vs Shade

2.402 12.920

Supplementary

Cytotype 0.156 0.029

Site 0.939 0.837
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Appendix 2A: Morphological data of  foliar and floral characters captured for all individuals 
included in the common garden experiment, captured at the peak of  the growing season. 

DOI: 10.25403/UPresearchdata.21509226 
Alternative link: https://figshare.com/s/7648875559a814a5033f 
File name: “Appendix_2A_MorphologyData_Peak.xlxs” 

Appendix 2B: Morphological data of  foliar and floral characters captured for each individual 
included in the common garden experiment, captured 2 months after emergence. 

DOI: 10.25403/UPresearchdata.21509226 
Alternative link: https://figshare.com/s/7648875559a814a5033f 
File name: “Appendix_2B_MorphologyData_2Months.xlxs” 

Appendix 2C: Colour charts used for the categorisation of  floral and abaxial leaf  surface colours 
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Appendix 2D: Vegetative phenology data for each individual included in the common garden 
experiment. 

DOI: 10.25403/UPresearchdata.21509226 
Alternative link: https://figshare.com/s/7648875559a814a5033f 
File name: “Appendix_2D_VegetativePhenology.xlxs” 

Appendix 2E: Flower phenology data for 31 individuals (including diploids, tetraploids and 
hexaploids) included in the common garden experiment. 

DOI: 10.25403/UPresearchdata.21509226 
Alternative link: https://figshare.com/s/7648875559a814a5033f 
File name: “Appendix_2E_FlowerPhenology.xlxs” 

Appendix 2F: R script for univariate analyses of  morphological traits associated with different 
cytotypes. 

#### Install package #### 
> install.packages("multcompView")  
>install.packages(“MASS”) 
> install.packages("multcomp") 

#### Add libraries #### 
> library(multcompView)  
> library(readxl) 
> library(MASS) 
> library(multcomp) 

#### Load and view data from excel table #### 
> read_excel(“FileName.xlsx")  
> ObjectName <- read_excel(“FileName.xlsx") 
> View(ObjectName) 

#### Check for autocorrelation using Pearson’s correlation matrix #### 
> round(cor(ObjectName[,c(5:27)], method = “pearson”), digits = 2) 
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  

##### GLM Analysis ##### 

#### Perform GLM #### 
> GLM1 <- glm(PredictorVariable ~ Cytotype, family = c(“Gamma”, “poisson”, “quasipoisson”, 
“gaussian”, “negbin”), data = ObjectName) 
> summary(GLM1) 

#### Extract p-values #### 
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> P1 <- summary(GLM1)$coef[, “Pr(>|t|)"] 

#### Adjust p-values #### 
> p.adjust(P1, method = “BH”) 

#### Turkey post-hoc test #### 
>comps1 <- glht(GLM1, linfct = mcp(Cytotype = “Tukey")) 
> summary(comps1) 
>cld(comps1) 
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  

Appendix 2G: Selection of  distribution family for each GLM performed with morphological traits as 
predictors of  cytotype 

Table 2G: Distribution family selection for GLM analyses of  morphological 
traits, indicating individual traits, approximate lambda values and result of  
Shapiro-Wilk test, data transformations, possible distribution families, AIC 
values and residual deviance values, for each parameter combination. 

Trait Transformation 
None 

Log/BoxCox

GLM family AIC Residual 
deviance 
on 95 df

Foliar traits

Middle leaflet length 
(mm) 

Continuous data 
Lambda = 0 
ShapiroWilk=0.0003349

None 

Log

Gaussian 
InverseGaussian 

Gamma 
Gaussian 

InverseGaussian 
Gamma

477.25 
462.89 
464.79 
-63.757 
-64.02 

-64.365 

689.11 
0.19385 
2.8587 
2.7590 

0.14476  
0.38472

Middle leaflet width (mm) 

