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Abstract

The classification of molecules is of particular importance to the drug discovery process and several other

use cases. Data in this domain can be partitioned into structural and sequence/text data. Several tech-

niques such as deep learning are able to classify molecules and predict their functions using both types of

data. Molecular structure and encoded chemical information are sufficient to classify a characteristic of

a molecule. However, the use of a molecule’s structural information typically requires large amounts of

computational power with deep learning models that take a long time to train. In this study, we present

a different approach to molecule classification that addresses the limitations of other techniques. This

approach uses natural language processing techniques in the form of count vectorisation, term frequency-

inverse document frequency, word2vec and latent Dirichlet allocation to feature engineer molecular text

data. Through this approach we aim to make a robust and explainable embedding that is fast to im-

plement and solely dependent on chemical (text) data such as the sequence of a protein. Further, we

investigate the usefulness of these explainable embeddings for machine learning models, for representing

a corpus of data in vector space and for protein-protein interaction prediction using embedding similarity.

We apply the techniques on three different types of molecular text data: FASTA sequence data, Simpli-

fied Molecular Input Line Entry Specification data and Protein Data Bank data. We show that these

embeddings provide excellent performance for classification and protein-protein bind prediction.
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Chapter 1

Introduction

The drug discovery process is very complicated and consists of many stages. Machine learning (ML)

techniques have proven useful in several stages of the drug discovery and novel drug therapeutics creation

process. Although ML cannot replace all of the classical methods in drug discovery, they can improve

the process and assist in its completion. An example of this is molecular property prediction for drug

screening. One can filter out molecules that do not contain the desired properties using molecular property

prediction before further work is done on these molecules. This process can save time and money if it is

performed accurately.

Some of the most commonly used techniques in this space are natural language processing (NLP) and

deep learning (DL) [3, 24, 13, 41, 50, 56]. Current approaches use DL models and structural datasets

that can result in increased computational cost, compute time and overall complexity. We do not aim to

compete with these methods but rather to provide an explainable and computational effective alternative

that is easily reproducible.

In this study, we predict the biophysical and physiological properties of general molecules expressed in the

Simplified Molecular Input Line Entry Specification (SMILES) data type [55]. We then focus on proteins

by predicting the classification of proteins using their residue sequences and attempt to find the best

binding partner from a group of proteins given a query protein using extracted data from Protein Data

Bank (PDB) files [5]. We only make use of the available text data with no structural information or added

features. Any reference to text data will be the molecular text data obtained from the SMILES, FASTA

[60] and PDB files. This molecular text data simply represents specific chemical and biological properties

of a molecule, such as the amino acid residues that make up a protein molecule. We create embeddings

of this molecular text data using count vectorisation (CVec), term frequency-inverse document frequency

(TF-IDF), word2vec [35] and latent Dirichlet Allocation (LDA) [8] for both the molecular property

prediction tasks and the protein tasks.
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For the protein classification and molecular property prediction, we use three models in the form of a

support vector machine classifier (SVM) [9], naïve Bayes classifier (NBC) and a NN (NN) classifier. We

evaluate the usefulness and limitations of the embedding techniques and the ML classification techniques

applied to the molecular text data. The focus of this study is the feature engineered embeddings and

not the models. We assume default parameters [37] for all models unless otherwise stated. These models

can be improved through hyperparameter tuning in the form of grid search and other techniques, but

this is not the objective of this study. The objective of the study is to show how feature engineering can

improve the baseline (or perform equally for much less complexity). The Moleculenet [56] collection of

datasets is a benchmark created for evaluating ML techniques. We predict blood-brain barrier penetration

(permeability) and qualitative binary binding results for a set of inhibitors of human β-secretase 1 (BACE-

1). The molecules are represented as SMILES strings in these datasets.

We provide a special focus on large biomolecules consisting of chains and amino acid residues that are

commonly known as proteins. These biomolecules are vital in many biological activities with each protein

having a function. Proteins have properties that are uniquely determined by the chains of amino acids

in the protein and its structural composition. Whilst some proteins function individually; the majority

of proteins bind with other proteins in order to perform their biological functions. One way in which

novel therapeutics can be created is through blockers. Blockers are drug candidates that can bind with a

target protein and prevent that target protein from interacting with another protein. The prevention of

these interactions can result in prevention of a disease. The process of finding a drug candidate that will

bind to the target is called virtual screening. Due to the amount of data available it is possible to screen

known drug candidates for a given target using ML techniques. We demonstrate the performance of our

method on protein classification using FASTA data and dedicate a separate section to protein-protein

interaction prediction using the PDB data.

DL and in particular geometric DL models have shown promising or state-of-the-art results for protein-

protein interaction prediction [50, 25, 48]. However, there are limitations when applying this technique to

protein-protein interaction prediction and structural data in general. These approaches are either applied

to generated protein surface point clouds or directly to the atomic coordinate data obtained from the

PDB files and other structural file formats. DL approaches can result in complex models that require

large amounts of data and compute to train. If the right amount of data is not available these techniques

can overfit and will then not generalise well to unseen data. These techniques are often implemented

for point-level or atom-level prediction which usually results in a large class imbalance that can greatly

alter metrics. Thus, point-level and atom-level prediction models require a solution such as sampling to

correct the class imbalance. In general, there is a lack of molecule-level prediction techniques.

A molecule-level prediction would be sufficient for many classification tasks and even protein-protein

8



interaction prediction. We believe it is of practical benefit to implement a technique that can search a

database of proteins in order to find the binding partner of a given query input protein. The atom-level

binding site of the predicted binding partner protein or drug candidate can then be predicted through

current DL techniques - if it is required. This proposed method is practically useful on its own but can

also be enhanced by using atom-level or point-level techniques. Instead of replacing current techniques,

we aim to provide a solution to combat their weaknesses and improve their capabilities.

We do this by means of applying feature engineered embeddings - resulting from techniques such as latent

Dirichlet allocation (LDA) [8] - on the molecular text data. We believe that protein-protein interaction

prediction can be achieved using the feature engineered embeddings and a histogram approach based

on the Bhattacharyya distance. We believe that the information required to differentiate proteins and

molecules is captured in the embeddings alone. This should greatly decrease the computational effort

required to make molecular predictions and decrease the size of the files required for this task.

1.1 Research contributions

The dissertation contributes through the use of embeddings as a set of features for ML models, for

representing a corpus of data in vector space (embedding similarity) and then, the use of semantic

calculations on these representation to predict protein-protein interaction.

Four embedding techniques in the form of LDA, TF-IDF, CVec and word2vec were derived and defined for

molecular text data. These embeddings reduce the dimensionality of the data, transforming molecular text

data to a vector space, whilst keeping relative similarity between observations in their transformed state.

These techniques may be applied to a broad range of applications that require a vector representation

for data and show comparable results for the use cases we evaluated.

1.2 Outline of dissertation

Chapter 2 is a literature review specifically for techniques applied to biological data and molecular text

data. Chapter 3 provides information on the datasets used and a comprehensive background on the

types of data used. Chapter 4 describes the embedding techniques. A description of each technique is

provided with a theoretical and mathematical formalisation. The details of the experiments conducted

for evaluating the use of the embeddings as ML feature vectors are provided in Chapter 5. A description

of the data preprocessing, models used, the training and evaluation setup, the experiments run and all

of the results are provided. Chapter 6 provides details on the use of the embeddings for representing a

corpus of data in vector space (embedding similarity) and predicting protein-protein interaction. Chapter

7 is the conclusion.
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Chapter 2

Literature review

We focus on techniques applied specifically to biological data and molecular text data, in particular, for

the literature review. We provide separate literature reviews for all of the techniques and methods used

in later chapters. We have also provided a separate literature review for the data in Chapter 3 .

Current approaches mainly use DL and NLP [3, 24, 13, 41, 50, 56]. Most of these approaches use

either structural data or text-based molecular data. Structural approaches use structural information

and calculated features on the components of the molecule’s structure. Usually, geometric deep learning

models are used on the structural data [50, 17]. Molecular text approaches use data such as the SMILES

representation of a molecule or its sequence. Since this data is represented using text, it must first

be converted to a numerical format for ML models. Usually, this requires the molecular text data to

be embedded as a numerical vector. There are overviews of embedding techniques for semantic text

similarity measurement for classical NLP tasks [45]. Since the molecular text data we use is composed

of text, it is logical to propose NLP techniques to embed molecular data. Text embeddings have proven

useful for both SMILES data [56, 28, 23] and protein sequence data [22, 59]. Often the embedding of

the data can drastically increase or decrease the model performance for a specific task [45]. We propose

using four methods for embedding the atom and residue text information:

1. Count vectorisation (CVec)

2. Term frequency-inverse document frequency (TF-IDF)

3. LDA

4. word2vec

Recently self-supervised learning is being used to learn a semantic embedding of molecular text data

[28, 23]. Many of these self-supervised techniques are examples of word2vec [35], a NN model that

computes a continuous vector representation of words. The continuous vector of each word is chosen such
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that the cosine similarity between vectors indicates the actual semantic similarity between the words.

This approach based on text data has already been applied to molecular text data with a model trained

on SMILES data to learn embeddings of molecular substructures [23]. Bio-vectors (Biovec) [4] are word

vectors for n-grams specifically trained on biological sequences.

It is essential to note that LDA was initially proposed for population genetics [38] before its use in NLP.

