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Abstract

In this paper, an avian-human influenza epidemic model with diffusion, nonlocal delay and spatial
homogeneous environment is investigated. This model describes the transmission of avian influenza
among poultry, humans and environment. The behavior of positive solutions to a reaction-diffusion
system with homogeneous Neumann boundary conditions is investigated. By mean of linearization
method and spectral analysis the local asymptotical stability is established. The global asymptotical
stability for the poultry sub-system is studied by spectral analysis and by using a Lyapunov functional.
For the full system, the global stability of the disease-free equilibrium is studied using the comparison
Theorem for parabolic equations. Our result shows that the disease-free equilibrium is globally asymp-
totically stable, whenever the contact rate for the susceptible poultry is small. This suggests that the best
policy to prevent the occurrence of an epidemic is not only to exterminate the asymptomatic poultry but
also to reduce the contact rate between susceptible humans and the poultry environment. Numerical
simulations are presented to illustrate the main results.
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1. Introduction1

The avian influenza is caused by viruses adapted to birds and it normally affects wild birds and2

poultry. The wild birds are natural reservoir for all the sub-types of influenza A viruses. Influenza3

viruses are widespread and due to their high mutation rate many subtypes exist. Furthermore, H5N1,4

H7N4, H7N7, H7N9, H9N2 and other avian influenza viruses with pathogenicity have great potential5

threat to human. Poultry farms are an important reservoir of avian influenza A virus (H7N9), which6

plays a critical role in the genesis of influenza pandemic [1]. Avian influenza virus (AIV) transmission to7

humans is largely facilitated by contact with animals and excretion of contaminated droplets or aerosols8

[2] and to a lesser extent through transport of (dead) birds or contaminated objects (vehicles, humans, or9

fomites), water, food and contact with infected wildfowl or insects [3]. Historically, the avian influenza10

splits into two classes: the "High Pathogenic Avian Influenza (HPAI)" and the "Low Pathogenic Avian11

Influenza (LPAI)". The HPAI can cause a series of systemic infections that can lead to high mortality.12

The LPAI causes mild or no symptoms.13

Recently in [4], the authors proposed the following mathematical model to study the impact of14

1Corresponding author: Calvin Tadmon, E-mail: tadmonc@yahoo.fr.
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environmental transmission on avian influenza infection:15 

dX
dt

= (1 − q)A − βvX
Y

1 + αY
− βeX

C
C + κ

− dX,
dY
dt

= qA + βvX
Y

1 + αY
+ βeX

C
C + κ

− dY,
dS
dt

= B + aE + γI − τv
S
N

Y − τe
S
N

C − δS,
dE
dt

= τv
S
N

Y + τe
S
N

C − (a + δ + ε)E,
dI
dt

= εE − (γ + ρ + δ)I,
dC
dt

= φ2Y − ξC.

(1.1)

In (1.1), the first two equations and the last one describe the interactions between the birds and16

their biotope. Thus, the poultry population is divided into two classes: susceptible poultry X and17

asymptomatic poultry contaminated with avian influenza viruses Y. The concentration of avian in-18

fluenza viruses in the poultry living environment (biotope) is C. The remaining three equations form an19

SEIS model for humans, which describes the dynamics of human population divided in three mutually20

exclusive classes: susceptible humans S, latent humans E and infected humans I.21

It must be pointed out that System (1.1) neglects any spatial structure of disease spreading and is22

definitely not very realistic for moving individuals such as poultry and humans. For example, in our23

case, poultry on the farm can move from one point to another to feed or drink water and humans can24

migrate in large numbers from one area to another for supplies during the sales period (of poultry or25

eggs). During the rearing period, that is the time lag during which there is neither sale of poultry nor26

production of eggs, humans cannot be in the same location, so a rearing period will result in a delay.27

But whatever the reason for introducing a delay into any population model in which the individuals are28

moving, the corresponding term in the model must be nonlocal in space as well as in time. Thus it would29

be realistic to incorporate delay effects in the interaction terms. Furthermore, As the distribution of the30

individuals is in different spatial locations, the standard method of including the spatial effects consists31

in the introduction of diffusion terms. This lead is an extended version of the SI-SEIS-C avian-human32

epidemic model (1.1) in the form of a delayed reaction diffusion system of equations given below.33

Therefore in this study, we propose a mathematical model for the transmission dynamics of AIV34

among poultry-human that incorporates both mobility of the poultry/human and spatial environmental35

homogeneity.36

The outline of the remainder of the paper is as follows. In Section 2 we build an avian-human37

influenza epidemic model that incorporates diffusion, nonlocal delay and spatial homogeneous envi-38

ronment, and give the model’s basic properties. Section 3 deals with the theoretical analysis of the39

continuous poultry model, while Section 4 presents an asymptotic analysis of the full model and numer-40

ical simulations are given in Section 5. Finally, we conclude the paper in Section 6 and provide some41

discussions that highlight few relevant perspectives.42

2. Modelling framework and uniform bound43

2.1. Modelling framework44

Let Ω ⊂ R3 be a bounded domain representing an industrial city in which humans live. We assume45

that poultry farms are built in human sparsely populated areas and that each farmer has already bought46

his poultry and will not do so until the end of the sale for broilers or until the end of egg laying for laying47

hens. Denote by X(x, t),Y(x, t),S(x, t),E(x, t), I(x, t) the number of susceptible poultry, asymptomatic48

poultry, susceptible humans, latent humans and infected humans respectively at time t and location x.49

C(x, t) is the concentration of virus at time t and location x.50
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2.1.1. Poultry population dynamics51

We assume that a total number A of poultry replenishes the farm per unit time due to importation and52

the proportion (1 − q)A is susceptible, while the remaining proportion qA is asymptomatic. Susceptible53

and asymptomatic poultry die at rate dX and dY, respectively. Upon direct transmission among poultry,54

susceptible poultry moves to asymptomatic class following a saturation type incidence at rate βvXY/(1 +55

αY), such that βvY measures the infection force of the infective poultry, the parameter α stands for56

the inhibitory effort, and 1/(1 + αY) describes the saturation due to the protection measures of the57

poultry farmers or the crowding of infected poultry when the number of infective poultry increases58

[5]. Upon indirect transmission, βeXC/(C + κ) corresponds to the incidence rate between environmental59

contaminated food particles and susceptible poultry. In the latter, βe is the transmission coefficient such60

that βe � βv; 1/(C + κ) represents saturation due to the cleaning of farms when the concentration of61

excretion becomes larger; κ is the concentration of avian viruses attached to aerosol particles in the62

farm, sufficient to guarantee 50% chance of catching the infection. In the farm, poultry move from point63

to other to feed or drink water. To model this displacement, we use diffusion Fick’s law. Thus, the64

dynamics of poultry population is given by the following system:65 
∂X
∂t
−D1∆X = (1 − q)A − βvX

Y
1 + αY

− βeX
C

C + κ
− dX,

∂Y
∂t
−D2∆Y = qA + βvX

Y
1 + αY

+ βeX
C

C + κ
− dY.

(2.1)

2.1.2. Human population dynamics66

New born or immigrated humans are recruited susceptible at rate B and die naturally at rate δ.67

Since there are some medicines to fight against avian influenza A virus, the latent and the infected68

humans recover respectively at rate a and γ. The transmission of avian influenza A from poultry to69

humans occurs at rate τv, and τe is the transmission coefficient from the pathogenic or contaminated70

environment to humans. For the motivations on the choice of the different incidence functions in (2.2),71

we refer the reader to our previous paper [4] for details. The morbidity of the latent human is ε and the72

disease-related death rate is ρ, with (ρ� δ).73

During the sales period (of poultry or eggs), humans migrate in large numbers from densely popu-74

lated areas to these sparsely populated areas for supplies. This migration is similarly described by Fick’s75

law of diffusion.76

During the rearing period, that is the time lag during which there is neither sale of poultry nor77

production of eggs, humans cannot be in the same location in the industrial city. To model this phe-78

nomenon, we use a "nonlocal" delay: an average weight in space arises when the account is taken of the79

fact that humans have been at different points in space in previous times. Thus, for ecological reasons,80

it is necessary to incorporate a time delay into some equations of the model. In addition, it should be81

noted that the human population at all times will have some contribution in animal husbandry as in82

the sale or harvest of eggs. This contribution is modeled by a function k(t) called the delay kernel and83

satisfies:84

k(t) ≥ 0, ∀t ≥ 0, tk(t) ∈ L1((0,+∞),R) and
∫ +∞

0
k(t)dt = 1.

Similarly a function G, defined as the spatial averaging kernel, informs that this delay is given and enjoys85

the following equalities:86 ∫
Ω

G(x, y, t)dx =

∫
Ω

G(x, y, t)dy = 1.

For example, G(x, y, t) is the Green’s function of the operator ∂
∂t −D3∆ subject to homogeneous Neumann87

boundary condition, and k(t) = 1
τe−t/τ with a constant τ representing the delay.88

We assume that humans at a typical time s (with s < t) made a contribution so that the sale of poultry89

or the harvesting of eggs can take place at time t. To quantify this contribution, we first multiply the90
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density at time s by the function k(t−s), because they have contributed at time t−s. Knowing that humans91

located at the point x at time t could have been anywhere in the industrial area at the previous instant92

s, we will now need to multiply this density by a function in space G(x, y, t − s). Thus, the dynamics of93

human population is given by the following system:94 

∂S
∂t
−D3∆S = B + aE + γI − δS −

S
N

∫
Ω

∫ t

−∞

G(x, y, t − s)k(t − s)(τvY + τeC)(y, s)dsdy,

∂E
∂t
−D4∆E =

S
N

∫
Ω

∫ t

−∞

G(x, y, t − s)k(t − s)(τvY + τeC)(y, s)dsdy − (a + δ + ε)E,

∂I
∂t
−D5∆I = εE − (γ + ρ + δ)I.

(2.2)

The term95 ∫
Ω

∫ t

−∞

G(x, y, t − s)k(t − s)(τvY + τeC)(y, s)dsdy,

with96

G(x, y, t − s)k(t − s) ≥ 0, x, y ∈ Ω, t > 0,

accounts for the infection of individuals to their present position at time t, caused by the asymptomatic97

poultry and the infected aerosol from all possible positions at all previous times [6, 7, 8].98

2.1.3. Virus concentration dynamics99

Since an emission rate for pathogens is defined as an amount released per unit of time, it depends100

on source type (pigs, poultry, industrial, humans, etc.), source characteristics (e.g., stable construction or101

animal activity), excretion route (e.g., exhaled air or feces), pathogen species or strain, particle size, etc.102

For a full quantitative risk assessment, quantified emission rates are required. Hence, the contribution103

by humans and poultry in the contamination of the poultry farm is respectively φ1I and φ2Y; and the104

degradation or decontamination rate of viruses (inactivation) due to the temperature or humidity is ξ.105

It is worth stressing on the fact that the contribution of humans to the contamination of the environment106

can be neglected because of the precautions (disinfection, wearing of protective equipments) taken by107

poultry producers to prevent visitors from spreading the viruses in their farms. So we assume that only108

infected poultry can contaminate their living environment through feces and sneezing. If in addition109

we neglect the diffusion of avian influenza viruses in the living environment of the poultry, then the110

dynamics of their concentration is modeled by the following equation:111

∂C
∂t

= φ2Y − ξC. (2.3)

So, in the above described framework, the full model governing the dynamics of avian-human influenza112

is the following partially degenerated reaction-diffusion system:113 

∂X
∂t
−D1∆X = (1 − q)A − βvX

Y
1 + αY

− βeX
C

C + κ
− dX,

∂Y
∂t
−D2∆Y = qA + βvX

Y
1 + αY

+ βeX
C

C + κ
− dY,

∂S
∂t
−D3∆S = B + aE + γI − δS −

S
N

∫
Ω

∫ t

−∞

G(x, y, t − s)k(t − s)(τvY + τeC)(y, s)dsdy,

∂E
∂t
−D4∆E =

S
N

∫
Ω

∫ t

−∞

G(x, y, t − s)k(t − s)(τvY + τeC)(y, s)dsdy − (a + δ + ε)E,

∂I
∂t
−D5∆I = εE − (γ + ρ + δ)I,

∂C
∂t

= φ2Y − ξC,

(2.4)
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for t > 0, x ∈ Ω. We emphasize that, the reaction part of system (2.4) corresponds the model we have114

proposed and studied in [4]. Therefore, the system (2.4) is its substantial extension and its analytical115

analysis calls for different mathematical techniques and approaches, as one will notice shortly. The116

parameters of the model (2.4), their biological significance and unit are gathered in Table 1.