Continuous data 
Lambda = 0.6 
ShapiroWilk= 0.5975

None 

Log 

Sqrt

Gaussian 
InverseGaussian 

Gamma 
Gaussian 

InverseGaussian 
Gamma 
Gaussian 

InverseGaussian 
Gamma

524.29 
531.95 
525.49 

-64.129 
-55.84 
-59.149 
91.701 
97.727 
94.708

1113.6 
0.14242 
2.7036 
2.7486 

0.11015 
0.31992 
13.480 
0.15589 
0.68149

Lateral leaflet length 
(mm) 

Continuous data 
Lambda = 0.45 
ShapiroWilk=0.0525

None 

Log 

Sqrt

Gaussian 
InverseGaussian 

Gamma 
Gaussian 

InverseGaussian 
Gamma 
Gaussian 

InverseGaussian 
Gamma

435.46 
440.98 
436.55 

-73.479 
-66.917 
-69.593 
43.519 
47.64 
45.594

449.88 
0.19849 
2.5282 
2.4985 

0.15458 
0.38862 
8.2444 
0.17560 
0.62847

Trait
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Lateral leaflet width (mm) 

Continuous data 
Lambda = 0.45 
ShapiroWilk=0.2225

None 

Log 

Sqrt

Gaussian 
InverseGaussian 

Gamma 
Gaussian 

InverseGaussian 
Gamma 
Gaussian 

InverseGaussian 
Gamma

477.71 
479.12 
475.68 

-76.137 
-70.809 
-73.095 
63.019 
65.351 
63.801

692.35 
0.14840 
2.3959 
2.4316 

0.11536 
0.31684 
10.059 
0.14974 
0.60332

Petiole length (mm) 

Continuous data 
Lambda = 1 
ShapiroWilk=0.6452

None 

Log

Gaussian 
InverseGaussian 

Gamma 
Gaussian 

InverseGaussian 
Gamma

895.43 
913.06 
902.51 
28.544 
37.295 
34.053 

49145 
0.083110 
6.5772 
7.0761 

0.086003 
0.37259

Number of  leaves  

Count Data

None Poisson 
Neg binomial

594.1 
574.63 

160.85 
89.835

Ratio middle leaflet width 
to length 

MidLeafWidth/
MidLeafLength

Log 

None

quasiPoisson 
(Negative values 

present) 
quasiPoisson

- 

NA

- 

1.8221

Ratio lateral leaflet width 
to length 

LatLeafWidth/LatLeafLength 

Log 
None

quasiPoisson 
quasiPoisson 

NA 
NA

1.8384 
1.0081

Floral traits

Petal width (mm) 

Continuous data 

Lambda = +- 0.35 
ShapiroWilk= 0.01106

None 

Log 

Sqrt

Gaussian 
InverseGaussian 

Gamma 
Gaussian 

InverseGaussian 
Gamma 
Gaussian 

InverseGaussian 
Gamma

369.61 
367.7 
365.82 

-77.446 
-72.552 
-74.818 
8.4678 
9.0781 
8.2309

229.74 
0.25095 
2.3655 
2.3993 
0.21920 
0.48316 
5.7653 

0.19361 
0.59558

Petal length (mm) 

Continuous data 

Lambda = 0.65 
ShapiroWilk= 0.1192

None 

Log 

Sqrt

Gaussian 
InverseGaussian 

Gamma 
Gaussian 

InverseGaussian 
Gamma 
Gaussian 

InverseGaussian 
Gamma

451.76 
453.53 
451.34 

-109.26 
-106.26 
-107.47 
34.214 
36.103 
35.073

531.28 
0.098275 
1.6921 
1.7342 

0.07595 
0.21492 
7.4976 
0.10303 
0.42807

Transformation 
None 

Log/BoxCox

GLM family AIC Residual 
deviance 
on 95 df

Trait
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Flower diameter (mm) 

Continuous data 

Lambda = 0.15 
ShapiroWilk= 0.03588

None 

Log

Gaussian 
InverseGaussian 

Gamma 
Gaussian 

InverseGaussian 
Gamma

516.97 
514.35 
513.03 

-76.819 
-74.332 
-75.424

1033.5 
0.12054 
2.4028 
2.4147 

0.091377 
0.27132

Sepal length (mm) 