LDA characterises each topic by a distribution over words, and documents are represented as random

mixtures over these latent topics [8]. LDA has also been used on general genetic data and sequence

data [58]. These use cases have been extended to protein prediction tasks such as protein function

prediction and protein folding [47]. LDA has been used in direct protein function prediction, and protein

categorisation [57, 44]. There is a stark similarity between genetic sequence data (genetic data) and

amino acid sequence data (protein data). More traditional approaches use LDA on biomedical text data

in the form of research papers for protein-protein interaction prediction [2]. These traditional approaches

are still very limited in that they require a large corpus of text and the availability of this data for

the respective individual protein. It should be noted that substructures of the molecule can be used or

thought of as words [53, 27, 23]. Using substructures of the molecules as words LDA has been applied to

PDB data for protein structure comparison [46]. LDA applied to PDB data tries to efficiently represent

protein structures and compare these representations based on similarity. Our approach may be helpful

for other techniques and benefit the SMILES dataset embeddings. It has been shown that support vector

machines work well in combination with LDA [10].

CVec, a technique that transforms text data into numerical data will also be used to feature engineer

an embedding. Text data can be vectorised by counting the occurrence of words in the document. For

a molecule x the count vector can be expressed as [x1, . . . , xr, . . . , xR], where R is the total number of

residues or text items in the molecule (vocabulary size) and xr is the number of times molecular text

item or residue r appears in molecule x. This basic embedding is a good baseline with which to compare.

Finally, we make use of the TF-IDF. The TF-IDF is a statistic measuring the importance of a word to a

document that is in a corpus [15]. It is one of the most widely used weighting schemes for text data. The

TF-IDF is the combination of two statistics. Term frequency is how often a term (residue or molecular

text item) appears in the document or molecule. Inverse document frequency is the amount of information

the term provides. This information measurement can be achieved by inspecting how common or rare a

term is in a document. The inverse document frequency can be obtained by logarithmically scaling the

total number of documents divided by the number of documents that contain the term.

Many other techniques use embeddings for classification tasks such as property prediction [28, 22, 56].

Property prediction makes use of a molecules structure to predict chemical attributes of the molecule.

ML models ranging from classical linear models to modern deep learning techniques have been applied
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to embeddings [56]. We, therefore, compare the embedding techniques using a SVM, NBC and a NN

classifier.
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Chapter 3

Data

In this chapter a detailed description of the data is given. A summary of the data is also provided in

Table 3.2. The data preprocessing is described in Chapter 5.

3.1 SMILES data

The simplified molecular-input line-entry system (SMILES) was created in the 1980s and has evolved over

the years. An open standard has since been created. SMILES uses short ASCII strings to represent the

structure of molecules. A specific instance of a structure should be called a SMILES string. An example

of a SMILES string with its skeletal formula is provided in Figure 3.1 for histidine. The SMILES datasets

are obtained from [56]. These datasets are built on public databases and were created as a benchmark

for ML techniques. Both of the SMILES datasets are property prediction tasks:

1. Blood-brain barrier penetration (BBBP) prediction.

2. Prediction of binding results for a set of inhibitors of human β-secretase 1 (BACE).

Figure 3.1: Skeletal formula and SMILES representation of the amino acid residue histidine [52]
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We provide a short description on some of the symbols and their meaning.

1. Atoms- an atoms chemical element is abbreviated and placed in square brackets. Brackets are

usually ommitted when they:

(a) are part of the "organic subset" of B, Br, C, Cl, I, F, N, O, P or S.

(b) do not have an assigned charge.

(c) have the implicit hydrogen count.

(d) are the normal isotopes.

(e) are not chiral centers.

2. Bonds- ". - = # $ : / \" are used to represent bonds.

(a) Single bonds may be represented by "-", but usually the "-" is ommitted.

(b) The characters: "=", "#", and "$" represent double, triple, and quadruple bonds.

(c) A "non-bond" is indicated with a ".".

(d) ":" indicates an aromatic or "one and a half" bond.

(e) "/" or "\" indicate single bonds that are adjacent to double bonds.

3. Rings- acyclic structures are made by breaking rings up at certain points. Numerical ring closure

labels are added to show connectivity between non-adjacent atoms.

4. Aromaticity- one of three forms can be used for aromatic rings:

(a) Kekulé from

(b) Using aromatic bond symbol

(c) Representing the constituent B, C, N, O, P and S in lower-case b, c, n, o, p and s.

5. Branching- parenthesis are used to represent branches of the molecule.

6. Stereochemistry (the study of the structural arrangement of atoms in molecules)- SMILES does not

require the specification of stereoisomers.

7. Isotopes- a number equal to the integer isotopic mass is placed before the atomic symbol to represent

isomers.
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3.2 FASTA data

The FASTA format is standard for protein sequence representation and is used almost universally [60].

The format is a representation of either amino acid (protein) sequences or nucleotide sequences in a

text-based format. For protein FASTA files single letters represent each amino acid. The FASTA format

also allows for comments and sequence names to precede the sequences themselves. FASTA is a simple

and easily parsible format that most text processing tools and programming languages can manipulate.

An example of an extracted protein sequence is provided for chains J and K of protein 5VTA in Figure

3.2. This protein sequence is similar to the FASTA format.

The FASTA dataset is used to make predictions on the classification of the protein and is retrieved from

the Research Collaboratory for Structural Bioinformatics (RCSB) Protein Data Bank (PDB). The dataset

is available on Kaggle.

Figure 3.2: An example of the extracted sequence of protein 5VTA with chains J and K only

Each file consists of:

1. Description line - begins with a ">" or ";", has a unique identifier of the sequence. This identifier

is sometimes accompanied by additional information.

2. Sequence- the actual sequence of the protein follows the description line.

The amino acid codes supported (22 amino acids and 3 special codes) and their respective amino acids

are provided in Table 3.1.
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Amino Acid 1-letter Code Amino Acid
A Alanine
B Aspartic acid (D) or Asparagine (N)
C Cysteine
D Aspartic acid
E Glutamic acid
F Phenylalanine
G Glycine
H Histidine
I Isoleucine
J Leucine (L) or Isoleucine (I)
K Lysine
L Leucine
M Methionine/Start codon
N Asparagine
O Pyrrolysine (rare)
P Proline
Q Glutamine
R Arginine
S Serine
T Threonine
U Selenocysteine (rare)
V Valine
W Tryptophan
Y Tyrosine
Z Glutamic acid (E) or Glutamine (Q)
X any
* translation stop
- gap of indeterminate length

Table 3.1: Table of amino acids with 1-letter codes

3.3 PDB data

The PDB file format is a textual file format describing the three-dimensional structures of molecules held

in the Protein Data Bank. The coordinates of each atom are determined by X-ray crystallography, NMR

spectroscopy, and cryo-electron microscopy. Usually each PDB file will consist of some text that provides

information on the molecule and structural information in the form of coordinates for each atom in the

protein. This structural information is accompanied by information on the atom type, the residue the

atom is part of, the chain the atom is a part of and the remoteness code of the atom (the remoteness

code indicates which atoms bind or attach to each other). Within this PDB file one can break a protein

down into its constituent components:

1. Chains- each protein will have one or more chains.

2. Residues- each chain will be made up of amino acid residues.

3. Atoms- each amino acid residue is made up of atoms.
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An example of a PDB file for protein 5VTA is provided in Figure 3.4. A corresponding visualisation of

the structure of 5VTA with the atoms of an asparagine residue highlighted in red are provided in Figure

3.3. The PDB dataset was obtained from Molecular Surface Interaction Fingerprints and is the same

dataset used by two deep learning techniques [50, 17, 17]. This dataset will be used to "search" or find

the binding partner of a given query protein.

Figure 3.3: Visualisation of protein 5VTA with the atoms of an asparagine residue highlighted in red.

Figure 3.4: The first 10 lines of the 5VTA proteins PDB file
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In order to use this data we will filter out the structural information and only use the textual data on

the residue type. The PDB data contains more information on the residue than the FASTA file format

which also contains information on the amino acid sequence. It is important to note that after filtering,

we will be left with the amino acid sequence. One could couple the sequence with the atom type, the

residue the atom is part of and the remoteness code of the atom. We will leave this for future work.

Once the data has been filtered and cleaned we can transform the textual data to a vector representation.

Embedding of molecular data is widely used for many applications such as the computation of similarity

measures or for tasks such as sequence alignment [20]. In particular, there are several encoding methods

for amino acid residues [30]. The best form of embedding will be investigated but some options can range

from n-grams and count vector representation to Biovectors and protein-vectors (ProtVec) [4].

Summary of Datasets
Data type Dataset Task Number of proteins

SMILES [56] BACE Classification 1513
BBBP Classification 2039

FASTA [60] Structural Protein Sequences (SPS) Classification 16368
PDB [50, 17] MASIF Dataset Protein search 10962

Table 3.2: Table of summary details of the datasets
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Chapter 4

Word embeddings

Molecules can have tremendous diversity which results in data with different dimensions. To address the

variability in the lengths of the molecular text data, we create embedding vectors of equal dimension for

every molecule. Word embeddings create a numerical vector of equal dimension that encodes the meaning

of the data such that similar text data are closer to each other in the vector space. This means that every

molecule will have a numerical vector representation of equal dimension with similar molecules having a

distance between their vector representations that is indicative of their similarity. We make use of CVec,

TF-IDF, LDA and word2vec to embed the molecular text data. Embedding techniques can be grouped

into global and local embeddings which we will discuss next [32, 51, 26].

4.1 Global embeddings

Global embeddings featurise the molecular text data for the molecule as a whole [26]. Often these

embeddings make use of counts or statistics to summarise the composition of a document or molecule at

the document or molecule level.

4.1.1 Count vectorisation

CVec is a technique that transforms text data into numerical data [54, 61]. A method of doing this is by

counting the occurrence of words in the document. For a molecule x, the count vector can be expressed

as [x1, . . . , xr, . . . , xR], where R is the total number of residues or text items in the molecule (vocabulary

size) and xr is the number of times molecular text item or residue r appears in molecule x. An n-gram

model can also be used for CVec [29]. An n-gram is a contiguous set of n words from a sample of text

data. The use of n-grams on molecular text data may be very beneficial as it can introduce relations

such as combining an atom with the amino acid residue it is a part of. Beyond this n-grams may also be
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beneficial when applied to amino acid residues alone.

