Avian-human influenza epidemic model with diffusion, nonlocal delay and
spatial homogeneous environment.
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Abstract

In this paper, an avian-human influenza epidemic model with diffusion, nonlocal delay and spatial
homogeneous environment is investigated. This model describes the transmission of avian influenza
among poultry, humans and environment. The behavior of positive solutions to a reaction-diffusion
system with homogeneous Neumann boundary conditions is investigated. By mean of linearization
method and spectral analysis the local asymptotical stability is established. The global asymptotical
stability for the poultry sub-system is studied by spectral analysis and by using a Lyapunov functional.
For the full system, the global stability of the disease-free equilibrium is studied using the comparison
Theorem for parabolic equations. Our result shows that the disease-free equilibrium is globally asymp-
totically stable, whenever the contact rate for the susceptible poultry is small. This suggests that the best
policy to prevent the occurrence of an epidemic is not only to exterminate the asymptomatic poultry but
also to reduce the contact rate between susceptible humans and the poultry environment. Numerical
simulations are presented to illustrate the main results.

Keywords: Reaction-diffusion systems, Avian influenza, SI-SEIS-C model, Stability.

1. Introduction

The avian influenza is caused by viruses adapted to birds and it normally affects wild birds and
poultry. The wild birds are natural reservoir for all the sub-types of influenza A viruses. Influenza
viruses are widespread and due to their high mutation rate many subtypes exist. Furthermore, H5N1,
H7N4, H7N7, H7N9, HIN2 and other avian influenza viruses with pathogenicity have great potential
threat to human. Poultry farms are an important reservoir of avian influenza A virus (H7N9), which
plays a critical role in the genesis of influenza pandemic [1]. Avian influenza virus (AIV) transmission to
humans is largely facilitated by contact with animals and excretion of contaminated droplets or aerosols
[2] and to a lesser extent through transport of (dead) birds or contaminated objects (vehicles, humans, or
fomites), water, food and contact with infected wildfowl] or insects [3]. Historically, the avian influenza
splits into two classes: the "High Pathogenic Avian Influenza (HPAI)" and the "Low Pathogenic Avian
Influenza (LPAI)". The HPAI can cause a series of systemic infections that can lead to high mortality.
The LPAI causes mild or no symptoms.

Recently in [4], the authors proposed the following mathematical model to study the impact of
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environmental transmission on avian influenza infection:

;;—i: (1—q)A—ﬁ§Xﬁ—ﬁéX£—dX,

d——qA BoX 7+ﬁex@—dl/,

% = B+aE+yIS ’CUNY—TeﬁC—és, @)
g _TvNY+TgNC—(ﬂ+6+€)E,

%—GE (y+p+0)I,

——qsz EC.

In (1.1), the first two equations and the last one describe the interactions between the birds and
their biotope. Thus, the poultry population is divided into two classes: susceptible poultry X and
asymptomatic poultry contaminated with avian influenza viruses Y. The concentration of avian in-
fluenza viruses in the poultry living environment (biotope) is C. The remaining three equations form an
SEIS model for humans, which describes the dynamics of human population divided in three mutually
exclusive classes: susceptible humans S, latent humans E and infected humans I.

It must be pointed out that System (1.1) neglects any spatial structure of disease spreading and is
definitely not very realistic for moving individuals such as poultry and humans. For example, in our
case, poultry on the farm can move from one point to another to feed or drink water and humans can
migrate in large numbers from one area to another for supplies during the sales period (of poultry or
eggs). During the rearing period, that is the time lag during which there is neither sale of poultry nor
production of eggs, humans cannot be in the same location, so a rearing period will result in a delay.
But whatever the reason for introducing a delay into any population model in which the individuals are
moving, the corresponding term in the model must be nonlocal in space as well as in time. Thus it would
be realistic to incorporate delay effects in the interaction terms. Furthermore, As the distribution of the
individuals is in different spatial locations, the standard method of including the spatial effects consists
in the introduction of diffusion terms. This lead is an extended version of the SI-SEIS-C avian-human
epidemic model (1.1) in the form of a delayed reaction diffusion system of equations given below.

Therefore in this study, we propose a mathematical model for the transmission dynamics of AIV
among poultry-human that incorporates both mobility of the poultry/human and spatial environmental
homogeneity.

The outline of the remainder of the paper is as follows. In Section 2 we build an avian-human
influenza epidemic model that incorporates diffusion, nonlocal delay and spatial homogeneous envi-
ronment, and give the model’s basic properties. Section 3 deals with the theoretical analysis of the
continuous poultry model, while Section 4 presents an asymptotic analysis of the full model and numer-
ical simulations are given in Section 5. Finally, we conclude the paper in Section 6 and provide some
discussions that highlight few relevant perspectives.

2. Modelling framework and uniform bound

2.1. Modelling framework

Let Q c R3 be a bounded domain representing an industrial city in which humans live. We assume
that poultry farms are built in human sparsely populated areas and that each farmer has already bought
his poultry and will not do so until the end of the sale for broilers or until the end of egg laying for laying
hens. Denote by X(x,t), Y(x,t),S(x,t), E(x,t),I(x,t) the number of susceptible poultry, asymptomatic
poultry, susceptible humans, latent humans and infected humans respectively at time ¢ and location x.
C(x, t) is the concentration of virus at time t and location x.
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2.1.1. Poultry population dynamics

We assume that a total number A of poultry replenishes the farm per unit time due to importation and
the proportion (1 — g)A is susceptible, while the remaining proportion gA is asymptomatic. Susceptible
and asymptomatic poultry die at rate X and dY, respectively. Upon direct transmission among poultry,
susceptible poultry moves to asymptomatic class following a saturation type incidence at rate 5, XY/ (1 +
aY), such that 8,Y measures the infection force of the infective poultry, the parameter a stands for
the inhibitory effort, and 1/(1 + aY) describes the saturation due to the protection measures of the
poultry farmers or the crowding of infected poultry when the number of infective poultry increases
[5]. Upon indirect transmission, f.XC/(C + k) corresponds to the incidence rate between environmental
contaminated food particles and susceptible poultry. In the latter, 3, is the transmission coefficient such
that B. > f,; 1/(C + «) represents saturation due to the cleaning of farms when the concentration of
excretion becomes larger; «x is the concentration of avian viruses attached to aerosol particles in the
farm, sufficient to guarantee 50% chance of catching the infection. In the farm, poultry move from point
to other to feed or drink water. To model this displacement, we use diffusion Fick’s law. Thus, the
dynamics of poultry population is given by the following system:

X Y <
g-DlAX_(1—q)zﬁ1—ﬁvX1+aY—ﬁeXCJrK‘dX' @.1)

Y C
5~ D2AY = gA + X + foX m— Y.

2.1.2. Human population dynamics

New born or immigrated humans are recruited susceptible at rate B and die naturally at rate 6.
Since there are some medicines to fight against avian influenza A virus, the latent and the infected
humans recover respectively at rate 2 and y. The transmission of avian influenza A from poultry to
humans occurs at rate 7,, and 7, is the transmission coefficient from the pathogenic or contaminated
environment to humans. For the motivations on the choice of the different incidence functions in (2.2),
we refer the reader to our previous paper [4] for details. The morbidity of the latent human is € and the
disease-related death rate is p, with (p > 0).

During the sales period (of poultry or eggs), humans migrate in large numbers from densely popu-
lated areas to these sparsely populated areas for supplies. This migration is similarly described by Fick’s
law of diffusion.

During the rearing period, that is the time lag during which there is neither sale of poultry nor
production of eggs, humans cannot be in the same location in the industrial city. To model this phe-
nomenon, we use a "nonlocal" delay: an average weight in space arises when the account is taken of the
fact that humans have been at different points in space in previous times. Thus, for ecological reasons,
it is necessary to incorporate a time delay into some equations of the model. In addition, it should be
noted that the human population at all times will have some contribution in animal husbandry as in
the sale or harvest of eggs. This contribution is modeled by a function k(t) called the delay kernel and
satisfies:

+00
k(t) >0, VYt>0, tk(t)€L((0,+c),R) and f k(t)dt = 1.
0

Similarly a function G, defined as the spatial averaging kernel, informs that this delay is given and enjoys

the following equalities:
f G(x,y, t)dx = f G(x,y, t)dy = 1.
Q Q

For example, G(x, y, t) is the Green’s function of the operator % — D3 A subject to homogeneous Neumann
boundary condition, and k(t) = %e‘t/ © with a constant 7 representing the delay.

We assume that humans at a typical time s (with s < ) made a contribution so that the sale of poultry
or the harvesting of eggs can take place at time ¢t. To quantify this contribution, we first multiply the
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density at time s by the function k(t—s), because they have contributed at time ¢ —s. Knowing that humans
located at the point x at time ¢ could have been anywhere in the industrial area at the previous instant
s, we will now need to multiply this density by a function in space G(x, y,t — s). Thus, the dynamics of
human population is given by the following system:

885 D3AS =B +aE+yl—-05—- = f f G(x,y,t = s)k(t — s)(1oY + t.C)(y, s)dsdy,
ao.f D4AE = N f f (x,y,t =s)k(t = s)(toY + 7.C)(y,s)dsdy — (a + 6 + €)E, (2.2)
g—i—D5AI—€E (y+p+9o)L
The term ,
fQ Ioo G(x, y,t = s)k(t = s)(toY + 1.C)(y, s)dsdy,
with

G(x,y,t=9s)k(t—-5)>0, x,yeQ, t>0,

accounts for the infection of individuals to their present position at time t, caused by the asymptomatic
poultry and the infected aerosol from all possible positions at all previous times [6, 7, 8].