Continuous data 

Lambda =+- 0.15 
ShapiroWilk=9.803e-06

None 

Log

Gaussian 
InverseGaussian 

Gamma 
Gaussian 

InverseGaussian 
Gamma

279.93 
278.82 
277.87 

-77.737 
-73.825 
-75.603

92.013 
0.39404 
2.3843 
2.3922 
0.42292 
0.74896

Sepal width (mm) 

Continuous data 

Lambda = +- 0.15 
ShapiroWilk= 1.91e-13

None 

Log

Gaussian 
InverseGaussian 

Gamma 
Gaussian 

InverseGaussian 
Gamma

148.75 
147.37 
147.53 
-30.744 
-31.164 
-31.271

24.128 
1.5458 
3.8261 
3.8641 
5.5110 
4.8436 

Bract length (mm) 

Continuous data 

Lambda = -0.1 
ShapiroWilk= 3.759e-06

None 

Log

Gaussian 
InverseGaussian 

Gamma 
Gaussian 

InverseGaussian 
Gamma

386.69 
369.13 
371.92 
56.3 

61.535 
57.792

273.49 
1.9302 
9.5950 
9.3928 
2.6137 
3.8968

Peduncle length (mm) 

Continuous data 

Lambda =+- 0.35 
ShapiroWilk=0.1115

None 

Log 

Sqrt

Gaussian 
InverseGaussian 

Gamma 
Gaussian 

InverseGaussian 
Gamma 
Gaussian 

InverseGaussian 
Gamma

882.22 
881.85 
879.93 

-20.118 
-18.135 
-18.905 
293.38 
294.94 
293.9

42946 
0.044258 

4.2603 
4.3067 

0.045492 
0.20703 
105.54 
0.10907 
1.0711

Ratio flower diameter to 
petal length 

FlowerDiameter/PetalLength

Log 

None

quasiPoisson 
(Negative nalues) 
quasiPoisson 

- 

NA

- 

1.5685

Ratio petal length to 
width 

PetalLength/PetalWidth

Log 

None

quasiPoisson 

quasiPoisson 

NA 

NA

3.1530 

2.6246

Ratio sepal length to 
width 

SepalLength/SepalWidth

Log 

None

quasiPoisson 

quasiPoisson 

NA 

NA

4.2967 

9.3694

Transformation 
None 

Log/BoxCox

GLM family AIC Residual 
deviance 
on 95 df

Trait
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Appendix 2H: R script for multivariate analyses of  morphological traits associated with different 
cytotypes. 

#### Install packages #### 
> install.packages(“FactoMineR")  
> install.packages(“Factoshiny”) 
> install.packages(“MASS”) 
> install.packages(“ggplot2”) 
> install.packages(“ggfortify”) 
> install.packages(“rlang”) 
> install.packages(“caret”) 

#### Add libraries #### 
> library(FactoMineR)  
> library(Factoshiny) 
> library(readxl) 
> library(MASS) 
> library(ggplot2) 
> library(ggfortify) 
> library(rlang) 
> library(caret) 

#### Load and view data from excel table #### 
> read_excel(“FileName.xlsx")  
> ObjectName <- read_excel(“FileName.xlsx") 

Ratio peduncle length to 
bract position 

PeduncleLength/
BractPosition

Log 

None

quasiPoisson 

quasiPoisson 

NA 

NA

3.0233 

0.56499

Number of  inflorescences 

Count data

None Poisson 
Neg binomial

519.31 
504.99

161.90 
97.815

Difference in peduncle 
and petiole length (mm) 

Continuous data, with 
negative values 

Lambda= Must be positive 
ShapiroWilk=0.7235

None 

Log 
(Na’s produced)

Gaussian 
InverseGaussian 
(negative values) 

Gamma 
(negative values) 

Gaussian 
InverseGaussian 

Gamma

893.87 
- 

- 

- 
- 
-

48368 
- 

- 

- 
- 
-

Transformation 
None 

Log/BoxCox

GLM family AIC Residual 
deviance 
on 95 df

Trait
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> View(ObjectName) 

