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Summary

Title: Applications of direct and inverse limits in analysis
Supervisors: Prof. J.H. van der Walt, Prof. M. de Jeu
Department: Mathematics and Applied Mathematics

Degree: Doctor of Philosophy in Mathematical Sciences

In this dissertation, we use the categorical notions of direct and inverse limits to
solve certain problems in analysis; in particular, in the field of vector lattices. Chap-
ter 1 provides a general overview and motivation of the problems we will focus on.
Specifically, these are a decomposition theorem for C(X) spaces that are order dual
spaces, and the problem of existence of free objects in certain categories of locally
convex structures. The connecting thread between these two disparate problems will
be our extensive and fundamental use of direct and inverse limits in their solutions.

Chapter 2 deals with the first of these two problems. After settling some prelim-
inaries, the first few sections of Chapter 2 develops the basic theory of direct and
inverse limits in categories of vector lattices. This includes results on existence, per-
manence properties, as well as some examples. After this, we give some results on
the duality between direct and inverse limits. In particular, we will show that the
order (continuous) dual of a direct limit of vector lattices is an inverse limit of order
(continuous) duals, and (under more strict conditions) the order (continuous) dual
of an inverse limit of vector lattices is a direct limit of order (continuous) duals. The
rest of Chapter 2 deals with applications of this duality theory in various contexts,
among these will be our desired decomposition result for certain C(X) spaces, which
is formulated in terms of an inverse limit.

Chapter 3 starts with some further preliminaries we need in order to define certain
categories of algebraic structures, normed structures, and locally convex structures
forming the setting of this chapter. After this, we cover some material from universal
algebra to prove the existence of free objects in these algebraic categories. We use
the existence of these algebraic free objects to expand upon the existing literature
regarding certain ‘free objects’ in categories of normed structures. As we shall detail
below, these are not bona fide free objects in our sense of the term. Inverse limits
re-enter the picture at this point: We will prove a general categorical result involving
inverse limits that allows us to use our results for categories of normed structures to
obtain genuine free objects in categories of locally convex structures. The abstract
material in Chapter 3 will be interspersed with some concrete examples chosen from
two particular cases. We conclude Chapter 3 by giving concrete descriptions of two
free objects in certain categories of locally convex structures whose existence was
proven using our general abstract methods.
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CHAPTER 1

General overview and preliminaries

1.1. General overview and motivation of problems

This study demonstrates how the notions of direct and inverse limits can be used
to address some problems in analysis, particularly in the field of vector lattices.
Direct and inverse limits are special cases of the more general notions of colimits
and limits of a diagram respectively. Informally speaking, a diagram,1 in a category
C, is some collection of objects S0 in C along with a (possibly empty) collection of
morphisms S1 connecting some (or none) the objects in S0. If we denote by S the
diagram consisting of the data S0 and S1, a limit or colimit of S can be thought
of as an ‘abstract method’ of using the data in S to construct a new object X in
C along with a collection of new morphisms M in C which connect X with the
objects in S0. The pair (X,M) forming the limit or colimit of the diagram S is
not just any such pair, but is in some sense a ‘universal pair ’ for S. Many of the
standard methods of constructing new objects from old ones used in mathematics
are particular examples of such limit and colimit constructions. Familiar examples
of limits include terminal objects, products, kernels (more generally, equalisers),
pullbacks, and the aforementioned inverse limits. Examples of colimits include initial
objects, coproducts (more specfically, disjoint unions), pushouts, and direct limits.
As implied by the names, limits and colimits are categorically dual concepts, meaning
that every example of a limit (resp. colimit) in a category C is an example of a
colimit (resp. limit) in the opposite category2 Cop. Much information on these
general constructions can be found in [2], [12], [52], and [54].

Direct and inverse limits3 have become fairly standard tools in analysis: The direct
or inverse limits of systems of topological vector spaces or locally convex spaces
are well-known constructions, see for example [22], [25, Chapter IV, § 5], [55], and
[60]. The notion of an inverse limit of measure spaces has also been studied, see [19,
Chapter 5] and [24]. The notions of direct and inverse limits are used extensively
in the book of Beattie and Butzmann on convergence spaces [15].

In the field of vector lattices, the notions of direct and inverse limits have received
comparatively little attention. One source that stands out is the work of Filter in
[37] where he studies the properties of direct limits of vector lattices. This has been
supplemented recently by Ding and de Jeu in [32] where they study direct limits
of normed vector lattices and Banach lattices. However, the literature for inverse
limits of vector lattices is more sporadic: Two relevant sources we could find are

1Category theory books often describe a diagram with data from a category C as a functor F ∶ J → C where

J is an ‘index category’, see [12, Definition 5.15].
2See [52, p. 16].
3Which are also called inductive and projective limits in the literature.

1
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2 1. GENERAL OVERVIEW AND PRELIMINARIES

[31] and [51] which deal with the inverse limits of Banach lattices. Accordingly, the
work in this study will address some of the gaps in the existing literature. Chapter 2
in particular will develop the basic theory of direct and inverse limits in categories
of vector lattices. Results on (normed) vector lattices and (normed) vector lattice
algebras are found in Chapter 3, although vector lattices are not the particular focus
of that chapter.

With this brief overview of direct and inverse limits in the context of analysis in
mind, we now give some context and motivation for the particular problems we seek
to address.

1.1.1. Decomposition theorem for C(X). The first major question we seek
to address was originally inspired by some connections between the theory of C∗-
algebras and the theory of vector lattices. Denote by C (X,C) the space of contin-
uous complex-valued functions on a topological space X and denote by C0 (X,C)
the space of continuous complex-valued functions on X that vanish at infinity. Of
course, for K a compact Hausdorff topological space, the space C (K,C) is a unital
commutative C∗-algebra. In addition, it is well-known that every unital commu-
tative C∗-algebra A is isometrically ∗-isomorphic to a C (K,C) for some uniquely
determined compact Hausdorff space K, see for instance [25, Chapter VII, The-
orem 8.6; Chapter VIII, Theorem 2.1]. More generally, a (not necessarily unital)
commutative C∗-algebra A is isometrically ∗-isomorphic to a C0 (L,C) for some
locally compact topological space L, see [34, Theorem 1.4.1].

Given these representations, it is clear that the self-adjoint part of commutative
C∗-algebra is a Banach lattice C0 (L) ∶= C0 (L,R). In particular, by the Kakutani
Representation Theorem [56, Theorem 2.1.3], the self-adjoint parts of unital com-
mutative C∗-algebras are precisely the Archimedean relatively uniformly complete
vector lattices with a strong order unit.

These results relate to the following classic result of Dixmier and Grothendieck.

Theorem 1.1.1. Let K be a compact Hausdorff space. The following statements
are equivalent.

(i) K is hyper-Stonean4.

(ii) C(K) is isometrically isomorphic to a dual Banach space.

The forward implication is found in [33, p. 21] while the reverse implication is in
[43, Théorème 2]. In addition to this, a theorem of Sakai in [59] tells us that a
C∗-algebra A is a W ∗-algebra5 precisely when A is a dual Banach space. With
this in mind, the result in Theorem 1.1.1 gives us a characterisation of the unital
commutative W ∗-algebras among the unital commutative C∗-algebras.

Given the importance of this characterisation and the clear connection between the
theories of commutative C∗-algebras and vector lattices, it seems natural to ask the
following question: We call a vector lattice E an order dual space if there exists a

4See Section 2.1.3.
5See [63, Chapter III, § 3].
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1.1. GENERAL OVERVIEW AND MOTIVATION 3

vector lattice F such that E and F ∼ are lattice isomorphic. For which topological
spaces X is the vector lattice C(X) an order dual space? This was answered by
Xiong in [69]. Undefined terms and notation used in the following result are defined
in Sections 2.1.1 and 2.1.2.

Theorem 1.1.2 ([69, Theorems 1 and 2]). Let X be a realcompact space. Denote
by S the union of supports of compactly supported normal measures on X. The
following statements are equivalent.

(i) X is extremally disconnected and υS =X.

(ii) C(X) is an order dual space.

Theorem 1.1.2 is a generalisation of Theorem 1.1.1 to the non-compact case since the
compact Hausdorff spaces satisfying (i) in the above theorem are precisely the hyper-
Stonean spaces. The recent book of Dales, Dashiell, Lau, and Strauss on spaces of
continuous functions [26] contains a comprehensive list of characterisations for when
a C(K) is a dual Banach space. Among these is a decomposition result for C(K).

Theorem 1.1.3 ([26, Theorem 6.4.1]). Let K be a compact Hausdorff space. Con-
sider the following statements.

(i) K is hyper-Stonean.

(ii) C(K) is isometrically isomorphic to a dual Banach space.

(iii) Let F be a maximal singular family of normal probability measures on K,
and for each µ ∈ F let Sµ denote its support. Then

C(K) ∋ f z→ (f ∣Sµ)µ∈F ∈
∞
⊕
µ∈F

C(Sµ)

is an isometric lattice isomorphism.

The statements (i) and (ii) are equivalent, and both (i) and (ii) imply (iii). If K is
Stonean, then all three statements are equivalent.

We can now state the question that we seek to address: In the same vein as [69], can
we find a similar decomposition result for C(X) spaces that are order dual spaces?

Indeed, this is possible and this is precisely where the study of inverse limits in
particular enters our research: We will show that for an extremally disconnected
realcompact space X, the vector lattice C(X) is an order dual space precisely when
C(X) is lattice isomorphic to the inverse limit of the carriers of its order continuous
linear functionals. In its first form, the material in Sections 2.3 - 2.5 was developed
with a view towards answering this question. Given the wider relevance discussed
above, the material in Chapter 2 has taken on a more general form since and we have
added a number of other applications along with the aforementioned decomposition
theorem.

To conclude this section, we give a brief outline of the structure of Chapter 2. In
Section 2.1, we record some preliminary definitions and results that are used in
the rest of the chapter. This includes some topology, topological measure theory,
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4 1. GENERAL OVERVIEW AND PRELIMINARIES

and a brief section on measurable cardinals. In Section 2.2, we define the cate-
gories of vector lattices which from the setting of Chapter 2 and record a number
of results on the properties of various linear operators between vector lattices. Sec-
tions 2.3 and 2.4 contain our treatment of direct and inverse limits of vector lattices.
The structure of these two sections are the same: After stating the definitions of
direct and inverse limits and noting that these constructions are essentially unique
in some sense, we give some results on the existence of direct and inverse limits in
our categories of vector lattices. In Section 2.4, we supplement the work of Filter
by showing that certain properties of vector lattices have permanence under the
construction of inverse limits, similar to what was done in [37] for direct limits. We
conclude both sections with a few natural examples of objects that may be regarded
as direct or inverse limits of vector lattices. While the examples are illustrative of
the ideas involved, some of these examples will be instrumental for applications to
follow. Section 2.5 contains a number of duality results: We will show that the order
(continuous) dual of a direct limit of vector lattices (in some category of vector lat-
tices) is an inverse limit of order (continuous) duals (in a related category of vector
lattices). Similarly, but under more strict conditions, the order (continuous) dual
of an inverse limit of vector lattices is a direct limit of order (continuous) duals.
The results we have for order (continuous) duals of direct limits of vector lattices
are fairly general while the results for order (continuous) duals of inverse limits re-
quire stronger assumptions. The impediment to more general results in the latter
case will be identified. The rest of the chapter contains various applications of the
preceding theory: Section 2.6 shows how the duality results from Section 2.5 can be
applied to examples in Sections 2.3 and 2.4 to obtain order (continuous) duals of
some function spaces. Section 2.7 contains results on the permanence of the vector
lattice property of perfectness under the construction of direct and inverse limits
along with a decomposition theorem for perfect vector lattices. Section 2.8 contains
results on the permanence of the order dual space property under inverse limits.
In Section 2.9, we record the decomposition result for C(X) spaces that are order
dual spaces. In particular, we use the decomposition result in Section 2.7 to show
that C(X) can be decomposed as the inverse limit of carriers of its order continuous
functionals. Finally, in Section 2.10, we use the theory of direct and inverse lim-
its of vector lattices to concretely characterise the class of Archimedean relatively
uniformly complete vector lattices and their order duals.
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1.1. GENERAL OVERVIEW AND MOTIVATION 5

1.1.2. Free objects. The notion of a free object is ubiquitous in the fields of
category theory and algebra. In order to facilitate the exposition on free objects to
follow, we state the general definition of a free object6 upfront.

Definition 1.1.4. Let C1 be a category and let C2 be a subcategory of C1. Fix
O1 ∈C1 and consider an object FC2

C1
(O1) in C2 and a morphism j ∶ O1 → FC2

C1
(O1) in

C1. The pair (FC2

C1
(O1) , j) is called a free object over O1 of C2 if it has the property

that for every O2 ∈C2 and every morphism ϕ ∶ O1 → O2 in C1, there exists a unique
morphism ϕ̄ ∶ FC2

C1
(O1) → O2 in C2 such that the following diagram commutes in

C1.

O1 FC2

C1
(O1)

O2

ϕ

j

ϕ̄

Indeed, one may consider any vector space as a free object over its basis: Let V be
a vector space over a field K with basis B and denote by j ∶ B → V the inclusion
map. Then for any vector space W over K and any set map ϕ ∶ B →W there exists
a unique linear map ϕ̄ ∶ V →W such that the following diagram commutes.

B V

W

ϕ

j

ϕ̄

We say that the linear map ϕ̄ is the unique factoring morphism through the pair
(V, j), which is called a free vector space over B. Conversely, given any non-empty
set S we can construct a vector space VS and a map j ∶ S → VS satisfying the
necessary universal property: Let VS denote the collection of functions f ∶ S → K
where the set {s ∈ S ∶ f(s) ≠ 0} is finite. Define the addition and scalar multiplication
operations on VS by setting

(f + g) (s) ∶= f(s) + g(s), (αf) (s) ∶= αf(s) (f, g ∈ VS, α ∈ K) .
Further, for every s ∈ S define eS ∈ VS where

es(t) ∶= {1 if t = s,
0 if t ≠ s.

Define j ∶ S → VS where j(s) ∶= es for s ∈ S. It is clear that {es ∶ s ∈ S} is a basis
for VS and that for every vector space W and every set map ϕ ∶ S → W there
exists a unique linear map ϕ̄ ∶ VS → W such that ϕ̄ ○ j = ϕ. Thus the pair (VS, j)
may be called a solution to a free object problem between the category of sets (with
functions as morphisms) and the category of vector spaces over K (with linear maps
as morphisms) for the set S.

6See Section 1.2 for clarification of the categorical terminology used in the following definition.
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6 1. GENERAL OVERVIEW AND PRELIMINARIES

Similarly, the set K [S] of polynomials with indeterminates {Xs ∶ s ∈ S} equipped
with the standard operations along with the map j ∶ S → K [S] where j(s) ∶= Xs

is a free (unital) commutative associative algebra over the set S. Thus for every
(unital) commutative associative algebra R over K and every set map ϕ ∶ S → R
there exists a unique (unital) algebra homomorphism ϕ̄ ∶ K [S] → R such that the
following diagram commutes.

S K [S]

R

ϕ

j

ϕ̄

In addition, if S is a singleton {X}, it is clear that (K [X] , j) is a free (unital) asso-
ciative algebra over the singleton {X}. That is to say, (K [X] , j) satisfies the above
universal property for both commutative and non-commutative (unital) algebras R.

It can also be shown that a free vector lattice over a set S exists: For every s ∈ S,
define ds ∶ RS → R where ds(f) ∶= f(s) for f ∈ RS. Denote by FVL(S) the vector
sublattice of RRS generated by {ds ∶ s ∈ S} and define j ∶ S → FVL(S) where
j(s) ∶= ds. The pair (FVL(S), j) is then a free vector lattice over S. Results on
free vector lattices are found in [13] and [18]. More examples of free objects in the
context of algebra can be found in [2, Examples 8.23, p. 135]. In fact, using the
language of universal algebra, one can show that for any abstract algebraic structure
(i.e. a set equipped with operations satisfying certain identities) there exists a free
object of this abstract algebraic type over any non-empty set (see Theorem 3.2.19).

In contrast with this rather complete picture of free objects we have in the context
of algebra, the picture appears to be more sparse in the context of analysis. One
positive result we have is the following.

Proposition 1.1.5. For every n ∈ N, let Sn ∶= {s1, s2, . . . , sn} be a set. Consider the
n-dimensional Banach space (Rn, ∥●∥1) along with the map j ∶ S → Rn sending the
ith element of Sn to the ith basis vector of Rn. Then ((Rn, ∥●∥1) , j) is a free Banach
space over Sn.

However, this result does not hold when we consider infinite sets.

Proposition 1.1.6. Given any infinite set S, there is no free Banach space over S.

Proof. Suppose for the sake of a contradiction that there exists a free Banach
space (X, j) over an infinite set S. Let SN ∶= {s1, s2, . . .} be a denumerable subset
of S. We show that the sequence (j(sn)) is unbounded in X: Consider the Banach
space R and the map ψ ∶ S → R where ψ(sn) ∶= n for sn ∈ SN and ψ(s) = 0 for
s ∈ S SN. There exists a unique bounded linear map ψ̄ ∶ X → R such that for all
n ∈ N,

n = ∣ψ(sn)∣ = ∣ψ̄ (j(sn))∣ ≤ ∥ψ̄∥ ∥j(sn)∥ .
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1.1. GENERAL OVERVIEW AND MOTIVATION 7

If we assumed that there exists N ∈ N uniformly bounding the norms of the sequence
(j(sn)), this would contradict the Archimedean property of N. Thus we may choose
a sequence of indices (nk) in N such that j(snk) ≠ 0 for all k ∈ N and ∥j(snk+1)∥ ≥
k ∥j(snk)∥ for all k ∈ N. Denote by S0 the subset of SN indexed by the sequence
(nk).
Now, define the map ϕ ∶ S → X where ϕ(snk) ∶= j (snk+1) for k ∈ N and ϕ(s) = 0 for
s ∈ S S0. Then there exists a unique bounded linear map ϕ̄ ∶X →X such that the
following diagram commutes.

S X

X

ϕ

j

ϕ̄

Thus for every k ∈ N, we have

∥ϕ̄∥ ∥j(snk)∥ ≥ ∥ϕ̄(j(snk))∥ = ∥ϕ(snk)∥ = ∥j(snk+1)∥ ≥ k ∥j(snk)∥
which implies that ∥ϕ̄∥ ≥ k for all k ∈ N, which is impossible. �

The picture breaks down even further if consider Banach algebras. The following
result is found in [27, Examples 1(7)]. We reproduce a short proof here since it is
so striking.

Proposition 1.1.7. Given any non-empty set S, there is no free Banach algebra
over S.

Proof. Suppose for the sake of a contradiction that there exists a free Banach
algebra (A, j) over a non-empty set S. Fix a point s0 ∈ S and for every x ∈ K {0},
define the map ϕx ∶ S → K where ϕx(s0) = x and ϕ(s) = 0 for s ∈ S {s0}. Thus, for
every x ∈ K {0}, there exists a unique bounded algebra homomorphism ϕ̄x ∶ A→ K
such that the following diagram commutes.

S A

K

ϕx

j

ϕ̄x

Then for every n ∈ N,

∣x∣n = ∥[ϕx(s0)]n∥
= ∥[ϕ̄x(j(s0))]n∥
= ∥ϕ̄x ([j(s0)]n)∥
≤ ∥ϕ̄x∥ ∥[j(s0)]n∥
≤ ∥ϕ̄x∥ ∥j(s0)∥n .
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8 1. GENERAL OVERVIEW AND PRELIMINARIES

Thus (∣x∣ / ∥j(s0)∥)n ≤ ∥ϕ̄x∥ for all n ∈ N which implies that ∣x∣ ≤ ∥j(s0)∥ for all
x ∈ K {0}, which is impossible. �

It is readily seen that the proofs of Propositions 1.1.6 and 1.1.7 respectively show
that there is no free normed space over an infinite set and no free normed algebra
over any non-empty set. Indeed, if we consider Proposition 1.1.6, the result will
also hold if we consider any subcategory C of the category of normed spaces with
bounded linear maps as morphisms where R ∈ C. A similar statement is also true
for Proposition 1.1.7.

It is important to note that the non-existence of free objects proven in Proposi-
tions 1.1.6 and 1.1.7 is done with respect to the definition of a free object given in
Definition 1.1.4. In light of these results, we make some observations. In Proposi-
tion 1.1.6, we constructed a set map ϕ ∶ S → R that grows too quickly for there to
exist a bounded linear factoring morphism ϕ̄ ∶ X → R. In Proposition 1.1.7 on the
other hand, a contradiction arises since there are essentially too many morphisms
that we are required to factor through the fictional free Banach algebra. One way
to negotiate these problems is to restrict ourselves to a smaller class of morphisms
that are required to factor through a free object. For example, the contradictions
arrived at in Propositions 1.1.6 and 1.1.7 will not occur if we only consider mor-
phisms ϕ ∶ S → Y such that ∥ϕ(s)∥ ≤M for all s ∈ S for some fixed M > 0. Results
of this sort already exist in the literature: Let S be a non-empty, possibly infinite
set and consider

`1(S) ∶= {f ∈ RS ∶ ∑
s∈S

∣f(s)∣ < ∞}

along with the map j ∶ S → `1(S) where j(s) ∶= es and es denotes the indicator
function of {s} as defined above for the free vector space over a set. Then for every
Banach space Y and every set map ϕ ∶ S → Y with ∥ϕ(s)∥ ≤ 1 for all s ∈ S there
exists a unique bounded linear map ϕ̄ ∶ `1(S) → Y such that ϕ̄ ○ j = ϕ. The pair
(`1(S), j) is often called the free Banach space over S in the literature. This idea is
generalised in [41] where the author introduces the notion of a ‘normed set’ (S, η)
where S is a set equipped with a ‘sizing function’ η ∶ S → [0,∞) serving the role
of a norm. It is then shown that the free Banach space over a normed set (S, η)
is the `1-space weighted by the sizing function η. The rest of [41] deals with the
(non-)existence of free normed structures over these normed sets. Further, it was
shown in [29] that for any non-empty set S, there exists a Banach lattice FBL(S)
and a map j ∶ S → FBL(S) with the property that for every Banach lattice B
and every set map ϕ ∶ S → B with ∥ϕ(s)∥ ≤ 1 for all s ∈ S there exists a unique
bounded vector lattice homomorphism ϕ̄ ∶ FBL(S) → B such that ϕ̄ ○ j = ϕ. The
pair (FBL(S), j) is called the free Banach lattice over S in [29]. Given the discrep-
ancy between the universal properties of the pairs (`1(S), j) and (FBL(S), j) and
Definition 1.1.4, we will introduce alternative terminology for these kind of objects,
which we describe shortly.

In recent years, the notion of a free Banach lattice over various different structures
has become a very active area of research. The free Banach lattice over a Banach
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1.1. GENERAL OVERVIEW AND MOTIVATION 9

space is defined in [8] and [64], and the free Banach lattice over a lattice is defined
in [10]. Properties of these free Banach lattices are studied in [7], [9], [11], and [46].

It is encouraging to see that a lot more can be said about free objects in categories
of normed structures once one has accepted the compromise of only considering
bounded morphisms. At least, this seems like a compromise when considering the
definition of a free object given in Definition 1.1.4. If we instead consider the more
general categorical definition of a free object given in [2, Definition 8.22], it turns
out that the pairs (`1(S), j) and (FBL(S), j) defined above are in fact free objects.

Definition 1.1.8. Let C1 and C2 be categories with F ∶C2 →C1 a faithful functor.7

Fix O1 ∈ C1 and consider an object A in C2 and a morphism j ∶ O1 → F (A) in C1.
The pair (A, j) is called a free object over O1 of the functor F if for every B ∈ C2

and every morphism ϕ ∶ O1 → F (B) in C1 there exists a unique morphism ϕ̄ ∶ A→ B
such that the following diagram commutes in C1.

O1 F (A)

F (B)

ϕ

j

F (ϕ̄)

We note that Definition 1.1.4 is a special case of Definition 1.1.8 since Definition 1.1.4
implicitly makes use of the inclusion functor I ∶C2 →C1 where C2 ⊆C1. From the
point of view of Definition 1.1.8, the pair (`1(S), j) is a free object if we consider
the so-called ‘unit ball functor ’ O ∶ Ban → Set which sends every Banach space X
to the underlying set of its closed unit ball BX , see [2, Examples 8.23 (12)]. The
same is true of the pair (FBL(S), j) from [29] if we consider the associated unit ball
functor O ∶ BL→ Set.

We will make no further use of the definition of a free object given in Definition 1.1.8
and only use the simpler version of the definition of a free object given in Defini-
tion 1.1.4. Instead, we will consider the free Banach space (`1(S), j) over a set S and
the free Banach lattice over a set in [29] as particular examples of pseudo-solutions
of free object problems. The term ‘pseudo’ is used to denote that a pair (P, j) is
not a free object in the full sense of Definition 1.1.4, but where some constraint has
been imposed on the morphisms we require to factor through (P, j). One partic-
ular pseudo-solution we will find is the following: Let S be an arbitrary set and
M ∶ S → R any non-negative function. We will construct a positive unital Banach
lattice algebra P (S,M) (see Section 3.1.2) along with a map j ∶ S → P (S,M) such
that for every positive unital Banach lattice algebra B and every map ϕ ∶ S → B
such that ∥ϕ(s)∥ ≤M(s) for all s ∈ S, there exists a unique bounded unital vector
lattice algebra homomorphism ϕ̄ ∶ P (S,M) → B such that the following diagram

7Given categories X and Y, a functor F ∶ X → Y is faithful if for every A,B ∈ X, the induced function

FA,B ∶ HomX(A,B) → HomY(F (A), F (B)) mapping a morphism f ∶ A→ B to F (f) ∶ F (A) → F (B) is injective.
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10 1. GENERAL OVERVIEW AND PRELIMINARIES

commutes.

S P(S,M)

B

ϕ

j

ϕ̄

The existence of this pseudo-solution will be proven in detail in Theorem 3.3.6.
These pseudo-solutions are similar to the idea of the free Banach space over a normed
set in [41], although they will not be introduced in an attempt to reconcile the
necessity of bounds in this context with the definition of a free object as was done
in [41]. Instead, these pseudo-solutions will be put to a different use in Chapter 3,
which we describe shortly.

In contrast to this approach of constraining the morphisms required to factor through
a free object, another way to negotiate the problem of free objects in categories of
normed structures is to enlarge the category in which a free object is required to re-
side from a category of normed structures to a category of locally convex structures.
This may not immediately seem like useful compromise: If we borrow the notation in
Definition 1.1.4 for a moment, in this larger category there would be more candidate
objects and morphisms among which we can find a pair (F, j) satisfying the neces-
sary universal property, however, there will also be more O2 objects and thus more
ϕ ∶ O1 → O2 morphisms that need to factor through (F, j). Nevertheless, this does
turn out to be a viable strategy. We may call the pseudo-solutions approach and
the enlargement of solution-category approach the two alternatives to the problem
of free objects in categories of normed structures.

Indeed, it is not difficult to show that there exists a free (complete) locally convex
space over an arbitrary set S: Fix any set S and consider the free vector space
(VS, j) over S. Take the class of morphisms ϕ ∶ S →W where W is any (complete)
locally convex space and consider the associated class of unique factoring linear maps
ϕ̄ ∶ VS →W . We endow VS with the initial topology τ generated by these factoring
morphisms ϕ̄ ranging over all (complete) locally convex spaces W . The details
in [60, p. 51] show that (VS, τ) is a (Hausdorff) locally convex space and by the
definition of the initial topology this makes ((VS, τ), j) into the free locally convex
space over S and by taking a completion of (VS, τ) we obtain the free complete
locally convex space over S.

It seems reasonable to expect that the above approach of starting with the ab-
stract existence of an algebraic free object as a foundation and then adding an
initial topology should also work for the proof of existence of free objects in other
categories of locally convex structures (see for example Table 4 in Section 3.1.3).
However, the above proof and its modification to other categories would not yield
much more information other than the existence of these free objects. In the se-
quel, we will construct free objects in certain categories of (complete) locally convex
structures as inverse limits of (complete) normed structures. It is known in general
that the complete locally convex spaces are precisely the inverse limits of Banach

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



1.1. GENERAL OVERVIEW AND MOTIVATION 11

spaces [60, Chapter II, Theorem 5.4] and that the complete locally m-convex alge-
bras (defined in Section 3.1.3) are precisely the inverse limits of Banach algebras
[14, Theorem 4.5.3]. However, our approach will show which normed structures
can be used in the construction of these free locally convex structures via inverse
limits. These will turn out to be nothing else but these pseudo-solutions alluded
to above. As a result, the inverse limit construction we detail in Chapter 3 will
allow us to transmute one alternative to the problem of free objects in categories of
normed structures (restriction to the bounded morphisms) into the other alternative
(enlargement of the solution category).

Beyond their application to the construction of free objects in categories of locally
convex structures, the significant number of pseudo-solutions we will obtain are
also interesting in their own right since they expand the picture of the existing
literature we mentioned above. In particular, the existence of pseudo-solutions in
categories of Banach lattice algebras allows us to give some partial answers to both
Problems 13 and 15 in [67] in Section 3.3.

We now give a brief overview of the structure of Chapter 3. In Section 3.1, we record
notation, terminology, and some preliminary results used in the rest of the chapter.
For the sake of keeping the chapter self-contained we will repeat the definition of a
free object in Section 3.1.4 before we discuss why free objects are essentially unique,
when they exist. Section 3.2 gives an account of results from universal algebra that
are used to prove the existence of free objects in categories of algebraic structures.
In Section 3.3, we define the notion of a pseudo-solution of a free object problem
and give a uniform approach for the construction of various pseudo-solutions. In
Section 3.4, we use the approach developed in Section 3.3 to concretely describe
the pseudo-solution of free object problems between the categories Ban (Banach
spaces with bounded linear maps as morphisms) and Set (sets with functions as
morphisms) as well as the pseudo-solution of a free object problem between the cat-
egories BA1 (unital Banach algebras with bounded unital algebra homomorphisms
as morphisms) and Set. In Section 3.5, we prove general categorical results which
we will use as our tools to transmute our inverse systems of pseudo-solutions into
free objects in categories of locally convex structures. In order to apply these tools,
we need to show that certain categories of locally convex structures are in fact cate-
gories of inverse limits of normed structures; this is done in Section 3.6. Armed with
the pseudo-solutions found in Section 3.3, the tools developed in Section 3.5, and
a characterisation of certain categories of locally convex structures in Section 3.6,
we will be able to prove the existence of free objects in categories of locally con-
vex structures in Section 3.7. Lastly, using the concrete pseudo-solutions found in
Section 3.4 and the general approach outlined in Section 3.7, we will give concrete
descriptions of the free complete unital locally m-convex algebra over a point in
Section 3.8 as well as the free (complete) locally convex space over a arbitrary set
in Section 3.9.

This concludes our motivation of the problems we will consider in this study. The
remaining sections in this chapter record some terminology and notation used in the
rest of the document. Readers who are acquainted with both category theory and
vector lattices may happily skip these sections.
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12 1. GENERAL OVERVIEW AND PRELIMINARIES

1.2. Category theory

As outlined in the previous section, this study will make extensive use of some
themes from category theory. However, we note upfront that the conceptual so-
phistication of the category theory we use will be fairly modest throughout. With
a few exceptions in Chapter 3, notably Section 3.5, category theory will mostly be
harnessed as a natural organisational tool for our work.

Given how extensive our use of the notions of categories and subcategories are, we
record these definitions here for the sake of completeness.

Definition 1.2.1. A category C consists of a pair of classes (ObjC,HomC) where
the elements in ObjC and HomC are called C-objects and C-morphisms respectively.
These classes satisfy the following statements.

(i) Domains and co-domains: For every C-morphism f , there are two unique
C-objects called the domain and co-domain of f . We denote these as d(f)
and c(f) respectively. If g is a C-morphism with A,B ∈ ObjC such that
d(g) = A and c(f) = B, then we encode this information by using the
function notation g ∶ A→ B.

(ii) Composition of morphisms: For C-morphisms f ∶ A → B and g ∶ B → C,
there exists a C-morphism h ∶ A → C which we call the composition of f
and g and denote by g ○ f ∶= h.

(iii) Identity morphisms: For each C-object A, there exists an identity morphism
1A ∶ A→ A in C.

(iv) Associativity of composition: Let f ∶ A → B, g ∶ B → C, and h ∶ C → D be
C-morphisms. The composition of morphisms is associative, i.e.

h ○ (g ○ f) = (h ○ g) ○ f.

(v) Composition with identity: For each C-morphism f ∶ A→ B, we have that

f ○ 1A = f = 1B ○ f.

Definition 1.2.2 (Subcategories). Consider a category C ∶= (ObjC,HomC). Then
a pair of subclasses ObjD ⊆ ObjC and HomD ⊆ HomC forms a subcategory D ∶ =
(ObjD,HomD) of C if the following conditions are satisfied:

(i) For every A ∈ ObjD, the identity morphism 1A is in HomD.

(ii) If f ∶ A→ B is in HomD, then A and B are in ObjD.

(iii) If f ∶ A→ B and g ∶ B → C are in HomD, then the composition g ○f ∶ A→ C
is also in HomD.

We denote the fact that D is a subcategory of C by writing D ⊆ C. Occasionally,
we will call the category C the larger or weaker category when compared with D.

The function notation f ∶ d(f) → c(f) for morphisms used above is standard in
category theory. This is due to its evident utility, despite the fact that objects
and morphisms in arbitrary categories need not be sets or functions between sets.
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1.2. CATEGORY THEORY 13

However, all categories we consider in the sequel will be subcategories of Set, thus
the morphisms we consider will indeed be functions between sets.

Even though a category consists of both objects and morphisms, we will occasionally
commit an abuse of notation by using the shorthand X ∈ C when a structure X is
an object in a category C. For morphisms, we will always write that f ∶ A → B
is a morphism in C or say that f ∶ A → B is a C-morphism. Further, if C is a
category and X,Y ∈ C, we denote by HomC(X,Y ) the collection of all morphisms
f ∶ X → Y in C. A morphism f ∶ A → B in C is called a C-isomorphism if there
exists a morphism g ∶ B → A such that g ○ f = 1A and f ○ g = 1B. If f ∶ A → B is an
C-isomorphism then the objects A and B are isomorphic in C.