Table 1: Biological significance of the parameters of PDE-model (2.4)–(2.6).
Parameters Biological significance Units

q Proportion of asymptomatic imported poultry no unit
a Recovery rate of the latent humans week−1

A Numbers of imported poultry ind/week
γ Recovery rate of the infected humans week−1

βv Direct contact rate in poultry host ( ind.week)−1

ρ Disease-related death rate week−1

βe Indirect contact rate in poultry host week−1

D1 Diffusion coefficient for susceptible poultry no unit
d Natural death rate of poultry week−1

D2 Diffusion coefficient for infected poultry no unit
α Parameter of the inhibitory effort ind−1

D3 Diffusion coefficient for susceptible humans no unit
B Recruitment rate for humans ind/week

D4 Diffusion coefficient for latent humans no unit
τv Transmission rate of AIV from poultry to human week−1

ε Morbidity of the latent humans week−1

δ Natural death rate of humans week−1

κ Half saturation rate (eID50) g.m3

ξ Degradation rate of virus week−1

τe Transmission rate of AIV from environment to human ind /(g.m3.week)
φ2 Emission rate of poultry g.m3/(ind.week)
D5 Diffusion coefficient for infected humans no unit
τ Delay parameter no unit

117

We assume that during an epidemic, the borders between cities are closed. Thus, the sale and118

consumption (of hens or eggs) will only take place in the industrial area, that is, humans and poultry119

are banned to leave their industrial zone. So we use the homogeneous Neumann boundary conditions120

∂X
∂η

=
∂Y
∂η

=
∂S
∂η

=
∂E
∂η

=
∂I
∂η

= 0, t > 0, x ∈ ∂Ω, (2.5)

and initial conditions121 {
X(x, 0) = ϕ1(x), S(x, 0) = ϕ2(x), E(x, 0) = ϕ3(x), I(x, 0) = ϕ4(x),
Y(x, θ) = ϕ5(x, θ), C(x, θ) = ϕ6(x, θ), (x, θ) ∈ Ω × (−∞, 0).

(2.6)

Here η is the outward unit normal vector on the boundary and ∆ is the usual Laplace operator. The122

positive constants D1 and D2 are the diffusion coefficients for poultry; D3, D4 and D5 are the diffusion123

coefficients for humans. The initial function ϕi for i ∈ {1 · · · 6} is nonnegative, Hölder continuous and124

satisfies ∂ϕi
∂η = 0 on the boundary.125

2.2. Uniform bound126

In this section, we provide an in-depth study of the dynamics of the initial boundary value problem127

(IBVP) (2.4)-(2.6) which yields various outcomes. Precisely, we prove the existence, uniqueness, positivity128
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and boundedness of the solution for the IBVP (2.4)-(2.6). This is done by combining the variational129

method and semigroup techniques to some useful functional analysis arguments.130

2.2.1. Local existence and uniqueness for the IBVP131

We rewrite (2.4) in the following compact form:132 
∂u
∂t

+ Apu = f (u1,u2, · · · ,u6) in Ω × (0,+∞),
∂ui

∂η
= 0 on ∂Ω × (0,+∞), ∀i ∈ {1, 2, 3, 4, 5}

ui = ϕi in Ω × (−∞, 0], ∀i ∈ {1, 2, 3, 4, 5, 6},

(2.7)

where u = (u1,u2,u3,u4,u5,u6)t = (X,Y,S,E, I,C)t,133

Ap = diag{−D1∆ + d,−D2∆ + d,−D3∆ + δ,−D4∆ + (a + δ + ε),−D5∆ + (γ + ρ + δ), ξ}134

and f = ( f1, f2, f3, f4, f5, f6)t with135

f1 = (1 − q)A − βvX
Y

1 + αY
− βeX

C
C + κ

,

f2 = qA + βvX
Y

1 + αY
+ βeX

C
C + κ

,

f3 = B + aE + γI −
S
N

∫
Ω

∫ t

−∞

G(x, y, t − s)k(t − s)(τvY + τeC)(y, s)dsdy,

f4 =
S
N

∫
Ω

∫ t

−∞

G(x, y, t − s)k(t − s)(τvY + τeC)(y, s)dsdy,

f5 = εE,
f6 = φ2Y.

The following Lemma is instrumental for Proposition 2.2 below.136

Lemma 2.1. [9] Let K(x, y, t) = G(x, y, t)k(t), x, y ∈ Ω ⊂ R3, where k(t) ≥ 0 and G(x, y, t) is the solution to137

∂G
∂t

= D2∇
2G,

∂G
∂η

= 0 on ∂Ω, G(x, y, 0) = δ(x − y). (2.8)

Then138 ∥∥∥∥∥∥
∫

Ω

∫ t

−∞

K(x, y, t − s)u(y, s)dsdy

∥∥∥∥∥∥
2
≤

∫ t

−∞

k(t − s)‖u(·, s)‖2ds

for any function u(x, t) such that ∂u/∂η = 0 on ∂Ω.139

The local existence result for the PDE system (2.7) can be established under the following condition on140

f .141

Proposition 2.2. Let T > 0. If f : C
(
(−∞; T];C(Ω;R6)

)
→ L2(Ω;R6), then f is uniformly Lipschitz continuous142

on every bounded subset of C
(
(−∞; T];C(Ω;R6)

)
.143

Proof. Set u, v ∈ C
(
(−∞; T];C(Ω;R6)

)
such that u = (X1,Y1,S1,E1, I1,C1), v = (X2,Y2,S2,E2, I2,C2) and144

‖ui‖C(Ω;R) ≤ Tm, ∀i ∈ {1, 2} , ‖ui‖C(Ω;R) ≤ Um, ∀i ∈ {3, 4, 5} and ‖u6‖C(Ω;R) ≤ Vm,
145

‖vi‖C(Ω;R) ≤ Tm, ∀i ∈ {1, 2} , ‖vi‖C(Ω;R) ≤ Um, ∀i ∈ {3, 4, 5} and ‖v6‖C(Ω;R) ≤ Vm.

Recall that146

‖u‖C(Ω;R6) =

6∑
j=1

∥∥∥u j
∥∥∥
C(Ω;R) ,

∥∥∥ f (u) − f (v)
∥∥∥

2 =


6∑

j=1

∥∥∥ f j(u) − f j(v)
∥∥∥2

L2(Ω;R)


1
2

. (2.9)
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Then147 ∥∥∥ f1(u) − f1(v)
∥∥∥

L2(Ω;R) ≤ L1
1 ‖X1(·, s) − X2(·, s)‖C(Ω;R) + L1

2 ‖Y1(·, s) − Y2(·, s)‖C(Ω;R)
+L1

3 ‖C1(·, s) − C2(·, s)‖C(Ω;R) ,

≤ L1 sups≤T ‖X1(·, s) − X2(·, s)‖C(Ω;R)
+L1 sups≤T ‖Y1(·, s) − Y2(·, s)‖C(Ω;R)
+L1 sups≤T ‖C1(·, s) − C2(·, s)‖C(Ω;R) ,

where the non-vanishing L1
j for all j ∈ {1, 2, 3, 4, 5, 6} are148

L1
1 = βvTm + βeκVm + αβvT2

m + βeV2
m , L1

2 = βvTm , L1
3 = βeκTm

and149

L1 = max
{
L1

1,L
1
2,L

1
3

}
.

Similarly, there exist L2,L3,L5,L6 > 0 such that:150 ∥∥∥ f2(u) − f2(v)
∥∥∥

L2(Ω;R) ≤ L2
1 ‖X1 − X2‖C(Ω;R) + L2

2 ‖Y1 − Y2‖C(Ω;R)
+L2

3 ‖C1 − C2‖C(Ω;R) ,

≤ L2 sups≤T ‖X1(·, s) − X2(·, s)‖C(Ω;R)
+L2 sups≤T ‖Y1(·, s) − Y2(·, s)‖C(Ω;R)
+L2 sups≤T ‖C1(·, s) − C2(·, s)‖C(Ω;R) ,

151 ∥∥∥ f5(u) − f5(v)
∥∥∥

L2(Ω;R) ≤ ε ‖E1 − E2‖C(Ω;R) ,

= L5 sups≤T ‖E1(·, s) − E2(·, s)‖C(Ω;R) ,
152 ∥∥∥ f6(u) − f6(v)

∥∥∥
Lp(Ω;R) ≤ φ2 ‖Y1 − Y2‖C(Ω;R) ,

= L6 sups≤T ‖Y1(·, s) − Y2(·, s)‖C(Ω;R) ,
153 ∥∥∥ f3(u) − f3(v)

∥∥∥
L2(Ω;R) ≤ L3 sup ‖Y1(·, s) − Y2(·, s)‖C(Ω;R)

+L3 sup ‖C1(·, s) − C2(·, s)‖C(Ω;R)
+L3 sup ‖E1(·, s) − E2(·, s)‖C(Ω;R)
+L3 sup ‖I1(·, s) − I2(·, s)‖C(Ω;R)
+L3 sup ‖S1(·, s) − S2(·, s)‖C(Ω;R) , ∀s ≤ T.

.

Here154

L2 = max
{
L2

1,L
2
2,L

2
3

}
, L3 = max

{
L3

1,L
3
2,L

3
3,L

3
4,L

3
5

}
, L5 = ε, L6 = φ2,

155

L2
1 = βvTm + βeκVm + αβvT2

m + βeV2
m , L2

2 = βvTm, L2
3 = βeκTm, L3

1 = 3τvU2
m, L3

2 = 3τeU2
m,

156

L3
3 = 4Um(τvTm + τeVm), L3

4 = Um(τvTm + τeVm) + a, L3
5 = Um(τvTm + τeVm) + γ.

In the same manner, there exists L4 > 0 such that:157 ∥∥∥ f4(u) − f4(v)
∥∥∥

L2(Ω;R) ≤ L4 sup ‖Y1(·, s) − Y2(·, s)‖C(Ω;R)
+L4 sup ‖C1(·, s) − C2(·, s)‖C(Ω;R)
+L4 sup

∥∥∥E1(·,s) − E2(·, s)
∥∥∥
C(Ω;R)

+L4 sup ‖I1(·, s) − I2(·, s)‖C(Ω;R)
+L4 sup ‖S1(·, s) − S2(·, s)‖C(Ω;R) , ∀s ≤ T.

Here,158

L4 = max
{
L4

1,L
4
2,L

4
3,L

4
4,L

4
5

}
, L4

1 = 3τvU2
m, L4

2 = 3τeU2
m, L4

3 = 2Um(τvTm + τeVm),
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159

L4
4 = Um(τvTm + τeVm).

Finally, setting K = max{L1,L2,L3,L4,L5,L6}, it follows that160

∥∥∥ f (u) − f (v)
∥∥∥

2 =
{∑6

j=1

∥∥∥ f j(u) − f j(v)
∥∥∥2

L2(Ω;R)

} 1
2
,

≤ K
∑6

j=1 sups≤T

∥∥∥u j(·, s) − v j(·, s)
∥∥∥
C(Ω;R) ,

= K sups≤T ‖u(·, s) − v(·, s)‖C(Ω;R6) .

161

Ap is a closed linear operator in L2(Ω;R6), whose domain is given by162

D(Ap) =

{
u = (u1,u2,u3,u4,u5,u6)t

∈W2,2(Ω;R6),
∂ui

∂η
= 0 on ∂Ω ∀i ∈ {1, 2, 3, 4, 5}

}
.

From [10], it is well known that −Ap generates an analytic semi-group of bounded linear operators163

G(t) =
{
exp(−tAp)

}
t≥0

on L2(Ω;R6).

For each 0 < α < 1, we introduce the fractional power space D(Aα
p ) equipped with the graph norm of164

Aα
p = −∆ + αI165

‖u‖2,α = ‖u‖2 +
∥∥∥Aα

p u
∥∥∥

2
for u ∈ D(Aα

p ).