Another parameter that may be useful to set is stop words. Stop words are usually common words for

the given language such as "a" and "the" in English. The specified stop words will be excluded and not

counted as they may be irrelevant or provide no information gain. Stop words may be used to remove

common elements that appear in all amino acid residues for the PDB dataset. An example of this is the

central alpha carbon atom, amino group (NH2), carboxyl group (COOH) and hydrogen atom that are

found in all amino acid residues [40]. It may be useful to specify the atoms making up these groups as

stop words so that one can focus on the other atom or group of atoms bonded to the alpha carbon known

as the variable group, side chain or R group. The variable group, side chain or R group refers to the

part of the amino acid that varies between different amino acids [40]. The amino acid core structure is

constant through all amino acid residues and remains the same. The R groups are different on all amino

acids and this is where variation occurs between amino acid residues. It may then be beneficial to focus

on the variation found in this variable region.

4.1.2 Term frequency-inverse document frequency

The TF-IDF is a statistic that measures the importance of a word or item to a document or file that is in

a corpus [15, 43, 34]. It is one of the most widely used weighting schemes for text data. The TF-IDF is

the combination of two statistics. These two statistics, term frequency and inverse document frequency,

can be defined in various ways.

4.1.2.1 Term frequency

Term frequency tf(term,molecule) is how many times a term (residue or molecular text item) appears

in the document or molecule [34]. A formula for term frequency can be given by:

tf(term,molecule) =
Count of occurrences of term in molecule

Number of terms in the molecule
.

A log normalised or logarithmically scaled version of the term frequency is given by:

logtf(term,molecule) =
log (1 + Count of occurrences of term in molecule)

Number of terms in the molecule
.

4.1.2.2 Inverse document frequency

Inverse document frequency is the amount of information the term provides [42]. This measurement of

information can be achieved by inspecting how common or rare a term is in a document. The inverse
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document frequency can be obtained by logarithmically scaling the total number of documents divided

by the number of documents that contain the term.

idf(term,M) = log

(
|M |

molecule ∈ M : term ∈ molecule

)
,

where:

• M is the corpus of molecules and

• |M | is the total number of molecules in the corpus

4.1.2.3 Term frequency-inverse document frequency

Using the definitions and equations for term frequency and inverse document frequency one can obtain

the formula of term frequency-inverse document frequency [15, 43, 34]:

TF -IDF (term,molecule,M) = tf(term,molecule) · idf(term,M). (4.1)

TF-IDF will filter out common terms since a lower document frequency of the term in the whole corpus

and a higher term frequency in the document will result in a higher TF-IDF value or weight. The TF-IDF

value can be used as a weighting factor that measures the importance of a word to a document or file.

For molecular text data one can again use atom or residue text information as the words or terms of the

document. Each molecule’s file data will be a document and the full dataset of molecules files’ will be

the corpus.

4.1.2.4 Deriving term frequency-inverse document frequency as a Fisher kernel

It can be shown that TF-IDF can be related to the mathematical form of the Fisher kernel based on

the Dirichlet compound multinomial (DCM) distribution [15]. To show this relationship we first need to

understand the DCM distribution with regards to a "bag of words" representation of the proteins.

For each molecule x, a vector containing the number of occurrences of each residue or molecular text

item in the molecule is made [x1, . . . , xr, . . . , xR], where R is the total number of residues or text items

in the molecule (vocabulary size) and xr is the number of times molecular text item or residue r appears

in molecule x. The DCM distribution is given by:

p (x) =
n!∏R

r=1 xr!

Γ (s)

Γ (s+ n)

R∏
r=1

Γ (xr + αr)

Γ (αr)
, (4.2)

where the length of the molecules sequence or the length of the molecular text data is n =
∑

r xr and

s =
∑

r αr is the sum of the DCM parameters. Since a corpus will contain molecules of different lengths
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and the DCM is a distribution over count vectors of the same length n; we need a family of DCMs with

the same parameter values αr to model a corpus. For a set of molecules M we have to consider the

number of times a residue r appears for each molecule m. We add an m subscript to account for this

so that xm is a vector containing the number of occurrences of each residue or molecular text item for

the molecule m. Thus, xm = [xm1, . . . , xmr, . . . , xmR], where R is the total number of residues or text

items in the molecule m (vocabulary size) and xmr is the number of times molecular text item or residue

r appears in molecule xm, for every molecule m in set M . Thus, the maximum likelihood parameter αr

can be approximated by:

αr =

∑
m∈M I (xmr ≥ 1)∑

m∈M Ψ(s+ nm)−Ψ(s)
,

where, xmr is the count of residue or molecular text item r in molecule m [15]. nm is the length of

molecule m and Ψ() is the digamma function. For a typical molecule Ψ(s+ nm)−Ψ(s) ≈ 1 since s and

nm will be in the hundreds or low thousands. Thus,

αr ≈ 1

|M |
∑
m∈M

I (xmr ≥ 1) , (4.3)

where, |M | is the number of molecules in the collection of molecules M .

Thus, using equation (4.1) we can obtain a specific version of TF-IDF given by:

TF − IDF (xr) = log (xr + 1) · log
(

|M |∑
m∈M I (xmr > 0)

)
.

Given the probability distribution in equation (4.2) the Fisher kernel measures the similarity of x and y

with respect to this distribution.

k (x,y) = s (x)Hs (y) ,

where, s (x) = d
dαr

log (p (x)) and H is the Hessian matrix of the second partial derivatives of l (x) =

log (p (x)) with respect to the parameters αr. The kernel function k (x,y) is invariant to changes in the

parameterisation of p (x). Since H is usually approximated by the identity matrix, the Fisher kernel will
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differ for different parameterisations in this case. The log-likelihood of the DCM distribution is:

l (x) = log (p (x)) ,

log (p (x)) = log

(
n!∏R

r=1 xr!

Γ (s)

Γ (s+ n)

R∏
r=1

Γ (xr + αr)

Γ (αr)

)
,

l (x) = log (n!)− log

(
R∏

r=1

xr!

)
+ log (Γ (s))− log (Γ (s+ n)) + log (Γ (xr + αr))− log (Γ (αr)) .

The partial derivative of the log-likelihood function with respect to αr is:

dl (x)

dαr
=

d

dαr
(n!)− d

dαr

(
R∏

r=1

xr!

)
+

d

dαr
(Γ (s))− d

dαr
(Γ (s+ n)) (4.4)

+
d

dαr
(Γ (xr + αr))−

d

dαr
(Γ (αr)) ,

dl (x)

dαr
=

d

dαr
(Γ (s))− d

dαr
(Γ (s+ n)) +

d

dαr
(Γ (xr + αr))−

d

dαr
(Γ (αr)) ,

dl (x)

dαr
= Ψ(s)−Ψ(s+ n) + Ψ (xr + αr)−Ψ(αr) . (4.5)

since, Ψ(x) = d
dx (Γ (x)) [15].

• For x ≥ 1: Ψ(x) can be approximated as (x− 0.5), with the error tending to 0 as x tends to

infinity.

• For x ≪ 1: Ψ(x) can be approximated to −1
x +Ψ(1), with Ψ(1) ≈ −0.577, with the error tending

to 0 as x tends to 0 from above.

Equation (4.4) can be approximated as:

dl (x)

dαr
= Ψ(s)−Ψ(s+ n) + I (xr ≥ 1) [(xr − 0.5) +

1

αr
−Ψ(1)].

Thus, we have derived TF-IDF as a Fisher kernel:

• The term Ψ(s) − Ψ(s+ n) is the same for all residues and molecular text data and has little

influence on the score.

• The term (xr − 0.5) is the log normalised or logarithmically scaled term frequency.

• From equation (4.3) the term αr ≈ 1
|M |

∑
m∈M I (xmr ≥ 1) which is the inverse document frequency.

4.1.3 Latent Dirichlet Allocation

We explain LDA for molecular text data. LDA is usually explained with NLP terminology, for example,

a dataset is usually called a corpus [8]. Throughout this section, a molecule is equivalent to a document
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and a residue or molecular text item is equivalent to a word. LDA for a corpus of molecules M can be

described as a generative statistical topic model where;

• each molecule is a mixture of corpus-wide topics,

• each topic is a distribution over residues, and

• each residue is drawn from one of the topics

In order to discover the topics in a corpus it is easiest to reverse engineer the problem. First we need

to make the molecules in the corpus. To do this, we can use a generative process for each molecule x in

the corpus M with |M | the number of molecules in the corpus.

• Let {1 . . . P} be the vocabulary of molecular text items. A molecular text item is an item from the

vocabulary of size P defined as the basic unit that makes up the data.

• A molecular text item will be a P -vectored x such that xp has value 1 and xu is 0 for all p ̸= u.

• A molecule x is a combination of N molecular text items denoted by x = [x1, . . . , xN ], where xn is

the nth molecular text item in the molecule.

• A corpus M is a collection of |M | molecules denoted as M = {x1, . . . ,x|M|}.

For each molecule x in a corpus M a generative process can be assumed [8, 38] to infer the latent

variables. This process generates the latent variables from probability distributions with parameters

equal to the known variables:

1. Draw a topic-molecule distribution θ from a Dirchlet distribution. θ ∽ Dir (α) with α a vector of

dimension equal to the number of topics K.

2. For each of the N molecular text items xn:

(a) Generate a topic zn ∽ multinomial (θ).

(b) Generate a molecular text item xn ∽ p (xn|zn, β) a multinomial probability conditioned on the

topic zn.