 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  
##### Factor Analysis of  Mixed Data ##### 

#### Prepare data for analysis, identify columns/variables and assign to object #### 
> DF <- ObjectName[,c("Accession", "Cytotype", "FlowerColour", "LeafAbaxialColour", 
"PetioleLength", "MiddleLeafletLength", "MiddleLeafletWidth", "LateralLeafletLength", 
"LateralLeafletWidth", "FlowerDiameter", "PetalLength", "PetalWidth", "SepalLength", 
"SepalWidth", "NumberOfLeaves", "NumberOfInfloresecneces", "BractLength", "PeduncleLength", 
"BractPosition", "RatioBractPositionToPeduncleLength", "RatioSepalLengthToSepalWidth",   
" R a t i o P e t a l L e n g t h To P e t a l W i d t h " , " R a t i o S e p a l L e n g t h To P e t a l L e n g t h " , 
" R a t i o L a t e r a l L e a fl e t W i d t h To L e n g t h " , " R a t i o M i d L e a fl e t W i d t h To L e n g t h " , 
"DifferencePeduncleAndPetioleLength", "RatioFlowerDiameterToPetalLength" )] 

#### Conduct FAMD, identify supplementary variables #### 
res.FAMD<-FAMD(DF, sup.var=c(1,2),graph=FALSE) 

#### Plot MFA, individuals labelled by cytotype ##### 
> plot.FAMD(res.FAMD,invisible=c('quali','quali.sup','ind.sup'),habillage=2,title="Graph of  
individuals and categories”) 

#### Plot variables #### 
> plot.FAMD(res.FAMD,axes=c(1,2),choix='var',title="Graph of  the variables”) 

#### Plot Correlation circle #### 
> plot.FAMD(res.FAMD, choix='quanti',title="Correlation circle”) 

 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  
##### Principle Component Analysis ##### 

#### Conduct PCA, identify columns/variables and assign to object #### 
> pca_res <- prcomp(ObjectName[5:27], scale. = TRUE) 

#### View Output #### 
> pca_res 

#### Plot PCA with ellipses #### 
PCA1 <- autoplot(pca_res, data = ObjectName, colour = 'Cytotype', size=1.0) + theme_light() + 
stat_ellipse(geom = "polygon", aes(x=PC1, y=PC2, color= Cytotype, fill= Cytotype), type = "norm", 
level = 0.95, alpha = 0.25) 

APPENDICES 142

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  
##### Linear Discriminant Analysis ##### 

#### Prepare data for analysis, identify columns/variables and assign to object #### 
> ObjectName <- read_excel("FileName.xlsx", col_types = c("skip", "text", "skip", "skip", "numeric", 
"numeric",  "numeric", "numeric", "numeric",  "numeric", "numeric", "numeric", "numeric", 
"numeric", "numeric", "numeric", "numeric", "numeric", "numeric", "numeric", "numeric",  
"numeric", "numeric", "numeric", "numeric", "numeric", “numeric")) 

#### LDA Step 1, set random seed #### 
> set.seed(123) 
#### Create data partition and training and test data #### 
> training.samples <- createDataPartition(ObjectName$Cytotype, p = 0.8, list = FALSE) 
> train.data <- ObjectName[training.samples, ] 
> test.data <- Object[-training.samples, ] 

#### Data preprocessing and tranformation #### 
> preproc.param <- preProcess(train.data, method = c("center", “scale")) 
> train.transformed <- predict(preproc.param, train.data) 
> test.transformed <-  predict(preproc.param, test.data) 

#### Fit the LDA model, view model output #### 
> model <- lda(Cytotype~., data = train.transformed) 
> model 

#### Use model to make predictions #### 
> predictions <-  predict(model, test.transformed) 

#### Find model accuracy #### 
> mean(predictions$class==test.transformed$Cytotype) 

#### Plot LDA #### 
> plot(model) 
> lda_plot <- cbind(train.data, predict(model)$x) 
> PlotLDA <- ggplot(lda_plot, aes(LD1, LD2)) + geom_point(aes(color = Cytotype), size = 1) 
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Appendix 2I: Factor Analysis of  Mixed Data (FAMD) based on 23 quantitative and 2 qualitative 
morphological characters as predictors of  cytotype 