We rewrite (2.4) in the following abstract form:166  du(t)
dt

+ Apu(t) = f (ut), 0 < t < ∞

u(t) = ϕ(t), −∞ < t ≤ 0,
(2.10)

where u = (u1,u2, · · · ,u6, )t and ut(θ) = u(t + θ) for θ ∈ (−∞, 0].167

Lemma 2.3. ([10]) D(Aα
p ) ↪→ Cµ(Ω;R6), if α > 3/4 and 0 ≤ µ < 2α − 3

2 .168

here ↪→ means that the inclusion is continuous. Hence, for 3/4 < α < 1, there exists a positive number169

cα satisfying170

‖u‖C(Ω;R6) +

n∑
i=1

∥∥∥∥∥ ∂u
∂xi

∥∥∥∥∥
C(Ω;R6)

≤ cα ‖u‖2,α , ∀u ∈ D(Aα
p ). (2.11)

171

Proposition 2.4. [11] Assume that the initial functionϕ satisfiesϕ = (ϕ1, ϕ2, · · · , ϕ6)t
∈ Cσ

(
(−∞,T];C(Ω;R6)

)
,172

with 0 < σ < 1. Then,173

sup
t≤0

∥∥∥ϕ(t)
∥∥∥
C(Ω;R6) + sup

t,s≤0 , t,s

∥∥∥ϕ(t) − ϕ(s)
∥∥∥
C(Ω;R6)

|t − s|σ
< ∞. (2.12)

Corollary 2.5. ([10]) Let G be the analytic semigroup generated by −Ap: The following properties hold for the174

semigroup G and the fractional power space D(Aα
p ) :175

(1) G(t) : L2(Ω) −→ D(Aα
p ) ∀t > 0,176

(2)
∥∥∥Aα

p G(t)u
∥∥∥

2
≤Mαt−αeνt

‖u‖2, ∀t > 0, α ≥ 0 and u ∈ L2(Ω;R6),177

(3) ‖(G(t) − I)u‖2 ≤
1
αM1−αtα

∥∥∥Aα
p u

∥∥∥
2
∀t > 0 , 0 < α ≤ 1 and u ∈ L2(Ω;R6),178

(4) G(t)Aα
p u = Aα

p G(t)u, ∀ t > 0, u ∈ D(Aα
p ).179

Here Mα and ν are some positive numbers.180
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Theorem 2.6. Assume Proposition 2.2 and 3/4 < α < 1 hold true. Then, for each ϕ satisfying (2.12) and181

ϕ(0) ∈ D(Aα
p ), there exists a positive number T such that (2.10) has a unique strong solution u on (−∞,T]182

satisfying u ∈ C
(
[0,T]; D(Aα

p )
)
.183

Proof. It is easy to see that184

u(t) = G(t)ϕ(0) +

∫ t

0
G(t − s) f (us)ds, (2.13)

for t ≥ 0 is a mild solution of (2.10).185

Let r denote a sufficiently large number satisfying r >
∥∥∥ϕ(0)

∥∥∥
2,α and Q the complete metric space186

Q =

{
u ∈ C

(
[0,T]; D(Aα

p )
)

; u(0) = ϕ(0) and sup
0≤s≤T

∥∥∥u(s) − ϕ(0)
∥∥∥

2,α ≤ r
}
.

For u ∈ Q, define P(u) : [0,T]→ C(Ω;R6) by187

P(u)(t) = G(t)ϕ(0) +

∫ t

0
G(t − s) f (us)ds f or 0 ≤ t ≤ T.

We show that P maps Q into itself, and is a strict contraction.188

By virtue of Proposition 2.2, Corollary 2.5 and (2.11), we have:189 ∥∥∥P(u)(t) − ϕ(0)
∥∥∥

2,α ≤
1
α

M1−αtα
∥∥∥ϕ(0)

∥∥∥
2,α

+eνt

M0cαr + M0
∥∥∥ f (u0)

∥∥∥
2

ν
+

Mαcαr + Mα

∥∥∥ f (u0)
∥∥∥

2

1 − α
t1−α

 .
Thus, for 0 < t < T1 < T such that190

1
α

M1−αTα1
∥∥∥ϕ(0)

∥∥∥
2,α + eνT1

M0cαr + M0
∥∥∥ f (u0)

∥∥∥
2

ν
+

Mαcαr + Mα

∥∥∥ f (u0)
∥∥∥

2

1 − α
T1−α

1

 ≤ r,

we conclude that P maps Q into itself.191

Similarly, we obtain192

‖P(u)(t) − P(v)(t)‖2,α ≤ Kcαeνt
{M0

ν
+

Mα

1 − α
t1−α

}
sup0≤s≤t ‖u(s) − v(s)‖2,α ,

for all u, v ∈ Q. It follows that ‖P(u)(t) − P(v)(t)‖2,α ≤
1
2

sup0≤s≤T2
‖u(s) − v(s)‖2,α for 0 < t < T2 < T such193

that194

KcαeνT2

{M0

ν
+

Mα

1 − α
T1−α

2

}
≤

1
2
.

Therefore, P is a strict contraction mapping Q into itself if T = min{T1; T2} is sufficiently small. Hence,195

applying the fixed point Theorem shows that (2.13) has a unique solution u ∈ C
(
(−∞,T];C(Ω;R6)

)
∩196

C
(
[0,T]; D(Aα

p )
)
.197

We prove that this solution u actually satisfies (2.10). It is well known (see [10]) that, if f (ut) :198

(0,T] → L2(Ω;R6) is Hölder continuous, the function u given by (2.13) is a strong solution of (2.10).199

Therefore, in view of Proposition 2.2 and Equation (2.12), it suffices to show the Hölder continuity of200

u : [0,T]→ C(Ω;R6). For this purpose, we employ the method used in [12].201
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Let t, t + h ∈ [0,T] with h > 0. From (2.13) we have202

u(t + h) − u(t) = G(t + h)ϕ(0) +
∫ t+h

0 G(t + h − s) f (us)ds

−G(t)ϕ(0) +
∫ t

0 G(t − s) f (us)ds,

= G(t)[G(h) − I]u0 +
∫ t+h

t G(t + h − s) f (us)ds
+

∫ t
0 G(t − s) f (us)[G(h) − I]ds,

= I1 + I2 + I3.

For any 0 ≤ β < α, each Aβ
p will be estimated separately. we have,203

Aβ
pI1 =

∫ t+h
t Aβ

p
d
ds exp(−sAp)ϕ(0)ds = −

∫ t+h
t Aβ

p exp(−sAp)Apϕ(0)ds = −
∫ t+h

t A1+β−α
p exp(−sAp)Aα

pϕ(0)ds.

It follows from Corollary 2.5 that if 0 < δ < 1 − β with 0 < δ ≤ 1, then:204 ∥∥∥∥Aβ
pI1

∥∥∥∥
2
≤M1+β−α

∥∥∥Aα
pϕ(0)

∥∥∥
2

eνT
(
(t + h)α−β − tα−β

)
≤ C1hα−β, (2.14a)

205 ∥∥∥∥Aβ
pI2

∥∥∥∥
2
≤Mβ

(
KMαcαr +

∥∥∥ f (u0)
∥∥∥

2

) ∫ t+h

t
(t + h − s)−βeν(t+h−s)ds ≤ C2h1−β, (2.14b)

206 ∥∥∥∥Aβ
pI3

∥∥∥∥
2
≤Mβ+δ

1
δ

M1−δhδ
(
KMαcαr +

∥∥∥ f (u0)
∥∥∥

2

) ∫ t

0
(t − s)−(β+δ)eν(t−s)ds ≤ C3hδ. (2.14c)

These estimates (2.14a)–(2.14c) yield the Hölder continuity of Aβ
pu : [0,T] → L2(Ω;R6), with exponent207

α − β for any 0 ≤ β < α. This fact together with Lemma 2.3 imply that u ∈ Cα−β
(
[0,T];C(Ω;R6)

)
for208

3/4 < β < α. Thus the proof is complete.209

2.2.2. Positivity of solutions for the IBVP210

We rewrite the IBVP (2.4)-(2.6) in the form:211 
∂u
∂t
−D∆u + g(u)u = f (u) in Ω × (0,T),

∂u
∂η

= 0 on ∂Ω × (0,T),

u(x, θ) = uθi in Ω × (−∞, 0],

(2.15)

where u = (u1,u2,u3,u4,u5,u6)t = (X,Y,S,E, I,C)t,212

g(u) = diag(g1, g2, g3, g4, g5, g6), f (u) = ( f1, f2, f3, f4, f5, f6)t,D = diag(D1,D2, · · · ,D5, 0),213

with g1 = βv
u2

1 + αu2
+ βe

u6

u6 + κ
+ d , g2 = −βv

u1

1 + αu2
+ d,214

g3 = δ +
1

u3 + u4 + u5

∫
Ω

∫ t
−∞

G(x, y, t − s)k(t − s)(τvu2 + τeu6)(y, s)dsdy,215

g4 = (a + δ + ε), g5 = (γ + ρ + δ), g6 = ξ, f1 = (1 − q)A,216

f2 = qA + βe
u1u6

κ + u6
, f5 = εu4 , f3 = B + au4 + γu5 , f6 = φ2u2,217

f4 =
u3

u3 + u4 + u5

∫
Ω

∫ t
−∞

G(x, y, t − s)k(t − s)(τvu2 + τeu6)(y, s)dsdy.218

Note that Di > 0, for i = {1, 2, .., 5}. Denote H = L2(Ω) and V = H1(Ω). Following [13], define the219

Hilbert space220

W(0,T,V,V′) =

{
u ∈ L2((0,T),V) /

∂u
∂t
∈ L2((0,T),V′)

}
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equipped with the norm221

‖u‖2W(0,T,V,V′) = ‖u‖2L2((0,T),V) +

∥∥∥∥∥∂u
∂t

∥∥∥∥∥2

L2((0,T),V′)
,

and the following hypotheses for initial conditions:222

uθ1,uθ2,uθ6 ∈ L∞(Ω) , uθi ∈ H for i ∈ {3, 4, 5} , uθi ≥ 0 for i ∈ {1, ..., 6}. (2.16)

Moreover, define223

a(u, v) =

n∑
j=1

∫
Ω

∂u
∂x j

∂v
∂x j

dx. (2.17)

The variational parabolic problem associated to the triple (H ,V, a(t, ·, ·)) , is224  d
dt

(u(t), v)H + Da(u(t), v) + (g(ut)u(t), v)H = ( f (ut), v) ∀v ∈ V.

u(θ) = uθi,
(2.18)

Given f (ut) ∈ L2((0,T),V′) and uθi ∈ H , there exists u ∈ W(0,T,V,V′) such that (2.18) holds, since this225

problem is equivalent to (2.10).226

Proposition 2.7. [13] For u0 ∈ H and f ∈ L2((0,T),V′), Problem (2.18) which consists in finding u ∈227

W(0,T,V,V′) such that228

du
dt

+ Apu = f , with u(0) = u0, (2.19)

admits a unique solution given by229

u(t) = G(t)u0 +

∫ t

0
G(t − s) f (us)ds. (2.20)

We first present a positivity lemma, which can be found in any standard textbook on PDE.230

Lemma 2.8. [14] Let ui ∈ C(Ω × [0,T]) ∩ C2,1(Ω × (0,T)) be such that231 
∂ui

∂t
−D∆ui + ciui ≥ 0 in Ω × (0,T],

∂ui

∂η
≥ 0 on ∂Ω × (0,T],

ui(x, 0) = u0
i (x) ≥ 0 x ∈ Ω,

(2.21)

and ci ≡ ci(x, t) is a bounded function in Ω × [0,T], D>0. Then ui(x, t) ≥ 0 in Ω × [0,T]. Moreover232

ui(x, t) > 0 in Ω × (0,T] unless it is identically zero.233

As a consequence of Lemma 2.8, we have the following positivity result.234

Lemma 2.9. Any solution of (2.4)–(2.6) with a non negative initial function is positive.235

Proof. Here, one approaches the solution of (2.15) by a sequence of solutions (un
i ) of linear equations.236

For n = 0, u0
i denotes the solution of237 

∂u0
i

∂t
−Di∆u0

i = 0 in Ω × (0,T),

∂u0
i

∂η
= 0 on ∂Ω × (0,T],

u0
i (θ) = uθi in Ω × (−∞, 0].

(2.22)
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This equation admits a strong solution and u0
i ≥ 0. By induction, un

i denotes the solution of238 
∂un

i

∂t
−Di∆un

i + gi(un−1)un
i = fi(un−1) in Ω × (0,T),

∂un
i

∂η
= 0 on ∂Ω × (0,T],

un
i (θ) = uθi in Ω × (−∞, 0].

(2.23)

Suppose that there exists a unique nonnegative solution un−1. Assuming by induction that u j
i ≥ 0 for239

0 ≤ j ≤ n − 1, we have240

0 ≤ βv
un−1

2

1 + αun−1
2

≤ βv and 0 ≤ βe
un−1

6

un−1
6 + κ

≤ βe,

which implies that241

d ≤ g1(un−1) ≤ βv + βe + d. (2.24)

Note that fi(un−1) ≥ 0 for all i. Since g4, g5 and g6 are constants , we have gi(un−1) ∈ L∞(Ω × (0,T)) for242

i ∈ {1, 4, 5, 6}. It remains to show that gi(un−1) ∈ L∞(Ω × (0,T)) for i ∈ {2, 3}.243

For this, we need to prove that un
i ∈ L∞((0,T); L∞(Ω)), for i ∈ {1, 2, 6}.244

• Case of u0
i245

Let k ∈ N∗. We multiply the first equality in (2.22) by (u0
i )2k−1, integrate over Ω and use Green246

formula, to get247

1
2k

d
dt

∫
Ω

(u0
i )2kdx + Di(2k − 1)

∫
Ω

(u0
i )2k−2

|∇u0
i |

2dx −Di

∫
∂Ω

∂u0
i

∂η
u0

i dη = 0. (2.25)

Then we have248

1
2k

d
dt

∫
Ω

(u0
i )2kdx ≤ 0. (2.26)

By integrating over (θ, t), we obtain249

‖u0
i (t)‖L2k(Ω) ≤ ‖u

0
i (θ)‖L2k(Ω). (2.27)

When k tends to∞, we obtain,250

‖u0
i (t)‖L∞(Ω) ≤ ‖uθi‖L∞(Ω). (2.28)

This implies that u0
i ∈ L∞((0,T); L∞(Ω)).251

• Case of un
i with n ∈N∗252

By induction, we suppose that u0
i ,u

1
i , · · · ,u

n−1
i ∈ L∞((0,T); L∞(Ω)).253

For i ∈ {1, 6} we multiply the first equality in (2.23) by (un
i )2k−1, integrate over Ω and use Green254

formula, to have255

1
2k

d
dt

∫
Ω

(un
i )2kdx + Di(2k − 1)

∫
Ω

(un
i )2k−2

|∇un
i |

2dx

+
∫
Ω

gi(un−1)(un
i )2kdx

=
∫
Ω

fi(un−1)(un
i )2k−1dx.