2.1.3. Virus concentration dynamics

Since an emission rate for pathogens is defined as an amount released per unit of time, it depends
on source type (pigs, poultry, industrial, humans, etc.), source characteristics (e.g., stable construction or
animal activity), excretion route (e.g., exhaled air or feces), pathogen species or strain, particle size, etc.
For a full quantitative risk assessment, quantified emission rates are required. Hence, the contribution
by humans and poultry in the contamination of the poultry farm is respectively ¢1I and ¢,Y; and the
degradation or decontamination rate of viruses (inactivation) due to the temperature or humidity is &.
It is worth stressing on the fact that the contribution of humans to the contamination of the environment
can be neglected because of the precautions (disinfection, wearing of protective equipments) taken by
poultry producers to prevent visitors from spreading the viruses in their farms. So we assume that only
infected poultry can contaminate their living environment through feces and sneezing. If in addition
we neglect the diffusion of avian influenza viruses in the living environment of the poultry, then the
dynamics of their concentration is modeled by the following equation:

8C =Y - <EC (2.3)

So, in the above described framework, the full model governing the dynamics of avian-human influenza
is the following partially degenerated reaction-diffusion system:

;—?—DlAX (1—q)A—ﬁva1+YY—ﬁCeXCiK—dX,

> - DoAY =gA + ,BDX v+ [SEX— —-dy,

gﬁ D3AS = B +aE + yI 0S - f f G(x,y,t = s)k(t — s)(1oY + 1.C)(y, s)dsdy, s
(;f D4AE = Nf f G(x,y,t = s)k(t = s)(1,Y + 1.C)(y,s)dsdy — (a + 0 + €)E, @
g —DsAl =€eE—(y+p+9),

C - oY - &€,
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for t > 0, x € Q3. We emphasize that, the reaction part of system (2.4) corresponds the model we have
proposed and studied in [4]. Therefore, the system (2.4) is its substantial extension and its analytical
analysis calls for different mathematical techniques and approaches, as one will notice shortly. The
parameters of the model (2.4), their biological significance and unit are gathered in Table 1.

Table 1: Biological significance of the parameters of PDE-model (2.4)-(2.6).

Parameters Biological significance Units
q Proportion of asymptomatic imported poultry no unit
a Recovery rate of the latent humans week™!
A Numbers of imported poultry ind/week
y Recovery rate of the infected humans week™!
Bo Direct contact rate in poultry host (ind.week)™!
P Disease-related death rate week ™
Be Indirect contact rate in poultry host week ™!
D, Diffusion coefficient for susceptible poultry no unit
d Natural death rate of poultry week ™!
D, Diffusion coefficient for infected poultry no unit
a Parameter of the inhibitory effort ind~!
Ds Diffusion coefficient for susceptible humans no unit
B Recruitment rate for humans ind/week
Dy Diffusion coefficient for latent humans no unit
Ty Transmission rate of AIV from poultry to human week ™!
€ Morbidity of the latent humans week™!
o Natural death rate of humans week ™!
K Half saturation rate (elDsg) g.m3
& Degradation rate of virus week ™1
Te Transmission rate of AIV from environment to human ind /(g.m>.week)
P2 Emission rate of poultry ¢.m3/(ind.week)
Ds Diffusion coefficient for infected humans Nno unit
T Delay parameter no unit

We assume that during an epidemic, the borders between cities are closed. Thus, the sale and
consumption (of hens or eggs) will only take place in the industrial area, that is, humans and poultry
are banned to leave their industrial zone. So we use the homogeneous Neumann boundary conditions

dX JdY dS JE Il
a_n_%_g_n_%_g—n_o, t>0, x€dQ, (2.5)

and initial conditions

{ X(x,0) = p1(x), S(x,0) = @2(x), E(x,0) = (pg(x)LI(x, 0) = @a(x),

Y(x, 0) = ps5(x,0), C(x,0) = ps(x,0), (x,0) € QX (=00,0). (2:6)

Here 7 is the outward unit normal vector on the boundary and A is the usual Laplace operator. The
positive constants D and D, are the diffusion coefficients for poultry; D3, D4 and D5 are the diffusion
coefficients for humans. The initial function ¢; for i € {1---6} is nonnegative, Holder continuous and

satisfies %—(Zi = 0 on the boundary.

2.2. Uniform bound

In this section, we provide an in-depth study of the dynamics of the initial boundary value problem
(IBVP) (2.4)-(2.6) which yields various outcomes. Precisely, we prove the existence, uniqueness, positivity
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and boundedness of the solution for the IBVP (2.4)-(2.6). This is done by combining the variational
method and semigroup techniques to some useful functional analysis arguments.

2.2.1. Local existence and uniqueness for the IBVP
We rewrite (2.4) in the following compact form:

% +Apu = f(uy,uz, -+ ,ug) in Qx (0, +00),
8—7{ =0 on JdQX(0,+c), Vie(l,2,3,4,5) @7

ui=@; in Qx(-0,0], Vi€ {1,2,3,4,5,6},
where u = (i1, 12, s, s, s, us)’ = (X, Y, S,E,L,C)',
Ay =diag{—D1A +d,—D2A +d,—D3A +6,—D4yA + (a + 6 +€),—DsA + (y + p +0), &}
and f = (1, o, f3, fa, f5, fo)! with
Y C
ho= (1—q)A—ﬁvX1+ Y P Xz
f 4+ b C + %’
fa = B+aE+yl- f f (x,y,t = s)k(t —s)(1,Y + 7.C)(y, s)dsdy,
fa = N f f (x,y,t = s)k(t —s)(1,Y + 7.C)(y, s)dsdy,

f5 =
fo = ¢2Y

The following Lemma is instrumental for Proposition 2.2 below.

Lemma 2.1. [9] Let K(x, y,t) = G(x,y, k(t), x,y € Q C R3, where k(t) > 0 and G(x, y, t) is the solution to

G ) JG 3
5 = D,V-G, 8_77 =0 on dQ, G(x,y,0)=0(x-1y). (2.8)

¢
f f K(x,y,t = s)u(y, s)dsdy
[ORVE 2

for any function u(x, t) such that du/dn = 0 on IQ.

Then ,
Sf k(t = s)llu(:, s)ll2ds

(o]

The local existence result for the PDE system (2.7) can be established under the following condition on
f.

Proposition 2.2. LetT > 0. Iff : C ((—oo; T];, C(Q; IR6)) — L2(CQ;R®), then f is uniformly Lipschitz continuous
on every bounded subset of C ((—00; T]; C(ﬁ; IRﬁ)) .

Proof. Set u,v € C ((—oo; T]; C(Q; JR6)) such that u = (X4, Y1, S1,E1,11,C1), © = (Xa,Y2,52,E, I, Cp) and

”ui“C(ﬁ;IR) S TWI/ VZ € {11 2} ’ ||L£ ”C(Q ]R) < uml VZ € {3 4 5} and “u6“C(Q ]R) < le

llv; <Tw, Yie{l,2}, |lv < Un, Vi€ (3,45} and llvellcgr < Vi

”c@;lR) HC@;JR)

Recall that

1
2

6
fw) = f@)l, = § Y 1660 = @ | - 29)

=1

6
||u”q:(6;]R6) = Z ||uf||C(§;]I{) /
j=1
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Then

+ LYY, 5) = Yo,

A1) = i@l pgm < LiIX8) = Xal )l

+L:1>) ”Cl(/ S) - CZ('/ S)

S)”C(ﬁ;]R)
”C(ﬁ;]R) s

IA

Lisup,r [1X1(,8) = Xo(, lle@py
+L] SUpg.T ”Yl(/ S) - YZ(" S)”C(E}]R)
+Lysup, 7 [IC1(,8) = C2( 9l -

where the non-vanishing L} forall j €({1,2,3,4,5,6} are

and

Lt = BoTon + BexViu + aBoTh, + BeVin, Ly = BoTon , Ly = BoxTo

m 7

Ly = max{L}, L}, L3}.

Similarly, there exist Ly, L3, Ls, Ls > 0 such that:

Here

|120) = 2O 2 < LHIXi ~ Xallegp, + L3 1Y1 = Yallog,
+L§ [|C1 — CZ”C(ﬁ;]R) ’

Lasupyr IXi(,8) = Xo(, 9)llem
+Lasup,r [IY1(,5) = Y20, )l
+Ly sup, 7 [ICi(, ) = Ca( 8)lle gy -

IA

If50) = 5@l 20y < €IEL — Eallemy
L5 supSST ”El(’ S) - EZ('/ S)”C(ﬁ;lR) ’

P211Y1 = Yalleggy -
= Lesup,rIY1(,8) = Y20, 9)llc@m)

||f6(”) - f6(v)“LP(Q;]R)

500 = O 2y < LasupllYiC,s) = Y2l 9)llear)
+L sup [IC1(5) = Ca(, )lle gy
+Lzsup[E1(-,5) = E2(, s)llcap)
+Lasup I11(5) = 2 )l
+Ls suplISa(, ) = S2( 9l - Y5 < T.

Ly = max{L2, 12,12}, Ly = max{L}, 13,13, L3, L3}, Ls = ¢, Lo = ¢,
L2 = ByTo + Bek Vi + aBoT% + BV, L3 = BoTi, L3 = kT, L3 = 37,U3, L3 = 37.U3,
L3 = AU(to T + Vi), L3 = Un(ToTon + TeVi) + 4, LY = Up(toTon + TeVin) + 7.

In the same manner, there exists Ly > 0 such that:

Here,

|| falw) - f4(v)||Lz(Q;1R) < Lgsup|lYi(,s) = Ya(, S)llegm,
+Lysup [IC1(,5) = Ca(, Sl gy
+L4 sup ||E1(~,s) - E2('/5)”o:(5,-1R)
+Lysup () = (,9)lle g
+Lysup (151, 8) = S2(, S)lleygy, Vs < T-

Ly = max{L{, L3, L3, L}, L3}, LY = 37,U2, L3 = 37,3, L§ = 2Up(to T + Vi),

7
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Li = Un(to T + TeVin).
Finally, setting K = max{L1, Ly, L3, L4, L5, L¢}, it follows that

1
6 2 ’
{Z]'zl ||fj(“) - fj(v)”LZ(Q,-IR)} ’
6
KY.i-1sup,r i) - vf("s)”o:@;lR) ’
Ksup, _r [lu(-,s) — o, Slc@rs) -

|fw) - f@)|

IA

n
A, is a closed linear operator in L*(Q); R®), whose domain is given by

8ui

D(Ap) = {M = (uy, t, u3, Uy, us, ug)' € W>*(Q; R®), o

=0 on dQVie {1,2,3,4,5}}.

