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Abstract

We study the first-order theories of some natural and important classes of coloured
trees, including the four classes of trees whose paths have the order type respectively of
the natural numbers, the integers, the rationals, and the reals. We develop a technique
for approximating a tree as a suitably coloured linear order. We then present the first-
order theories of certain classes of coloured linear orders and use them, along with the
approximating technique, to establish complete axiomatisations of the four classes of trees
mentioned above.
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1 Introduction

1.1 Background and motivation

The logic-based study of linear orders was comprehensively presented in the early 1980s in
the still very relevant classic book [Ros82], and there have been several important further
developments since then, mentioned below. In particular, the first-order (FO) theories of
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various naturally arising classes of linear orders are now well-known, for example, the FO
theories of each ordinal α for α < ωω (see [Ros82]), as well as the FO theory of the rational
numbers (implicit in [Ros82]). Furthermore, in [Doe87] and [Doe89] Doets studies several
natural classes of coloured linear orders (i.e., linear orders enriched with unary predicates)
and obtains complete axiomatisations for the first-order theories of: the class of coloured
scattered linear orders; the class of coloured expansions of the natural numbers, from which
the case of the integers follows easily; the class of coloured finite linear orders; the class of
coloured complete linear orders; the class of coloured well-orders; and the class of coloured
expansions of the order of the real numbers. Also closely related are the papers [MT11] and
[MT18], which investigate coloured finite linear orders and coloured ordinals respectively.

The study and axiomatisation of the first-order theories of naturally arising classes of
trees is substantially more complicated, however, even when the first-order theory of the
corresponding class of linear orders is known. A more systematic attempt was made in
[GK10] to explore the general problem of transferring the first-order theory of a class of
linear orders to the class of trees whose paths are all contained in that class of linear
orders. That work left many open questions and indicated some inherent difficulties. They
are mainly due to the following facts:

(i) Since paths (maximal linearly ordered chains) are special sets of nodes in a given tree,
the first-order language for trees cannot, in general, impose first-order properties on
all paths of the tree, but only on the first-order definable ones. A path P in a
tree T := (T ;<) is called singular when it contains a node u such that the set
{x ∈ T : u ⩽ x} is a linear order within T. All singular paths are parametrically
definable. However, trees may also contain emerging paths, which are paths that are
not singular. In such non-definable emerging paths, behaviour in the terminal part
of the path cannot generally be controlled within the expressive means of first-order
logic.

(ii) The branching structure of a tree cannot be captured by the properties of its paths.

Consequently, there are very few known complete axiomatisations of first-order theories
of classes of trees, in essence comprising the following classes: the class of finitely branch-
ing trees (implicit in [Sch77]), the class of (ordinary or coloured) well-founded trees (see
[Doe89]), and the class of finite trees (see [RBVS95]). Also, [Gor99] contains some general
results on axiomatising subclasses of the class of finitely branching trees relative to the
respective classes of trees with no restriction on their branching. Further, the first-order
theories of the class of trees, all of whose paths contain greatest elements (leaves), and the
class of trees whose paths are all isomorphic to some given ordinal α with α < ωω, are
investigated in [Kel19], but without deriving complete axiomatisations of these first-order
theories. Lastly, even though not directly related to the present paper, we should mention
the very important works by Gurevich and Shelah [GS85b] and [GS85a] on decidability of
first-order theories of coloured trees with additional quantification over branches.

1.2 Goal and main contributions of the present work

The goal of the present paper is to study and axiomatise in first-order logic the classes
of trees naturally arising from some important linear orders. More precisely, we obtain
axiomatisations of the first-order theories of these classes of trees, rather than axiomati-
sations of those classes themselves. This amounts to the following: given a class of trees
K, we seek a recursive (i.e., decidable) set of first-order sentences Σ such that Σ ⊆ Th(K)
and Σ |= Th(K). In turn, Σ |= Th(K) if and only if for each natural number n and each
model T of Σ, there exists a tree S in K such that T and S satisfy the same sentences of
quantifier rank at most n.

Now for any order type α, a tree whose paths are all isomorphic to α is called an α-tree.
This paper addresses and solves the problems of axiomatising the first-order theories of
the classes of (coloured) ω-trees, ζ-trees, η-trees and λ-trees, where ω, ζ, η and λ are the
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order types of the sets of natural numbers, integers, rational numbers, and real numbers,
respectively. While the case of η-trees is easy and the case of ω-trees was essentially known
from [Doe89], the cases of ζ-trees and λ-trees turned out to be quite non-trivial. The
complete axiomatisations of their first-order theories are obtained here by using a new
construction for approximating a given tree by a suitably coloured linear order and then
using the axiomatisations of the first-order theories of the classes of coloured expansions of
ζ and λ respectively.

1.3 Structure of the paper

First, after briefly covering some basic definitions and notation in Section 2: Preliminaries,
we present in Section 3: First-order theories of coloured linear orders the axiomatisations
of several important classes of coloured linear orders. All these axiomatisations are either
already known in the literature or are easily derived from such known axiomatisations.
However we include them here as they are necessary for the subsequent main results on
trees, for the sake of completeness of the presentation and for uniformity of the underlying
axioms that are used. As is to be expected, the analysis of these various classes of coloured
linear orders tends to be substantially more complex than for the corresponding classes of
monochromatic linear orders. We note in passing that, apart from their use in axiomatising
the first-order theories of classes of trees, coloured linear orders are also useful, inter alia,
as models of (possibly infinite) words over an alphabet. Then, in Section 4: From trees to
coloured linear orders and back we introduce the construction used for approximating a tree
as a coloured linear order, which we use in Section 5: First-order theories of coloured trees
to axiomatise the first-order theories of the classes of coloured ζ-trees and coloured λ-trees.
In addition, easier axiomatisations of the first-order theories of the classes of coloured ω-
trees and coloured η-trees are also given. In all of these cases, the axiomatisations of the
first-order theories of the classes of trees make essential use of the axiomatisations of the
first-order theories of their corresponding classes of coloured linear orders. We end with a
summary and some suggestions for future work in Section 6: Concluding remarks.

2 Preliminaries

2.1 Notation and logical preliminaries

We will be working with first-order (FO) languages with signatures that contain a binary
relation < (possibly, in addition to constants and unary relations). Expressions such as
x > y, x ⩽ y and x ̸< y, when used in first-order formulas, are to be interpreted in the usual
way, as abbreviations for the formulas y < x, x < y ∨ x = y and ¬ (x < y) respectively;
similarly for other variations of the relation <.

Equality will always be assumed to be included in the language. The FO signature
that consists only of equality plus the relation symbol < will be denoted by L0, and the
signature that extends L0 with unary relation symbols c1, c2, . . . , ck (regarded as colours)
will be denoted by Lk. For k ⩾ 0, L′

k will denote the signature Lk expanded with a
single constant symbol, i.e. the signature of structures of the form (A;<, a) when k = 0 or
(A;<, a, c1, . . . , ck) when k > 0.

Consider an arbitrary fixed first-order language L. The quantifier rank of a formula φ is
defined as expected and will be denoted by qr (φ). We denote by FOn the set of first-order
formulas (of the given signature L) of quantifier rank at most n and for any L-structures A
and B, by A ≡n B we mean equivalence of A and B with respect to all sentences in FOn,
whereas A ≡ B means, as usual, their elementary equivalence.

The domain of a structure A will be denoted by |A|. The cardinality of a set X will
also be denoted by |X|. From the context, it will always be clear which one of the two
meanings apply.
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Given an L-structure A with domain A, the parametrically definable subsets of A are
those sets of the form {x ∈ A : (A; ā) |= φ (x, ā)}, where φ (x, ȳ) is a first-order formula
with ȳ possibly empty, and ā is a tuple of elements from A of the same arity as ȳ.

Given formulas φ and θ = θ (x, ȳ) that have no variables in common, the relativisation
of φ to θ, obtained from φ by replacing each subformula of the form ∃u (ψ (u, w̄)) with
∃u (θ (u, ȳ) ∧ ψ (u, w̄)), and each subformula of the form ∀u (ψ (u, w̄)) with the formula
∀u (θ (u, ȳ) → ψ (u, w̄)), will be denoted by φθ. For a detailed account of relativisations,
see e.g. [Ros82, p. 259]. If θ = θ (x, y) is the formula y ⩽ x, with y here playing the role of
a parameter, then φθ will be written simply as φ⩾y. The formulas φ>y, φ⩽y and φ<y are
interpreted similarly. If θ (x, y, z) is the formula y ⩽ x∧x < z, with y and z now treated as
parameters, then φθ will be written as φ[y,z), and similarly for the other bounded intervals.
Given a structure A with domain A, a (possibly empty) tuple of elements ā ∈ Ak, and a
formula θ (x, ȳ) with ȳ being a (possibly empty) k-tuple of variables, (A; ā)θ will denote
the set {v ∈ A : (A; ā) |= θ (v, ā)}.

For any natural number m, the linear order ({0, 1, . . . ,m− 1} ;<), ordered in the usual
way, will be denoted by m.

We briefly recall the definitions and main result about characteristic first-order formulas
(using the notation of [Doe87, Section 1.6]) that will be needed.

Given a structure A with domain A, natural numbers k and n, a k-tuple of elements
ā = (a0, a1, . . . , ak−1) from Ak, and a k-tuple of variables x̄ = (x0, x1, . . . , xk−1) (where ā
and x̄ are empty when k = 0), the n-characteristic formula of the structure A over the
tuple ā is denoted by J(A; ā)Kn (x̄) and is defined as follows:

� J(A; ā)K0 (x̄) :=
∧{

φ (x̄) : φ is an atomic or negated atomic formula with

A |= φ (ā)
}
;

� J(A; ā)Km+1 (x̄) :=
∧

ak∈A

(
∃xk

(
J(A; āak)Km (x̄xk)

))
∧

∀xk
(∨

ak∈AJ(A; āak)Km (x̄xk)
)
.

For languages with finite relational signatures it is well known (see e.g. [EFT96, Thm. 3.4
of Ch. 12]) that, for all natural numbers n and k there are, up to logical equivalence, only
finitely many n-characteristic formulas over the class of all structures for that signature
and all k-tuples in those structures. If ā is the empty tuple then J(A; ā)Kn (x̄) is written as
JAKn and is called the n-characteristic sentence of A. Here are some important facts
about characteristic formulas:

1. The formula J(A; ā)Kn (x̄) has quantifier rank n.

2. A |= J(A; ā)Kn (ā).

3. If B is a structure in the signature of A and b̄ is a k-tuple of elements from the domain
of B then the following three statements are equivalent for any natural number n.

(a) (A; ā) ≡n

(
B; b̄

)
.

(b) B |= J(A; ā)Kn
(
b̄
)
.

(c) J(A; ā)Kn (x̄) ≡ J
(
B; b̄

)
Kn (x̄), where ≡ denotes logical equivalence of formulas.

Given a finite relational FO signature L, the set

σn (L) := {JAKn : A is any L-structure}/≡

that consists of all equivalence classes of logically equivalent n-characteristic L-sentences,
will be called the n-spectrum of L, and its cardinality will be denoted by f (L, n) :=
|σn (L)|. For each finite relational signature L, natural number n, and integer i with
1 ⩽ i ⩽ f (L, n), we fix a sentence τL,n,i such that

τL,n,1, τL,n,2, . . . , τL,n,f(L,n)

is an enumeration of all n-characteristic L-sentences, up to logical equivalence.
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Given a structure A, a subset A′ of A that has the property that, for each a ∈ A, there
exists b ∈ A′ such that (A; a) ≡n (A; b), will be called an n-support of A. It follows from
the properties of characteristic formulas that if A has a finite relational signature then it
has a finite n-support, for each n.