The following basic definition is, despite its simplicity, a fundamental example of a
universal property.

Definition 1.2.3 (Initial objects and terminal objects). Let C be any category. An
object I ∈C is called an initial object if for any object C ∈C, there exists a unique
morphism f ∶ I → C. Similarly, an object T ∈C is called a terminal object if for any
object C ∈C, there exists a unique morphism g ∶ C → T .

The following result states that initial and terminal objects are ‘essentially unique’
with respect their universal property, when they exist. A proof is found in [2,
Chapter II, Proposition 7.3]

Proposition 1.2.4. Initial objects are unique up to a unique isomorphism and
all objects isomorphic to an initial object are themselves initial objects. Dually,
terminal objects are unique up to a unique isomorphism and all objects isomorphic
to a terminal object are themselves terminal objects.

This last result shows that we get a lot of information for free when a particular
object is identified as an initial or terminal object in some category. In the relevant
sections, we will note how the universal property of direct limits, inverse limits,
and free objects make these categorical objects into initial or terminal objects in
some derived category. We briefly motivate this concept of a derived category: If C
is any category, then a derived category C′ is any category where the objects and
morphisms in C′ are built up from objects and morphisms in C. For example, fix
an object X in C and construct the category C′ in the following way:

(i) Objects in C′: Pairs (A,f) where A ∈C and f ∶ A→X is a morphism in C.

(ii) Morphisms in C′: A morphism between objects (A,f) and (B,g) in C′ is
a morphism φ ∶ A→ B such that the following diagram commutes.

A

X

B

φ

f

g
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14 1. GENERAL OVERVIEW AND PRELIMINARIES

It is easily verified from Definition 1.2.1 that C′ is indeed a category.

These few definitions and pieces of terminology from category theory will be suffi-
cient for the moment. We will introduce the central categorical concepts of direct
limits, inverse limits, and free objects mentioned above in the chapters where these
are relevant. This is done for the sake of readability and ease of reference.

1.3. Vector lattices

Since the notion of a vector lattice is used in both Chapter 2 and 3, we take the
opportunity here to very briefly recall a few concepts and facts from the theory of
vector lattices. For undeclared terms and notation we refer to the reader to any of
the standard texts in the field, for instance [4], [6], [53], and [70].

We will only consider real vector lattices in this document. Let E be a vector lattice.
For u ∈ E, the elements u+ ∶= u ∨ 0, u− ∶= (−u) ∨ 0, and ∣u∣ ∶= u ∨ (−u) are called the
positive part, negative part, and absolute value of u, respectively. Vectors u, v ∈ E are
disjoint if ∣u∣ ∧ ∣v∣ = 0. For subsets A,B ⊆ E, denote A ∨B ∶= {u ∨ v ∶ u ∈ A, v ∈ B}.
The sets A ∧ B, A+, A− and ∣A∣ are defined similarly. In particular, the set E+ is
called the positive cone of E. The set Ad ∶= {u ∈ E ∶ ∣u∣∧∣v∣ = 0 for all v ∈ A} is called
the disjoint complement of A. For u, v ∈ E, the collection [u, v] ∶= {x ∈ E ∶ u ≤ x ≤ v}
is an order interval and subsets of order intervals are order bounded. We write A ↓ u
if A is downwards directed and infA = u. Similarly, we write B ↑ u if B is upwards
directed and supB = u.

A vector lattice E is Archimedean if 1
nu ↓ 0 for every u ∈ E+. In both Chap-

ters 2 and 3 we do not assume that vector lattices are Archimedean unless this is
stated explicitly.

Given u ∈ E+, a sequence (vn) in E converges u-uniformly to v ∈ E if for every ε > 0
there exists Nε ∈ N such that if n ≥ Nε then ∣vn − v∣ ≤ εu. Further, the sequence (vn)
is u-uniformly Cauchy if for every ε > 0 there exists Mε ∈ N such that if n,m ≥Mε

then ∣vn − vm∣ ≤ εu. A vector lattice E is relatively uniformly complete if for every
u ∈ E+ we have that every u-uniformly Cauchy sequence has a u-uniform limit in E.

A subset S ⊆ E is solid in E if for every u ∈ S and v ∈ E, ∣v∣ ≤ ∣u∣ implies that
v ∈ S. A linear subspace A of E is a vector sublattice if for every u, v ∈ E we have
that u ∨ v ∈ A and u ∧ v ∈ A. Solid linear subspaces are order ideals. Further, an
order ideal B is a band if B has the following property: If D ⊆ B such that supD
exists in E, then supD ∈ B. Given a subset A ⊆ E, the order ideal generated by A
is the smallest order ideal in E containing A, which we denote as EA. The band
generated by A is defined similarly and is denoted by BA. In particular, if A = {u}
for some u ∈ E, we write Eu and Bu to denote the ideal and band generated by {u},
respectively. These are respectively referred to as the principal order ideal generated
by u and the principal band generated by u. If E is Archimedean and A ⊆ E, then
BA = Add [6, Theorem 1.39].

A band B in E is a projection band if B⊕Bd = E. A vector lattice E has the projec-
tion property if all of the bands in E are projection bands. If the previous statement
only holds for principal bands, then E has the principal projection property. A vec-
tor lattice E is Dedekind complete if every non-empty subset of E which is bounded
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1.3. VECTOR LATTICES 15

above (resp. bounded below) in E has a supremum (resp. infimum) in E. If the
previous statement only holds for sequences (un) in E which are bounded above
(resp. bounded below), then E is called σ-Dedekind complete. Further, a vector
lattice E is laterally complete if every non-empty subset of pairwise disjoint vectors
has a supremum [6, p. 106]. Lastly, a vector lattice E is universally complete if E
is both Dedekind complete and laterally complete. Using the obvious abbreviations
for the vector lattice properties defined thus far, we have the following implications
for any vector lattice E, see [53, Theorems 25.1,42.8].

σ −DC

UC DC σ −DC +PP PPP Arch

PP

Let E and F be vector lattices and T ∶ E → F be a linear operator. Recall that T is
positive if T [E+] ⊆ F +, and regular if T is the difference of two positive operators.
T is order bounded if T maps order bounded sets in E to order bounded sets in F .
It is an important result that when F is Dedekind complete, T is order bounded
precisely when T is regular [71, Theorem 20.2]. Further, T is order continuous if
inf ∣T [A]∣ = 0 whenever A ↓ 0 in E. Every order continuous operator is necessarily
order bounded [6, Theorem 1.54]. Denote by E∼ the collection of order bounded
linear functionals φ ∶ E → R and denote by E∼

n the collection of order continuous
linear functionals. We refer to E∼ and E∼

n respectively as the order dual and the
order continuous dual of E. For any vector lattice E, it is known that E∼

n is a band
in E∼ [71, Theorem 22.2]. If A ⊆ E and B ⊆ E∼ we define the annihilator of A and
the pre-annihilator of B as the sets

A○ ∶= {ϕ ∈ E∼ ∶ ϕ(u) = 0, u ∈ A}, ○B ∶= {u ∈ E ∶ ϕ(u) = 0, ϕ ∈ B}
respectively. For ϕ ∈ E∼, the null ideal (or absolute kernel) of ϕ is

Nϕ ∶= {u ∈ E ∶ ∣ϕ∣(∣u∣) = 0}.
The carrier of ϕ is Cϕ ∶= Nd

ϕ. The null ideal Nϕ of ϕ is an order ideal in E and its
carrier Cϕ is a band; if ϕ is order continuous then Nϕ is also a band in E, see for
instance [70, §90].

A linear operator T ∶ E → F between vector lattices is a lattice homomorphism if it
preserves suprema and infima of finite sets, and a normal lattice homomorphism if it
preserves suprema and infima of arbitrary sets. Equivalently, T is a normal lattice
homomorphism if and only if T is an order continuous lattice homomorphism, see
[53, p. 103]. Further, T is a lattice isomorphism if it is bijective lattice homomor-
phism; equivalently, if it is bijective and bipositive (i.e. both T and T −1 are positive
operators) [71, Theorem 19.3]. Lastly, we say that T is interval preserving if for all
u ∈ E+, we have T [[0, u]] = [0, T (u)]. An interval preserving map need not be a
lattice homomorphism, nor is a (normal) lattice homomorphism in general interval
preserving, see for instance [6, p. 95]. However, if T is bijective then T is a lattice
homomorphism if and only if T is interval preserving, if and only if T is bipositive.
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16 1. GENERAL OVERVIEW AND PRELIMINARIES

Lastly, let E be a vector lattice with B an ideal in E∼. For u ∈ E, define ΨB,u ∈ B∼
n

where ΨB,u (ϕ) ∶= ϕ(u) for ϕ ∈ B. The map σ ∶ E → B∼
n where uz→ ΨB,u is a lattice

homomorphism and is injective precisely when ○B = {0}, see [70, p. 404-405]. Given
that B∼

n is a band in B∼, we will occasionally also consider the map σ ∶ E → B∼.
When ○B = {0}, we refer to the map σ ∶ E → B∼

n as a canonical embedding. We will
most often consider the cases where B = E∼ or B = E∼

n . In particular for B = E∼
n , a

vector lattice E is called perfect if σ[E] = (E∼
n)

∼
n.

This concludes our general overview and preliminaries. The next chapter starts with
some additional brief preliminaries specific to Chapter 2.
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CHAPTER 2

Direct and inverse limits of vector lattices

2.1. Preliminaries

2.1.1. Topological preliminaries. Let X and Y be topological spaces and
denote by C(X,Y ) the collection of all continuous functions f ∶ X → Y . In partic-
ular, we write C(X) ∶= C(X,R) where R is given the standard topology. We recall
some topological definitions and results pertaining to the structure of C(X).
Denote by Cb(X) the order ideal of bounded continuous functions in C(X). Both
C(X) and Cb(X) are relatively uniformly complete vector lattices [53, Theorem 43.1].
A topological space X is Hausdorff if for every x, y ∈X with x ≠ y there exists open
sets U and V with x ∈ U and y ∈ V such that U ∩ V = ∅. Further, X is completely
regular if for every every closed set C in X and x /∈ C, there exists f ∈ C(X) such
that f(x) = 1 and f ∣C = 0. Completely regular Hausdorff spaces are called Tychonoff
spaces. The following result shows that there is no loss of generality in only con-
sidering Tychonoff spaces X when studying the vector lattice structure of a C(X)
space.

Theorem 2.1.1 ([39, Theorem 3.9]). For every topological space X there exists a
Tychonoff space Y and a surjective continuous map τ ∶ X → Y such that the map
T ∶ C(Y ) → C(X) where f z→ f ○ τ is a vector lattice isomorphism.

A compactification of a Tychonoff space X is any compact Hausdorff space, say cX,
into which X can be homeomorphically embedded as a dense subset. The Stone-
Čech compactification, which is in some sense the ‘maximal’ compactification of a
Tychonoff space X (see [36, Sections 3.5,3.6]), is characterised by the following
result.

Theorem 2.1.2 (The Stone-Čech compactification). Let X be a Tychonoff space.
There exists a unique (up to a unique homeomorphism) compact Hausdorff space
βX and a homeomorphic embedding β ∶X → βX with β [X] dense in βX such that
for every compact Hausdorff space K and every f ∈ C(X,K) there exists a unique
f̄ ∈ C(βX,K) such that the following diagram commutes.

X βX

K

f

β

f̄

17
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18 2. DIRECT AND INVERSE LIMITS OF VECTOR LATTICES

We call the compact Hausdorff space βX satisfying the above conditions the Stone-
Čech compactification of X.

Since the closure of the range of elements in Cb(X) is bounded, hence compact, in
R, we have the following result.

Corollary 2.1.3. For every Tychonoff space X, the restriction map

R ∶ C(βX) → Cb(X)
is a vector lattice isomorphism.

Recall that a subspace S of a topological space X is C-embedded in X if every con-
tinuous function on S admits a continuous extension to X. Similarly, the subspace
S is C∗-embedded in X if every bounded continuous function on S admits a con-
tinuous bounded extension to X. A Tychonoff space X is realcompact if X cannot
be embedded into a Tychonoff space X̃ as a proper, dense C-embedded subspace
[36, p. 214]. Realcompact spaces are characterised as the closed subspaces of Rm

where m is some cardinal [36, Theorem 3.11.3]. As a result, all Euclidean spaces
Rn are realcompact. Further, X is a compact topological space if and only if X
is realcompact and pseudocompact [36, Theorem 3.11.1]. The realcompactification
υX of a Tychonoff space X is constructed as the largest subspace of βX in which
X is C-embedded [66, § 1.53, p. 30] and satisfies the following universal property.

Theorem 2.1.4 (Universal property of the realcompactification). Let X be a
Tychonoff space. There exists a unique (up to a unique homeomorphism) realcom-
pact space υX and a homeomorphic embedding υ ∶X → υX with υ [X] dense in υX
such that for every realcompact space Y and every f ∈ C(X,Y ) there exists a unique

f̃ ∈ C(υX,Y ) such that the following diagram commutes.

X υX

Y

f

υ

f̃

It is clear that a Tychonoff space X is realcompact if and only if X = υX and it
follows from the construction of the realcompactification that X is pseudocompact
if and only if υX = βX. Further, since R is realcompact, we have the following
result.

Corollary 2.1.5. Let X be a Tychonoff space. The spaces of continuous functions
C(X) and C(υX) are isomorphic as vector lattices.

As a result, in view of Theorem 2.1.1, there is no loss of generality in only considering
realcompact spaces X when studying the vector lattice structure of C(X) spaces.
In fact, realcompact spaces are homeomorphic precisely when the associated spaces
of continuous functions are isomorphic as vector lattices.
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2.1. PRELIMINARIES 19

Theorem 2.1.6 ([42, Theorems 9.1, 9.2]). Realcompact topological spaces X and Y
are homeomorphic if and only if the vector lattices C(X) and C(Y ) are isomorphic.

As discussed in Section 1.1.1, we are interested in the case when the vector lattice
C(X) is an order dual space. Since order dual spaces are necessarily Dedekind
complete, we need to consider what topological properties on X make C(X) into a
Dedekind complete vector lattice.

A topological space X is extremally disconnected if the closure of every open set
is open. An extremally disconnected compact Hausdorff space is called a Stonean
space. This terminology is motivated by the fact that the Stone spaces of Dedekind
complete Boolean algebras are precisely the extremally disconnected compact Haus-
dorff spaces [44, Chapter F-06]. It is well-known that the Stone-Čech compactifica-
tion of a infinite discrete space is extremally disconnected. Extremally disconnected
spaces are also characterised by the fact that the collection of regular open sets1

(resp. regular closed sets) coincide with the collection of clopen sets [28, Defini-
tion 12.11, Exercise 12.F]. Recall that a topology is semi-regular if it has a base of
regular open sets. All regular topological spaces are semi-regular [68, Exercise 14E,
p. 98], and therefore every extremally disconnected Tychonoff space has a base of
clopen sets.

Using [26, Proposition 1.5.9], [26, Theorem 2.3.3], and [53, Theorem 43.2] along
with Corollary 2.1.5, we have the following characterisation of extremally discon-
nected spaces.

Theorem 2.1.7. Let X be a Tychonoff space. The following statements are equiv-
alent.

(i) X is extremally disconnected.

(ii) υX is extremally disconnected.

(iii) βX is Stonean.

(iv) C(X) is Dedekind complete.

(v) Cb(X) is Dedekind complete.

(vi) C(X) has the projection property.

(vii) Cb(X) has the projection property.

2.1.2. Measures on topological spaces. Since the usage of terminology re-
lated to measures on topological spaces is inconsistent across the literature, we
declare our conventions explicitly. Let X be a Hausdorff topological space. For a
function u ∶X → R we denote by Zu the zero set of u and by Zcu its co-zero set, that
is, the complement of Zu. If A ⊆X then 1A denotes the indicator function of A.

Denote by BX the Borel σ-algebra generated by the open sets in X. A (signed)
Borel measure on X is a real-valued and σ-additive function on BX . We denote
the space of all signed Borel measures on X by Mσ(X). This space is a Dedekind

1See [28, Definition 12.8]
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20 2. DIRECT AND INVERSE LIMITS OF VECTOR LATTICES

complete vector lattice with respect to the standard pointwise operations and order
[71, Theorem 27.3]. In particular, for µ, ν ∈ Mσ(X),

(µ ∨ ν)(B) = sup{µ(A) + ν(B A) ∶ A ⊆ B, A ∈BX} , B ∈BX .

For any upward directed set D ⊆ Mσ(X)+ with supD = ν in Mσ(X),
ν(B) = sup{µ(B) ∶ µ ∈D}, B ∈BX .

Following Bogachev [20], we call a Borel measure µ on X a Radon measure if for
every B ∈BX ,

∣µ∣(B) = sup{∣µ∣(K) ∶ K ⊆ B is compact}.
Equivalently, µ is Radon if for every B ∈BX and every ε > 0 there exists a compact
set K ⊆ B so that ∣µ∣(B K) < ε. Observe that if µ is Radon, then also

∣µ∣(B) = inf{∣µ∣(U) ∶ U ⊇ B is open}.
Denote the space of Radon measures on X by M(X). Recall that the support of a
Borel measure µ on X is defined as

Sµ ∶= {x ∈X ∶ ∣µ∣(U) > 0 for all U ∋ x open}.
One may verify the following equality for the support of a Borel measure µ on X.

Sµ = ⋂{C ∈BX ∶ C closed, µ(X C) = 0} .
Thus the support of a Borel measure is always closed. A non-zero Borel measure µ
may have empty support, and even if Sµ is non-empty, Sµ may have measure zero, see
for instance [20, Vol. II, Example 7.1.3]. However, if µ is a nonzero Radon measure,
then Sµ ≠ ∅ and ∣µ∣(Sµ) = ∣µ∣(X); in fact, for every B ∈ BX , ∣µ∣(B) = ∣µ∣(B ∩ Sµ).
We list the following useful properties of the support of a measure; the proofs are
straightforward and therefore omitted.

Proposition 2.1.8. Let µ and ν be Radon measures on X. The following state-
ments are true.

(i) If ∣µ∣ ≤ ∣ν∣ then Sµ ⊆ Sν.

(ii) Sµ+ν ⊆ S∣µ∣+∣ν∣

(iii) S∣µ∣+∣ν∣ = Sµ ∪ Sν.

A Radon measure µ is called compactly supported if Sµ is compact. We denote the
space of all compactly supported Radon measures on X as Mc(X). Further, a Radon
measure µ on X is called a normal measure if ∣µ∣(L) = 0 for all closed nowhere dense
sets L in X. The space of all normal Radon measures on X is denoted N(X), and
the space of compactly supported normal Radon measures by Nc(X).

Theorem 2.1.9. The following statements are true.

(i) M(X) is a band in Mσ(X)
(ii) Mc(X) is an order ideal in M(X).

(iii) N(X) is a band in M(X).

(iv) Nc(X) is a band in Mc(X).
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2.1. PRELIMINARIES 21

Proof. For the proof of (i), let µ, ν ∈ M(X). Consider a Borel set B and a
real number ε > 0. There exists a compact set K ⊆ B so that ∣µ∣(B K) < ε/2 and
∣ν∣(B K) < ε/2. We have ∣µ + ν∣(B K) ≤ ∣µ∣(B K) + ∣ν∣(B K) < ε. Therefore
µ + ν ∈ M(X). A similar argument shows that aµ ∈ M(X) for all a ∈ R. A similar
argument also shows that for all ν ∈ Mσ(X) and µ ∈ M(X), if ∣ν∣ ≤ ∣µ∣ then ν ∈ M(X).
By definition of a Radon measure, ∣µ∣ ∈ M(X) whenever µ ∈ M(X). Therefore M(X)
is an order ideal in Mσ(X).
To see that M(X) is a band in Mσ(X), consider an upward directed subset D
of M(X)+ so that supD = ν in Mσ(X). Fix a Borel set B and a real number
ε > 0. There exists µ ∈ D so that ν(B) − ε/2 < µ(B). But µ is a Radon measure,
so there exists a compact subset K of B so that µ(K) > µ(B) − ε/2. Therefore
ν(K) ≥ µ(K) > µ(B) − ε/2 > ν(B) − ε. Therefore ν ∈ M(X) so that M(X) is a band
in Mσ(X).
The statement in (ii) follows immediately from the definition of the support of a
measure and Proposition 2.1.8. It is clear that N(X) is an order ideal in M(X), and
that it is a band follows from the expression for suprema in Mσ(X). Hence (iii) is
true. The fact that (iv) is true follows immediately from (iii). �

The results in this subsection and the previous subsection are supplemented by the
results in Appendix A.1. We state the main results of Appendix A.1 here since they
are used in the following two subsections.

Theorem 2.1.10. Let X be a realcompact space. There is a lattice isomorphism
Ψ ∶ C(X)∼ →Mc(X) where φz→ νφ so that for every φ ∈ C(X)∼,

φ(f) = ∫
Sνφ

f dνφ, f ∈ C(X).

Theorem 2.1.11. Let X be a realcompact space. Consider the lattice isomorphism
Ψ ∶ C(X)∼ →Mc(X) where φ z→ νφ defined in Theorem 2.1.10. Then Ψ [C(X)∼n] =
Nc(X).

2.1.3. Hyper-Stonean spaces. Recall that a compact Hausdorff space K is
hyper-Stonean if K is Stonean and the union of supports of normal measures on K
is dense in K. The following result shows that the definition of a hyper-Stonean
space can be expressed purely in the language of vector lattices.

Proposition 2.1.12. Let X be a realcompact space. The union of supports of
measures in Nc (X) is dense in X if and only if C(X)∼n separates C(X).

Proof. First, denote by S the union of supports of elements in Nc (X) and
assume that S is dense in X. Take 0 ≠ f ∈ C (X) and assume without loss of
generality that the open set U ∶= {x ∈ X ∶ f(x) > 0} is non-empty. Since S is dense,
there exists µ ∈ Nc (X)+ such that U ∩ Sµ ≠ ∅. Take any x ∈ U ∩ Sµ, then there
exists an open neighbourhood V of x and ε > 0 such that µ(V ) > 0 and f ∣V > ε.
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22 2. DIRECT AND INVERSE LIMITS OF VECTOR LATTICES

Let φ ∈ C(X)∼n denote the order continuous functional identified with µ ∈ Nc (X)+,
which exists by Theorem 2.1.11. Then φ ≥ 0 and we have

φ(f) = ∫
Sµ
f dµ = ∫

X
f dµ ≥ ∫

V
f dµ > ε ⋅ µ(V ) > 0.

For the reverse implication, we consider the contrapositive statement. Assume that
S not dense in X. Then there exists a non-empty open set U where U ∩ Sµ = ∅ for
every µ ∈ Nc(X). Thus Sµ ⊆X∖U for all µ ∈ Nc (X). Since X is Tychonoff, for every
x ∈ U there exists gx ∈ C(X) such that gx∣X U = 0 and gx(x) = 1. Let φµ ∈ C(X)∼n
denote the order continuous functional identified with µ ∈ Nc(X), which exists by
Theorem 2.1.11. Then for every µ ∈ Nc(X) and every such gx ∈ C(X), we have

φµ(gx) = ∫
Sµ
gx dµ = 0.

Thus C(X)∼n does not separate C(X). �

Corollary 2.1.13. Let K be a compact Hausdorff space. The following statements
are equivalent.

(i) K is hyper-Stonean.

(ii) C(K) is Dedekind complete and C(K)∼n separates C(K).

2.1.4. Measurable cardinals. We will occasionally need to refer to
non-measurable cardinals in some of our results. Let κ be a cardinal. A set function
µ ∶ P(κ) → [0,1] is called κ-additive measure if the following holds.

(i) µ (κ) = 1.

(ii) For all A ⊊ κ, and all collections {Bi ∶ i ∈ A} of pairwise disjoint subsets of
κ, we have

µ(⋃
i∈A
Bi) = ∑

i∈A
µ(Bi).

Such a κ-additive measure µ is non-trivial if µ ({i}) = 0 for all i ∈ κ, and µ is
two-valued if µ(A) ∈ {0,1} for all A ∈ P(κ). An infinite cardinal κ is measurable if
there exists a non-trivial two-valued κ-additive measure on κ, see [35, Chapter 6,
Definition 1.6]. If no such measure exists, then κ is non-measurable. It is known that
all measurable cardinals are strongly inaccessible and, in fact, the non-existence of
a measurable cardinal is consistent with ZFC, see [35, Chapter 6].

The following result is a combination of [39, Theorem 12.2, p.163] and Corol-
lary A.1.9.

Theorem 2.1.14. Let X be a non-empty set equipped with the discrete topology.
The following statements are equivalent.

(i) ∣X ∣ is non-measurable.

(ii) The discrete topology on X is realcompact.
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2.2. OPERATORS ON VECTOR LATTICES 23

(iii) For every φ ∈ C(X)∼, there exists µ ∈ Mc(X) such that

φ(f) = ∫
Sµ
f dµ, f ∈ C(X).

2.2. Operators on vector lattices

In this section, we record a number of results regarding various kinds of linear
operators between vector lattices that we need in the rest of this chapter. Before
we proceed with this, we define the categories that form the setting of this chapter.
It is readily verified that these are indeed categories.

Objects Morphisms
VL Vector lattices Lattice homomorphisms
NVL Vector lattices Normal lattice homomorphisms
IVL Vector lattices Interval preserving lattice homomorphisms
NIVL Vector lattices Normal, interval preserving lattice homomorphisms

Table 1. Table of categories of vector lattices under consideration

We refer to these four categories as categories of vector lattices. Below we depict
the subcategory relationships between these categories.

NVL

VL NIVL

IVL

⊇⊇
⊇ ⊇

The results in this section will give us information on the morphisms in these cate-
gories of vector lattices. Our first result is simple, however, since we could not find
a reference in the literature we include the proof.

Proposition 2.2.1. Let E and F be vector lattices and T ∶ E → F a positive
operator. The following statements are true.

(i) If T is injective and interval preserving, then T is a lattice isomorphism
onto an order ideal in F , hence a normal lattice homomorphism into F .

(ii) If T is a lattice homomorphism and T [E] is an order ideal in F , then T is
interval preserving.

Proof of (i). Assume that T is injective and interval preserving. T [E] is an
order ideal in F by [49, Proposition 14.7]. Therefore, because T is injective, it
suffices to show that T is a lattice homomorphism. To this end, consider u, v ∈ E+.
Then 0 ≤ T (u) ∧ T (v) ≤ T (u) and 0 ≤ T (u) ∧ T (v) ≤ T (v). Since T is interval
preserving and injective there exists w ∈ [0, u] ∩ [0, v] = [0, u ∧ v] so that T (w) =
T (u) ∧ T (v). We have

T (w) ≤ T (u ∧ v) ≤ T (u) and T (w) ≤ T (u ∧ v) ≤ T (v).
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24 2. DIRECT AND INVERSE LIMITS OF VECTOR LATTICES

Hence T (u)∧T (v) = T (w) ≤ T (u∧ v) ≤ T (u)∧T (v) so that T (u∧ v) = T (u)∧T (v).
To see that T is a normal lattice homomorphism, let A ↓ 0 in E. Then T [A] ↓ 0 in
T [E] because T is a lattice isomorphism onto T [E]. But T [E] is an order ideal in
F , so T [A] ↓ 0 in F . �

Proof of (ii). Assume that T is a lattice homomorphism and T [E] is an order
ideal in F . Let 0 ≤ u ∈ E and 0 ≤ v ≤ T (u). Because T [E] is an order ideal in F
there exists w ∈ E so that T (w) = v. Let w′ = (w ∨ 0) ∧ u. Then 0 ≤ w′ ≤ u and
T (w′) = (v ∨ 0) ∧ u = v. �

We list some properties of band projections which will be used frequently in the
sequel.

Proposition 2.2.2. Let E be a vector lattice, A and B projection bands in E, PA
and PB the band projections of E onto A and B, respectively, and IE the identity
operator on E. Assume that A ⊆ B. The following statements are true.

(i) PA is an order continuous lattice homomorphism.

(ii) PA ≤ IE.

(iii) PAPB = PBPA = PA.

(iv) PA is interval preserving.

Proof. For (i), see [53, Theorem 24.6 and Exercise 24.11]. For (ii) and (iii),
see [6, Theorem 1.44] and [6, Theorem 1.46] respectively. Lastly, (iv) follows from
Proposition 2.2.1 (ii), since PA[E] = A is a band, hence an order ideal, in E. �

In the following theorem, we briefly recall some basic facts concerning the order
adjoint of a positive operator T ∶ E → F which we will make extensive use of in the
sequel.

Theorem 2.2.3. Let E and F be vector lattices and T ∶ E → F a positive operator.
Denote by T ∼ ∶ F ∼ → E∼ its order adjoint, ϕ ↦ ϕ ○ T . The following statements are
true.

(i) T ∼ is positive and order continuous.

(ii) If T is order continuous then T ∼[F ∼
n ] ⊆ E∼

n .

(iii) If T is interval preserving then T ∼ is a lattice homomorphism.

(iv) If T is a lattice homomorphism then T ∼ is interval preserving. The converse
is true if ○F ∼ = {0}.

Proof. For (i), the positivity of T ∼ is easily verified and order continuity follows
directly from the proof of [70, Theorem 83.4]. The statement in (ii) follows directly
from the fact that composition of order continuous operators is order continuous.
The statements in (iii) and (iv) are special cases of [6, Theorem 2.16]. We note that
although [6] declares a blanket assumption at the start of the book that all vector
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2.2. OPERATORS ON VECTOR LATTICES 25

lattices under consideration in [6] are Archimedean, the proof of [6, Theorem 2.16]
does not make use of this assumption. �

Proposition 2.2.4. Let E and F be vector lattices and T ∶ E → F a lattice homo-
morphism onto F . The following statements are true.

(i) T ∼[F ∼] = ker(T )○.
(ii) If T is order continuous then T ∼[F ∼

n ] = ker(T )○ ∩E∼
n .

Proof of (i). Let ϕ ∈ F ∼. If u ∈ ker(T ) then T ∼(ϕ)(u) = ϕ(T (u)) = ϕ(0) = 0.
Hence ϕ ∈ ker(T )○. On the other hand, let ψ ∈ ker(T )○. Define ϕ ∶ F → R by setting
ϕ(v) = ψ(u) if v = T (u). Then ϕ ∈ F ∼ and T ∼(ϕ) = ψ. �

Proof of (ii). It follows from (i) and Theorem 2.2.3 (ii) that T ∼[F ∼
n ] ⊆ ker(T )○∩

E∼
n . We show that if T ∼(ϕ) ∈ E∼

n for some ϕ ∈ F ∼ then ϕ ∈ F ∼
n . From this and (i) it

follows that T ∼[F ∼
n ] = ker(T )○ ∩E∼

n . We observe that it suffices to consider positive
ϕ ∈ F ∼. Indeed, T is a surjective lattice homomorphism and therefore also interval
preserving. Hence by Theorem 2.2.3 (iii), T ∼ is a lattice homomorphism.

Suppose that 0 ≤ ϕ ∈ F ∼ and that T ∼(ϕ) ∈ E∼
n . Let A ↓ 0 in F . Define B ∶= T −1[A] ∩

E+. Then B is downward directed and T [B] = A. In particular, ϕ[A] = T ∼(ϕ)[B].
Let C ∶= {w ∈ E ∶ 0 ≤ w ≤ v for all v ∈ B}. If w ∈ C then 0 ≤ T (w) ≤ u for all
u ∈ A so that T (w) = 0. Hence C ⊆ ker(T ). We have B −C ↓ 0 in E. Since T ∼(ϕ) is
order continuous, T ∼(ϕ)[B −C] ↓ 0. That is, for every ε > 0 there exists v ∈ B and
w ∈ C so that ϕ(T (v)) = ϕ(T (v − w)) = T ∼(ϕ)(v − w) < ε. Hence, for every ε > 0
there exists u ∈ A so that ϕ(u) < ε. This shows that ϕ[A] ↓ 0 so that ϕ ∈ F ∼

n as
required. �

2.2.1. Products of vector lattices. Let I be a non-empty set and {Eα}α∈I a
collection of vector lattices. The product ∏

α∈I
Eα is a vector lattice when equipped

with the standard coordinate-wise operations. In the sequel, if the index set of a
product is clear form the context, we will omit it and write ∏Eα. For β ∈ I, let

πβ ∶ ∏Eα → Eβ be the coordinate projection onto Eβ and ιβ ∶ Eβ →∏Eα the right
inverse of πβ where

πα(ιβ(u)) = { u if α = β
0 if α ≠ β.

We denote by ⊕Eα the order ideal in ∏Eα consisting of u ∈ ∏Eα for which

πα(u) ≠ 0 for only finitely many α ∈ I. The following properties of ∏Eα and ⊕Eα
are used frequently in the sequel and so we record them here for ease of reference.

Proposition 2.2.5. Let I be a non-empty set and {Eα}α∈I a collection of vector
lattices with U ⊆∏Eα and u = (uα)α∈I ∈ ∏Eα. The following statements are true.

(i) inf πα [U] = uα in Eα for all α ∈ I if and only if inf U = u in ∏Eα.

(ii) supπα [U] = uα in Eα for all α ∈ I if and only if supU = u in ∏Eα.
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26 2. DIRECT AND INVERSE LIMITS OF VECTOR LATTICES

Proof. We only prove (i) since the proof of (ii) follows similarly. For the forward
implication, consider v ∈ U . Then for every α ∈ I, we have πα(v) ≥ inf πα [U] = uα
in Eα. Thus u is a lower bound of U in ∏Eα. Let l be any lower bound for U in

∏Eα, then πα(l) is a lower bound for πα [U] in Eα which implies that u ≥ l. Thus

inf U = u in ∏Eα.

For the reverse implication, fix α ∈ I. Since u is a lower bound for U , we have that
uα is a lower bound for πα [U] in Eα. Consider any lower bound m of πα [U] in Eα
and define m̃ ∈ ∏Eα where πα (m̃) =m and πβ (m̃) = uβ for β ∈ I {α}. Then m̃ is

a lower bound for U in ∏Eα, which implies that uα ≥m. �

Theorem 2.2.6. Let I be a non-empty set with Eα a vector lattice for every α ∈ I.
The following statements are true.

(i) The coordinate projections πβ and their right inverses ιβ are normal, interval
preserving lattice homomorphisms.