From [10], it is well known that —A, generates an analytic semi-group of bounded linear operators
G(t) = [exp(—tAp)}t>0 on L2(Q; R).

For each 0 < a <1, we introduce the fractional power space D(A;) equipped with the graph norm of
Ay =-A+al
il = llully +||Agu|,, for ue D(AR).

We rewrite (2.4) in the following abstract form:

dt (2.10)

WO | Ayu(t) = Fw), 0<t< oo
M(t) = (P(t)/ —co <t <0,

where u = (uq,uy, -+, ug, )" and u;(0) = u(t + 0) for 6 € (—o0,0].
Lemma 2.3. ([10]) D(A%) — C*(Q;R®), ifa>3/4and0 <y <2a—3.

here < means that the inclusion is continuous. Hence, for 3/4 < a < 1, there exists a positive number
Cq satisfying

ou
— < , Yu e D(AD). 2.11
il = Callulle, Yu € D(A) (2.11)

n
) + Z
i=1

Proposition 2.4. [11] Assume that the initial function @ satisfies = (1, @2, , @s)' € C° ((—oo, TL; C(Q; ]R6)),
with0 < o < 1. Then,

le® =06 ca.
StUOPHﬁO(f)”c@Ré) + sup COR) < o (2.12)
<

£5<0, t#s |t — sl

Corollary 2.5. ([10]) Let G be the analytic semigroup generated by —Ay: The following properties hold for the
semigroup G and the fractional power space D(Ay) :

(1) G(t) : L3(Q) — D(A%) Vt > 0,

(2) |A2G(tyul|, < Mot~ |lullp, ¥Vt >0, @20 and u € L(;R),

(3) IG(t) = Dull < My _ot* ||Agul|, VE>0 , 0<a<Tand uel*(QR),
(4) G(HA%u = ASG(tyu, ¥ t > 0, u € D(AZ).

Here M, and v are some positive numbers.
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Theorem 2.6. Assume Proposition 2.2 and 3/4 < a < 1 hold true. Then, for each ¢ satisfying (2.12) and
©(0) € D(Ay), there exists a positive number T such that (2.10) has a unique strong solution u on (—oco,T]

satisfying u € C ([O, T]; D(Afj)).
Proof. It is easy to see that
t
) = GO + [ 6-5) s 213)
0

for t > 0 is a mild solution of (2.10).
Let r denote a sufficiently large number satisfying r > ||g0(0)||2 , and Q the complete metric space

Q= {u e C([0, TL;D(AS)); u(0) = p(0) and sup [Ju(s) - p(O)]|, , < r}.

0<s<T
For u € Q, define P(u) : [0, T] — C(Q;R®) by
t
P(u)(t) = G(H)p(0) + f G(t —s)f(us)ds for 0<t<T.
0

We show that P maps Q into itself, and is a strict contraction.
By virtue of Proposition 2.2, Corollary 2.5 and (2.11), we have:

IPa)® - 9O, < Mt 9O,
o (Mocar + My ||f(uo)||2 .\ Macar + My ”f(uo)”z tl‘“]

v 1-«a

Thus, for 0 < t < T7 < T such that

M()Car + MO ||f(u0)||2 + Macar + M“ ||f(l/l())||2 Tl—a] <r
1 =1

1
Mi-aTy ”(P(O)Hz,a +erh [ v l1-a

we conclude that P maps Q into itself.
Similarly, we obtain

My | My
1P - PO, < Keae {20 + L supy_ us) = 0Ol

for all u,v € Q. It follows that [|P(u)(t) — P(v)(D)llp, < %supOSSST2 [[u(s) — v(s)llp,4 for 0 < t < T < T such

that

M M 1
T, 0 a -
Keoe ™ {S2 e T <

Therefore, P is a strict contraction mapping Q into itself if T = min{T;; T>} is sufficiently small. Hence,
applying the fixed point Theorem shows that (2.13) has a unique solution u € C ((—00, T1; C(Y; 1R6)) N
C ([0, T]; D(A)).

We prove that this solution u actually satisfies (2.10). It is well known (see [10]) that, if f(u) :

(0, T] — L%(Q;R%) is Holder continuous, the function u given by (2.13) is a strong solution of (2.10).
Therefore, in view of Proposition 2.2 and Equation (2.12), it suffices to show the Holder continuity of

u:[0,T] - C(ﬁ; IR%). For this purpose, we employ the method used in [12].
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Lett, t+h € [0, T] with & > 0. From (2.13) we have

G(t + () + [ G(t +h — ) flus)ds
~G(H)p(0) + fy G(t — ) f(us)ds,
t+h

= GM)IG() —Mug + [ G(t+h —s)f(us)ds

+ [ G(t — ) f(us)[G(h) — T\ds,
= L+DL+Is.

u(t+h) —u(t)

For any 0 < 8 < a, each Aﬁ will be estimated separately. we have,

t+h  1+p-a

Aﬁll = ftt hAﬁa‘l’ls exp(—sAp)p(0)ds = —f Aﬁ exp(—sAp)App(0)ds = — A, exp(—sAp) A, p(0)ds.

It follows from Corollary 2.5 thatif 0 < 6 <1 - with 0 < 6 <1, then:

||A§11|'2 < Moo [ASQO)||, &7 (¢ + 1P = 127F) < Cale?, (2.14a)
t+h
||A§,512“2 < Mg (KMacar + || fuo)],) f b= o) B9 gs < Cop b, (2.14b)
t
t
||A§13|'2 < 1\/1ﬁ+5%1v11_5h6 (KMacar + || Fuo)|],) fo (t — 5)~ B0 t=9)ds < Cahd. (2.14¢)

These estimates (2.14a)—(2.14c) yield the Holder continuity of Agu : [0, T] = L*(Q;R%), with exponent

a — B for any 0 < B < a. This fact together with Lemma 2.3 imply that u € C*# ([O, T]; C(Q; ]RG)) for
3/4 < B < a. Thus the proof is complete. m

2.2.2. Positivity of solutions for the IBVP
We rewrite the IBVP (2.4)-(2.6) in the form:

8_1: _ BAL[ + g(u)u = f(u) In Q X (0/ T)/
P _0  ondQx(0,T), 215
an

u(x,0) =ug;  in Qx(—0,0],

where u = (u1,up, u3, ug, us, ug)! = (X,Y,S,E, I,C),

g(u)=diag(g1,§z,g3,g4,g5&g6) f(u) (f1,f2,f3,f4,f5,f6)t D = diag(Dy,D,, -, Ds,0),
6

with g1 = ﬁv1+au2 ﬁu6+ 4,8 = ﬁvl+au ’
1 t
B=0+ T fQ f_w G(x, y,t = s)k(t = s)(Tou2 + Tete)(y, s)dsdy,

g4—(a+6+€) 85=()/+P+5),g6=5, fi=1-9A,
fz—qA+ﬁ@K+u6 f5:eu4,f3:B+au4+7/u5,f6:(j)2u2,

fo= ——2— [ [ G,y t = S)k(t = 5)(Totiz + Tette)(y, S)dsdy.

u3+u4+u5

Note that D; > 0, fori = {1,2,..,5}. Denote H = L*(QQ) and V = HY(Q). Following [13], define the
Hilbert space

WO, T,V, V') = {u e L2((0,T),V) / % e L2((0,T), (V’)}

10



221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

equipped with the norm

oul?

2 2
iz, = Wellizo,m ) * || 3¢

r2mnv)
and the following hypotheses for initial conditions:

Ug1, Ugo, Uge € LOO(Q) , ugi€ Hforiel{3,4,5} , ug; =0foriell,.., 6} (2.16)

Moreover, define
a(u,v) = if a—uﬁdx (2.17)
! = JQ ox j ox j ' '

The variational parabolic problem associated to the triple (H,V,a(t,-, ")) , is

d _
{ %(M(t)/ 0)y + Da(u(t),v) + (guru(t), v)gr = (f(ur),0) Yo eV. (2.18)
u(0) = ug;,

Given f(uy) € L2((0,T), V') and ug; € H, there exists u € W(0, T, V,V’) such that (2.18) holds, since this
problem is equivalent to (2.10).

Proposition 2.7. [13] For ug € H and f € L*((0,T),V’), Problem (2.18) which consists in finding u €
W, T,V,V’) such that

Z—? +Apu = f,  with  u(0) = uy, (2.19)
admits a unique solution given by
t
u(t) = G(H)ug + f G(t —s)f(us)ds. (2.20)
0

We first present a positivity lemma, which can be found in any standard textbook on PDE.

Lemma 2.8. [14] Let u; € C(Q x [0, T]) N C21(Q x (0, T)) be such that

a .
—”t’ “DAuj+cu; >0 inQx(0,T],
B—L:; >0 on QA x (0,T], (2.21)

ui(x,0) =ud(x) >0 xe€ Q,

and c¢; = ci(x,t) is a bounded function in Q x [0,T], D>0. Then ui(x,t) > 0 in Q x [0,T]. Moreover
ui(x,t) > 0in Q x (0, T] unless it is identically zero.

As a consequence of Lemma 2.8, we have the following positivity result.
Lemma 2.9. Any solution of (2.4)—(2.6) with a non negative initial function is positive.