The reader is referred to [Doe96] for background on Ehrenfeucht-Fräıssé games; the
players Di and Sy of [Doe96] will be called respectively Spoiler and Duplicator here and
the n-round game on structures A and B will be denoted by EFn(A,B).

2.2 Linear orders

A k-coloured linear order, or simply a coloured linear order, is a structure of the type
A = (A;<, c1, c2, . . . , ck) where k is a positive integer, (A;<) is a linear order, and each ci
is a unary predicate in A, called a colour. (Thus, an element in A may have more than
one colour, or none whatsoever.) The class of all k-coloured linear orders will be denoted
by Lk. Putting c̄ = (c1, c2, . . . , ck), A can also be written simply as A = (A;<, c̄). The
k-tuple of colours c̄ will sometimes be written as c̄k, to emphasise that there are k colours.
Given a subset B of A, we define c̄↾B := (c1↾B, c2↾B, . . . , ck↾B) and AB := (B;<↾B, c̄↾B).
To keep the notation simple, AB may sometimes also be written simply as AB = (B;<, c̄),
tacitly assuming that < and c̄ are restricted in the obvious way. If a ∈ A then A⩾a will
mean AB where B = {x ∈ A : a ⩽ x}, and similarly for A>a, A⩽a and A<a. A linear
order (A;<) that is not enriched with any colours will be called monochromatic. For
technical convenience, monochromatic linear orders may also be thought of as 0-coloured
and for which the tuple of colours c̄ is empty. Given a coloured linear order A = (A;<, c̄),
the monochromatic reduct (A;<) will be denoted by A−. Unless otherwise specified, the
domains of structures A, B, Ci etc. will be denoted by A, B and Ci, respectively. To avoid
ambiguity, when several structures are under consideration, their order relations will be
denoted by <A, <B and <Ci , respectively. In the interest of readability, <A, <B and <Ci

may sometimes all be denoted simply by <, with the understanding that the relation < is
then to be understood as <A, <B or <Ci , depending on the structure being worked in.

Given two coloured linear orders A = (A;<A, c̄) and B =
(
B;<B, d̄

)
, the sum A+B of

A and B is defined to be the coloured linear order A+B := (A ⊔B;<, ē), where A⊔B :=
(A× {0})∪(B × {1}), the relation < is the union of the three sets {((x, 0) , (y, 0)) : x <A y},
{((x, 1) , (y, 1)) : x <B y} and {((x, 0) , (y, 1)) : x ∈ A and y ∈ B}, and ē = c̄d̄′ where d̄′ is
the tuple that is obtained from d̄ by removing all colours that are already in c̄, and for
any colour ei in ē and any u ∈ A ⊔ B, A + B |= ei (u) if and only if either u has the
form u = (a, 0) and A |= ei (a), or u has the form u = (b, 1) and B |= ei (b). To keep the
notation simple, the elements (a, 0) and (b, 1) may sometimes be identified simply with the
elements a ∈ A and b ∈ B respectively. The following Feferman-Vaught style result (see
[FV59]) is easily proved by a straightforward application of Ehrenfeucht-Fräıssé games.

Lemma 2.1 Let A1, A2, B1 and B2 be coloured linear orders, where A1 and B1 have the
same set of colours c̄, and A2 and B2 have the same set of colours d̄. If A1 ≡n B1 and
A2 ≡n B2 then A1 + A2 ≡n B1 +B2.

2.3 Trees

A forest is a structure of type T = (T ;<) in which the relation < is irreflexive, transitive,
and left-linear (for each a ∈ T , the set {x : x < a} is linear). A tree is a forest which is
left-connected: for any a, b ∈ T there exists c ∈ T such that c ⩽ a and c ⩽ b. A subset
of a forest T that is maximal with respect to being connected, is called a (connected)
component of T. The elements of T are called nodes. The least node of T, if it exists,
is called the root of T, and a node is called a leaf when it is maximal with respect to <.
For a maximal linearly ordered subset A ⊆ T , the linear order A = (A;<↾A) is called a
path in T. For a left-closed subset B of a path A, i.e., such that for each b ∈ B, if c < b
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Figure 1: A depiction of the tree T+B F.

then c ∈ B, too, the linear order B = (B;<↾B) is called a stem (of A) in T. For ease of
notation, the path A and stem B will often be identified with their domains A and B. The
set of all paths in T will be denoted by H (T). A set I ⊆ T is called an interval when, for
a, b, c ∈ T with a < b < c, if a, c ∈ I then b ∈ I, too.

As with linear orders, unary predicates regarded as colours may be added to the tree
to obtain a coloured tree (T; c̄).

Given a (possibly monochromatic) tree T = (T ;<, c̄) and a subset C ⊆ T , the struc-
ture TC := (C;<↾C , c̄↾C) is defined as with linear orders. In particular, for a node
a ∈ T , the trees T⩾a, T>a, T⩽a and T<a are defined as the trees TC with C taken to
be the set T⩾a := {x ∈ T : a ⩽ x}, T>a := {x ∈ T : a < x}, T⩽a := {x ∈ T : x ⩽ a} and
T<a := {x ∈ T : x < a} respectively. The tree T⩾a will be called the principal subtree
generated by a and the stem T<a will be called the principal stem generated by a.

Now, for T = (T ;<T, c̄) a tree and F =
(
F ;<F, d̄

)
a forest (where either of T and F

may be monochromatic), and a stem B in T, we denote by T +B F := (T ⊔ F ;<T+BF, ē)
the tree with domain

|T+B F| := T ⊔ F = (T × {0}) ∪ (F × {1}) ,

with order relation

<T+BF :=
{(

(x, 0) , (y, 0)
)
: x <T y

}
∪
{(

(x, 1) , (y, 1)
)
: x <F y

}
∪{(

(x, 0) , (y, 1)
)
: x ∈ B and y ∈ F

}
,

and with colours ē = c̄d̄′, where d̄′ is the tuple that is obtained from d̄ by removing
all colours that are already in c̄, and where, for any colour ei in ē and any u ∈ T ⊔ F ,
T +B F |= ei (u) if and only if either u has the form u = (a, 0) and T |= ei (a), or u has
the form u = (b, 1) and F |= ei (b). In other words, T+B F is the tree obtained from T by
adding the forest F to the end of the stem B; a depiction of this tree is given in Fig. 1. As
with sums of linear orders, for nodes a ∈ T and b ∈ F , the nodes (a, 0) and (b, 1) in the
tree T+B F will often be written simply as a and b rather than as (a, 0) and (b, 1), to keep
the notation simpler, provided that there is no danger of confusion.

The following composition result generalises Lemma 2.1 and can also be proved by a
straightforward Ehrenfeucht-Fräıssé game.

Lemma 2.2 Let T and S be (possibly monochromatic) trees with the same set of colours c̄,
A and B be stems in T and S respectively, and F and G be (possibly monochromatic) forests
with the same set of colours d̄. Let ā := (a1, a2, . . . , ak) ∈ F k and b̄ := (b1, b2, . . . , bk) ∈
Gk (the tuples ā and b̄ may be empty) and for each i, let a′i := (ai, 1) ∈ |T+A F| and
b′i := (bi, 1) ∈ |S+B G| and let ā′ := (a′1, a

′
2, . . . , a

′
k) and b̄′ := (b′1, b

′
2, . . . , b

′
k) (the tuples
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ā′ and b̄′ will be empty when ā and b̄ are). If (T;A) ≡n (S;B) and (F; ā) ≡n

(
G; b̄

)
then

(T+A F; ā′) ≡n

(
S+B G; b̄′

)
.

Given a class of (monochromatic) linear orders C, a tree S for which H (S) ⊆ C will
be called a tree over C, or simply a C-tree, and the class of all k-coloured C-trees will be
denoted by Tk (C) (with k = 0 in the case of monochromatic trees). If C = {α} consists of
just one linear order then Tk (C) will also be denoted by Tk (α) and the trees in Tk (α) will
be called α-trees.

3 First-order theories of coloured linear orders

3.1 A catalogue of properties and axioms

A (possibly coloured) tree T, in particular, a linear order, is called:

� forward discrete, if for any two elements a and b, such that a < b, there exists an
immediate successor c of a such that a < c ⩽ b.

In the case of linear orders, forward discreteness is equivalent to stating that each
non-greatest element has an immediate successor.

� backward discrete, when each element except for the least element, if there is one,
has an immediate predecessor.

� discrete, when it is both forward discrete and backward discrete.

� definably forward well-founded, if every parametrically first-order definable non-
empty set of elements contains a maximal element1.

� definably backward well-founded, if every parametrically first-order definable
non-empty set of elements contains a minimal (which will also be a least) element.

� definably bounded forward well-founded, if every parametrically first-order de-
finable non-empty set of elements X that is bounded above (i.e., for which there exists
b such that x ⩽ b for each x ∈ X), contains a maximal element.

� definably bounded backward well-founded, if every parametrically first-order
definable non-empty set of elements X that is bounded below (i.e., there exists a such
that a ⩽ x for each x ∈ X), contains a minimal element.

We define the following sentences in the first-order language Lk:

1. LO expresses that the structure is a linear order, as the conjunction of the sentences
expressing irreflexivity, transitivity, and totality:

LO := ∀x (x ̸< x) ∧ ∀x∀y∀z
(
(x < y ∧ y < z) → x < z

)
∧

∀x∀y (x < y ∨ y < x ∨ x = y) .

2. Tree expresses that the structure is a tree, as the conjunction of sentences that express
irreflexivity, transitivity, left-linearity and left-connectedness:

Tree := ∀x (x ̸< x) ∧ ∀x∀y∀z
(
(x < y ∧ y < z) → x < z

)
∧

∀x∀y∀z
(
(y < x ∧ z < x) → (y < z ∨ z < y ∨ y = z)

)
∧

∀x∀y∃z (z ⩽ x ∧ z ⩽ y) .

3. Le is a sentence that expresses the existence of a <-least element:

Le := ∃x∀y (x ⩽ y) .

1Note that, in the case of linear orders, maximal elements and greatest elements coincide, but for proper trees
they need not.
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4. Gr is a sentence that expresses the existence of a <-maximal element:

Gr := ∃x
(
¬∃y (x < y)

)
.

5. FD is a sentence that expresses the property of forward discreteness:

FD := ∀x∀y
(
x < y → ∃z

(
x < z ⩽ y ∧ ¬∃u (x < u < z)

))
.

6. BD is a sentence that expresses the property of backward discreteness:2

BD := ∀x
(
∃y (y < x) → ∃y

(
y < x ∧ ¬∃z (y < z < x)

))
.

7. De is a sentence that expresses the property of density:

De := ∀x∀y (x < y → ∃z (x < z < y)) .

8. FWFk is a scheme of (infinitely many) sentences that expresses the property of defin-
able forward well-foundedness and consists of all sentences of the form

FWFk(φ) := ∀z̄
(
∃x (φ (x, z̄)) → ∃x

(
φ (x, z̄) ∧ ¬∃y (φ (y, z̄) ∧ x < y)

))
where z̄ = (z1, z2, . . . , zn) is any (possibly empty) tuple of variables and φ (x, z̄) is any
formula in the language Lk.

9. BWFk is an infinite scheme that expresses the property of definable backward well-
foundedness and consists of all sentences of the form

BWFk(φ) := ∀z̄
(
∃x (φ (x, z̄)) → ∃x

(
φ (x, z̄) ∧ ¬∃y (φ (y, z̄) ∧ y < x)

))
for any formula φ (x, z̄) in the language Lk.