Then we have256

1
2k

d
dt

∫
Ω

(un
i )2kdx ≤ 0. (2.29)

By integrating over (θ, t), we obtain257

‖un
i (t)‖L2k(Ω) ≤ ‖u

0
i (θ)‖L2k(Ω). (2.30)
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When k tends to∞, we get,258

‖un
i (t)‖L∞(Ω) ≤ ‖uθi‖L∞(Ω). (2.31)

This implies that un
i ∈ L∞((0,T); L∞(Ω)).259

Remark 2.10. Since the function g2(un−1) is undervalued, we make the change wn
2 = e−λtun

2 , to obtain:260

∂wn
2

∂t
−D2∆wn

2 + (λ + g2(eλtwn−1)wn
2 = fi(eλtwn−1)e−λt. (2.32)

We can choose λ ≥ 0 such that261

λ + g2(eλtwn−1) ≥ 0.

Doing the same manipulation as before, we obtain262

‖wn
i (t)‖L∞(Ω) ≤ ‖wθi‖L∞(Ω) ≤ ‖uθi‖L∞(Ω). (2.33)

As a result, we obtain that wn
2 ∈ L∞((0,T); L∞(Ω)) and since un

2 = eλtwn
2 , we have un

2 ∈ L∞((0,T); L∞(Ω)).263

As un
i ∈ L∞((0,T); L∞(Ω)) for i ∈ {1, 2, 6} and ∀n ∈Nwe have264

d − βvTm ≤ g2(un−1) ≤ d and δ ≤ g3(un−1) ≤ τvVm + τeUm + δ, (2.34)

since
∫
Ω

∫ t
−∞

G(x, y, t − s)k(t − s)dsdy = 1.265

Conclusion 1. It then follows that gi(un−1) ∈ L∞(Ω × (0,T)) for all i. Thus, by Lemma 2.8, un
i ≥ 0.266

Let us show that the sequence is bounded. From (2.18), we have267

∂
∂t

(
un

i , v
)
H

+ Dia
(
un

i , v
)

+
(
gi(un−1)un

i , v
)
H

=
〈

fi(un−1), v
〉

∀v ∈ V. (2.35)

Since268

∂
∂t

(
un

i , v
)
H

=

〈
∂un

i

∂t
, v

〉
, (2.36)

by density and choosing v = un
i , we have269 〈
∂un

i

∂t
,un

i

〉
=

1
2

d
dt

(
un

i (t),un
i (t)

)
H

=
1
2

d
dt
‖un

i (t)‖2
H
. (2.37)

Hence,270

1
2

d
dt
‖un

i ‖
2
H

+ Dia
(
un

i ,u
n
i

)
+

(
gi(un−1)un

i ,u
n
i

)
H

=
〈

fi(un−1),un
i

〉
. (2.38)

For i ∈ {1, 3, 4, 5, 6}, the form Dia is V-coercive that is, there exists α > 0 such that Dia(u,u) ≥ α‖u‖2
V

for271

all v inV. Moreover gi are bounded, that is there exists l1, l2 > 0 such that l1 ≤ gi(u) ≤ l2, for all u ≥ 0.272

Therefore,273

1
2

d
dt
‖un

i ‖
2
H

+ α‖un
i ‖

2
V

+ l1‖un
i ‖

2
H
≤ ‖ fi(un−1)‖V′‖un

i ‖V. (2.39)

Then by the Young inequality, we have274

1
2

d
dt
‖un

i ‖
2
H

+ α‖un
i ‖

2
V

+ l1‖un
i ‖

2
H
≤

1
2ε1
‖ fi(un−1)‖2

V′
+
ε1

2
‖un

i ‖
2
V
. (2.40)

We take ε1 small enough such that α − (ε1/2) = ε2.275
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Hence276
1
2

d
dt
‖un

i ‖
2
H

+ ε2‖un
i ‖

2
V

+ l1‖un
i ‖

2
H
≤

1
2ε1
‖ fi(un−1)‖2

V′
. (2.41)

Therefore by integration, one has277

1
2‖u

n
i (t)‖2

H
+ ε2

∫ t
θ
‖un

i (s)‖2
V

ds + l1
∫ t
θ
‖un

i (s)‖2
H

ds ≤
1

2ε1

∫ t
θ
‖ fi(un−1)‖2

V′
ds + 1

2‖u
n
i (θ)‖2

H
. (2.42)

278

Remark 2.11. For i=2, we make the following change of variable wn
2 = e−λtun

2 where we can take λ = β1 + β2.279

Taking into account the fact that g2 is bounded and that the form Dia is H-coercive, we have the same result as280

(2.42).281

As f1(u) = (1 − q)A, we deduce that (un
1) remains bounded in C0([0; T],H) and L2((0; T),V). As f2(u) =282

qA + βe
u1u6

κ + u6
, we get f2(un−1) ≤ qA + βeun−1

1 , which remains bounded in L2((0; T),V). Therefore, un
2 has283

the same property as un
1 . The same result holds for un

6 , because f6(un−1) = φ2un−1
2 .284

We have f4(u) =
u3

u3 + u4 + u5

∫
Ω

∫ t
−∞

G(x, y, t − s)k(t − s)(τvu2 + τeu6)(y, s)dsdy. Therefore, f4(un−1) ≤285 ∫
Ω

∫ t
−∞

G(x, y, t − s)k(t − s)(τvun−1
2 + τeun−1

6 )(y, s)dsdy, which remains bounded in L2((0; T),V). A similar286

result holds for un
5 , because f5(un−1) = εun−1

4 . Since f3 = B + au4 + γu5, we have the same conclusion for287

un
3 .288

Now, we deduce that for the positive bounded sequence
(
un

i

)
n≥0

one can extract subsequence
(
um

i

)
m≥0

289

which converges uniformly for almost all t by some compact operator in C0([0; T],H) to ui. Applying290

Proposition 2.7, for all n it holds that291

un
i (t) =

∫ t

0
Gi(t − s)qn

i (s)ds + Gi(t)uθi, (2.43)

where Gi(t) is the semigroup generated by the unbounded operator −DiAp. Let us denote292

qn
i (s) = −gi(un−1(s))un

i (s) + fi(un−1(s)). (2.44)

We deduce that qn
i ∈ L2((0; T),V).293

Moreover, the sequence
(
un

i

)
n≥0

is bounded in C0([0; T],H), which implies that the sequence
(
qn

i

)
n≥0

294

is bounded in C0([0; T],H) for all i.295

Then, we can conclude by showing that operator Gi which maps C0([0; T],H) into C0([0; T],H) and296

given by297

G
n
i ( f ) =

∫ t

0
Gi(t − s) f (s)ds, (2.45)

is compact.298

Considering the triple
(
L2(Ω),H1(Ω), a

)
, the unbounded variational operator Ap associated to a is a299

positive symmetric operator with compact resolvent. It admits a sequence (λk)k≥0 of positive eigenvalues300

with limk→+∞ λk = ∞ and a Hilbert basis (ek)k≥0 ofH consisting of eigenvectors of Ap. Since (G(t))t>0 is301

the semigroup generated by −Ap, then for all u0 ∈ H ,302

Gi(t)u0 =

+∞∑
k=0

e−tDiλk(u0, ek)ek, (2.46)
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which proves that the operator is compact for all t > 0, because303

lim
k→+∞

e−tDiλk = 0. (2.47)

Setting304

GN(t)u =

N∑
k=0

e−tDλk(u, ek)ek, (2.48)

one sees that GN(t) is an operator with finite rank which converges to G(t). The following Theorem is305

relevant in the sequel.306

Theorem 2.12. [13] Let t → G(t) be an application from [0,+∞[ into L(H). One assumes that there exists a307

sequence of operators (GN(t))N≥0 ofH with the following properties:308

(1) : for all N and all t > 0, GN(t) is of finite rank and independent of t,309

(2) : t→ GN(t), is continuous from [0,+∞) into L(H) for all N,310

(3) : for N→∞, GN(t) converges to G(t) in L1(]0,T[,L(H)) for all T > 0.311

Then the operator G is compact from C0([0; T],H) into C0([0; T],H) for all T > 0.312

From Theorem 2.12 since Gi is compact for all i, we have313

un
i (t) = Gi(t)u0

i +Gi(qn
i )(t). (2.49)

Then (un
i )n ≥ 0 belong to a relatively compact set of C0([0; T],H). Therefore from (un

i )n≥0 we can extract314

a subsequence (um
i )m≥0 which converges uniformly to ui ∈ C

0([0; T],H) for each i.315

Conclusion 2.316

um
i −→ ui in C0([0; T],H). (2.50)

Thus, combining Conclusion 1. and Conclusion 2. yield ui ≥ 0 and ui(θ) = uθi.317

2.2.3. Boundedness of the solutions for IBVP318

Lemma 2.13. Let u(x, t) satisfy319 
∂u
∂t
−D∆u = f (u, x, t), in Ω × (0,∞),

u
∂u
∂η
≤ 0, on ∂Ω × (0,∞),

u(x, 0) = u0(x), x ∈ Ω.

(2.51)

where D > 0 and
∥∥∥ f (u, x, t)

∥∥∥ ≤ K ‖u‖. If there exists p with 1 ≤ p < ∞ such that ‖u(x, t)‖Lp(Ω) is uniformly320

bounded for t ≥ 0, then ‖u(x, t)‖Lq(Ω) is uniformly bounded for t ≥ 0, where q = p × 2N,N = 1, 2, .... In particular321

‖u(x, t)‖L∞(Ω) is uniformly bounded for t ≥ 0.322

The following result shows that the solution of (2.4)-(2.6) is uniformly bounded, and global in time.323

Theorem 2.14. Let (X,Y,S,E, I,C) ∈
[
C(Ω × [0,T)) ∩ C2,1(Ω × (0,T))

]6
be the solution of problem (2.4)-(2.6)324

with non-negative non-trivial initial value. Then T = ∞ and there exist M2, M3 and M4 such that:325

0 < X + Y ≤M2, 0 < S + E + I ≤M3 and 0 ≤ C ≤M4 , (x, t) ∈ Ω × (0,∞).
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Proof. Clearly, we have326

∂(X + Y)
∂t

− ∆(D1X + D2Y) = A − d(X + Y), (2.52a)
327

∂(S + E + I)
∂t

− ∆(D3S + D4E + D5I) = B − δ(S + E + I) − ρI ≤ B − δ(S + E + I). (2.52b)

Integrating (2.52a) and (2.52b) over Ω yields328

d
dt

∫
Ω

(X + Y)dx = A|Ω| − d
∫

Ω

(X + Y)dx, (2.53a)

329
d
dt

∫
Ω

(S + E + I)dx ≤ B|Ω| − δ
∫

Ω

(S + E + I)dx. (2.53b)

Applying Gronwall inequality yields330

‖X + Y‖L1(Ω) =
A|Ω|

d
(1 − e−dt) + supθ≤0 ‖ϕ1(·) + ϕ5(·, θ)‖L1(Ω)e−dt,

≤ max
{
supθ≤0 ‖ϕ1(·) + ϕ5(·, θ)‖L1(Ω),

A|Ω|
d

}
,

(2.54a)

331

‖S + E + I‖L1(Ω) ≤
B|Ω|
δ

+
(
‖ϕ2(x) + ϕ3(x) + ϕ4(x)‖L1(Ω) −

B|Ω|
δ

)
e−δt,

≤ max
{
‖ϕ2(x) + ϕ3(x) + ϕ4(x)‖L1(Ω),

B|Ω|
δ

}
.

(2.54b)

According to Lemma 2.13, we obtain the uniform bounds of X,Y,S,E and I.332

Knowing from (2.54a) that Y is bounded, we have

∂C
∂t

= φ2Y − ξC⇒
∂C
∂t
≤

Aφ2|Ω|

d
− ξC.