(ii) ∏Eα is Archimedean if and only if Eα is Archimedean for every α ∈ I.

(iii) ∏Eα is Dedekind complete if and only if Eα is Dedekind complete for every
α ∈ I.

(iv) If I has non-measurable cardinal, then the order dual of ∏Eα is ⊕E∼
α.

(v) The order continuous dual of ∏Eα is ⊕
α∈I

(Eα)∼n.

(vi) The order dual of ⊕Eα is ∏E∼
α.

(vii) The order continuous dual of ⊕Eα is ∏(Eα)∼n.

Proof of (i). Fix β ∈ I. The coordinate-wise operations defined on ∏Eα
make it clear that πβ is a lattice homomorphism. Fix x ∈ E+. By positivity, it
follows that πβ [0, x] ⊆ [0, πβ(x)]. For y ∈ [0, πβ(x)], we have ιβ(y) ∈ [0, x] and
y = πβ (ιβ(y)) ∈ πβ [0, x]. Thus πβ is interval preserving. It follows from Propo-
sition 2.2.5 (i) that coordinate projections are order continuous and thus normal
lattice homomorphisms. Similarly, it is easy to verify that ιβ is both a lattice homo-
morphism and interval preserving and the order continuity of ιβ also follows from
Proposition 2.2.5 (i). �

Proof of (ii). This is easily verified from the definition of an Archimedean
vector lattice. �

Proof of (iii). First, assume that Eα is Dedekind complete for every α ∈ I.
Take D ⊆ ∏Eα with d ∈ ∏Eα an upper bound for D. By the positivity of the
coordinate projections, the element πα(d) is an upper bound for πα [D] in Eα and
by Proposition 2.2.5 (ii) it follows that supD = (supπα [D])α∈I .
Next, assume that ∏Eα is Dedekind complete and fix β ∈ I. Consider a collection
G ⊆ Eβ with g ∈ Eβ an upper bound for G. Then ιβ(g) is an upper bound for
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2.2. OPERATORS ON VECTOR LATTICES 27

ιβ [G] in ∏Eα and thus sup ιβ [G] exists in ∏Eα and since πβ is a normal lattice
homomorphism we conclude that supG = πβ (sup ιβ [G]) exists. �

Proof of (iv). Assume that I has non-measurable cardinal. By (i) of this
theorem and Theorem 2.2.3 (iii) and (iv), ι∼β ∶ (∏Eα)

∼ → E∼
β is an interval preserving

normal lattice homomorphism for every β ∈ I. Because each ϕ ∈ (∏Eα)
∼

is linear

and order bounded, the set Iϕ ∶= {β ∈ I ∶ ι∼β(ϕ) ≠ 0} is finite. Define S ∶ (∏Eα)
∼ →

⊕E∼
α by setting

S(ϕ) ∶= (ι∼α(ϕ))α∈I , ϕ ∈ (∏Eα)
∼
.

Then S is a lattice homomorphism. It remains to verify that S is bijective.

We show that S is injective. Let 0 ≠ ϕ ∈ (∏Eα)
∼
. Fix 0 ≤ u ∈ ∏Eα so that

ϕ(u) ≠ 0. For f ∈ RI let fu ∈ ∏Eα be defined by πα(fu) = f(α)πα(u), α ∈ I.
Define ϕ̂ ∶ RI → R by setting

ϕ̂(f) ∶= ϕ(fu), f ∈ RI .

Then ϕ̂ is a non-zero order bounded linear functional on RI . Since I has non-
measurable cardinal, by Theorem 2.1.14, I equipped with the discrete topology
is realcompact and there exists a non-zero finitely supported countably additive
measure µ ∶ P(I) → R such that

ϕ̂(f) = ∫
I
f dµ = ∑

α∈I
f(α)µ(α), f ∈ RI .

Let α be in the support of µ, and let g be the indicator function of {α}. Then
0 ≠ µ(α) = ϕ̂(g) = ϕ(gu) = ι∼α(ϕ)(u). Therefore Sϕ ≠ 0 so that S is injective.

To see that S is surjective, observe that for every β ∈ I, π∼β ∶ E∼
β → (∏Eα)

∼
is

an interval preserving normal lattice homomorphism by (i) of this theorem and
Theorem 2.2.3 (iii) and (iv). Define T ∶ ⊕E∼

α → (∏Eα)
∼

by setting

T (ψ) ∶= ∑π∼α(ψα), ψ = (ψα) ∈ ⊕E∼
α.

Then T is a positive operator. We claim that S ○T is the identity on ⊕E∼
α. Indeed,

for any ψ ∈ ⊕E∼
α we have

S ○ T (ψ) = ∑
α∈I

(ι∼β(π∼α(ψα)))β∈I = ∑
α∈I

(ψα ○ πα ○ ιβ)β∈I .

By definition of the ιβ it follows that S○T (ψ) = ψ which verifies our claim. Therefore
S is a lattice isomorphism. �

Proof of (v). We point out that, unlike the proof of (iv), the following proof
is independent of the cardinality of I. Define S ∶ (∏Eα)

∼ →⊕E∼
α as in the proof

of (iv). By Theorem 2.2.3 (ii), S maps (∏Eα)
∼
n

into ⊕(Eα)∼n. A similar argument

to that given in proof of (iv) shows that S is a surjective lattice homomorphism.
Hence it remains to show that S is injective.

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



28 2. DIRECT AND INVERSE LIMITS OF VECTOR LATTICES

Denote by F(I) the collection of finite subsets of I. Let 0 ≤ ϕ ∈ (∏Eα)
∼
n

and

suppose that S(ϕ) = 0. Then ι∼β(ϕ) = 0 for every β ∈ I. But for any 0 ≤ u ∈ ∏Eα,

u = sup{∑
α∈F

ια(u) ∶ F ∈ F(I)} .

Therefore by the order continuity of ϕ,

ϕ(u) = sup{∑
α∈F

ι∼α(ϕ)(u) ∶ F ∈ F(I)} = 0

for all 0 ≤ u ∈ ∏Eα; hence ϕ = 0. Because S is a lattice homomorphism it follows

that, for all ϕ ∈ (∏Eα)
∼
n
, if S(ϕ) = 0 then ϕ = 0; that is, S is injective. �

Proof of (vi). Define S ∶ (⊕Eα)∼ →∏E∼
α by setting

S (ϕ) ∶= (ι∼α(ϕ))α∈I .

By (i) of this theorem and Theorem 2.2.3 (iii), it follows that the maps ι∼α ∶ (⊕Eα)∼ →
E∼
α are lattice homomorphisms and thus S is a lattice homomorphism. It is then

enough to verify that S is bijective. To show that S is injective, fix ϕ ∈ (⊕Eα)∼
such that Sϕ = 0. Take u ∈ ⊕Eα where u = ∑n

i=1 ιαi (uαi) for {α1, . . . , αn} ∈ F(I).
Then

ϕ(u) = ϕ(
n

∑
i=1

ιαi(uαi)) =
n

∑
i=1

ι⋆αi(ϕ) (uαi) = 0.

Thus ϕ = 0. For ψ = (ψα)α∈I ∈ ∏E∼
α, define ψ0 ∈ (⊕Eα)∼ where

ψ0 (u) ∶=
n

∑
i=1

ψαi (uαi) , u =
n

∑
i=1

ιαi (uαi) ∈ ⊕Eα.

Define T ∶ ∏E∼
α → (⊕Eα)∼ by setting T (ψ) = ψ0 for ψ = (ψα)α∈I ∈ ∏E∼

α. It is
clear that S ○ T (ψ) = ψ and thus S is surjective. �

Proof of (vii). The proof of (vi) is easily modified to prove (vii). �

2.3. Direct limits

First, we introduce the notions of direct systems and direct limits. After discussing
some basic properties of direct systems and direct limits, we will consider the ex-
istence of direct limits in our categories of vector lattices and list some properties
of vector lattices that have permanence under the construction of a direct limit.
Additional results are found in [37]. Lastly, we give a number of examples of direct
limits which we make use of later.

Definition 2.3.1. Let C be any category and (I,≼) an upwards directed set. Con-
sider a family of objects {Eα}α∈I in C. For all α ≼ β in I, let eα,β ∶ Eα → Eβ be a
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2.3. DIRECT LIMITS 29

morphism in C. The pair D ∶= ((Eα)α∈I , (eα,β)α≼β) is called a direct system in C if,
for all α ≼ β ≼ γ in I, the diagram

Eα Eγ

Eβ

eα,β

eα,γ

eβ,γ

commutes in C. We refer to the maps eα,β for α,β ∈ I as the linking maps of D.

Let E be an object in C and eα ∶ Eα → E a morphism in C for every α ∈ I. The pair
(E, (eα)α∈I) is called a compatible system over D if for all α ≼ β in I the diagram

Eα E

Eβ

eα,β

eα

eβ

commutes in C.

A direct limit of D in C is a compatible system (E, (eα)α∈I) over D satisfying the
universal property that for any compatible system (E′, (e′α)α∈I) over D there exists
a unique morphism r ∶ E → E′ so that for all α ∈ I the diagram

E E′

Eα

r

eα e′α

commutes in C. Where convenient, we denote by limÐ→D the direct limit of D in C.

In order to show that direct limits of a direct system D are essentially unique when
they exist, we define the derived category of compatible systems over D: Denote by
C(D) the category whose objects are the compatible systems over D and where a
morphism between compatible systems (E, (eα)α∈I) and (E′, (e′α)α∈I) is a morphism
f ∶ E → E′ in C such that for all α ∈ I the diagram

E E′

Eα

f

eα e′α

commutes in C. The universal property of a direct limit in Definition 2.3.1 makes
it clear that a compatible system S ∶= (E, (eα)α∈I) over D is a direct limit of D in
C precisely when S is the initial object in C(D). As a result, any two compatible
systems satisfying the universal property of a direct limit are connected by a unique
isomorphism in C that makes the above diagram commute. In the sequel, we will
therefore refer to the direct limit of a direct system in a fixed category, when it
exists.

The following simple categorical result will be indispensable in the sequel.
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30 2. DIRECT AND INVERSE LIMITS OF VECTOR LATTICES

Proposition 2.3.2. Let C be any category and (I,≼) an upwards directed set.
Consider direct systems D ∶= ((Eα)α∈I , (eα,β)α≼β) and D′ ∶= ((E′

α)α∈I , (e′α,β)α≼β) in

C with direct limits S ∶= (E, (eα)α∈I) and S ′ ∶= (E′, (e′α)α∈I) in C respectively. For
every α ∈ I, let fα ∶ Eα → E′

α be a morphism in C so that the diagram

Eα E′
α

Eβ E′
β

fα

eα,β e′α,β

fβ

(2.3.1)

commutes in C for all α ≼ β in I. The following statements are true.

(i) There exists a unique lattice homomorphism f ∶ E → E′ so that the diagram

Eα E′
α

E E′

fα

eα e′α

f

(2.3.2)

commutes in C for every α ∈ I.

(ii) If fα is an isomorphism in C for every α ∈ I, then so is f .

Proof. For (i), we note that the pair (E′, (e′α ○ fα)α∈I) is a compatible system
over D: Fix α ≼ β in I, then by (2.3.1) and the fact that S ′ is a compatible system
over D′, we have

(e′β ○ fβ) ○ eα,β = e′β ○ (fβ ○ eα,β) = e′β ○ (e′α,β ○ fα) = e′α ○ fα.

By the universal property of the direct limit, there exists a unique morphism
f ∶ E → E′ in C such that the following diagram commutes in C for all α ∈ I.

(2.3.3)
Eα

E E′

e′α○fαeα

f

Decomposing the morphism on the right side of the above triangle gives us ex-
actly the square in (2.3.2). For (ii), assume that fα is an isomorphism for every
α ∈ I. We start by imitating the first step in (i): It is easy to verify that the
pair (E, (eα ○ f−1

α )α∈I) is a compatible system over D′. Thus there exists a unique
morphism g ∶ E′ → E in C such that the following diagram commutes in C.

(2.3.4)

E′ E

E′
α

g

e′α eα○f−1α
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2.3. DIRECT LIMITS 31

Putting (2.3.3) and (2.3.4) together gives us the following diagram for every α ∈ I.

Eα E′
α Eα

E E′ E

fα

eα

f−1α

e′α eα

f g

Thus for every α ∈ I, we have

(g ○ f) ○ eα = g ○ (f ○ eα) = g ○ (e′α ○ fα) = (g ○ e′α) ○ fα = (eα ○ f−1
α ) ○ fα = eα.

However, it is also clear that 1E ○ eα = eα holds in C for all α ∈ I. By the universal
property of the direct limit we conclude that g ○ f = 1E. A similar argument will
show that f ○ g = 1E′ and thus the morphism f ∶ E → E′ making diagram (2.3.2)
commute is indeed an isomorphism. �

2.3.1. Existence and permanence properties of direct limits. In [37],
Filter defines the direct limit of a direct system D ∶= ((Eα)α∈I , (eα,β)α≼β) in VL to be
the set-theoretic direct limit of D (see [21, Chapter III, §7.5]) equipped with suitable
vector space and order structures. It is not difficult to see that this construction is
exactly the direct limit in the sense of Definition 2.3.1 since it satisfies the necessary
universal property. We briefly recall the details.

Let D ∶= ((Eα)α∈I , (eα,β)α≼β) be a direct system in VL. For u in the disjoint union
⊎Eα of the collection {Eα}α∈I , denote by α(u) that element of I so that u ∈ Eα(u).
Define an equivalence relation on ⊎Eα by setting u ∼ v if and only if there exists
β ≽ α(u), α(v) in I so that eα(u),β(u) = eα(v),β(v). Let E ∶= ⊎Eα/ ∼ and denote the
equivalence class generated by u ∈ ⊎Eα by u̇.

Let u̇, v̇ ∈ E. We set u̇ ≤ v̇ if and only if there exists β ≽ α(u), α(v) in I so that
eα(u),β(u) ≤ eα(v),β(v). Further, for a, b ∈ R define

au̇ + bv̇ ∶=
˙³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

aeα(u),β(u) + beα(v),β(v),

where β ≽ α(u), α(v) in I is arbitrary. With addition, scalar multiplication and the
partial order defined in this way, E is a vector lattice. The lattice operations are
given by

u̇ ∧ v̇ =
˙³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

eα(u),β(u) ∧ eα(v),β(v)
and

u̇ ∨ v̇ =
˙³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

eα(u),β(u) ∨ eα(v),β(v),
with β ≽ α(u), α(v) in I arbitrary. The reader may verify that the lattice operations
will be well-defined when the linking maps in D are lattice homomorphisms. For

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



32 2. DIRECT AND INVERSE LIMITS OF VECTOR LATTICES

each α ∈ I define eα ∶ Eα → E by setting eα(u) ∶= u̇ for u ∈ Eα. Each eα is a lattice
homomorphism and the diagram

Eα E

Eβ

eα,β

eα

eβ

commutes in VL for all α ≼ β in I so that S ∶= (E, (eα)α∈I) is a compatible system
of D in VL. Further, if S̃ = (Ẽ, (ẽα)α∈I is another compatible system over D in VL
then

r ∶ E ∋ u̇z→ ẽα(u)(u) ∈ Ẽ
is the unique lattice homomorphism so that the diagram

E Ẽ

Eα

r

eα ẽα

commutes for every α ∈ I. Hence S is indeed the direct limit of D in VL. We give
two further existence results for direct limits of direct systems in other categories of
vector lattices.

Theorem 2.3.3. Let D ∶= ((Eα)α∈I , (eα,β)α≼β) be a direct system in IVL, and let
S ∶= (E, (eα)α∈I) be the direct limit of D in VL. Then S is the direct limit of D in
IVL.

Proof. We show that each eα is interval preserving. To this end, fix α ∈ I and
0 < u ∈ Eα. Suppose that 0̇ ≤ v̇ ≤ eα(u) = u̇. Then there exists a β ≽ α,α(v) in I so
that 0 ≤ eα(v),β(v) ≤ eα,β(u). But eα,β is interval preserving, so there exists 0 ≤ w ≤ u
in Eα so that eα,β(w) = eα(v),β(v). Therefore eα(w) = ẇ = v̇. Hence eα is interval
preserving.

Let S̃ ∶ = (Ẽ, (ẽα)α∈I) be a compatible system over D in IVL, thus also in VL.
We show that the unique lattice homomorphism r ∶ E → Ẽ is interval preserving.
Consider u̇ ∈ E+. Let 0 ≤ v ≤ r(u̇) in Ẽ, that is, 0 ≤ v ≤ ẽα(u)(u). But ẽα(u) is interval

preserving so there exists 0 ≤ w ≤ u in Eα(u) so that v = ẽα(u)(w). Thus 0̇ ≤ ẇ ≤ u̇
and r(ẇ) = v in E. Therefore r is interval preserving. �

Theorem 2.3.4. Let D ∶= ((Eα)α∈I , (eα,β)α≼β) be a direct system in NIVL, and let
S ∶= (E, (eα)α∈I) be the direct limit of D in VL. Assume that eα,β is injective for all
α ≼ β in I. Then S is the direct limit of D in NIVL.

Proof. We start by proving that eα ∶ Eα → E is injective for every α ∈ I: Fix
α ∈ I and u ∈ Eα so that eα(u) = 0̇ in E. Then there exists β ≽ α in I so that
eα,β(u) = 0. But eα,β is injective, so u = 0. Hence eα is injective.

By Theorem 2.3.3, eα ∶ Eα → E is an injective interval preserving lattice homomor-
phism for every α ∈ I. It follows from Proposition 2.2.1 (i) that eα is a NIVL-
morphism for every α ∈ I.
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2.3. DIRECT LIMITS 33

Let S̃ ∶= (Ẽ, (ẽα)α∈I) be a compatible system over D in NIVL. By Theorem 2.3.3,
the canonical map r ∶ E → Ẽ is an interval preserving lattice homomorphism. We
claim that r is a normal lattice homomorphism. To this end, let A ↓ 0̇ in E. Without
loss of generality we may suppose that A is bounded from above in E, say by u̇0.
There exists α ∈ I and u0 ∈ Eα so that u̇0 = eα(u0). Because eα is injective and
interval preserving, there exists for every u̇ ∈ A a unique u ∈ [0, u0] ⊆ Eα so that
eα(u) = u̇. In particular, e−1

α [A] ⊆ [0, u0]. We claim that inf e−1
α [A] = 0 in Eα. Let

0 ≤ v ∈ Eα be a lower bound for e−1
α [A]. Then eα(v) ≥ 0 is a lower bound for A in E,

hence eα(v) = 0. But eα is injective, so v = 0. This verifies our claim. By definition,
r[A] = ẽα[e−1

α [A]]. Because ẽα is a normal lattice homomorphism it follows that
inf r[A] = 0 in Ẽ. �

The following list of vector lattice properties that have permanence under the con-
struction of direct limits is taken from [37].

Theorem 2.3.5. Let D ∶= ((Eα)α∈I , (eα,β)α≼β) be a direct system in a category C of
vector lattices. Assume that eα,β is injective for all α ≼ β in I. Let S ∶= (E, (eα)α∈I)
be the direct limit of D in VL. Then the following statements are true.

(i) E is Archimedean if and only if Eα is Archimedean for all α ∈ I.

(ii) If C is IVL then E is order separable if and only if Eα is order separable
for every α ∈ I.

(iii) If C is IVL then E has the (principal) projection property if and only if Eα
has the (principal) projection property for every α ∈ I.

(iv) If C is IVL then E is (σ-)Dedekind complete if and only if Eα is
(σ-)Dedekind complete for every α ∈ I.

(v) If C is IVL then E is relatively uniformly complete if and only if Eα is
relatively uniformly complete for every α ∈ I.

Before we proceed to discuss examples of direct limits, we make some clarifying
remarks about the structure of the direct limit of vector lattices.

Remark 2.3.6. Let D ∶ = ((Eα)α∈I , (eα,β)α≼β) be a direct system in VL and let
S ∶= (E, (eα)α∈I) be the direct limit of D in VL.

(i) Unless clarity demands it, we henceforth cease to explicitly express elements
of E as equivalence classes; that is, we write u ∈ E instead of u̇ ∈ E.

(ii) For every u ∈ E there exists at least one α ∈ I and uα ∈ Eα so that u = eα(uα).
If u = eβ(uβ) for some other β ∈ I and uβ ∈ Eβ, then there exists γ ≽ α,β in
I so that eα,γ(uα) = eβ,γ(uβ), and hence

eγ(eα,γ(uα)) = u = eγ(eβ,γ(uβ)).

(iii) It is proven in Theorem 2.3.4 that if eα,β is injective for all α ≼ β in I then
eα is injective for all α ∈ I. In this case we identify Eα with the sublattice
eα[Eα] of E.
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34 2. DIRECT AND INVERSE LIMITS OF VECTOR LATTICES

(iv) An element u ∈ E is positive if and only if there exists α ≼ β in I and uα ∈ Eα
so that eα(uα) = u and eα,β(uα) ≥ 0 in Eβ. Combining this observation with
(ii) we see that u ≥ 0 if and only if there exists α ∈ I and 0 ≤ uα ∈ Eα so that
u = eα(uα).

2.3.2. Examples of direct limits. In [37], a number of examples are pre-
sented of naturally occurring vector lattices which can be expressed as direct limits
of vector lattices. We provide further examples which will be used in the sequel.

Example 2.3.7. Let E be a vector lattice. Let {Eα}α∈I be a collection of order
ideals in E where Eα ⊆ Eβ if and only if α ≼ β. Assume that ⋃Eα = E. For all
α ≼ β in I, let eα,β ∶ Eα → Eβ and eα ∶ Eα → E be the inclusion mappings. Then
D ∶= ((Eα)α∈I , (eα,β)α≼β) is a direct system in NIVL and S ∶= (E, (eα)α∈I) is the
direct limit of D in NIVL.

Proof. It is clear that D is a direct system in NIVL and that S is a compatible
system over D in NIVL. Let S̃ ∶= (Ẽ, (ẽα)α∈I) be any compatible system over D in
NIVL. We show that there exists a unique NIVL-morphism r ∶ E → Ẽ so that for
all α ∈ I the diagram

E Ẽ

Eα

r

eα ẽα

commutes. If u ∈ E and α,β ∈ I are such that u ∈ Eα,Eβ, then ẽα(u) = ẽβ(u).
Indeed, for any γ ≽ α,β in I

ẽγ(u) = ẽγ(eα,γ(u)) = ẽα(u)
and

ẽγ(u) = ẽγ(eβ,γ(u)) = ẽβ(u)
Therefore the map r ∶ E → Ẽ given by

r(u) = ẽα(u), u ∈ Eα
is well-defined. It is clear that this map makes the above diagram commute. Further,
if u, v ∈ E then there exists α ∈ I so that u, v ∈ Eα. Then for all a, b ∈ R we have
au + bv, u ∨ v ∈ Eα so that

r(au + bv) = ẽα(au + bv) = aẽα(u) + bẽα(v) = a r(u) + b r(v)
and

r(u ∨ v) = ẽα(u ∨ v) = ẽα(u) ∨ ẽα(v) = r(u) ∨ r(v).
Hence r is a lattice homomorphism. A similar argument shows that r is interval
preserving. To see that r is a normal lattice homomorphism, let A ↓ 0 in E. Without
loss of generality, assume that there exists 0 < u0 ∈ E so that u ≤ u0 for all u ∈ A.
Then A ⊆ Eα for some α ∈ I so that r[A] = ẽα[A]. Hence, because ẽα is a normal
lattice homomorphism, inf r[A] = 0. Therefore r is a NIVL-morphism.

It remains to show that r is the unique NIVL-morphism making the diagram above
commute. Suppose that r̃ is another such morphism. Let u ∈ E. There exists α ∈ I
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2.3. DIRECT LIMITS 35

so that u ∈ Eα. We have r̃(u) = r̃(eα(u)) = ẽα(u) = r(u), which completes the
proof. �

The remaining examples in this section may readily been seen to be special cases of
Example 2.3.7. Therefore we omit the proofs.

Example 2.3.8. Let E be a vector lattice. For every 0 < u ∈ E let Eu be the order
ideal generated by u in E. For all 0 < u ≤ v, let eu,v ∶ Eu → Ev and eu ∶ Eu → E be the
inclusion mappings. Let I be an upward directed subset of E+ {0} so that E = ⋃Eu.
Then D ∶= ((Eu)u∈I , (eu,v)u≤v) is a direct system in NIVL and S ∶= (E, (eu)u∈I) is
the direct limit of D in NIVL.

Example 2.3.9. Let (X,Σ, µ) be a complete σ-finite measure space. Let Ξ ∶= (Xn)
be an increasing sequence (w.r.t. inclusion) of measurable sets with positive measure
so that X = ⋃Xn. For n ≤m in N let en,m ∶ Lp(Xn) → Lp(Xm) be defined (a.e.) by
setting

en,m(u)(t) ∶= { u(t) if t ∈Xn

0 if t ∈Xm∖Xn

for each u ∈ Lp(Xn). Further, define

LpΞ−c(X) ∶= {u ∈ Lp(X) ∶ u = 0 a.e. on X ∖Xn for some n ∈ N} .
For n ∈ N let en ∶ Lp(Xn) → LpΞ−c(X) be given by

en(u)(t) ∶= { u(t) if t ∈Xn

0 if t ∈X ∖Xn

The following statements are true.

(i) DpΞ−c ∶= ((Lp(Xn))n∈N, (en,m)n≤m) is a direct system in NIVL.

(ii) SpΞ−c ∶= (LpΞ−c(X), (en)n∈N) is the direct limit of DpΞ−c in NIVL.

Example 2.3.10. Let X be a locally compact Hausdorff space. Let Γ ∶= (Xα)α∈I
be an upward directed (w.r.t. inclusion) collection of non-empty open precompact
subsets of X so that ⋃Xα = X. For each α ∈ I, let M(X̄α) be the space of Radon
measures on X̄α and Mc(X) the space of compactly supported Radon measures on
X. For all α ≼ β in I, let eα,β ∶ M(X̄α) →M(X̄β) be defined by setting

eα,β(µ)(B) = µ(B ∩ X̄α) for all µ ∈ M(X̄α) and B ∈BX̄β .

Likewise, for α ∈ I, define eα ∶ M(X̄α) →Mc(X) by setting

eα(µ)(B) = µ(B ∩ X̄α) for all µ ∈ M(Xα) and B ∈BX .

The following statements are true.

(i) DΓ ∶= ((M(X̄α)α∈I , (eα,β)α≼β) is a direct system in NIVL and eα,β is injective
for all α ≼ β in I.

(ii) SΓ ∶= (Mc(X), (eα)α∈I) is the direct limit of DΓ in NIVL.
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36 2. DIRECT AND INVERSE LIMITS OF VECTOR LATTICES

Example 2.3.11. Let X be a locally compact Hausdorff space. Let Γ ∶= (Xα)α∈I be
an upward directed (w.r.t. inclusion) collection of open precompact subsets of X so
that ⋃Xα = X. For each α ∈ I, let N(X̄α) be the space of normal Radon measures
on X̄α and Nc(X) the space of compactly supported normal Radon measures on X.
For all α ≼ β in I, let eα,β ∶ N(X̄α) → N(X̄β) be defined by setting

eα,β(µ)(B) = µ(B ∩ X̄α) for all µ ∈ N(X̄α) and B ∈BX̄β .

Likewise, for α ∈ I, define eα ∶ N(X̄α) → Nc(X) by setting

eα(µ)(B) = µ(B ∩ X̄α) for all µ ∈ N(Xα) and B ∈BX .

The following statements are true.

(i) EΓ ∶= ((N(X̄α)α∈I , (eα,β)α≼β) is a direct system in NIVL and eα,β is injective
for all α ≼ β in I.

(ii) TΓ ∶= (Nc(X), (eα)α∈I) is the direct limit of JΓ in NIVL.

2.4. Inverse limits

Next, we introduce the concepts of inverse systems and inverse limits. We inves-
tigate analogous questions of existence and permanence for inverse limits in our
categories of vector lattices below.

Definition 2.4.1. Let C be any category and (I,≼) an upwards directed set. Con-
sider a family of objects {Eα}α∈I in C. For all β ≽ α in I, let pβ,α ∶ Eβ → Eα be a
morphism in C. The pair I ∶= ((Eα)α∈I , (pβ,α)β≽α) is called an inverse system in C
if, for all α ≼ β ≼ γ in I, the diagram

Eγ Eα

Eβ

pγ,β

pγ,α

pβ,α

commutes in C. We will refer to the maps pβ,α for α,β ∈ I as the linking maps of I.

Let E be an object in C and pα ∶ E → Eα a morphism in C for every α ∈ I. The pair
(E, (pα)α∈I) is called a compatible system over I if for all α ≼ β in I the diagram

E Eα

Eβ

pβ

pα

pβ,α

commutes in C.

An inverse limit of I in C is a compatible system (E, (pα)α∈I) over I satisfying the
universal property that for any compatible system (E′, (p′α)α∈I) over I there exists
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2.4. INVERSE LIMITS 37

a unique morphism s ∶ E′ → E so that for all α ∈ I the diagram

E′ E

Eα
p′α

s

pα

commutes in C. Where convenient, we denote by lim←ÐI the inverse limit of I in C.

As was done for direct limits, we define the derived category of compatible systems
over I: Denote by C(I) the category whose objects are the compatible systems over
I and where a morphism between compatible systems (E, (pα)α∈I) and (E′, (p′α)α∈I)
is a morphism f ∶ E → E′ in C such that for all α ∈ I the diagram

E E′

Eα

pα

f

p′α

commutes in C. The universal property of an inverse limit in Definition 2.4.1 makes
it clear that a compatible system S ∶= (E, (pα)α∈I) over I is an inverse limit of I in
C precisely when S is the terminal object in C(I). Thus, as with direct limits, we
consider the inverse limit of an inverse system in a category to be essentially unique
and therefore we may refer to the inverse limit of an inverse system, when it exists.

The following result is the analogue of Proposition 2.3.2 for inverse systems and
inverse limits. We omit the proof since the same approach may be used.

Proposition 2.4.2. Let C be any category and (I,≼) an upwards directed set.
Consider inverse systems I ∶= ((Eα)α∈I , (pβ,α)α≼β) and I ′ ∶= ((E′

α)α∈I , (p′β,α)α≼β) in

C with inverse limits S ∶= (E, (pα)α∈I) and S ′ ∶= (E′, (p′α)α∈I) in C respectively. For
every α ∈ I, let fα ∶ Eα → E′

α be a morphism in C so that the diagram

Eβ E′
β

Eα E′
α

fβ

pβ,α p′β,α

fα

(2.4.1)

commutes for all α ≼ β in I. The following statements are true.

(i) There exists a unique lattice homomorphism f ∶ E → E′ so that the diagram

E E′

Eα E′
α

f

pα p′α

Tα

(2.4.2)
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38 2. DIRECT AND INVERSE LIMITS OF VECTOR LATTICES

commutes for every α ∈ I.

(ii) If fα is an isomorphism in C for every α ∈ I, then so is f .

2.4.1. Existence of inverse limits. Our first task is to establish the existence
of inverse limits in our categories of vector lattices. As one might expect, the
analogue of Filter’s approach can be used where one starts with the set-theoretic
inverse limit of an inverse system of vector lattices (see [21, Chapter III, §7.1]) after
which one adds the ‘obvious’ vector space and order structures.

Theorem 2.4.3. Let I ∶= ((Eα)α∈I , (pβ,α)β≽α) be an inverse system in VL. Define
the set

E ∶= {u ∈ ∏Eα ∶ πα(u) = pβ,α(πβ(u)) for all α ≼ β in I} .
For every α ∈ I define pα ∶= πα∣E. The following statements are true.

(i) E is a vector sublattice of ∏Eα.

(ii) The pair S ∶= (E, (pα)α∈I) is the inverse limit of I in VL.

Proof of (i). We verify that E is closed under the lattice operations on∏Eα;
that it is a linear subspace follows by a similar argument, as the reader may readily
verify. Consider u and v in E. Then πα(u∨ v) = πα(u)∨πα(v) for all α ∈ I. Fix any
α,β ∈ I so that β ≽ α. Then

pβ,α(πβ(u ∨ v)) = pβ,α(πβ(u)) ∨ pβ,α(πβ(u)) = πα(u) ∨ πα(v) = πα(u ∨ v).
Therefore u ∨ v ∈ E. One can show similarly that u ∧ v ∈ E. �

Proof of (ii). From the definitions of E and the pα it is clear that S is a
compatible system over I in VL. Let S̃ ∶= (Ẽ, (p̃α)α∈I) be any compatible system
over I in VL. Define s ∶ Ẽ → E by setting s(u) ∶= (p̃α(u))α∈I . Let β ≽ α in I.
Because S̃ is a compatible system

pβ,α(p̃β(u)) = p̃α(u), u ∈ Ẽ.
Therefore s(u) ∈ E for all u ∈ Ẽ. Because each p̃α is a lattice homomorphism, so
is s. By the definitions of s and the pα, respectively, it follows that pα ○ s = p̃α for
every α ∈ I. We show that s is the unique lattice homomorphism with this property.
To this end, let s̃ ∶ Ẽ → E be a lattice homomorphism so that pα ○ s̃ = p̃α for every
α ∈ I. Fix u ∈ Ẽ. Then for every α ∈ I,

πα(s̃(u)) = pα(s̃(u)) = p̃α(u) = πα(s(u)).
Hence s = s̃ and therefore (E, (pα)α∈I) is the inverse limit of I in VL. �

Theorem 2.4.4. Let I ∶= ((Eα)α∈I , (pβ,α)β≽α) be an inverse system in NVL and
S ∶= (E, (pα)α∈I) its inverse limit in VL. The following statements are true.

(i) Let A ⊆ E and assume that infA = u or supA = u in ∏
α∈I
Eα, then u ∈ E.