10. BFWFk is an infinite scheme that expresses the property of definable bounded forward
well-foundedness and consists of all sentences of the form

BFWFk(φ) := ∀z̄
((

∃x (φ (x, z̄)) ∧ ∃y∀x
(
φ (x, z̄) → x ⩽ y

))
→

∃x
(
φ (x, z̄) ∧ ¬∃y (φ (y, z̄) ∧ x < y)

))
for any formula φ (x, z̄) in the language Lk.

11. BBWFk is an infinite scheme that expresses the property of definable bounded back-
ward well-foundedness and consists of all sentences of the form

BBWFk(φ) := ∀z̄
((

∃x (φ (x, z̄)) ∧ ∃y∀x
(
φ (x, z̄) → y ⩽ x

))
→

∃x
(
φ (x, z̄) ∧ ¬∃y (φ (y, z̄) ∧ y < x)

))
for any formula φ (x, z̄) in the language Lk.

The following facts about the first-order theory of ω will be needed later.

Fact 3.1 The first-order theory of ω can be axiomatised by the theory

{LO, Le,¬Gr,BD,FD}

(see e.g. [Ros82, p. 254]). Moreover, the class of models of this first-order theory consists
precisely of all linear orders of the form ω+ζ ·α where α is any linear order (see e.g. [Ros82,
Corollary 13.12 and Proposition 13.25]).

2The reason for the different forms of FD and BD is that trees are left-linear but not right-linear.

8



3.2 The first-order theory of coloured finite linear orders

We define the following first-order theory

CFLOk := {LO, Le,FD} ∪ FWFk.

The models of CFLOk will be called coloured quasi-finite linear orders.

Lemma 3.2 Let A = (A;<, c̄) be a coloured quasi-finite linear order. Then:

1. A has a greatest element.

2. A is backward discrete, hence (due to FD) also discrete.

3. A is definably backward well-founded.

4. For each element a ∈ A, the structures A<a, A⩽a, A>a and A⩾a are coloured quasi-
finite linear orders too.

Proof (1.) The set A is itself definable, hence, by FWFk, A contains a greatest element.
(2.) Given a non-least element a ∈ A, the set A<a is definable in (A; a) hence, by

FWFk, A
<a contains a greatest element b, which must be the immediate predecessor of a.

(3.) Suppose that φ (x, z̄) is a formula such that φ (x, ā) defines a non-empty set B
in (A; ā). If B contains the least element of A then the proof is completed. Suppose
otherwise. Then the set B< := {x ∈ A : x < y for all y ∈ B} is non-empty. Let ψ (x, z̄) :=
∀y (φ (y, z̄) → x < y). Then ψ (x, ā) defines B< in (A; ā), hence, by FWFk, B

< contains a
greatest element b. Since b < y for all y ∈ B and B ̸= ∅, then b is not the greatest element
of A, hence, by FD, b has an immediate successor b′ which will be the least element of B,
as required.

(4.) Straightforward. ⊣

More generally, observe that the following implications hold in any linear order:
FWFk =⇒ BFWFk =⇒ BD and BWFk =⇒ BBWFk =⇒ FD.

Proposition 3.3 If A = (A;<, c̄) is a coloured quasi-finite linear order then A is either
finite or A− has the form ω + ζ · α+ ω⋆ for some linear order α.

Proof Straightforward. ⊣

Proposition 3.4 below and its proof are similar to [Doe89, Theorem 3.2] except that
there, restricted definable induction instead of forward well-foundedness is used to approx-
imate finiteness. Proposition 3.4 and its proof are also similar to the “vertical collapsing”
construction used in [RBVS95] to obtain finite tree paths from infinite ones. The con-
struction there, like Proposition 3.4, also approximates finiteness using definable forward
well-foundedness. Here, however, we also give an upper bound for the size of the coloured
finite linear order produced by the construction, that is n-equivalent to the given coloured
quasi-finite linear order. Recall, from the discussion of characteristic sentences in Section
2.1, that f (Lk, n) is the number of non-equivalent characteristic sentences of quantifier
rank n in the language Lk of linear orders expanded with k colours, and that f (Lk, n) is
necessarily finite.

Proposition 3.4 For every coloured quasi-finite linear order A = (A;<, c̄k) with k colours
and for each natural number n there exists a k-coloured finite linear order An such that
A ≡n An. Moreover, taking

S :=
{
JA⩾uKn : u ∈ A

}
/≡

to be the set of equivalence classes of all the n-characteristic sentences of the orders A⩾u

for u ∈ A, the cardinality of An is given by |An| = |S| ⩽ f (Lk, n).
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Proof Let A be a coloured quasi-finite linear order and let m = |S|. We start by defin-
ing three sequences of coloured linear orders: B1,B2, . . . ,Bm−1, C1,C2, . . . ,Cm−1, and
D1,D2, . . . ,Dm−1, where Bi = Ci + Di and where Ci and Di are substructures3 of A for
each i, as described below. Informally, each Ci will consist of the first i elements x in A that
are maximal with respect to satisfying their n-characteristic formula JA⩾xKn (x), and Di

then consists of the elements in A that are greater than all of the elements in Ci. Formally,
Bi, Ci and Di will have the following properties for each i:

(i) Bi ≡n A;

(ii) for each u ∈ Bi, B
⩾u
i ≡n A⩾u;

(iii) Ci is a coloured finite linear order with domain Ci, such that |Ci| = i;

(iv) Di is a coloured quasi-finite linear order of the form A>u for some u ∈ A;

(v) for u ∈ Ci and v ∈ Bi with u ̸= v, B⩾u
i ̸≡n B⩾v

i .

The exact construction of Ci and Di will now be described. Let a be the least element of
A. We define the formula

φ0 (x) := (JAKn)⩾x .

The set Aφ0 is non-empty because A |= φ0 (a), and it is definable. Hence, by the forward
well-foundedness of A, Aφ0 contains a greatest element a0. Since a, a0 ∈ Aφ0 then A⩾a ≡n

A⩾a0 hence
A = A⩾a ≡n A⩾a0 ∼= A[a0,a0] + A>a0 .

Let C1 := A[a0,a0], D1 := A>a0 and B1 := C1+D1. Observe that properties (i) – (v) are all
satisfied by B1, C1 and D1: property (iv) follows using part 4 of Lemma 3.2; property (v)
follows using property (ii) along with the fact a0 is the greatest element in Aφ0 ; the other
properties are straightforward.

Given Bi, Ci and Di for some i with 1 ⩽ i < m−1, that satisfy properties (i) – (v), the
coloured linear orders Bi+1, Ci+1 and Di+1 are obtained as follows. Since Di is a coloured
quasi-finite linear order, it contains a least element, say di. Define the formula

φi (x) := (JDiKn)
⩾x .

Again, the set Dφi
i is non-empty (because Di |= φi (di)) and definable, hence, by the

definable forward well-foundedness of Di, D
φi
i contains a greatest element ei. Then

Di = D⩾di
i ≡n D⩾ei

i
∼= D

[ei,ei]
i +D>ei

i . (1)

Now take Ci+1 := Ci +D
[ei,ei]
i , Di+1 := D>ei

i and Bi+1 := Ci+1 +Di+1, and again observe
that properties (i) – (v) are all satisfied by Bi+1, Ci+1 and Di+1: for property (i),

Bi+1 = Ci+1 +Di+1 =
(
Ci +D

[ei,ei]
i

)
+D>ei

i
∼=

Ci +
(
D

[ei,ei]
i +D>ei

i

)
≡n Ci +Di = Bi ≡n A

with the first instance of ≡n following from (1) and Lemma 2.1; properties (ii) and (iii) are
straightforward; property (iv) again follows using part 4 of Lemma 3.2 using the fact that
Di is a coloured quasi-finite linear order; property (v) follows using property (ii) for Bi+1,
along with how Ci+1 and Di+1 were constructed.

Finally, since |S| = m there are at most m pairwise non-equivalent n-characteristic
sentences that are satisfied by the structures B⩾u

m−1 for u ∈ Bm−1. Using property (v),

the m − 1 structures of the type B⩾u
m−1, where u ranges over Cm−1, must all have pair-

wise non-equivalent n-characteristic sentences. Hence all structures of the type D⩾u
m−1,

3Elements (x, 0) and (y, 1) in Bi + Ci will be identified with the elements x ∈ Bi and y ∈ Ci respectively, so
that the elements of Bi and Ci may be treated as elements of A too.
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where u ∈ Dm−1, must have equivalent n-characteristic sentences. In particular, the n-
characteristic sentences of each of these structures D⩾u

m−1 must be equivalent to the n-

characteristic sentence of D⩾b
m−1, where b is the greatest element of Dm−1. It follows that

|Dm−1| = 1 and so |Bm−1| = m, i.e. An := Bm−1 may be taken to be a coloured finite
linear order such that A ≡n An, as required. ⊣

Lemma 3.5 If A and B are k-coloured quasi-finite linear orders then A+B is a k-coloured
quasi-finite linear order, too.

Proof Let n be any natural number. By Proposition 3.4 there exist k-coloured finite linear
orders A′ and B′ such that A′ ≡n A and B′ ≡n B. By Lemma 2.1, A + B ≡n A′ + B′.
Since A′+B′ is a k-coloured finite linear order then A′+B′ |= CFLOk and so A+B satisfies
all sentences of quantifier rank at most n in CFLOk. Since n is arbitrary, it follows that
A+B |= CFLOk hence A+B is itself a k-coloured quasi-finite linear order, as required. ⊣

3.3 The first-order theories of coloured well-orders and ex-
pansions of ω

We now define the following theories, which will be shown further to axiomatise the first-
order theories of the classes of all coloured well-orders, of all coloured expansions of ω, and
of all coloured expansions of ω⋆ (the reverse order of ω), respectively:

CWOk := {LO} ∪ BWFk

Cωk := {LO,¬Gr,BD} ∪ BWFk

Cω⋆
k := {LO,¬Le,FD} ∪ FWFk

Fact 3.6 [Doe89, Corollary 4.4] For every model A of CWOk and each n ∈ N, there exists
a k-coloured well-order Bn such that A ≡n Bn.

Corollary 3.7 below is similar to [Doe89, Theorem 3.1] but uses backward well-founded-
ness instead of definable induction for approximating the structure of coloured ω.

Corollary 3.7 For every model A of Cωk and each n ∈ N, there exists a k-coloured linear
order Bn such that (Bn)

− ∼= ω and A ≡n Bn.

Proof It suffices to prove the result for n ⩾ 3. By Fact 3.6, there exists a k-coloured
well-order Bn such that A ≡n Bn. Since the quantifier ranks of the sentences ¬Gr and BD
are at most 3, Bn |= {¬Gr,BD} and, since Bn is a well-order, Bn |= {Le,FD}. By Fact
3.1, (Bn)

− is a model of the first-order theory of ω and also a well-order, from which it
follows that (Bn)

− ∼= ω. ⊣

Using a similar argument, it follows that the theory Cω⋆
k axiomatises the first-order

theory of the class of coloured expansions of ω∗:

Corollary 3.8 For every model A of Cω⋆
k and each n ∈ N, there exists a k-coloured linear

order Bn such that (Bn)
− ∼= ω∗ and A ≡n Bn.

3.4 The first-order theory of coloured expansions of ζ

We now define the theory

Cζk := {LO,¬Le,¬Gr} ∪ BBWFk ∪ BFWFk.