By the comparison principle333

C(x, t) ≤
Aφ2|Ω|

dξ
+
(

sup
θ≤0

ϕ6(·, θ) −
Aφ2|Ω|

dξ

)
e−ξt
≤ max

{
sup
θ≤0

ϕ6(·, θ),
Aφ2|Ω|

dξ

}
. (2.55)

The proof is completed.334

Moreover, from the above results, we conclude that the solution of IBVP (2.4)–(2.6) enters and stays335

in the region.336

Σ =
{
(X,Y,S,E, I,C) ∈ (Ω ×R+)6 : 0 < X + Y ≤M2 , 0 < S + E + I ≤M3 , 0 ≤ C ≤M4

}
,

where337

M2 = max
{

sup
θ≤0
‖ϕ1(·) + ϕ5(·, θ)‖L∞(Ω),

A|Ω|
d

}
,

338

M3 = max


∥∥∥∥∥∥∥

4∑
k=2

ϕk(x)

∥∥∥∥∥∥∥
L∞(Ω)

,
B|Ω|
δ

 ,
339

M4 = max
{

sup
θ≤0

ϕ6(·, θ),
Aφ2|Ω|

dξ

}
.

Hence the region Σ of biological interest, is positively-invariant under the flow induced by IBVP (2.4)–340

(2.6).341
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3. Asymptotic analysis of the poultry system (when q=0)342

We start by studying the poultry sub-system as it decouples from the human sub-system. It is given343

by:344 

∂X
∂t
−D1∆X = A − βvX

Y
1 + αY

− βeX
C

C + κ
− dX,

∂Y
∂t
−D2∆Y = βvX

Y
1 + αY

+ βeX
C

C + κ
− dY,

∂C
∂t

= φ2Y − ξC,
∂X
∂η

=
∂Y
∂η

= 0,

X(x, 0) = ϕ1(x), Y(x, θ) = ϕ5(x, θ), C(x, θ) = ϕ6(x, θ).

(3.1)

Since the disease starts in poultry population, the basic reproduction number of the full model (2.4) can345

be computed by using the poultry sub-system (3.1). By letting the densities of the diseased compartments346

Y and C be zero, we get P0 =
(A

d
, 0, 0

)
as the disease-free equilibrium of (3.1).347

Let X := C(Ω,R3) be the Banach space, with the usual supremum form ‖.‖X. Define X+ = C(Ω,R3
+).348

Then (X,X+) is a strongly ordered space. Assume that T1(t),T2(t),T3(t) : C(Ω,R) → C(Ω,R) are the C0349

semigroups associated with D1∆− d,D2∆− d and 0×∆− ξ subject to the Neumann boundary condition,350

respectively. It follows that for any ϕ ∈ C(Ω,R), t ≥ 0, one has351

T1(t)ϕ(x) = e−dt
∫
Ω

Γ1(x, y, t)ϕ(y)dy,

T2(t)ϕ(x) = e−dt
∫
Ω

Γ2(x, y, t)ϕ(y)dy,

T3(t)ϕ(x) = e−ξtϕ(x),

where Γ1 and Γ2 are the Green functions associated with D1∆−d,D2∆−d subject to the Neumann bound-352

ary condition, respectively. It follows from [15, Section 7.1 and Corollary 7.2.3] that Ti(t) : C(Ω,R) →353

C(Ω,R) (i = 1, 2, t > 0) is compact and strongly positive. Linearizing (3.1) at the disease-free equilib-354

rium P0, we obtain:355 

∂ω1

∂t
= −

βvA
d
ω2 −

βeA
dκ

ω6 − dω1 + D1∆ω1,

∂ω2

∂t
=

(
βvA

d − d
)
ω2 +

βeA
dκ

ω6 + D2∆ω2,

∂ω6

∂t
= φ2ω2 − ξω6,

(3.2)

subject to the boundary conditions356

∂ω1

∂η
=
∂ω2

∂η
= 0, ∀x ∈ ∂Ω, t > 0,

and initial conditions357

ω1 = ϕ1(x, 0), ω2 = ϕ5(x, θ) and ω6 = ϕ6(x, θ), ∀(x, θ) ∈ Ω × (−∞, 0).

We can observe that the equations for ω2 and ω6, corresponding to the infectious compartments, are358

decoupled from ω1. These two equations form the following cooperative system,359 
∂ω2

∂t
=

(
βvA

d − d
)
ω2 +

βeA
dκ

ω6 + D2∆ω2,

∂ω6

∂t
= φ2ω2 − ξω6,

(3.3)
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supplemented by initial conditions and the boundary condition
∂ω2

∂η
= 0, ∀x ∈ ∂Ω, t > 0. For every360

initial value ϕ = (ϕ1;ϕ2) ∈ X; the solution semiflows Πt : X→ X associated with the linear system (3.3)361

is defined by362

Πt(ϕ) =
(
ω2(., t, ϕ), ω6(., t, ϕ)

)
.

Πt is obviously a positive C0-semigroup on C(Ω,R3) generated by363

B =

(
D2∆ − d 0
φ2 −ξ

)
.

Setting ω2(x, t) = eλ0tϕ1(x), ω6(x, t) = eλ0tϕ2(x), with ϕ = (ϕ1, ϕ2) ∈ X × X and substituting them into the364

equations for ω2 and ω6, we obtain the following eigenvalue problem365 
λ0ϕ1(x) =

(
βvA

d
− d

)
ϕ1(x) +

βeA
dκ

ϕ2(x) + D2∆ϕ1(x),

λ0ϕ2(x) = φ2ϕ1(x) − ξϕ2(x),
∂ϕ1(x)
∂η

= 0, ∀x ∈ ∂Ω, t > 0.

(3.4)

The result below about the existence of the principal eigenvalue of (3.4) follows from [16, Lemma 2.7].366

Lemma 3.1. [16]. Suppose s(B) is the spectral bound ofB. Since all the parameters are constant, then λA
d

= s(B)367

is the principal eigenvalue of the eigenvalue problem (3.4) which has a strongly positive eigenfunction.368

This means that λA
d

is a real eigenvalue with algebraic multiplicity one, and Re(λ) < λA
d

for any other369

eigenvalue λ of (3.4). Furthermore, λA
d

has a corresponding eigenvector ϕ0(x) = (ϕ01, ϕ02) satisfying370

ϕ0(x)� 0, and any other nonnegative eigenvector of (3.4) is a positive multiple of ϕ0(x).371

In the paper by Wang and Zhao [17], the concept of the basic reproduction number is extended372

to reaction-diffusion epidemic systems with Neumann boundary conditions. Based on the theory of373

principle eigenvalues, they defined the basic reproduction number R0 for a reaction-diffusion epidemic374

model as the spectral radius of the "next generator" operator L defined by375

L(ϕ(x)) =

∫
∞

0
F(x)T(t)ϕdt = F(x)

∫
∞

0
T(t)ϕdt. (3.5)

Consequently, they showed that if B = ∇ · (dI∇) − VT then376 ∫
∞

0
T(t)ϕdt = −B−1ϕ, (3.6)

and the next generation operator is377

L = −FB−1. (3.7)

In (3.6) and (3.7), F is the matrix characterizing the generation of secondary infectious cases/agents, and378

VT is the matrix of transition rates between compartments. Both are analogues to the next-generation ma-379

trices associated with the corresponding ODE system (i.e. without diffusion terms). T(t) = (T2(t); T3(t))380

is the solution semigroup for the linearized reaction-diffusion system; it denotes the distribution of the381

initial infection, and dI = diag[D2, 0] is the diffusion matrix.382

Following [17], the basic reproduction number of PDE system (2.4)–(2.6) is defined by383

R0 = ρ(L), (3.8)
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where384

F =

 βvA
d

βeA
κd

0 0

 , VT =

[
d 0
−φ2 ξ

]
,

and385

B =

 D2

(
∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2

)
− d 0

φ2 −ξ

 .
Since all parameters are spatially homogeneous, we can actually find an explicit formula for the basic386

reproduction number R0. Indeed, applying [17, Theorem 3.4], we obtain the following result.387

Theorem 3.2. Suppose that D2 is a positive constant. Then one has388

R0 =
βvA
d2 +

βeAφ2

κξd2 . (3.9)

3.1. Existence of equilibrium points389

In this section, we investigate the existence of constant endemic equilibria of PDE poultry system (3.1).390

For this purpose, let P∗ = (X∗,Y∗,C∗) be an endemic steady state of system (3.1), then it is straightforward391

that392 
βv(

A
d
− Y∗)

Y∗

1 + αY∗
+ βe(

A
d
− Y∗)

C∗

C∗ + κ
− dY∗ = 0,

φ2Y∗ − ξC∗ = 0,

X∗ + Y∗ =
A
d
.

(3.10)

System (3.10) yields393

X∗ =
A
d
− Y∗, C∗ =

φ2

ξ
Y∗, (3.11)

and Y∗ is a positive root of the following quadratic polynomial:394

Q(Y∗) = α4Y∗2 + α5Y∗ + α6, (3.12)

whose coefficients are given by395

α4 = −
βvφ2

ξ
−
βeαφ2

ξ
−

dαφ2

ξ
, (3.13a)

396

α5 = −κβv −
βeφ2

ξ
−

(
dακ +

dφ2

ξ

)
(1 − R0) −

ακβvA
d
−
βeAφ2

2

κdξ2 , (3.13b)

397
α6 = κd(R0 − 1). (3.13c)

Investigating the signs of α4, α5 and α6 lead to the following straightforward result.398

Proposition 3.3. The model (3.1) has:399

1. a unique positive endemic equilibrium whenever R0 > 1,400

2. no positive endemic equilibrium whenever R0 ≤ 1.401

19



3.2. Local stability of the equilibrium points402

As in references [18], let 0 = µ0 < µi < µi+1, i = 1, 2, · · · denote the eigenvalues of −∆ on Ω with403

homogeneous Neumann boundary condition, E(µi) the space of eigenfunctions corresponding to µi and404 {
Φi j : j = 1, 2, · · · ,dim E(µi)

}
an orthonormal basis of E(µi). Then X = [C(Ω)]3 can be decomposed as405

X =

∞⊕
i=1

Xi , Xi =

dim E(µi)⊕
i=1

Xi j, where Xi j = {cΦi j : c ∈ R3
}.

406

Theorem 3.4. The disease-free equilibrium P0 of the poultry system (3.1) is locally asymptotically stable whenever407

R0 < 1, but unstable when R0 > 1.408

Proof. The linearization of system (3.1) at P0 gives409

∂Z(x, t)
∂t

= D∆Z(x, t) +AZ(x, t), (3.14)

where D = diag(D1,D2, 0) and410

A =


−d −βv

A
d

−βe
A
κd

0 βv
A
d
− d βe

A
κd

0 φ2 −ξ

 .
For each i ≥ 1, Xi is invariant under the operator L and λ is an eigenvalue of L if and only if it is an411

eigenvalue of the matrix −µiD +A for i ≥ 1; in which case, there is an eigenvector in Xi.412

The characteristic equation of −µiD +A at P0 is413

(−µiD1 − d − λ)
{
λ2 + λ(µiD2 + ξ + d −

βvA
d

) + µiD2ξ + dξ −
βvAξ

d
−
βeAφ2

κd

}
= 0. (3.15)

It is obvious that (3.15) has an eigenvalue414

λ1 = −µiD1 − d < 0,

and the other two eigenvalues λ2 and λ3 solve the following equation415

λ2 + λ(µiD2 + ξ + d −
βvA

d
) + µiD2ξ + dξ −

βvAξ
d
−
βeAφ2

κd
= 0.

It is easy to see that416

λ2 + λ3 = −µiD2ξ − ξ − d +
βvA

d
= −µiD2ξ − ξ −

βeAφ2

κd2ξ
+ d(R0 − 1),

λ2 × λ3 = µiD2ξ + dξ −
βvAξ

d
−
βeAφ2

κd
= dξ(1 − R0) + µiD2ξ.

Clearly, If R0 < 1, then λ2 ×λ3 > 0 and λ2 +λ3 < 0. Thus, Re(λ2) < 0 and Re(λ3) < 0.Hence, P0 is locally417

asymptotically stable whenever R0 < 1.418

On the other hand, if R0 > 1, at least one of the eigeinvalues has a positive real part, which implies419

that P0 is unstable. In fact, set420

h1(λ) = λ2 + λ

(
µiD2 + ξ + d −

βvA
d

)
+ dξ(1 − R0) + µiD2ξ.

If R0 > 1, it is easy to show that for λ real and i = 0 (in this case, µ0 = 0),421

h1(0) = dξ(1 − R0) < 0 and λ2 × λ3 = h1(0).