(ii) If Eα is Dedekind complete for every α ∈ I, then S is the inverse limit of I
in NVL.
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2.4. INVERSE LIMITS 39

Proof of (i). It is sufficient for us to consider infima of downward directed
subsets of E. Let A ⊆ E and assume that A ↓ u in ∏Eα. Since the coordinate
projections are normal homomorphisms (Theorem 2.2.6 (i)), for every α ∈ I we have
pα[A] = πα[A] ↓ πα(u) in Eα. Since the linking maps in I are normal homomor-
phisms, for β ≽ α in I, we have

πα(u) = inf pα[A] = inf pβ,α[pβ[A]] = pβ,α(inf pβ[A]) = pβ,α (πβ(u)) .
Therefore u ∈ E. �

Proof of (ii). First, we prove that the pα are normal homomorphisms: Fix
α ∈ I and let A ↓ 0 in E. Since Eα is Dedekind complete for every α ∈ I, by
Theorem 2.2.6 (iii), the product ∏Eα is also Dedekind complete. Therefore A ↓ u
in ∏Eα for some u ∈ ∏Eα. By (i), we have u ∈ E which implies A ↓ u in E. Since

A ↓ 0 in E, we conclude that A ↓ 0 in ∏Eα. By the normality of the coordinate
projections πα, it follows that

inf pα [A] = inf πα [A] = πα [infA] = 0.

Hence the pair S is a compatible system over I in NVL. It remains to verify that
S satisfies the universal property of the inverse limit in NVL: Let S̃ ∶= (Ẽ, (p̃α)α∈I)
be a compatible system in NVL. Following the proof of Theorem 2.4.3, we need
only show that s ∶ Ẽ → E where s(v) ∶= (p̃α(v))α∈I is a NVL-morphism: Let A ↓ 0
in Ẽ, then since each p̃α is a normal homomorphism, we have pα[s[A]] = p̃α[A] ↓ 0
in Eα for each α ∈ I. By Proposition 2.2.5, it follows that s[A] ↓ 0 in ∏Eα, and by
(i) above s[A] ↓ 0 in E. Therefore s is a NVL-morphism. �

2.4.2. Permanence properties. In this section, we establish some perma-
nence properties for inverse limits along the same vein as those for direct limits
given in Theorem 2.3.5. These follow easily from the construction of inverse limits
given in Theorem 2.4.3 and the properties of products of vector lattices given in
Theorem 2.2.6

Theorem 2.4.5. Let I ∶= ((Eα)α∈I , (pβ,α)β≽α) an inverse system in VL and S ∶=
(E, (pα)α∈I) its inverse limit in VL. The following statements are true.

(i) If Eα is Archimedean for every α ∈ I, then so is E.

(ii) If Eα is Archimedean and relatively uniformly complete for every α ∈ I, then
E is relatively uniformly complete.

Proof. We note that (i) follows immediately from Theorems 2.2.6 (ii) and the
construction of an inverse limit in VL.

For (ii), assume that Eα is relatively uniformly complete for every α ∈ I. We
show that every relatively uniformly Cauchy sequence in E is relatively uniformly
convergent: Because E is Archimedean by (i), it follows from [53, Theorem 39.4]
that it suffices to consider increasing sequences. Let (un) be an increasing, relatively
uniformly Cauchy sequence in E. Then for every α ∈ I, (pα(un)) is an increasing
sequence in Eα. According to [53, Theorem 59.3], (pα(un)) is relatively uniformly
Cauchy in Eα. Because each Eα is relatively uniformly complete, there exists uα ∈ Eα
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40 2. DIRECT AND INVERSE LIMITS OF VECTOR LATTICES

so that (pα(un)) converges relatively uniformly to uα. In fact, because (pα(un)) is
increasing, uα = sup{pα(un) ∶ n ∈ N}. Therefore u ∶= (uα)α∈I = sup{un ∶ n ∈ N} in
∏Eα by Proposition 2.2.5 (ii). By Theorem 2.4.4 (i), u ∈ E so that u = sup{un ∶ n ∈
N} in E. Therefore (un) converges relatively uniformly to u by [53, Lemma 39.2].
We conclude that E is relatively uniformly complete. �

Theorem 2.4.6. Let I ∶= ((Eα)α∈I , (pβ,α)β≽α) be an inverse system in NVL and
S ∶= (E, (pα)α∈I) its inverse limit in VL. The following statements are true.

(i) If Eα is σ-Dedekind complete for every α ∈ I then so is E.

(ii) If Eα is Dedekind complete for every α ∈ I then so is E.

(iii) If Eα is laterally complete for every α ∈ I then so is E.

(iv) If Eα is universally complete for every α ∈ I then so is E.

Proof. We prove (ii). The statements in (i) and (iii) follow by almost identical
arguments, and (iv) follows immediately from (ii) and (iii).

Let D ⊆ E be an upwards directed set bounded above by u ∈ E. For every α ∈ I,
the set pα [D] is bounded above in Eα by πα(u). Since Eα is Dedekind complete for
every α ∈ I, vα ∶= suppα [D] exists in Eα for all α ∈ I and by Proposition 2.2.5 (ii),
we have that supD = (vα)α∈I in ∏Eα. By Theorem 2.4.4 (i), we have v ∈ E and

since E forms a sublattice of ∏Eα it follows that v = supD in E. �

2.4.3. Examples of inverse limits. In this section, we present a number of
examples of inverse systems and inverse limits in our categories of vector lattices.
These will be used in conjunction with the examples in Section 2.3.2 in the sequel.
Our first example is related to Example 2.3.9.

Example 2.4.7. Let (X,Σ, µ) be a complete σ-finite measure space. Let Ξ ∶= (Xn)
be an increasing sequence (w.r.t. inclusion) of measurable sets with positive measure
so that X = ⋃Xn. For 1 ≤ p ≤ ∞ let LpΞ−`oc(X) denote the set of (equivalence classes
of) measurable functions u ∶X → R so that u1Xn ∈ Lp(X) for every n ∈ N. For m ≥ n
in N let rm,n ∶ Lp(Xm) → Lp(Xn) and rn ∶ LpΞ−`oc(X) → Lp(Xn) be the restriction
maps. The following statements are true.

(i) IpΞ−`oc ∶= ((Lp(Xn))n∈N, (rm,n)m≥n) is an inverse system in NVL.

(ii) SpΞ−`oc ∶= (LpΞ−`oc(X), (rn)n∈N) is a compatible system over IpΞ−`oc in NVL.

(iii) SpΞ−`oc is the inverse limit of IpΞ−`oc in NVL.

Proof. The validity of (i) and (ii) is clear. We prove (iii).

By Theorem 2.4.4, since Lp(Xn) is Dedekind complete for every n ∈ N, the inverse
limit (F, (pn)n∈N) of IpΞ−`oc exists in NVL. Since SpΞ−`oc is a compatible system over
IpΞ−`oc in NVL, there exists a unique normal lattice homomorphism s ∶ LpΞ−`oc(X) →
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2.4. INVERSE LIMITS 41

F so that the diagram

LpΞ−`oc(X) F

Lp(Xn)
rn

s

pn

commutes for every n ∈ N. We show that s is bijective. To see that s is injective,
suppose that s(u) = 0 for some u ∈ LpΞ−`oc(X). Then rn(u) = 0 for every n ∈ N; that
is, the restriction of u to each set Xn is 0. Since ⋃Xn =X it follows that u = 0. To
see that s is surjective, consider u ∈ F . If m ≥ n then pn(u) = rm,n(pm(u)); that is,
pn(u) = pm(u) a.e. on Xn. Therefore v ∶X → R given by

v(x) ∶= pn(u)(x), x ∈Xn

is a.e. well-defined on X = ⋃Xn. For n ∈ N, v restricted to Xn is pn(u) ∈ Lp(Xn).
Therefore v ∈ LpΞ−`oc(X). Furthermore, pn(s(v)) = rn(v) = pn(u) for all n ∈ N so that
s(v) = u. We conclude that s is a lattice isomorphism. �

Our second example is a companion result for Examples 2.3.10 and 2.3.11.

Example 2.4.8. Let X be a topological space and O ∶= {Oα ∶ α ∈ I} collection of
non-empty open subsets of X which is upward directed with respect to inclusion;
that is, α ≼ β if and only if Oα ⊆ Oβ. Assume that ⋃Oα is dense and C-embedded
in X. For β ≽ α, denote by rβ,α ∶ C(Ōβ) → C(Ōα) and rα ∶ C(X) → C(Ōα) the
restriction maps. The following statements are true.

(i) IO ∶= ((C(Ōα))α∈I , (rβ,α)β≽α) is an inverse system in VL.

(ii) SO ∶= (C(X), (rα)α∈I) is a compatible system over IO in VL.

(iii) SO is the inverse limit of IO in VL.

(iv) If X is a Tychonoff space and Oα is precompact for every α ∈ I then IO is
an inverse system in NIVL, and SO is a compatible system of IO in NIVL.

Proof. The validity of (i), (ii), and (iii) follows from arguments similar to those
used in the proof of Example 2.4.7. We therefore omit the proofs of these statements.
We only note that for (iii), we use the fact that every u ∈ C(⋃Oα) has a unique
continuous and real-valued extension to X; that is, restriction from X to ⋃Oα

defines a lattice isomorphism from C(⋃Oα) onto C(X).
To verify (iv), it is sufficient to show that the rα and rα,β maps are order continuous
and interval preserving. The fact that these maps are order continuous follows from
[48, Theorem 3.4]. That they are interval preserving will follow from the fact that
every compact subset of a Tychonoff space is C∗-embedded: We show that the rα
maps are interval preserving, the proof for rα,β being identical. Consider an α ∈ I,
u ∈ C(X)+ and v ∈ C(Ōα) so that 0 ≤ v ≤ rα(u). Because Ōα is C∗-embedded in X
there exists a continuous function v′ ∈ C(X) so that rα(v′) = v. Let w ∶= (0∨ v′) ∧u.
Then 0 ≤ w ≤ u and, because rα is a lattice homomorphism, rα(w) = v. Therefore
[0, rα(u)] ⊆ rα[[0, u]]. The reverse inclusion follows since rα is positive. �
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42 2. DIRECT AND INVERSE LIMITS OF VECTOR LATTICES

Our next example is of a more general nature. It is an essential ingredient in our
solution of the decomposition problem for C(X) mentioned in Section 1.1.1.

Example 2.4.9. Let E be an Archimedean vector lattice. Denote by BE the Boolean
algebra of projection bands in E where the ordering on BE is inclusion. Let M be a
non-trivial ideal in BE. That is, M ⊂ BE is downward closed, upward directed and
does not consist of the trivial band {0} only. For notational convenience we express
M as indexed by a directed set I, M = {Bα ∶ α ∈ I}, so that α ≼ β if and only if
Bα ⊆ Bβ.

For Bα ⊆ Bβ in M, denote by Pα the band projection of E onto Bα and by Pβ,α the
band projection of Bβ onto Bα; that is, Pβ,α = Pα∣Bβ . The following statements are
true.

(i) IM ∶= (M, (Pβ,α)β≽α) is an inverse system in NIVL and (E, (Pα)α∈I) is a
compatible system over IM in NIVL.

(ii) The inverse limit lim←ÐIM ∶ = (F, (pα)α∈I) exists in VL. If E is Dedekind

complete then (F, (pα)α∈I) is the inverse limit of IM in NVL.

(iii) The map PM ∶ E ∋ u ↦ (Pα(u))α∈I ∈ F is the unique lattice homomorphism
so that the diagram

E F

Bα

Pα

PM

pα

commutes in VL for every α ∈ I. Furthermore, PM[E] is an order dense
sublattice of F . If E is Dedekind complete then PM[E] is an order ideal in
F .

(iv) PM is injective if and only if {Pα ∶ α ∈ I} separates the points of E. In this
case, PM is a lattice isomorphism onto an order dense sublattice of F .

Proof. The statement in (i) follows immediately from Proposition 2.2.2 as band
projections are both interval preserving and order continuous. The statement in (ii)
follows immediately from (i) and Theorems 2.4.3 and 2.4.4. The fact that (iv) is
true is a direct consequence of the definition of PM.

It remains to prove (iii). Since Pα is a lattice homomorphism for every α ∈ I, PM is
a lattice homomorphism into ∏Bα. If u ∈ E and α ≼ β then Pβ,α(Pα(u)) = Pα(u)
by Proposition 2.2.2 (iii). Hence PM[E] is a sublattice of F . It follows from the
construction of F as a sublattice of ∏Bα given in Theorem 2.4.3 that pα ○PM = Pα
for all α ∈ I.

Let 0 < u = (uα) ∈ F . There exists α0 ∈ I so that uα0 > 0 in Bα0 ⊆ E. Then
0 < PM(uα0) ≤ u in F . Hence PM[E] is order dense in F .

Assume that E is Dedekind complete. We show that PM[E] is an order ideal in F :
Consider v ∈ E+ and u = (uα) ∈ F + so that 0 ≤ u ≤ PM(v). Then uα ≤ Pα(v) ≤ v for
all α ∈ I. Let w = sup{uα ∶ α ∈ I} in E. We claim that PM(w) = u. Because uα ≤ w
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2.4. INVERSE LIMITS 43

for all α ∈ I, uα = Pα(uα) ≤ Pα(w). Therefore u ≤ PM(w). For the reverse inequality
we note that for all β ∈ I,

Pβ(w) = sup{Pβuα ∶ α ∈ I}.
We claim that Pβ(uα) ≤ uβ for all α,β ∈ I. It follows from this claim that Pβ(w) ≤ uβ
so that PM(w) ≤ u. Thus we need only verify that, indeed, Pβ(uα) ≤ uβ for all
α,β ∈ I. To this end, fix α,β ∈ I. Let γ ∈ I be a mutual upper bound for α and β.
Because u = (uα) ∈ F , S̃ is compatible with IM and uγ, uα ∈ E we have

Pβ(uα) = Pβ(Pγ,α(uγ)) ≤ Pβ(uγ) = Pγ,β(Pγ(uγ)) = Pγ,β(uγ) = uβ.
This completes the proof. �

Remark 2.4.10. Consider the setting of Example 2.4.9 where lim←ÐIM ∶= (F, (pα)α∈I)
is the inverse limit of IM in VL. Assume that {Pα ∶ α ∈ I} separates the points of
E. It may happen that PM ∶ E → F is surjective, but this is not always the case. If
this is the case, then (E, (Pα)α∈I) is the inverse limit of IM in NIVL. A sufficient,
but not necessary, condition for PM to be surjective is that E ∈ M. Consider the
following examples:

(i) Consider the vector lattice RN. For G ⊆ N let

BG ∶= {u ∈ RN ∶ supp(u) ⊆ G}.
Then M ∶= {BG ∶ ∅ ≠ G ⊆ N finite} is an order ideal in the Boolean algebra
of projection bands BRN and {PG ∶ ∅ ≠ G ⊆ N finite} separates the points of
RN. It is easy to see that PM is surjective and RN /∈ M.

(ii) Consider the vector lattice `1. As in (i), for G ⊆ N define

BG ∶= {u ∈ `1 ∶ supp(u) ⊆ G}
Then M ∶= {BG ∶ ∅ ≠ G ⊆ N finite} is an order ideal in B`1 and {PG ∶ ∅ ≠
G ⊆ N finite} separates the points of `1. However, F = RN and so PM is not
surjective.

Based on the observations in Example 2.4.9 and Remark 2.4.10 we ask the following
question: Given a Dedekind complete vector lattice E, does there exist a proper
ideal M in BE so that the map PM ∶ E → F defined in Example 2.4.9 (iii) is an
isomorphism onto F? We do not pursue this question any further here, except to
note the following example.

Example 2.4.11. Let X be an extremally disconnected Tychonoff space. Let O ∶=
{Oα ∶ α ∈ I} be a proper, non-trivial ideal in the Boolean algebra RX of clopen
subsets of X. Assume that ⋃Oα is dense and C-embedded in X. Then M ∶ =
{C(Oα) ∶ α ∈ I} is a proper, non-trivial ideal in BC(X) and PM ∶ C(X) → F defined
in Example 2.4.9 (iii) is a lattice isomorphism onto F .

Proof. The Boolean algebras RX and BC(X) are isomorphic. In particular, the
isomorphism is given by

RX ∋ O z→ BO = {u ∈ C(X) ∶ supp(u) ⊆ O},
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44 2. DIRECT AND INVERSE LIMITS OF VECTOR LATTICES

see [28, Theorem 12.9]. Therefore M is a proper, nontrivial ideal in BC(X). More-
over, for O ∈RX the band projection onto BO is given by restriction to O. Finally,
we note that for O ∈RX the band BO may be identified with C(O). It follows from
Example 2.4.8 that F = C(X), i.e. PM ∶ C(X) → F is a lattice isomorphism onto
F . �

2.5. Dual spaces and the duality between direct and inverse limits

The results presented in this section form the technical heart of this chapter. Roughly
speaking, we will show, under fairly general assumptions, that the order (continu-
ous) dual of a direct limit is an inverse limit. On the other hand, more restrictive
conditions are needed to show that the order (continuous) dual of an inverse limit
is a direct limit. These results form the basis of the applications to follow after this
section.

2.5.1. Duals of direct limits.

Definition 2.5.1. Let D ∶= ((Eα)α∈I , (eα,β)α≼β) be a direct system in IVL. The

dual system of D is the pair D∼ ∶= ((E∼
α)α∈I , (e∼α,β)α≼β).

If D is a direct system in NIVL, define the order continuous dual system of D as
the pair D∼

n ∶= (((Eα)∼n)α∈I , (e∼α,β)α≼β) with e∼α,β ∶ (Eβ)
∼
n → (Eα)∼n.

Proposition 2.5.2. Let D ∶= ((Eα)α∈I , (eα,β)α≼β) be a direct system in VL. The
following statements are true.

(i) If D is a direct system in IVL, then the dual system D∼ is an inverse system
in NIVL.

(ii) If D is a direct system in NIVL, then the order continuous dual system D∼
n

is an inverse system in NIVL.

Proof. We present the proof of (i). The validity of (ii) follows by a similar
argument, so we omit the proof.

Assume that D is a direct system in IVL. Then the maps eα,β ∶ Eα → Eβ are interval
preserving lattice homomorphisms for all α ≼ β. By Theorem 2.2.3, the adjoint
maps e∼α,β ∶ E∼

β → E∼
α are all normal interval preserving lattice homomorphisms. Fix

α,β, γ ∈ I such that α ≼ β ≼ γ. Since D is a direct system in NIVL, we have eα,γ =
eβ,γ ○ eα,β so that e∼α,γ = e∼α,β ○ e∼β,γ. Thus the dual system D∼ = ((E∼

α)α∈I , (e∼α,β)α≼β)
is an inverse system in NIVL. �

Proposition 2.5.3. Let D ∶= ((Eα)α∈I , (eα,β)) be a direct system in IVL and S ∶=
(E, (eα)α∈I) a compatible system over D in IVL. The following statements are true.

(i) S∼ ∶ = (E∼, (e∼α)α∈I) is a compatible system over the inverse system D∼ in
NIVL.

(ii) If D is a direct system in NIVL, then S∼n ∶= (E∼
n , (e∼α)α∈I) is a compatible

system over the inverse system D∼
n in NIVL.
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2.5. DUAL SPACES 45

Proof. Again, we only prove (i) as the proof of (ii) is similar. By Theorem
2.2.3, e∼α ∶ E∼ → E∼

α is a normal interval preserving lattice homomorphism for every
α ∈ I. Furthermore, if α ≼ β then eα = eβ ○ eα,β so that e∼α = e∼α,β ○ e∼β. Therefore S∼
is a compatible system of D∼ in NIVL. �

The main results of this section are the following.

Theorem 2.5.4. Let D ∶= ((Eα)α∈I , (eα,β)α≼β) be a direct system in IVL, and let
S ∶= (E, (eα)α∈I) be the direct limit of D in IVL. The following statements are true.

(i) lim←ÐD
∼ ∶= (F, (pα)α∈I) exists in NVL.

(ii) (limÐ→D)
∼
≅ lim←ÐD

∼ in NVL. That is, there exists a lattice isomorphism

T ∶ E∼ → F such that the following diagram commutes for all α ∈ I.

E∼ F

E∼
α

e∼α

T

pα
(2.5.1)

Proof. The fact that (i) is true follows from Proposition 2.5.2 (i) and Theorem
2.4.4 (ii) because E∼

α is Dedekind complete for every α ∈ I.

We prove (ii): By Proposition 2.5.3 (i), S∼ ∶= (E∼, (e∼α)α∈I) is a compatible system
over D∼ in NIVL, hence also in NVL. Therefore there exists a unique normal
lattice homomorphism T ∶ E∼ → F so that the diagram (2.5.1) commutes. We show
that T is bijective.

To see that T is injective, let ψ ∈ E∼ and suppose that T (ψ) = 0. Consider any
u ∈ E. There exists α ∈ I and uα ∈ Eα so that u = eα(uα), see Remark 2.3.6. Then
ψ(u) = ψ(eα(uα)) = e∼α(ψ)(uα) = pα(T (ψ))(u) = 0. This holds for all u ∈ E so that
ψ = 0. Therefore T is injective.

It remains to show that T maps E∼ onto F . To this end, consider (ϕα)α∈I ∈ F +. We
construct a functional 0 ≤ ϕ ∈ E∼ so that T (ϕ) = (ϕα)α∈I .
Let u ∈ E. Consider any α,β ∈ I, uα ∈ Eα and uβ ∈ Eβ so that eα(uα) = u = eβ(uβ),
see Remark 2.3.6. We claim that ϕα(uα) = ϕβ(uβ). Indeed, there exists γ ≽ α,β in I
so that eα,γ(uα) = eβ,γ(uβ). Furthermore, eγ(eα,γ(uα)) = u = eγ(eβ,γ(uβ)). Because
(ϕα)α∈I ∈ F we have ϕα = e∼α,γ(ϕγ) and ϕβ = e∼β,γ(ϕγ); that is,

ϕα(uα) = ϕγ(eα,γ(uα)) = ϕγ(eβ,γ(uβ)) = ϕβ(uβ).
Thus our claim is verified.

For u ∈ E define ϕ(u) ∶= ϕα(uα) if u = eα(uα). By our above claim, ϕ is a well-defined
map from E into R. We show that ϕ is linear. Consider u, v ∈ E and a, b ∈ R. Let
u = eα(uα) and v = eβ(vβ) where α,β ∈ I, uα ∈ Eα and vβ ∈ Eβ. There exists γ ≽ α,β
in I so that

au + bv = eγ(aeα,γ(uα) + beβ,γ(vβ)).
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46 2. DIRECT AND INVERSE LIMITS OF VECTOR LATTICES

Then

ϕ(au + bv) = ϕγ(aeα,γ(uα) + beβ,γ(vβ)) = aϕγ(eα,γ(uα)) + bϕγ(eβ,γ(vβ)).
But eγ(eα,γ(uα)) = eα(uα) = u and eγ(eβ,γ(vβ)) = eβ(vβ) = v. Hence ϕγ(eα,γ(uα)) =
ϕ(u) and ϕγ(eβ,γ(vβ)) = ϕ(v). Therefore ϕ(au + bv) = aϕ(u) + bϕ(v).
We show that ϕ is positive. If 0 ≤ u ∈ E then there exist α ∈ I and 0 ≤ uα ∈ Eα so
that u = eα(uα), see Remark 2.3.6. Then ϕ(u) = ϕα(eα(uα)) ≥ 0, the final inequality
following from the fact that (ϕα)α∈I ∈ F +.

It follows from the definition of ϕ and the commutativity of the diagram (2.5.1)
that pα(T (ϕ)) = e∼α(ϕ) = ϕα for every α ∈ I. Hence T (ϕ) = (ϕα)α∈I so that T is
surjective. �

Theorem 2.5.5. Let D ∶= ((Eα)α∈I , (eα,β)α≼β) be a direct system in NIVL, and let
S ∶= (E, (eα)α∈I) be the direct limit of D in IVL. The following statements are true.

(i) lim←ÐD
∼
n ∶= (G, (pα)α∈I) exists in NVL.

(iii) If eα,β is injective for all α ≼ β in I, then (limÐ→D)
∼
n
≅ lim←ÐD

∼
n in NVL. That

is, there exists a lattice isomorphism S ∶ E∼
n → G such that the following

diagram commutes for all α ∈ I.

E∼
n G

(Eα)∼n
e∼α

S

pα
(2.5.2)

Proof. The proof proceeds in a similar fashion to that of Theorem 2.5.4. The
fact that (i) is true follows from Proposition 2.5.2 and Theorem 2.4.4.

For the proof of (ii), assume that eα,β is injective for all α ≼ β in I. By Proposition
2.5.3, S∼n is a compatible system over D∼

n in NIVL, hence in NVL. Therefore there
exists a unique normal lattice homomorphism S ∶ E∼

n → G so that the diagram (2.5.2)
commutes.

It follows by exactly the same reasoning as employed in the proof of Theorem 2.5.4
that S is injective. It remains to verify that S maps E∼

n onto G. Let (ϕα)α∈I ∈ G+.
As in the proof of Theorem 2.5.4 we define a positive functional ϕ ∈ E∼ by setting,
for each u ∈ E,

ϕ(u) ∶= ϕα(uα) if u = eα(uα).
We claim that ϕ is order continuous. To see that this is so, let A ↓ 0 in E. Without
loss of generality, we may assume that A is bounded above by some 0 ≤ w ∈ E. By
Remark 2.3.6 (ii), there exists an α ∈ I and a 0 ≤ wα ∈ Eα so that eα(wα) = w, and, by
Remark 2.3.6 (iii), eα is injective for all α ∈ I. Because eα is also interval preserving,
there exists for every u ∈ A a unique 0 ≤ uα ≤ wα in Eα so that eα(uα) = u. Let
Aα ∶= {uα ∶ u ∈ A}. Then Aα ↓ 0 in Eα. Indeed, let 0 ≤ v ∈ Eα be a lower bound for
Aα. Then 0 ≤ eα(v) ≤ eα(uα) = u for all u ∈ A. Because A ↓ 0 in E it follows that
eα(v) = 0, hence v = 0. By definition of ϕ and the order continuity of ϕα we now
have ϕ[A] = ϕα[Aα] ↓ 0. Hence ϕ ∈ E∼

n .
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2.5. DUAL SPACES 47

By definition of ϕ and the commutativity of the diagram (2.5.2), it follows that
S(ϕ) = (ϕα)α∈I . Therefore S is surjective. �

Remark 2.5.6. Let D ∶= ((Eα)α∈I , (eα,β)α≼β) be a direct system in IVL, and let S ∶=
(E, (eα)α∈I) be the direct limit of D in IVL. In general, the fact that ○E∼ = {0} does
not follow from

○(Eα)∼ = {0} for all α ∈ I, even if all the Eα are non-trivial and the eα
injective. Indeed, it is well known that L0[0,1], the space of Lebesgue measurable
functions on the unit interval [0,1], has trivial order dual, see for instance [70,
Example 85.1]. However, by Example 2.3.8, L0[0,1] can be expressed as the direct
limit of its principal order ideals, each of which has a separating order dual.

In view of the above remark, the following proposition is of interest.

Proposition 2.5.7. Let D ∶= ((Eα)α∈I , (eα,β)α≼β) be a direct system in IVL, and let
S ∶= (E, (eα)α∈I) be the direct limit of D in IVL. Assume that for every α ∈ I, eα is
injective and eα[Eα] is a projection band in E. The following statements are true.

(i) If
○(Eα)∼ = {0} for every α ∈ I then ○E∼ = {0}.

(ii) If
○(Eα)∼n = {0} for every α ∈ I then ○E∼

n = {0}.

Proof. For (i), assume that
○(Eα)∼ = {0} for every α ∈ I. Let u ∈ E be non-zero.

Then there exists α ∈ I and a non-zero uα ∈ Eα so that eα(uα) = u, see Remark 2.3.6.
By assumption, there exists ϕα ∈ Eα∼ so that ϕα(uα) ≠ 0. Denote by Pα ∶ E → eα[Eα]
the projection onto eα[Eα]. We note that eα is an isomorphism onto eα[Eα]. Let
ϕ ∶= (e−1

α ○ Pα)∼(ϕα). Then ϕ ∈ E∼ and ϕ(u) = ϕα(e−1
α (Pα(u))) = ϕα(uα) ≠ 0. Hence

○E∼ = {0}.

The proof of (ii) is identical to the above with the additional note that for all α ∈ I,
eα and e−1

α are order continuous by Proposition 2.2.1 (i). �

2.5.2. Duals of inverse limits. We now study analogous results for duals of
inverse limits. In the special case of inverse systems indexed by N, we are able to
prove similar results to those of Theorems 2.5.4 and 2.5.5. Beyond this, we will
identify the main obstacle to more general results for inverse systems over arbitrary
index sets: Positive (order continuous) functionals defined on a proper sublattice of
a vector lattice E do not necessarily extend to E.

Definition 2.5.8. Let I ∶= ((Eα)α∈I , (pβ,α)β≽α) be an inverse system in IVL. The

dual system of I is the pair I∼ ∶= ((E∼
α)α∈I , (p∼β,α)β≽α).

If I is an inverse system in NVL, define the order continuous dual system of I as
the pair I∼n ∶= (((Eα)∼n)α∈I , (p∼β,α)β≽α) with p∼β,α ∶ (Eα)

∼
n → (Eβ)∼n.

The following preliminary results, analogous to Propositions 2.5.2 and 2.5.3, are
proven in the same way as the corresponding results for direct limits. As such, we
omit the proofs.

Proposition 2.5.9. Let I ∶= ((Eα)α∈I , (pβ,α)β≽α) be an inverse system in VL. The
following statements are true.
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48 2. DIRECT AND INVERSE LIMITS OF VECTOR LATTICES

(i) If I is an inverse system in IVL, then the dual system I∼ is a direct system
in NIVL.

(ii) If I is an inverse system in NIVL, then the order continuous dual system
I∼n is a direct system in NIVL.

Proposition 2.5.10. Let I ∶= ((Eα)α∈I , (pβ,α)β≽α) be an inverse system in IVL and
S ∶= (E, (pα)α∈I) a compatible system of I in IVL. The following statements are
true.

(i) S∼ ∶= (E∼, (p∼α)α∈I) is a compatible system for the direct system I∼ in NIVL.

(ii) If I is an inverse system in NIVL, then S∼n ∶= (E∼
n , (p∼α)α∈I) is a compatible

system for the direct system I∼n in NIVL.

Lemma 2.5.11. Let I ∶= ((En)n∈N, (pm,n)m≥n) be an inverse system in IVL and let
S ∶= (E, (pn)n∈N) be the inverse limit of I in VL. Assume that pm,n is a surjection
for all m ≥ n in N. Then pn is surjective and interval preserving for every n ∈ N.

Proof. Fix n0 ∈ N. Consider any un0 ∈ En0 . For n < n0 let un = pn0,n(un0).
Because pn0+1,n0 is a surjection, there exists un0+1 ∈ En0+1 so that pn0+1,n0(un0+1) =
un0 . Inductively, for each n > n0 there exists un ∈ En so that pn,n−1(un) = un−1.

We show that (un) ∈ E. Let n < m in N. By the definition of an inverse system,
it follows that pm,n = pn+1,n ○ pn+2,n+1 ○ ⋯ ○ pm−1,m−2 ○ pm,m−1. It thus follows that
pm,n(um) = un so that (un) ∈ E. We have pn0((un)) = un0 so that pn0 is a surjection.
It follows from Proposition 2.2.1 that pn0 is interval preserving. �

Theorem 2.5.12. Let I ∶= ((En)n∈N, (pm,n)m≥n) be an inverse system in IVL, and
let S ∶= (E, (pn)n∈N) be the inverse limit of I in VL. Assume that pm,n is a surjection
for all m ≥ n in N. Then the following statements are true.

(i) limÐ→I
∼ ∶= (F, (en)n∈N) exists in NIVL.

(ii) (lim←ÐI)
∼
≅ limÐ→I

∼ in NIVL. That is, there exists a lattice isomorphism

T ∶ F → E∼ such that the following diagram commutes for all n ∈ N.

F E∼

E∼
n

T

en p∼n

Proof. By Proposition 2.5.9, I∼ is a direct system in NIVL. Because the pm,n
are surjections their adjoints are injective. Thus by Theorem 2.3.4, limÐ→I

∼ exists in

NIVL.

We proceed to prove (ii). Because the p∼m,n ∶ (En)
∼ → (Em)∼ are injective, so are the

en ∶ (En)∼ → F , see Remark 2.3.6. By Lemma 2.5.11, each pn ∶ E → En is surjective
and interval preserving. This implies that S is a compatible system over I in IVL
and that p∼n ∶ (En)

∼ → E∼ is an injection for every n in N.
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2.5. DUAL SPACES 49

By Proposition 2.5.10, S∼ = (E∼, (p∼n)n∈N) is a compatible system over I∼ in NIVL.
Therefore there exists a unique interval preserving normal lattice homomorphism
T ∶ F → E∼ so that the diagram

F E∼

E∼
n

T

en p∼n

commutes for all n ∈ N. We show that T is a lattice isomorphism.

Our first goal is to establish that T is injective. Consider ϕ ∈ F so that T (ϕ) = 0.
There exists an n ∈ N and a unique ϕn ∈ E∼

n so that en(ϕn) = ϕ. Then p∼n(ϕn) =
T (en(ϕn)) = T (ϕ) = 0. But p∼n is injective so that ϕn = 0, hence ϕ = en(ϕn) = 0.

It remains to show that T maps F onto E∼. This will follow from the equality

E∼ = ⋃p∼n [(En)
∼] ,

which we now establish: Suppose that E∼ ≠ ⋃p∼n[E∼
n] and take 0 ≤ ψ ∈ E∼ ∖

⋃p∼n[E∼
n]. By Proposition 2.2.4 (i), p∼n[E∼

n] = ker(pn)○ for every n ∈ N so that
ψ ∉ ker(pn)○ for n ∈ N. Hence, for every n ∈ N, there exists 0 ≤ u(n) ∈ ker(pn) so
that ψ(u(n)) = 1. We claim that there exists w ∈ E so that w ≥ u(1) + ⋯ + u(n) for
all n ∈ N. This claim leads to ψ(w) ≥ ψ(u(1) +⋯+ u(n)) = n for every n ∈ N which is
impossible, contradicting the supposition that E∼ ≠ ⋃p∼n[E∼

n].

It remains to prove the claim: Write u(n) = (u(n)
m ) ∈ E ⊆∏Em. Fix m ∈ N. If n >m

then u
(n)
m = pn,m(pn(u(n))) = 0 because u(n) ∈ ker(pn). Let wm ∶= u(1)

m +⋯ + u(m)
m and

w ∶= (wm). Then w ≥ u(1) +⋯+ u(n) for every n ∈ N because u
(n)
m ≥ 0 for all m,n ∈ N.