Proposition 3.9 For every model A of Cζk and each n ∈ N, there is a k-coloured linear
order Bn, with (Bn)

− ∼= ζ, such that A ≡n Bn.
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Proof Let A |= Cζk and observe that A |= {BD,FD}. Pick any element a ∈ A and let b be
its immediate predecessor. Then A⩾a satisfies the theory Cωk and A⩽b satisfies the theory
Cω⋆

k hence, by Corollaries 3.7 and 3.8, there exists a k-coloured linear order C such that
C− ∼= ω and A⩾a ≡n C, and there exists a k-coloured linear order D such that D− ∼= ω∗

and A⩽b ≡n D. Then Bn = D + C is the desired coloured linear order, since A ≡n Bn

follows from Lemma 2.1. ⊣

3.5 The first-order theory of coloured ordinals

Let α be a monochromatic ordinal such that ω < α < ωω. It is known (see. [Ros82, § 13.2])
that the FO theory of α is finitely axiomatised, i.e., there exists a first-order sentence Φ (α)
in the language L0 such that, for any monochromatic linear order A,

A |= Φ(α) ⇐⇒ A ≡ α,

and α is the only ordinal that is a model of Φ (α). The formulation of Φ (α) is somewhat
involved and for details we refer the reader to [Ros82, § 13.2]. We now define the theory

Cαk := {Φ (α)} ∪ BWFk.

Proposition 3.10 For every model A of Cαk and each n ∈ N there is a k-coloured linear
order Bn such that (Bn)

− ∼= α and A ≡n Bn.

Proof Let A |= Cαk and let n ⩾ qr (Φ (α)). Since A |= Φ(α) then A |= LO. By Fact 3.6,
there exists a k-coloured well-order Bn such that A ≡n Bn, and since Bn |= Φ(α) then
(Bn)

− ≡ α. Since Bn is a well-order and α is the only ordinal that is a model of Φ (α), it
follows that (Bn)

− ∼= α, as required. ⊣

3.6 The first-order theory of coloured expansions of η

We now define the theory
Cηk := {LO,¬Le,¬Gr,De} .

Proposition 3.11 For every model A of Cηk, there is a k-coloured linear order B, with
B− ∼= η, such that A ≡ B.

Proof By the Löwenheim-Skolem Theorem, there exists a countable structure B such that
B ≡ A. Since B |= Cηk, B is a countable k-coloured dense linear order without endpoints,
hence B− ∼= η. ⊣

3.7 The first-order theory of coloured expansions of λ

An axiomatisation of the first-order theory of the class of coloured expansions of λ is
obtained in [Doe89]. For the sake of completeness of this paper we will briefly describe
that axiomatisation here, as it will be needed in Section 5 to axiomatise the first-order
theory of the class of λ-trees.

A coloured linear order is called definably bounded complete when each of its non-
empty definable subsets that is bounded above has a least upper bound. For any formula
φ (x, z̄) (where the tuple z̄ may be empty) we define the formula

ubφ(u, z̄) := ∀x (φ (x, z̄) → x ⩽ u)

12



which expresses that u is an upper bound of the set that is defined by φ (x, z̄). The property
of definable bounded completeness can now be expressed by the set COMk that consists of
all sentences of the form

COMk (φ) := ∀z̄
((

∃x (φ (x, z̄)) ∧ ∃u (ubφ(u, z̄))
)
→

∃u
(
ubφ(u, z̄) ∧ ∀v (ubφ(v, z̄) → u ⩽ v)

))
for any formula φ (x, z̄) in the language Lk.

Given a linear order A and a partition P of A of which all members are intervals, we
define the binary relation <P on P by specifying, for X,Y ∈ P , that X <P Y iff x <A y
for some x ∈ X and y ∈ Y . The linear order P := (P ;<P) is called a condensation of A.
Given a transitive binary relation R on A, we define the relation ∼R on A by specifying,
for u, v ∈ A, that u ∼R v if and only if any of the following conditions hold:

(i) u = v, or

(ii) u <A v and sRt for all s, t ∈ A such that u ⩽A s <A t ⩽A v, or

(iii) v <A u and sRt for all s, t ∈ A such that v ⩽A s <A t ⩽A u.

It is straightforward to see that for any transitive binary relation R, the relation ∼R is
an equivalence relation, hence the set Q = A⧸∼R is a partition of A into intervals, and so
the structure Q = (Q;<Q) is a condensation of A. The relation R is said to induce the
condensation Q. If the relation R is definable then Q is called a definable condensation.
For any formula φ (x, y, z̄) (with the tuple z̄ possibly empty) we define the formulas

binφ(z̄) := ∀x∀y∀v
(
(φ (x, y, z̄) ∧ φ (y, v, z̄)) → φ (x, v, z̄)

)
,

partφ(u, v, z̄) := u < v ∧ ∀s∀t
(
u ⩽ s < t ⩽ v → φ (s, t, z̄)

)
,

eqφ(u, v, z̄) := u = v ∨ partφ(u, v, z̄) ∨ partφ(v, u, z̄),

denseφ(z̄) := ∀u∀v
( (
u < v ∧ ¬eqφ(u, v, z̄)

)
→

∃w
(
u < w < v ∧ ¬eqφ(u,w, z̄) ∧ ¬eqφ(w, v, z̄)

) )
and

singletonφ(z̄) := ∀u∀v
((
u < v ∧ ¬eqφ(u, v, z̄)

)
→ ∃w

(
u < w < v ∧

¬eqφ(u,w, z̄) ∧ ¬eqφ(w, v, z̄) ∧ ∀t
(
eqφ(w, t, z̄) → t = w

)))
.

The formula binφ(z̄) expresses that φ (x, y, z̄) defines a transitive binary relation R, the
formula partφ(u, v, z̄) expresses property (ii) in the above definition of the relation ∼R,
eqφ(u, v, z̄) expresses that u ∼R v, denseφ(z̄) expresses that the condensation that is induced
by R is densely ordered, and singletonφ(z̄) expresses that the condensation that is induced
by R contains a set of singletons that is dense in the condensation.

Following the terminology of [Doe89], a linear order A is called definably-I when each
of its densely ordered definable condensations contains a set of singletons that is dense in
the condensation. The property of a k-coloured linear order being definably-I approximates
the countable chain condition of R, and can be expressed by the set Ik that consists of all
sentences of the form

Ik(φ) := ∀z̄
((
binφ(z̄) ∧ denseφ(z̄)

)
→ singletonφ(z̄)

)
for any formula φ (x, y, z̄) in the language Lk and with the tuple z̄ possibly empty.

Finally, the first-order theory of the class of k-coloured expansions of λ is axiomatised
by the theory

Cλk := {LO,¬Le,¬Gr,De} ∪ COMk ∪ Ik,

as is seen from the following fact, the proof of which can be found in [Doe89]:

Fact 3.12 ([Doe89]) For every model A of Cλk and each n ∈ N, there exists a k-coloured
linear order Bn such that (Bn)

− ∼= λ and A ≡n Bn.
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4 From trees to coloured linear orders and back

4.1 Trees as coloured linear orders

A tree T is called branching complete when for any two distinct paths A and B in T,
each of the sets A \B and B \A has an infimum in T. Branching completeness is equivalent
to the following property: for any antichain {a, b} ⊆ T , the set

Tab :=
{
x ∈ T⩽a : x ⩾ y for each y ∈ T⩽a ∩ T⩽b

}
(2)

has a least element. Recall the formula ubφ(u, z̄) that was defined in Section 3.7 and which
expresses the fact that u is an upper bound of the set that is defined by φ(x, z̄). Letting
φ (x, z1, z2) := x ⩽ z1 ∧ x ⩽ z2, the property of branching completeness can therefore be
expressed by the sentence

bc := ∀z1∀z2
(
¬ (z1 < z2 ∨ z2 < z1 ∨ z1 = z2) →

∃u
(
u ⩽ z1 ∧ ubφ (u, z1, z2) ∧ ∀v

(
(v ⩽ z1 ∧ ubφ (v, z1, z2)) → u ⩽ v

)))
.

A sufficient condition for branching completeness is that every path in the tree is a complete
linear order. Thus, in particular, every λ-tree is branching complete.

Remark 4.1 There are other notions of completeness of trees known from the literature,
such as Dedekind-MacNeille completeness and others, cf 4 [Dro85], [Rub93], and [KGZ21].
The notion of branching completeness introduced here is mostly ad hoc, as it is sufficient for
our purposes, but it is also of some independent interest. As shown in [KGZ21], branching
completeness is generally weaker than Dedekind-MacNeille completeness of trees.

For T any tree, A any stem in T (A will usually be a path) and s ∈ A, we define the
following sets (to be explained shortly)

Fl(s) :=


∅ when s has an immediate predecessor,(⋂

t<s

T>t

)
\ T⩾s otherwise

and Fu(s\A) := T>s \

( ⋃
t∈A∩T>s

T⩾t

)

and, provided that these sets are non-empty, define the structures Fl(s) := TFl(s) and
Fu(s\A) := TFu(s\A). In general, either or both of the sets Fl(s) and Fu(s\A) may be
empty, in which case the corresponding structure is left undefined. The structures Fl(s)
and Fu(s\A), if defined, are forests and will be called the lower side-forest of s, and the
upper side-forest of s with respect to A, respectively. Finally, the side-forest of s with
respect to A is the forest F (s\A) :=

(
TF (s\A); s

)
where

F (s\A) := {s} ∪ Fl(s) ∪ Fu(s\A).

The forests Fl(s) and Fu(s\A) are depicted in Fig. 2.
Intuitively, the upper side-forest of s with respect to A consists of those nodes that sit

above s but do not sit above any nodes on A ∩ T>s, and the lower side-forest of s consists
of those nodes that sit above T<s but are incomparable with s, unless s has an immediate
predecessor, in which case its lower side-forest is left empty so as not to coincide with the
upper side-forest of that predecessor. Observe that if A is a stem with a greatest node b
then Fu(b\A) = T>b.

4We thank the reviewer for the first two references.
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Figure 2: The side-forests Fl(s) and Fu(s\A).

The property of branching completeness ensures that if A is either a path in T, or a
stem with a greatest node, then the set {F (s\A)}s∈A forms a partition of T . Indeed, each
side-forest F (s\A) is non-empty since s ∈ F (s\A), and different side-forests F (s\A) and
F (t\A) are disjoint by the way that side-forests are defined. To see that {F (s\A)}s∈A
covers T , pick any node u ∈ T , and consider the following cases.

Case 1: u ∈ A. Then u ∈ F (u\A).
Case 2: u ̸∈ A.

Case 2.1: u ⩾ x for each x ∈ A. Then A must be a stem with a greatest node b, in
which case u ∈ F (b\A)
Case 2.2: There exists v ∈ A such that {u, v} is an antichain. By the branching
completeness of T, the set Tvu has a least element w ∈ A.

Case 2.2.1: w < u. Then u ∈ Fu(w\A).
Case 2.2.2: w ̸< u. Then u ∈ Fl(w).

This shows that
⋃

s∈A F (s\A) = T .

Given s, t ∈ A such that t > s, the sets Fl(s), Fu(s\A) and F (s\A) can be defined in
(T; s, t) (the expansion of T obtained by adding the constants s and t) by the formulas

lsf (x, s) :=
(
∃u
(
u < s ∧ ¬∃v (u < v < s)

)
→ ¬ (x = x)

)
∧(

∀u
(
u < s→ ∃v (u < v < s)

)
→
(
∀w (w < s→ w < x) ∧ ¬ (s ⩽ x)

))
,

usf (x, s, t) := s < x ∧ ¬∃u (s < u ⩽ t ∧ u ⩽ x) and

sf (x, s, t) := (x = s) ∨ lsf (x, s) ∨ usf (x, s, t) .