APPENDICES 144

Figure 2I: A- Factor Analysis of  Mixed Data (FAMD) based on 23 quantitative and 2 qualitative 
morphological characters as predictors of  cytotype of  Oxalis obliquifolia, with dimensions 1 and 2 
accounting for a cumulative 35.38 % of  the variation observed.  B- Correlation circle showing the 23 
continuous variables used in the construction of  the FAMD. C- Graph of  all variables used in the 
construction  of  dimensions 1 and 2 of  the FAMD (quantitative variables in black; qualitative 
variables in red; and supplementary variables in brown).
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Appendix 2J: R script for univariate analyses of  plant phenology associated with different cytotypes. 

#### Perform GLM with poisson distribution #### 
> GLM1 <- glm(PredictorVariable ~ Cytotype, family = c(“poisson”), data = ObjectName) 
> summary(GLM1) 

#### Extract p-values #### 
> P1 <- summary(GLM1)$coef[, "Pr(>|z|)"] 

#### Adjust p-values #### 
> p.adjust(P1, method = “BH”) 

#### Turkey post-hoc test #### 
>comps1 <- glht(GLM1, linfct = mcp(Cytotype = “Tukey")) 
> summary(comps1) 
>cld(comps1) 

Appendix 2K: Comparison of  the results of  the PCA conducted on the two data sets obtained for 
the morphological characters measured in the common garden experiment, at both the peak of  the 
growing season and 2 months after each individual emerged. Similarities in the identification of  
important variable in the construction of  PC1, PC2 and PC3 are marked in bold, and difference have 
been highlighted in bold and red. 

Table 2K.1: Loading scores for variables contributing to the first 3 principle 
components of  the PCA constructed from morphological data for all 98 
individuals, captured 2 months after emergence of  each individual.

PC1 PC2 PC3

Petiole length   0.171148589  -0.32927082  -0.138966729

Middle-leaflet length  0.290841467 -0.15621006 -0.009598323

Middle-leaflet width 0.310520246 -0.19435230 -0.176017614

Lateral-leaflet length 0.290749181 -0.28680919 -0.101817525

Lateral-leaflet width 0.308723684  -0.17774711  -0.178682023

Flower diameter 0.297529101 0.14141799 0.110744776

Petal length 0.296485312 -0.01811135 0.258939692

Petal width 0.314362768 0.18323322 -0.001857691

Sepal length 0.286328271 0.14537488 0.172273254

Sepal width 0.173880675 0.26341731 -0.256890841

Number of  leaves -0.064900053 0.19270049 0.186667870
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Number of  inflorescences -0.023660230 0.22021498 0.167104357

Bract length 0.202633896 0.13133874  0.261332948

Peduncle length 0.276671723 0.07974962 0.017381272

Bract position 0.261832162 0.04565799 0.111569304

Ratio bract position to peduncle length -0.012749293 0.08574978 -0.375834705

Ratio sepal length to sepal width 0.068636915 -0.15450242 0.405244030

Ratio petal length to petal width -0.100290763 -0.30953206 0.335876393

Ratio sepal length to petal length 0.001668905 -0.20652811 0.100764667

Ratio lateral-leaflet width to length 0.035361868 0.22224862 -0.172582874

Ratio mid-leaflet width to length 0.058144160 -0.06960918 -0.263220593

Difference peduncle and petiole length 0.092449205 0.41093360 0.157773477

Ratio flower diameter to petal length 0.057736119 0.25886646 -0.190038000

Table 2K.2: Loading scores for variables contributing to the first 3 principle 
components of  the PCA constructed from morphological data for all 98 
individuals, captured at the peak of  the growing season.