To see that w ∈ E consider m1 ≥m0 in N. Then

pm1,m0(wm1) = pm1,m0(u
(1)
m1) +⋯ + pm1,m0(u

(m1)
m1 ).

But u(n) = (u(n)
m ) ∈ E for all n ∈ N, so

pm1,m0(wm1) = u
(1)
m0 +⋯ + u(m1)

m0 .

Finally, because u
(n)
m = 0 for all n >m in N we have

pm1,m0(wm1) = u
(1)
m0 +⋯ + u(m0)

m0 = wm0 .

Hence w ∈ E, which verifies our claim. This completes the proof. �

Theorem 2.5.13. Let I ∶= ((En)n∈N, (pm,n)m≥n) be an inverse system in NIVL, and
let S ∶= (E, (pn)n∈N) be the inverse limit of I in VL. Assume that pm,n is a surjection
for all m ≥ n in N. The following statements are true.

(i) limÐ→I
∼
n ∶= (G, (en)n∈N) exists in NIVL.

(ii) (lim←ÐI)
∼
n
≅ limÐ→I

∼
n in NIVL. That is, there exists a lattice isomorphism

S ∶ G→ E∼
n such that the following diagram commutes for all n ∈ N.
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50 2. DIRECT AND INVERSE LIMITS OF VECTOR LATTICES

G E∼
n

(En)∼n

S

en p∼n

Proof. The existence of limÐ→I
∼
n in NIVL follows by the same reasoning as given

in Theorem 2.5.12.

For (ii), as in the proof of Theorem 2.5.12, we see that en ∶ (En)∼n → G and
p∼n ∶ (En)

∼
n → E∼

n are injective interval preserving maps for all n ∈ N. In addition,
S is a compatible system over I in IVL.

By Proposition 2.5.10, S∼n = (E∼
n , (p∼n)n∈N) is a compatible system over I∼n in NIVL.

Therefore there exists a unique interval preserving normal lattice homomorphism
S ∶ G→ E∼

n so that the diagram

G E∼
n

(En)∼n

S

en p∼n

commutes for all n ∈ N. The reader may verify that exactly the same argument as
used in the proof of Theorem 2.5.12 shows that S is a lattice isomorphism, this time
making use of Proposition 2.2.4 (ii). �

We observe that the proofs of Theorems 2.5.12 and 2.5.13 cannot be generalised to
systems over an arbitrary directed set I. Indeed, the assumption that the inverse
system I is indexed by N is used in essential ways to show that the mappings T
and S in Theorems 2.5.12 and 2.5.13, respectively, are both injective and surjective:
The injectivity of S and T follows from the surjectivity of the maps pn, which in
turn follows from Lemma 2.5.11 where the total ordering of N is used explicitly.
We are not aware of any conditions on a general inverse system I in VL, indexed
by an arbitrary directed set, which implies that the projections from inverse limit
to the components are necessarily surjective. Furthermore, the method of proof for
surjectivity of S and T cannot be generalised to systems over arbitrary directed sets.
As we show next, this issue is related to the extension of positive linear functionals.

Theorem 2.5.14. Let I ∶= ((Eα)α∈I , (pβ,α)α≼β) be an inverse system in IVL and
S ∶= (E, (pα)α∈I) its inverse limit in VL. Assume that pβ,α and pα are surjections
for all β ≽ α in I. Then the following statements are true.

(i) limÐ→I
∼ ∶= (F, (eα)α∈I) exists in NIVL.

(ii) There exists an injective normal interval preserving lattice homomorphism
T ∶ F → E∼ so that the diagram

F E∼

E∼
α

T

eα p∼α
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2.5. DUAL SPACES 51

commutes for every α ∈ I.

(iii) If T is a bijection, hence a lattice isomorphism, then every positive linear
functional on E has a positive linear extension to ∏Eα. The converse is
true if I has non-measurable cardinal.

Proof. The fact that (i) and (ii) are true follow as in the proof of Theorem
2.5.12.

We verify (iii): Let ι ∶ E →∏Eα be the inclusion map. The diagram

E ∏Eα

Eα

pα

ι

πα

commutes in VL for every α ∈ I, and therefore the diagram

(∏Eα)
∼

E∼

E∼
α

ι∼

π∼α
p∼α

also commutes in VL for each α ∈ I. Hence, for each α ∈ I, the diagram

(∏Eα)
∼

E∼

E∼
α F

ι∼

π∼α
p∼α

eα

T

commutes in VL. Assume that T is a lattice isomorphism, and therefore a surjection.
Let ϕ ∈ E∼. There exists a ψ ∈ F so that T (ψ) = ϕ. By Remark 2.3.6, there exist
α ∈ I and ψα ∈ E∼

α so that eα(ψα) = ψ. Then

ι∼(π∼α(ψα)) = p∼α(ψα) = T (eα(ψα)) = ϕ.
Therefore ι∼ is a surjection; that is, every ϕ ∈ E∼ has an order bounded linear
extension to ∏Eα.

Next, assume that I has non-measurable cardinal and every order bounded linear
functional on E extends to an order bounded linear functional on ∏Eα. Then

ι∼ ∶ (∏Eα)
∼ → E∼ is a surjection. Fix ϕ ∈ E∼. By assumption, there exists

ψ ∈ (∏Eα)
∼

so that ϕ = ι∼(ψ). By Theorem 2.2.6 (iv), there exists α1, . . . , αn ∈ I
and ψ1 ∈ E∼

α1
, . . . , ψn ∈ E∼

αn so that ψ = π∼α1
(ψα1) + . . . + π∼αn(ψαn). Then

ϕ = ι∼ (
n

∑
i=1

π∼αi(ψi)) =
n

∑
i=1

ι∼(π∼αi(ψi)) =
n

∑
i=1

p∼αi(ψi) =
n

∑
i=1

T (eαi(ψi)) = T (
n

∑
i=1

eαi(ψi)) .

Therefore T is surjective, and hence a lattice isomorphism. �

A similar result holds for the order continuous dual of an inverse limit. We omit the
proof of the next theorem, which is virtually identical to that of Theorem 2.5.14.
Note, however, that unlike in Theorem 2.5.14, we make no assumption on the car-
dinality of I.
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Theorem 2.5.15. Let I ∶= ((Eα)α∈I , (pβ,α)β≽α) be an inverse system in NIVL and
S ∶= (E, (pα)α∈I) its inverse limit in VL. Assume that pβ,α and pα are surjections
for all β ≽ α in I. Then the following statements are true.

(i) limÐ→ (I∼n) ∶= (G, (eα)α∈I) exists in NIVL.

(ii) There exists an injective and interval preserving normal lattice homomor-
phism S ∶ G→ E∼

n so that the diagram

G E∼
n

(Eα)∼n

S

eα p∼α

commutes for every α ∈ I.

(iii) S is a lattice isomorphism if and only if every order continuous linear func-
tional on E has an order continuous linear extension to ∏Eα.

The following two results are consequences of Theorems 2.5.14 and 2.5.15, respec-
tively.

Corollary 2.5.16. Let I ∶ = ((Eα)α∈I , (pβ,α)α≼β) be an inverse system in IVL,
lim←ÐI ∶= (E, (pα)α∈I) its inverse limit in VL, and limÐ→I

∼ ∶ = (F, (eα)α∈I) the direct

limit of I∼ in NIVL. Assume that pβ,α and pα are surjections for all β ≽ α in I. If

E is majorising in ∏Eα then (lim←ÐI)
∼
≅ limÐ→I

∼ in NIVL. That is, there exists a

lattice isomorphism T ∶ F → E∼ such that the diagram

F E∼

E∼
α

T

eα p∼α

commutes for all α ∈ I.

Proof. This follows immediately from [6, Theorem 1.32] and Theorem 2.5.14.
�

Corollary 2.5.17. Let I ∶= ((Eα)α∈I , (pβ,α)α≼β) be an inverse system in NIVL,
lim←ÐI ∶= (E, (pα)α∈I) its inverse limit in VL, and limÐ→I

∼
n ∶ = (F, (eα)α∈I) the direct

limit of I∼n in NIVL. Assume that pβ,α and pα are surjections for all β ≽ α in I.

If E is majorising and order dense in ∏Eα then (lim←ÐI)
∼
n
≅ limÐ→I

∼
n in NIVL. That

is, there exists a lattice isomorphism S ∶ F → E∼
n such that the diagram

F E∼
n

(Eα)∼n

S

eα p∼α

commutes for all α ∈ I.
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Proof. This follows immediately from [6, Theorem 1.65] and Theorem 2.5.15.
�

In contrast with direct limits, the inverse limit construction always preserves the
property of having a separating order (continuous) dual.

Proposition 2.5.18. Let I ∶= ((Eα)α∈I , (pβ,α)β≽α) be an inverse system in VL and
S ∶= (E, (pα)α∈I) its inverse limit in VL. Then the following statements are true.

(i) If
○(Eα)∼ = {0} for every α ∈ I then ○E∼ = {0}.

(ii) If
○(Eα)∼n = {0} and pα is order continuous for every α ∈ I then ○E∼

n = {0}.

Proof. The proofs of (i) and (ii) are identical. Hence we omit the proof of (ii).

Assume that
○(Eα)∼ = {0} for every α ∈ I. Let u ∈ E be non-zero. Then there

exists α ∈ I so that pα(u) ≠ 0. Since
○(Eα)∼ = {0}, there exists ϕ ∈ (Eα)∼ so that

ϕ(pα(u)) ≠ 0; that is, p∼α(ϕ)(u) ≠ 0. Hence ○E∼ = {0}. �

In the last few sections of this chapter, we put the duality theory developed in
Section 2.5 to use. First, we use the duality theory to easily obtain the order (con-
tinuous) duals of some function spaces. After this, we investigate the permanence
of the vector lattice property of perfectness under both direct and inverse limits and
also give a decomposition result for perfect vector lattices. We will also show that
order dual spaces have permanence under the construction of inverse limits. Our
decomposition result for perfect vector lattices will then be used in the particular
case of C(X) spaces to solve the decomposition problem mentioned in Section 1.1.1.
Lastly, we use the Kakutani representation theorem for unital AM-spaces [56, The-
orem 2.1.3] along with the result in Example 2.3.8 and our duality theory to charac-
terise to give a characterisation of Archimedean relatively uniformly complete vector
lattices and their order duals using direct and inverse limits.

2.6. Duals of function spaces

First, we apply the duality theory to the examples in Sections 2.3.2 and 2.4.3 to
obtain characterisations of the order and order continuous duals of some function
spaces. All of these results follow immediately from the corresponding examples and
the appropriate duality result.

Theorem 2.6.1. Let (X,Σ, µ) be a complete σ-finite measure space. Let Ξ ∶= (Xn)
be an increasing sequence (w.r.t. inclusion) of measurable sets with positive measure
so that X = ⋃Xn. Let 1 ≤ p < ∞ and 1 ≤ q ≤ ∞ satisfy 1

p + 1
q = 1. For n ∈ N let en

and rn be as in Examples 2.3.9 and 2.4.7, respectively.

For every n ∈ N, let Tn ∶ Lq(Xn) → Lp(Xn)∼ be the usual (isometric) lattice isomor-
phism,

Tn(u)(v) = ∫
Xn
uv dµ, u ∈ Lq(Xn), v ∈ Lp(Xn).
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54 2. DIRECT AND INVERSE LIMITS OF VECTOR LATTICES

There exists a unique lattice isomorphism T ∶ LqΞ−`oc(X) → LpΞ−c(X)∼ so that the
diagram

LqΞ−`oc(X) LpΞ−c(X)∼

Lq(Xn) Lp(Xn)∼

T

rn e∼n

Tn

commutes for every n ∈ N.

Proof. The result follows immediately from Examples 2.3.9 and 2.4.7, Theorem
2.5.4, and Proposition 2.4.2. �

Theorem 2.6.2. Let (X,Σ, µ) be a complete σ-finite measure space. Let Ξ ∶= (Xn)
be an increasing sequence (w.r.t. inclusion) of measurable sets with positive measure
so that X = ⋃Xn. Let 1 ≤ p ≤ ∞ and 1 ≤ q ≤ ∞ satisfy 1

p + 1
q = 1. For n ∈ N let en

and rn be as in Examples 2.3.9 and 2.4.7, respectively.

For every n ∈ N, let Sn ∶ Lq(Xn) → Lp(Xn)∼n be the usual (isometric) lattice isomor-
phism,

Sn(u)(v) = ∫
Xn
uv dµ, u ∈ Lq(Xn), v ∈ Lp(Xn).

There exists a unique lattice isomorphism S ∶ LqΞ−`oc(X) → LpΞ−c(X)∼
n

so that the
diagram

LqΞ−`oc(X) LpΞ−c(X)∼
n

Lq(Xn) Lp(Xn)∼n

S

rn e∼n

Sn

commutes for every n ∈ N.

Proof. We observe that the mappings en,m in Example 2.3.9 are injective for
all n ≤ m in N. Therefore the result follows immediately from Examples 2.3.9 and
2.4.7, Theorem 2.5.5, and Proposition 2.4.2. �

Theorem 2.6.3. Let (X,Σ, µ) be a complete σ-finite measure space. Let Ξ ∶= (Xn)
be an increasing sequence (w.r.t. inclusion) of measurable sets with positive measure
so that X = ⋃Xn. Let 1 ≤ p < ∞ and 1 ≤ q ≤ ∞ satisfy 1

p + 1
q = 1. For n ∈ N let en

and rn be as in Examples 2.3.9 and 2.4.7, respectively.

For every n ∈ N, let Tn ∶ Lq(Xn) → Lp(Xn)∼ be the usual (isometric) lattice isomor-
phism,

Tn(u)(v) = ∫
Xn
uv dµ, u ∈ Lq(Xn), v ∈ Lp(Xn).
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There exists a unique lattice isomorphism R ∶ Lq(X)Ξ−c → LpΞ−`oc(X)∼ so that the
diagram

Lq(Xn) Lp(Xn)∼

LqΞ−c(X) LpΞ−`oc(X)∼

Tn

en r∼n

R

commutes for every n ∈ N.

Proof. We note that the mappings pm,n in Example 2.4.7 are surjective for all
m ≥ n in N. Therefore the result follows immediately from Examples 2.3.9 and 2.4.7,
Theorem 2.5.12, and Proposition 2.3.2. �

Theorem 2.6.4. Let (X,Σ, µ) be a complete σ-finite measure space. Let Ξ ∶= (Xn)
be an increasing sequence (w.r.t. inclusion) of measurable sets with positive measure
so that X = ⋃Xn. Let 1 ≤ p ≤ ∞ and 1 ≤ q ≤ ∞ satisfy 1

p + 1
q = 1. For n ∈ N let en

and rn be as in Examples 2.3.9 and 2.4.7, respectively.

For every n ∈ N, let Sn ∶ Lq(Xn) → Lp(Xn)∼n be the usual (isometric) lattice isomor-
phism,

Sn(u)(v) = ∫
Xn
uv dµ, u ∈ Lq(Xn), v ∈ Lp(Xn).

There exists a unique lattice isomorphism Q ∶ LpΞ−c(X) → LqΞ−`oc(X)∼
n

so that the
diagram

Lq(Xn) Lp(Xn)∼n

LqΞ−c(X) LpΞ−`oc(X)∼
n

Sn

en r∼n

Q

commutes for every n ∈ N.

Proof. Because the mappings pm,n in Example 2.4.7 are surjective for all m ≥ n
in N, the result follows immediately from Examples 2.3.9 and 2.4.7, Theorem 2.5.13,
and Proposition 2.3.2. �

The following result is a special case of the Riesz Representation Theorem [25,
Chapter III, Theorem 5.7].

Theorem 2.6.5. Let X be a locally compact and σ-compact Hausdorff space. Let
Γ ∶= (Xn) be an increasing sequence (w.r.t. inclusion) of open precompact sets in
X so that X = ⋃Xn. For n ∈ N let en and rn be as in Examples 2.3.10 and 2.4.8,
respectively.
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56 2. DIRECT AND INVERSE LIMITS OF VECTOR LATTICES

For every n ∈ N, let Tn ∶ M(X̄n) → C(X̄n)∼ denote the usual (isometric) lattice
isomorphism,

Tn(µ)(u) = ∫
Xn
udµ, µ ∈ M(X̄n), u ∈ C(X̄n).

There exists a unique lattice isomorphism T ∶ Mc(X) → C(X)∼ so that the diagram

M(X̄n) C(X̄n)∼

Mc(X) C(X)∼

Tn

en r∼n

T

commutes for every n ∈ N.

Proof. The result follows immediately from Examples 2.3.10 and 2.4.8, Theo-
rem 2.5.12, and Proposition 2.3.2. �

Theorem 2.6.6. Let X be a locally compact and σ-compact Hausdorff space. Let
Γ ∶= (Xn) be an increasing sequence (with respect to inclusion) of open precompact
sets in X so that X = ⋃Xn. For n ∈ N let en and rn be as in Examples 2.3.11 and
2.4.8, respectively.

For every n ∈ N, let Sn ∶ N(X̄n) → C(X̄n)∼n denote the (isometric) lattice isomor-
phism,

Sn(µ)(u) = ∫
Xn
udµ, µ ∈ N(X̄n), u ∈ C(X̄n).

There exists a unique lattice isomorphism S ∶ Nc(X) → C(X)∼n so that the diagram

N(X̄n) C(X̄n)∼n

Nc(X) C(X)∼n

Sn

en r∼n

S

commutes for every n ∈ N.

Proof. The result follows immediately from Examples 2.3.11 and 2.4.8, Theo-
rem 2.5.13, and Proposition 2.3.2. �

2.7. Perfect spaces

Recall that a vector lattice E is perfect if the canonical embedding E ∋ u z→ Ψu ∈
(E∼

n)
∼
n is a lattice isomorphism [70, p. 409]. We say that a vector lattice E is is an

order continuous dual, or has an order continuous predual if there exists a vector
lattice F so that E and F ∼

n are isomorphic vector lattices. From the definition it is
clear that every perfect vector lattice has an order continuous dual. On the other
hand, see [70, Theorem 110.3], F ∼

n is perfect for any vector lattice F . Therefore, E
is perfect if and only if E has an order continuous predual.

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



2.7. PERFECT SPACES 57

Lemma 2.7.1. Let E be a vector lattice and 0 ≤ ϕ,ψ ∈ E∼
n . The following statements

are true.

(i) There exist functionals 0 ≤ ϕ1, ψ1 ∈ E∼
n so that ϕ1 ∧ ψ1 = 0, ϕ1 ≤ ϕ, ψ1 ≤ ψ

and ϕ ∨ ψ = ϕ1 ∨ ψ1.

(ii) If E has the principal projection property and ϕ is strictly positive, then for
all u ∈ E, if η(u) = 0 for all functionals 0 ≤ η ≤ ϕ then u = 0.

Proof. The statement in (i) follows from [56, Lemma 1.28 (ii) & Exercise
1.2.E1].

We prove the contrapositive of (ii). Let u ≠ 0 in E. Without loss of generality
assume that u+ ≠ 0. Denote by B the band generated by u+ in E. Define η ∶= ϕ○PB.
Then η is order continuous, 0 ≤ η ≤ ϕ and η(u) = ϕ(u+) ≠ 0. �

Using the duality results obtained in Section 2.5, we can now show that the vector
lattice property of perfectness also has permanence under the inverse limit construc-
tion.

Theorem 2.7.2. Let I ∶= ((Eα)α∈I , (pβ,α)β≽α) be an inverse system in NIVL, and
let S ∶= (E, (pα)α∈I) be its inverse limit in VL. Assume that pβ,α is surjective for all
β ≽ α in I. If Eα is perfect for every α ∈ I then so is E.

Proof. By Proposition 2.5.9, the pair I∼n ∶= (((Eα)∼n)α∈I , (p∼β,α)α≼β) is a direct
system in NIVL. Because every pβ,α is surjective, each p∼β,α is injective. Hence, by

Theorem 2.3.4, the direct limit of I∼n exists in NIVL. Let S ∶= (F, (eα)α∈I) be the
direct limit of I∼n in NIVL.

By Proposition 2.5.2, the pair I∼∼nn ∶= (((Eα)∼∼nn)α∈I , (p∼∼β,α)α≼β) is an inverse system in

NIVL, and S∼n ∶= (F ∼
n , (e∼α)α∈I) is the inverse limit of I∼∼nn in NVL by Theorem 2.5.5.

For every α ∈ I, let σα ∶ Eα → (Eα)∼∼nn denote the canonical lattice isomorphism. We
observe that the diagram

Eβ (Eβ)∼∼nn

Eα (Eα)∼∼nn

σβ

pβ,α p∼∼β,α

σα

commutes for all β ≽ α in I. By Proposition 2.4.2, there exists a unique lattice
isomorphism Σ ∶ E → F ∼

n so that the diagram

E F ∼
n

Eα (Eα)∼∼nn

Σ

pα e∼α

σα

commutes for every α ∈ I. Since F ∼
n is perfect, we conclude that E is also perfect. �
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58 2. DIRECT AND INVERSE LIMITS OF VECTOR LATTICES

Our next result is a decomposition theorem for perfect vector lattices (i.e. vector
lattices with an order continuous dual). The result follows as an application of
Example 2.4.9 and the duality results in Section 2.5.

Theorem 2.7.3. Let E be a Dedekind complete vector lattice. Recalling the termi-
nology and notation introduced in Example 2.4.9, denote by Mn ⊆ BE the collection
of carriers for positive, order continuous functionals on E; that is,

Mn ∶= {Cϕ ∶ 0 ≤ ϕ ∈ E∼
n}.

For Cϕ ⊆ Cψ in Mn, denote by Pϕ the band projection of E onto Cϕ and by Pψ,ϕ the

band projection of Cψ onto Cϕ. Consider the inverse system IMn ∶= (Mn, (Pψ,ϕ)ψ≥ϕ)
with lim←ÐIMn ∶= (F, (pϕ)0≤ϕ∈E∼

n
) in VL. The following statements are true.

(i) Mn is an ideal in BE.

(ii) Mn is a non-trivial ideal in BE if and only if E admits a non-zero order
continuous functional.

(iii) Mn is a proper ideal in BE if and only if E admits no strictly positive order
continuous functional.

(iv) The map PMn ∶ E ∋ u ↦ (Pϕ(u))0≤ϕ∈E∼
n
∈ F is injective if and only if ○E∼

n =
{0}.

(v) If E is perfect then PMn is a lattice isomorphism.

Proof of (i). For 0 ≤ ψ,ϕ ∈ E∼
n , we have Cψ,Cϕ ⊆ Cϕ∨ψ ∈ Mn and therefore

Mn is upwards directed.

Take B ∈ BE and 0 ≤ ϕ ∈ E∼
n such that B ⊆ Cϕ. Define ψ ∶= ϕ ○ PB. Then ψ ≥ 0

and by the order continuity of band projections, we have ψ ∈ E∼
n . We show that

Nψ = Bd: For u ∈ Bd, we have PB(∣u∣) = 0 so that ψ(∣u∣) = ϕ (PB(∣u∣)) = ϕ(0) = 0.
Therefore Bd ⊆ Nψ. For the reverse inclusion, let v ∈ Nψ. Then ϕ (PB(∣v∣)) = 0 so
that PB(∣v∣) ∈ Nϕ ⊆ Bd. Hence PB(∣v∣) = 0 so that v ∈ Bd. We conclude that B = Cψ.
Therefore B ∈ Mn so that Mn is downward closed, hence an ideal in BE. �

Proof of (ii). This is clear. �

Proof of (iii). A functional 0 ≤ ϕ ∈ E∼
n is strictly positive if and only if Nϕ =

{0}, if and only if Cϕ = E; hence the result follows. �

Proof of (iv). According to Example 2.4.9 (iii), PMn is injective if and only
if {Pϕ ∶ 0 ≤ ϕ ∈ E∼

n} separates the points of E. It therefore suffices to prove that
○E∼

n = {0} if and only if {Pϕ ∶ 0 ≤ ϕ ∈ E∼
n} separates the points of E.

Assume that ○E∼
n = {0}. Fix u ∈ E with u ≠ 0. Then there exists ϕ ∈ E∼

n such that
ϕ(u) ≠ 0. Therefore 0 < ∣ϕ(u)∣ ≤ ∣ϕ∣(∣u∣). Hence u /∈ N∣ϕ∣ and thus P∣ϕ∣(u) ≠ 0.

Conversely, assume that {Pϕ ∶ 0 ≤ ϕ ∈ E∼
n} separates the points of E. We first prove

the statement for positive elements: Let 0 < v ∈ E+. There exists 0 ≤ ϕ ∈ E∼
n such

that Pϕ(v) > 0. Since every positive functional is strictly positive on its carrier, it
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2.7. PERFECT SPACES 59

follows that ϕ(v) ≥ ϕ (Pϕ(v)) > 0. Now, consider any non-zero w ∈ E. There exists
0 ≤ ϕ ∈ E∼

n such that ϕ(w+) ≠ 0. Let B denote the band generated by w+ in E and
define the functional ψ ∶= ϕ ○ PB. Then 0 ≤ ψ ∈ E∼

n and ψ(w) = ϕ(w+) ≠ 0. �

Proof of (v). It follows from Example 2.4.9 (ii) that PMn is a lattice homo-
morphism. Since E is perfect, we have ○E∼

n = {0} [70, Theorem 110.1] and so by
(iv), PMn is injective. We show that PMn is surjective.

Let 0 ≤ u = (uϕ) ∈ F . Define the map Υ ∶ (E∼
n)+ → R by setting Υ (ϕ) ∶= ϕ (uϕ) for

ϕ ∈ (E∼
n)+. We claim that Υ is additive. Let 0 ≤ ϕ,ψ ∈ E∼

n . Then

Υ (ϕ + ψ) = (ϕ + ψ) (uϕ+ψ)
= ϕ (uϕ+ψ) + ψ (fϕ+ψ)
= ϕ ○ Pϕ (uϕ+ψ) + ψ ○ Pψ (uϕ+ψ) .

Because (uϕ) ∈ F we have Pϕ (uϕ+ψ) = Pϕ+ψ,ϕ (uϕ+ψ) = uϕ and Pψ (uϕ+ψ) = Pϕ+ψ,ψ (uϕ+ψ) =
uψ. Hence

Υ (ϕ + ψ) = ϕ (uϕ) + ψ (uψ) = Υ (ϕ) +Υ (ψ) .
By [3, Theorem 1.10] Υ extends to a positive linear functional on E∼

n , which we
denote by Υ as well.

We claim that Υ is order continuous. To see this, consider any D ↓ 0 in E∼
n . Fix

ε > 0 and ϕ ∈D. By [6, Theorem 1.18] there exists ψ0 ≤ ϕ in D so that 0 ≤ ψ(uϕ) < ε
for all ψ ≤ ψ0 in D. Consider ψ ≤ ψ0. Since u ∈ F we have uψ = Pϕ,ψ(uϕ) ≤ uϕ so
that 0 ≤ ψ(uψ) ≤ ψ(uϕ) < ε. That is, 0 ≤ Υ(ψ) < ε for all ψ ≤ ψ0. Therefore Υ[D] ↓ 0
in R so that Υ is order continuous, as claimed.

Since E is perfect, there exists v ∈ E+ so that Υ (ϕ) = ϕ (v) for all ϕ ∈ E∼
n . We claim

that PMn(v) = u; that is, Pϕ(v) = uϕ for every 0 ≤ ϕ ∈ E∼
n . For every 0 ≤ ϕ ∈ E∼

n we
have ϕ(uϕ) = Υ (ϕ) = ϕ(v) = ϕ (Pϕ(v)). Let 0 ≤ η ≤ ϕ in E∼

n . Then

η (uϕ) = η (Pηuϕ) = η (uη) = Υ(η) = η(v),
and,

η (Pϕ(v)) = η (PηPϕ(v)) = η (Pη(v)) = η(v).
Thus η (uϕ − Pϕ(v)) = 0. By Lemma 2.7.1 (ii), applied on Cϕ, we conclude that
Pϕ(v) = uϕ. This verifies our claim. Therefore PMn maps E+ onto F + which shows
that PMn is surjective. �

Remark 2.7.4. We observe that the converse of Theorem 2.7.3 (v) is false. Indeed,
(c0)∼∼nn = `∞ so that c0 is not perfect. However, there exists a strictly positive
functional ϕ ∈ (c0)∼n = `1. Therefore c0 = Cϕ ∈ Mn so that PMn maps c0 lattice
isomorphically onto F , see Remark 2.4.10.

Corollary 2.7.5. Let E be a Dedekind complete vector lattice. Let Mp ⊆ BE consist
of the carriers of all positive, order continuous functionals on E which are perfect;
that is,

Mp ∶= {Cϕ ∶ 0 ≤ ϕ ∈ E∼
n and Cϕ is perfect}.

The following statements are true.

(i) Mp is an ideal in BE.
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60 2. DIRECT AND INVERSE LIMITS OF VECTOR LATTICES

(ii) PMp is a lattice isomorphism if and only if E is perfect.

Proof of (i). It follows from Theorem 2.7.3 (i) and the fact that bands in
a perfect vector lattices are themselves perfect [70, Theorem 110.3] that Mp is
downwards closed in BE. To see that Mp is upwards directed, fix Cϕ,Cψ ∈ Mp. By
Lemma 2.7.1 (i) there exist functionals 0 ≤ ϕ1 ≤ ϕ and 0 ≤ ψ1 ≤ ψ in E∼

n such that
ϕ1 ∧ ψ1 = 0 and ϕ1 ∨ ψ1 = ϕ ∨ ψ. Because 0 ≤ ϕ1 ≤ ϕ and 0 ≤ ψ1 ≤ ψ it follows that
Cϕ1 ⊆ Cϕ and Cψ1 ⊆ Cψ. Therefore Cϕ1 and Cψ1 are perfect. By [70, Theorem 90.7],
we have

Cϕ1∨ψ1 = (Cϕ1 +Cψ1)
dd = Cϕ1 +Cψ1 .

By [70, Theorem 90.6], since ϕ1 ∧ ψ1 = 0, we have Cϕ1 ⊥ Cψ1 . Thus Cϕ1 ∩Cψ1 = {0}
which implies Cϕ1∨ψ1 = Cϕ1 ⊕Cψ1 . Hence it follows from Theorem 2.2.6 (v) and (vii)
that (Cϕ1∨ψ1)

∼∼
nn ≅ Cϕ1∨ψ1 . That is, Cϕ∨ψ = Cϕ1∨ψ1 is perfect. Since Cϕ,Cψ ⊆ Cϕ∨ψ it

follows that Mp is upward directed, hence an ideal in BE. �

Proof of (ii). If E is perfect then Mp = Mn, and so the result follows from
Theorem 2.7.3 (v). Conversely, if PMp is an isomorphism then Theorem 2.7.2 implies
that E is perfect. �

Given the duality results obtained in Section 2.5, one would expect there to be
at least some analogue of Theorem 2.7.2 for direct limits. Due to the inherent
limitations of duality results for inverse limits observed in Section 2.5.2, these results
will be less general than the preceding results in this section.

Theorem 2.7.6. Let D ∶= ((En)n∈N, (en,m)n≤m) be a direct system in NIVL, and let
S ∶= (E, (en)n∈N) be the direct limit of D in IVL. Assume that e∼n,m is surjective for
all n ≤m in N. If En is perfect for every n ∈ N then so is E.

Proof. By Proposition 2.5.2, the pair D∼
n ∶= (((En)∼n)n∈N, (e∼n,m)n≤m) is an in-

verse system in NIVL, and by Theorem 2.4.4, the inverse limit S0 ∶= (F, (pn)n∈N) of
D∼

n exists in NVL.

By Proposition 2.5.9, the pair D∼∼
nn ∶= (((En)∼∼nn)n∈N , (e∼∼n,m)n≤m) is a direct system in

NIVL. Since we assumed that the e∼n,m are surjective, it follows by Theorem 2.5.13
that (S0)∼n is the direct limit of D∼∼

nn in NIVL. For every n ∈ N, let σn ∶ En → (En)∼∼nn

denote the canonical lattice isomorphism. The diagram

En (En)∼∼nn

Em (Em)∼∼nn

σn

en,m e∼∼n,m

σm
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2.7. PERFECT SPACES 61

commutes in VL for all n ≤ m in N. By Proposition 2.3.2, there exists a unique
lattice isomorphism Σ ∶ E → F ∼

n so that the diagram

En (En)∼∼nn

E F ∼
n

σn

en e∼∼n,m

Σ

commutes in VL for every n ∈ N. Since F ∼
n is perfect, we conclude that E is also

perfect. �

Corollary 2.7.7. Let D ∶= ((En)n∈N, (en,m)n≤m) be a direct system in NIVL, and
let S ∶= (E, (en)n∈N) be the direct limit of D in IVL. Assume that en,m is injective
and en,m[En] is a band in Em for all n ≤ m in N. If En is perfect for every n ∈ N
then so is E.

Proof. The result will follow directly from Theorem 2.7.6 if we can show that
e∼n,m is surjective for all n ≤m in N. We observe that each En is Dedekind complete
and thus has the projection property. Fix n ≤m in N. Let Pm,n ∶ Em → en,m[En] be
the band projection onto en,m[En]. The diagram

En Em

en,m[En]
en,m

en,m

Pm,n

commutes in NIVL. Therefore

(Em)∼n (En)∼n

(en[En])∼n

e∼n,m

P ∼
m,n e∼n,m

commutes as well in NIVL. Since em,n ∶ En → en,m[En] is a lattice isomorphism,
the adjoint e∼n,m ∶ (en,m[En])∼n → (En)∼n is also a lattice isomorphism. Therefore it
follows from the last diagram that e∼n,m ∶ (Em)∼n → (En)∼n is indeed a surjection. �

Corollary 2.7.8. Let E be an Archimedean vector lattice. Assume that there exists
an increasing sequence (ϕn) of positive order continuous functionals on E such that
(ϕn) separates E and, for every n ∈ N, Cϕn is perfect. Then E is perfect.

Proof. Since (ϕn) is increasing, we have that Cϕn ⊆ Cϕn+1 for every n ∈ N.
Further, since (ϕn) separates E we also have that ⋃Cϕn = E.