(The first conjunct in lsf (x, s) covers the case where s has an immediate predecessor, and
the second conjunct covers the case where s has no immediate predecessor.)

Now suppose that the tree T has k ≥ 0 colours, say T = (T ;<, c̄) where c̄ = c̄k (or,
simply T = (T ;<) if k = 0). Recall that L′

k denotes the signature Lk of k-coloured trees,
expanded with a single constant symbol, and f (L′

k, n) denotes the number of non-equivalent
n-characteristic sentences of k-coloured trees that have an added constant symbol. Let
p = f (L′

k, n) and define an additional set of colours, called extended colours, by ē :=
ēp = (e1, e2, . . . , ep). Recall the definition of the sentence τL,n,i from the discussion on
characteristic formulas in Section 2.1. Now, consider the coloured linear order

AT [ē] :=
(
TA; ē

)
= (A;<, c̄, ē) (or, just (A;<, ē) when T is monochromatic)
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and where the extended colours are defined by specifying, for each s ∈ A and each i such
that 1 ⩽ i ⩽ p,

AT [ē] |= ei (s) if and only if F (s\A) |= τL′
k,n,i

i.e., the extended colour of s corresponds to the n-characteristic sentence that is satisfied
in F (s\A)).

The linear order AT [ē] can be viewed as the k-coloured stem A of T that is further
enriched with p additional colours, the role of which is to capture, for each s ∈ A, the
n-equivalence class of the side-forest F (s\A) when viewed within T. This will allow us to
approximate a tree as a coloured linear order, and thereby adapt results on coloured linear
orders to trees.

The next theorem relates the first-order equivalence of two trees to the first-order equiv-
alence of their corresponding coloured linear orders.

Theorem 4.2 Let k ≥ 0 and T1 and T2 be k-coloured branching complete trees. Let A and
B either both be paths, or both be stems with greatest elements in T1 and T2 respectively.
Let n ∈ N and ē = ēf(L′

k,n)
. For any m ∈ N:

1. If (T1;A) ≡m+n+1 (T2;B) then AT1 [ē] ≡m BT2 [ē].

2. If AT1 [ē] ≡n BT2 [ē] then (T1;A) ≡n (T2;B).

Proof The result will be proved assuming that A and B are paths; the proof for the case
where they are instead stems with greatest elements, is identical.

(1.) We will reason by contraposition. Suppose that Spoiler has a winning strategy Σ in
the game EFm

(
AT1 [ē] ,BT2 [ē]

)
. Then Spoiler can win the game EFm+n+1((T1;A) , (T2;B))

as follows. For the first m rounds of the game, Spoiler plays only on the paths A and B
(so, Duplicator will have no choice but to also play on these paths) by choosing nodes
according to the strategy Σ in the parallel game EFm

(
AT1 [ē] ,BT2 [ē]

)
. If, after m rounds,

the resulting nodes a1, a2, . . . , am ∈ A and b1, b2, . . . , bm ∈ B (where ai and bi are the nodes
chosen by the players in the i-th round) do not form a local isomorphism between the trees
(T1;A) and (T2;B) then Spoiler wins the game EFm+n+1((T1;A) , (T2;B)). Now, suppose
the nodes do form a local isomorphism between (T1;A) and (T2;B). Then there must exist
nodes aq ∈ A and bq ∈ B such that aq and bq have different extended colours in AT1 [ē] and
BT2 [ē]. Spoiler can then win the game EFm+n+1((T1;A) , (T2;B)) in the next n+1 rounds
as follows.

First observe that, in rounds m + 1 to m + n of EFm+n+1((T1;A) , (T2;B)), whenever
Spoiler chooses a node ai from F (aq\A) in round i of the game, Duplicator has to choose
her response from F (bq\B), and vice versa. To see this, suppose that ai ∈ F (aq\A) but
that bi ̸∈ F (bq\B). Then ai ̸= aq for if ai = aq then bi would have to be the node bq
thus giving bi ∈ F (bq\B), a contradiction. It follows that ai ̸∈ A, hence bi cannot lie
on B. So, there are two cases to consider: either aq < ai or ai is incomparable with aq.
If aq < ai then it must be the case that bq < bi too, from which, since bi ̸∈ F (bq\B),
there exists b ∈ B such that bq < b < bi. If Spoiler then chooses the node b ∈ T2 in
round i + 1 of the game, he will have won, since there is no node a ∈ A for Duplicator
to choose in round i + 1 that satisfies aq < a < ai. The case where ai is incomparable
with aq similarly leads to a win for Spoiler. Now since aq and bq have different extended
colours in AT1 [ē] and BT2 [ē] then F (aq\A) ̸≡n F (bq\B). By using a winning strategy
for EFn(F (aq\A) ,F (bq\B)), Spoiler can create a configuration of nodes in rounds m + 1
through to n of the game EFm+n+1((T1;A) , (T2;B)) that Duplicator cannot match.

(2.) Suppose that Duplicator has a winning strategy in the n-round game
EFn

(
AT1 [ē] ,BT2 [ē]

)
. By decomposing the tree (T1;A) into the path A along with all

the side-forests F (s\A), and similarly for the tree (T2;B), Duplicator can win the game
EFn((T1;A) , (T2;B)) by combining her winning strategy for the game EFn

(
AT1 [ē] ,BT2 [ē]

)
with her local strategies for the games EFn(F (s\A) ,F (t\B)) for nodes s from AT1 [ē] and
t from BT2 [ē] that have the same extended colours in AT1 [ē] and BT2 [ē] respectively. ⊣
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Let k, n ∈ N and p = f (L′
k, n). Given a formula φ (x̄) (where φ may be a sentence)

in the language Lk+p with colours c̄k and ēp, and a variable z that does not occur in φ,
let φn

z (x̄) denote the formula that is obtained from φ<z (the relativisation of φ to the
formula θ (u, z) := u < z where z is treated as a parameter) by replacing, for each i, for
1 ⩽ i ⩽ p, every atomic formula of the form ei (y) that occurs in φ<z with the formula

τ
sf(u,y,z)
L′
k,n,i

(i.e. τL′
k,n,i

relativised to sf (u, y, z) where y and z are treated as parameters).

In other words, the formula φn
z is the same as the relativised formula φ<z, except that

instead of stating that a node y has colour ei, φ
n
z states that the side-forest of y with

respect to the stem T<z satisfies the characteristic sentence τL′
k,n,i

. If φ does not contain

any atomic formulas of the form ei (y) then φ
n
z is simply the formula φ<z.

The following result, which relates the truth of a first-order formula in a tree to the
truth of that formula in the coloured linear order approximating that tree, now follows
immediately from the definition of φn

z .

Corollary 4.3 Let k ≥ 0 and T be a k-coloured tree with colours c̄k, n ∈ N, p = f (L′
k, n)

and ē = ēp, and let φ (x̄) be a formula in the language Lk+p with colours c̄k and ēp. For
each a ∈ T and tuple b̄ of nodes in T<a of the same arity as x̄,(

T; a, b̄
)
|= φn

a

(
b̄
)
if and only if

((
T<a

)T
[ē] ; b̄

)
|= φ

(
b̄
)
.

In particular, if φ is a sentence then for each a ∈ T , (T; a) |= φn
a if and only if (T<a)T [ē] |=

φ.

4.2 Towards axiomatising the first-order theory of ζ-trees

We will now use Theorem 4.2 and Corollary 4.3 to show how the the first-order theories of
certain classes of coloured C-trees can be axiomatised. The method used in this section will
have the set C = {ζ} in mind, but can also be used on the sets C = {ω⋆} and C = {ζ, ω⋆}.

Say that a class of monochromatic linear orders C has the fusion closure property
when the following condition holds:

For any two linear orders A,B ∈ C and for any a ∈ A and b ∈ B, A<a +B⩾b is
isomorphic to a linear order in C.

Consider any class C of monochromatic linear orders with the following properties:

(C1) C does not contain the singleton linear order;

(C2) C has the fusion closure property;

(C3) all linear orders in C are discrete; and

(C4) every C-tree is branching complete.

The property (C1) is needed to eliminate degenerate cases, (C2) is needed to ensure that
paths belong to C when constructing models of the axiomatisation that will be given below,
(C3) is to ensure that all components in the lower and upper side-forests of any C-tree have
roots, and (C4) is needed to ensure that the set of side-forests along any path form a
partition of the tree.

Now let k be any natural number and let S = Tk(C) be the class of k-coloured C-trees.
Suppose that the following are known:

(i) an axiomatisation Σk
↑ of the first-order theory of the class of k-coloured trees{

T⩾a : T ∈ S, a ∈ T
}
;

(ii) for each natural number n, an axiomatisation Σk,n
↓ of the first-order theory of the

class of (k + f (L′
k, n))-coloured linear orders{(

T<a
)T

[ē] : T ∈ S, a ∈ T
}
.
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Let (
Σk
↑

)′
:=

{
∀x
(
σ⩾x

)
: σ ∈ Σk

↑

}
and(

Σk
↓

)′
:=

{
∀z
(
∃y (y < z) → σnz

)
: n ∈ N, σ ∈ Σk,n

↓

}
.

In essence, the theory
(
Σk
↑

)′
expresses for a k-coloured tree T that each principal subtree

of T satisfies Σk
↑, while, using Corollary 4.3, the theory

(
Σk
↓

)′
expresses of T that, for each

natural number n and each principal stem A in T, the linear order AT [ē] satisfies Σk,n
↓ .

Then, the first-order theory of S can be axiomatised by the theory5

Ax (S) := {Tree, bc} ∪
(
Σk
↑

)′
∪
(
Σk
↓

)′
as is shown in the next result.

Theorem 4.4 Let C a class of linear orders that satisfies (C1) – (C4), and let S = Tk(C)
be the class of k-coloured C-trees, for some k ∈ N. For each k-coloured model T of Ax (S)
and each n ∈ N, there exists a k-coloured tree Sn ∈ S such that T ≡n Sn.

Proof Let T = (T ;<, c̄) be a k-coloured model of Ax (S). Fix n ∈ N; without loss of
generality, we can assume that n ⩾ qr (bc). Now, let p = f (L′

k, n) and ē = ēp. Since
T |= Tree then T is a tree. Pick any node a ∈ T other than the root of T (if there is a
root) and let A = T<a. Observe that T is discrete (the property of discreteness is encoded

in both of the theories
(
Σk
↑

)′
and

(
Σk
↓

)′
), hence A has a greatest node, say b.

Since T |=
(
Σk
↓

)′
then (T; a) |=

{
σna : σ ∈ Σk,n

↓

}
, hence, by Corollary 4.3, AT [ē] |= Σk,n

↓ .

Therefore, there exists a (k + p)-coloured linear order B = (B;<B, c̄, ē) such that B ≡n

AT [ē] and for which the reduct B′ = (B;<B, c̄) is a coloured principal stem in some tree
from S.

Since T is discrete, there are no lower side-forests in T. Now, for each t ∈ A, let {Ft,i}i∈It
be the set of components in the upper side-forest Fu(t\A) of t with respect to A in the tree
T. Since T is discrete, each component Ft,i has a root, say rt,i. Then, since T⩾rt,i |= Σk

↑,
there exists a k-coloured tree Gt,i such that Gt,i ≡n Ft,i and for which Gt,i is a principal
subtree of some tree from S. It follows that, for each node t ∈ A there exists a forest Gt

such that Fu(t\A) ≡n Gt and for which each component of Gt is a principal subtree of
some tree from S.