PC1 PC2 PC3

Petiole length   -0.127870320 -0.04480974 0.33817611

Middle-leaflet length -0.284249269 -0.23640178 0.19503517

Middle-leaflet width -0.315388724 -0.17399790 0.05877109

Lateral-leaflet length -0.304269668 -0.13443735 0.18261790

Lateral-leaflet width -0.304414724 -0.18844770 0.06862474

Flower diameter -0.322699755 0.10536028 -0.08090536

Petal length -0.306061652 0.20348656 0.04212910

Petal width -0.314438235 0.04123640 -0.10125485

Sepal length -0.223831398 -0.13372437 0.09380340

Sepal width -0.171509972 -0.07105417 -0.39801765

Number of  leaves 0.125022750 -0.37049037 -0.03180551

Number of  inflorescences 0.037045335 -0.39484893 -0.07322786

Bract length -0.214147942 -0.14106976 0.12145883

Peduncle length -0.263035552 0.17899111 -0.07203242
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Continued on next page. 

Bract position -0.247176052 0.19678950 -0.05229351

Ratio bract position to peduncle length 0.027557085 0.11802490 0.09320373

Ratio sepal length to sepal width -0.003693819 -0.02917894 0.43118647

Ratio petal length to petal width 0.116146820 0.26172076 0.26685831

Ratio sepal length to petal length 0.107686627 -0.40244182 -0.02568226

Ratio lateral-leaflet width to length -0.013229607 -0.10776932 -0.24583070

Ratio mid-leaflet width to length -0.099747786 0.09063359 -0.23251528

Difference peduncle and petiole length -0.111256226 0.19461109 -0.36708409

Ratio flower diameter to petal length -0.020699924 -0.30713541 -0.27480430
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Figure 2K: A- Principle component analysis (PCA) based data set of  character terms measured at 
the peak of  the growing season. B- PCA based on data set for characters measured after 2 months 
from emergence of  each individual plant. PCAs based on 23 morphological traits as predictors of  
cytotype (diploid - green, tetraploid - blue, hexaploid - orange).
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Appendix 3A: Crossing data 

DOI: 10.25403/UPresearchdata.21509226 
Alternative link: https://figshare.com/s/7648875559a814a5033f 
File name: “Appendix_3A_CrossData.xlxs” 

Appendix 3B: R script for hurdle model analysis of  success rate and seed set associated with the 
interaction of  different types of  crosses (self-pollinated, within cytotype, between cytotype) and 
maternal cytotypes (diploids, tetraploids, hexaploids). 

#### Install packages #### 
> install.packages(“pscl”) 
> install.packages(“emmeans”) 

#### Add libraries #### 
> library(pscl) 
> library(emmeans) 

#### Load and view data from excel table #### 
> read_excel(“FileName.xlsx")  
> ObjectName <- read_excel(“FileName.xlsx") 
> View(ObjectName) 

 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  
##### Hurdle Analysis ##### 

#### Fit the hurdle model with negative binomial distribution, view model output #### 
>hurdle1 <- hurdle(NumberOfSeeds ~ TypeOfCross*MaternalCytotype, data = ObjectName, dist = 
“negbin”, zero.dist =  c(“binomial”)) 
> summary(hurdle1) 

#### Turkey post-hoc tests, back transformations and confidence intervals #### 
> emmeans(hurdle1,~TypeOfCross*MaternalCytotype, mode = c("zero"))) 
> cld(emmeans(hurdle1,~TypeOfCross*MaternalCytotype, mode = c("zero"))) 

> emmeans(hurdle1,~TypeOfCross*MaternalCytotype, mode = c("count"))) 
> cld(emmeans(hurdle1,~TypeOfCross*MaternalCytotype, mode = c("count"))) 
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Appendix 3C: Genbank alignment- ITS sequence data- Accession numbers 