Proof. Here, one approaches the solution of (2.15) by a sequence of solutions (') of linear equations.
Forn =0, u? denotes the solution of

o  _

8_; -DiA? =0 inQx(0,T),

oud

Sy =0 omd0x©T] 222

M?(Q) = Ug; in 5 X (—OO, 0]

11



239

240

241

242
243
244

245

246

247

248

249

250

251

252

253

254

255

256

257

This equation admits a strong solution and u{ > 0. By induction, u denotes the solution of

du?
W—DAL{ + gi(u" 1)u = fi(u"1) in Qx(0,7),

Ju
L=0 ondQx(0,T] (2.23)
an

u'(0) =ug;  in QX (-o0,0].

Suppose that there exists a unique nonnegative solution u"~!. Assuming by induction that uf > 0 for
0<j<n-1,wehave

g—l un—l
e e
which implies that
d < g(u"™") < By +Pe+d. (2.24)

Note that f;(u""!) > 0 for all i. Since g4, g5 and g are constants , we have g;(u""!) € L®(Q x (0, T)) for
i €{1,4,5,6). It remains to show that g;(u"!) € L*(Q x (0,T)) fori € {2,3}.
For this, we need to prove that u! € L*((0, T); L*(€)), for i € {1, 2, 6}.

e Case of u)
Let k € IN*. We multiply the first equality in (2.22) by (u?)Zk‘l, integrate over Q) and use Green
formula, to get

14 f @) dx + D;(2k - 1) f W02Vl Pdx - f a—u?uf?dq =0 (2.25)
2k dt 0o O . .
Then we have
02k 7y < 29
detf(u)dx 0. (2.26)
By integrating over (0, t), we obtain
1 (B)ll2¢ 2y < N ()l 2x(cay- (2.27)
When k tends to oo, we obtain,
1) B)lle () < loillzs(y- (2.28)

This implies that u? € L*((0, T); L*(Q)).

e Case of u} withn € N*
By induction, we suppose that u?, u, -+, u* € L*((0, T); L™(Q)).
For i € {1,6} we multiply the first equality in (2.23) by (u”)zk !
formula, to have

, integrate over () and use Green

fQ(u")dex + Di(2k—1) J,(u)P2|Vul Pdx
+ J gilu" 1><u?>2kdx
= fzﬁ(u"‘l)(u?)”‘ldx-

2k 5 f (! dx < 0. (2.29)

2k dt

Then we have

By integrating over (0, t), we obtain

””?(t)”LZk(Q) < ||”?(9)||L2k(Q)~ (2.30)

12
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261

262
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264

265

266

267

268

269

270

271
272

273

274

275

When k tends to oo, we get,
e (Dl < llugillL=)- (2.31)
This implies that u € L*((0, T); L*(€2)).

Remark 2.10. Since the function gz(u”‘l) is undervalued, we make the change wy = e‘“ug, to obtain:

ow’"
ot
We can choose A > 0 such that

- DyAwy + (A + (tgz(ele)”_l)zt)2 fieMw" e M, (2.32)

A+ gt > 0.
Doing the same manipulation as before, we obtain
[0 ()l < Nlwoillio@) < lugilli=(q)- (2.33)

As a result, we obtain that wj € L*((0, T); L*(Q)) and since u;

1 = eMwl, we have ul} € L((0, T); L~(Q)).

Asul € L¥((0,T); L*(Q)) for i € {1,2,6} and Yn € N we have
d—BoTw < ") <d and 6 < g3"™") < 1,V + oy + 9, (2.34)
since fQ f_too G(x,y,t = s)k(t — s)dsdy = 1.

Conclusion 1. It then follows that g;(u"~') € L*(Q X (0, T)) for all i. Thus, by Lemma 2.8, ui > 0.
Let us show that the sequence is bounded. From (2.18), we have

% (u?,v)w + Dja (u?,v) (gl(u" 1)uZ ,U) <ﬁ(u” b, v> Yo e V. (2.35)
Since 5
0 u’
2 (u2,9),, - <a_['”>' (2.36)
by density and choosing v = u}, we have
2 ) =14 i), = Lo 237)
or i | T 2gr Y T o g H ‘
Hence,
1 d n n— n n n— n
5 7l ||W+Da(u u ) (gi(u Yt u! )7{ = <ﬁ(u 1),ui>. (2.38)

Fori € {1,3,4,5,6}, the form D;a is V-coercive that is, there exists a« > 0 such that D;a(u, u) > allullﬁ, for
all vin V. Moreover g; are bounded, that is there exists I;,l, > 0 such that [y < gi(u) <, forall u > 0.
Therefore,

Egllunllé + alluflI3, + Bl G, < 1fiG" Dl lly- (2.39)

Then by the Young inequality, we have
1d 2 n2 1 ny2 n-1 n 2.40
5 il + allilly, + Bl < ||fz(u I, + | 13- (2.40)

We take €1 small enough such that o — (€1/2) = e2.
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Hence

1d 1 _
> il + el + Bl < 5 fi I (2.41)

Therefore by integration, one has

t ¢ 1
SO +e2 [y @R ds + 1 [l @B ds < 5= [IFGIE,ds + Hul @I (242)

Remark 2.11. For i=2, we make the following change of variable wi = e~*ul} where we can take A = 1 + Po.

Taking into account the fact that g is bounded and that the form D;a is H-coercive, we have the same result as
(2.42).

As f1(u) = (1 — 9)A, we deduce that (u]) remains bounded in C°([0; T), H) and L2((0; T), V). As fo(u) =

gA + Be Ku_li_uz , we get L") <gA + ﬁeu;“l, which remains bounded in L*((0; T), V). Therefore, uy has
6

the same property as u//. The same result holds for u, because fs(u"!) = ¢ouy~".

_ U3 t -1
We have fy(u) = PR — iy [ Gy, t = $)k(t = s)(Totia + Tette)(y, s)dsdy. Therefore, fy(u"™) <
fQ f_t o Glx, y, t = s)k(t — S)(’L'ng_l + Teug‘l)(y, s)dsdy, which remains bounded in L?((0; T), V). A similar
result holds for uz, because f5(u”‘1) = euZ‘l. Since f3 = B + auy + yus, we have the same conclusion for
ul.
3
Now, we deduce that for the positive bounded sequence (u:l) one can extract subsequence (uf")
n>0 i

m=0
which converges uniformly for almost all t by some compact operator in C°([0; T], H) to u;. Applying

Proposition 2.7, for all n it holds that

t
ul(t) = f Gi(t = 9)q!(s)ds + G;(t)ug;, (2.43)
0
where G;(t) is the semigroup generated by the unbounded operator —EAP. Let us denote

g7 (s) = =g (s)u (s) + fiu"(s)). (2.44)

We deduce that g7 € L2((0; T), V).

Moreover, the sequence (u?)n>0 is bounded in CO([O; T], H), which implies that the sequence (q?)n
is bounded in C°([0; T], H) for all 7.

Then, we can conclude by showing that operator G; which maps C([0; T], H) into C°([0; T], H) and
given by

>0

t
Ggi(f) = ‘[0 Gi(t —s)f(s)ds, (2.45)

is compact.

Considering the triple (Lz(Q),Hl(Q), a), the unbounded variational operator A, associated to a is a
positive symmetric operator with compact resolvent. It admits a sequence (Ax)q of positive eigenvalues
with limy_, ;o Ay = o0 and a Hilbert basis (e),»( of H consisting of eigenvectors of A,. Since (G(t));s is
the semigroup generated by —A,, then for all uy € H,

+00

Giltyuo = Y_ e M (ug, ex)ey, (2.46)
k=0
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which proves that the operator is compact for all ¢ > 0, because

lim e Pt = 0. (2.47)
k—+00
Setting
N
Gn(Hu e~ P (u, e)ey, (2.48)
k=0

one sees that Gy(f) is an operator with finite rank which converges to G(t). The following Theorem is
relevant in the sequel.

Theorem 2.12. [13] Let t — G(t) be an application from [0, +oo[ into L(H). One assumes that there exists a
sequence of operators (Gn(t))nsg of H with the following properties:

(1) : forall N and all t > 0, Gn(t) is of finite rank and independent of t,

(2) : t = GN(t), is continuous from [0, +o0) into L(H) for all N,

(3) : for N — oo, GN(t) converges to G(t) in L1(]0, T[, L(H)) for all T > 0.
Then the operator G is compact from C°([0; T], H) into C°([0; T], H) for all T > 0.

From Theorem 2.12 since G; is compact for all i, we have

ul(t) = Gi(hul + Gi(q)(®). (2.49)

Then (1), > 0 belong to a relatively compact set of C°([0; T], H). Therefore from (u!')n=0 we can extract
a subsequence (]")>0 which converges uniformly to u; € CO([0; T], H) for each i.
Conclusion 2.
ul' — u; in C°([0; T1, H). (2.50)

Thus, combining Conclusion 1. and Conclusion 2. yield u; > 0 and u;(0) = ug;. m

2.2.3. Boundedness of the solutions for IBVP
Lemma 2.13. Let u(x, t) satisfy

8(5 —DAu = f(u,x,t), inQx(0,0),

o <0, ondQx(0,c0), (2.51)
u(x,0) = u'x), xe Q.

where D > 0 and ||f(u,x, t)|| < Kl|lull. If there exists p with 1 < p < oo such that |lu(x, Ollrr () B8 uniformly

bounded for t > 0, then |[u(x, t)l|q(q) is uniformly bounded for t > 0, where q = p X 2NN =1,2,.... In particular
llue(x, D)l () 18 uniformly bounded for t > 0.

The following result shows that the solution of (2.4)-(2.6) is uniformly bounded, and global in time.

_ 6
Theorem 2.14. Let (X,Y,S,E,I,C) € [C(Q x [0, T)) N C>(Q x (0, T))] be the solution of problem (2.4)-(2.6)
with non-negative non-trivial initial value. Then T = oo and there exist My, M3 and My such that:

0<X+Y<My, 0O<S+E+I<M3and0<C< My, (x,t) € Qx(0,00).