For each s ∈ B, let t (s) ∈ A be a node such that s and t (s) have the same colour
from amongst the colours in ē in the linear orders B and AT [ē] respectively. (Such t (s)
exists since B ≡n A

T [ē]). Define Sn to be the k-coloured tree that is obtained from B′

by adding, to each element s ∈ B, the forest Gt(s) as an upper side-forest of s with respect
to B. It follows that for each s ∈ B, s has the same colour from amongst the colours in ē
in both the linear orders BSn [ē] and B, hence BSn [ē] ∼= B. Since also B ≡n A

T [ē] then
BSn [ē] ≡n A

T [ē].
Next, we note that both Sn and T are branching complete. That Sn is branching

complete follows from the fact that every component in each of the upper side-forests
Fu(s\B) (∼= Gt(s)) in Sn, being a principal subtree of a tree from S, is branching complete.

T is branching complete since it is a model of the sentence bc. Now since BSn [ē] ≡n A
T [ē]

then, by Theorem 4.2, Sn ≡n T.
Finally, to see that Sn is a C-tree, observe that each path in Sn can be written as a

sum (B−)
⩽s

+D for some node s ∈ B and where D is a path in the forest Fu(s\B) ∼= Gs(t)

5In fact, only the property of left-connectedness is needed from the axiom Tree; the properties of irreflexivity,

transitivity and left-linearity are all encoded in the axioms from
(
Σk

↑

)′
and

(
Σk

↓

)′
.
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in Sn. Since B− is a principal stem in a C-tree and the linear orders in C are discrete,
it follows that (B−)

⩽s ∼= (C1)
<c1 for some linear order C1 ∈ C of which B− is an initial

suborder and some c1 ∈ C1. Further, since each component of Gs(t) is a principal subtree

of some tree from S, it follows that D ∼= (C2)
⩾c2 for some linear order C2 ∈ C of which D

is a terminal suborder and some c2 ∈ C2. Hence, by the fusion closure property of C, we
obtain that (B−)

⩽s
+ D ∼= (C1)

<c1 + (C2)
⩾c2 ∈ C, as required. ⊣

4.3 Applications of the results so far

Theorem 4.4 can be used to axiomatise the first-order theories of classes of trees of the
type S = Tk(C), where the requirements on C are firstly that it must satisfy the properties

(C1) – (C4), and secondly, that the axiomatisations
(
Σk
↑

)′
and

(
Σk
↓

)′
are known. There

are three classes C that fulfill these requirements, namely the sets {ζ}, {ω⋆} and {ζ, ω⋆}.
Theorem 4.4 will hence be used in Section 5.2 to axiomatise the first-order theory of

the class of k-coloured ζ-trees. The two simpler axiomatisations
(
Σk
↑

)′
and

(
Σk
↓

)′
that

are needed for that purpose are those of the first-order theories of the class of k-coloured
ω-trees (to be given in Secion 5.1) and of the class of (k + f (L′

k, n))-coloured expansions
of the linear order ω⋆ (given in Section 3.3).

In the case of the sets C = {ω⋆} and C = {ζ, ω⋆}, an axiomatisation of the first-order

theory of the class of (k + f (L′
k, n))-coloured expansions of ω⋆ is also needed for

(
Σk
↓

)′
. For(

Σk
↑

)′
, one uses in the case C = {ω⋆} an axiomatisation of the first-order theory of the class

of k-coloured trees of which all paths are finite (which can be deduced from [RBVS95]),
and in the case C = {ζ, ω⋆} one uses an axiomatisation of the first-order theory of the
class of k-coloured well-founded trees of which all paths have height at most ω (a trivial
exercise). Axiomatisations for the cases C = {ω⋆} and C = {ζ, ω⋆} will not be presented
here however.

5 First-order theories of coloured trees

5.1 The first-order theory of coloured ω-trees

The following result will be needed to axiomatise the first-order theory of the class of
k-coloured ω-trees.

Proposition 5.1 ([Doe89], Thm. 5.1) For every k-coloured model T of {Tree}∪BWFk
and each n ∈ N there exists a well-founded tree Sn such that Sn ≡n T.

It now follows that the theory

Tωk := {Tree, Le,¬Gr,BD,FD} ∪ BWFk

axiomatises the class of k-coloured ω-trees:

Corollary 5.2 Let T be any k-coloured model of Tωk, for some k ∈ N. Then, for each
n ∈ N there exists a k-coloured ω-tree Sn such that Sn ≡n T.

Proof Without loss of generality we can assume that n is at least as large as the quantifier
ranks of all the sentences Tree, Le, ¬Gr, BD and FD. Since T |= {Tree} ∪ BWFk then, by
Proposition 5.1, there exists a well-founded tree Sn such that Sn ≡n T. The axioms Le,
¬Gr, BD and FD ensure that each path in Sn will have the properties of having a least
element but no greatest element and of being discrete. Then, each path in Sn will be
isomorphic to ω, as required. ⊣
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5.2 The first-order theory of coloured ζ-trees

Using Theorem 4.4, we will now show that the theory

Tζk := {Tree,¬Le,¬Gr,BD,FD} ∪ BBWFk ∪ BFWFk

axiomatises the first-order theory of the class of k-coloured ζ-trees.

Theorem 5.3 Let T be a k-coloured model of Tζk, for some k ∈ N. Then, for each n ∈ N
there exists a k-coloured ζ-tree Sn such that Sn ≡n T.

Proof Let T be a k-coloured model of Tζk. The result will be proved by showing that
T |= Ax (Tk (ζ)) and employing Theorem 4.4. It is straightforward to check that the class
{ζ} satisfies properties (C1) – (C4). Observe, that the class of principal subtrees of trees in
Tk (ζ) coincides with the class of k-coloured ω-trees, hence we take Σk

↑ := Tωk. For n ∈ N
and p = f (L′

k, n), each linear order of the form (S<a)S [ēp], where S ∈ Tk (ζ) and a ∈ S, is

a (k + p)-coloured expansion of ω⋆, from which it follows that we can take Σk,n
↓ := Cω⋆

k+p

(but, see Remark 5.4 after this proof). We define
(
Σk
↑

)′
and

(
Σk
↓

)′
as in Section 4.2.

By assumption, T is a model of Tree. T is a model of bc since the property of branching
completeness follows from the property of definable bounded backward well-foundedness.

Therefore, to show that T |= Ax (Tk (ζ)), it remains to show that T |=
(
Σk
↑

)′
and T |=

(
Σk
↓

)′
.

T |=
(
Σk
↑

)′
: Let a ∈ T . We first show that T⩾a |= Tωk. It is straightforward to

check that T⩾a |= {Tree, Le,¬Gr,BD,FD}. To see that T⩾a |= BWFk, let b̄ be a tuple of
nodes in T⩾a and suppose that the formula φ

(
x, b̄
)
defines a non-empty set B in the tree(

T⩾a; b̄
)
. Then, φ⩾a

(
x, b̄
)
defines B in the tree

(
T; a, b̄

)
and B is bounded below by the

node a. Hence, since T is a model of BBWFk, B must contain a least element. It follows
that T⩾a |= BWFk, hence also T⩾a |= Tωk. Then (T; a) |=

{
σ⩾a : σ ∈ Tωk

}
, and since a

was arbitrary and Σk
↑ = Tωk, we get T |=

(
Σk
↑

)′
.

T |=
(
Σk
↓

)′
: Again, let a ∈ T and let A = (T<a;<T), n ∈ N and p = f (L′

k, n). We

first show that AT [ēp] |= Cω⋆
k+p. Clearly, A

T [ēp] |= {LO,¬Le,FD}. As for AT [ēp] |= FWFk,

let b̄ this time be a tuple of nodes in T<a and suppose that the formula φ
(
x, b̄
)
defines a

non-empty set B in the tree
(
AT [ēp] ; b̄

)
. By Corollary 4.3, φn

a

(
x, b̄
)
defines B in

(
T; a, b̄

)
and B is bounded above by a hence, using the fact that T is a model of BFWFk, B must
contain a greatest element. It follows that AT [ēp] |= FWFk, hence also AT [ēp] |= Cω⋆

k+p.

Now, by Corollary 4.3, we have that (T; a) |=
{
σna : σ ∈ Cω⋆

k+p

}
. Since a and n were

arbitrary and Σk,n
↓ = Cω⋆

k+p, it follows that T |=
(
Σk
↓

)′
. ⊣

Remark 5.4 In the above proof, for n ∈ N and p = f (L′
k, n), the class of linear orders

of the form (S<a)S [ēp], where S ∈ Tk (ζ) and a ∈ S, does not, strictly speaking, coincide
with the class of (k + p)-coloured expansions of ω⋆, because there are extended colours from
ēp that aren’t realised in any linear orders in the first class (not all characteristic sentences
τL′

k,n,i
are realised in side-forests), while every colour in ēp is realised in some (k + p)-

coloured expansion of ω⋆. We can nonetheless take Σk,n
↓ to be the theory Cω⋆

k+p since, for
each model A of Cω⋆

k+p, every (k + p)-coloured expansion of ω⋆ that is m-equivalent to A,
realises exactly the same colours as A.

5.3 The first-order theory of coloured η-trees

We now define the theory
Tη := {Tree,¬Le,¬Gr,De} .
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The first-order theory of the class of k-coloured η-trees is axiomatised by Tη, as seen from
the next theorem.

Theorem 5.5 For each k-coloured model T of Tη, there exists a k-coloured η-tree S such
that S ≡ T.

Proof Given a k-coloured model T of Tη, by the Downward Löwenheim-Skolem Theorem
there exists a countable k-coloured tree S such that S ≡ T. Hence each path A in the tree
S will be a countable dense linear order without endpoints, so A ∼= η, as required. ⊣

5.4 The first-order theory of coloured λ-trees

Here we will present an axiomatisation of the first-order theory of the class of k-coloured λ-
trees. We will make use of Fact 3.12, along with the method of partitioning into side-forests
from Section 4, to prove that our axiomatisation is complete. In essence, the axiomati-
sation will express the fact that the linear orders AT [ē] obtained from a coloured λ-tree
by partitioning it into side-forests are themselves coloured expansions of λ. The proof of
completeness of the axiomatisation that we give here follows a similar idea as in the proof
of completeness of the axiomatisation of the class of well-founded trees, given in [Doe89],
but with several essential differences.

Recall the definition of the formula φn
z that was given before Corollary 4.3. By applying

it to each σ ∈ Cλk+f(L′
k,n)

, for any k ∈ N we define

(Cλk)
′ :=

{
∀z (σnz ) : n ∈ N, σ ∈ Cλk+f(L′

k,n)

}
.

We will show (Theorem 5.9) that the first-order theory of the class of k-coloured λ-trees
is axiomatised by the set of sentences

Tλk := {Tree,¬Gr, bc} ∪ (Cλk)
′ .

First, note that every k-coloured λ-tree, being branching complete, is a model of Tλk.
Next, a few technical lemmas and propositions are needed.

Lemma 5.6 Let T be a k-coloured model of Tλk. Then, for each a ∈ T , each component
in T>a is a model of Tλk, too.

Proof Let F be a component in T>a. It is immediate that F satisfies the sentences Tree,
¬Gr and bc. To see that F satisfies (Cλk)

′, let n ∈ N, p = f (L′
k, n) and b ∈ F . It then

suffices to show that (F; b) |= {σnb : σ ∈ Cλk+p}. Clearly (F; b) |= (LO)nb . It follows from
the fact that T |= (Cλk)

′ that T is dense, hence (F; b) |= {(¬Le)nb , (¬Gr)
n
b , (De)

n
b }.