For all n ≤ m denote by en,m ∶ Cϕn → Cϕm and en ∶ Cϕn → E the inclusion maps.
By Example 2.3.7, the pair D ∶= ((Cϕn)n∈N, (en,m)n≤m) is a direct system in NIVL,
and S ∶= (E, (en)n∈N) is the direct limit of D in NIVL. By Corollary 2.7.7, E is
perfect. �
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62 2. DIRECT AND INVERSE LIMITS OF VECTOR LATTICES

2.8. Order dual spaces

In this section, we study the permanence of order dual spaces under the inverse
limit construction. As mentioned in Section 1.1.1, a reasonable definition for a
vector lattice E to be an order dual space is to simply require that there exists a
vector lattice F such that E and F ∼ are lattice isomorphic. Hence, by [70, Theorem
110.2], all order dual spaces are perfect vector lattices.

However, this definition appears to be problematic for our purposes for the following
reason: For perfect vector lattices it was clear how we can approach questions of
permanence under direct and inverse limits since a vector lattice is perfect when
the canonical embedding σE ∶ E → (E∼

n)
∼
n is a lattice isomorphism. It is then easily

seen that canonical embedding σE interacts nicely with linking maps of direct and
inverse systems in the square diagrams in Propositions 2.3.2 and 2.4.2. However, our
‘reasonable’ definition of an order dual space only gives us some lattice isomorphism
T ∶ E → F ∼ and it is not immediately obvious that this isomorphism T can also be
used in the same way with Propositions 2.3.2 and 2.4.2. Fortunately, it can be
shown that this reasonable definition is equivalent to a more specific statement
for which it is clear that a similar approach as that for perfect vector lattices via
Propositions 2.3.2 and 2.4.2 can be used.

First, we make the following simple but very important observation.

Proposition 2.8.1. Let F be a vector lattice. There exists a vector lattice G with
separating order dual G∼ such that F ∼ and G∼ are lattice isomorphic.

Proof. Note that since F ∼ is an order ideal in itself, the pre-annihilator
○(F ∼)

is an order ideal in F , see [71, Theorem 30.2]. Thus the quotient G ∶= F / ○(F ∼) is a
vector lattice and the quotient map Q ∶ F → G is a surjective lattice homomorphism.
Since Q [F ] = G is an order ideal in G, it follow by Proposition 2.2.1 (ii) that Q is
interval preserving. Therefore, by Theorem 2.2.3 (iii) and (iv), the order adjoint
Q∼ ∶ G∼ → F ∼ is an injective interval preserving lattice homomorphism. Since
Q is a surjective lattice homomorphism, it follows by Proposition 2.2.4 (i) that
Q∼ [G∼] = (kerQ)○ = (○(F ∼))○ = F ∼. Thus Q∼ is a lattice isomorphism.

The definition of the vector lattice G guarantees that G∼ separates G: Take u ∈ G
with v ∈ F such that Q(v) = u and assume that ψ (u) = 0 for all ψ ∈ G∼. Then for
all ψ ∈ G∼,

Q∼ (ψ) (v) = ψ (Q(v)) = ψ (u) = 0.

Since Q∼ is a lattice isomorphism it follows that ϕ(v) = 0 for all ϕ ∈ F ∼. Hence,
v ∈ ○(F ∼) = kerQ which implies u = 0. �

Proposition 2.8.2 ([4, Theorem 3.11]). Let E be a vector lattice with B an order
ideal in E∼. The canonical map σE ∶ E → B∼

n is a vector lattice embedding if and
only if B separates the points of E.

Proposition 2.8.3. Let E be a vector lattice. The following statements are equiv-
alent.

(i) There exists a vector lattice F such that E and F ∼ are lattice isomorphic.
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2.8. ORDER DUAL SPACES 63

(ii) There exists a vector sublattice G of E∼
n such that G∼ separates G and the

canonical embedding σE ∶ E → G∼ is a lattice isomorphism.

Proof. It is clear that (ii) is a special case of (i). We prove that (i) implies (ii):
By Proposition 2.8.1, we may assume without loss of generality that F ∼ separates
F . Thus the canonical map σF ∶ F → (F ∼)∼n is a vector lattice embedding by
Proposition 2.8.2. Let T ∶ E → F ∼ be a lattice isomorphism. Then T ∼ ∶ (F ∼)∼n → E∼

n .
Denote G ∶= T ∼ ○ σF [F ] which is a vector sublattice of E∼

n . Then T ∼ ○ σF ∶ F → G
and S ∶ G∼ → F ∼ where S ∶= (T ∼ ○ σF )∼ are lattice isomorphisms. Since F ∼ separates
F , it follows that G∼ separates G. Define the canonical map σE ∶ E → G∼ where
(σE(f)) (ϕ) ∶= ϕ(f) for f ∈ E and ϕ ∈ G ⊆ E∼

n . We claim that the following diagram
commutes.

G∼ F ∼

E

S

σE T

Take x ∈ E and u ∈ F , then

(S ○ σE(x)) (u) = ((T ∼ ○ σF )∼ ○ σE(x)) (u) = (σE(x)) (T ∼ ○ σF (u))
= (T ∼ ○ σF (u)) (x) = (σF (u)) (Tx) = (Tx) (u).

Therefore S ○ σE = T , which implies that σE = S−1 ○ T is a lattice isomorphism. �

In light of this result, we take the statement in (ii) above as the definition of an
order dual space.

Definition 2.8.4. A vector lattice E is an order dual space if there exists a vector
sublattice F of E∼

n such that F ∼ separates F and the canonical map σE ∶ E → F ∼ is
a lattice isomorphism. The sublattice F of E∼

n is called an order predual of E.

In the particular case where E∼
n is an order predual of E, we call E an immaculate

vector lattice.

A similar result to that of Proposition 2.8.3 can be proven in the particular case of
immaculate vector lattices.

Proposition 2.8.5. Let E be a vector lattice. The following statements are equiv-
alent.

(i) There exists a lattice isomorphism T ∶ E → (E∼
n)

∼
.

(ii) E is an immaculate vector lattice.

Proof. As before, the statement in (ii) is just a special case of (i). For (i)
implies (ii), we note that since E is a perfect vector lattice, the canonical map
σE ∶ E → (E∼

n)
∼

is a vector lattice embedding with σE [E] = (E∼
n)

∼
n. However,

since T is a lattice isomorphism and E is perfect it follows that there is a lattice
isomorphism S ∶ (E∼

n)
∼
n → (E∼

n)
∼
. Since (E∼

n)
∼
n is a band in (E∼

n)
∼
, we conclude that

(E∼
n)

∼
n = (E∼

n)
∼

and thus σE ∶ E → (E∼
n)

∼
is a lattice isomorphism. Lastly, since E∼

n

is a perfect vector lattice it follows by [70, Theorem 110.1] that (E∼
n)

∼
separates E∼

n

and thus (ii) follows. �
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64 2. DIRECT AND INVERSE LIMITS OF VECTOR LATTICES

The specific formulations of Definition 2.8.4 and Proposition 2.8.1 allows us to show
that the order dual space property has, under fairly general conditions, permanence
under the inverse limit construction.

Theorem 2.8.6. Let I ∶= ((Eα)α∈I , (pβ,α)β≽α) be an inverse system in NIVL, and
let S ∶= (E, (pα)α∈I) be the inverse limit of I in VL. Assume that Eα is an order
dual space for every α ∈ I with Fα the order predual of Eα. Further, assume that
p∼β,α [Fα] is an order ideal in Fβ for every α,β ∈ I with β ≽ α. Then E is an order
dual space.

Proof. By Proposition 2.5.9, the pair I∼n ∶= (((Eα)∼n)α∈I , (p∼β,α)α≼β) is a direct
system in NIVL. For every α,β ∈ I with β ≽ α, define eα,β ∶ Fα → Fβ where

eα,β ∶= p∼β,α∣Fα and denote R∶= ((Fα)α∈I , (eα,β)α≼β). Since the linking maps in I∼n are

lattice homomorphisms it follows that the eα,β maps are lattice homomorphisms and
it follows precisely by the assumption that eα,β [Fα] is an order ideal in Fβ that the
eα,β maps are also interval preserving (Proposition 2.2.1 (ii)). Thus R is a direct
system in IVL and by Theorem 2.3.3 the direct limit (F, (eα)α∈I) of R exists in
IVL.

By Proposition 2.5.2, the pair R∼ ∶ = ((F ∼
α)α∈I , (e∼α,β)α≼β) is an inverse system in

NIVL and by Theorem 2.5.4, (F ∼, (e∼α)α∈I) is the inverse limit of R∼ in NVL. We
observe that the diagram

Eβ F ∼
β

Eα F ∼
α

σβ

pβ,α e∼α,β

σα

commutes in VL for all β ≽ α in I. By Proposition 2.4.2, there exists a unique
lattice isomorphism T ∶ E → F ∼ so that the diagram

E F ∼

Eα F ∼
α

T

pα e∼α

σα

commutes for every α ∈ I. By Proposition 2.8.3, it follows that E is an order dual
space. �

We note that the assumptions in the previous theorem cannot be weakened in an
obvious way and still deliver the same outcome: We need to assume that p∼β,α [Fα] ⊆
Fβ in order to form the direct system of preduals R. Further, the assumption that
p∼β,α [Fα] is an order ideal in Fβ is used to guarantee that R is a direct system in
IVL. This step cannot be dispensed with since the duality result in Proposition 2.5.2
requires the linking maps in R to be interval preserving in order to ensure that R∼
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2.8. ORDER DUAL SPACES 65

is at least an inverse system in VL. For similar reasons, the duality result in
Proposition 2.5.9 requires I to be an inverse system in NIVL.

The analogous result to Theorem 2.8.6 for immaculate vector lattices follows as a
corollary of Theorem 2.8.6 since the linking maps p∼β,α ∶ (Eα)

∼
n → (Eβ)∼n are NIVL-

morphisms and so by [49, Proposition 14.7], p∼β,α [(Eα)∼n] is an order ideal in (Eβ)∼n.

Corollary 2.8.7. Let I ∶ = ((Eα)α∈I , (pβ,α)β≽α) be an inverse system in NIVL,
and let S ∶= (E, (pα)α∈I) be the inverse limit of I in VL. Assume that Eα is an
immaculate vector lattice for every α ∈ I. Then E is an immaculate vector lattice.

We show that more can be said in Theorem 2.8.6 if we consider Banach lattices
where the underlying vector lattice is an order dual space.

Theorem 2.8.8. Let E be a Banach lattice that is an order dual space. Then there
exists a Banach lattice G such that E and G⋆ are isomorphic2 as Banach lattices.

Proof. Let F be a vector lattice such that F ∼ and E are lattice isomorphic.
By Proposition 2.8.1, we may assume without loss of generality that F ∼ separates
F . By Proposition 2.8.2, the canonical map σF ∶ F → (F ∼)∼ = (F ∼)⋆ is a vector
lattice embedding. Define F0 ∶= σF [F ], then F0 is a sublattice of (F ∼)⋆ and thus F0

is a normed vector lattice. We claim that F ⋆
0 = F ∼

0 : In general, we know that F ⋆
0 is

an order ideal in F ∼
0 .

For the reverse inclusion, take ψ ∈ F ∼
0 . Consider a sequence (σF (un)) in F0 ⊆

(F ∼)⋆ such that (σF (un)) converges to zero in the norm topology. Since the weak-⋆
topology on (F ∼)⋆ is weaker than the norm topology on (F ∼)⋆, it follows that

(σF (un)) (ϕ) = ϕ(un) Ð→ 0

in R for every ϕ ∈ F ∼. In particular, consider ϕ0 ∶= ψ ○ σF ∈ F ∼, then

ψ (σF (un)) = ϕ0(un) = (σF (un)) (ϕ0) Ð→ 0

in R. Hence ψ ∈ F ⋆
0 , which implies that F ⋆

0 = F ∼
0 .

Denote by G the completion of F0; then G is a Banach lattice and we know that F ⋆
0

and G⋆ are isomorphic as Banach lattices. Since E and F ∼
0 are lattice isomorphic

it follows that there is a lattice isomorphism T ∶ E → G⋆. Since positive operators
between Banach lattices are automatically norm bounded [71, Theorem 18.4], we
conclude that T is norm bounded and T −1 is also automatically norm bounded by
the Bounded Inverse Theorem [57, Theorem 14.5.1]. �

We call a Banach lattice E an isomorphic dual Banach lattice if there exists a Banach
lattice G such that E and G∗ are isomorphic as Banach lattices. The next result is
a direct consequence of Theorems 2.8.6 and 2.8.8.

Corollary 2.8.9. Let E be a Banach lattice and I ∶= ((Eα)α∈I , (pβ,α)β≽α) an inverse
system in NIVL such that (E, (pα)α∈I) is the inverse limit of I in VL. That is to
say, the underlying vector lattice of the Banach lattice E is obtained as the inverse

2A bi-continuous lattice isomorphism between Banach lattices.
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66 2. DIRECT AND INVERSE LIMITS OF VECTOR LATTICES

limit of I in VL. If Eα is an order dual space for every α ∈ I, then E is an
isomorphic dual Banach lattice.

To end this section, we make some comments on the properties of being an immac-
ulate vector lattice, an order dual space, and a perfect vector lattice. It is clear that
the following implications hold in general.

Immaculate Ô⇒ Order dual space Ô⇒ Perfect

However, there are examples which demonstrate that the reverse implications do
not hold in general. Therefore these three notions are indeed distinct.

Example 2.8.10 (An order dual space which is not immaculate). Since `1 ≅ (c0)∼,
it follows that `1 is an order dual space. By the Riesz Representation Theorem [61,
Theorem 18.4.1],

(`1∼
n)

∼ ≅ (`∞)∼ ≅ M(βN).
Since `1 is an atomic Banach lattice [56, p. 113] but M(βN) is not, we conclude
that `1 is not an immaculate vector lattice.

Example 2.8.11 (A perfect vector lattice that is not an order dual space). The
Banach lattice L1[0,1] is perfect [3, Theorem 9.22, Theorem 9.34]. Suppose for a
contradiction that L1[0,1] is an order dual space. By Theorem 2.8.8, there exists
a Banach lattice G such that L1[0,1] and G⋆ are isomorphic as Banach lattices.
Since L1[0,1] is separable, so is G⋆. Every separable dual Banach space has the
Radon-Nikodým property [30, Appendix D3]. Therefore G⋆, hence also L1[0,1], has
the Radon-Nikodým property. But L1[0,1] does not possess the Radon-Nikodým
property [58, Example 5.15]. Therefore L1[0,1] is not an order dual space.

2.9. Decomposition theorem for C(X)
This section deals with decomposition theorems for spaces C(X) which are order
dual spaces: We will show that a naive generalisation of the decomposition theorem
for C(K) in Theorems 1.1.3 to the non-compact case fails and present an alternative
approach using the theory of inverse limits of vector lattices we have developed. In
order to facilitate the discussion to follow, we recall some basic facts concerning the
structure of the carriers of positive functionals on C(X). Throughout this section
X will denote a realcompact space.

Let 0 ≤ ϕ ∈ C(X)∼. According to Theorem A.1.7 there exists a measure µϕ ∈ Mc(X)+
so that

ϕ(u) = ∫ udµϕ, u ∈ C(X).

Denote by Sϕ the support of the measure µϕ. The null ideal of ϕ is given by

Nϕ = {u ∈ C(X) ∶ u(x) = 0 for all x ∈ Sϕ}.

Indeed, the inclusion {u ∈ C(X) ∶ u(x) = 0 for all x ∈ Sϕ} ⊆ Nϕ is clear. For the
reverse inclusion, consider u ∈ C(X) so that u(x0) ≠ 0 for some x0 ∈ Sϕ. Then there
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2.9. DECOMPOSITION THEOREM FOR C(X) 67

exists a neighbourhood V of x0 and ε > 0 so that ∣u∣(x) > ε for all x ∈ V . Because
x0 ∈ Sϕ, we have µϕ(V ) > 0. Therefore

ϕ(∣u∣) ≥ ∫
V
∣u∣dµϕ ≥ εµϕ(V ) > 0

so that u ∉ Nϕ. It therefore follows that

Cϕ = {u ∈ C(X) ∶ u(x) = 0 for all x ∈X ∖ Sϕ}.
The band Cϕ is a projection band if and only if Sϕ is open, hence compact and
open, see [48, Theorem 6.3]. In this case we identify Cϕ with C(Sϕ) and the band
projection Pϕ ∶ C(X) → Cϕ is given by restriction of u ∈ C(X) to Sϕ.

Proposition 2.9.1. Let X be extremally disconnected. Then Cϕ is perfect for every
0 ≠ ϕ ∈ C(X)∼n.

Proof. Fix 0 ≠ ϕ ∈ C(X)∼n. By Theorem 2.1.7, since X is extremally discon-
nected, then C(X), and hence also Cϕ, is Dedekind complete. Furthermore, ∣ϕ∣ is
strictly positive and order continuous on Cϕ. It follows by Corollary 2.1.13 that Sϕ
is hyper-Stonean and thus by Theorem 1.1.2, we know that Cϕ = C(Sϕ) is an order
dual space, hence perfect. �

The work of Xiong in [69] characterises those C(X) spaces which are order dual
spaces. A slight rearrangement of the material in [69] allows us to expand this
equivalence.

Theorem 2.9.2. Let X be a realcompact space. Denote by S the union of the
supports of all compactly supported normal measures on X. The following statements
are equivalent.

(i) C(X) is an immaculate vector lattice.

(ii) C(X) is an order dual space.

(iii) C(X) is perfect.

(iv) X is extremally disconnected and υS = X; that is, C(X) is Dedekind com-
plete and

C(X) ∋ f z→ f ∣S ∈ C(S)
is a lattice isomorphism.

Proof. The implications (i) implies (ii) implies (iii) holds for general vector
lattices. It is proven in [69, Theorem 1] that (iv) implies (i) and the argument in
the proof of [69, Theorem 2] shows that (iii) implies (iv). �

A naive attempt to generalise the decomposition theorem in Theorem 1.1.3 (iii) is
to replace the `∞-direct sum of carriers of a maximal singular family F in C(K)∼n
with simply the Cartesian product of the carriers in F . In next two results, we show
that this is approach is not correct.
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68 2. DIRECT AND INVERSE LIMITS OF VECTOR LATTICES

Proposition 2.9.3. Let X be an extremally disconnected realcompact space, and
let F be a maximal (w.r.t. inclusion) singular family of positive order continuous
linear functionals on C(X). Consider the following statements.

(i) The map

C(X) ∋ f z→ (Pϕf) ∈ ∏
ϕ∈F

Cϕ

is a lattice isomorphism.

(ii) C(X) is an immaculate vector lattice.

(iii) C(X) is an order dual space.

(iv) C(X) is perfect.

Then (i) implies (ii), (iii), and (iv) while (ii), (iii), and (iv) are equivalent.

Proof. The equivalence of (ii), (iii), and (iv) is given in Theorem 2.9.2. Assume
that (i) is true. By Theorem 2.2.6 (v) and (vii), C(X)∼∼nn is isomorphic to ∏(Cϕ)∼∼nn.

But each Cϕ is perfect so that ∏(Cϕ)∼∼nn is isomorphic to ∏Cϕ, hence C(X) is
isomorphic to C(X)∼∼nn. �

Example 2.9.4. As is well known, C(βN) = `∞ = (`1)∼, hence C(βN) is an order
dual space. For every x ∈ N, denote by δx ∶ C(βN) → R the point mass centred at x.
Then F = {δx ∶ x ∈ N} is a maximal singular family in C(βN)∼n ≅ `1. Since Cδx = R
for every x ∈ N, it follows that ∏Cδx = RN. Since ∏Cδx does not have a strong
order unit while C(βN) does have a strong order unit, we conclude that

C(βN) ∋ uz→ (Pδxu) ∈ ∏Cδx

is not an isomorphism.

The final result of this section resolves the decomposition problem for C(X) which
are order dual spaces. We briefly recall the notation in Theorem 2.7.3: Let Mn ⊆ BE

denote the collection of carriers for positive, order continuous functionals on E.
Consider the inverse system IMn ∶= (Mn, (Pψ,ϕ)ψ≥ϕ) with lim←ÐIMn ∶= (F, (pϕ)0≤ϕ∈E∼

n
) in

VL.

Theorem 2.9.5. Let X be an extremally disconnected realcompact space. Denote
by S the union of the supports of all order continuous functionals on C(X). The
following statements are equivalent.

(i) C(X) is an immaculate vector lattice.

(ii) C(X) is an order dual space.

(iii) C(X) is perfect.

(iv) υS =X.

(v) PMn ∶ C(X) → F is a lattice isomorphism.
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2.10. STRUCTURE THEOREMS 69

Proof. By Theorem 2.9.2, it suffices to show that (iii) and (v) are equivalent.
By Proposition 2.9.1, the carriers Cϕ are perfect for every 0 ≤ ϕ ∈ C(X)∼n. The
desired equivalence then follows immediately from Corollary 2.7.5. �

2.10. Structure theorems for Archimedean relatively uniformly
complete vector lattices

Let E be an Archimedean vector lattice. In Example 2.3.8, it is shown that the
principal order ideals of E form a direct system in NIVL and that E can be ex-
pressed as the direct limit of this system. In this section, we exploit this result
and the duality results in Section 2.5 to obtain structure theorems for Archimedean
relatively uniformly complete vector lattices and their order duals.

A frequently used technique in the theory of vector lattices is to reduce a problem to
one confined to a fixed principal order ideal Eu of a space E. Once this is achieved,
the problem becomes equivalent to one in a C(K) space for a compact Hausdorff
topological space K via the Kakutani Representation Theorem, see [47] or [56,
Theorem 2.1.3]. For instance, this technique is used in [56, Theorem 3.8.6] to study
tensor products of Banach lattices. The following result is essentially a formalisation
of this method in the language of direct limits.

Theorem 2.10.1. Let E be an Archimedean, relatively uniformly complete vector
lattice. For all 0 < u ≤ v there exists compact Hausdorff spaces Ku and Kv and
injective, interval preserving normal lattice homomorphisms eu,v ∶ C(Ku) → C(Kv)
and eu ∶ C(Ku) → E so that the following is true.

(i) Eu is lattice isomorphic to C(Ku) for every 0 < u ∈ E.

(ii) DE ∶= ((C(Ku))0<u∈E, (eu,v)u≤v) is a direct system in NIVL with injective
linking maps.

(iii) SE ∶= (E, (eu)0<u∈E) is the direct limit of DE in NIVL.

(iv) E is Dedekind complete if and only if Ku is Stonean for every 0 < u ∈ E.

(v) If E is perfect, then Ku is hyper-Stonean for every 0 < u ∈ E.

Proof. By [56, Proposition 1.2.13], we know that every principal order ideal
in E is a unital AM-space. Therefore the statements in (i), (ii), and (iii) follow
immediately from Example 2.3.8 and Kakutani’s Representation Theorem for unital
AM-spaces. The proof of (iv) follows immediately from Theorem 2.3.5 and [56,
Proposition 2.1.4].

For the proof of (v), assume that E is perfect. Then, in particular, E is Dedekind
complete and has a separating order continuous dual [70, Theorem 110.1]. Therefore
the same is true for each Eu. By (i), C(Ku) is Dedekind complete and has a
separating order continuous dual, i.e. Ku is hyper-Stonean. �

A converse to the statement in (ii) in the previous result follows directly from the
permanence results for direct limits of vector lattices in [37].
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70 2. DIRECT AND INVERSE LIMITS OF VECTOR LATTICES

Corollary 2.10.2. Let I be an index set and Kα a compact Hausdorff topological
space for every α ∈ I. If D ∶= ((C(Kα))α∈I , (eα,β)α≼β) is a direct system in IVL with
injective linking maps, then the direct limit (E, (eα)α∈I) exists in IVL and E is an
Archimedean, relatively uniformly complete vector lattice.

Proof. The result follows directly by the existence result for direct limits in
Theorem 2.3.3 and the permanence results in Theorem 2.3.5 (i) and (v) along with
the fact that every C(K) space is Archimedean and relatively uniformly complete
[53, Theorem 43.1]. �

Thus Archimedean relatively uniformly complete vector lattices are characterised
as precisely those vector lattices obtained in the direct limit of a direct system of
C(K) spaces for compact Hausdorff K with injective linking maps. In the last few
results of this section and this chapter, we examine the order duals of Archimedean
relatively uniformly complete vector lattices.

Corollary 2.10.3. Let E be a Archimedean relatively uniformly complete vector
lattice. There exists an inverse system I ∶= ((M(Kα))α∈I , (pβ,α)β≽α) in NIVL, with
each Kα a compact Hausdorff space, and normal lattice homomorphisms pα ∶ E∼ →
M(Kα), so that S ∶= (E∼, (pα)α∈I) is the inverse limit of I in NVL.

Proof. The result follows immediately from Theorems 2.10.1 and 2.5.4, and
the Riesz Representation Theorem [25, Chapter III, Theorem 5.7]. �

In order to obtain a converse of Corollary 2.10.3, we require a more detailed descrip-
tion of the interval preserving normal lattice homomorphisms eu,v ∶ C(Ku) → C(Kv)
in Theorem 2.10.1. Let X and Y be topological spaces and p ∶X → Y a continuous
function. Recall that p is almost open if for every non-empty open subset U of

X, int (p [U]) ≠ ∅. It is clear that all open maps are almost open and thus every

homeomorphism is almost open.

Proposition 2.10.4. Let K and L be compact Hausdorff spaces and T ∶ C(K) →
C(L) a positive linear map. T is a lattice homomorphism if and only if there exist
a unique 0 < w ∈ C(L) and a unique continuous function p ∶ Zcw →K so that

T (u)(x) =
⎧⎪⎪⎨⎪⎪⎩

w(x)u(p(x)) if x ∈ Zcw
0 if x ∈ Zw

(2.10.1)

for all u ∈ C(K). In particular, w = T (1K).

Assume that T is a lattice homomorphism. Then the following statements are true.

(i) T is order continuous if and only if p is almost open.

(ii) T is injective if and only if p[Zcw] is dense in K.

(iii) T is interval preserving if and only if p[Zcw] is C∗-embedded in K and p is
a homeomorphism onto p[Zcw].
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2.10. STRUCTURE THEOREMS 71

Proof. The statement in (i) is well known, see for instance [1, Theorem 4.25].
Now suppose that T is a lattice homomorphism. The statement (i) follows from [65,
Theorem 4.4], or, from [17, Theorem 7.1 (iii)].

We prove (ii). Assume that p[Zcw] is dense in K. Let u ∈ C(K) satisfy T (u) = 0.
Then w(x)u(p(x)) = 0 for all x ∈ Zcw. Hence u(z) = 0 for all z ∈ p[Zcw]. Since p[Zcw]
is dense in K it follows that u = 0. Thus T is injective. Conversely, suppose that
p[Zcw] is not dense in K. Then there exists 0 < u ∈ C(K) so that u(z) = 0 for all
z ∈ p[Zcw]; that is, u(p(x)) = 0 for all x ∈ Zcw. Hence T (u)(x) = w(x)u(p(x)) = 0 for
all x ∈ Zcw. By definition T (u)(x) = 0 for all x ∈ Zw so that T (u) = 0. Therefore T
is not injective. Thus (ii) is proved.

Lastly we verify (iii). Suppose that T is interval preserving. We first show that
p[Zcw] is C∗-embedded in K. Consider 0 ≤ f ∈ Cb(p[Zcw]). We must show that there
exists a function g ∈ C(K) so that g(z) = f(z) for all z ∈ p[Zcw]. We may assume
that f ≤ 1p[Zcw]. Define v ∶ L→ R by setting

v(x) ∶=
⎧⎪⎪⎨⎪⎪⎩

w(x)f(p(x)) if x ∈ Zcw
0 if x ∈ Zu

for every x ∈K. It is clear that v is continuous on Zcw and on the interior of Zw. For
all other point x ∈ K, continuity of v follows from the inequality 0 ≤ v ≤ w. From
this last inequality and the fact that T is interval preserving it follows that there
exists 0 ≤ g ≤ 1K so that Tg = v. If x ∈ p[Zcw] then w(x)f(p(x)) = v(x) = Tg(x) =
w(x)g(p(x)) so that f(p(x)) = g(p(x)); that is, g(z) = f(z) for all z ∈ p[Zcw].
Next we show that p is a homeomorphism onto p[Zcw]. First we show that p is
injective. Consider distinct x0, x1 ∈ Zcw and suppose that p(x0) = p(x1). There
exists v ∈ C(L) with 0 < v ≤ w such that v(x0) = 0 and v(x1) > 0. Because T
is interval preserving there exists 0 < u ≤ 1K in C(K) so that T (u) = v. Then
u(p(x0)) = 0 and u(p(x1)) > 0, contradicting the assumption that p(x0) = p(x1).
Therefore p is injective.

It remains to verify that p−1 is continuous. Let (xi) be a net in Zcw and x ∈ Zcw
so that (p(xi)) converges to p(x) in K. Suppose that (xi) does not converge to x.
Passing to a subnet of (xi) if necessary, we obtain a neighbourhood V of x so that
xi ∉ V for all i. There exists a function 0 < v ≤ w in C(L) so that v(x) > 0 and
v(xi) = 0 for all i. Because T is interval preserving there exists a function u ∈ C(K)
so that T (u) = v. In particular, w(x)u(p(x)) = v(x) > 0 so that u(p(x)) > 0, but
w(xi)u(p(xi)) = v(xi) = 0 so that u(p(xi)) = 0 for all i. Therefore (u(p(xi))) does
not converge to u(x), contradicting the continuity of u. Hence (xi) converges to x
so that p−1 is continuous.

Conversely, suppose that p is a homeomorphism onto p[Zcw], and that p[Zcw] is C∗-
embedded in K. Let 0 < u ∈ C(K) and 0 ≤ v ≤ T (u) in C(L). Define f ∶ p[Zcw] → R
by setting

f(z) ∶= 1

w(p−1(z))v(p
−1(z)), z ∈ p[Zcw].

Because p−1 ∶ p[Zcw] → Zcw is continuous, f is continuous. Furthermore, 0 ≤ f(z) ≤
u(z) for all z ∈ p[Zcw]. Therefore f is a bounded continuous function on p[Zcw]. By
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72 2. DIRECT AND INVERSE LIMITS OF VECTOR LATTICES

assumption, there exists a continuous function g ∶K → R so that g(z) = f(z) for all
z ∈ p[Zcw]. Since 0 ≤ f ≤ u on p[Zcw], the function g may to chosen so that 0 ≤ g ≤ u.
For x ∈ Zcw we have

T (g)(x) = w(x)g(p(x)) = w(x)f(p(x)) = w(x)v(x)
w(x) = v(x),

and for x ∈ Zw we have v(x) = 0 = T (g)(x). Therefore Tg = v so that T is interval
preserving. �

Theorem 2.10.5. Let E be a vector lattice. The following statements are equivalent.

(i) E ≅ F ∼ where F is some Archimedean relatively uniformly complete vector
lattice.

(ii) There exists an inverse system I ∶= ((M(Kα))α∈I , (pβ,α)β≽α) in NIVL, with
each Kα a compact Hausdorff space, such that the following holds.

(a) For each β ≽ α in I there exist a function w ∈ C(Kβ)+ and homeomor-
phism t ∶ Zcw → t[Zcw] ⊆ Kα onto a dense C⋆-embedded subspace of Kα

so that for every µ ∈ M(Kβ),

pβ,α(µ)(A) = ∫
t−1[A]

wdµ, A ∈BKα .

(b) For every α ∈ I there exists a normal lattice homomorphism
pα ∶ E →M(Kα) such that lim←ÐI = (E, (pα)α∈I).

Proof of (i) implies (ii). By Theorem 2.10.1, there exists a direct system
D ∶= ((C(Kα))α∈I , (eα,β)α≼β) in NIVL, with each Kα a compact Hausdorff space,
and interval preserving normal lattice homomorphisms eα ∶ C(Kα) → F so that S ∶=
(F, (eα)α∈I) is the direct limit of D in NIVL. By Theorem 2.5.4 and the Riesz
Representation Theorem [61, Theorem 18.4.1], S∼ ∶= (E, (e∼α)α∈I) is the inverse limit
of the inverse system D∼ ∶= (M(Kα), (e∼α,β)α≼β) in NVL. Thus the claim in (b) holds.

Fix β ≽ α in I. We show that e∼α,β is of the form given in (a). By Proposition 2.10.4,

there exists w ∈ C(Kβ)+ and a homeomorphism t ∶ Zcw → t[Zcw] ⊆ Kα onto a dense
C⋆-embedded subspace of Kα so that

eα,β(u)(x) =
⎧⎪⎪⎨⎪⎪⎩

w(x)u(t(x)) if x ∈ Zcw
0 if x ∈ Zw

for all u ∈ C(Kα). Let T ∶ C(Kα) → Cb(Zcw) and Mw ∶ Cb(Zcw) → C(Kβ) be given
by T (u) = u ○ t and Mw(v) = wv for all u ∈ C(Kα) and v ∈ Cb(Zcw), with wv
defined as identically zero outside Zcw. Then T and Mw are positive operators and
eα,β =Mw○T ; hence e∼α,β = T ∼○M∼

w. It follows from [20, Theorems 3.6.1 & 9.1.1] that

T ∼(µ)(A) = µ(t−1[A]) for every µ ∈ M(Zcw) and A ∈BKα . The Riesz Representation
Theorem shows that, for each ν ∈ M(Kβ) and every Borel set B in Zcw,

M∼
w(ν)(B) = ∫

B
wdν.
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2.10. STRUCTURE THEOREMS 73

Hence for µ ∈ M(Kβ) and A ∈BKα ,

e∼α,β(µ)(A) = ∫
t−1[A]

wdµ

as claimed. �

Proof of (ii) implies (i). Fix β ≽ α in I and consider the function w ∈
C(Kβ)+ and the homeomorphism t ∶ Zcw → t[Zcw] ⊆ Kα given in (b). Define the
map eα,β ∶ C(Kα) → C(Kβ) as

eα,β(u)(x) =
⎧⎪⎪⎨⎪⎪⎩

w(x)u(t(x)) if x ∈ Zcw
0 if x ∈ Zw

We show that D ∶= ((C(Kα))α∈I , (eα,β)α≺β) is a direct system in NIVL.