The probability density function for θ is given by:

p (θ|α) =
Γ
(∑k

i=1 αi

)
∏k

i=1 Γ (αi)
θα1−1
1 . . . θαk−1

k ,

where the parameter α is a K-vector with components αi > 0, and where Γ (x) is the Gamma function.

Thus the joint distribution of a topic mixture θ with a set of N topics z = [z1, . . . , zN ] and a set of N
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molecular text items is given by:

p (θ, z,x|α, β) = p (θ|α)
N∏

n=1

p (zn|θ) p (xn|zn, β) .

Integrating over θ:

p (z,x|α, β) =
∫

p (θ|α)
N∏

n=1

p (zn|θ) p (xn|zn, β) dθ.

Then summing over z:

p (x|α, β) =
∫

p (θ|α)
∑
z

N∏
n=1

p (zn|θ) p (xn|zn, β) dθ. (4.6)

Now applying the distributive law in reverse a sum of products in (4.5) can be changed to a product of

sums:

∑
z

N∏
n=1

p (zn|θ) p (xn|zn, β) ,

=
∑
z1

· · ·
∑
zN

(p (zn|θ) p (xn|zn, β) . . . p (zn|θ) p (xn|zn, β)) ,

=

(∑
z1

p (zn|θ) p (xn|zn, β)

)
. . .

(∑
zN

p (zn|θ) p (xn|zn, β)

)
,

=

N∏
n=1

∑
zn

p (zn|θ) p (xn|zn, β) . (4.7)

Substituting (4.6) into (4.5) gives the marginal distribution of a document:

p (x|α, β) =
∫

p (θ|α)

(
N∏

n=1

∑
zn

p (zn|θ) p (xn|zn, β)

)
dθ.

Taking the product of the marginal probabilities for each molecule one obtains the probability of a corpus:

p (M|α, β) =
∫

p (θ|α)

(
N∏

n=1

∑
zn

p (zn|θ) p (xn|zn, β)

)
dθ.

Using plate notation we provide an intuitive explanation of LDA [1]. Here the boxes are referred to

as "plates". The outer plate represents molecules, while the inner plate represents the repeated positions

of the molecular text items which are associated with a choice of topic and molecular text item.
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Figure 4.1: Plate notation for the LDA model

In the plate notation provided in Figure 4.1:

• |M | is the number of molecules in the corpus M

• N is the number of molecular text items in a given molecule

• α is a corpus-level parameter of the Dirichlet prior on the per-molecule topic distributions

• β is a corpus-level parameter of the Dirichlet prior on the per-topic molecular text item distributions

• θ is the topic distribution for a given molecule

• zmn is the topic for the n-th molecular text item in molecule m

• xmn is the specific molecular text item

The only observed variable is x- hence it is coloured grey in the plate notation in Figure 4.1, Figure 4.2

and Figure 4.3. All of the other variables are latent variables.
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Figure 4.2: Plate notation for the LDA model illustrating the exploratory and predictive abilities of LDA

Using the view provided in Figure 4.2- the molecular text-topic distributions are a matrix with topics as

rows and columns defined by molecular text items. The variable θ can be viewed as a matrix of topic-

molecule distributions, where the rows would be individual molecules and the columns would be topics.

Thus, each row of θ is a distribution over topics and each row of the molecular text-topic distributions is a

distribution over molecular topics [8, 12] as can be seen in Figure 4.2. In this way the molecular text-topic

distribution matrix and topic-molecule distribution matrix can be viewed as the decomposition of the

original molecule-molecular text item matrix that represents the corpus of documents being modeled.

Thus, LDA can also be thought of as a dimensionality reduction technique [8, 11] where the corpus is

represented as an embedding in a lower dimensional form using the topic-molecule distribution matrix.

The advantage of this approach is that the interpretable topics should create a semantic embedding of

the molecules. Using the manifold hypothesis which states that: "High dimensional spaces tend to lie in

the vicinity of underlying lower dimensional spaces (manifolds)" [16] it is clear that LDA can provide us

with a manifold representation of the corpus. An manifold is a topological space
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Figure 4.3: Plate notation for the LDA model illustrating the manifold hypothesis applied to LDA

Thus, one can perform a similarity measure on the semantic structure (molecular text-topic distribution

matrix or manifolds) and index the query document using semantic indexing on the topic-molecule dis-

tribution matrix (Figure 4.3). Under the LDA model a molecule can be associated with more than one

topic [8]. Thus, the topic probability vector for a molecule will be of dimension K where K is the number

of topics. For a molecule x the topic probability vector can be represented as:

θx = [p (t1) , . . . , p (tK)],

where p (tk) is the probability of the molecule being associated with topic k. The LDA embedding will

reduce the dimension of the molecular text items in a molecule to a vector with dimension equal to the

number of topics chosen. This molecule-topic matrix will be a semantic embedding for the corpus of

molecules.

Further information on the variables:

• α is a corpus-level parameter sampled once in the generation of the corpus

• β is a corpus-level parameter sampled once in the generation of the corpus
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• θm is a molecule-level variable that is sampled once per molecule

• zmn is a molecular text item-level variable and is sampled once for each molecular text item in each

molecule

• xmn is a molecular text item-level variable and is sampled once for each molecular text item in each

molecule

Initial results saw a decrease in performance for more than 100 topics. For this reason we cap the number

of topics to 100. We use 10, 20, 50 and 100 topics for our LDA embeddings.

4.2 Local embeddings

Local embeddings take the local features of a molecular text item into account [26]. Often local embed-

dings will be created with the use of a window that summarises the local neighborhood of a molecular

text item. In this way a local descriptor is created at the molecular text item or word level instead of a

global embedding that is often at a document or molecule level.

4.2.1 Word2vec

Word2vec uses a group of related NN models to compute a continuous vector representation of words

[35]. The continuous vector of each word is chosen such that the cosine similarity between vectors is an

indicator of the true semantic similarity between the words. In this way a corpus of documents can be

converted into a vector space with each word in the corpus having a unique embedding vector in this

feature space. The NN models are shallow networks with only two layers. Word2vec can either make

use of continuous bag-of-words (CBOW) or continuous skip-gram model architectures [35]. The CBOW

model takes into account the local window of words for the current word to create its embedding. In

this way word2vec takes local features into account to create a local feature embedding vector for a word

instead of a global one. The skip-gram model does the opposite of the CBOW model. It takes the current

word and uses it to predict the local window of words. The word2vec model can be applied and trained

on a corpus of molecules that are comprised of molecular text items.

It is often helpful to subsample words that have a frequency above a certain threshold. Subsampling

frequent words such as "a" and "the" allows the model to focus on words that occur less frequently and

have more information. The dimension of the embedding vector is directly related to the quality of the

embedding. Thus it is beneficial to increase the dimension of the embedding vector until the performance

metrics stop improving or the cost of increasing the dimension is too high [35]. Lastly, the size of the

context window can also be adjusted to improve the quality of the embeddings [35]. The context window

is the number of words around the target word that are used by the model to make predictions for
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the target words representation [35]. Initial results saw a decrease in performance for embeddings with

dimension less than 100 or greater than 300. Other word2vec models also use embeddings of similar

dimension [23]. For these reason we use word2vec embeddings of size 100, 200 and 300 for the FASTA

datasets. For the SMILES datasets we use the pre-trained Mol2vec model [23].

4.3 Probabilistic distributional semantic methods for protein-protein

interaction

Once a vector embedding is learnt for a corpus of proteins we can perform semantic calculations on the

vector in Euclidean space. We can find the semantic similarity of two protein embedding vectors with the

use of information retrieval (IR). IR can be defined as the task of finding a protein from a corpus that best

matches a query [19]. It is clear that the process of IR is easy to apply to the domain of protein-protein

interaction prediction. For protein-protein interaction the IR task can be defined as finding a protein

from a corpus that is the best binding partner for the query protein. To do this we need to make use of

a similarity measure in the form of the Bhattacharyya distance for the embedding vectors.

4.3.0.1 Bhattacharyya distance

The Bhattacharyya distance is a measure of the similarity between pairs of features in the vector space

model [7]. It makes use of the Bhattacharyya coefficient which can be used to quantify the amount of

overlap between two proabability distributions or two normalised vectors. We use the Bhattacharyya

distance between two embedding vectors u and v of dimension N can be defined as:

bd (u, v) = − ln (bc (u, v)) .

where, bc (u, v) is the Bhattacharyya coefficient which is defined as:

bc (u, v) =

N∑
i=1

√
uivi.

0 ≤ bc ≤ 1, since ui ≤ 1 and vi ≤ 1 ∀i ∈ 1, . . . , N,

∴ 0 ≤ bd ≤ ∞.

The variables ui and vi are less than or equal to 1 since they are components of normalised vectors u

and v. These vectors must be normalised since the input vectors for the Bhattacharyya coefficient need
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to represent probabilities. It should be noted that the Bhattacharyya coefficient is not a metric since it

does not satisfy the triangle inequality [7].

Since a molecule can be expressed as text it makes sense to apply embedding techniques to the data. This

allows us to compare molecules of all shapes and sizes by using an embedding vector of equal dimension.

These embedding techniques capture the components of the molecule such that similar molecules will

have vector representations that are closer to one another in the vector space. This means that machine

learning models will be able to use these embedding vectors as features. If similar molecules have similar

embedding vectors machine learning models will be able to classify a given property of these molecules

using the embedding vector.
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Chapter 5

Experiments

We run 11 experiments to compare the combination of embeddings (as features) with NN, naïve Bayes

classifier (NBC) and support vector machine classifier (SVM) models. First, we determine the optimal

feature dimensions, for the LDA embeddings, for each model individually in experiments 1-3. In ex-

periments 4-6 we find the optimal dimension for the word2vec embeddings, for each model individually

on the FASTA sequences. We then find the best embedding technique for each dataset for the SVM in

experiment 7. We find the best embedding technique for each dataset for the NBC in experiment 8. We

do the same for each dataset for the NN in experiment 9. We compare all of the models in experiment

10 by using the best embedding for each dataset regarding each model to compare the models. Lastly,

we compare our approach to the Moleculenet [56] benchmark in experiment 11 using a "scaffold" split1.

