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Abstract. For (finitary) deductive systems, we formulate a signature-
independent abstraction of the weak excluded middle law (WEML),
which strengthens the existing general notion of an inconsistency lemma
(IL). Of special interest is the case where a quasivariety K algebraizes a
deductive system `. We prove that, in this case, if ` has a WEML (in
the general sense) then every relatively subdirectly irreducible member
of K has a greatest proper K–congruence; the converse holds if ` has
an inconsistency lemma. The result extends, in a suitable form, to all
protoalgebraic logics. A super-intuitionistic logic possesses a WEML
iff it extends KC. We characterize the IL and the WEML for normal
modal logics and for relevance logics. A normal extension of S4 has
a global consequence relation with a WEML iff it extends S4.2, while
every axiomatic extension of Rt with an IL has a WEML.

1. Introduction

Jankov [23] proved in 1968 that the ‘weak excluded middle law’ ¬p ∨ ¬¬p
axiomatizes the strongest super-intuitionistic logic having the same positive
fragment as the intuitionistic propositional calculus. In the literature, this
extension is called KC, and it has several algebraic characterizations. Ac-
cording to one of them, a variety K of Heyting algebras models a logic that
proves ¬p ∨ ¬¬p iff every subdirectly irreducible member of K has a greatest
proper congruence; cf. Gabbay [19, Thm. 19(a), p. 67].

The main result of the present paper generalizes this characterization of
KC to a signature-independent framework. It is in the spirit of the ‘bridge
theorems’ of abstract algebraic logic [13, 17] that correlate, for instance, syn-
tactic interpolation or definability properties with model-theoretic amalga-
mation or epimorphism-surjectivity demands [2, 14, 34], and deduction-like
theorems with congruence extensibility properties [4, 6, 13, 37].
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Any such generalization must assume some properties of negation, in a
suitably abstract form. A familiar feature of intuitionistic and classical
propositional logic is that

(1) Γ ∪ {α} is inconsistent iff Γ ` ¬α.

In the classical case, there is a stronger variant, which adds to (1) that

(2) Γ ∪ {¬α} is inconsistent iff Γ ` α.

Signature-independent abstractions of (1) and its conjunction with (2)
were formulated in [38], for finitary (but otherwise arbitrary) deductive sys-
tems `, yielding general notions of an inconsistency lemma and a classical
inconsistency lemma. It emerged that, when some variety K algebraizes `,
then an inconsistency lemma amounts to the demand that the finitely gener-
ated congruences of members of K should form dually pseudo-complemented
join semilattices, whereas a classical inconsistency lemma signifies that K
is filtral and its nontrivial members lack trivial subalgebras [38] (see [7] for
the case of quasivarieties).

Subsequently, Lávička and Přenosil [27] observed that classical inconsis-
tency lemmas can also be construed as abstract ‘excluded middle laws’.
Trading ` α ∨ ¬α in for the more flexible assertion

(3) whenever Γ ∪ {α} ` β and Γ ∪ {¬α} ` β, then Γ ` β,

their main notion conjoins abstractions of (1) and (3). It is proved in [27]
that, when ` is algebraized by a variety K, then ` has an excluded middle
law of the abstract kind iff it has an (ordinary) inconsistency lemma and K
is semisimple.

Of course, the analogue of (3) for ` ¬α ∨ ¬¬α requires that

(4) whenever Γ ∪ {¬α} ` β and Γ ∪ {¬¬α} ` β, then Γ ` β.

Our general definition of a weak excluded middle law (WEML) will be a
signature-independent abstraction of the conjunction of (1) and (4).

Suppose again (for simplicity) that ` is algebraized by a variety K. In
this setting, our main result states that ` has a WEML iff it has an inconsis-
tency lemma and every subdirectly irreducible member of K has a greatest
proper congruence (Theorem 8.5). That characterization is invariant un-
der category equivalence (Corollary 8.7), so the definition of a WEML is
appropriately stable.

It follows from Theorem 8.5 that a super-intuitionistic logic has a WEML
(in the general sense) iff it proves ¬p ∨ ¬¬p. When we restrict Theorem 8.5
to the global consequence relations of normal extensions L of S4, the ‘con-
vergence axiom’ 32p→ 23p emerges as the counterpart of ¬p ∨ ¬¬p, i.e.,
the systems of this kind with a WEML are just those for which L extends
S4.2 (the least modal companion of KC). In the context of relevance log-
ics, we show that an axiomatic extension of Rt with an inconsistency lemma
must have a WEML, and we characterize the extensions for which this is
the case.
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Actually, Theorem 8.5 is formulated for quasivarieties, not only varieties,
and we prove it in the still wider framework of protoalgebraic logics (Theo-
rem 6.3). The core of its proof is an argument concerning the structure of
algebraic lattices and their semilattices of compact elements (Theorem 6.2).

2. Preliminaries

From now on, ` denotes a fixed but arbitrary (sentential) deductive sys-
tem, i.e., a substitution-invariant finitary consequence relation over formulas
in some algebraic language, where the language comprises a signature and
a fixed infinite set of variables. (Finitarity is the demand that, whenever
Γ ` α, then Γ′ ` α for some finite Γ′ ⊆ Γ.) Among other standard abbrevi-
ations, we signify ‘Γ ` α for all α ∈ Π’ by Γ ` Π, and ‘Γ ` Π and Π ` Γ’ by
Γ a` Π.

Algebras are assumed to have the type of `, unless we say otherwise. The
universe of an algebra A is denoted as A, and is always assumed non-empty.

We assume a familiarity with the basic theory of deductive systems and
matrix semantics, cf. [13, 17, 40]. If 〈A, F 〉 is a matrix model of `, then
F is called a ` –filter of the algebra A. Because the set of ` –filters of A
is closed under arbitrary intersections, it becomes a complete lattice when
ordered by set inclusion. This lattice is algebraic (as ` is finitary), so its
compact elements are just the finitely generated ` –filters of A. In A, the
` –filter generated by a subset Y is denoted as FgA` Y , while F +AG stands
for the join of two ` –filters F and G.

Recall that ` –theories are just ` –filters of the absolutely free algebra
Fm generated by the variables of `, and substitutions are endomorphisms
of Fm .

Let v1, v2, v3, . . . be a denumerable sequence of distinct variables of `.
We sometimes abbreviate v1 as v. For each n ∈ N+ := {1, 2, 3, . . . }, we set

Fm(n) = {β ∈ Fm : the variables occurring in β are among v1, . . . , vn}.

If ξ ∈ Fm(n) and A is an algebra, with a1, . . . , an ∈ A, then ξA(a1, . . . , an)
denotes h(ξ), where h : Fm→ A is any homomorphism such that h(vi) = ai
for i = 1, . . . , n. If Ξ ⊆ Fm(n), then

ΞA(a1, . . . , an) abbreviates {ξA(a1, . . . , an) : ξ ∈ Ξ}.

We omit the superscripts in ξA, ΞA, +A and FgA` when A is Fm.

3. Inconsistency Lemmas

A set Ξ of formulas of ` is said to be inconsistent in ` if Ξ ` α for all
α ∈ Fm.