This completes the proof.422
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Theorem 3.5. The endemic equilibrium P∗ of the poultry system (3.1) is locally asymptotically stable whenever423

R0 > 1.424

Proof. Linearizing system (3.1) at P∗ gives425

∂Z(x, t)
∂t

= D∆Z(x, t) +BZ(x, t), (3.16)

where D = diag(D1,D2, 0) and426

B =


−P∗∗ − d −Q∗∗ −R∗∗

P∗∗ Q∗∗ − d R∗∗

0 φ2 −ξ

 ,
where427

P∗∗ = βv
Y∗

1 + αY∗
+ βe

C∗

C∗ + κ
, Q∗∗ = βv

X∗

(1 + αY∗)2 , R∗∗ = κβe
X∗

(κ + C∗)2 .

The characteristic equation of −µiD +B at Z∗ is428

λ3 + c1λ
2 + c2λ + c3 = 0, (3.17)

where429

c1 = µiD1 + βv
Y∗

1 + αY∗
+ βe

C∗

C∗ + κ
+ d + µiD2 − βv

X∗

(1 + αY∗)2 + d + ξ

= βv
Y∗

1 + αY∗
+ βe

C∗

C∗ + κ
+ βv

X∗

1 + αY∗

(
1 −

1
1 + αY∗

)
+ βe

X∗C∗

Y∗(C∗ + κ)
+ µiD1 + d + µiD2 + ξ > 0,

c2 = ξ
(
µiD1 + βv

Y∗

1 + αY∗
+ βe

C∗

C∗ + κ
+ d

)
+ ξ

(
µiD2 − βv

X∗

(1 + αY∗)2 + d
)

+
(
µiD1 + βv

Y∗

1 + αY∗
+ βe

C∗

C∗ + κ
+ d

) (
µiD2 − βv

X∗

(1 + αY∗)2 + d
)

+κβeφ2
X∗

(κ + C∗)2 + βv
X∗

(1 + αY∗)2

(
βv

Y∗

1 + αY∗
+ βe

C∗

C∗ + κ

)
,

= ξ
(
µiD1 + βv

Y∗

1 + αY∗
+ βe

C∗

C∗ + κ
+ d

)
+ ξ

(
µiD2 + βv

X∗

1 + αY∗

(
1 −

1
1 + αY∗

)
+ βe

X∗C∗

Y∗(C∗ + κ)

)
+

(
µiD1 + βv

Y∗

1 + αY∗
+ βe

C∗

C∗ + κ
+ d

) (
µiD2 + βv

X∗

1 + αY∗

(
1 −

1
1 + αY∗

)
+ βe

X∗C∗

Y∗(C∗ + κ)

)
+κβeφ2

X∗

(κ + C∗)2 + βv
X∗

(1 + αY∗)2

(
βv

Y∗

1 + αY∗
+ βe

C∗

C∗ + κ

)
> 0,

c3 = κβeφ2
X∗

(κ + C∗)2

(
µiD1 + βv

Y∗

1 + αY∗
+ βe

C∗

C∗ + κ
+ d

)
+ κβeφ2

X∗

(κ + C∗)2

+βvξ
X∗

(1 + αY∗)2

(
βv

Y∗

1 + αY∗
+ βe

C∗

C∗ + κ

)
+ξ

(
µiD1 + βv

Y∗

1 + αY∗
+ βe

C∗

C∗ + κ
+ d

) (
µiD2 + βv

X∗

1 + αY∗

(
1 −

1
1 + αY∗

)
+ βe

X∗C∗

Y∗(C∗ + κ)

)
+κβeφ2

X∗

(κ + C∗)2

(
βv

Y∗

1 + αY∗
+ βe

C∗

C∗ + κ

)
> 0,
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c1c2 − c3 = ξ
(
µiD1 + βv

Y∗

1 + αY∗
+ βe

C∗

C∗ + κ
+ d

)2
+ ξ

(
µiD2 − βv

X∗

(1 + αY∗)2 + d
)2

+
(
µiD1 + βv

Y∗

1 + αY∗
+ βe

C∗

C∗ + κ
+ d

)2 (
µiD2 − βv

X∗

(1 + αY∗)2 + d
)

+
(
µiD1 + βv

Y∗

1 + αY∗
+ βe

C∗

C∗ + κ
+ d

) (
µiD2 − βv

X∗

(1 + αY∗)2 + d
)2

+ξ2
(
µiD1 + βv

Y∗

1 + αY∗
+ βe

C∗

C∗ + κ
+ d

)
+ ξ2

(
µiD2 − βv

X∗

(1 + αY∗)2 + d
)

+βv
X∗

(1 + αY∗)2

(
βv

Y∗

1 + αY∗
+ βe

C∗

C∗ + κ

) (
µiD1 + βv

Y∗

1 + αY∗
+ βe

C∗

C∗ + κ
+ d

)
+2ξ

(
µiD1 + βv

Y∗

1 + αY∗
+ βe

C∗

C∗ + κ
+ d

) (
µiD2 − βv

X∗

(1 + αY∗)2 + d
)

+κβeφ2
X∗

(κ + C∗)2

(
µiD2 + βv

X∗

1 + αY∗

(
1 −

1
1 + αY∗

)
+ βe

X∗C∗

Y∗(C∗ + κ)

)
+βv

X∗

(1 + αY∗)2

(
βv

Y∗

1 + αY∗
+ βe

C∗

C∗ + κ

) (
µiD2 − βv

X∗

(1 + αY∗)2 + d
)

+κβeξφ2
X∗

(κ + C∗)2 − κβeφ2
X∗

(κ + C∗)2

(
βv

Y∗

1 + αY∗
+ βe

C∗

C∗ + κ

)
> 0.

Then, by using Routh-Hurwitz criterion, the endemic equilibrium P∗ of system (3.1) is locally asymptot-431

ically stable. This completes the proof.432

3.3. Global stability analysis of the equilibrium points433

Here, we establish the global stability of the equilibria for the continuous system (3.1). This is434

achieved by constructing suitable Lyapunov functions. We first introduce the function Φ(x) = x−1− ln x.435

Clearly, Φ(x) ≥ 0 for all x > 0 and the equality holds if and only if x = 1.436

Theorem 3.6. The disease-free equilibrium P0 of the poultry system (3.1) is globally asymptotically stable (GAS)437

in Σ if R0 ≤ 1.438

Proof. Define the Lyapunov function439

L(t) =

∫
Ω

L1(x, t)dx,

with440

L1(x, t) = X − X0
− X0 ln

( X
X0

)
+ Y +

βeX0

κξ
C.

Using the fact that A = dX0, the derivative of L1(x, t) in the direction of the vector field given by the441

right-hand side of system (3.1) is442

∂L1(x, t)
∂t

=

[
1 −

X0

X

] [
dX0
− βvX

Y
1 + αY

− βeX
C

C + κ
− dX + D1∆X

]
+

[
βvX

Y
1 + αY

+ βeX
C

C + κ
− dY + D2∆Y

]
+
βeX0

κξ
(φ2Y − ξC),

= −
d
X

(X − X0)2 + βvX0 Y
1 + αY

+ βeX0 C
C + κ

+
βeX0

κξ
φ2Y − dY −

βeX0

κξ
ξC

+D1∆X + D2∆Y −D1X0 ∆X
X
.

Direct calculations lead to443

∂L1(x, t)
∂t

≤ −
d
X

(X − X0)2 + d (R0 − 1) Y + D1∆X + D2∆Y −D1X0 ∆X
X
.
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Since444 ∫
Ω

∆Xdx =

∫
Ω

∆Ydx = 0 and
∫

Ω

∆X
X

dx =

∫
Ω

|∇X|2

X2 dx,

we have445

dL(t)
dt

=
∫
Ω

∂L1(x, t)
∂t

dx,

≤ −d
∫
Ω

1
X

(X − X0)2dx + d(R0 − 1)
∫
Ω

Y(x, t)dx −D1X0
∫
Ω

|∇X|2

X2 dx.

Consequently,
dL(t)

dt
< 0 if and only if R0 < 1.

dL(t)
dt

= 0, if and only if R0 = 1 and X = X0, for all t > 0446

and x ∈ Ω. It is easy to see that the largest invariant subset included in the set
{

(X,Y,C) ∈ Σ/
dL(t)

dt
= 0

}
447

is the singleton
{
P0

}
. Thus, by the generalized LaSalle’s Invariance Principle [19, Theorem 4.2] (see also448

[20]), the disease-free equilibrium P0 is globally asymptotically stable in Σ. This completes the proof.449

Theorem 3.7. The endemic equilibrium P∗ of the poultry system (3.1) is globally asymptotically stable (GAS) in450

the interior of Σ if R0 > 1.451

Proof.452

H(t) =

∫
Ω

H1(x, t)dx,

where the Volterra-type Lyapunov function H1 is given by453

H1(x, t) = c1

(
X − X∗ − X∗ ln

( X
X∗

))
+ c2

(
Y − Y∗ − Y∗ ln

( Y
Y∗

))
+ c3

(
C − C∗ − C∗ ln

( C
C∗

))
,

with c1, c2 and c3 being three positive constants to be determined shortly. Denote454

O1 = X − X∗ − X∗ ln
( X
X∗

)
, O2 = Y − Y∗ − Y∗ ln

( Y
Y∗

)
,

455

O3 = C − C∗ − C∗ ln
( C
C∗

)
, f (Y) =

Y
1 + αY

and g(C) =
C

C + κ
.

We have456

∂O1

∂t
=

(
1 −

X∗

X

) [
X∗ f (Y∗) + X∗g(C∗) − d(X − X∗) − X f (Y) − Xg(C) + D1∆X

]
,

= −d
(X − X∗)2

X
+ X∗ f (Y∗)

[
1 −

X∗

X
−

X f (Y)
X∗ f (Y∗)

+
f (Y)
f (Y∗)

]
+X∗g(C∗)

[
1 −

X∗

X
−

Xg(C)
X∗g(C∗)

+
g(C)
g(C∗)

]
+

(
1 −

X∗

X

)
D1∆X,

= −d
(X − X∗)2

X
+

(
1 − X∗

X

)
D1∆X + a12G12 + a13G13.

∂O2

∂t
=

(
1 −

Y∗

Y

) [
X f (Y) + Xg(C) −

Y
Y∗

X∗ f (Y∗) −
Y
Y∗

X∗g(C∗)
]

+
(
1 −

Y∗

Y

)
D2∆Y,

= X∗ f (Y∗)
[

X f (Y)
X∗ f (Y∗)

+ 1 −
Y
Y∗
−

XY∗ f (Y)
X∗Y f (Y∗)

]
+X∗g(C∗)

[
Xg(C)

X∗g(C∗)
+ 1 −

C
C∗
−

XY∗g(C)
X∗Yg(C∗)

]
+

(
1 −

Y∗

Y

)
D2∆Y,

=
(
1 −

Y∗

Y

)
D2∆Y + a21G21 + a23G23.
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∂O3

∂t
=

(
1 −

C∗

C

) [
φ2Y − φ2Y∗

C
C∗

]
= φ2Y∗

[
1 −

C
C∗

+
Y
Y∗
−

YC∗

Y∗C

]
= a31G31,

where a12 = a21 = X∗ f (Y∗), a13 = a23 = X∗g(C∗), a31 = φ2Y∗ and all other ai j = 0, for all others (i, j), 1 ≤ i, j ≤458

3. The associated weighted digraph (G,A) has three vertices and three cycles. We consider the following459

two kind of cycles: cycles involving direct transmission and cycles involving indirect transmission. By460

[21, Theorem 3.5] there exists ci, 1 ≤ i ≤ 3, such that H1 =
∑3

i=1 ciOi is a Lyapunov function for (3.1).461

Futhermore, following [21], c1 = c2 and c3 =
X∗g(C∗)
φ2Y∗

c1. Thus,462

H1(x, t) = c1O1 + c1O2 +
X∗g(C∗)
φ2Y∗

c1O3.