Since T |= (Cλk)
′ then in particular (T; b) |= {σnb : σ ∈ COMk+p} and

(T; b) |= {σnb : σ ∈ Ik+p}. Hence, by Corollary 4.3, we obtain
(
T<b

)T
[ēp] |= COMk+p and(

T<b
)T

[ēp] |= Ik+p.
To show that (F; b) |= {σnb : σ ∈ COMk+p} it suffices, again by Corollary 4.3, to show

that
(
F<b

)F
[ēp] |= COMk+p. Let d̄ be a tuple of nodes in F<b and let φ

(
x, d̄
)
define the

non-empty set B ⊆ F<b in the linear order
(
F<b

)F
[ēp]. Suppose that B has an upper bound

u ∈ F<b. By properties of relativised formulas, φ>a
(
x, d̄
)
defines B in

((
T<b

)T
[ēp] ; a

)
.

Since
(
T<b

)T
[ēp] |= COMk+p, we obtain that B has a least upper bound in T<b, hence also

in F<b, as required.
Lastly, it will be shown that (F; b) |= {σnb : σ ∈ Ik+p} by showing, instead, that(

F<b
)F

[ēp] |= Ik+p. To this end, let d̄ be a tuple of nodes in F<b and let φ
(
x, y, d̄

)
define in

the linear order
((
F<b

)F
[ēp] ; d̄

)
a transitive binary relation on F<b that induces a densely

ordered condensation P = (P ;<P) of F
<b. Let

ψ
(
x, y, a, d̄

)
:= (x ⩽ a ∧ x = y) ∨

(
a < x ∧ a < y ∧ φ>a

(
x, y, d̄

))
.
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The formula ψ
(
x, y, a, d̄

)
defines in

(
T<b

)T
[ēp] a transitive binary relation on T<b that

induces a densely ordered condensation Q = (Q;<Q) of T<b and P is a tail of Q. Since(
T<b

)T
[ēp] |= Ik+p then it follows that Q must contain a set S of singletons that is dense

in Q, hence S↾P is a set of singletons in P that is dense in P, as required. ⊣

Given a k-coloured forest F := (F ;<, c̄), let Fr denote the (possibly empty) set of roots
of the components of F and let F ′ := F \ Fr. Consider the following property:

Compλ (F) : For each component G of FF ′
, FG is a model of Tλk.

In other words, property Compλ (F) states that for each component X in F, if FX has no
root then SX is a model of Tλk, while if FX has a root r then FY is a model of Tλk for
each component Y in

(
FX
)>r

.

Lemma 5.7 Let T := (T ;<T, c̄) be a k-coloured model of Tλk. Then, for each a ∈ T and
n ∈ N there exists a k-coloured tree S := (S;<S, c̄) and a node b ∈ S such that

(i) (T; a) ≡n (S; b), and

(ii)
(
S<b

)− ∼= λ, and

(iii) Compλ
(
SJ
)
holds, where J := S \ S⩽b.

Proof Let A := T⩽a, n′ = n+1, p = f (L′
k, n

′) and ē = (e1, e2, . . . , ep). Let F1,F2, . . . ,Fq

be all, up to n′-equivalence, side-forests of the form F (t\A) with t ∈ A. Without loss
of generality, we can assume that Fi |= τL′

k,n
′,i for each i. Each Fi has the form Fi :=

(Fi;<Fi , c̄, di) where di ∈ A.

Since (T; a) |=
{
σn

′
a : σ ∈ Cλk+p

}
then by Corollary 4.3, (T<a)T [ē] |= Cλk+p hence, by

Fact 3.12, there exists a (k + p)-coloured linear order B1 such that (T<a)T [ē] ≡n′ B1 and

B−
1

∼= λ. Let B2 :=
(
AT [ē]

){a}
be the restriction of AT [ē] to the set {a} and define the

(k + p)-coloured linear order B := B1 +B2 = (B;<B, c̄, ē). By Lemma 2.1, B ≡n′ AT [ē].
For each x ∈ B, let χ (x) denote the value of i for which B |= ei (x). We define

S :=
⋃
x∈B

(
Fχ(x) × {x}

)
and we also define the binary relation <S on S by specifying, for all pairs (u, x) , (v, y) ∈ S,
that

(u, x) <S (v, y) ⇐⇒
[(
x <B y and u = dχ(x)

)
or
(
x = y and u <Fχ(x)

v
)]
.

Now, we define S = (S;<S, c̄) by specifying that, for each s = (u, x) in S, S |= ci (s) if
and only if Fχ(x) |= ci (u). Let D :=

{(
dχ(x), x

)
: x ∈ B

}
and D := (D;<S). S is simply

the tree that is obtained from B by replacing each x ∈ B with the side-forest Fχ(x), and D
is the path in S that consists of all the di’s in these side-forests.

We are going to apply Theorem 4.2. For that, we will need to know that T and S are
branching complete. T is branching complete since it satisfies bc. It follows that every
lower side-forest in T – in particular, each of the lower side-forests in F1,F2, . . . ,Fq – must
contain a root. For S, let r, w ∈ S be incomparable and let Srw be defined as in (2) at the
beginning of Section 4.1. We consider the following two cases, each with three subcases,
for the location of r and w:

Case 1: r and w belong to the same set Fχ(x) × {x}. We consider 3 sub-cases:

1.1 If r and w belong to the same component from Fχ(x) × {x} then Srw contains a least
element, by the fact that Fχ(x) is branching complete.

1.2 If r and w belong to different components from Fχ(x) × {x}, but with r lying in the
upper side-forest from Fχ(x) × {x}, then

(
dχ(x), x

)
is the least element of Srw.
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1.3 If r and w belong to different components from Fχ(x) × {x}, but with r lying in the
lower side-forest from Fχ(x)×{x}, then the root of that lower side-forest that contains
r is the least element of Srw.

Case 2: r belongs to the set Fχ(x) × {x} and w belongs to a different set Fχ(y) × {y}.
Then either x <B y or y <B x.

2.1 If x <B y and r lies in the upper side-forest from Fχ(x) × {x} then
(
dχ(x), x

)
is the

least element of Srw.

2.2 If x <B y and r lies in the lower side-forest from Fχ(x) × {x} then the root of that
lower side-forest that contains r is the least element of Srw.

2.3 If y <B x then
(
dχ(y), y

)
is the least element of Srw.

Hence, S is branching complete. Since DS [ē] ∼= B ≡n′ AT [ē] it follows, using Theorem
4.2, that (T;A) ≡n′ (S;D). Letting b be the greatest element of D, it then follows that

(T; a) ≡n (S; b) and clearly
(
S<b

)− ∼= B−
1

∼= λ. That the property Compλ
(
SJ
)
holds

follows from the fact that, for each component F in SJ , the tree SF is either a copy of
some lower side-forest of T (which will necessarily have a root), or a copy of a component
in some upper side-forest of T (which will not have a root since T satisfies the density
property that is encoded in (Cλk)

′); the claim then follows by Lemma 5.6. ⊣

Lemma 5.8 Let T := (T ;<T, c̄) be a k-coloured model of the theory Tλk, let
{a1, a2, . . . , am} be an antichain in T, and let ā := (a1, a2, . . . , am). Then, for each n ∈ N
there exists a k-coloured tree S := (S;<S, c̄) and a tuple of nodes b̄ := (b1, b2, . . . , bm) ∈ Sm

such that

(i) (T; ā) ≡n

(
S; b̄

)
, and

(ii)
(
S<bi

)− ∼= λ for each i, and

(iii) Compλ
(
SJ
)
holds, where J := S \

⋃m
i=1 S

⩽bi.

Proof The result will be proved by induction on m. For m = 1, the result is precisely
Lemma 5.7. Now let m ⩾ 2 be an integer such that the claim holds for each positive
integer less than m and let C := {a1, a2, . . . , am} be an antichain in T. Consider the
stem H :=

⋂m
i=1 T

<ai and let H ′ := {x ∈ T : x ⩾ y for each y ∈ H}. Now, let {Fi}i∈I
be the set of all components in TH′

and define the tree Fi := TFi for each i ∈ I. Each
component Fi must contain fewer than m (possibly none) elements from C, for, if C ⊆ Fi

then H∩Fi ̸= ∅ – a contradiction. Assume, without loss of generality, that the components
Fi that contain nodes from C are precisely F1, F2, . . . , Fr. Let C ∩Fi = {ai,1, ai,2 . . . , ai,si}
and āi := (ai,1, ai,2 . . . , ai,si) for 1 ⩽ i ⩽ r. Two cases will be considered, depending on
whether H contains a greatest element or not.

Case 1: H contains a greatest element a. By Lemma 5.7, there exists a k-coloured

tree S0 = (S0;<S0 , c̄) and a node b ∈ S0 such that (T; a) ≡n (S0; b) and
(
S<b

0

)− ∼= λ and

Compλ

(
SJ0

0

)
holds for J0 := S0 \ S⩽b

0 .

By Lemma 5.6, each of the trees Fi is a model of Tλk. By the induction hypothesis,
there exists, for each i with 1 ⩽ i ⩽ r, a k-coloured tree Gi = (Gi;<Gi , c̄) and a tuple
b̄i := (bi,1, bi,2, . . . , bi,si) of nodes in Gi such that

(i′) (Fi; āi) ≡n

(
Gi; b̄i

)
, and

(ii′)
(
G

<bi,j
i

)− ∼= λ for each j with 1 ⩽ j ⩽ si, and

(iii′) Compλ

(
GJi

i

)
holds, where Ji := Gi \

⋃si
j=1G

⩽bi,j
i .
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Now, we define the tree S as follows. Let G be the disjoint union of all the trees
(
Gi; b̄i

)
for 1 ⩽ i ⩽ r, along with all the trees Fi for i ∈ I \ {1, 2, . . . , r}. Let S′

0 := S0 \ (S0)
>b,

S′
0 := S

S′
0

0 be the restriction of S0 to S′
0, B := (S′

0)
⩽b, and S := S′

0 +B G.
To see that (T; ā) ≡n

(
S; b̄

)
, let T ′ := T \ T>a, T′ := TT ′

, A := T⩽a and F := T>a.
Since (T; a) ≡n (S0; b) then (T′;A) ≡n (S′

0;B), and it is clear that (F; ā1ā2 · · · ār) ≡n(
G; b̄1b̄2 · · · b̄r

)
. By Lemma 2.2, (T′ +A F; ā1ā2 · · · ār) ≡n

(
S′

0 +B G; b̄1b̄2 · · · b̄r
)
, from which

it follows that (T; ā) ≡n

(
S; b̄

)
.

Next, we will show that
(
S<bi

)− ∼= λ for each i. Suppose that bi = bj,l ∈ Gj . Since(
S<b

)− ∼=
(
S<b

0

)− ∼= λ and
(
S(b,bi)

)− ∼=
(
G

<bj,l
j

)− ∼= λ (where S(b,bi) denotes the re-

striction of S to the interval (b, bi)), it follows that
(
S<bi

)− ∼=
(
S<b

)−
+ 1 +

(
S(b,bi)

)− ∼=
λ+ 1 + λ ∼= λ.

Finally, the claim that Compλ
(
SJ
)
holds for J = S \

⋃m
i=1 S

⩽bi follows by the corre-
sponding properties that hold in S0 and in each of the trees Gi, along with using Lemma
5.6 when working in the trees Fi for i ∈ I \ {1, 2, . . . , r}.

Case 2: H does not contain a greatest element. It follows by the branching complete-
ness of T that each Fi must contain a least element. Fix i0 ∈ I and let a be the root of
Fi0 and A := T<a. Let T ′ = T \

⋃
i∈I Fi and T′ = TT ′

. Observe that, as A does not have a

greatest element, AT [ē] = AT′
[ē].