15



s26 Proof. Clearly, we have

w —AD1X+DyY)=A—-dX+Y), (2.52a)

327
w — A(D3S+D4E +Ds) =B—6(S+E+1)— p < B—5(S+E +]1). (2.52b)

s2s  Integrating (2.52a) and (2.52b) over Q) yields

4 f(X + Y)dx = A|Q| - d f (X + Y)dx, (2.53a)

329
T (S + E + I)dx < B|Q| — f(S + E + I)dx. (2.53b)

Q

3

@
o

Applying Gronwall inequality y1elds
AlQ|

IX+ Yl = (1 - e ) + supy llp1(-) + @5, Ol e,
AQ) (2.54a)
< max {supe<0 llp1() + @s(, Oy, —— 7 }/
331 BI I B|Q|
IS+E+Ing < ==+ (II(PZ(X) +@3(%) + P4l - T)e '
HO (2.54b)
< maX{H(PZ(x) + @3(x) + Qa1 ) —— 5 }

a2 According to Lemma 2.13, we obtain the uniform bounds of X, Y; S, E and 1.
Knowing from (2.54a) that Y is bounded, we have

8C Ago|Q|
=Y -,C= at < T EC.
333 By the comparison principle
Adr|Q Adr|Q Adr|Q
C(x, 1) < ¢ |+(sup Pe(-, 0) — ¢ l) < max {sup @e(-, 0), ¢ |}. (2.55)
de 6<0 dé 6<0 ag

ss«  The proof is completed. m
335 Moreover, from the above results, we conclude that the solution of IBVP (2.4)—(2.6) enters and stays
s36 in the region.

L={(X,%,SELCE@xXR)*:0<X+Y<M,0<S+E+I<Ms, 0<C<M,),

337 where

Q
M, = max{sup||901()+§05( =), |d l},

4
B|Q
Y o %}
L=(CY)

k=2
Adr|Q
My = max {sup @6+, 0), 92| l} .

338

Mz = max{

339

0<0 &

a0 Hence the region X of biological interest, is positively-invariant under the flow induced by IBVP (2.4)-
a1 (2.6).
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a2 3. Asymptotic analysis of the poultry system (when q=0)

343 We start by studying the poultry sub-system as it decouples from the human sub-system. It is given
sus by:
X Y C
_lt/_DlAX_A_ﬁvi(1+aY_ﬁECXC+K 4%,
2 DAY = poX oy HAX e~
5 = 92Y — &G, @.1)
Sk _av
o an
X(x,0) = p1(x), Y(x,0) = ps5(x,0), C(x,0) = pe(x, 0).

a5 Since the disease starts in poultry population, the basic reproduction number of the full model (2.4) can
ss  be computed by using the poultry sub-system (3.1). By letting the densities of the diseased compartments

a7 Y and C be zero, we get PY = (%‘, 0, O) as the disease-free equilibrium of (3.1).

348 Let X := C(Q, R%) be the Banach space, with the usual supremum form ||.|[x. Define X* = C(Q, R3).
se  Then (X, X*) is a strongly ordered space. Assume that T(t), To(t), T3(t) : C(Q,R) - C(Q, R) are the Cy
ss0  semigroups associated with D1A —d, DA —d and 0 X A — £ subject to the Neumann boundary condition,
31 respectively. It follows that for any ¢ € C(Q, R), t > 0, one has

Titp) = e [[Tilx,y, Hey)dy,

T,()px) = e [ Tax, v, Hp(y)dy,

T3(Hp(x) = e o),

ss2 where I'y and I'; are the Green functions associated with D1A —d, D, A —d subject to the Neumann bound-
sss  ary condition, respectively. It follows from [15, Section 7.1 and Corollary 7.2.3] that T;(t) : C(Q),R) —
e C(Q,R) (i=1,2, t>0)is compact and strongly positive. Linearizing (3.1) at the disease-free equilib-

35 rium PY, we obtain:
80)1 _ _,B?}A ﬁeA

a8_t = p Wy — dK‘Ba)Z_ da)l + D1Awq,
W2 _ (BA e -
7 = ( i~ d) wy + T we + DzAa)z, (3-2)
we _
3 Prwr — Ewe,
a6  subject to the boundary conditions
@:@:O, Vx €00, t>0,
an I

357 and initial conditions
w1 = @1(x,0), @2 = @5(x,0) and we = Pe(x,0), V(x,0) € QX (—00,0).

ss8 We can observe that the equations for w; and ws, corresponding to the infectious compartments, are
550 decoupled from w1. These two equations form the following cooperative system,

A
(90)2 _ (‘BZA _ d) Wy + ﬁe_w6 + DZACOZI
ot dx (3.3)
dwg

Tl Prw2 — Ewe,
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d
supplemented by initial conditions and the boundary condition 22 - 0, Vx € dQ,t > 0. For every

an
initial value ¢ = (p1; ¢2) € X; the solution semiflows Il; : X — X associated with the linear system (3.3)
is defined by

() = (w2(., £, @), we (., 1, ) -
I1; is obviously a positive Co-semigroup on C(Q, R%) generated by

[ DyA-d 0
B‘( ¢ _5)-

Setting wa(x, t) = eM'p1(x), we(x, t) = eM'pa(x), with @ = (@1, ¢2) € X x X and substituting them into the
equations for w; and we, we obtain the following eigenvalue problem

BoA B.A
Aop1(x) = (T - d) P1(x) + E(PZ(X) + DoA@(x),
Ao@2(x) = Pag1(x) — Epa(x), (3.4)
Ip1 () =0, Vxe dQ,t>0.
an

The result below about the existence of the principal eigenvalue of (3.4) follows from [16, Lemma 2.7].

Lemma 3.1. [16]. Suppose s(B) is the spectral bound of B. Since all the parameters are constant, then )\% =s(B)
is the principal eigenvalue of the eigenvalue problem (3.4) which has a strongly positive eigenfunction.

This means that )\% is a real eigenvalue with algebraic multiplicity one, and R,(1) < /\% for any other
eigenvalue A of (3.4). Furthermore, A% has a corresponding eigenvector ¢o(x) = (o1, o2) satisfying
@o(x) > 0, and any other nonnegative eigenvector of (3.4) is a positive multiple of ¢g(x).

In the paper by Wang and Zhao [17], the concept of the basic reproduction number is extended
to reaction-diffusion epidemic systems with Neumann boundary conditions. Based on the theory of
principle eigenvalues, they defined the basic reproduction number R, for a reaction-diffusion epidemic
model as the spectral radius of the "next generator" operator IL defined by

L(p(x)) = fo‘w F(x)T(t)pdt = F(x) fooo T(t)qpdt. (3.5)
Consequently, they showed that if 8 =V - (d;V) — VT then
fo ) T(tpdt = -8B, (3.6)
and the next generation operator is
L=-F8 (3.7)

In (3.6) and (3.7), F is the matrix characterizing the generation of secondary infectious cases/agents, and
V7 is the matrix of transition rates between compartments. Both are analogues to the next-generation ma-
trices associated with the corresponding ODE system (i.e. without diffusion terms). T(t) = (T2(t); T3(t))
is the solution semigroup for the linearized reaction-diffusion system; it denotes the distribution of the
initial infection, and dr = diag[D,, 0] is the diffusion matrix.

Following [17], the basic reproduction number of PDE system (2.4)—(2.6) is defined by

Ro = p(IL), (3.8)
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where

pod  ped i 0
F: =
Cog )l ]
and o 2 5
3= Dz(g2 3y 82) d o0 ]
o)) =&

Since all parameters are spatially homogeneous, we can actually find an explicit formula for the basic
reproduction number Ry. Indeed, applying [17, Theorem 3.4], we obtain the following result.

Theorem 3.2. Suppose that D is a positive constant. Then one has

BoA ﬁeAQDZ
d? chdz '

0= (3.9)
3.1. Existence of equilibrium points

In this section, we investigate the existence of constant endemic equilibria of PDE poultry system (3.1).
For this purpose, let P* = (X", Y*, C*) be an endemic steady state of system (3.1), then it is straightforward
that

A Y* >(- C* *
G = VI G Y =0
Y = EC =0, (3.10)
X'+Y' = E
System (3.10) yields
X' = A_ Y, C= @Y* (3.11)
== , =7 )
and Y* is a positive root of the following quadratic polynomial:
QYY) = Y + asY* + a, (3.12)
whose coefficients are given by
BoP2  Peadnr  dago
oy = — - - , 3.13a
4 3 5 3 (3.13a)
ﬁe¢2 ¢2 arBoA A
= —«xfBy 1- - , A
Kpo - dorc + =2 | (1= Ro) = == = "o (3.13b)
g = Kd(Ro -1). (3.13¢)

Investigating the signs of a4, a5 and as lead to the following straightforward result.

Proposition 3.3. The model (3.1) has:

1. a unique positive endemic equilibrium whenever Ry > 1,
2. no positive endemic equilibrium whenever Ry < 1.
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3.2. Local stability of the equilibrium points
As in references [18], let 0 = up < p; < piz1,i = 1,2,--- denote the eigenvalues of —A on Q with
homogeneous Neumann boundary condition, E(u;) the space of eigenfunctions corresponding to p; and

{@ij :j=1,2,---,dim E(yi)} an orthonormal basis of E(y;). Then X = [C(Q)]? can be decomposed as

dim E(u;)

X = @Xi , X = EB Xz’j/ where Xl’]’ = {CCDZ‘]' 1CE lRS}.
i=1 i=1

Theorem 3.4. The disease-free equilibrium P° of the poultry system (3.1) is locally asymptotically stable whenever
Ro < 1, but unstable when Ry > 1.