Unless stated otherwise, we use 80% of the data to train the models and 20% to test them. We set the

random state to 0 for the training and test splits for all of the experiments. Due to the large combination

of models and datasets we did not perform hyper-parameter tuning. We tried to use the simplest archi-

tecture with default parameters for each model. LDA embeddings of dimension 10, 20, 50 and 100 are

considered. Embedding dimensions of 100, 200 and 300 are considered for word2vec embeddings. Higher

dimensions are not considered due to initial experiments showing a a decrease in performance for larger

dimensions and compute limitations for both LDA and word2vec embeddings. Future work should be

conducted on hyper-parameter tuning and larger embedding dimensions. All experiments and coding has

been done in Python (Python 3.9). The experiments were each run 50 times on a Lenovo machine using

Ubuntu 20.04 with an Intel i7-8565U processor, 2GB NVIDIA GeForce MX230 and 12 GB of RAM. All

of the code is available here2. In this chapter we provide:

1. An overview of the data preprocessing
1A scaffold split attempts to separate molecules according to their structure such that structurally different molecules

will be in different subsets [6].
2https://github.com/Claudmj/Feature-engineered-embeddings-for-machine-learning-on-molecular-data
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2. An overview of SVMs

3. An overview of NBCs

4. The NN architecture

5. Tables summarising each experiment with its respective results

5.1 Data preprocessing

We provide an overview of the data preprocessing for each data type. A full description of all of the data

is given in Chapter 3. For every dataset we first:

• Remove any duplicates

• Remove null values

5.1.1 SMILES data

For the SMILES datasets we make use of the rdkit3[31] and mol2vec4[23] Python packages. Using these

two packages we can divide each molecule into substructures using a specified fixed radius. Each sub-

structure is usually the group of atoms, within the specified radius, closest to a given heavy atom. Each

substructure is then encoded using a Morgan fingerprint [14, 18]. A Morgan fingerprint is a bit vector

representation of a molecule [14, 18]. The presence or absence of a substructure is represented by each

bit. In this way the substructures will be words represented by their unique Morgan fingerprint that com-

pose a molecular sentence. Morgan fingerprints can be used to measure the chemical similarity between

molecules[18] and have properties that benefit our approach. Each molecular sentence will be a molecule

and these sentences can now be fed into the embedding techniques to get a vector representation of the

molecule.

5.1.2 FASTA (SPS) data

The SPS dataset is dataset of extracted FASTA sequences. For this dataset we first join the labels to

the protein sequences using the raw datasets obtained from Kaggle5. Once this is completed we filter the

molecules for proteins only. We then filter the resulting set for sequences that are classified as one of the

top two categories with the most samples. We do this to produce a binary classification problem in order

to simplify our model architectures. We insert a space between every amino acid residue (letter) in the

sequence and remove the letter "X" since it can be any amino acid residue.
3https://www.rdkit.org/
4https://github.com/samoturk/mol2vec
5https://www.kaggle.com/datasets/shahir/protein-data-set?resource=download&select=pdb_data_seq.csv
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5.1.3 PDB data

For the PDB dataset we filter out only the text data. The amino acid residues are taken out of each

PDB file and saved in a text file.

5.2 Support vector machine

Support vector machines (SVM) are classification techniques which [9] map training data points such that

the distance between classes is maximised. The SVM classifier then finds a hyperplane that distinctly

separates the training data points for optimal classification. New data points are mapped into this space

for prediction. The new data points get the predicted class of the side onto which they are mapped. SVMs

can handle non-linear classification with the use of the kernel trick. They are memory efficient, versatile

and effective in high-dimensional spaces. We make use of the scikit-learn6[37] implementation of an SVM

classifier with a radial basis function. For all other parameters the default scikit-learn parameters were

used.

5.3 Naïve Bayes classifier

An NBC is a family of probabilistic classifiers based on Bayes’ theorem. They are examples of a sim-

ple Bayesian network. All features or embeddings are assumed to be independent and are thought to

contribute equally to the outcome. We use the scikit-learn MultinomialNB7[37] classifier for the CVec

embeddings and the GaussianNB for the other embeddings. We use a multinomial NBC for the CVec

embeddings since these are the frequency with which terms occur. The other embeddings are continu-

ous; thus, a Gaussian NBC is used with the assumption that the embeddings of each class are normally

distributed.

5.4 Neural network architecture

We train a simple NN classifier for each embedding type on each dataset using the PyTorch Python library

[36]. If the embedding has dimension N then the classifier has an input layer of dimension N , a hidden

layer of dimension N/2 and an output layer with the final predictions. An illustration of the architecture

is provided in Figure 5.1. We use batch normalisation and rectified linear unit (ReLU) activation between

the input layer and hidden layer. We use sigmoid activation for the predictions to ensure the outputs are

between 0 and 1 for the binary classification tasks. Each model is trained for 50 epochs with a batch size

of 200. The epoch with the smallest loss is used for the evaluation metrics.
6https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
7https://scikit-learn.org/stable/modules/naive_bayes.html
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Figure 5.1: NN classifier architecture

In the NN architecture provided in Figure 5.1:

• BN1D represents a batch normalisation layer.

• ReLU shows that rectified linear unit activation is applied.

• Sigmoid shows that the element wise sigmoid function is applied.

• N represents the dimension or size of the input. This will usually be the dimension of the embedding.

5.5 Experiment results

Each experiment was run 50 times. The mean and standard deviation of the accuracy, area under the

receiver operating characteristic curve (AUC) and F1 score are calculated for each experiment across the

50 runs.

5.5.1 Experiment 1: Optimal LDA embedding dimension for SVM

We need to find the optimal feature dimension for the LDA embeddings for the SVM. We compare feature

dimensions of 10, 20, 50 and 100 for the LDA embeddings and take the dimension that provides the best

result in terms of accuracy, area under the receiver operating characteristic curve (AUC) and F1 score.
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Table 5.1: Experiment 1: Optimal LDA embedding dimension for SVM

Data type Dataset n Accuracy ± (SD)% AUC ± (SD)% F1 ± (SD)%

Smiles

BACE

10 63.99 ± 3.16 63.20 ± 3.34 54.68 ± 8.09
20 66.33 ± 3.31 65.80 ± 3.33 60.47 ± 5.50
50 69.83 ± 3.18 69.42 ± 3.20 65.64 ± 4.40
100 72.13 ± 3.09 71.82 ± 3.19 68.94 ± 4.52

BBBP

10 80.95 ± 1.65 64.59 ± 4.33 88.48 ± 0.98
20 82.59 ± 1.70 67.95 ± 3.71 89.39 ± 1.06
50 84.24 ± 1.41 70.87 ± 2.49 90.36 ± 0.88
100 85.60 ± 1.32 73.35 ± 2.35 91.16 ± 0.81

FASTA SPS

10 69.44 ± 0.70 69.39 ± 0.78 66.01 ± 1.08
20 71.74 ± 0.71 71.63 ± 0.74 68.32 ± 0.90
50 72.86 ± 0.55 72.59 ± 0.57 69.14 ± 0.69
100 72.53 ± 0.62 72.19 ± 0.63 68.60 ± 0.75

Figure 5.2: Experiment 1: Boxplots comparing the accuracy of different LDA embedding dimensions on
the different datasets for the SVM

It is clear from Table 5.1 and Figure 5.2 that the LDA embeddings of lower dimension lose too much

information across all of the datasets for the SVM. For the SVM model:

• The best LDA embedding dimension for the BACE dataset was 100 with an average accuracy of

72.13%, an average AUC of 71.82% and an average F1 score of 68.94%.

• The best LDA embedding dimension for the BBBP dataset was 100 with an average accuracy of

85.60%, an average AUC of 73.35% and an average F1 score of 91.16%.
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• The best LDA embedding dimension for the SPS dataset was 50 with an average accuracy of 72.86%,

an average AUC of 72.59% and an average F1 score of 69.14%.

5.5.2 Experiment 2: Optimal LDA embedding dimension for NBC

We need to find the optimal feature dimension for the LDA embeddings for the NBC. We compare feature

dimensions of 10, 20, 50 and 100 for the LDA embeddings and take the dimension that provides the best

result in terms of accuracy, AUC and F1 score.

Table 5.2: Experiment 2: Optimal LDA embedding dimension for NBC

Data type Dataset n Accuracy ± (SD)% AUC ± (SD)% F1 ± (SD)%

Smiles

BACE

10 56.14 ± 5.28 56.37 ± 4.78 51.32 ± 20.40
20 56.21 ± 4.79 57.24 ± 4.17 59.74 ± 14.27
50 59.08 ± 4.44 60.28 ± 4.19 64.31 ± 12.61
100 59.85 ± 3.25 61.35 ± 3.13 68.07 ± 5.65

BBBP

10 55.88 ± 19.69 62.99 ± 7.12 57.94 ± 27.87
20 47.78 ± 14.96 62.44 ± 5.70 48.28 ± 20.56
50 40.56 ± 5.77 60.61 ± 3.53 38.78 ± 9.26
100 44.76 ± 5.09 62.52 ± 3.38 46.09 ± 7.52

FASTA SPS

10 64.09 ± 1.05 66.09 ± 1.07 65.81 ± 1.35
20 63.88 ± 1.18 66.33 ± 0.98 66.64 ± 1.06
50 62.17 ± 1.69 65.43 ± 1.29 66.90 ± 0.72
100 63.34 ± 1.33 65.94 ± 1.03 66.51 ± 0.81

Figure 5.3: Experiment 2: Boxplots comparing the accuracy of different LDA embedding dimensions on
the different datasets for the NBC
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It is clear from Table 5.2 and Figure 5.3 that the LDA embeddings of lower dimension lose too much

information for the BACE dataset for the NBC. The lower dimensional embeddings seem to capture the

most information for the BBBP and SPS datasets. Furthermore, the NBC model performance is much

lower than that of the SVM in Table 5.1. For the NBC model:

• The best LDA embedding dimension for the BACE dataset was 100 with an average accuracy of

59.85%, an average AUC of 61.35% and an average F1 score of 68.07%.