We have463

∂H1(x, t)
∂t

= c1

[
∂O1(x, t)
∂t

+
∂O1(x, t)
∂t

+
X∗g(C∗)
φ2Y∗

∂O3(x, t)
∂t

]
,

= −dc1
(X − X∗)2

X
+ X∗ f (Y∗)c1

[
1 −

X∗

X
−

X f (Y)
X∗ f (Y∗)

+
f (Y)
f (Y∗)

]
+X∗g(C∗)c1

[
1 −

X∗

X
−

Xg(C)
X∗g(C∗)

+
g(C)
g(C∗)

]
+X∗ f (Y∗)c1

[
X f (Y)

X∗ f (Y∗)
+ 1 −

Y
Y∗
−

XY∗ f (Y)
X∗Y f (Y∗)

]
+X∗g(C∗)c1

[
Xg(C)

X∗g(C∗)
+ 1 −

Y
Y∗
−

XY∗g(C)
X∗Yg(C∗)

]
+X∗g(C∗)c1

[
1 −

C
C∗

+
Y
Y∗
−

YC∗

Y∗C

]
+c1

(
1 −

X∗

X

)
D1∆X + c1

(
1 −

Y∗

Y

)
D2∆Y,

= −dc1
(X − X∗)2

X
+ X∗ f (Y∗)c1

[
2 −

X∗

X
−

Y
Y∗
−

XY∗ f (Y)
X∗Y f (Y∗)

+
f (Y)
f (Y∗)

]
+X∗g(C∗)c1

[
2 −

X∗

X
−

Y
Y∗
−

XY∗g(C)
X∗Yg(C∗)

+
g(C)
g(C∗)

]
+X∗g(C∗)c1

[
1 −

C
C∗

+
Y
Y∗
−

YC∗

Y∗C

]
+c1

(
1 −

X∗

X

)
D1∆X + c1

(
1 −

Y∗

Y

)
D2∆Y,

= −dc1
(X − X∗)2

X
−X∗ f (Y∗)c1

[
X∗

X
+

Y
Y∗

+
XY∗ f (Y)
X∗Y f (Y∗)

−
f (Y)
f (Y∗)

− 2
]

−X∗g(C∗)c1

[
X∗

X
+

Y
Y∗

+
XY∗g(C)
X∗Yg(C∗)

−
g(C)
g(C∗)

− 3
]

−X∗g(C∗)c1

[ C
C∗
−

Y
Y∗

+
YC∗

Y∗C

]
+c1

(
1 −

X∗

X

)
D1∆X + c1

(
1 −

Y∗

Y

)
D2∆Y,
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= −dc1
(X − X∗)2

X
−X∗ f (Y∗)c1

[
φ

(X∗

X

)
+ φ

( Y
Y∗

)
+ φ

(
XY∗ f (Y)
X∗Y f (Y∗)

)
− φ

(
f (Y)
f (Y∗)

)]
−X∗ f (Y∗)c1

[
ln

(X∗Y
XY∗

)
+ ln

(
XY∗ f (Y)
X∗Y f (Y∗)

)
− ln

(
f (Y)
f (Y∗)

)]
−X∗g(C∗)c1

[
φ

(X∗

X

)
+ φ

( Y
Y∗

)
+ φ

(
XY∗g(C)
X∗Yg(C∗)

)
− φ

(
g(C)
g(C∗)

)
− 1

]
−X∗g(C∗)c1

[
ln

(X∗Y
XY∗

)
+ ln

(
XY∗g(C)
X∗Yg(C∗)

)
− ln

(
g(C)
g(C∗)

)]
−X∗g(C∗)c1

[
φ

( C
C∗

)
− φ

( Y
Y∗

)
+ φ

(YC∗

Y∗C

)
+ 1

]
+c1

(
1 −

X∗

X

)
D1∆X + c1

(
1 −

Y∗

Y

)
D2∆Y,

= −dc1
(X − X∗)2

X
−X∗ f (Y∗)c1

[
φ

(X∗

X

)
+ φ

( Y
Y∗

)
+ φ

(
XY∗ f (Y)
X∗Y f (Y∗)

)
− φ

(
f (Y)
f (Y∗)

)]
−X∗g(C∗)c1

[
φ

(X∗

X

)
+ φ

( C
C∗

)
+ φ

(YC∗

Y∗C

)
+ φ

(
XY∗g(C)
X∗Yg(C∗)

)
− φ

(
g(C)
g(C∗)

)]
+c1

(
1 −

X∗

X

)
D1∆X + c1

(
1 −

Y∗

Y

)
D2∆Y.

Note that465 {
f (0) = g(0) = 0 , f (Y) > 0 , g(C) > 0 ∀Y > 0 , C > 0,
f ′(Y) , g′(C) > 0 and f ′′(Y) , g′′(C) ≤ 0,

and466

φ

(
f (Y)
f (Y∗)

)
− φ

( Y
Y∗

)
≤

(
f (Y)
f (Y∗)

−
Y
Y∗

) (
1 −

f (Y∗)
f (Y)

)
= −

αYY∗(Y − Y∗)2

Y∗ f (Y)( f (Y∗))2(1 + αY)(1 + αY∗)
,

467

φ

(
g(C)
g(C∗)

)
− φ

( C
C∗

)
≤

(
g(C)
g(C∗)

−
C
C∗

) (
1 −

g(C∗)
g(C)

)
= −

κCC∗(C − C∗)2

C∗g(C)(g(C∗))2(κ + C)(κ + C∗)
.

Finally,468

dH(t)
dt

=

∫
Ω

∂H1(x, t)
∂t

dx,

≤ −dc1

∫
Ω

(X − X∗)2

X
dx

−X∗ f (Y∗)c1

∫
Ω

[
φ

(X∗

X

)
+ φ

( Y
Y∗

)
+ φ

(
XY∗ f (Y)
X∗Y f (Y∗)

)
− φ

(
f (Y)
f (Y∗)

)]
dx

−X∗g(C∗)c1

∫
Ω

[
φ

( C
C∗

)
− φ

(
g(C)
g(C∗)

)]
dx,

−X∗g(C∗)c1

∫
Ω

[
φ

(X∗

X

)
+ φ

(YC∗

Y∗C

)
+ φ

(
XY∗g(C)
X∗Yg(C∗)

)]
dx

−D1X∗
∫
Ω

|∇X|2

X2 dx −D2Y∗
∫
Ω

|∇Y|2

Y2 dx.

Consequently,
dH(t)

dt
< 0 and

dH(t)
dt

= 0 if and only if X = X∗,Y = Y∗ and C = C∗, for all t > 0 and469

x ∈ Ω.Moreover, the largest invariant subset contained in
{

(X,Y,C) ∈ Σ/
dH
dt

(t) = 0
}

is the singleton {P∗}.470

It follows from the generalized LaSalle’s Invariance Principle [19, Theorem 4.2 ] (see also [20]) that P∗ is471

globally asymptotically stable.472
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Remark 3.8. When q , 0, the poultry system has only one endemic equilibruim, which is locally asymptotically473

stable.474

4. Asymptotic analysis of the full system (when q=0)475

In the absence of infection, that is Y = E = I = C = 0, the model (2.4)-(2.6) has a disease-free476

equilibrum477

Z0 =
(A

d
, 0,

B
δ
, 0, 0, 0

)
.

4.1. Existence of endemic equilibrium point478

Suppose that479

R0 =
βeAφ2

κd2ξ
+
βvA
d2 > 1.

Then the full system (2.4)-(2.6) has the endemic equilibrium Z∗ = (X∗,Y∗,S∗,E∗, I∗,C∗), where X∗,Y∗ and480

C∗) are given by (3.11) and (3.12) and481

S∗ = N∗ − E∗ − I∗, I∗ =
1
ρ

(B − δN∗) , E∗ =
γ + ρ + δ

ρε
(B − δN∗) ,

with N∗ being the positive root of the following quadratic equation:482

α1N∗2 +
(
α3Y∗ − α1

B
δ

)
N∗ − α2Y∗ = 0, (4.1)

where483

α1 =
(a + δ + ε)(γ + ρ + δ)δ

ρε
, α2 =

B
ρ

(
(γ + ρ + δ)

ε
+ 1

) (
τv + τe

φ2

ξ

)
,

484

α3 =

(
(γ + ρ + δ)δ

ρε
+
δ
ρ

+ 1
) (
τv + τe

φ2

ξ

)
.

Thanks to the Descarte’s rule of sign, N∗ is unique.485

4.2. Local stability of the equilibrium points486

The local stability of the equilibria Z0 and Z∗ follows from linearization method of (2.4)-(2.6) and487

detailed spectral analysis of the corresponding characteristic equation.488

Theorem 4.1. If R0 < 1, the disease-free equilibrium Z0 of the full system (2.4)-(2.6) is locally asymptotically489

stable, but unstable when R0 ≥ 1.490

Proof. The linearization of system (2.4) at Z0 is491

∂Z(x, t)
∂t

= LZ(x, t) = D∆Z(x, t) + CZ(x, t), (4.2)

where D = diag(D1,D2,D3,D4,D5, 0) and492

C =



−d −βv
A
d

0 0 0 −βe
A
κd

0 βv
A
d
− d 0 0 0 βe

A
κd

0 −τv −δ a γ −τe
0 τv 0 −(a + δ + ε) 0 τe
0 0 0 ε −(γ + ρ + δ) 0
0 φ2 0 0 0 −ξ


.
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The characteristic equation of −µiD + C at Z0 is493

(−µiD1 − d − λ)(−µiD3 − δ − λ)(−µiD4 − (a + δ + ε) − λ)(−µiD5 − (γ + ρ + δ) − λ)

×

{
λ2 + λ(µiD2 + ξ + d −

βvA
d

) + µiD2ξ + dξ −
βvAξ

d
−
βeAφ2

κd

}
= 0. (4.3)

According to the local stability of P0 for the poultry sub-system, all eigenvalues of (4.3) have negative494

real parts when R0 < 1. Hence, Z0 is locally asymptotically stable.495

Theorem 4.2. If R0 ≥ 1, the endemic equilibrium Z∗ of the full system (2.4)-(2.6) is locally asymptotically stable.496

Proof. Linearizing system (2.4) at Z∗ gives497

∂Z(x, t)
∂t

= LZ(x, t) = D∆Z(x, t) +DZ(x, t), (4.4)

where D = diag(D1,D2,D3,D4,D5, 0) and498

D =



−P∗∗ − d −Q∗∗ 0 0 0 −R∗∗

P∗∗ Q∗∗ − d 0 0 0 R∗∗

0 −
τvS∗

N∗
−
τvY∗ − τeC∗

N∗
− δ a γ −

τeS∗

N∗

0
τvS∗

N∗
τvY∗ + τeC∗

N∗
−(a + δ + ε) 0

τeS∗

N∗
0 0 0 ε −(γ + ρ + δ) 0
0 φ2 0 0 0 −ξ


.

Here499

P∗∗ = βv
Y∗

1 + αY∗
+ βe

C∗

C∗ + κ
, Q∗∗ = βv

X∗

(1 + αY∗)2 , R∗∗ = κβe
X∗

(κ + C∗)2 .

The characteristic equation of −µiD +D at Z∗ is500

(λ3 + c1λ
2 + c2λ + c3)(λ3 + c1λ

2 + c2λ + c3) = 0, (4.5)

where501

c1 = µiD3 + τv
Y∗

N∗
+ τe

C∗

N∗
+ δ + µiD4 + µiD5 + a + δ + ε + γ + ρ + δ > 0,

c2 =
(
µiD3 + τv

Y∗

N∗
+ τe

C∗

N∗
+ δ

) (
µiD5 + γ + ρ + δ

)
+

(
µiD3 + τv

Y∗

N∗
+ τe

C∗

N∗
+ δ

) (
µiD4 + a + δ + ε

)
+

(
µiD5 + γ + ρ + δ

) (
µiD4 + a + δ + ε

)
− a

(
τv

Y∗

N∗
+ τe

C∗

N∗

)
,

=
(
µiD3 + τv

Y∗

N∗
+ τe

C∗

N∗
+ δ

) (
µiD5 + γ + ρ + δ

)
+

(
µiD3 + τv

Y∗

N∗
+ τe

C∗

N∗
+ δ

) (
µiD4 + δ + ε

)
+

(
µiD5 + γ + ρ + δ

) (
µiD4 + a + δ + ε

)
+ a

(
µiD3 + δ

)
> 0,
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c3 = −a
(
µiD5 + γ + ρ + δ

) (
τv

Y∗

N∗
+ τe

C∗

N∗

)
+ εγ

(
τv

Y∗

N∗
+ τe

C∗

N∗

)
+

(
µiD3 + τv

Y∗

N∗
+ τe

C∗

N∗
+ δ

) (
µiD5 + γ + ρ + δ

) (
µiD4 + a + δ + ε

)
,

= εγ
(
τv

Y∗

N∗
+ τe

C∗

N∗

)
+

(
µiD3 + τv

Y∗

N∗
+ τe

C∗

N∗
+ δ

) (
µiD5 + γ + ρ + δ

) (
µiD4 + δ + ε

)
+a

(
µiD5 + γ + ρ + δ

) (
µiD3 + δ

)
> 0,

c1c2 − c3 =
(
µiD5 + γ + ρ + δ

) (
µiD3 + τv

Y∗

N∗
+ τe

C∗

N∗
+ δ

)2

+
(
µiD5 + γ + ρ + δ

) (
µiD4 + a + ε + δ

)2

+2
(
µiD5 + γ + ρ + δ

) (
µiD4 + a + ε + δ

) (
µiD3 + τv

Y∗

N∗
+ τe

C∗

N∗
+ δ

)
−εγ

(
τv

Y∗

N∗
+ τe

C∗

N∗

)
−

(
µiD3 + τv

Y∗

N∗
+ τe

C∗

N∗
+ δ + µiD4 + a + ε + δ

)
×

[
a
(
τv

Y∗

N∗
+ τe

C∗

N∗

)
−

(
µiD4 + a + ε + δ

) (
µiD3 + τv

Y∗

N∗
+ τe

C∗

N∗
+ δ

)]
,

=
(
µiD5 + γ + ρ + δ

) (
µiD3 + τv

Y∗

N∗
+ τe

C∗

N∗
+ δ

)2

+
(
µiD5 + γ + ρ + δ

) (
µiD4 + a + ε + δ

)2

+2
(
µiD5 + γ + ρ + δ

) (
µiD4 + a + ε + δ

) (
µiD3 + τv

Y∗

N∗
+ τe

C∗

N∗
+ δ

)
−εγ

(
τv

Y∗

N∗
+ τe

C∗

N∗

)
+

(
µiD3 + τv

Y∗

N∗
+ τe

C∗

N∗
+ δ + µiD4 + a + ε + δ

)
×

[
a
(
µiD3 + δ

)
+

(
µiD4 + ε + δ

) (
µiD3 + τv

Y∗

N∗
+ τe

C∗

N∗
+ δ

)]
,
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=
(
µiD5 + γ + ρ + δ

) (
µiD3 + τv

Y∗

N∗
+ τe

C∗

N∗
+ δ

)2

+
(
µiD5 + γ + ρ + δ

) (
µiD4 + a + ε + δ

)2

+2
(
µiD5 + ρ + δ

) (
µiD4 + a + ε + δ

) (
µiD3 + τv

Y∗

N∗
+ τe

C∗

N∗∗
+ δ

)
+2γ

(
µiD4 + a + δ

) (
µiD3 + τv

Y∗

N∗
+ τe

C∗

N∗
+ δ

)
+ 2γε

(
µiD3 + δ

)
+εγ

(
τv

Y∗

N∗
+ τe

C∗

N∗

)
+

(
µiD3 + τv

Y∗

N∗
+ τe

C∗

N∗
+ δ + µiD4 + a + ε + δ

)
×

[
a
(
µiD3 + δ

)
+

(
µiD4 + ε + δ

) (
µiD3 + τv

Y∗

N∗
+ τe

C∗

N∗
+ δ

)]
> 0.