Let Ψn ⊆ Fm(n) for all n ∈ N+. Following [38], we call {Ψn : n ∈ N+}
an IL-sequence for ` provided that, whenever Γ∪{α1, . . . , αn} ⊆ Fm (with
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n ∈ N+), then

Γ ∪ {α1, . . . , αn} is inconsistent in ` iff Γ ` Ψn(α1, . . . , αn).

In this case, for all n ∈ N+ and α1, . . . , αn ∈ Fm,

Ψn(α1, . . . , αn) ∪ {α1, . . . , αn} is inconsistent in `,

Ψn(α1, . . . , αn) a` Ψn(αf1, . . . , αfn) for any permutation f of 1, . . . , n,

and if {Φn : n ∈ N+} is another IL-sequence for `, then Ψn a` Φn for all
n. 1

An IL-sequence {Ψn : n ∈ N+} for ` is said to be elementary if it consists
of finite sets Ψn.

Definition 3.1. ([38]) We say that ` has an inconsistency lemma—briefly
an IL—if it has an elementary IL-sequence. 2

When ` has an IL-sequence {Ψn : n ∈ N+}, then it has an elementary
IL-sequence {Ψ′n : n ∈ N+} iff Fm is compact in the lattice of ` –theories.
In this case, every algebra A has a greatest compact ` –filter, namely A,
and we can arrange that Ψ′n ⊆ Ψn for all n ∈ N+ (see [38, Sec. 3]).

Example 3.2. Intuitionistic and classical propositional logic have a com-
mon IL, which takes the form

Γ ∪ {α1, . . . , αn} is inconsistent iff Γ ` ¬(α1 ∧ . . . ∧ αn),

whereas

{{v1 → (v2 → ( . . . → (vn → ⊥) . . . ))} : n ∈ N+}
is an IL-sequence for the →,⊥ fragment of intuitionistic logic. The latter
example illustrates the need to cater separately for different values of n in
the general definition of an IL-sequence.

Definition 3.3. ([3, 11, 12]) We say that ` is protoalgebraic if there exists
Λ ⊆ Fm(2) such that ` Λ(v1, v1) and {v1} ∪Λ(v1, v2) ` v2. (In this case, Λ
can be chosen finite, because ` is finitary.)

Numerous additional characterizations of protoalgebraicity are known, e.g.,
see [13, 17]. If ` is protoalgebraic and v1 0 v2, then Λ 6= ∅, so no algebra
has an empty ` –filter. The process of filter generation in algebras is very
complicated in general, but it improves as follows in the protoalgebraic case:

Lemma 3.4. ([17, Prop. 6.12]) Let ` be protoalgebraic, and let A be an
algebra, with Y ∪ {a} ⊆ A.

Then a ∈ FgA` Y iff there exist Γ ∪ {α} ⊆ Fm and a homomorphism

h : Fm → A such that Γ ` α and h[Γ] ⊆ Y ∪ FgA` ∅ and h(α) = a.

1 It can be shown that if ` has an IL-sequence and Ξ is inconsistent in `, then so is
s[Ξ], for every substitution s, but we shall not need to rely on this observation.

2 This notion is referred to as a ‘finitary global IL’ in [27] (where deductive systems are
not assumed to be finitary); the two uses of the word ‘finitary’ are unrelated.
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Theorem 3.5. ([38, Thm. 3.6]) Let {Ψn : n ∈ N+} be an elementary IL-
sequence for a protoalgebraic deductive system `. Let F be a ` –filter of an
algebra A, and let a1, . . . , an ∈ A, where n ∈ N+. Then

A = F +A FgA` {a1, . . . , an} iff ΨA
n (a1, . . . , an) ⊆ F .

Here, Lemma 3.4 is used in proving the forward implication.

4. Dually Pseudo-Complemented Semilattices

Let 〈S; +〉 be a join semilattice with 0, i.e., an idempotent commutative
semigroup that has a least element with respect to the order

x ≤ y ⇐⇒ x+ y = y.

For a, b ∈ S, there is no guarantee that a and b have a greatest lower bound
in 〈S;≤〉, but we abbreviate

c ≤ a & c ≤ b & (∀x ∈ S)((x ≤ a & x ≤ b) =⇒ x ≤ c)

as a · b = c, so that · is a partial binary operation on S.

For a, b ∈ S, we call b the dual pseudo-complement of a if 〈S;≤〉 has a
greatest element 1, and b is the least element of 〈S;≤〉 for which a+ b = 1.
In this case, we write b = a∗.

We say that 〈S; +〉 is dually pseudo-complemented if each of its elements
has a dual pseudo-complement. In this case, 〈S;≤〉 has a greatest element
and for all a, b ∈ S, we have a∗∗ ≤ a and, by [18, (18)],

(5) (a+ b)∗∗ = a∗∗ + b∗∗.

Recall that the compact elements of an algebraic lattice always form a
join semilattice with 0, where + is the inherited join operation.

Lemma 4.1. Let L = 〈L;≤〉 be an algebraic lattice whose join-semilattice
S = 〈S; +〉 of compact elements is dually pseudo-complemented. Let 0 and
1 be the least and greatest elements of L, respectively. Let a ∈ L\{1}. Then

(i) 1 ∈ S.
(ii) If 1 is join-irreducible in the interval [a, 1] := {d ∈ L : a ≤ d}, then

the interval [a, 1) := {d ∈ L : a ≤ d < 1} has a greatest element.
(iii) Whenever c+ d = 1, with c ∈ S and d ∈ L, then c∗ ≤ d.

Thus, for each c ∈ S, the dual pseudo-complement of c in S is also the dual
pseudo-complement of c in L.

Proof. (i) As 0 is compact in L, the greatest element of S is 0∗. But 1 is a
join of elements of S (as L is algebraic), so 1 = 0∗ ∈ S.

(ii) The interval [a, 1] is a complete sublattice of L. Therefore, in this
interval, if 1 is join-irreducible, then it is completely join-irreducible (because
it is compact, by (i)), whence [a, 1) has a greatest element.
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(iii) Each d ∈ L is a join of compact elements, so if c+ d = 1, with c ∈ S,
then c+ d′ = 1 for some compact d′ ≤ d, as 1 is compact. Then c∗ ≤ d′, so
c∗ ≤ d. �

The above discussion is relevant, because the ` –filter lattice of an algebra
A is algebraic, and the compact ` –filters of A form a join semilattice with
0 under the operation +A. The semilattice order ≤ is just ⊆, and FgA` ∅ is
the least element. The partial operation · is therefore intersection (which
need not be a total operation). The connection between an IL and dual
pseudo-complements, suggested by Theorem 3.5, is as follows.

Theorem 4.2. ([38, Thm. 3.7]) Let ` be a protoalgebraic deductive system.
Then the following conditions are equivalent.

(i) ` has an inconsistency lemma.
(ii) For every algebra A, the compact ` –filters of A form a dually

pseudo-complemented semilattice with respect to +A.
(iii) The join semilattice of compact ` –theories is dually pseudo-comple-

mented.

In this case, if {Ψn : n ∈ N+} is an elementary IL-sequence for `, then for
any n ∈ N+ and any elements a1, . . . , an of an algebra A, we have(

FgA`{a1, . . . , an}
)∗

= FgA` ΨA
n (a1, . . . , an).

The proof of Theorem 4.2 makes significant use of protoalgebraicity.