• The best LDA embedding dimension for the BBBP dataset was 10 with an average accuracy of

55.88%, an average AUC of 62.9% and an average F1 score of 57.94%.

• The best LDA embedding dimension for the SPS dataset was 10 with an average accuracy of 64.09%,

an average AUC of 66.09% and an average F1 score of 65.81%.

5.5.3 Experiment 3: Optimal LDA embedding dimension for NN

We need to find the optimal feature dimension for the LDA embeddings for the NN. We compare feature

dimensions of 10, 20, 50 and 100 for the LDA embeddings and take the dimension that provides the best

result in terms of accuracy, AUC and F1 score.

Table 5.3: Experiment 3: Optimal LDA embedding dimension for NN

Data type Dataset n Accuracy ± (SD)% AUC ± (SD)% F1 ± (SD)%

Smiles

BACE

10 58.01 ± 4.91 61.60 ± 5.79 42.61 ± 17.54
20 63.52 ± 4.93 67.56 ± 5.60 54.31 ± 11.28
50 68.62 ± 3.48 75.63 ± 3.07 64.64 ± 4.72
100 72.96 ± 2.91 80.38 ± 2.87 69.98 ± 3.64

BBBP

10 68.05 ± 15.22 64.56 ± 16.79 74.93 ± 15.67
20 71.86 ± 15.26 71.64 ± 16.07 77.72 ± 15.71
50 73.98 ± 16.24 74.53 ± 16.62 78.54 ± 16.39
100 79.39 ± 15.54 80.90 ± 15.76 83.35 ± 15.48

FASTA SPS

10 66.45 ± 1.00 73.10 ± 0.94 61.28 ± 2.18
20 69.06 ± 0.72 76.34 ± 0.58 64.76 ± 1.28
50 71.05 ± 0.57 78.64 ± 0.49 66.57 ± 0.97
100 71.37 ± 0.65 78.98 ± 0.56 66.81 ± 0.98
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Figure 5.4: Experiment 3: Boxplots comparing the accuracy of different LDA embedding dimensions on
the different datasets for the NN

It is clear from Table 5.3 and Figure 5.4 that the LDA embeddings of lower dimension lose too much

information across all of the datasets for the NN. For the NN model:

• The best LDA embedding dimension for the BACE dataset was 100 with an average accuracy of

72.96%, an average AUC of 80.38% and an average F1 score of 69.98%.

• The best LDA embedding dimension for the BBBP dataset was 100 with an average accuracy of

79.39%, an average AUC of 80.90% and an average F1 score of 83.35%.

• The best LDA embedding dimension for the SPS dataset was 50 with an average accuracy of 71.37%,

an average AUC of 78.98% and an average F1 score of 66.81%.

5.5.4 Experiment 4: Optimal word2vec embedding dimension for SVM

We need to find the optimal feature dimension for the word2vec embeddings for the SVM. We compare

feature dimensions of 100, 200 and 300 for the word2vec embeddings and take the dimension that provides

the best metric for the FASTA dataset.
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Table 5.4: Experiment 4: Optimal word2vec embedding dimension for SVM

Data type Dataset n Accuracy ± (SD)% AUC ± (SD)% F1 ± (SD)%

FASTA SPS
100 70.92 ± 0.15 69.86 ± 0.17 64.81 ± 0.24
200 70.91 ± 0.14 69.85 ± 0.14 64.80 ± 0.19
300 70.90 ± 0.17 69.84 ± 0.17 64.81 ± 0.23

Figure 5.5: Experiment 4: Boxplots comparing the accuracy of different word2vec embedding dimensions
on the SPS Fasta dataset for the SVM

The word2vec embeddings of lower dimension contain enough information and perform slightly better

than those of higher dimension for the SPS dataset and the SVM model Table 5.4 and Figure 5.5. The best

word2vec embedding dimension for the SPS dataset and SVM model was 100 with an average accuracy

of 70.92%, an average AUC of 69.86% and an average F1 score of 64.81%.

5.5.5 Experiment 5: Optimal word2vec embedding dimension for NBC

We need to find the optimal feature dimension for the word2vec embeddings for the NBC. We compare

feature dimensions of 100, 200 and 300 for the word2vec embeddings and take the dimension that provides

the best metric for the FASTA dataset.
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Table 5.5: Experiment 5: Optimal word2vec embedding dimension for NBC

Data type Dataset n Accuracy ± (SD)% AUC ± (SD)% F1 ± (SD)%

FASTA SPS
100 65.49 ± 1.58 65.12 ± 1.76 60.85 ± 2.42
200 65.40 ± 1.22 65.20 ± 1.40 61.27 ± 2.16
300 65.37 ± 1.23 65.35 ± 1.42 61.80 ± 1.97

Figure 5.6: Experiment 5: Boxplots comparing the accuracy of different word2vec embedding dimensions
on the SPS Fasta dataset for the NBC

The word2vec embeddings of lower dimension contain enough information and perform slightly better

(in terms of accuracy) than those of higher dimension for the SPS dataset and the NBC Table 5.5 and

Figure 5.6. The best word2vec embedding dimension for the SPS dataset and NBC was 100 with an

average accuracy of 65.49%, an average AUC of 65.12% and an average F1 score of 60.85%.

5.5.6 Experiment 6: Optimal word2vec embedding dimension for NN

We need to find the optimal feature dimension for the word2vec embeddings for the NN. We compare

feature dimensions of 100, 200 and 300 for the word2vec embeddings and take the dimension that provides

the best metric for the FASTA dataset.
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Table 5.6: Experiment 6: Optimal word2vec embedding dimension for NN

Data type Dataset n Accuracy ± (SD)% AUC ± (SD)% F1 ± (SD)%

FASTA SPS
100 71.08 ± 0.52 78.82 ± 0.37 65.78 ± 1.58
200 71.40 ± 0.44 79.17 ± 0.39 65.70 ± 1.37
300 71.27 ± 0.49 79.13 ± 0.45 66.20 ± 1.66

Figure 5.7: Experiment 6: Boxplots comparing the accuracy of different word2vec embedding dimensions
on the SPS Fasta dataset for the NN

The word2vec embeddings of dimension 200 contain enough information and perform slightly better

than those of dimension 100 or 200 for the SPS dataset and the NN Table 5.4 and Figure 5.7. The best

word2vec embedding dimension for the SPS dataset and NN model was 200 with an average accuracy of

71.40%, an average AUC of 79.17% and an average F1 score of 65.70%.

5.5.7 Experiment 7: Finding the best embedding for the SVM

We compare the different embeddings in terms of accuracy, AUC and F1 score for the SVM. We use

the optimal embedding dimension for the word2vec and LDA embeddings that achieved the best results

in previous experiments. We use LDA embeddings of dimension 50 for the SPS dataset and dimension

100 for the BACE and BBBP dataset. We use word2vec dimensions of 100 for the SPS dataset and for

the BACE and BBBP datasets we use a pre-trained model [23] that outputs word2vec embeddings of

dimension 300.
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Table 5.7: Experiment 7: Finding the best embedding for the SVM

Data type Dataset Technique Accuracy ± (SD)% AUC ± (SD)% F1 ± (SD)%

Smiles

BACE

CVec 81.85 ± 1.12×10−14 81.62 ± 0.00 80.14 ± 2.24×10−14

TF-IDF 85.48 ± 1.12×10−14 85.41 ± 1.12×10−14 84.62 ± 1.12×10−14

LDA 72.13 ± 3.09 71.82 ± 3.19 68.94 ± 4.52
word2vec 66.67 ± 1.12×10−14 66.01 ± 1.12×10−14 60.08 ± 1.12×10−14

BBBP

CVec 87.75 ± 2.24×10−14 76.21 ± 1.12×10−14 92.49 ± 1.12×10−14

TF-IDF 91.18 ± 1.12×10−14 82.39 ± 0.00 94.55 ± 0.00
LDA 85.60 ± 1.32 73.35 ± 2.35 91.16 ± 0.81
word2vec 80.64 ± 0.00 56.91 ± 0.00 88.89 ± 0.00

FASTA SPS

CVec 74.01 ± 1.12×10−14 73.05 ± 0.00 68.66 ± 0.00
TF-IDF 73.18 ± 0.00 72.68± 1.12×10−14 68.91 ± 2.24×10−14

LDA 72.86 ± 0.55 72.59 ± 0.57 69.14 ± 0.69
word2vec 70.92 ± 0.15 69.86 ± 0.17 64.81 ± 0.24

Figure 5.8: Experiment 7: Boxplots comparing the accuracy of different embedding techniques on the
different datasets for the SVM

The word2vec and LDA embeddings are not the best embedding technique for any dataset for the

SVM according to Table 5.7 and Figure 5.8. It appears that the best embeddings for the SVM are TF-IDF

for the BACE and BBBP datasets (85.48% and 91.18% average accuracy) and CVec for the SPS dataset

(74.01% average accuracy). It is interesting to note that TF-IDF seems to perform better for SMILES

datasets whilst CVec performs better for the FASTA datasets for the SVM.