Thanks to Routh-Hurwitz criterion, the endemic equilibrium Z∗ of the full model is locally asymptotically504

stable.505

4.3. Global stability analysis of the DFE506

To establish the global stability of the full system (2.4) − (2.6), we first give two lemmas about the507

global stability of the scalar equations.508
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Lemma 4.3. Let u ∈ C(Ω× [0,∞))∩C2,1(Ω× (0,∞)) be a nonnegative nontrivial solution of the scalar problem:509 
∂u
∂t
−D∆u = f (x, t) + A1u(x, t) in Ω × (0,∞),

∂u
∂η

= 0 on ∂Ω × (0,∞),

u(x, 0) ≥ 0 x ∈ Ω,

(4.6)

where A1 > 0 and f (x, t) is a nonnegative continuous function. Then u tends to A2/A1 as t tends to∞ uniformly510

on Ω, whenever f (x, t) tends to A2 as t tends to∞ uniformly on Ω.511

The proof follows directly from the comparison principle for the parabolic equations. We omit it here.512

Lemma 4.4. [7] If u(x, t) is a bounded function and limt→∞ ‖u(x, t) − A1‖∞ = 0, then513 ∫
Ω

∫ t

−∞

G(x, y, t − s)k(t − s)u(y, s)dsdy→ A1 as t→∞

uniformly on Ω.514

Lemma 4.4, which is a consequence of Lemma 2.1, implies that the nonlocal integral term do not affect515

the long time behavior of the solution.516

Theorem 4.5. The disease-free equilibrium of the full system (2.4) is globally asymptotically stable (GAS) in Σ if517

R0 ≤ 1.518

Proof. For R0 ≤ 1, it follows from the global stability of P0 of the poultry system that519

limt→∞

∥∥∥∥∥X(x, t) −
A
d

∥∥∥∥∥
∞

= 0, limt→∞ ‖Y(x, t) − 0‖∞ = 0 and limt→∞ ‖C(x, t) − 0‖∞ = 0. Thus, by Lemma 4.4,520

S
N

∫
Ω

∫ t

−∞

G(x, y, t − s)k(t − s)(τvY + τeC)(y, s)dsdy→ 0 as t→∞,

uniformly on Ω. Therefore limt→∞ ‖E(x, t) − 0‖∞ = 0, according to Lemma 4.3. Applying once more521

Lemma 4.3 gives limt→∞ ‖I(x, t) − 0‖∞ = 0.522

For the third equation of the full system (2.4)–(2.6), since523

lim
t→∞
‖E(x, t) − 0‖∞ = 0, lim

t→∞
‖I(x, t) − 0‖∞ = 0,

and the fact that Lemma 4.3 applies again, we have limt→∞

∥∥∥∥∥S(x, t) −
B
δ

∥∥∥∥∥
∞

= 0. Therefore, Z0 is GAS for524

R0 ≤ 1.525

Remark 4.6. When q , 0, the full system has only one endemic equilibrium, which is locally asymptotically526

stable.527

5. Numerical simulations528

In this section, we present some numerical simulations to illustrate the spread of avian influenza.529

For simplicity, we choose Ω = [0, π], K(x, y, t) = G(x, y, t)k(t), where530

k(t) =
1
τ

e−t/τ ; G(x, y, t) =
1
π

+
2
π

∞∑
n=1

e−D3n2t cos(nx) cos(ny).
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To circumvent the difficulty caused by the nonlocal integral terms, we introduce the following new531

variables532

U(x, t) =

∫ π

0

∫ t

−∞

G(x, y, t − s)k(t − s)Y(y, s)dsdy , V(x, t) =

∫ π

0

∫ t

−∞

G(x, y, t − s)k(t − s)C(y, s)dsdy.

Then system (2.4) becomes:533 

∂X
∂t
−D1∆X = (1 − q)A − βvX

Y
1 + αY

− βeX
C

C + κ
− dX,

∂Y
∂t
−D2∆Y = qA + βvX

Y
1 + αY

+ βeX
C

C + κ
− dY,

∂S
∂t
−D3∆S = B + aE + γI − δS −

S
N

(τvU + τeV),
∂E
∂t
−D4∆E =

S
N

(τvU + τeV) − (a + δ + ε)E,
∂I
∂t
−D5∆I = εE − (γ + ρ + δ)I,

∂C
∂t

= φ2Y − ξC,
∂U
∂t
−D3∆U =

1
τ

(Y −U),
∂V
∂t
−D3∆V =

1
τ

(C − V).

Every variables of the previous system enjoys the homogenous Neumann boundary conditions. Addi-534

tionally, we need the following initial conditions535

U(x, 0) =

∫ π

0

∫ 0

−∞

G(x, y,−s)k(−s)Y(y, s)dsdy and V(x, 0) =

∫ π

0

∫ 0

−∞

G(x, y,−s)k(−s)C(y, s)dsdy.

The parameters are fixed in the Table 2 below

Table 2: Numerical values of the parameters of PDE-model (2.4)–(2.6).
Parameters values Source Parameters values Source

q 0, 0.1 [22] a 1 [23]
A 100 [22] γ 0.9 [23]
βv 1.7143 ·10−6 [23] ρ 0.001 [22]
βe 0.002 week−1 Assumed D1 4 Assumed
d 1/72 week−1 [24] D2 3 Assumed
α 0.001 ind−1 [23] D3 2 Assumed
B 1.5 [22] D4 1.5 Assumed
τv 0.6 [22] ε 1 [22]
δ 0.00025641 [24] κ 106 [22]
ξ 35 Assumed τe 0.1 Assumed
φ2 · variable D5 1 Assumed
τ 3 Assumed

536

5.1. General dynamics537

Figure 1 illustrates Theorem 4.5, which states that the disease-free equilibrium Z0 of the full system538

(2.4)–(2.6) is globally asymptotically stable. That is, aviain influenza ultimately disappears in the poultry,539

human population and in the environment irrespective of the initial conditions whenever R0 < 1. Thus,540

reducing the contact rates (poultry-to-poultry and poultry-to-environment) for susceptible poultry in541

order to keep (R0 < 1), is a good policy to control the spread of avian influenza virus.542
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Figure 1: Simulations of IBVP (2.4)–(2.6) using various initial conditions when q = 0 and φ2 = 103 (so that R0 = 0.9183 < 1). All
other parameter values are as in Table 2.

Figure 2 illustrates Theorem 4.2, which states that the endemic equilibrium Z∗ of the full system543

(2.4)–(2.6) is locally asymptotically stable. That is, avian influenza are still present in poultry, human544

population and in the environment irrespective of the initial conditions whenever (R0 > 1). So, re-545

ducing contact rates (poultry-to-human, environment-to-human) for susceptible humans seems to be a546

recommended measure to control the spread of avian influenza within the human population.

Figure 2: Simulations of IBVP (2.4)–(2.6) using various initial conditions when q = 0 and φ2 = 104 (so that R0 = 1.1849 > 1). All
other parameter values are as in Table 2.

547
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Figure 3 illustrates Remark 4.6, which states that the endemic equilibrium of the full system (2.4)–548

(2.6), when q , 0, is locally asymptotically stable. It not only shows that asymptomatic poultry and549

infected humans are still present in the industrial zone, but also that only 10% of infected imported550

poultry can multiply the number of asymptomatic poultry by 7 (that is from 200 to 1400 poultry), while551

keeping the number of infected humans at the same level.552

Figure 3: Simulations of IBVP (2.4)–(2.6) using various initial conditions when φ2 = 104 and q = 0.1. All other parameter values
are as in Table 2.

5.2. Impact of some parameters on the model dynamics553

As we can see from Figure 4, the diffusion of poultry and humans has no impact on the transmission554

dynamics of avian influenza. This is because: Indirect transmission through the environment is the most555

devastating one during an avian influenza outbreak on the one hand (see [4]) and infected humans can’t556

transmit the virus on the other hand.557

Figure 5 illustrates the impact of the delay parameter τ on the transmission dynamics of avian558

influenza. We observed that for very large values of τ, the number of infected humans decreases. Which559

is realistic because a significant delay by humans in feeding poultry can result in less contact between560

humans and poultry.561

Figure 6 illustrates the impact of the transmission coefficient of the disease from the environment to562

humans. A significant impact on infected humans is observed when this parameter increases from 10%563

to 15%.564

The effect of the transmission coefficient of the disease from the environment to the poultry is shown565

on Figure 7. We observe a significant impact on the three infected classes (i.e. human, poultry and virus566

concentration) when this parameter varies from 0.002 to 0.004.567

We can conclude from Figures 6 and 7 that the environment has a significant impact on the dynamics568

of the model.569

6. Conclusion and discussion.570

The main objective of this work was to add more realism to the modelling and analysis of the571

transmission of AIV. It was achieved by taking the authors’s previous work [4] to the next level in two572

main directions:573
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Figure 4: Simulations of IBVP (2.4)–(2.6) with various values of D2 (so that R0 = 1.1849 > 1). All other parameter values are as
in Table 2.

Figure 5: Simulations of IBVP (2.4)–(2.6) with various values of τ (so that R0 = 1.1849 > 1). All other parameter values are as
in Table 2.

From the modelling perspective, the diffusion of poultry and humans were considered, as well as574

the delay in the trading of poultry and production of eggs (new poultry). The resulted more realistic575

model was a system of delayed reaction-diffusion equations.576

From the theoretical perspective, we used the semigroup theory to deal with the well-posedness577

of the system. Moreover, the qualitative analysis of the model was insightfully performed and the578

main findings are as follows: An explicit formula for the reproduction number, given by the method579

in [17], allowed us to conclude whether the disease should persist or disappear in populations and580

in the environment. We obtained results on asymptotic behavior and numerical simulations were581
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Figure 6: Simulations of IBVP (2.4)–(2.6) with various values of τe. All other parameter values are as in Table 2.

Figure 7: Simulations of IBVP (2.4)–(2.6) with various values of βe. All other parameter values are as in Table 2.

presented to interpret the results. It is observed that if R0 < 1, the disease-free equilibrium Z0 is globally582

asymptotically stable, implying that poultry, humans are safe and the environment is healthy if the583

contact rate for susceptible poultry is small. Our results also show that avian influenza spreads in the584

industrial zone when at least one of the two conditions is fulfilled: R0 > 1 or in the recruitment of poultry585

a proportion is asymptomatic.586

From the computational aspect, we observed on the one hand that the importation of infected poultry587

can boost the endemic level of AIV in poultry and do not affect much the human population; on the588

other hand, in an epidemic situation, a significant delay can lead to a decrease in the number of infected589

humans. Moreover, we noticed that the environment has a significant impact on the dynamics of the590
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model. It should be noted that viruses live in poultry excrements, which are small particles that can be591

transported by the effect of the wind and diffused into the atmosphere. In view of this, it is very realistic592

to extend this work by taking into account the transport and spread of the virus. Thus, we will obtain593

an advection-diffusion model whose main investigation will be the study of impact of virus transport594

and diffusion on the transmission dynamics of this disease.595
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