5. Weak Excluded Middle Laws

Suppose {Ψn : n ∈ N+} is an elementary IL-sequence for `. For each

n ∈ N+, let #n = |Ψn| and Ψn = {ψ1
n, . . . , ψ

#n
n }, and define

Ψ#nΨn := Ψ#n(ψ1
n, . . . , ψ

#n
n ).

(The definiens is essentially unambiguous, by the remark on permutations
in Section 3.) Then, for any α1, . . . , αn ∈ Fm, we have

α1, . . . , αn ` Ψ#nΨn(α1, . . . , αn), and

Ψ#nΨn(α1, . . . , αn) ∪Ψn(α1, . . . , αn) is inconsistent in `.

For any elements a1, . . . , an (n ∈ N+) of an algebra A, Theorem 4.2 gives(
FgA`{a1, . . . , an}

)∗∗
= FgA` Ψ#nΨA

n (a1, . . . , an).

Example 5.1. The theorems of intuitionistic propositional logic (IPC) do
not include the formula ¬v ∨ ¬¬v. As we noted in the introduction, KC
is the extension of IPC by the axiom ¬v ∨ ¬¬v. When L is an axiomatic
extension of KC, the following implication holds (bearing the Deduction
Theorem in mind):

whenever Γ,¬α `L β and Γ,¬¬α `L β, then Γ `L β.

This phenomenon is abstracted in the next definition.
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Definition 5.2. We say that ` has a weak excluded middle law (WEML) if
it has an elementary IL-sequence {Ψn : n ∈ N+} such that, for each n ∈ N+,

if Γ ∪Ψn(α1, . . . , αn) ` ϕ and Γ ∪Ψ#nΨn(α1, . . . , αn) ` ϕ, then Γ ` ϕ.

We observed in Section 3 that the form of an IL is unique up to inter-
derivability. It follows that if one elementary IL-sequence establishes a
WEML for `, then so does any other. An IL persists in axiomatic ex-
tensions [38, p. 400], and it is easy to see that the same applies to a WEML.
The presence of a WEML can be characterized as follows.

Theorem 5.3. Let ` be a protoalgebraic deductive system. Then the fol-
lowing conditions are equivalent.

(i) ` has a WEML.
(ii) For every algebra A, the join semilattice of compact ` –filters of A

is dually pseudo-complemented and satisfies

(x+ y∗) · (x+ y∗∗) = x.

(iii) The join semilattice of compact ` –theories is dually pseudo-comple-
mented and satisfies (x+ y∗) · (x+ y∗∗) = x.

Proof. In view of Theorem 4.2, all three conditions imply that ` has an el-
ementary IL-sequence {Ψn : n ∈ N+}, so let us assume this. Let Λ ⊆ Fm(2)
be a finite set witnessing Definition 3.3. If v1 ` v2, then (i)–(iii) are trivially
true, so assume that v1 0 v2. Then Λ 6= ∅ and no algebra has an empty
` –filter. Moreover, Ψn 6= ∅ for all n ∈ N+ (because v1 ` Ψn(v1, v1, . . . , v1)
would entail v1 ` v2, by the definition of an IL).

Trivially, (ii) implies (iii). Theorem 4.2 shows that (iii) implies (i), re-
membering that ` is finitary, that Γ ` β paraphrases β ∈ Fg` Γ, and that
we always have Fg`(Γ ∪∆) = (Fg` Γ) + (Fg`∆). It remains to prove that
(i) implies (ii).

Assuming (i), let G be a compact ` –filter of an algebra A, and b :=
b1, . . . , bn a finite sequence of elements of A, where n ∈ N+. Let H =
FgA` {b1, . . . , bn}, so H∗ = FgA` ΨA

n (b) and H∗∗ = FgA` Ψ#nΨA
n (b), by Theo-

rem 4.2. Let c ∈ (G+A H∗) ∩ (G+A H∗∗). We need to show that c ∈ G.

By Lemma 3.4 and the finitarity of `, there exist a finite set

Π = Σ1 ∪ Σ2 ∪ Σ′1 ∪ Σ′2 ∪ {ϕ,ϕ′} ⊆ Fm

and homomorphisms g, h : Fm → A such that

Σ1 ∪ Σ2 ` ϕ and Σ′1 ∪ Σ′2 ` ϕ′;
g[Σ1] ∪ h[Σ′1] ⊆ G and g[Σ2] ⊆ ΨA

n (b) and h[Σ′2] ⊆ Ψ#nΨA
n (b);

g(ϕ) = c = h(ϕ′).

As Π is finite, the substitution-invariance of ` allows us to assume, without
loss of generality, that the variables occurring in members of Σ1 ∪Σ2 ∪ {ϕ}
do not occur in any member of Σ′1 ∪ Σ′2 ∪ {ϕ′}. We can therefore arrange
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that g = h, and also that g(zi) = bi for i = 1, . . . , n, where z = z1, . . . , zn is
a sequence of distinct variables that are absent from all formulas in Π.

We construct a finite set Γ ⊆ g−1[G] as follows. We stipulate that

Σ1 ∪ Σ′1 ⊆ Γ.

Also, all elements of Λ(ϕ,ϕ′) ∪ Λ(ϕ′, ϕ) are included in Γ. (These are sent
by g into G, because ` Λ(v1, v1), and because g(ϕ) = g(ϕ′).) Recall that

Ψn = {ψ1
n, . . . , ψ

#n
n }, so for each α ∈ Σ2, there exists j such that g(α) =

(ψjn)A(b); we include all elements of Λ(ψjn(z), α) in Γ. Likewise, as Ψ#nΨn =

Ψ#n(ψ1
n, . . . , ψ

#n
n ), we can choose, for each α′ ∈ Σ′2, a number k so that

g(α′) = ψk#n(ψ1
n, . . . , ψ

#n
n )A(b); we include all elements of

Λ(ψk#n(ψ1
n, . . . , ψ

#n
n )(z), α′)

in Γ. (All of these formulas belong to g−1[G], again since ` Λ(v1, v1).) This
completes the construction of Γ.

Because Σ1 ∪ Σ2 ` ϕ, we have Γ ∪Ψn(z) ` ϕ (by the rule

{v1} ∪ Λ(v1, v2) ` v2

and the substitution-invariance and transitivity of `). Likewise, because
Σ′1 ∪ Σ′2 ` ϕ′, we have Γ ∪ Ψ#nΨn(z) ` ϕ. Therefore, Γ ` ϕ, by (i), and
since g[Γ] ⊆ G, it follows that c = g(ϕ) ∈ G. �

Theorem 5.3 implies that, for a protoalgebraic deductive system with a
WEML, the semilattice of compact deductive filters of any algebra must
satisfy y∗ · y∗∗ = 0. A deductive system ` is said to be filter-distributive if
every algebra has a distributive lattice of ` –filters.

Corollary 5.4. Let ` be a filter-distributive protoalgebraic deductive system
with an IL. If the semilattice of compact ` –theories satisfies y∗ · y∗∗ = 0,
then ` has a WEML.

Proof. Distributivity upgrades y∗ · y∗∗ = 0 to (x+ y∗) · (x+ y∗∗) = x. �

In fact, a protoalgebraic deductive system is filter-distributive iff it pos-
sesses a ‘parameterized disjunction’ [13, Thm. 2.5.17] (also see [10]). As we
shall not need to employ this syntactic notion, we omit its definition, which
can be found in [13, p. 144].