43



5.5.8 Experiment 8: Finding the best embedding for the NBC

We compare the different embeddings in terms of accuracy, AUC and F1 score for the NBC. We use

the optimal embedding dimension for the word2vec and LDA embeddings, and compare it with count

vectorisation (CVec) and TF-IDF. We use LDA embeddings of dimension 100 for the BACE dataset,

dimension 10 for the SPS dataset and BBBP dataset. We use word2vec dimensions of 100 for the SPS

dataset and for the BACE and BBBP datasets we use a pre-trained model [23] that outputs word2vec

embeddings of dimension 300.

Table 5.8: Experiment 8: Finding the best embedding for the NBC

Data type Dataset Technique Accuracy ± (SD)% AUC ± (SD)% F1 ± (SD)%

Smiles

BACE

CVec 76.24 ± 1.12×10−14 76.11 ± 1.12×10−14 74.65 ± 1.12×10−14

TF-IDF 67.66 ± 0.00 68.85 ± 1.12×10−14 73.22 ± 1.12×10−14

LDA 59.85 ± 3.25 61.35 ± 3.13 68.07 ± 5.65
word2vec 68.65 ± 1.12×10−14 68.39 ± 1.12×10−14 65.70 ± 1.12×10−14

BBBP

CVec 82.84 ± 0.00 75.85 ± 0.00 88.92 ± 1.12×10−14

TF-IDF 65.44 ± 0.00 71.06 ± 1.12×10−14 73.35 ± 1.12×10−14

LDA 55.88 ± 19.69 62.99 ± 7.12 57.94 ± 27.87
word2vec 75.25 ± 1.12×10−14 61.42 ± 0.00 84.44 ± 1.12×10−14

FASTA SPS

CVec 66.16± 1.12×10−14 66.99 ± 0.00 64.98 ± 0.00
TF-IDF 45.57 ± 0.00 51.94± 1.12×10−14 60.70 ± 0.00
LDA 64.09 ± 1.05 66.09 ± 1.07 65.81 ± 1.35
word2vec 65.49 ± 1.58 65.12 ± 1.76 60.85 ± 2.42
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Figure 5.9: Experiment 8: Boxplots comparing the accuracy of different embedding techniques on the
different datasets for the NBC

CVec is the best embedding technique for the NBC across all datasets as seen in Table 5.8 and Figure

5.9. CVec embeddings achieve 76.24% average accuracy on the BACE dataset, 82.84% average accuracy

on the BBBP dataset and 66.16% average accuracy on the SPS dataset.

5.5.9 Experiment 9: Finding the best embedding for the NN

We compare the different embeddings in terms of accuracy, AUC and F1 score for the NN. We use

the optimal embedding dimension for the word2vec and LDA embeddings. We use LDA embeddings of

dimension 100 for the BACE dataset, BBBP dataset and SPS dataset. We use word2vec dimensions of

200 for the SPS dataset and for the BACE and BBBP datasets we use a pre-trained model [23] that

outputs word2vec embeddings of dimension 300.
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Table 5.9: Experiment 9: Finding the best embedding for the NN

Data type Dataset Technique Accuracy ± (SD)% AUC ± (SD)% F1 ± (SD)%

Smiles

BACE

CVec 88.25 ± 1.23 93.61 ± 0.48 87.61 ± 1.51
TF-IDF 83.38 ± 1.30 91.02 ± 0.73 82.31 ± 1.40
LDA 72.96 ± 2.91 80.38 ± 2.87 69.98 ± 3.64
word2vec 69.57 ± 0.91 76.20 ± 0.73 67.98 ± 2.09

BBBP

CVec 88.57 ± 11.63 90.67 ± 11.63 91.02 ± 11.65
TF-IDF 84.48 ± 13.76 86.20 ± 13.85 87.37 ± 13.81
LDA 79.39 ± 15.54 80.90 ± 15.76 83.35 ± 15.48
word2vec 59.57 ± 13.44 55.78 ± 13.42 65.42 ± 13.43

FASTA SPS

CVec 73.45 ± 0.58 81.03 ± 0.36 68.50 ± 0.99
TF-IDF 72.32 ± 0.49 79.75 ± 0.27 67.41 ± 1.03
LDA 71.37 ± 0.65 78.98 ± 0.56 66.81 ± 0.98
word2vec 71.40 ± 0.44 79.17 ± 0.39 65.70 ± 1.37

Figure 5.10: Experiment 9: Boxplots comparing the accuracy of different embedding techniques on the
different datasets for the NN

CVec is the best embedding technique for the NN across all datasets as seen in Table 5.9 and Figure

5.10. CVec embeddings achieve 88.25% average accuracy on the BACE dataset, 88.57% average accuracy

on the BBBP dataset and 73.45% average accuracy on the SPS dataset.
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5.5.10 Experiment 10: Finding the best embedding and model combination

for each dataset

We compare the best embedding and model combination for each dataset in terms of accuracy, AUC and

F1 score for the NN. On the BACE dataset we use:

• TF-IDF embeddings with the SVM model (85.48% average accuracy Table 5.7).

• CVec embeddings with the NBC model (76.24% average accuracy Table 5.8).

• CVec embeddings with the NN model (88.25% average accuracy Table 5.9).

On the BBBP dataset we use:

• TF-IDF embeddings with the SVM model (91.18% average accuracy Table 5.7).

• CVec embeddings with the NBC model (82.84.24% average accuracy Table 5.8).

• CVec embeddings with the NN model (88.57% average accuracy Table 5.9).

On the SPS dataset we use:

• CVec embeddings with the SVM model (74.01% average accuracy Table 5.7).

• CVec embeddings with the NBC model (66.16% average accuracy Table 5.8).

• CVec embeddings with the NN model (73.45% average accuracy Table 5.9).

Table 5.10: Experiment 10: Finding the best embedding and model combination for each dataset

Dataset Embedding Model Accuracy ± (SD)% AUC ± (SD)% F1 ± (SD)%

BACE
TF-IDF SVM 85.48 ± 1.12×10−14 85.41 ± 1.12×10−14 84.62 ± 1.12×10−14

CVec NBC 76.24 ± 1.12×10−14 76.11 ± 1.12×10−14 74.65 ± 1.12×10−14

CVec NN 88.25 ± 1.23 93.61 ± 0.48 87.61 ± 1.51

BBBP
TF-IDF SVM 91.18 ± 1.12×10−14 82.39 ± 0.00 94.55 ± 0.00
CVec NBC 82.84 ± 0.00 75.85 ± 0.00 88.92 ± 1.12×10−14

CVec NN 88.57 ± 11.63 90.67 ± 11.63 91.02 ± 11.65

SPS
CVec SVM 74.01 ± 1.12×10−14 73.05 ± 0.00 68.66 ± 0.00
CVec NBC 66.16 ± 1.12×10−14 66.99 ± 0.00 64.98 ± 0.00
CVec NN 73.45 ± 0.58 81.03 ± 0.36 68.50 ± 0.99
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Figure 5.11: Experiment 10: Boxplots comparing the accuracy of the best model and embedding combi-
nation on each of the different datasets

CVec and the NN model were the best combination for the BACE dataset (average accuracy 88.25%

Table 5.10), TF-IDF and a SVM were the best for the BBBP dataset (average accuracy 91.18% Table

5.10) and CVec and a SVM were the best for the SPS dataset (average accuracy 74.01% Table 5.10).

These results are visualised in Figure 5.11).

5.5.11 Experiment 11: Comparison with Moleculenet

We compare the best embedding and model combination for the BACE and BBBP datasets, in terms of

AUC, to the best model presented by Moleculenet [56]. Our best model and embedding combination for

both of these datasets is CVec with a NN model. We make use of a "scaffold" split from the deepchem

8 [39] package to compare to the Moleculenet results. A scaffold split is more "difficult" than a random

split as it splits the molecules according to the the core structure or scaffold of a molecule resulting in

structurally different training and test sets [39].
8https://deepchem.readthedocs.io/en/latest/api_reference/moleculenet.html
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Table 5.11: Experiment 11: Comparison with Moleculenet

Dataset Method AUC %

BBBP Moleculenet 72.90
Ours (CVec and NN) 82.23

BACE Moleculenet 86.70
Ours (CVec and NN) 82.75

Our method scores a higher AUC (82.23% compared to 72.90% Table 5.11) for the BBBP dataset and a

slightly lower AUC (82.75% compared to 86.70% Table 5.11) for the BACE dataset Table 5.11. We only

use the SMILES strings, yet our method scores higher or only slightly lower than alternative approaches

that use more features.

5.5.12 Conclusion

It should be noted that there is little to no variation between the 50 runs for CVec and TF-IDF embeddings

Table 5.8 and Table 5.7. This is because these embeddings will be the same between runs due to the

deterministic nature of CVec and TF-IDF. There is little variation in the classification model as well

since we use the same random state for the data split between runs. There is greater variation between

the runs that use LDA and word2vec embeddings since these embeddings require the training of a new

LDA or word2vec model for each run. This new embedding model will differ slightly between runs and

thus result in variation of the embeddings between runs. This coupled with the variation in the trained

classifiers results in greater variation than for the CVec and TF-IDF embedding runs Table 5.8 and Table

5.7. In particular, there is greater variation for the LDA embeddings and the NBC and NN model for the

BBBP dataset as can be seen in Table 5.2 and Table 5.3. We hypothesise that this is due to the large

vocabulary size of 2115 which is almost equal to the number of data points for the BBBP dataset and

the general sensitivity of NNs to the initialisation of weights. It seems that this dataset is particularly

difficult to separate between the two classes when using LDA embeddings. Future work is required to

investigate the variability between runs.