Proof. The linearization of system (3.1) at PY gives

azg; D) _ DAz b+ AZ(, ), (3.14)
where D = diag(D1, Dy, 0) and
A A
AT
A= 0 4_ d 5
Po d Pe xd
0 P2 -&

For each i > 1, X is invariant under the operator £ and A is an eigenvalue of L if and only if it is an
eigenvalue of the matrix —u;D + A for i > 1; in which case, there is an eigenvector in X;.
The characteristic equation of —y;D + A at P is

oA

(3.15)

(_Hz‘Dl —d- A) {Az + /\(yiDz +&+d- ﬁvAé - ﬁeA(PZ} =0.

d xd

It is obvious that (3.15) has an eigenvalue
A1 = —/JZ'D1 —-d< 0,

and the other two eigenvalues A, and A3 solve the following equation

2 ) _ ﬁU_A ] _ ,BvAé _ ﬁeA(PZ _
A+ AuiDy + E+d 7 )+ wiD2& +déE 7 o =0.
It is easy to see that
A A
A+ A3 =—wiDré —E—d+ ﬁ; = —uiDy& - & — ﬁkd;f; +d(Ro - 1),
ﬁvACS ﬁeA(PZ
A2 X Az = piD2& +dé& — I d&(1 = Ro) + wiD:&.

Clearly, If Ro <1, then A2 X A3 > 0and Ay + A3 < 0. Thus, Re(A2) < 0 and Re(A3) < 0. Hence, PYis locally
asymptotically stable whenever Ry < 1.

On the other hand, if Ry > 1, at least one of the eigeinvalues has a positive real part, which implies
that PY is unstable. In fact, set

poA
d

If Ro > 1, it is easy to show that for A real and i = 0 (in this case, pg = 0),
h(0) =d&(1 —Rg) <0 and Ap X Az = hy(0).

hl(/\):/\2+/\ [JZ‘D2+§+d— )+d.§(1—R0)+[J1‘D2£.

This completes the proof. m
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Theorem 3.5. The endemic equilibrium P* of the poultry system (3.1) is locally asymptotically stable whenever
RO > 1.

Proof. Linearizing system (3.1) at P* gives

dZ(x, t)
ot

= DAZ(x,t) + BZ(x, 1), (3.16)

where D = diag(D1, D3, 0) and
_P)(-* _ d _Q)(-* _R**

B — P’(‘* Q** — d R** ,
0 P2 -
where v - e e
=Py e @ T b r e N oy

The characteristic equation of —u;D + B at Z* is
A3+ cl/\2 + oA +c3=0, (3.17)

where

£ * *

Y C X
1 = HiD1+ﬁvl+aY*+ﬁec*+K+d+[JiD2 ﬁv( Y) d+§

* * * 1 * %

forar et PTrar (L 1+aw)+ﬁem+*‘fD1+d+“iD2+5>0f

Y* C X*
@2 = CE(#Z'D1+ﬁvl+ocY*JrﬁeC*+Ker)Jr(S(#iDZ ﬁv + aY*)? d)

Y C X*
i G el +d)(“f92‘ﬁvm+d)

X' Xt % C
+Kﬁ"’¢2( +C*)2 ﬁ”(1+a¥*)2 (5”1+aY* ﬁeC*+K)
% C Xt 1 XC
- 5(”1D1+ﬁ”1+ay* ﬁeC*+1<+d)+£(yZD2+ﬁvl+aY*(1_1+aY*) ﬁ‘fy*(cwx))

*

C X 1 XC
D+ o e *d)(“sz bt v (1 Trar)* ﬁm)
X X* Y* c ) 50

e o Py brar b

* * % *

X Y C
4 = M (WD B e ) KB o

X* Y* y
*hoc 1+ aY*)? (ﬁ”1 ray TP +1<)

*

Y c X 1 Xc
6 (D1 + o s +d)(‘uiD2+ﬁvl+aY*(1_1+aY*) ﬁeY*(C*+K))

X* Y* c
TRz (k + C*)2 (ﬁvl +aY* ﬁeC* + K) >0,
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430

%

2 X* 2
cicp—c3 = & (yiDl + ﬁvl ,Be C* + d) + ([LIZDZ (1 " aY*)2 + d)
Y* 2 X*
+ (I‘liDl + ;827 1+aY* ﬁe C* + d ([JZDZ aY*)Z + d)
2

Y X*
+(“iD1+ﬁ”1+a ﬁEC* +d)(“’2 A+ary d)

%

+&2 (Hz‘Dl ooy T +d) +&2 (H1D2 Bo

2 L4

A+ayy )
X* Yy C y*

P ary (5”1 T av +ﬁ€C*+K)(MiD1 ooy They +d)

Y C X
26 (D1 + o e+ B ) (P‘ZDZ Petraye d)
X X 1 Xc
P oy (”"Dz P ar (1 1+ aY*) Peyics K))

X* - . o
Py aY*g? (ﬁ% Tav +/3€Xq K)(‘Uilz: ~heas 2 +d)
P e‘gqbz C*)2 e 6(7)2( +C)? (5 Tray TPoy ) >0

s31 - Then, by using Routh-Hurwitz cr1ter10r1, the endemic equilibrium P~ of system (3.1) is locally asymptot-
432 ically stable. This completes the proof. m

13 3.3. Global stability analysis of the equilibrium points

434 Here, we establish the global stability of the equilibria for the continuous system (3.1). This is
455 achieved by constructing suitable Lyapunov functions. We first introduce the function ®(x) = x—1-Inx.
s36  Clearly, @(x) > 0 for all x > 0 and the equality holds if and only if x = 1.

w37 Theorem 3.6. The disease-free equilibrium P° of the poultry system (3.1) is globally asymptotically stable (GAS)
a8 in LifRp < 1.

430  Proof. Define the Lyapunov function
L0 = [ Lt b,
Q
a0 with
B X’
KE

w1 Using the fact that A = dX?, the derivative of Li(x,t) in the direction of the vector field given by the
w2 right-hand side of system (3.1) is

Lix,f) =X - X0 — Xoln(§)+Y Pe? ¢

8L1 (X, t)
ot

Y C
1+aY ﬁeXC+K_dX+D1AX]

X7 o0
1- Y] [dX — B.X

Y C BeX"
+ I:ﬁva + ﬁng —-dY + DZAY] (¢)2Y EC )
_ d 0y2 0 o C ﬁf peX
= X(X XY +,82,X1 g}E+[3EXC+K pr:
+D1AX + DoAY — DlXOY
a3 Direct calculations lead to
dL1(x,t) < d AX

__ _ x0 _ 0242
o < (X=X +d(Ro~1)Y + DiAX + D2AY - Dy X",
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451

452

453

454

455

456

Since

2
fAdezfAdeanndfgdx=f lv}g dx,
0 0 o X o X

we have dL(t) dLi(x, ) p
“ g = o
< —d f g (X = XOx +d(Ro — 1) [, Y(x, Hdx = DiX° [, —dx.
Consequently, % < 0if and only if Ry < 1. % =0, if and only if Ry = 1 and X = X°, for all t > 0

dL(t
and x € Q. It is easy to see that the largest invariant subset included in the set {(X, Y,C) e X/ ®) = 0}

dt

is the singleton {PO}. Thus, by the generalized LaSalle’s Invariance Principle [19, Theorem 4.2] (see also

[20]), the disease-free equilibrium P is globally asymptotically stable in . This completes the proof. m

Theorem 3.7. The endemic equilibrium P~ of the poultry system (3.1) is globally asymptotically stable (GAS) in
the interior of X if Rg > 1.

Proof.

H(t):LHl(x,t)dx,

where the Volterra-type Lyapunov function Hj is given by

Hy (xr t) =

X

*

(k-3 - xm(Z)) s erlr- v - vin(L)) ves(c-c - cm(S))

Cx—

with ¢1, ¢ and c3 being three positive constants to be determined shortly. Denote

We have

00;
ot

20,
ot

* * X _ * * Y
0;=X-X —Xln(X*),Oz—Y Y Yln(Y*),

O3 =C—C*—C*ln(%)r fQY) =

C
C+rx

Y
Tray 48O =

(1= 5 ) IXFO7) + Xog(C) = dX = X°) = XF(Y) = Xg(C) + DyX],
K=XP oyl X XA f)
A |(1C; XX ial
5o (O X 8 8 X
+Xg(C )[1 X @ | (1 - Y)DlAX,
_dw +

< (1 - %) D1AX + a12G1p + a13G13.

(1- 3 )[xron + xe(0 - ox 7o) - Zoxeg(@)] + (1- 3 Doy,

Xf(Y) Y XY f(Y)

O e 1~ v
e[ X8O TxVO] (o
80| ey 1 & o (L P

Y
'Y*
(1 - ?) DoAY + ay1Gy1 + a23Gos.
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458
459
460

461

462

463

whereaiy = ayn = X" f(Y"), a13 = ax3 = X"g(C"), a31 = ¢ Y™ and all other a;; = 0, for all others (i, j), 1 <7, j <
3. The associated weighted digraph (G, A) has three vertices and three cycles. We consider the following
two kind of cycles: cycles involving direct transmission and cycles involving indirect transmission. By
[21, Theorem 3.5] there exists ¢;,1 < i < 3, such that H; = 2?21 c;O; is a Lyapunov function for (3.1).
X'8(C)
P2 Y

Futhermore, following [21],¢; = cp and ¢3 = ¢1. Thus,

X*g(C")
P2Y*

Hl(x, t) = c101 + C]Oz +

ClO3.