6. Reduced Matrix Models

Suppose Γ ∪ {ϕ} ⊆ Fm. The following is well known (see [40, Sec. 3.7]).

Fact 6.1. Γ ` ϕ iff the implication (h[Γ] ⊆ F =⇒ h(ϕ) ∈ F ) holds for
every homomorphism h : Fm → A and every `–filter F of A such that

(i) F is completely meet-irreducible in the ` –filter lattice of A, and
(ii) every congruence of A that identifies two distinct elements of A also

identifies an element of F with a non-element of F .
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Condition (ii) is more commonly phrased as ‘the matrix 〈A, F 〉 is reduced ’.
When (ii) is assumed, then (i) may be rendered as ‘〈A, F 〉 is ` –subdirectly
irreducible’, because it means that 〈A, F 〉 cannot be decomposed subdi-
rectly in the class of reduced matrix models of `. Moreover, every reduced
matrix model of ` is isomorphic to a subdirect product of ones that are ` –
subdirectly irreducible [40, pp. 242–3]; the finitarity of ` is relied on here.

Fact 6.1 states that the subdirectly irreducible reduced matrix models of `
are always adequate as a semantics for `. In the absence of any data about
`, this is normally the most economical semantics at hand, and it takes
the expected form in familiar examples. (For classical propositional logic it
yields just two-element Boolean algebras, with singleton filters comprising
the top element in each case.)

We can now prove our main result about the WEML. In fact, the proof
can be carried out entirely in the setting of algebraic lattices.

Theorem 6.2. Let L = 〈L;≤〉 be an algebraic lattice whose join-semilattice
S = 〈S; +〉 of compact elements is dually pseudo-complemented. Let 0 and
1 be the least and greatest elements of L, respectively. Then the following
conditions are equivalent :

(i) a = (a+ c∗) · (a+ c∗∗) for all a, c ∈ S;
(ii) a = (a+ c∗) · (a+ c∗∗) for every a ∈ L and c ∈ S;
(iii) whenever a ∈ L\{1} is meet-irreducible in L, then the interval [a, 1)

has a largest element ;
(iv) whenever a ∈ L is completely meet-irreducible in L, then 1 is join-

irreducible in the interval [a, 1].

Proof. (i)⇒ (ii): Let a ∈ L and c ∈ S. Let b ∈ L, with b ≤ a + c∗ and
b ≤ a + c∗∗. We need to show that b ≤ a. As L is algebraic, b is the join
(in L) of some {bi : i ∈ I} ⊆ S, and a is also a join of compact elements of
L. Let i ∈ I. It suffices to show that bi ≤ a. As bi ≤ a + c∗, a + c∗∗ and
bi is compact, there is a compact element a′ of L, with a′ ≤ a, such that
bi ≤ a′ + c∗, a′ + c∗∗. So, because a′, c ∈ S, it follows from (i) that bi ≤ a′,
whence bi ≤ a, as required.

(ii)⇒ (iii): Let a ∈ L\{1} be meet-irreducible in L. We need to show
that 1 is completely join-irreducible in the interval [a, 1]. Suppose 1 is the
join of a family X ⊆ [a, 1]. We must show that 1 ∈ X. Since L is algebraic,
each x ∈ X is the join of a family Yx of compact elements of L. Then 1
is the join of

⋃
x∈X Yx, but 1 is itself compact (by Lemma 4.1(i)), so 1 is

already the join of a finite subset Y of
⋃
x∈X Yx. Note that Y 6= ∅, because

1 6= 0 (as a ∈ L\{1}). Let Y = {y1, . . . , yn}, where n is a positive integer,
so 1 = y1 + . . . + yn. As Y consists of compact elements, it follows from
(ii) that a = (a + y∗i ) · (a + y∗∗i ) for i = 1, . . . , n. Then, for each i, the
meet-irreducibility of a in L yields y∗i ≤ a or y∗∗i ≤ a.

If y∗i ≤ a for some i, then yi + a = 1. In this case, choose x ∈ X with
yi ∈ Yx, so yi, a ≤ x, whence 1 = x ∈ X, as required. It therefore suffices
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to rule out the possibility that y∗i � a for all i, i.e., that y∗∗i ≤ a for all i.
Suppose, with a view to contradiction, that y∗∗1 , . . . , y

∗∗
n ≤ a. Then

1 = 1∗∗ = (y1 + . . . + yn)∗∗ = y∗∗1 + . . . + y∗∗n ≤ a,
where the third equality follows from (5). But the displayed line contradicts
the fact that a 6= 1, and this completes the proof of (iii). 3

(iii)⇒ (iv) is clear, because 1 is not completely meet-irreducible in L (as
it is the meet of the empty subset of L).

(iv)⇒ (i): Let a, c ∈ S and b ∈ L, with b ≤ a + c∗ and b ≤ a + c∗∗. We
need to show that b ≤ a. As L is algebraic, a is the meet (in L) of a set
{ai : i ∈ I} of completely meet-irreducible elements of L. Let i ∈ I be fixed.
It suffices to show that b ≤ ai.

We have c + c∗ = 1, hence (ai + c) + (ai + c∗) = 1. As ai is completely
meet-irreducible, 1 is join-irreducible in [ai, 1], by (iv), whence ai + c or
ai + c∗ is 1.

If 1 = ai + c, then a, c∗ ≤ ai (using Lemma 4.1(iii) in the latter case),
whence b ≤ a+ c∗ ≤ ai.

Likewise, if 1 = ai + c∗, then a, c∗∗ ≤ ai, whence b ≤ ai. �

Theorem 6.2 specializes immediately as follows, in view of Theorem 5.3
and Lemma 4.1(ii).

Theorem 6.3. Let ` be a protoalgebraic deductive system with an incon-
sistency lemma. Then the following conditions are equivalent.

(i) ` has a WEML.
(ii) Whenever F is a meet-irreducible ` –filter of an algebra A, with

F 6= A, then the interval [F,A) in the ` –filter lattice of A has a
greatest element.

(iii) For each ` –subdirectly irreducible reduced matrix model 〈A, F 〉 of
`, the interval [F,A) of the ` –filter lattice of A has a greatest ele-
ment.

7. Excluded Middle Laws

The following definition is due to Lávička and Přenosil, who formulated
it in a wider framework.

Definition 7.1. ([27]) A deductive system ` has an excluded middle law
(EML) if, for each n ∈ N+, there is a finite set Ψn ⊆ Fm(n) such that for
all Γ ∪ {α1, . . . , αn, ϕ} ⊆ Fm,

(i) Ψn(α1, . . . , αn) ∪ {α1, . . . , αn} is inconsistent in `, and

(ii) whenever Γ ∪ {α1, . . . , αn} ` ϕ and Γ ∪ Ψn(α1, . . . , αn) ` ϕ, then
Γ ` ϕ.

3 It would have sufficed here to show that 1 is join-irreducible in [a, 1], owing to
Lemma 4.1(ii), but that would not have simplified the argument significantly.
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It is easy to see that, in this case, Ψ := {Ψn : n ∈ N+} is an elementary
IL-sequence for `, and that Ψ also establishes a WEML for `. Theorem 5.3
persists when we replace ‘WEML’ by ‘EML’, and (x+ y∗) · (x+ y∗∗) = x by

(x+ y) · (x+ y∗) = x

in its statement; no essential change to its proof is needed.