Let p := f (L′
k, n) and ē := ēp. Since (T; a) |= {σna : σ ∈ Cλn+p} then AT [ē] |= Cλn+p.

Hence, by Fact 3.12, there exists an (n+ p)-coloured linear order B = (B;<B, c̄, ē) such
that B ≡n AT [ē] and B− ∼= λ. As with the construction of the tree S in the proof
of Lemma 5.7, we can add side-forests to the elements of B to obtain a k-coloured tree
S0 := (S0;<S0 , c̄), and a path D in S0, such that DS0 [ē] ∼= B, from which

AT′
[ē] = AT [ē] ≡n B ∼= DS0 [ē] . (3)

T′ is branching complete, due to the fact that T satisfies bc, and it can be shown that
S0 is branching complete, similarly to how it was shown that the tree S in the proof
of Lemma 5.7 was branching complete. It then follows, using (3) and Theorem 4.2, that
(T′;A) ≡n (S0;D).

Similarly to Case 1, for each i, where 1 ⩽ i ⩽ r, there exists a k-coloured tree Gi and
a tuple b̄i := (bi,1, bi,2, . . . , bi,si) of nodes in Gi, such that properties (i′) and (iii′) hold, in
addition to property (ii′) replaced by:

(iv′)
(
G

<bi,j
i

)− ∼= 1 + λ for each j with 1 ⩽ j ⩽ si.

Now, we define G as in Case 1 and let S := S0 +D G. By similar arguments to those used
in Case 1 and Lemma 5.7, it can again be seen that properties (i) – (iii) hold. ⊣

Theorem 5.9 Let T be a k-coloured model of Tλk. Then, for each n ∈ N there exists a
k-coloured λ-tree S such that T ≡n S.

Proof Without loss of generality, we can assume that n ⩾ 5. We define the k-coloured
trees T0,T1,T2, . . . and sets H0, H1, H2, . . . with each Hi ⊆ Ti, as follows. First, take

T0 := T and H0 = ∅. Now, given Ti and Hi, let T
′
i := Ti \Hi and T′

i := T
T ′
i

i , and suppose
that these have the following properties:

(a) Hi is a left-closed subset of Ti and each path in Hi := THi
i is isomorphic to λ+ 1;

(b) Ti is dense and branching complete;

(c) Compλ (T
′
i) holds.

Note that property (a) is satisfied vacuously by H0, property (b) is satisfied by T0 (with the
density property being encoded in the theory (Cλk)

′ that is satisfied by T), and property
(c) is trivially satisfied by T′

0. The construction of Ti+1 and Hi+1 is described below.
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Let F be any component in T′
i and put F := TF

i . If i = 0 then F = T while if i > 0 then
F can be represented in one of the forms (i) and (ii) below as follows. For each path X in
Hi (which can be viewed as a stem in Ti), since X has a greatest node and Ti is branching
complete, the set of side-forests {F (x\X)}x∈X form a partition of Ti. There must hence
exist a path A in Hi and a node d ∈ A such that F is contained in the side-forest of d with

respect to A. In particular,
(
T<d
i

)− ∼= λ and either F ⊆ Fu(d\A) or F ⊆ Fl(d). Now, if
F ⊆ Fu(d\A) then, using the fact that Ti is dense, F has the following form:

(i) F has no root and F ⊆ T>d
i with

(
T⩽d
i

)− ∼= λ+ 1,

while, if F ⊆ Fl(d) then, using the fact that Ti is branching complete and dense, F has the
following form:

(ii) F has a root r and F = T⩾r
i with (T<r

i )
− ∼= λ.

In the construction that follows, we hence take F = T when i = 0 and if i > 0 then we
can restrict our attention to components that have the form of case (i), because in case (ii)
each component F ′ in T>r

i will have the form of case (i) (but, with r fulfilling the role of
d) and the subsequent construction is then performed using this F ′ rather than F .

Let {a1, a2, . . . , ap} be an antichain in F such that
⋃p

i=1 F
⩽ai contains an n-support for

F (recall the definition of ‘n-support’ at the end of Section 2.1) and let ā := (a1, a2, . . . , ap).
By property (c) and Lemma 5.8, there exists a k-coloured tree G and a tuple of nodes b̄ :=

(b1, b2, . . . , bp) ∈ Gp such that: (F; ā) ≡n

(
G; b̄

)
,
(
G<bj

)− ∼= λ for each j, and Compλ
(
GJ
)

holds for J := G \
(⋃p

j=1G
⩽bj
)
. It then follows that

(†) : for each a ∈ F there exists b ∈
⋃p

i=1G
⩽bi such that (F; a) ≡n−1 (G; b).

The tree Ti+1 is now obtained from Ti by replacing F with G and by performing a
similar replacement for every other component of T′

i, while Hi+1 is the union over all these

components G of the sets

p⋃
j=1

T
⩽bj
i+1 .

Note that since Hi+1 is obtained from Hi by adding only finitely many new paths
corresponding to each component F in T′

i, none of the paths in Hi+1 are emerging paths,
and hence there is no possibility of producing ‘unwanted’ paths that are isomorphic to λ
by diagonalisation.

Each path in Hi+1 will be of the form(
T⩽d
i

)−
+
(
S⩽bj

)− ∼= (λ+ 1) + (λ+ 1) ∼= λ+ 1

(or simply of the form
(
S⩽bj

)− ∼= λ + 1 when i = 0) so property (a) holds for Hi+1. To
see that property (b) holds for Ti+1, first note that each of the trees G that was used to
replace the tree F in the above construction is itself dense and branching complete, since
F ≡n G and the properties of denseness and branching completeness can be expressed by
sentences of quantifier rank at most 5. We can now use an argument similar to the one
used in Lemma 5.6 to prove that the new tree that was constructed there was branching
complete. The claim that property (c) holds for T′

i+1 follows from the fact that each of the
trees G that was used to replace the tree F in the above construction satisfies Compλ

(
GJ
)

for J = G \
(⋃p

j=1G
⩽bj
)
.

Observe, moreover, that Ti+1 and Hi+1 also have the following properties:

(d) Hi+1 is an end-extension of Hi,

(e) (Ti, t)t∈Hi
≡n (Ti+1, t)t∈Hi

,

(f) for each a ∈ T ′
i , there exists b ∈ Hi+1 such that

(Ti; t, a)t∈Hi
≡n−1 (Ti+1; t, b)t∈Hi

.

Property (e) follows from the fact that in the construction of Ti+1, Hi was left intact and
the components in T′

i were all replaced by n-equivalent trees. Property (f) follows from (†).
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Finally, let S :=

∞⋃
i=0

Hi.

(It follows from property (d) that this union is defined.)
Note that even though every path in each Hi is singular, the (infinite) union S of all

these Hi’s may contain emerging paths.
S is a λ-tree since, clearly, the monochromatic reduct of each of its paths is isomorphic

to (λ+ 1) · ω ∼= λ. To show that T ≡n S, we will describe a winning strategy for Player
II for the game EFn(T,S). Let t̄ := (t1, t2, . . . , tm) ∈ Tm and s̄ := (s1, s2, . . . , sm) ∈ Sm

represent the nodes that have been chosen by the two players afterm moves (with t̄ = ε = s̄
when m = 0), and such that the following property holds:

[⋆]i,t̄,s̄ : s̄ ∈ (Hi)
m and (T; t̄) ≡n−m (Ti; s̄).

Observe that, by property (e), [⋆]i,t̄,s̄ holds trivially when m = 0, and if i < j and [⋆]i,t̄,s̄
holds then [⋆]j,t̄,s̄ holds, too. We will consider two cases for the choice of Spoiler in the
(m+ 1)-th round of the game:

� Suppose that Spoiler chooses the node tm+1 ∈ T . By [⋆]i,t̄,s̄ there exists um+1 ∈ Ti
such that (T; t̄tm+1) ≡n−m−1 (Ti; s̄u). If u ∈ Hi, then take sm+1 := u as the response
of Duplicator for round m + 1 of the game and observe that [⋆]i,t̄tm+1,s̄sm+1

holds.
Otherwise, by property (f) there exists v ∈ Hi+1 such that (Ti; s̄u) ≡n−1 (Ti+1; s̄v),
hence also (T; t̄tm+1) ≡n−m−1 (Ti+1; s̄v). Now, take sm+1 := v as the response of
Duplicator for round m+ 1 of the game and observe that [⋆]i+1,t̄tm+1,s̄sm+1

holds.

� Suppose that Spoiler chooses sm+1 ∈ S, say with sm+1 ∈ Hj . If j ⩽ i then sm+1 ∈ Hi.
Hence, by [⋆]i,t̄,s̄, there exists u ∈ T such that (T; t̄u) ≡n−m−1 (Ti; s̄sm+1). Take
tm+1 := u as the response of Duplicator and observe that [⋆]i,t̄tm+1,s̄sm+1

holds. On
the other hand, if i < j, then [⋆]j,t̄,s̄ holds, too. Duplicator will again have a response
tm+1 ∈ T such that [⋆]j,t̄tm+1,s̄sm+1

holds.

Clearly, the tuples (t1, t2, . . . , tn) ∈ Tn and (s1, s2, . . . , sn) ∈ Sn thus defined form a local
isomorphism between T and S, as required. ⊣

6 Concluding remarks

The study of classes of trees and their first-order theories is still in an early stage, and
still much less explored than the study of first-order theories of classes of linear orders. In
particular, the complete first-order axiomatisations of several important classes of trees has
so far been open. The work presented in this paper was intended towards advancing that
study and, in particular, answering some of these open questions. Our main contributions
can be summarised as follows.

1. The main new technique developed here is a method for approximating any given
(possibly, coloured) tree as a coloured linear order, so that the first-order theory of
the resulting coloured linear order can be used to determine the first-order theory of
the given tree. Using this technique, we have obtained a complete axiomatisation of
the first-order theory of the class of coloured ζ–trees.

2. Another major new result in this work is the complete axiomatisation of the first-order
theory of the class of coloured λ-trees. Our completeness proof of that axiomatisation
mimics, modulo several essential complications, the completeness proof of the axioma-
tisation of the class of well-founded trees given in [Doe89]. In fact, in the introduction
of Section 5 of [Doe89], Doets says that the completeness proof that is presented there
“can be considered as a paradigm for a method applicable in a variety of situations,
where the models considered belong to certain types of partial orderings (trees being
the simplest example) and the Π1

1-property involved can be either well-foundedness,
converse well-foundedness, or, more generally, some kind of completeness”.
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3. We have also obtained and presented a few easier cases of complete axiomatisations
of the first-order theories of other tree classes of natural interest, including ω-trees
and η-trees. In addition, the paper summarised the axiomatisations of the first-
order theories of important classes of linear orders needed for axiomatising the first-
order theories of the classes of trees mentioned above, though most of the former
axiomatisations were already known from the literature.

Some directions for future work include the following.

� Use the methods developed here to axiomatise the first-order theories of other classes
of trees of natural interest, such as the coloured trees in which all paths are complete
linear orders.

� Generalise the method of [Doe89] to a result of the kind of Theorem 4.4, presented
here. Moreover, the only class to which Theorem 4.4 was applied here was {ζ}, but
it can also be applied to the classes {ω⋆} and {ζ, ω⋆}.

� The methods developed here can possibly be modified to apply to other, more general
ordered structures, such as partially ordered sets and lattices.

Acknowledgements. We thank the referee for the careful reading and helpful com-
ments and suggestions on the paper.
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