Link to be included once sequences released to public on GenBank 

Sample ID.       Accession Number 
OF016_2n     OP782704 
OF076_2n     OP782705 
OF086_2n     OP782706 
OF091_2n     OP782707 
OF096_2n     OP782708 
OF099_2n     OP782709 
OF100_2n     OP782710 
OG001_2n    OP782711 
OG003_2n    OP782712 
OG008_2n    OP782713 
OJ002_2n      OP782714 
OJ004_2n     OP782715 
OJ006_2n     OP782716 
OL008_2n    OP782717 
OL009_2n    OP782718 
OL010_2n    OP782719 
OL011_2n    OP782720 
OL013_2n    OP782721 
OL014_2n    OP782722 
OL015_2n    OP782723 
OL017_2n    OP782724 
OM018_2n   OP782725 
OM020_2n   OP782726 
OM021_2n   OP782727 
OM024_2n   OP782728 
OS003_2n     OP782729 
OS010_2n     OP782730 
OS015_2n     OP782731 
OS00Q_2n    OP782732 
OX005_2n    OP782733 
OX006_2n    OP782734 
OX013_2n    OP782735 
OB003_4n     OP782736 
OB007_4n     OP782737 
OB014_4n     OP782738 
OB018_4n     OP782739 
OB020_4n     OP782740 
OD001_4n    OP782741 
OD009_4n    OP782742 
OD012_4n    OP782743 
OD017_4n    OP782744 
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OF056_4n     OP782745 
OF071_4n     OP782746 
OF101_4n      OP782747 
OF102_4n      OP782748 
OF103_4n      OP782749 
OH001_4n     OP782750 
OH002_4n     OP782751 
OH004_4n     OP782752 
OH005_4n     OP782753 
OI008_4n       OP782754 
OI011_4n       OP782755 
OI014_4n       OP782756 
OI015_4n       OP782757 
OJ014_4n       OP782758 
OK005_4n      OP782759 
OK013_4n      OP782760 
OK027_4n      OP782761 
OK032_4n      OP782762 
OL001_4n       OP782763 
OL004_4n       OP782764 
OS001_4n       OP782765 
OS010Q_4n    OP782766 
OW005b_4n    OP782767 
OW008_4n      OP782768 
OW00Qb_4n   OP782769 
OX007_4n       OP782770 
OX010_4n       OP782771 
OB006_6n       OP782773 
OD003_6n       OP782774 
OD004_6n       OP782775 
OD005_6n       OP782776 
OD006_6n       OP782777 
OI002_6n         OP782778 
OI007_6n         OP782779 
OL002_6n        OP782780 
OL003_6n        OP782781 
OL007_6n        OP782782 
ON014_6n       OP782783 
ON021_6n       OP782784 
ON025_6n       OP782785 
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Appendix 3D: Arlequin input codes 

Appendix 3D-1 Grouped by Site : DOI: 10.25403/UPresearchdata.21509226 
Appendix 3D-2 Grouped by Cytotype : DOI: 10.25403/UPresearchdata.21509226 
Alternative link: https://figshare.com/s/7648875559a814a5033f  

Appendix 3E: Summary of  data spread and sampling for crosses performed 

Number of  crosses with maternal cytotypes:

2x 4x 6x

Self-pollinated 102 112 77

Within-cytotype 93 109 81

Between-cytotype 238 277 51

Number of  crosses with paternal cytotypes:

2x 4x 5x 5x+ 6x

Self-pollinated 102 112 0 0 77

Within-cytotype 93 109 0 0 81

Between-cytotype 108 109 70 75 204

Legitimate cross-cytotype combinations:

Maternal 2x  Maternal 4x Maternal 6x

Paternal 2x 93 87 22

Paternal 4x 88 109 22

Paternal 5x 29 36 5

Paternal 5x+ 33 40 2

Paternal 6x 89 115 81

Number of  individuals used per cytotype:

2x 4x 5x 5x+ 6x

Maternal 12 53 0 0 20

Paternal 23 45 2 2 19
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Appendix 3F: Fasta alignment file of  all accessions, accession OF016 and OF101 raw sequence data, 
chromas files 

Appendix 3F: DOI: 10.25403/UPresearchdata.21509226 
Alternative link: https://figshare.com/s/7648875559a814a5033f  

File names: “Appendix3F_Oxalisobliquifolia_Alignment.fas” 
                   “Appendix3F_OF016__4x_AB101_Forward.ab1” 
                   “Appendix3F_OF101__4x_AB101_Reverse.ab1” 
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