For algebraic lattices, the EML-analogue of Theorem 6.2 is as follows.

Theorem 7.2. Let L = 〈L;≤〉 be an algebraic lattice whose join-semilattice
S = 〈S; +〉 of compact elements is dually pseudo-complemented. Let 0 and
1 be the least and greatest elements of L, respectively. Then the following
conditions are equivalent :

(i) a = (a+ c) · (a+ c∗) for every a ∈ L and c ∈ S;
(ii) Whenever a ∈ L\{1} is meet-irreducible, then [a, 1] = {a, 1}.
(iii) Whenever a ∈ L is completely meet-irreducible, then [a, 1] = {a, 1}.

Proof. (i)⇒ (ii): Suppose a < x ∈ L. We must show that x = 1. As L
is algebraic, x is the join of a set W of elements of S. As x � a, there
exists c ∈ W such that c � a, i.e., a + c 6= a. As c is compact, (i) gives
a = (a + c) · (a + c∗), but a is meet-irreducible, so a = a + c∗, i.e., c∗ ≤ a,
whence a+ c = 1. Now a, c ≤ x, so 1 = a+ c ≤ x, i.e., x = 1, as required.

(ii)⇒ (iii) is clear.

(iii)⇒(i): Let a, b ∈ L and c ∈ S, where b ≤ a+c and b ≤ a+c∗. We must
show that b ≤ a. As L is algebraic, a is the meet of a family of completely
meet-irreducible elements ai ∈ L (i ∈ I). Let i ∈ I. It suffices to show that
b ≤ ai. Note that

(6) b ≤ ai + c and b ≤ ai + c∗,

as a ≤ ai. Now [ai, 1] = {ai, 1}, by (iii), so ai + c is ai or 1. If ai + c = ai,
then b ≤ ai, by (6). If ai + c = 1, then c∗ ≤ ai, by Lemma 4.1(iii), so (6)
gives b ≤ ai + c∗ = ai. �

Just as in Theorem 6.2, the first condition in Theorem 7.2 could be re-
placed by ‘a = (a+ c) · (a+ c∗) for all a, c ∈ S’, without loss of strength.

Let us say that

(i) a reduced matrix model 〈A, F 〉 of ` is ` –simple if the interval [F,A]
in the ` –filter lattice of A has just two elements; and that

(ii) ` is semisimple if every ` –subdirectly irreducible reduced matrix
model of ` is ` –simple.

Specializing Theorem 7.2, we get an order-theoretic explanation of the fol-
lowing result of Lávička and Přenosil.

Corollary 7.3. ([27]) Let ` be a protoalgebraic deductive system. Then `
has an EML iff it has an IL and is semisimple.
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Somewhat more than this can be said. Let Ψ = {Ψn : n ∈ N+} be as
in Definition 7.1. We have noted that Ψ establishes an IL for `, but it is
pointed out in [27] that Ψ is actually a classical IL-sequence for ` (in the
sense of [38]), i.e., an IL-sequence with the additional property that

Γ ∪Ψn(α1, . . . , αn) is inconsistent in ` iff Γ ` {α1, . . . , αn}.

(Conversely, the resulting notion of a classical IL induces an EML [27].) A
deductive system with a classical IL has a deduction-detachment theorem
[38, p. 401], and is therefore protoalgebraic and filter-distributive. These
facts (and Corollary 5.4) yield a more informative variant of Corollary 7.3:

Theorem 7.4. The following conditions on ` are equivalent.

(i) ` has an EML.
(ii) ` is protoalgebraic, semisimple and has an IL.
(iii) ` is protoalgebraic and filter-distributive and, for every algebra A,

the join semilattice of compact ` –filters of A is dually pseudo-
complemented and satisfies y · y∗ = 0.

(iv) ` is protoalgebraic and filter-distributive and the join semilattice
of compact ` –theories is dually pseudo-complemented and satisfies
y · y∗ = 0.

The equivalence of (i) and (ii) was already obtained in [27].

8. Weak Excluded Middle Laws in Algebraizable Logics

Definition 8.1. A congruence relation θ on an algebra A is said to be
compatible with a subset F of A provided that F is a union of θ–classes, i.e.,
whenever a ≡ θ b and a ∈ F , then b ∈ F .

Given a quasivariety K (of algebras) and an algebra A of the same type,
the K–congruences of A are the congruences θ such that A/θ ∈ K. They
form an algebraic closure system over A×A, and hence an algebraic lattice,
ordered by inclusion, in which the compact elements are just the finitely
generated K–congruences. At the same time, for any subset F of A, there
is always a largest congruence of A that is compatible with F [5, Thm. 1.5];
it is denoted by ΩAF . Thus, 〈A, F 〉 is reduced iff ΩAF = {〈a, a〉 : a ∈ A}.

A deductive system ` is said to be algebraized by K if, for every algebra
A, the rule F 7→ ΩAF defines an isomorphism from the ` –filter lattice of
A onto the lattice of K–congruences of A. We say that ` is (elementarily)
algebraizable if it is algebraized by some quasivariety K. In this case K is
unique and is called the equivalent quasivariety of `. (It comprises the alge-
bra reducts A of the reduced matrix models 〈A, F 〉 of `.) These definitions
are equivalent to the original syntactic ones; see Blok and Pigozzi [5].

Every algebraizable deductive system is protoalgebraic. In fact, a de-
ductive system ` is protoalgebraic iff, for every algebra A, the function
F 7→ ΩAF is inclusion-preserving on the ` –filters of A (see [13, 17]).
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When K is a variety and A ∈ K, the congruences and K–congruences
of A coincide, so the prefix K– can be dropped (and likewise the qualifier
‘relatively’ and its signifier ‘R’ in the definitions to follow).

An algebra A is said to be trivial if |A| = 1. The following result is due
to Gorbunov. It was proved first for varieties, by Kollár [24].

Theorem 8.2. ([20], [21, Thm. 2.3.16]) A quasivariety K has the property
that A × A is compact in the K–congruence lattice of A, for all A ∈ K, iff
the nontrivial members of K lack trivial subalgebras.

Definition 8.3. A quasivariety satisfying the conditions of Theorem 8.2
will be called a Kollár quasivariety.

Further characterizations can be found in [8]. Thus, a quasivariety K that
algebraizes a deductive system ` is a Kollár quasivariety iff Fm is compact
in the lattice of ` –theories (a feature also forced by the existence of an IL).
Except for its use of this fact, the next result is taken from [38].

Theorem 8.4. ([38, Thm. 3.10]) Let K be a quasivariety that algebraizes a
deductive system `. Then the following conditions are equivalent.

(i) ` has an inconsistency lemma.
(ii) For every algebra A, the join semilattice of compact K–congruences

of A is dually pseudo-complemented.
(iii) For every A ∈ K, the join semilattice of compact K–congruences of

A is dually pseudo-complemented.

In this case, the nontrivial members of K lack trivial subalgebras. If K is a
variety, then the numbered conditions are equivalent to

(iv) For every A ∈ K, the join semilattice of compact congruences of A
is dually pseudo-complemented.