We have
OHy(x,t) _ [d0i(x,t) d0i(x,t) X*g(C*) Os(x, 1)
a - Yo TTa o o |

X=XV i X Xf(Y) f(v)
— » + X f(Y")er [1— < X F(0) +f(Y*)]

. X Xg(C)  g(O)
PO " %e0) g(@]
XY Y XY
X T T Y T XY AY)
XR(0) Y Xrg(©O)
(€)Y XVl
+X*g(c*)C1 1- E + F — YC

*

= —dCl

+ X f(Y")er

+X*g(C)er

. L

Y
)D]AX +C1 (1 - Y)DQAY,

X
1 -
+C1( e

g KXY XY Xrfy f(Y)]

+ X (Yo [2 TX Y XYY Y

) ) X* Y XY*g(C) g(C)

+X*¢(C)cy [2 XY XYg(C) " 8(C*)]
c Yy yc

+X"g(C)ey [1 "y T yC

X Y%
DiAX + ¢ (1 - =\ DoAY
X) ! +C1( Y) 284

+C1 (1 -

(X - X

X

Y e XY XYf(Y) f(Y)
A X Y Xy A
XY XYgO 5O
XY T XY@ 5(©)
i [C_Y YO

XSOl -y
+Cq (1 - Y)DlAX +C1 (1 — ?)DzAY,

= —dCl

—X"g(C)er
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464

(X - X)?

X
FY X Y XY f(Y) £Y)
_Xﬂyh#+_)¢bﬂ+(xww) (7?”
XY f(Y
X" f(Y)er ln(ﬁ)‘*l (X Y;((y))) (_
e (X Y XY*¢(C) 2(C)
—X'8(C)ey ¢(Y)+¢(?)+ (X ) _Qb(ﬁ)—l]
* XY*o(C C
e )

= —dC1

+

XY*

“xseo(g)-o(5:) w0 )+

X Y
+Cq (1 - Y)DlAX +C1 (1 — Y)DZAY’

(X - X")?
XY*£(Y) f(Y)
o) ()|
YC XY*¢(C) g(C)
¢(WC)+¢(XWgKﬂ)_¢(§E§ﬂ

= —dCl

465 Note that
{f@%:ﬁm=0,,ﬂW>0,gCﬁu)VY>O,C>Q
f'(Y), §(C)>0 and f"(Y), g"(C) <0,

46 and

BB )i
fr) o Y\ R ) T Y OGP e+ aY)’
q)(g(C)) ¢(£)<(£_£)(1_g(c*)):_ xkCC*(C — C*)?
8(C) c/)m\g(c) g(C) Cg(O)(Q(C))*(k + O)(x + C)
s Finally,
dH(t) JHi(x,t)
e W 2
< —dclf X _XX) dx
Q ]
. five X Y XY f(Y) f(Y)
S 8
X . "
e [ Jof%)rol35) o Frm o
D1 X* fQ |VX|L - DyY* fQ lVY|
a0 Consequently, dl;llft) 0 and % =0ifand only if X = X*,Y = Y and C = C’, for all t > 0 and

dH
a0 x € (). Moreover, the largest invariant subset contained in {(X, Y,C)eX/ E(t) = 0} is the singleton {P"}.

ar1 It follows from the generalized LaSalle’s Invariance Principle [19, Theorem 4.2 ] (see also [20]) that P* is
a2 globally asymptotically stable. m
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Remark 3.8. When q # 0, the poultry system has only one endemic equilibruim, which is locally asymptotically
stable.

4. Asymptotic analysis of the full system (when q=0)

In the absence of infection, thatis Y = E = I = C = 0, the model (2.4)-(2.6) has a disease-free
equilibrum
A B
0_[Z 0 =
2°=(5,0,5,0,0,0).
4.1. Existence of endemic equilibrium point

Suppose that
_ ﬁeAQbZ ﬁUA

Ry =

0= e T

Then the full system (2.4)-(2.6) has the endemic equilibrium Z* = (X*,Y*,S*, E*,I", C*), where X*, Y* and
C*) are given by (3.11) and (3.12) and

> 1.

_)/+p+(5

oe (B—-0N7),

S=N'-E'-T, 1*:%(3—51\1*), E*

with N* being the positive root of the following quadratic equation:

N+ (a5 = 3 )N - v =0, .
where S 0)0 0
CLEE AL L AT EL )
pe P € ¢
0)0
= (0500 (o4 22).
pe p ¢

Thanks to the Descarte’s rule of sign, N* is unique.

4.2. Local stability of the equilibrium points

The local stability of the equilibria 7% and Z* follows from linearization method of (2.4)-(2.6) and
detailed spectral analysis of the corresponding characteristic equation.

Theorem 4.1. If Ry < 1, the disease-free equilibrium Z° of the full system (2.4)-(2.6) is locally asymptotically
stable, but unstable when Ry > 1.

Proof. The linearization of system (2.4) at Z° is

dZ(x, t)

= LZ(x,t) = DAZ(x, 1) + CZ(x, 1), (4.2)
where D = diag(D1, Dy, D3, D4, D5, 0) and
A A
—d —pog 0 0 0 -/36/@
A
0 ﬁz]_ -d 0 0 0 ﬁg_
d xd
C = O _TU _6 a ‘)/ _TE
0 Ty 0 —(@a+0o6+¢) 0 Te
0 0 0 € —-(y+p+9) 0
0 P2 0 0 0 =&
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s The characteristic equation of —y;D + C at Z° is

(=uiD1 —d = A)(=uiD3 = 6 = A)(—uiDy — (@ + 6 + €) = A)(=iDs — (y + p + 6) = A)
BoAE ﬁeACf)z} »

(4.3)

X /‘\2+A(y-D2+£+d—ﬁv—A)+y-D2£+d§—
! d ! d Kd

s According to the local stability of P? for the poultry sub-system, all eigenvalues of (4.3) have negative
w5 real parts when Ry < 1. Hence, Z° is locally asymptotically stable. m
46 Theorem 4.2. If Ry > 1, the endemic equilibrium Z* of the full system (2.4)-(2.6) is locally asymptotically stable.

47 Proof. Linearizing system (2.4) at Z* gives

dZ(x,t —
gtc ) _ £7(x 1) = DAZ(x, ) + DZ(x, b), (4.4)
w8 where D = diag(D1, Dy, D3, D4, D5, 0) and
-P*-d -Q* 0 0 0 —R*
P** Q** _ d O 0 O R**
0 _TUS* _TUY* —7.,C* _s . y _’CeS*
— * N* *
D= 0 Tg* oY + 7,C* _@+5+e) 0 elg
N~ N~ N~
0 0 0 € —(y+p+90) 0
0 D2 0 0 0 =&
499 Here v - < <
P)F)(- — , 3% — , R** — .
Poivay Phes @ =haary Pelcr o
s0 The characteristic equation of —y;D + D at Z* is
(A3 +c1A2 + oA +c3) (A3 + G142 + BA +G3) = 0, (4.5)

501 where

* %

Y C
g = [uiD3+TUﬁ+’Ceﬁ+5+‘L11'D4+[,liD5+a+(5+€+)/+p+5>0,

* *

Y C
Cp = (Mz‘DS + Tyﬁ + Teﬁ +6)(HiD5 tytp +6)

+(yz-D3 + ’L’vﬁ + TEN* +6)(yiD4 +a+0 +€)y* -
+(yiD5+7/+p+6)(yz-D4+a+6+€)—a(’cvﬁ +761\?),

* *

Y C
= (yz-D3 + Torg + Ty jé)(HiDS +y+p+0)

+(yz-D3 +’l'yﬁ +Tfﬁ +6)(yiD4+6+e)
+(WuiDs +y+p+0)(uiDs+a+06+€)+a(uDs +0) >0,
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503

504

505

506

507
508

Thanks to Routh-Hurwitz criterion, the endemic equilibrium Z* of the full model is locally asymptotically

stable. m

€162 — C3

—a(uiDs +y + +6)( £+ g)+e( K+ C*)
" yY*p C*T”N* N ) T TN TN

+(‘LliD3+TUﬁ +TQN* +6)(yiD5+y+p+6)(yiD4+a+6+e),
C

ol nE)
Y* c
+ ([JiD3 +Ty— + Te + 6)(‘uiD5 +y+p+0)(uiDs + 0 +¢€)

+a(uiDs +y +p+0)(uiD3 +06) >0,

Y* Cx- 2
(uiDs+y+p+9) (yiD3 T ot ey t 6)
+(yiD5+y+p+6)(yiD4+a+€+6)2

Y* %
+2(uiDs +y + p +06) (uiDs +a+e+6)(yz-D3 +T”ﬁ +ng% +6)

* *

—(‘uiD3+TUZ\?+’l’eﬁ+6+‘uiD4+a+€+6)

Y* C* Y* %
X [a (TUI\? + ’L’eﬁ) —(uiDs+a+e+0) (y,-Dz + ’L’Uﬁ + Tgﬁ + 6)] ,
Y* c
(uiDs +y +p+9) (yiDg o Tl 6)

+(wiDs +y + p +6) (uiDy + a + € + )
+2 (uiDs +y+p+5)(yiD4+a+e+6)(yiD3+TZ,L+Tg%+6)

N~ N
ey (toges + e
y UN* iNx- .

+(‘uiD3+TvI\F+Teﬁ+(5+‘uiD4+a+€+5)

X [a (4iD3 + 6) + (uiDs + € + ) (‘ul‘Dg + Tv;\% + Tel% + 6)] ,

Y* Cx— 2
= (WDs+y+p+0) (yiDg + Ty + Ter + 6)

NN
+(wiDs +y + p +6) (uiDg + a + € + )’

+2(uiDs + p+0) (uiDs +a + € +9) (yl‘Dg + TU;\% + Te% + 6)
+2y (WiDyg + a + 6) (piDg + Tv;\% + Te% + 6) + 2y€e (uiD3 + 0)

+({.11'D3+Tvﬁ+’[gﬁ+(5+yiD4+a+€+*5) *

X [a (uiD3 + 0) + (uiDs + € + 0) ({.ll'Dg, + TU;\% + T

+6)]>0.