It follows by Proposition 2.10.4 that each eα,β is an injective interval preserving
normal lattice homomorphism. It remains to show that eα,γ = eβ,γ ○ eα,β for all
α ≼ β ≼ γ in I. An argument similar to that in the proof that (i) implies (ii)
shows that e∼α,β = pβ,α for all α ≼ β; hence e∼∼α,β = p∼β,α. By Proposition 2.5.9, I∼ ∶=
((M(Kα)∼α)α∈I , (p∼β,α)β≽α) is a direct system in NIVL and therefore e∼∼α,γ = e∼∼β,γ ○ e∼∼α,β
for all α ≼ β ≼ γ in I. Since C(Kα) has a separating order dual for every α ∈ I, it
follows that eα,γ = eβ,γ ○ eα,β. Hence D is a direct system in NIVL.

Since each eα,β is injective, limÐ→D ∶= (F, (eα)α∈I) exists in NIVL by Theorem 2.3.4.

Since C(Kα) is relatively uniformly complete for each α ∈ I it follows from Theorem
2.3.5 (v) that F is also relatively uniformly complete. Because e∼α,β = pβ,α for all
α ≼ β in I, D∼ = I. Therefore, by Theorem 2.5.4, there exists a lattice isomorphism
T ∶ F ∼ → E such that the diagram

F ∼ E

M(Kα)
e∼α

T

pα

commutes for all α ∈ I. This completes the proof. �
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CHAPTER 3

Free objects

We now move on to our second major problem regarding the existence of free objects
in some categories we have not yet defined. We start with the definitions and
terminology we need to define these categories.

3.1. Preliminaries

3.1.1. Algebraic structures. Denote by K either R or C. We refer to associa-
tive algebras (over K) as algebras. Algebras possessing a multiplicative identity are
called unital. Algebra homomorphisms between unital algebras need not preserve
multiplicative identities unless explicitly indicated.

We make use of the same notation and conventions for vector lattices that was
introduced in Chapter 1, Section 1.3. We do not assume that vector lattices are
Archimedean unless stated explicitly. A vector lattice algebra A (also called a Riesz
algebra in the literature) is an algebra over R equipped with a partial order ≤ that
makes A into a vector lattice with the additional property that the positive cone
A+ is closed under multiplication. Further, A is called a unital vector lattice algebra
if the underlying algebra possesses a multiplicative identity 1A, and A is a positive
unital vector lattice algebra if 1A ∈ A+. The vector lattice algebra homomorphisms
are the maps that are both lattice and algebra homomorphisms, also not necessarily
unital unless indicated.

This gives us the following categories:

Objects Morphisms
Set Sets Total functions
VS Vector spaces Linear maps
VL Vector lattices Vector lattice homomorphisms
Alg Algebras Algebra homomorphisms

Alg1 Unital algebras Unital algebra homomorphisms
VLA Vector lattice algebras Vector lattice algebra homomorphisms
VLA1 Unital vector lattice algebras Unital vector lattice algebra homomorphisms
VLA1+ Positive unital vector lattice algebras Unital vector lattice algebra homomorphisms

Table 1. Table of algebraic categories under consideration

75
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Set VS VL

Alg VLA VLA1 VLA1+

Alg1

⊇ ⊇⊇ ⊇

⊇
⊇ ⊇ ⊇

⊇

Figure 1. Figure depicting subcategory relationships between the various alge-
braic categories of interest.

We will refer to the categories in Table 1, excluding Set, as algebraic categories. A
subspace in each of the above contexts is a subset of that algebraic object that is
closed with respect to all the different operations defined on that space.

Recall that a subset S of a vector lattice E is solid in E if for x ∈ S and y ∈ E, the
condition that ∣y∣ ≤ ∣x∣ implies y ∈ S. A linear solid subspace of a vector lattice is an
order ideal.

Given an algebra R, a linear subspace I is a left (resp. right) algebra ideal if for
all x ∈ R and a ∈ I we have xa ∈ I (resp. ax ∈ I). If I is both a left and right
algebra ideal then I is called a two-sided algebra ideal. It is clear that every algebra
ideal (left, right, or two-sided) is closed under multiplication and is thus an algebra
subspace (i.e. a subalgebra). A linear subspace of a vector lattice algebra that is
both an order ideal and a two-sided algebra ideal is called a bi-ideal.

3.1.2. Normed structures. A vector lattice E equipped with a norm ∥●∥ ∶
E → R+ is called a normed vector lattice if the underlying vector space is a normed
space and if the norm satisfies the following property: For x, y ∈ E such that ∣x∣ ≤ ∣y∣
we have ∥x∥ ≤ ∥y∥. Norms that satisfy this property are called Riesz norms and
Riesz seminorms are defined in the same way. We make the following observations
for Riesz (semi)norms: For x ∈ E, since ∣x∣ = ∣ ∣x∣ ∣, it follows that ∥x∥ = ∥∣x∣∥.

An algebra or unital algebra R equipped with a norm ∥●∥ ∶ R → R+ is a normed
algebra if the norm is submultiplicative: For x, y ∈ R we have ∥xy∥ ≤ ∥x∥ ∥y∥. One
defines a submultiplicative seminorm in the same way. A vector lattice algebra (non-
unital, unital, or positive unital) equipped with a submultiplicative Riesz norm is a
normed vector lattice algebra. The multiplicative identity in a normed vector lattice
algebra is not assumed to have norm 1 when it exists.

Complete normed vector lattices, normed algebras, and normed vector lattice al-
gebras are known as Banach lattices, Banach algebras, and Banach lattice algebras
respectively. These definitions give us the following two collections of categories.
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3.1. PRELIMINARIES 77

Objects Morphisms
NS Normed spaces Bounded linear maps
NVL Normed vector lattices Bounded vector lattice homomorphisms
NA Normed algebras Bounded algebra homomorphisms
NA1 Unital normed algebras Bounded unital algebra homomorphisms
NVLA Normed vector lattice algebras Bounded V.L.A. homomorphisms
NVLA1 Unital normed vector lattice algebras Bounded unital V.L.A. homomorphisms
NVLA1+ Positive unital normed vector lattice algebras Bounded unital V.L.A. homomorphisms

Table 2. Table of categories of normed structures under consideration.

Objects Morphisms
Ban Banach spaces Bounded linear maps
BL Banach lattices Bounded vector lattice homomorphisms
BA Banach algebras Bounded algebra homomorphisms
BA1 Unital Banach algebras Bounded unital algebra homomorphisms
BLA Banach lattice algebras Bounded V.L.A. homomorphisms
BLA1 Unital Banach lattice algebras Bounded unital V.L.A. homomorphisms
BLA1+ Positive unital Banach lattice algebras Bounded unital V.L.A. homomorphisms

Table 3. Table of categories of complete normed structures under consideration.

For a category C of normed structures from Table 2 or 3 above, we denote by C1 the
subcategory whose morphisms are contractive. For a category of normed structures
Y in Table 2 or 3, denote by A(Y) the smallest category X in Table 1 such that
X ⊇Y. For example, if we consider the category BLA, the categories X such that
X ⊇ Y form the collection {Set,VS,Alg,VL,VLA}. Consulting Figure 1, we see
that VLA is the smallest category among the above with the necessary property,
so we write A(BLA) = VLA. Thus A(●) associates with each category of normed
structures from Table 2 and 3 the ‘canonical’ algebraic supercategory.

Let Y be a category of normed structures from Table 2 and denote by Ŷ the associ-
ated category of complete normed structures in Table 3. For Y ∈Y, a completion of
Y is an object Ŷ ∈ Ŷ for which there exists an isometric Y-isomorphism T ∶ Y → Ŷ
where T [Y ] is a dense subspace of Ŷ . For objects N ∈Y and B ∈ Ŷ and a morphism

f ∶ N → B in Y, one may verify that there exists a unique morphism f̂ ∶ N̂ → B
in Ŷ extending f . This means that, for example, if N is a normed space then the
completion N̂ along with the inclusion j ∶ N → N̂ is the free Banach space over the
normed space N .

3.1.3. Locally convex structures. All topological vector spaces are assumed
to be Hausdorff. A topological vector space is a locally convex space if the origin has
a neighbourhood basis of convex sets. An algebra (non-unital or unital) equipped
with a linear topology is a locally multiplicatively-convex algebra (or a locally m-
convex algebra for short) if the origin has a neighbourhood basis of convex sets that
are closed under multiplication,1 see [55, Definition 1.3, p. 5]. Further, a vector

1Locally m-convex algebras are a particular sort of locally convex algebra. Some care must be taken when dealing
with definitions of topological algebras and locally convex algebras since these definitions vary across the literature: A

topological algebra is defined in [55, Definition 1.1, p. 4] and [38, Definition 1.6] as an algebra equipped with a linear
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78 3. FREE OBJECTS

lattice equipped with a linear topology is a locally convex-solid vector lattice if the
origin has a neighbourhood basis of convex solid sets. Lastly, a vector lattice algebra
(non-unital, unital, or positive unital) equipped with a linear topology is a locally
multiplicatively-convex-solid vector lattice algebra (or locally m-convex-solid vector
lattice algebra for shorter) if the origin has a neighbourhood basis of convex solid
sets that are closed under multiplication. This gives us another batch of categories.

Objects Morphisms
LCS Locally convex spaces Continuous linear maps
LC-SVL Locally convex-solid vector lattices Cts. vector lattice homomorphisms
LM-CA Locally m-convex algebras Cts. algebra homomorphisms

LM-CA1 Unital locally m-convex algebras Cts. unital algebra homomorphisms
LM-C-SVLA Locally m-convex-solid vector lattice algebras Cts. V.L.A. homomorphisms
LM-C-SVLA1 Unital locally m-convex-solid vector lattice algebras Cts. unital V.L.A. homomorphisms
LM-C-SVLA1+ Positive unital locally m-convex-solid vector lattice algebras Cts. unital V.L.A. homomorphisms

Table 4. Table of categories of locally convex structures under consideration.

The names of the above categories of locally convex structures are unfortunately
not very elegant, but at least they are not misleading.

For a category Y of normed structures from Table 2, we denote by LCY the asso-
ciated category of locally convex structures in Table 4 such that A(LCY) = A(Y)
(with the notation A(●) defined for Table 4 as above for Table 2 and 3).

A locally convex structure in Table 4 is complete if every Cauchy net converges. The
details of the construction of a completion of a locally convex space are recorded
in [50, p. 208] and completions of other locally convex structures in Table 4 fol-
low by modification. We add the prefix Com to the categories of locally convex
structures above to denote the subcategory consisting of complete objects. Thus
we denote (rather clumsily, but at least descriptively and not misleadingly) by
ComLM-C-SVLA1+ the category of complete positive unital locally multiplicatively-
convex-solid vector lattice algebras with continuous unital vector lattice algebra
homomorphisms as morphisms. Similarly, for a category of complete normed struc-
tures Ŷ in Table 3, denote by ComLCŶ the associated category of complete locally
convex structures such that A(ComLCŶ) = A(Ŷ).

Let C and D be categories with C ⊆ D. Recall that C is a full subcategory of D
when all morphisms in D between objects in C are included in C. Thus for any set
S ⊆ ObjD there exists a unique full subcategory CS of D where ObjCS

= S. Thus

for any category Y from Table 2, it is clear that Ŷ is a full subcategory of Y and
ComLCŶ is a full subcategory of LCY.

topology making multiplication separately continuous whereas an algebra equipped with a linear topology making
multiplication jointly continuous is called a topological algebra with continuous multiplication in [55, Definition 1.1,
p. 4] and [38, Example 1.8]. On the other hand, these formulations of topological algebras with separate continuity

and joint continuity are called weak topological algebras and just topological algebras respectively in [14, p. 84].
Taking the above difference in terminology into account, the authors of [14], [38], and [55] define a locally convex

algebra as a topological algebra where the topology makes the underlying vector space into a locally convex space

(see [55, Definition 1.1, p. 4], [38, Definition 1.7], and [14, Definition 4.4.1]). We adopt the terminology of [55]
and [38] for these definitions. In any case, it is easy to see that a locally m-convex algebra is then in fact also a

locally convex algebra with continuous multiplication in our terminology.
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Although the above definitions for the locally convex structures in Table 4 should be
considered the ‘natural’ definitions, in practice, it is often preferable to work with
seminorm characterisations for locally convex structures. We record these seminorm
characterisations for the locally convex structures in Table 4 in the next result.

Proposition 3.1.1. The following statements are true.

(i) A topological vector space X is a locally convex space if and only if there
exists a separating family of seminorms generating the topology on X.

(ii) A topological algebra R (non-unital or unital) is a locally m-convex algebra
if and only if there exists a separating family of submultiplicative seminorms
generating the topology on R.

(iii) A topological vector lattice2 E is a locally convex-solid vector lattice if and
only if there exists a separating family of Riesz seminorms generating the
topology on E.

(iv) A topological vector lattice algebra3 A (non-unital, unital, or positive unital)
is a locally m-convex-solid vector lattice algebra if and only if there exists a
separating family of submultiplicative Riesz seminorms generating the topol-
ogy on A.

Proof. The proofs of (i), (ii), and (iii) are found in [25, Chapter IV, Propo-
sition 1.15], [55, Theorem 3.1, p. 18] or [14, Lemma 4.4.2], and [5, Theorem 2.25]
respectively. We prove (iv): First, assume that A locally m-convex-solid vector lat-
tice algebra and let V be any convex solid neighbourhood of the origin that is closed
under multiplication. Since every solid set is balanced and every neighbourhood of
the origin is absorbing, it follows by [25, Chapter IV, Proposition 1.14] that the
Minkowski functional ρV ∶ A → R is a seminorm and that V = {x ∈ A ∶ ρV (x) < 1}.
It follows by [5, p. 59] that ρV is a Riesz seminorm since V is solid and it follows by
[38, Proposition 1.5] that ρV is submultiplicative since V is closed under multipli-
cation. Thus there exists a separating family of submultiplicative Riesz seminorms
generating the topology on A. Conversely, let A be a topological vector lattice al-
gebra whose topology is generated by a separating family of submultiplicative Riesz
seminorms P . Let N be any neighbourhood of the origin, then there exists ρ ∈ P
and ε ∈ (0,1] such that

Uε ∶= {x ∈ A ∶ ρ(x) < ε} ⊆ N.
The properties of ρ make it easy to verify that Uε is convex, solid, and closed under
multiplication. �

3.1.4. Free objects. For the sake of recording all the important definitions
used in the rest of this chapter all in one place, we repeat the definition of a free
object before discussing some of its properties.

2A topological vector lattice is a vector lattice equipped with a linear topology that is locally solid, i.e. the
origin has a neighbourhood basis of solid sets, see [60, Chapter V, Section 7].

3A topological vector lattice algebra is a vector lattice algebra equipped with a linear topology that makes the

underlying algebra into a topological algebra and the underlying vector lattice into a topological vector lattice.
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80 3. FREE OBJECTS

Definition 3.1.2. Let C1 and C2 be categories with C1 ⊇ C2. Fix O1 ∈ C1 and
consider an object FC2

C1
(O1) in C2 and a morphism j ∶ O1 → FC2

C1
(O1) in C1. The

pair (FC2

C1
(O1) , j) is called a free object over O1 of C2 if it has the property that

for every O2 ∈ C2 and every morphism ϕ ∶ O1 → O2 in C1, there exists a unique
morphism ϕ̄ ∶ FC2

C1
(O1) → O2 in C2 such that the following diagram commutes in

C1.

O1 FC2

C1
(O1)

O2

ϕ

j

ϕ̄

If the above holds, the pair (FC2

C1
(O1) , j), or by abuse of notation just the object

FC2

C1
(O1), is also called a solution for the free object problem over O1 between the

categories C1 and C2.

As was done for direct and inverse limits in Chapter 2, Sections 2.3 and 2.4, a
slight change in perspective will allow us to easily conclude that free objects (F, j)
are essentially unique in a particular sense: Consider categories C1 and C2 with
C1 ⊇C2 and fix O1 ∈C1. We construct the derived category CF [C1,C2] where:

(i) Objects in CF [C1,C2] are pairs (O2, f) where O2 is an object in C2 and
f ∶ O1 → O2 is a morphism in C1.

(ii) A morphism between (O,f) and (O′, g) in CF [C1,C2] is a morphism ϕ ∶ O →
O′ in C2 such that the following diagram commutes in C1.

O

O1

O′

ϕ

f

g

Thus, it is clear that an object (F, j) in CF [C1,C2] is a free object over O1 of C2 in
the sense of Definition 3.1.2 if and only if the object (F, j) is the initial object in the
derived category CF [C1,C2]. As a result (F, j) is unique up to a unique isomorphism
in CF [C1,C2], meaning that for any other candidate free object (G,k) there exists a
unique isomorphism φ ∶ F → G in C2 such that the following diagram commutes in
C1.

F

X

G

φ

j

k
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3.2. EXISTENCE OF ALGEBRAIC FREE OBJECTS 81

Beyond establishing this essential uniqueness, the universal property of the free
object also gives us information on the structure of free objects in categories of
normed structures.

Proposition 3.1.3. Let Y be any category of normed structures from Table 2 or 3
with X any category from Table 1, 2, or 3 such that X ⊇Y. Fix X ∈X and assume
that the free object (FY

X(X) , j) exists. Consider the associated category A(Y) in
Table 1 and denote by G the object in A(Y) generated by the subset j [X] in FY

X(X).
Then G is dense in FY

X(X).

Proof. Let H be the closure of G in FY
X(X), then H is an object in Y. Define

the morphism j′ ∶ X → H where j′(x) ∶= j(x). We claim that the pair (H, j′) is a
free object over X in Y: Let Y be an object in Y and ϕ ∶ X → Y a morphism in
X. Then there exists a unique morphism ϕ̄ ∶ FY

X(X) → Y such that ϕ̄ ○ j = ϕ. The
restriction ϕ̄∣H ∶H → Y is also a morphism in Y and satisfies the diagram

X H

Y

ϕ

j

ϕ̄∣H

Let ψ̄ ∶ H → Y be any other morphism in Y such that ψ̄ ○ j′ = ϕ. Thus ϕ̄∣H
and ψ̄ coincide on G and since the morphisms in Y are continuous, it follows that
ϕ̄∣H = ψ̄. Thus (H, j′) is a free object over X in Y and so there exists an isomorphism
Φ ∶H → FY

X(X) in Y such that the following diagram commutes in X.

H

O1

FY
X(X)

Φ

j′

j

We conclude that G is dense in FY
X(X). �

With these preliminaries in place, the real work of this chapter can begin in the next
section. We start by reviewing existence results for certain algebraic free objects.
These will be used in the sequel as the foundation for the construction of other free
objects.

3.2. Existence of algebraic free objects

The main goal of this section is to summarise all the major results in [27] which
show that we can construct free objects (FX′

X (X) , j) for categories X and X′ from
Table 1 with X ⊇ X′. This will be done using methods from universal algebra
where the principle object of study is abstract algebras. Although abstract algebras
are usually just called ‘algebras’ in the universal algebra literature, we will have to
make use the term ‘abstract algebras’ to distinguish this general notion from the
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particular example of a vector space equipped with an associative multiplication,
which are usually called ‘algebras’ in analysis.

Along with the development of the theory we need to achieve the stated goal for this
section, we will also explain how the algebraic categories in Table 1 may be viewed
as categories of abstract algebras of particular types.

First, we define the notion of an abstract algebra. Let A be a set and n ∈ N. A
function f ∶ An → A is called an operation on A of rank n. We write rank(f) = n. In
particular, operations of rank one and two are most often called unary and binary
operations respectively.

We fix the notation N0 ∶= {0,1,2, . . .}.

Definition 3.2.1 (Abstract algebras). Let F be a non-empty and possibly infinite
set and let ρ ∶ F → N0 be any function. The pair (F , ρ) is called a type. Let A be
a non-empty set and (F , ρ) a type. Suppose that for every f ∈ F , the following is
given:

(I) If ρ(f) = 0, fA is an element in A, which is called a constant.

(II) If ρ(f) ≥ 1, fA ∶ Aρ(f) → A is an operation of rank ρ(f) on A.

Define the collection FA ∶ = {fA ∶ f ∈ F}. The pair (A,FA) is called an abstract
algebra of type (F , ρ).
The set A is called the universe of the abstract algebra (A,FA) and the set FA is
called the collection of basic operations on A. We view the constants as operations
on A, which can also be thought of as operations of rank zero [16, p. 3].

As an example, let (M, ⋅, e) be a monoid, i.e. a non-empty set equipped with an
associative binary operation ⋅ ∶M×M →M with identity element e. Let F ∶= {f0, f1}
be a set and ρ ∶ F → N0 a function where ρ(f0) = 0 and ρ(f1) = 2. The pair (F , ρ)
is then the type associated with all monoids. In particular, define fM0 ∶ = e and
fM1 ∶ M ×M → M where fM1 (x, y) ∶= x ⋅ y. The pair (M,{fM0 , fM1 }) is then the
abstract algebra of type (F , ρ) associated with the monoid (M, ⋅, e). However, a
monoid is not just a non-empty set equipped with an arbitrary pair of rank zero
and rank two operations, but also has to satisfy certain identities : For x, y, z ∈M ,

x ⋅ e = x, e ⋅ x = x,
x ⋅ (y ⋅ z) = (x ⋅ y) ⋅ z.

The formal definition of what it means for an abstract algebra to satisfy an identity
will be given below (Definition 3.2.14) as we continue to develop the theory.

Definition 3.2.2 (Abstract algebra homomorphisms). Let (A,FA) and (B,FB)
be abstract algebras of type (F , ρ) with h ∶ A→ B a function. We call h an abstract
algebra homomorphism of type (F , ρ) if

(i) h (fA) = fB for all constants in fA ∈ FA,

(ii) h (fA(a1, . . . , aρ(f))) = fB (h(a1), . . . , h(aρ(f))) for all operations fA ∈ FA
with ρ(f) ≥ 1.
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3.2. EXISTENCE OF ALGEBRAIC FREE OBJECTS 83

With the above example of a monoid viewed as an abstract algebra in mind, it is not
difficult to see that we can also construct a type associated with all vector spaces over
K: Informally speaking, this will consist of a constant 0 (zero vector), a binary map
⊕ (vector addition), a unary map ⊖ (additive inverse), and for every λ ∈ K a unary
map mλ (scalar multiplication by λ). One can similarly also associate a type with all
(unital) algebras. Leaving aside the matter of what it means for an abstract algebra
to satisfy an identity for the moment, it seems rather natural that the categories
VS, Alg, and Alg1 can be envisaged as categories of abstract algebras, each of these
categories with its own associated type (F , ρ). The morphisms in these categories
can then also naturally be viewed as abstract algebra homomorphisms.

Indeed, in general, any type (F , ρ) will encode a particular category with abstract
algebras of this type as objects and the associated abstract algebra homomorphisms
as morphisms.

Definition 3.2.3. Let (F , ρ) be a type. The class of all abstract algebras of type
(F , ρ) and the class of all abstract algebra homomorphisms of type (F , ρ) forms a
subcategory of Set, which we denote as AbsAlg(F ,ρ).

Although it needs to be made precise, we have already made a tentative natural
connection between the categories VS, Alg, and Alg1 and categories of abstract
algebras associated with an appropriate type (F , ρ). However, this connection is
not as immediately obvious for subcategories of VL from Table 1 since the ob-
jects in these categories are not only axiomatised by equalities (i.e. identities), but
also inequalities, as well as the assumption of the existence of suprema and infima of
two-element sets. Interestingly, it turns out that vector lattices and vector lattice al-
gebras can in fact be represented as abstract algebras in the sense of Definition 3.2.1.
We follow the exposition in [27, Section 4] for this, which in turn traces back to [16,
Definition 1.7, Exercise 2.4.1].

Definition 3.2.4 ([27, Definition 4.1]). Let S be a non-empty set.

(i) Let ≤ be a partial order on S, then (S,≤) is called a partially ordered lattice
if, for all x, y ∈ S, the supremum x ∨ y and the infimum x ∧ y exist in S.

(ii) Suppose S has binary operations ? and >. Then the triple (S,?,>) is
called an algebraic lattice if, for all x, y, z ∈ S,

x? (y? z) = (x? y)? z, x> (y> z) = (x> y)> z,
x? x = x, x> x = x,
x? y = y? x, x> y = y> x,
x? (x> y) = x, x> (x? y) = x.

We note that the operations ? and > need not satisfy distributive properties.
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84 3. FREE OBJECTS

Lemma 3.2.5 ([27, Lemma 4.2]). Let S be a non-empty set.

(i) Let ≤ be a partial order on S making (S,≤) into a partially ordered lattice.
For x, y ∈ S, define binary operations ? and > where

x? y ∶= x ∧ y
and

x> y ∶= x ∨ y.
Then the triple (S,>,?) is an algebraic lattice.

(ii) Given binary operations ? and > on S such that (S,?,>) forms an alge-
braic lattice. Then define a relation ≤ on S where x ≤ y if and only if

x? y = x.
Then (S,≤) is a partially ordered lattice. Moreover, for x, y ∈ S the supre-
mum and infimum of the set {x, y} with respect to the partial order ≤ exists
and we have

x ∧ y = x? y
and

x ∨ y = x> y.

The notion of a partially ordered lattice was described in Definition 3.2.4 as a triple
(S,?,>) consisting of a set and two binary operations. This can be made more
precise using the language of abstract algebras by encoding the type (F , ρ) of all
partially ordered lattices, as was done for monoids above.

In the next result, we will describe a positive unital vector lattice algebra as a set
equipped with a collection of operations satisfying a long list of identities. We stick
to this more informal description over the formalism of Definition 3.2.1 for the sake
of readability. It is in any case routine (but tedious) to encode positive unital vector
lattice algebras as abstract algebras of a certain type.

We will see in the results below, however, that the formalism of abstract algebras
is useful for the formulation of elegant results and that this formalism is not just a
rather esoteric way of describing the well-liked and well-understood notion of ‘a set
equipped with operations and identities’ that is seen throughout mathematics.

Lemma 3.2.6 ([27, Lemma 4.4 and p. 124]). Let A be a set equipped with (not
necessarily different) constants 0 and 1, a binary map ⊕, a unary map ⊖, a unary
map mλ for every λ ∈ R, a binary map ⊙, and binary maps ? and >. Assume that
the following identities are satisfied:

(1) (x⊕ y) ⊕ z = x⊕ (y ⊕ z) for all x, y, z ∈ A;

(2) x⊕ 0 = x for all x ∈ A;

(3) x⊕ (⊖x) = 0 for all x ∈ A;

(4) x⊕ y = y ⊕ x for all x, y ∈ A;
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3.2. EXISTENCE OF ALGEBRAIC FREE OBJECTS 85

(5) mλ(x⊕ y) =mλ(x) ⊕mλ(y) for all λ ∈ R and x, y ∈ A;

(6) mλ+µ(x) =mλ(x) ⊕mµ(x) for all λ,µ ∈ R and x ∈ A;

(7) mλµ(x)) =mλ(mµ(x)) for all λ,µ ∈ R and x ∈ A;

(8) m1(x) = x for all x ∈ A;

(9) (x⊙ y) ⊙ z = x⊙ (y ⊙ z) for all x, y, z ∈ A;

(10) x⊙ (y ⊕ z) = (x⊙ y) ⊕ (x⊙ z) for all x, y, z ∈ A;

(11) (x⊕ y) ⊙ z = (x⊙ z) ⊕ (y ⊙ z) for all x, y, z ∈ A;

(12) mλ(x⊙ y) =mλ(x) ⊙ y = x⊙mλ(y) for all λ ∈ R and x, y ∈ A;

(13) 1⊙ x = x⊙ 1 = x for all x ∈ A;

(14) x? (y? z) = (x? y)? z and x> (y> z) = (x> y)> z for all x, y, z ∈ A;

(15) x? x = x and x> x = x for all x ∈ A;

(16) x? y = y? x and x> y = y> x for all x, y ∈ A;

(17) x? (x> y) = x and x> (x? y) = x for all x, y ∈ A;

(18) x⊕ (y? z) = (x⊕ y)? (x⊕ z) for all x, y, z ∈ A;

(19) mλ(0? x) = 0? (mλ(x)) for all λ ∈ R+ and x ∈ A;

(20) 0? ((x? (⊖x)) ⊙ (y? (⊖y))) = 0 for all x, y ∈ A;

(21) 0? 1 = 0.

Define

(a) x + y ∶= x⊕ y for x, y ∈ A;

(b) λx ∶=mλ(x) for λ ∈ R and x ∈ A;

(c) xy ∶= x⊙ y for x, y ∈ A.

Equipping the set A with the operations in (a)-(c) makes A into a unital algebra
over R with zero vector 0 and multiplicative identity 1. Further, define a relation
≤ on A where x ≤ y if and only if x? y = x. Then (A,≤) forms a partially ordered
lattice where for x, y ∈ A, we have x∧y = x?y and x∨y = x>y. Finally, the partial
order ≤ together with the operations defined in (a)-(c) make A into a positive unital
vector lattice algebra with zero vector 0 and multiplicative identity 1.

The operations (a)-(c) along with the constants 0 and 1 give us an informal de-
scription of the type associated with the category VLA1+. By making appropriate
omissions to this list, we can obtain an informal description of the type associated
with any other algebraic category X in Table 1. Further, appropriate omissions from
the above list of 21 identities will be used in the sequel to describe the algebraic
categories in Table 1 in the language of abstract algebras.

We now return to the further development of the basic universal algebra theory that
we need. We have defined the notion of an abstract algebra as well as the notion of
a structure-preserving map between abstract algebras, the next concept one would
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86 3. FREE OBJECTS

want to consider is that of a subobject. This will be given in two different flavours,
one where the subobject is considered as an entity within a larger whole, and one
where the subobject is considered as a separate entity in its own right. It will often
be more convenient to make use of one formulation over the other.

Definition 3.2.7 (Subuniverses and abstract subalgebras). Let (A,FA) be an ab-
stract algebra of type (F , ρ). A subset B ⊆ A is called a subuniverse of the ab-
stract algebra (A,FA) if B contains all the constants in FA and if for every n ∈ N
and every fA ∈ FA with rank(fA) = n we have that b1, . . . , bn ∈ B implies that
fA (b1, . . . , bn) ∈ B.

Further, if B ⊆ A is a subuniverse of (A,FA), define

FB ∶= {fA ∶ ρ(f) = 0} ∪ {fA∣
Bρ(f)

∶ ρ(f) ≥ 1} .

Then the pair (B,FB) forms an abstract algebra of type (F , ρ) and is called an
abstract subalgebra of (A,FA).

Let (A,FA) be an abstract algebra of type (F , ρ). The above definitions imply that
every abstract subalgebra of (A,FA) forms a non-empty subuniverse of (A,FA)
and every non-empty subuniverse of (A,FA) gives rise to an abstract subalgebra.
Another important concept is that of a subuniverse generated by a subset.

Definition 3.2.8 (Generated subuniverse). Let (A,FA) be an abstract algebra of
type (F , ρ) with X a subset of A. The set of all subuniverses of the abstract algebra
(A,FA) is denoted by Sub(A). The subuniverse generated by X is defined as

SgA (X) ∶= ⋂{U ∈ Sub(A) ∶ X ⊆ U} .

In particular, if A = SgA (X), we say that the abstract algebra (A,FA) is generated
by the set X.

The idea of the subuniverse generated by a subset will play a very important role
in the sequel.

Proposition 3.2.9. Let (A,FA) be an abstract algebra of type (F , ρ) with X ⊆
A. The pair (SgA (X) ,FSgA(X)) is the smallest abstract subalgebra of (A,FA) that
contains X.

The following result gives a useful characterisation of the subuniverse generated by
a set.

Theorem 3.2.10 ([16, Theorem 1.14]). Let (A,FA) be an abstract algebra of type
(F , ρ) with X ⊆ A. Define a sequence of subsets (Xn)n∈N0 of A by recursion:

X0 ∶=X ∪ {fA ∶ ρ(f) = 0} ,
Xn+1 ∶=Xn ∪ {fA (a1, . . . , aρ(f)) ∶ a1, . . . , aρ(f) ∈Xn, f ∈ F st. ρ(f) ≥ 1} .

Then SgA (X) = ⋃n∈N0
Xn.
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3.2. EXISTENCE OF ALGEBRAIC FREE OBJECTS 87

Proposition 3.2.11. Let (A,FA) and (B,FB) be abstract algebras of type (F , ρ)
with h1 ∶ A→ B and h2 ∶ A → B abstract algebra homomorphisms. If X ⊆ A is such
that h1∣X = h2∣X , then h1∣SgA(X) = h2∣SgA(X).

Proof. The result follows directly from Proposition 3.2.9 and the fact that the
set of elements in A on which h1 and h2 coincide forms subuniverse of (A,FA) which
contains X. �

We can take the idea of generation given above one step further by defining the
abstract algebra of a given type generated over a set. Given a non-empty set X, a
word on X is defined as a finite string of elements from X. For example, if a, b ∈X
then ‘aaa’ and ‘ababbb’ are words on X.

Definition 3.2.12 (Abstract term algebras). Let (F , ρ) be a type and let S be a
non-empty set that is disjoint from F . We define a sequence of sets (Tn(S))n∈N0

consisting of words on S ∪ F by recursion:

T0(S) ∶= S ∪ {f ∶ ρ(f) = 0} ,
Tn+1(S) ∶= Tn(S) ∪ {ft1 . . . tρ(f) ∶ t1, . . . , tρ(f) ∈ Tn(S), f ∈ F st. ρ(f) ≥ 1} .

Define T(F ,ρ)(S) ∶= ⋃n∈N0
Tn(S) which we call the terms of type (F , ρ) over S.

For every f ∈ F , define the following:

(i) If ρ(f) = 0, define fT(F,ρ)(S) ∶= f .

(ii) If ρ(f) ≥ 1, define fT(F,ρ)(S) (t1, . . . , tρ(f)) ∶ = ft1 . . . tρ(f) for t1, . . . , tρ(f) ∈
T(F ,ρ)(S).

Define FT(F,ρ)(S) ∶= {fT(F,ρ)(S) ∶ f ∈ F}, then the pair (T(F ,ρ)(S),FT(F,ρ)(S)) forms an
abstract algebra of type (F , ρ), which we call the abstract term algebra of type
(F , ρ) over the set S.

Let j ∶ S → T(F ,ρ)(S) denote the inclusion map. It follows directly from Theo-

rem 3.2.10 and Proposition 3.2.9 that (T(F ,ρ)(S),FT(F,ρ)(S)) is the smallest abstract
subalgebra of itself that contains j [S].