Given a quasivariety K, we say that an algebra A ∈ K is relatively subdi-
rectly irreducible (RSI), or relatively finitely subdirectly irreducible (RFSI),
or relatively simple (RS) if, in the lattice of K–congruences of A, the rela-
tion {〈a, a〉 : a ∈ A} is completely meet-irreducible, or meet-irreducible, or
a co-atom, respectively. The class of all RSI [RFSI; RS] algebras in K is
denoted by KRSI [KRFSI; KRS]. Thus, KRS ⊆ KRSI ⊆ KRFSI, and KRSI con-
sists of nontrivial algebras. Every member of K is isomorphic to a subdirect
product of members of KRSI [36, Thm. 1.1]. If every RSI member of K is
relatively simple, then K is said to be relatively semisimple.

When K is the equivalent quasivariety of `, then KRSI [KRS; KRFSI] com-
prises the algebra reducts of the reduced matrix models 〈A, F 〉 of ` that
are ` –subdirectly irreducible [that are ` –simple; for which F is meet-
irreducible in the ` –filter lattice of A]. In this case, ` is semisimple in the
sense of Section 7 iff K is relatively semisimple.

For algebraizable logics, our main result about the WEML (Theorem 6.3)
therefore takes the following form.
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Theorem 8.5. Let K be a quasivariety algebraizing a deductive system `
with an inconsistency lemma. Then the following conditions are equivalent.

(i) ` has a WEML.
(ii) Every nontrivial algebra in KRFSI has a greatest proper K–congruence

(i.e., it has a greatest proper ` –filter).
(iii) Every algebra in KRSI has a greatest proper K–congruence.

Corollary 8.6. A super-intuitionistic logic has a WEML iff it extends KC
(i.e., its theorems include ¬v ∨ ¬¬v).

Corollary 8.7. Let K1 and K2 be categorically equivalent quasivarieties that
algebraize deductive systems `1 and `2, respectively. If `1 has a WEML,
then so does `2 .

Proof. A category equivalence functor F from K1 to K2 induces an iso-
morphism from the K1–congruence lattice of each A ∈ K1 onto the K2–
congruence lattice of its image F (A) ∈ K2. Also, a lattice isomorphism
between complete lattices restricts to an isomorphism between their join
semilattices of compact elements. The result therefore follows from Theo-
rems 8.4 and 8.5. �

Corollary 8.7 applies equally to EMLs (cf. [38, Cor. 5.7]), because they
amount to classical ILs. When ` is algebraized by a quasivariety K, then it
has a classical IL iff K is a relatively filtral Kollár quasivariety [7]. For the
definition of relative filtrality (and some alternative characterizations), see
[7] and its references.

Example 8.8. The product logic Π of [22] is algebraizable and has an in-
consistency lemma, with {{¬(v1 � . . . � vn)} : n ∈ N+} as IL-sequence.
It therefore has a WEML, by Theorem 8.5, because the subdirectly irre-
ducible members of its equivalent variety are totally ordered and have least
elements, and their deductive filters are upward-closed. (In such an alge-
bra, the union of the proper deductive filters is the largest proper deductive
filter. Alternatively, one can argue syntactically from the theoremhood of
¬v ∨ ¬¬v in Π.) On the other hand, Π does not have an EML, as it lacks
a classical IL [38, p. 404] (equivalently, it is not semisimple).

9. Normal Modal Logics

Recall that a modal formula is a formula in the signature of classical
propositional logic, expanded by a unary connective 2, where ¬2¬α is ab-
breviated as 3α. We define 20α = α and 2n+1α = 22nα for n ∈ ω =
{0, 1, 2, . . . }, and similarly for 3. Moreover, for n ∈ ω, we define

�nϕ = ϕ ∧ 2ϕ ∧ . . . ∧ 2nϕ;

�
n
ϕ = ϕ ∨ 3ϕ ∨ . . . ∨ 3nϕ.
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A normal modal logic L is traditionally identified with a special set of modal
formulas, rather than a consequence relation. More precisely, L must include
all classical tautologies and Kripke’s distribution axiom

2(v1 → v2)→ (2v1 → 2v2),

and L must be closed under substitution, under modus ponens, and under
the connective 2 (i.e., under the rule of necessitation). We denote by `L
the global consequence relation of L (see [26]). Thus, the elements of L are
exactly the theorems of `L, provided that modus ponens and necessitation
serve as the inference rules of `L.

For m,n ∈ ω, we then have 3nv ↔ ¬2n¬v, �nv ↔ ¬�n¬v ∈ L, and
if m ≤ n, then �nv → �mv, �mv → �

n
v ∈ L. For each normal modal

logic L, the system `L has the following local deduction-detachment theorem
(LDDT):

Γ ∪ {α} `L β iff there exists n ∈ ω such that Γ `L �nα→ β.

We characterize below the normal modal logics L for which `L has an IL
or a WEML. (The semisimple systems of this kind are already understood
[25, 27], so the case of an EML requires no further attention.)

Theorem 9.1. Let L be a normal modal logic. Then `L has an inconsis-
tency lemma iff there exists n ∈ ω such that `L �nv → �

n�n+1v (i.e.,
�nα→ �

n�n+1α ∈ L for all modal formulas α).

Proof. Observe first that, for any Γ ∪ {α1, . . . , αk} ⊆ Fm,

Γ ∪ {α1, . . . , αk} is inconsistent in `L
iff Γ ∪ {α1 ∧ . . . ∧ αk} `L ⊥,

iff Γ `L ¬�m(α1 ∧ . . . ∧ αk) for some m ∈ ω
(7)

(in view of the LDDT).

(⇒) Let {Ψn : n ∈ N+} be an elementary IL-sequence for `L. Because
Ψ1(v) ∪ {v} is inconsistent in `L, (7) shows that we can choose n ∈ ω
with Ψ1(v) `L ¬�nv. Also, {¬�n+1v, v} is inconsistent in `L (owing to
necessitation), so ¬�n+1v `L Ψ1(v), by the IL, whence ¬�n+1v `L ¬�nv.
Thus, by the LDDT, there exists m ∈ ω such that `L �m¬�n+1v → ¬�nv,
i.e., `L �nv → ¬�m¬�n+1v, i.e.,

(8) `L �nv → �
m�n+1v.

If m ≤ n then `L �
m�n+1v → �

n�n+1v, whence `L �nv → �
n�n+1v, in

view of (8). And if n < m then, substituting �m−nv for v in (8), we obtain
`L �mv → �

m�m+1v.

(⇐) Let n ∈ ω be such that

(9) `L �nv → �
n�n+1v.

For each positive integer k, let Ψk = {¬�n(v1 ∧ . . . ∧ vk)}. We shall show
that {Ψk : k ∈ N+} is an IL-sequence for `L. Let k ∈ N+ and suppose
Γ ∪ {α1, . . . , αk} ⊆ Fm.
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If Γ `L Ψk(α1, . . . , αk), then Γ ∪ {α1, . . . , αk} is inconsistent in `L, by
(7). We need to prove the converse, so we may assume (again by (7)) that
there exists m ∈ ω with

(10) Γ `L ¬�m(α1 ∧ . . . ∧ αk).