CVec and TF-IDF were the best embedding techniques - that we evaluated Table 5.10. CVec was the

overall best embedding for all of the models evaluated on all of the datasets. The normalisation in the

TF-IDF embeddings lost some of the required information and thus achieved slightly lower metrics than

CVec. All of the global embedding techniques performed better than the local embedding techniques,

such as word2vec. Overall our approach achieved better metrics for the BBBP dataset and achieved a

slightly lower AUC for the BACE dataset from the Moleculenet benchmark [56].
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Chapter 6

Word embeddings applied to

protein-protein interaction prediction

(Embeddings similarity)

In this chapter, we investigate the use of word embeddings for protein-protein interaction prediction,

which we believe to be a novel approach. We make use of the LDA embeddings on the extracted protein

sequences from the PDB dataset. We can run a hypothesis test since we have the ground truth for

known protein-protein interactions. Before we make protein-protein interaction predictions we test if the

average Bhattacharyya distance between the embeddings of proteins involved in a known protein-protein

interaction are less than the average distances between those that are not. To do this we make use of an

urn model [21].

6.1 Hypothesis test

In this section we describe our research approach and then summarise our results. We test the following

null and alternative hypothesis:

• Null hypothesis: the average Bhattacharyya distance between the embeddings of proteins involved

in a known protein-protein interaction are greater or equal to those that are not.

• Alternative hypothesis: the average Bhattacharyya distance between the embeddings of proteins

involved in a known protein-protein interaction are less than those that are not.
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6.1.1 Research approach

In order to test the null hypothesis:

1. Extract the protein sequences from the 10962 PDB files.

2. Create LDA embeddings for each protein sequence.

3. Group the sequences into ligands1 and receptors 2.

4. Calculate the Bhattacharyya distance betweeen every receptor protein sequence embedding and

every ligand protein sequence embedding (5481× 5481 distances).

5. Calculate the mean distance between all of the embeddings that are part of a known protein-protein

interaction. This is the hypothesised value.

6. We randomly sample 5481 distances from all of the distances 1000000 times and calculate the mean

of each sample.

7. Finally, we calculate a p-value by counting the number of sample means that are less than the

average distance between the embeddings that are part of known protein-protein interaction.

Figure 6.1: Histogram illustrating the sample mean distances with a red line indicating the known protein-
protein interaction mean distance and a black line indicating the unknown protein-protein interaction
mean distance

1A molecule that forms a complex with a receiving molecule or receptor.
2A special type of protein that functions by forming a complex with a ligand
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6.1.2 Results

Since the p-value is 0 we reject the null hypothesis that the average difference between the embeddings of

proteins involved in a known protein-protein interaction are greater or equal to those that are not. The

mean distance between known interactions and all interactions is visualised in Figure 6.1. It is clear that

the distance between embeddings of proteins that are in a known protein-protein interaction are less than

those that are not. This means that the LDA embeddings are able to capture the interactions between

proteins as semantic similarity using the protein sequences alone. We must highlight the relationship

between p-values and large sample sizes. A larger sample size results in a smaller p-value [33]. The

larger the sample size, the greater the accuracy of the statistical test, and the more likely it is to find

a significant difference [49]. This is because statistical significance is dependent on both the effect size

and the sample size. However, Cohen’s d is 0.63 for this test indicating that the distances between the

known interactions differs by 0.63 standard deviations to the distance between the unknown interactions.

Cohen’s d measures the standardised difference between the two sample means which is 0.63 standard

deviations in Figure 6.1. Thus, we can differentiate between the two groups and make predictions on

protein-protein interaction using the LDA embeddings.

6.2 Protein-protein interaction prediction

Since, we can differentiate between the known protein-protein interactions and unknown protein-protein

interactions we can make predictions on protein-protein interaction using the LDA embeddings. We

define the method we use for protein-protein interaction prediction and summarise the results.

6.2.1 Heuristic method

The Bhattacharyya distance between protein embeddings can also be used to predict the interactions in

an inventive way. To predict whether or not two proteins interact we:

1. Calculate the distance between every receptor protein sequence embedding and every ligand protein

sequence embedding.

2. For a given receptor:

(a) Count how many ligands have a larger distance than the query ligand.

(b) Take this count and divide it by the total number of ligands to get an interaction probability

or P (given receptor interacting with query ligand).

We only label known protein-protein interactions as interacting and label everything else as non-interacting.

We must state that this labelling may not be strictly correct. In reality, some receptors may interact
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with a ligand other than the known interacting ligand, but we use this labelling strategy to compare our

results to other methods that use the same dataset [50]. Our method gives a probability of interaction

for which a threshold can be chosen for binary prediction. The method is a simple heuristic and, as such,

will not be influenced by incorrect labels as a trained model would. We evaluate the method by making

a prediction on the known interacting ligand for each receptor as well as an unknown (dummy) ligand.

Our method manages to achieve 83% AUC which is slightly better than the dMaSIF approach with and

AUC of 82% [50].

6.2.2 Results

A simple heuristic is able to differentiate between known protein-protein interactions and unknown

protein-protein interactions using protein sequences only Table 6.1. We achieve a high probability of

interaction between certain receptors and several ligands. We note that this is more realistic than a

simple binary classification which may not be completely correct. This means that this probabilistic

prediction can be used to discover potential interactions that might not be known. We leave this for

future work.

Table 6.1: Protein-protein interaction prediction

Method AUC %
Ours 83
dMaSIF 82
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Chapter 7

Conclusion

In this dissertation, we derived latent embeddings for molecular text data and evaluated the use of these

embeddings as features and for representing a corpus of data in vector space. CVec, TF-IDF, LDA and

word2vec embeddings provide a useful transformation of molecular text data to a vector space. These

embeddings reduce the dimensionality of the data whilst keeping relative similarity between observations

in their transformed state. In this way, a small amount of data can be used to understand a dataset. We

evaluated the use of these embeddings as a set of features for ML models, for representing a corpus of data

in vector space (embedding similarity) and lastly, we used semantic calculations on this representation

to predict protein-protein interaction.

7.1 Use as an ML feature vector

For use as feature vectors for ML models, CVec and TF-IDF were the best embedding techniques - that

we evaluated. CVec was the overall best embedding for all of the models evaluated on all of the datasets.

The normalisation in the TF-IDF embeddings lost some of the required information and thus achieved

slightly lower metrics than CVec. It should be noted that there is little to no variation between the 50

runs for CVec and TF-IDF embeddings. This is because these embeddings will be the same between runs

due to the deterministic nature of CVec and TF-IDF. There is little variation in the classification model

as well since we use the same random state for the data split between runs. There is greater variation

between the runs that use LDA and word2vec embeddings since these embeddings require the training

of a new LDA or word2vec model for each run. This new embedding model will differ slightly between

runs and thus result in variation of the embeddings between runs. This coupled with the variation in

the trained classifiers results in greater variation than for the CVec and TF-IDF embedding runs. In

particular, there is greater variation for the LDA embeddings and the NBC and NN model for the BBBP

dataset as can be seen in Table 5.2 and Table 5.3. We hypothesise that this is due to the large vocabulary
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size of 2115 which is almost equal to the number of data points for the BBBP dataset and the general

sensitivity of NNs to the initialisation of weights. It seems that this dataset is particularly difficult to

separate between the two classes when using LDA embeddings. Future work is required to investigate the

variability between runs. The LDA embeddings achieved lower metrics than the TF-IDF embeddings.

The topic-molecule distribution of the LDA embeddings did not capture enough relative information to

be used as a feature vector for ML models. The embedding of the local features used by word2vec did

not benefit classification performance. All of the global embedding techniques performed better than the

local embedding techniques, such as word2vec, for use as an ML feature vector. Overall our approach

achieved better metrics for the BBBP dataset and achieved a slightly lower AUC for the BACE dataset

from the Moleculenet benchmark [56]. We must note that our methods achieve similar or better results

whilst being computationally efficient1.

7.2 Representing a corpus of data in vector space

LDA embeddings proved useful as a representation of the corpus in vector space. We rejected the null

hypothesis that the average distance between the embeddings of proteins involved in a known protein-

protein interaction is greater or equal to those that are not in a known protein-protein interaction. This

means that LDA embeddings between known interacting proteins were more similar, in vector, space

than those that were not in a known interaction. However, this approach has a limitation due to the

relationship between p-values and the large sample size. Despite this limitation, the distances between the

known interactions differ by 0.63 standard deviations from the distance between the unknown interactions.

7.3 Word embeddings applied to protein-protein interaction pre-

diction (Embeddings similarity

We showed that a heuristic can be used on the distances between the embeddings to make predictions on

protein-protein interaction. This simple technique was able to achieve a higher AUC value than current

DL approaches on the given dataset. Our heuristic is computationally efficient and requires much less

compute than other approaches. The method does not require any training data and, as such, will not

be influenced by incorrect labels or a class imbalance as a trained model would. This is particularly

important when in reality, some receptors may interact with a ligand other than the known interacting

ligand. Thus it is better to provide a probabilistic prediction instead of a binary one. Further, a threshold

can be chosen to get binary predictions for a specific task. However, this method is limited because LDA
1It took less than 10 minutes to train and run predictions for the longest single run on the largest dataset on the machine

described in Chapter 5.
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is a topic model and several proteins may have topics in common with many other proteins. This will

hinder the results and these proteins may be predicted to bind with extremely low probability. A heuristic

that takes the size of topics into account may provide better results for these cases.

7.4 Future work

The use of a learnt embedding for machine learning tasks warrants further investigation. A learnt em-

bedding can be integrated into the architecture of the classifier or regressor and may improve prediction

results by providing an embedding that is learnt for the specific task. We believe that further work should

be done, particularly on global embeddings. Since global embeddings outperformed local embeddings for

all tasks. We believe that the LDA embedding could have potential use for explainability due to its

effectiveness in corpus representation. Heuristics that take into account the size of topics should also be

investigated for protein-protein interaction prediction. Overall, these embeddings have proven useful for

the specific tasks evaluated and may apply to other problems not evaluated here.
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