4.3. Global stability analysis of the DFE

To establish the global stability of the full system (2.4) — (2.6), we first give two lemmas about the

global stability of the scalar equations.
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Lemma 4.3. Let u € C(Qx [0, %)) N C21(Q % (0, )) be a nonnegative nontrivial solution of the scalar problem:

g— — DAu = f(x,t) + Aqu(x, t) in Q% (0, o),
u

on _
u(x,0) >0 xe Q,

on 9Q x (0, o), (4.6)

where A1 > 0 and f(x,t) is a nonnegative continuous function. Then u tends to A, /A1 as t tends to co uniformly
on Q, whenever f(x,t) tends to Ay as t tends to co uniformly on Q.

The proof follows directly from the comparison principle for the parabolic equations. We omit it here.

Lemma 4.4. [7] If u(x, t) is a bounded function and lim;_,« |[u(x, t) — A1lle = 0, then

¢
f f G(x,y,t = s)k(t — s)u(y,s)dsdy — Ay as t — oo
QJ-

uniformly on Q.

Lemma 4.4, which is a consequence of Lemma 2.1, implies that the nonlocal integral term do not affect
the long time behavior of the solution.

Theorem 4.5. The disease-free equilibrium of the full system (2.4) is globally asymptotically stable (GAS) in X if
Ro < 1.

Proof. For Ry < 1, it follows from the global stability of PO of the poultry system that
X(x,t) =0, lim—e [|Y(x, £) = Olleo = 0 and lim;_, [|C(x, t) = Ol|c = 0. Thus, by Lemma 4.4,

il

hmt—)oo ‘

t
% f f G(x,y,t = s)k(t —s)(1oY + 1.C)(y,s)dsdy — 0 as t — oo,
QJ-

uniformly on Q. Therefore lim;_,« [|E(%, ) — O]l = 0, according to Lemma 4.3. Applying once more
Lemma 4.3 gives lim;_, [[I(x, £) = Ol|co = 0.
For the third equation of the full system (2.4)—(2.6), since

Lim [[E(x, £) = Olleo = 0, lim [lI(x;, £) = Olleo = 0,

B
and the fact that Lemma 4.3 applies again, we have lim;_, ”S(x, t) — 5” = 0. Therefore, Z° is GAS for
Ro<l m oo

Remark 4.6. When q # 0, the full system has only one endemic equilibrium, which is locally asymptotically
stable.

5. Numerical simulations

In this section, we present some numerical simulations to illustrate the spread of avian influenza.
For simplicity, we choose Q) = [0, ], K(x, y, t) = G(x, y, t)k(t), where

Z ™Dt cos(nx) cos(ny).

n=1

_ 1 ~t/T . — l
k(t) = Te ; Glx,y,t) = -

:1IN
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To circumvent the difficulty caused by the nonlocal integral terms, we introduce the following new

variables

Tl t i t
Ux, t) = f(; I G(x,y,t = s)k(t —s)Y(y,s)dsdy , V(x,t) = f(; I G(x,y,t = s)k(t — s)C(y, s)dsdy.

Then system (2.4) becomes:

Y C
gt ~Diax = (1_q)A_ﬁ;X1+aY_ﬁEXC+K
——DZAY gA + B X Toa +ﬁeX K—dY,

—S—D3AS B+aE+yI 65—1\%(TUU+T€V)

—dX,

£
E
— — D4AE = (TZ,LI +7,V)—(a+06+¢€)E,

5t

g——D5AI—eE (y+p+0),
C
=Y - EC,

é’u

= —DsAU = —(Y u),

5
=5 DAV = —(c - V).

Every variables of the previous system enjoys the homogenous Neumann boundary conditions. Addi-
tionally, we need the following initial conditions

Tt 0 T 0
U(x,0) = j(: f: G(x, v, —5)k(=s)Y(y,s)dsdy and V(x,0) = L ﬁ G(x, v, —s)k(=s)C(y, s)dsdy.

The parameters are fixed in the Table 2 below

Table 2: Numerical values of the parameters of PDE-model (2.4)—(2.6).

Parameters values Source  Parameters values  Source

q 0,0.1 [22] a 1 [23]

A 100 [22] y 0.9 [23]

Bo 1.7143 -107°° [23] p 0.001 [22]

Be 0.002 week™!  Assumed D, 4 Assumed
d 1/72 week™! [24] D, 3 Assumed
o 0.001 ind™! [23] Ds 2 Assumed
B 15 [22] Dy 1.5 Assumed
Ty 0.6 [22] € 1 [22]

0 0.00025641 [24] K 100 [22]

& 35 Assumed Te 0.1 Assumed
P2 . variable Ds 1 Assumed
T 3 Assumed

5.1. General dynamics

Figure 1 illustrates Theorem 4.5, which states that the disease-free equilibrium Z0 of the full system
(2.4)—(2.6) is globally asymptotically stable. Thatis, aviain influenza ultimately disappears in the poultry,
human population and in the environment irrespective of the initial conditions whenever Ry < 1. Thus,
reducing the contact rates (poultry-to-poultry and poultry-to-environment) for susceptible poultry in
order to keep (Rp < 1), is a good policy to control the spread of avian influenza virus.

30



543
544
545

546

547

—~
=
bl —~
2 o
£ 400 = 10000
3
& g
A =
.S 200 & 5000
- -
E =
g 15)
3 ]
I S
£6000 S 6000
= O
<
: ) . 0 o
Time t Space x Time t Space x
~
=
600
o
<
8
g 400
=
= 200
<
2
S o
2 6000
= 4000 4 5
2000 > 3
. 0o o !
Time t Space x

Figure 1: Simulations of IBVP (2.4)-(2.6) using various initial conditions when g = 0 and ¢, = 10° (so that Ry = 0.9183 < 1). All
other parameter values are as in Table 2.

Figure 2 illustrates Theorem 4.2, which states that the endemic equilibrium Z* of the full system
(2.4)—(2.6) is locally asymptotically stable. That is, avian influenza are still present in poultry, human
population and in the environment irrespective of the initial conditions whenever (Ry > 1). So, re-
ducing contact rates (poultry-to-human, environment-to-human) for susceptible humans seems to be a
recommended measure to control the spread of avian influenza within the human population.
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Figure 2: Simulations of IBVP (2.4)-(2.6) using various initial conditions when g = 0 and ¢, = 10* (so that Ry = 1.1849 > 1). All
other parameter values are as in Table 2.
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Figure 3 illustrates Remark 4.6, which states that the endemic equilibrium of the full system (2.4)-
(2.6), when q # 0, is locally asymptotically stable. It not only shows that asymptomatic poultry and
infected humans are still present in the industrial zone, but also that only 10% of infected imported
poultry can multiply the number of asymptomatic poultry by 7 (that is from 200 to 1400 poultry), while
keeping the number of infected humans at the same level.
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Figure 3: Simulations of IBVP (2.4)-(2.6) using various initial conditions when ¢, = 10* and g = 0.1. All other parameter values
are as in Table 2.

5.2. Impact of some parameters on the model dynamics

As we can see from Figure 4, the diffusion of poultry and humans has no impact on the transmission
dynamics of avian influenza. This is because: Indirect transmission through the environment is the most
devastating one during an avian influenza outbreak on the one hand (see [4]) and infected humans can’t
transmit the virus on the other hand.

Figure 5 illustrates the impact of the delay parameter 7 on the transmission dynamics of avian
influenza. We observed that for very large values of 7, the number of infected humans decreases. Which
is realistic because a significant delay by humans in feeding poultry can result in less contact between
humans and poultry.

Figure 6 illustrates the impact of the transmission coefficient of the disease from the environment to
humans. A significant impact on infected humans is observed when this parameter increases from 10%
to 15%.

The effect of the transmission coefficient of the disease from the environment to the poultry is shown
on Figure 7. We observe a significant impact on the three infected classes (i.e. human, poultry and virus
concentration) when this parameter varies from 0.002 to 0.004.

We can conclude from Figures 6 and 7 that the environment has a significant impact on the dynamics
of the model.

6. Conclusion and discussion.

The main objective of this work was to add more realism to the modelling and analysis of the
transmission of AIV. It was achieved by taking the authors’s previous work [4] to the next level in two
main directions:
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Figure 5: Simulations of IBVP (2.4)—(2.6) with various values of 7 (so that Ry = 1.1849 > 1). All other parameter values are as

in Table 2.

From the modelling perspective, the diffusion of poultry and humans were considered, as well as
the delay in the trading of poultry and production of eggs (new poultry). The resulted more realistic
model was a system of delayed reaction-diffusion equations.

From the theoretical perspective, we used the semigroup theory to deal with the well-posedness
of the system. Moreover, the qualitative analysis of the model was insightfully performed and the
main findings are as follows: An explicit formula for the reproduction number, given by the method
in [17], allowed us to conclude whether the disease should persist or disappear in populations and

in the environment.

We obtained results on asymptotic behavior and numerical simulations were
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Figure 7: Simulations of IBVP (2.4)—(2.6) with various values of .. All other parameter values are as in Table 2.

presented to interpret the results. It is observed that if Ry < 1, the disease-free equilibrium Z is globally
asymptotically stable, implying that poultry, humans are safe and the environment is healthy if the
contact rate for susceptible poultry is small. Our results also show that avian influenza spreads in the
industrial zone when at least one of the two conditions is fulfilled: Ry > 1 or in the recruitment of poultry
a proportion is asymptomatic.

From the computational aspect, we observed on the one hand that the importation of infected poultry
can boost the endemic level of AIV in poultry and do not affect much the human population; on the
other hand, in an epidemic situation, a significant delay can lead to a decrease in the number of infected
humans. Moreover, we noticed that the environment has a significant impact on the dynamics of the
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model. It should be noted that viruses live in poultry excrements, which are small particles that can be
transported by the effect of the wind and diffused into the atmosphere. In view of this, it is very realistic
to extend this work by taking into account the transport and spread of the virus. Thus, we will obtain
an advection-diffusion model whose main investigation will be the study of impact of virus transport
and diffusion on the transmission dynamics of this disease.
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