If m ≤ n then ¬�m(α1∧ . . .∧αk) `L Ψk(α1, . . . , αk), in which case, by (10),
Γ `L Ψk(α1, . . . , αk), as required. We may therefore assume that n < m.
By necessitation, ¬�n+1v `L �n¬�n+1v, but �n¬�n+1v `L ¬ �

n�n+1v, so

(11) ¬�n+1v `L ¬ �
n�n+1v.

By (9) and contraposition, `L ¬ �
n�n+1v → ¬�nv, so by (11),

¬�n+1v `L ¬�nv.

Therefore, because n < m, the substitution-invariance and transitivity of
`L yield ¬�mv `L ¬�nv. This, with (10), gives Γ `L Ψk(α1, . . . , αn), as
required. �

Theorem 9.2. Let L be a normal modal logic. Then `L has a WEML iff
there exists n ∈ ω such that

`L �nv → �
n�n+1v and `L �m¬�nv ∨ �m¬�n¬�nv, for all m ∈ ω.

Proof. By Theorem 9.1 and its proof, we may assume that

`L �nv → �
n�n+1v

for some (fixed) n ∈ ω, whence Ψ = {Ψk : k ∈ N+} is an IL-sequence for
`L, where Ψk = {¬�n(v1 ∧ . . . ∧ vk)} for each k.

(⇐) To prove that Ψ establishes a WEML for `L, suppose

Γ ∪ {¬�nα} `L β and Γ ∪ {¬�n¬�nα} `L β,

where α is α1 ∧ . . . ∧ αk (k ∈ N+). By the LDDT, there exists m ∈ ω with

Γ `L �m¬�nα→ β and Γ `L �m¬�n¬�nα→ β.

With the help of a classical tautology, we obtain

Γ `L (�m¬�nα ∨ �m¬�n¬�nα)→ β.

Then, by the given assumption and modus ponens, Γ ` β, as required.

(⇒) Let m ∈ ω. By necessitation, ¬�nv `L �m¬�nv, and so

¬�nv `L �m¬�nv ∨ �m¬�n¬�nv,

i.e., Ψ1(v) `L �m¬�nv ∨ �m¬�n¬�nv. Similarly,

Ψ1Ψ1(v) `L �m¬�nv ∨ �m¬�n¬�nv,

so by the WEML, `L �m¬�nv ∨ �m¬�n¬�nv. �
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10. Extensions of S4

Recall that S4 is the smallest normal modal logic L such that

2v → v, 2v → 22v ∈ L

(equivalently, v → 3v, 33v → 3v ∈ L), and that Next(S4) is the lattice
of normal modal logics containing S4. These logics prove �mv ↔ 2v and
�
m
v ↔ 3v for all m ∈ N+.

If L ∈ Next(S4), then since 2v → 32v ∈ L, we have �1v → �
1�2v ∈ L.

Therefore, Theorem 9.1 and its proof yield the following.

Example 10.1. For each L ∈ Next(S4), the global consequence relation `L
has an inconsistency lemma, with n = 1 in Theorem 9.1, and an IL-sequence
{Ψk : k ∈ N+} for `L is given by Ψk = {¬2(v1 ∧ . . . ∧ vk)}.

We shall show that, for each L ∈ Next(S4), the system `L has a WEML
iff its theorems include the so-called convergence axiom 32v → 23v. This
formula is validated by a Kripke frame X = 〈X,R〉 iff X is principally
up-directed in the following sense:

for any x, y, z ∈ X such that xRy and xRz,

there exists w ∈ X such that yRw and zRw.

The extension of S4 by the convergence axiom is known as S4.2. Thus,
S4.2 is the normal modal logic induced by the class of Kripke frames that
are reflexive, transitive and principally up-directed. On the other hand, KC
is the super-intuitionistic logic induced by the class of principally up-directed
posets. It was proved in [15] that S4.2 is the least modal companion of KC
(see [9, 28, 39] for the general notion of a modal companion and further
examples).

Theorem 10.2. Let L ∈ Next(S4). Then the global consequence relation
`L has a WEML iff `L 32v → 23v (i.e., L extends S4.2).

Proof. (⇒) Suppose `L has a WEML. By Theorem 9.2 and Example 10.1,

`L �m¬2v ∨ �m¬2¬2v, for all m ∈ ω.

For m = 1, this gives `L 2¬2v ∨ 2¬2¬2v, i.e., `L ¬32v ∨ 232v, i.e.,

(12) `L 32v → 232v.

We also have v2 → v3 `L 23v2 → 23v3 (in any normal modal logic), so
from `L 2v → v, we may infer `L 232v → 23v. This, with (12), shows
that L includes the convergence axiom.

(⇐) Suppose `L 32v → 23v. Substituting 2v for v, we obtain

`L 322v → 232v.

We now use repeatedly, without comment, the fact that L ∈ Next(S4). The
formulas 322v and 32v are logically equivalent over L, whence

`L 32v → 232v, i.e., `L 2¬2v ∨ 2¬2¬2v.
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This implies that `L �m(¬2v) ∨ �m(¬2¬2v) for every m ≥ 1. Further-
more, �0(¬2v) ∨ �0(¬2¬2v) is logically equivalent, over L, to 2v → 32v,
which belongs to L. Thus, for all m ∈ ω, we have

`L �m(¬2v) ∨ �m(¬2¬2v).

The formula 2v is logically equivalent, over L, to �1v. Therefore,

`L �m(¬�1v) ∨ �m(¬�1¬�1v) for all m ∈ ω.

This, with Theorem 9.2 and Example 10.1, shows that `L has a WEML. �

It is now easy to construct logics L ∈ Next(S4) for which `L has a WEML
but lacks an EML. Indeed, let X be any Kripke frame that is reflexive,
transitive and principally up-directed. Let L be the normal modal logic
induced by X. Then L extends S4.2 and `L has a WEML, by Theorem 10.2.
If we assume, moreover, that X is rooted and contains points x, y such that
x 6Ry or y 6Rx, then the complex algebra of X is subdirectly irreducible but
not simple. Consequently, `L lacks an EML, by Theorem 7.4. A concrete
example is the case where X is a two-element chain, viewed as a poset.

11. Relevance Logics

Dunn [16, 30] showed in 1966 that the variety DMM of De Morgan monoids
algebraizes the principal relevance logic Rt. (More exactly, it algebraizes the
deducibility relation `Rt of the formal system Rt from [1], but we shall often
abbreviate that relation as Rt.) Consequently, the subvarieties of DMM and
the axiomatic extensions of Rt form anti-isomorphic lattices.

We shall show that an axiomatic extension of Rt has an IL iff it is alge-
braized by a Kollár variety of De Morgan monoids, and that in this case it
also has a WEML. Some characterizations of the Kollár subvarieties of DMM
will be provided. Where known structural features of De Morgan monoids
are mentioned below without citation, their sources are given in the recent
papers [31, 32, 33].

Definition 11.1. A De Morgan monoid is an algebra A = 〈A; ·,∧,∨,¬, e〉
comprising a distributive lattice 〈A;∧,∨〉, a commutative monoid 〈A; ·, e〉
that is square-increasing (i.e., A satisfies x 6 x2 := x · x), and a function
¬ : A −→ A, called an involution, such that A satisfies ¬¬x = x and

x · y 6 z ⇐⇒ x · ¬z 6 ¬y.

Here, α 6 β abbreviates α = α ∧ β. We refer to · as fusion, and we define

f = ¬e and x→ y = ¬(x · ¬y) and x↔ y = (x→ y) ∧ (y → x).

It follows that ¬ is an anti-automorphism of 〈A;∧,∨〉 (so De Morgan’s
laws hold), and that A satisfies the law of residuation:

x · y 6 z ⇐⇒ y 6 x→ z.
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In particular, A satisfies

(13) x 6 z ⇐⇒ e 6 x→ z,

as well as e→ x = x. And (13) shows that e is not the least element of A,
unless A is trivial.

It turns out that the Rt–filters of a De Morgan monoid A are just the
lattice-filters F of 〈A;∧,∨〉 such that e ∈ F . The smallest of these is there-
fore [e) := {a ∈ A : e 6 a}. An Rt–filter of A is closed under fusion,
owing to the square-increasing law. The natural lattice isomorphism from
Rt–filters to congruences of A, and its inverse, are given by

F 7→ ΩAF = {〈a, b〉 ∈ A×A : a↔ b ∈ F};
θ 7→ {a ∈ A : a ∧ e ≡θ e}.

The deductive system `Rt can in fact be characterized as the consequence
relation of the class of matrices {〈A, [e)〉 : A = 〈A; ·,∧,∨,¬, e〉 ∈ DMM}.
Partly for this reason, we shall not discuss syntactic postulates for Rt here.

The reader should recall Definition 8.3 at this point.

Lemma 11.2. Let K be a Kollár variety of De Morgan monoids, with
A ∈ K. Then A is bounded, i.e., the lattice 〈A;∧,∨〉 has a least and a great-
est element.

Proof. As K is a Kollár variety, and since there is a lattice isomorphism
between the Rt–filters and the congruences of A, the total Rt–filter A of
A is compact in the Rt–filter lattice of A. Whenever e > a ∈ A, then
[a) = {b ∈ A : a 6 b} is an Rt–filter of A, and A is clearly the join of
{[a) : e > a ∈ A}. By compactness, therefore, A is already the join of
{[ai) : i = 1, . . . , n} for some a1, . . . , an 6 e, with n ∈ N+. Thus, A = [a),
where a := a1 ∧ . . . ∧ an, i.e., a is the least element of A, whence ¬a is the
greatest element. �

Suppose ⊥,> are, respectively, the least and the greatest element of a
De Morgan monoid A. Then a · ⊥ = ⊥ for all a ∈ A, and the following
conditions are equivalent:

(i) a ·> = > for all a ∈ A\{⊥};
(ii) a→ ⊥ = ⊥ for all a ∈ A\{⊥}.

When these conditions hold, we say that A is rigorously compact. In that
case, no proper congruence of A identifies ⊥ with an element of A\{⊥}
(see [32, Lem. 2.1(i)] or [35, Prop. 6.2(i)]). Moreover, every bounded FSI
De Morgan monoid is rigorously compact (see [31, Thm. 5.3], which has an
antecedent in [29, Thm. 3]).

Lemma 11.3. Let ⊥ be the least element of a nontrivial FSI De Morgan
monoid A. Then ⊥ is meet-irreducible in the sublattice (e] = {a ∈ A : a 6 e}
of A. Consequently, A has a largest proper congruence.
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Proof. Note that ⊥ < e, as A is nontrivial. By the above remarks, A is
rigorously compact, and {⊥} is an equivalence class of every proper congru-
ence of A. Suppose, with a view to contradiction, that a ∧ b = ⊥, where
⊥ < a, b < e. Let θ be the congruence ΩA[a) of A. As e 6 a→ e, we have
a ↔ e = (a → e) ∧ a = a, so a ≡θ e. Therefore, ⊥ = a ∧ b ≡θ e ∧ b = b, so
the θ–class of ⊥ is not a singleton. Consequently, θ = A×A. In particular,
a ≡θ ⊥, i.e., a 6 a↔ ⊥ 6 a→ ⊥ = ⊥, i.e., a = ⊥, a contradiction.

This confirms that ⊥ is meet-irreducible in (e], so (e]\{⊥} is a proper filter
of the lattice (e]. The upward closure in A of (e]\{⊥} is therefore the largest
proper Rt–filter of A, and so A has a greatest proper congruence. �

The following deduction-detachment theorem (DDT) applies to Rt:

(14) Γ ∪ {α} `Rt β iff Γ `Rt (α ∧ e)→ β.

A deductive system ` with a DDT (in the general sense of [6]) has an
inconsistency lemma iff Fm is compact in the lattice of ` –theories; see
[38, Cor. 3.9]. This demand amounts, when a variety K algebraizes `, to
the requirement that K be a Kollár variety. Putting this together with
Lemmas 11.2 and 11.3 and Theorem 8.5, we obtain the following.

Theorem 11.4. An axiomatic extension of Rt has an inconsistency lemma
iff it has a WEML, iff it is algebraized by a Kollár variety of De Morgan
monoids.

The following remarks illuminate the content of Theorem 11.4.

A Boolean algebra may be regarded as a De Morgan monoid in which ·
duplicates ∧. More generally, a De Morgan monoid A is idempotent (in the
sense that a2 = a for all a ∈ A) iff it satisfies f 6 e ; for a proof, see [31,
Thm. 3.3]. An odd Sugihara monoid is a De Morgan monoid in which f = e.
We depict below the two-element Boolean algebra 2, the three-element odd
Sugihara monoid S3, and two four-element De Morgan monoids, C4 and
D4. In each case, the labeled Hasse diagram determines the structure. Note
that ¬f2 abbreviates ¬(f2).
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As it happens, the varieties generated, respectively, by these four algebras
are exactly the minimal (nontrivial) subvarieties of DMM [31, Thm. 6.1].

A quasivariety K of De Morgan monoids is a Kollár quasivariety iff S3 /∈ K
[33, Thm. 8.4(iii)]. Many such non-semisimple varieties are exhibited in [32].

A De Morgan monoid A is said to be anti-idempotent if it satisfies x 6 f2

(and therefore also ¬f2 6 x). By [31, Cor. 3.6], this amounts to the demand
that no nontrivial idempotent algebra belongs to the variety generated by
A. In particular, C4 and D4 have this property.
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If K is a Kollár variety of De Morgan monoids and A ∈ KFSI, then A ∼= 2
or A is anti-idempotent. (This follows easily from a characterization of FSI
De Morgan monoids in [31, Remark 5.19], using the fact that S3 cannot
be a subalgebra of a homomorphic image of A.) In both cases, A satisfies
f ∧ ¬f2 6 x, so the statement of Lemma 11.2 can be sharpened as follows:
in any member of a Kollár variety of De Morgan monoids, f ∧ ¬f2 is the
least element, whence e ∨ f2 is the greatest element.

This fact shows, with the help of (14), that in any axiomatic extension of
Rt that possesses an IL, the IL can be assumed to take the following form:

Γ ∪ {α1, . . . , αn} is inconsistent iff Γ ` (α1 ∧ . . . ∧ αn ∧ e)→ (f ∧ ¬f2).

In other words, an IL-sequence {Ψn : n ∈ N+} for the extension is given by

Ψn = {(v1 ∧ . . . ∧ vn ∧ e)→ (f ∧ ¬f2)}.
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