The idea behind the construction of the abstract term algebra of a given type over a
set can be viewed as a more refined version of the construction of a free monoid over
a set S (see [12, § 1.7]). The free monoid over a set S consists of words on S equipped
with concatenation as an associative binary operation. Indeed, the abstract term
algebra of type (F , ρ) over a set S turns out to be nothing but the free abstract
algebra of type (F , ρ) over a set S.

Theorem 3.2.13 ([16, Theorem 4.21]). Let (F , ρ) be a type and let S be a non-
empty set disjoint from F . For every abstract algebra (A,FA) of type (F , ρ) and
every function h ∶ S → A, there exists a unique abstract algebra homomorphism
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h̄ ∶ T(F ,ρ)(S) → A such that the following diagram commutes in Set.

S T(F ,ρ)(S)

A

h

j

h̄

That is to say, the pair (T(F ,ρ)(S), j) is the free object over S of AbsAlg(F ,ρ).
Furthermore, the abstract algebra (T(F ,ρ)(S),FT(F,ρ)(S)) is generated by the subset
j [S].

Our previous result is not yet enough for us to construct free objects in an algebraic
category from Table 1 over a set. This is because we have thus far only formalised
which operations are carried by an abstract algebra, which are encoded in its type.
At this stage a free abstract algebra over a set will just be a set equipped with
operations with no further information about how these operations interact with
each other. We now turn to the missing ingredient: identities.

We will illustrate the idea of what it means for an abstract algebra to satisfy an
identity by means of the following example: Consider an abstract algebra (A,FA) of
type (F , ρ). Let f ∈ F with ρ(f) = 2, thus we have a binary operation fA ∶ A×A→ A,
which we represent by ⊕ where x ⊕ y ∶ = fA(x, y). We wish to express that the
operation ⊕ is associative, i.e. for x1, x2, x3 ∈ A,

x1 ⊕ (x2 ⊕ x3) = (x1 ⊕ x2) ⊕ x3.

Let Sω denote a fixed countable set. By its construction, the abstract term al-
gebra T(F ,ρ)(Sω) contains all possible grammatical combinations of elements in
Sω with operations from (F , ρ). In particular, for s1, s2, s3 ∈ Sω we have the
terms fs1fs2s3, ffs1s2s3 ∈ T(F ,ρ)(Sω). The pair (fs1fs2s3, ffs1s2s3) ∈ T(F ,ρ)(Sω) ×
T(F ,ρ)(Sω) will be used to encode our prescription that the operation given by f ∈ F
in an abstract algebra of type (F , ρ) needs to be associative. Similarly, for g ∈ F
with ρ(g) = 2, the pair (gs1s2, gs2s1) ∈ T(F ,ρ)(Sω)×T(F ,ρ)(Sω) can be used to encode
the prescription that the operation given by g ∈ F in an abstract algebra of type
(F , ρ) needs to be commutative. The pairs (t1, t2) ∈ T(F ,ρ)(Sω) × T(F ,ρ)(Sω) will be
called identities of type (F , ρ) and the set T(F ,ρ)(Sω) × T(F ,ρ)(Sω) then contains the
collection of all possible identities for an abstract algebra of type (F , ρ). We denote
a particular identity (t1, t2) ∈ T(F ,ρ)(Sω) × T(F ,ρ)(Sω) by writing t1 ≈ t2.

How do we use this set of all possible identities of type (F , ρ) to express that the
operation fA of the particular abstract algebra (A,FA) of type (F , ρ) is associative?
This is given to us by the universal property of Theorem 3.2.13! Fix s1, s2, s3 ∈ Sω.
Then for every x1, x2, x3 ∈ A there is a map h ∶ Sω → A where h(si) = xi. By Theo-
rem 3.2.13, there exists a unique abstract algebra homomorphism h̄ ∶ T(F ,ρ)(Sω) → A
extending h. Fixing the terms t ∶= fs1fs2s3 and t′ ∶= ffs1s2s3 in T(F ,ρ)(Sω), it fol-
lows that the operation fA in (A,FA) will satisfy associativity for a choice of three
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elements x1, x2, x3 ∈ A if and only if h̄(t) = h̄(t′) since

h̄(t) = h̄ (fA (s1, f
A (s2, s3))) = fA (h(s1), fA (h(s2), h(s3))) = (x1 ⊕ x2) ⊕ x3.

and

h̄(t′) = h̄ (fA (fA (s1, s2) , s3)) = fA (fA (h(s1), h(s2)) , h(s3)) = (x1 ⊕ x2) ⊕ x3.

This leads us to the following definition.

Definition 3.2.14. Let (A,FA) be an abstract algebra of type (F , ρ). Consider
terms t1, t2 ∈ T(F ,ρ)(Sω). The abstract algebra (A,FA) satisfies the identity t1 ≈ t2
if h(t1) = h(t2) for every abstract algebra homomorphism h ∶ T(F ,ρ)(Sω) → A.

For a collection of identities Σ ⊆ T(F ,ρ)(Sω) × T(F ,ρ)(Sω), we say A satisfies Σ when
A satisfies t1 ≈ t2 for every (t1, t2) ∈ Σ.

Further, if we consider any Σ ⊆ T(F ,ρ)(Sω) × T(F ,ρ)(Sω), then the collection of all
abstract algebras (A,FA) of type (F , ρ) which satisfy Σ is called the equational
class defined by Σ.

Let (F , ρ) be a type and Σ ⊆ T(F ,ρ)(Sω)×T(F ,ρ)(Sω) a collection of identities. Define
the category AbsAlg(F ,ρ); Σ whose objects are the abstract algebras in the equational
class defined by Σ and whose morphisms are abstract algebra homomorphisms of
type (F , ρ). It is clear that AbsAlg(F ,ρ); Σ forms a subcategory of AbsAlg(F ,ρ).

As one might expect, one can also force an abstract algebra to satisfy a particular
identity by passing to a quotient of some kind. To formulate this precisely, we need
the following definitions.

Definition 3.2.15 (Congruence relations). Let (A,FA) be an abstract algebra of
type (F , ρ). A relation θ ⊆ A ×A is called a congruence relation on A if θ is both
an equivalence relation and satisfies the substitution property : For every f ∈ F with
ρ(f) ≥ 1 and for x1, . . . , xρ(f) ∈ A and y1, . . . , yρ(f) ∈ A such that xi θ yi for 1 ≤ i ≤ ρ(f)
we have that

fA (x1, . . . , xρ(f)) θ fA (y1, . . . , yρ(f)) .

Definition 3.2.16 (Abstract quotient algebras). Let (A,FA) be an abstract algebra
of type (F , ρ) and θ a congruence relation on A. Denote by A/θ the collection of
equivalence classes in A with respect to θ and let qθ ∶ A→ A/θ denote the canonical
map. For every f ∈ F , define the following:

(i) If ρ(f) = 0, define fA/θ ∶= qθ (fA).
(ii) If ρ(f) ≥ 1, define fA/θ (qθ(x1), . . . , qθ(xρ(f))) ∶ = qθ (fA (x1, . . . , xρ(f))) for

x1, . . . , xρ(f) ∈ A.

Define FA/θ ∶= {fA/θ ∶ f ∈ F}, then the pair (A/θ,FA/θ) forms an abstract algebra of
type (F , ρ) which we call an abstract quotient algebra.

It follows precisely from the fact that θ satisfies the substitution property that
the induced basic operations on A/θ from (A,FA) are well-defined. The definition
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of the basic operations on A/θ also immediately implies that the canonical map
qθ ∶ A→ A/θ is an abstract algebra homomorphism.

We will use the next two results in the formulation of our main theorem for this
section.

Proposition 3.2.17. Let (A,FA) be an abstract algebra of type (F , ρ) and θ a

congruence relation on A. If X ⊆ A and A = SgA (X), then A/θ = SgA/θ (qθ [X]).

Proof. By Theorem 3.2.10, we have that A = SgA (X) = ⋃n∈N0
Xn where the

sequence of sets (Xn)n∈N0 is defined. Then

A/θ = qθ [A] = qθ [ ⋃
n∈N0

Xn] = ⋃
n∈N0

qθ [Xn] .

Define the following sequence of subsets (Yn)n∈N0 of A/θ by recursion:

Y0 ∶= qθ [X] ∪ {fA/θ ∶ ρ(f) = 0} ,
Yn+1 ∶= Yn ∪ {fA/θ (y1, . . . , yρ(f)) ∶ y1, . . . , yρ(f) ∈ Yn, f ∈ F st. ρ(f) ≥ 1} .

By Theorem 3.2.10, we have that SgA/θ (qθ [X]) = ⋃n∈N0
Yn. The desired result will

follow if we can verify that Yn = qθ [Xn]. We prove this by induction. It follows
directly from the definition of the basic operations on A/θ in Definition 3.2.16 that
Y0 = qθ [X0]. Fix any n ∈ N and assume that Yn = qθ [Xn]. Since

Xn+1 ∶=Xn ∪ {fA (a1, . . . , aρ(f)) ∶ a1, . . . , aρ(f) ∈Xn, f ∈ F st. ρ(f) ≥ 1}

from Definition 3.2.16 we have that Yn+1 = qθ [Xn+1]. Thus A/θ = SgA/θ (qθ [X]). �

Lemma 3.2.18 ([27, Lemma 5.2]). Let (A,FA) be an abstract algebra of type (F , ρ)
and let θ be a congruence relation on A. The abstract algebra (A/θ,FA/θ) satis-
fies t1 ≈ t2 if and only if (h(t1), h(t2)) ∈ θ for all abstract algebra homomorphisms
h ∶ T(F ,ρ)(Sω) → A.

Our development of the theory above leads us next to the main result of this section,
which states in precise language that for every type (F , ρ) and every set of identities
Σ ⊆ T(F ,ρ)(Sω) × T(F ,ρ)(Sω) and every non-empty set S, there exists a free object
over S in the category AbsAlg(F ,ρ); Σ. This result is found in [45, Theorem 2.10,
p. 82] and a proof is also given in [27, Theorem 5.4].

Theorem 3.2.19. Let (F , ρ) be a type and take Σ ⊆ T(F ,ρ)(Sω) × T(F ,ρ)(Sω). Let
S be a non-empty set and consider the smallest congruence relation θ on T(F ,ρ)(S)
containing the pairs (h(t1), h(t2)) for all (t1, t2) ∈ Σ and all abstract algebra homo-
morphisms h ∶ T(F ,ρ)(Sω) → T(F ,ρ)(S). Then the following holds:

(I) T(F ,ρ)(S)/θ ∈AbsAlg(F ,ρ); Σ.

(II) Let ι ∶ S → T(F ,ρ)(S) denote the inclusion map and qθ ∶ T(F ,ρ)(S) → T(F ,ρ)(S)/θ
the quotient map. Define j = qθ ○ ι. The abstract algebra T(F ,ρ)(S)/θ is gen-
erated by the subset j [S].
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3.2. EXISTENCE OF ALGEBRAIC FREE OBJECTS 91

(III) For every (A,FA) ∈ AbsAlg(F ,ρ); Σ and every function h ∶ S → A, there

exists a unique abstract algebra homomorphism h̄ ∶ T(F ,ρ)(S)/θ → A such
that the following diagram commutes in Set.

S T(F ,ρ)(S)/θ

A

h

j

h̄

That is to say, the pair (T(F ,ρ)(S)/θ, j) is the free object over S of
AbsAlg(F ,ρ); Σ.

Using the content in Lemma 3.2.6 as a guidebook, the following can be done: Let
X be any algebraic category in Table 1. We can encode the operations defined
on the objects in X into a type (F , ρ) (if the objects in X have lattice structure,
we use Lemma 3.2.5 to encode the lattice structure using the operations ? and >).
Consulting the list of 21 identities in Lemma 3.2.6, we choose those identities that are
appropriate to the category X to generate a formal set of identities Σ ⊆ T(F ,ρ)(Sω)×
T(F ,ρ)(Sω). This gives us an associated category of abstract algebras AbsAlg(F ,ρ); Σ.
By following the example of Lemma 3.2.5, we can construct a bijection between the
objects in X and the objects in AbsAlg(F ,ρ); Σ and this bijection will also preserve
the morphisms in X and the morphisms in AbsAlg(F ,ρ); Σ. Thus the categories X
and AbsAlg(F ,ρ); Σ are isomorphic. By viewing each algebraic category X in Table 1
in this way, an application of Theorem 3.2.19 will give us the following free objects.

Corollary 3.2.20 ([27, Theorem 6.2]). Let S be a set. The following free objects
exist.

(i) (FVS
Set(S) , j),

(ii) (FVL
Set(S) , j),

(iii) (FAlg
Set (S) , j),

(iv) (FAlg1

Set (S) , j),

(v) (FVLA
Set (S) , j),

(vi) (FVLA1

Set (S) , j),

(vii) (FVLA1+

Set (S) , j).

Denote by F any of the objects in (i)-(vii), then the subset j [S] generates F.

The free objects listed above are, of course, not new findings. The free vector
space over a set is described in Section 1.1.2 and the free (unital) algebra over a
set is obtained directly by taking the non-commutative version of the construction
(K [S] , j) in Section 1.1.2. For the free vector lattice over a set, both the direct
construction and the universal algebra approach to existence has been known for a
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92 3. FREE OBJECTS

long time (see [13] and [18]). There is, however, no direct construction of the free
((positive) unital) vector lattice algebra over a set and the existence of these were
first recorded in [27].

We have thus far proven the existence of free objects for the pairs (Set,X) where
X is an algebraic category from Table 1. There are a further 18 non-trivial pairs
of categories (X,Y) with X ⊇ Y for which we can construct a free object. It
turns out that it is not difficult to derive the existence of a free object between
these pairs of categories (X,Y) by using the existence of a free object between
(Set,Y). More details and examples are supplied in [27, Section 6], but the idea
behind the general approach is illustrated well enough by means of an example. We
will prove the existence of a free unital algebra over a vector space V . The free
algebra over a vector space is usually called the tensor algebra of a vector space
(see [23, Chapter III, Section 5]). However, our approach will prove the existence

of FAlg1

VS (V ) for a vector space V from the existence of FAlg1

Set (∣V ∣) where ∣V ∣ denotes
the underlying set of the vector space V .

Proposition 3.2.21. Let V be a vector space. The free object (FAlg1

VS (V ) , j) exists.

Proof. Let V be a vector space and denote by ∣V ∣ the underlying set of V
without any operations or identities. We have already established in Corollary 3.2.20

that the free object (FAlg1

Set (∣V ∣) , j) exists. That is, for every unital algebra R1 and

every set map ψ ∶ ∣V ∣ → R1 there exists a unique unital algebra homomorphism

ψ̄ ∶ FAlg1

Set (∣V ∣) → R1 such that the following diagram commutes

∣V ∣ FAlg1

Set (∣V ∣)

R1

ϕ

j

ϕ̄

For every λ ∈ R and x, y ∈ V , consider elements of the form

j(x + y) − (j(x) + j(y)) ,
j(λx) − λj(x).

Denote the above collection of elements by L and let I be the two-sided algebra

ideal generated by L. The quotient FAlg1

Set (∣V ∣) /I forms a unital algebra and the

quotient map qI ∶ FAlg1

Set (∣V ∣) → FAlg1

Set (∣V ∣) /I is automatically a unital algebra ho-
momorphism thanks to the definition of the operations on the quotient (Defini-
tion 3.2.16). The definition of the two-sided algebra ideal guarantees that the map

qI ○ j ∶ V → FAlg1

Set (∣V ∣) /I is linear: For x, y ∈ V , we have

qI ○ j (x + y) = qI (j(x) + j(y)) = qI ○ j(x) + qI ○ j(y).
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3.2. EXISTENCE OF ALGEBRAIC FREE OBJECTS 93

The analogous expression for scalar multiplication can also easily be verified. We

verify that the pair (FAlg1

Set (∣V ∣) /I, qI ○ j) has the necessary universal property: Fix

a unital algebra R1 and fix a linear map ϕ ∶ V → R1 and let ϕ̄ ∶ FAlg1

Set (∣V ∣) → R1

be the unique extension of ϕ when ϕ is considered as a set map. For the element
j(x + y) − (j(x) + j(y)) ∈ L, we have

ϕ̄ (j(x + y) − (j(x) + j(y)))
= ϕ̄(j(x + y)) − ϕ̄(j(x)) + ϕ̄(j(y))
= ϕ(x + y) − ϕ(x) − ϕ(y) = 0.

Similarly, one can verify that ϕ̄ vanishes on elements of the form j(λx) −λj(x) ∈ L.
Since L generates I and ϕ̄ vanishes on L we conclude that I ⊆ ker ϕ̄. Now, define

the map ¯̄ϕ ∶ FAlg1

Set (∣V ∣) /I → R1 where ¯̄ϕ ([a]) = ϕ̄(a). Since I ⊆ ker ϕ̄, the map ¯̄ϕ
is well-defined and is a unital algebra homomorphism. The definition of ¯̄ϕ makes it
clear that ¯̄ϕ ○ qI = ϕ̄ and further ¯̄ϕ is unique with respect to this property since for

any unital algebra homomorphism ξ ∶ FAlg1

Set (∣V ∣) /I → R1 satisfying ξ ○ qI = ϕ̄, we
have that

ξ ([a]) = ξ ○ qI(a) = ϕ̄(a) = ¯̄ϕ ○ qI(a) = ¯̄ϕ ([a])

for [a] ∈ FAlg1

Set (∣V ∣) /I. Thus ¯̄ϕ = ξ. As a result,

¯̄ϕ ○ (qI ○ j) = ( ¯̄ϕ ○ qI) ○ j = ϕ̄ ○ j = ϕ.

Let ψ ∶ FAlg1

Set (∣V ∣) /I → R1 be any unital algebra homomorphism such that ψ ○
(qI ○ j) = ϕ. Thus (ψ ○ qI) ○ j = ϕ and the uniqueness of the map ϕ̄ ∶ FAlg1

Set (∣V ∣) →
R1 implies that ψ ○ qI = ϕ̄ and the uniqueness of ¯̄ϕ implies that ¯̄ϕ = ψ. Hence,

(FAlg1

Set (∣V ∣) /I, qI ○ j) is the free object over V of Alg1. We note here that the

construction of this free object as a quotient along with the fact that j [∣V ∣] generates

FAlg1

Set (∣V ∣) (Corollary 3.2.20 (iv)) and Proposition 3.2.17 implies that qI ○ j [V ] does

indeed generate FAlg1

Set (∣V ∣) /I. �

In summary, we have the following 25 non-trivial algebraic free objects.

Theorem 3.2.22 ([27, Theorem 6.2]). Let S be a set, V a vector space, E a vector
lattice, R an algebra, R1 a unital algebra, A a vector lattice algebra, A1 a unital
vector lattice algebra, and A1+ a positive unital vector lattice algebra. Let Y be an
algebraic category from Table 1 and X any supercategory of Y from Table 1. Ranging
over all valid choices of X ⊇Y generates the following table of existing free objects.
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94 3. FREE OBJECTS

Set VS VL Alg Alg1 VLA VLA1 VLA1+

Set S FVS
Set(S) FVL

Set(S) FAlg
Set (S) FAlg1

Set (S) FVLA
Set (S) FVLA1

Set (S) FVLA1+

Set (S)
VS V FVL

VS(V ) FAlg
VS (V ) FAlg1

VS (V ) FVLA
VS (V ) FVLA1

VS (V ) FVLA1+

VS (V )
VL E FVLA

VL (E) FVLA1

VL (E) FVLA1+

VL (E)
Alg R FAlg1

Alg (R) FVLA
Alg (R) FVLA1

Alg (R) FVLA1+

Alg (R)
Alg1 R1 FVLA1

Alg1 (R1) FVLA1+

Alg1 (R1)

VLA A FVLA1

VLA (A) FVLA1+

VLA (A)
VLA1 FVS

Set(S) A1 FVLA1+

VLA1 (A1)
VLA1+ FVS

Set(S) A1+

Table 5. Table of algebraic free objects.

The top row and leftmost column of the table runs through all pairs of categories
(X,Y) from Table 1 with X chosen from the leftmost column and Y chosen from
the top row. If a cell in the above table has an entry FY

X(X), then the free object
(FY

X(X) , j) exists. Entries along the diagonal correspond to the pairs of categories
(X,X) where the free object in X over an object in X is just the object itself.
Entries below the diagonal are all blank since these pairs of categories (X,Y) do
not satisfy X ⊇Y as required in the definition of a free object. Blank entries above
the diagonal correspond to those choice of categories that are incompatible.

3.3. Pseudo-solutions of free object problems

In this section, we will define and prove the existence of a substantial number of
pseudo-solutions of free object problems. We will give a uniform approach for the
construction of these objects: All these constructions start with the abstract exis-
tence of some algebraic free object (F, j) from Table 5. This algebraic free object
is equipped with a seminorm ρ whose definition exploits the universal property of
(F, j) to give this seminorm necessary properties (i.e. the Riesz property and/or
submultiplicativity). By taking the quotient of (F, ρ) by kerρ, we end up with a
normed structure that satisfies the necessary universal property of a pseudo-solution
and we may pass to a completion if the pseudo-solution is required to be complete.

Beyond the routine verifications one needs to make in these constructions of pseudo-
solutions, the most non-trivial step is the formulation of these seminorms mentioned
above. Credit needs to be given to Mr. Mitchell Taylor and Prof. Marcel de Jeu
for first developing the above approach which they used to prove the existence of,
amongst others, pseudo-solutions to the free object problem between the categories
BLA and Set.

We start with our definition of a pseudo-solution, for which we will need to introduce
some notation.

Definition 3.3.1. Let X be a category from Table 1, 2, or 3 and consider X ∈ X.
Define the collection of morphisms

M(X) ∶= {M ∈ HomSet(X,R) ∶M(x) ≥ 0 ∀x ∈X} .
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3.3. PSEUDO-SOLUTIONS OF FREE OBJECT PROBLEMS 95

Define the relation ≤ on M(X) where M1 ≤ M2 if and only if M1(x) ≤ M2(x) for
all x ∈ X. This makes (M(X),≤) into an upwards directed partially ordered set.
In particular, if X is a category of normed structures from Table 2 or 3, we may
consider elements of M(X) of the form M(x) ∶= C ∥x∥ where C > 0. Denote this
subcollection by Mb(X).

Definition 3.3.2. Let Y be any category of normed structures from Table 2 or 3
with X any category from Table 1, 2, or 3 such that X ⊇ Y. Fix X ∈ X and
M ∈ M(X). For Y ∈Y, define

ΦM(X,Y ) ∶= {ϕ ∈ HomX(X,Y ) ∶ ∥ϕ(x)∥Y ≤M(x) ∀x ∈X} .

Remark 3.3.3. Let Y be any category of normed structures in Table 2 or 3 with
X any category from Table 1, 2, or 3 such that X ⊇Y.

(i) Let Y ∈ Y and consider a morphism ϕ ∶ X → Y in X. If X is a category
from Table 1, there exists Mϕ ∈ M(X) such that for all M ≥ Mϕ we have
that ϕ ∈ ΦM(X,Y ), namely, Mϕ(x) ∶= ∥ϕ(x)∥ for all x ∈ X. Otherwise,
if X is a category from Table 2 or 3, then ϕ is a bounded morphism and
there exists Cϕ > 0 such that ∥ϕ(x)∥ ≤ Cϕ ∥x∥ for all x ∈ X. In this case,
we define Mϕ(x) ∶= Cϕ ∥x∥ then ϕ ∈ ΦM(X,Y ) for all M ≥Mϕ. This simple
observation will be crucial in the sequel.

(ii) Let X and Y be categories of normed structures, either from Table 2 or 3,
such that X ⊇ Y. Fix X ∈ X and consider the constraining function M ∈
M(X) where M(x) ∶= ∥x∥. For every Y ∈Y we have

ΦM(X,Y ) = HomX1(X,Y )
where X1 is the subcategory of X with contractive morphisms.

Definition 3.3.4. Let Y be any category of normed structures in Table 2 or 3 with
X any category from Table 1, 2, or 3 such that X ⊇ Y. Let X be an object in X.
If X is a category from Table 1, consider any M ∈ M(X). Otherwise, if X is a
category from Table 2 or 3, let M ∈ Mb(X). Consider an object PY

X(X,M) in Y
and a morphism jM ∶X → PY

X(X,M) in X such that ∥jM(x)∥ ≤M(x) for all x ∈X.
The pair (PY

X(X,M), jM) is called a pseudo-free object over X of Y constrained by
M if it has the property that for every Y ∈Y and every ϕ ∈ ΦM(X,Y ) there exists
a unique contractive morphism ϕ̄ ∶ PY

X(X,M) → Y in Y such that the following
diagram commutes in X.

X PY
X(X,M)

Y

ϕ

jM

ϕ̄

If the above holds, the pair (PY
X(X,M), jM), or by abuse of notation just the object

PY
X(X,M), is also called a pseudo-solution for the free object problem over O1 between

the categories X and Y constrained by M .
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96 3. FREE OBJECTS

This definition will allow us to prove that pseudo-solutions are essentially unique in
a very strong sense.

Proposition 3.3.5. Fix a category Y from Table 2 or 3 and a category X from
Table 1, 2, or 3 with X ⊇ Y. Let X ∈ X and fix a constraining function M from
either M(X) or Mb(X) as appropriate. Then the following holds:

(i) Pseudo-solutions for the free object problem over X between the categories
X and Y constrained by M are unique up to a compatible isometric Y-
isomorphism, i.e. if pseudo-solutions (PM , jM) and (P′

M , j
′
M) exist, then

there is an isometric Y-isomorphism φ ∶ P′
M → PM making the following di-

agram commute in X.

P′
M

X

PM

φ

j′M

jM

(ii) Given a pseudo-solution (PM , jM), the object in A(Y) generated by jM [X]
is dense in PM .

(iii) In light of (ii), pseudo-solutions for the free object problem over X be-
tween the categories X and Y constrained by M are unique up to a unique
compatible isometric Y-isomorphism, i.e. if pseudo-solutions (PM , jM) and
(P′

M , j
′
M) exist, then there is a unique isometric Y-isomorphism φ ∶ P′

M →
PM making the diagram in (i) commute in X.

Proof. We prove (i): Consider pseudo-solutions (PM , jM) and (P′
M , j

′
M). By

definition we have jM ∈ ΦM (X,PM) and j′M ∈ ΦM (X,P′
M). Clearly the identity

morphism 1PM ∶ PM → PM satisfies 1PM ○ jM = jM and is contractive. On the other
hand, by the universal property of a pseudo-solution there exists unique contractive
morphisms j′M ∶ PM → P′

M and jM ∶ P′
M → PM each uniquely satisfying their own

diagram in X.

X PM X P′
M

P′
M PM

j′M

jM

j′M jM

j′M

jM

Thus the morphisms jM ○ j′M ∶ PM → PM and j′M ○ jM ∶ P′
M → P′

M are contractive

and also satisfy (jM ○ j′M) ○ jM = jM and (j′M ○ jM) ○ j′M = j′M . By uniqueness, we

have jM ○ j′M = 1PM and j′M ○ jM = 1P′
M

, thus jM is a Y-isomorphism. To see that

jM is an isometry, for x ∈ P′
M , note that since j′M is contractive, we have

∥x∥ = ∥j′M ○ jM(x)∥ ≤ ∥j′M∥ ∥jM(x)∥ ≤ ∥jM(x)∥ .
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3.3. PSEUDO-SOLUTIONS OF FREE OBJECT PROBLEMS 97

Since jM is contractive, we conclude that jM is an isometric Y-isomorphism.

For (ii), consider a pseudo-solution (PM , jM). Let G denote the object in A(Y)
generated by the subset jM [X] in PM . Denote by H the closure of G in PM and
define the morphism j′ ∶X →H where j′(x) ∶= j(x). The proof of Proposition 3.1.3
is easily imitated to show that (H, j′) is a pseudo-solution. By (i), there exists an
isometric Y-isomorphism φ ∶H → PM such that φ ○ j = jM , hence G is dense in PM .

For (iii), consider the pseudo-solutions (PM , jM) and (P′
M , j

′
M) we had in (i) where

we proved that jM ∶ P′
M → PM is an isometric Y-isomorphism satisfying jM○j′M = jM .

If φ ∶ P′
M → PM is any isometric Y-isomorphism satisfying φ ○ j′M = jM , it follows

immediately from the fact that the object in A(Y) generated by j′M [X] is dense in

P′
M that φ = jM . �

In the next result, we will construct the pseudo-solution to the free object problem
over a set S between the categories Set and BLA1+ constrained by some M ∈ M(S).
The proof will be structured in such a way to make it clear how the general approach
can be modified to generate pseudo-solutions for different choices of categories. Our
chosen example is amongst those with the most details to check and more examples
will follow by omitting certain steps.

The next result also specifically addresses a part of [67, Problem 13]. The statement
of this problem is quoted below in Question 3.3.11. As explained in the introductory
remarks in Subsection 1.1.2, in the spirit of [29], this would be called the ‘free
positive unital Banach lattice algebra over a set’.

Theorem 3.3.6. Consider the categories Set and BLA1+. Fix S ∈ Set and M ∈
M(S). Then the pseudo-solution (PBLA1+

Set (S,M), jM) exists. That is to say, for

every A ∈ BLA1+ and every morphism ϕ ∈ ΦM(S,A), there exists a unique contrac-

tive morphism ϕ̄ ∶ PBLA1+

Set (S,M) → A in BLA1+ such that the following diagram
commutes in Set.

S PBLA1+

Set (S,M)

A

ϕ

jM

ϕ̄

Proof. Step I: Existence of an algebraic free object.

Fix S ∈ Set and M ∈ M(S). Consider an arbitrary A ∈ BLA1+ ⊆ VLA1+ and fix

any morphism ϕ ∈ ΦM(S,A). By Theorem 3.2.22, the free object (FVLA1+

Set (S) , j′)
exists and since A ∈ VLA1+ there exists a unique morphism ϕ̃ ∶ FVLA1+

Set (S) → A in
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98 3. FREE OBJECTS

VLA1+ such that the following diagram commutes in Set.

S FVLA1+

Set (S)

A

ϕ

j′

ϕ̃

For brevity, denote F′ ∶= FVLA1+

Set (S) and denote by Φ′
M(S,A) the unique morphisms

ψ′ ∶ F′ → A in VLA1+ that make the above diagram commute for morphisms ψ ∈
ΦM(S,A).
Step II: Define a seminorm on F′ using the above diagram.

Define the map ρ̃ ∶ F′ → [0,∞] where

ρ̃(f ′) ∶= sup{∥ψ′(f ′)∥A ∶ A ∈ BLA1+, ψ′ ∈ Φ′
M(S,A)}

for f ′ ∈ F′. Denote by G the collection of elements in F′ that take on finite values
under ρ̃. Define ρ ∶ G→ R+ where ρ(g) ∶= ρ̃(g) for g ∈ G.

Step III: G is a subvector lattice algebra of F′ and ρ is a submultiplicative Riesz
seminorm on G.

We prove G is a subalgebra of F′: Fix f, g ∈ G. Since any A ∈ BLA1+ is equipped
with a submultiplicative norm and all ψ′ ∈ Φ′

M(S,A) are algebra homomorphisms,
we have

ρ̃ (fg) = sup{∥ψ′(fg)∥A ∶ A ∈ BLA1+, ψ′ ∈ Φ′
M(S,A)}

≤ sup{∥ψ′(f)∥A ∥ψ′(g)∥A ∶ A ∈ BLA1+, ψ′ ∈ Φ′
M(S,A)}

= ρ̃ (f) ρ̃ (g) .
Thus G is a subalgebra of F′ and ρ is a submultiplicative seminorm on G. To see
that G is a sublattice of F′, fix g ∈ G. Since any A ∈ BLA1+ is equipped with a
Riesz norm and all ϕ′ ∈ Φ′

M(S,A) are lattice homomorphisms, we have

ρ̃ (∣g∣) = sup{∥ψ′ (∣g∣)∥A ∶ A ∈ BLA1+, ψ′ ∈ Φ′
M(S,A)} ,

= sup{∥∣ψ′ (g)∣∥A ∶ A ∈ BLA1+, ψ′ ∈ Φ′
M(S,A)} ,

= ρ̃ (g) .

Thus ∣g∣ ∈ G, which proves that G is a subvector lattice algebra of F′. It remains to
show that ρ has the Riesz seminorm property: Let g, g′ ∈ G with ∣g∣ ≤ ∣g′∣. Since all
ψ′ ∈ Φ′

M(S,A) are lattice homomorphisms, we have

∣ψ′ (g)∣ = ψ′ (∣g∣) ≤ ψ′ (∣g′∣) = ∣ψ′ (g′)∣ .
Fix any ψ′ ∈ Φ′

M(S,A). Since all A ∈ BLA1+ are equipped with a Riesz norm, it
follows that ∥ψ′ (∣g∣)∥A ≤ ∥ψ′ (∣g′∣)∥A for all A ∈ BLA1+. This implies that ρ (g) ≤
ρ (g′).
Step IV: G = F′
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3.3. PSEUDO-SOLUTIONS OF FREE OBJECT PROBLEMS 99

The collection j′ [S] is a subset of G: Fix j′(s) ∈ j′ [S]. Then for each A ∈ BLA1+

and each ψ′ ∈ Φ′
M(S,A), we have ∥ψ′(j′(s))∥A = ∥ψ(s)∥A ≤ M(s). By Corol-

lary 3.2.20 (vii), the collection j′ [S] generates F′. Thus j′ [S] cannot be contained
in any proper subvector lattice algebra of F′, hence G = F′.

Step V: kerρ is a bi-ideal in F′.

This claim follows easily from the fact that ρ is a submultiplicative Riesz seminorm
on G.

Step VI: Construct a normed vector lattice algebra F′′ from F′ and ρ.

The quotient F′′ ∶= F′/kerρ is an object in VLA1+ when equipped with the standard
quotient vector lattice algebra structure. Denote by q ∶ F′ → F′′ the quotient map
and define ∥●∥ ∶ F′′ → R+ where ∥[a]∥ ∶= ρ(a) for [a] ∈ F′′. Then (F′′, ∥●∥) is an object
in NVLA1+ since the norm inherits all the necessary properties from ρ.

Step VII: Construct the unique morphism ˜̃ϕ ∶ F′′ → A in NVLA1+.

For ψ′ ∈ Φ′
M(S,A), note that ψ′(y) = 0 for all y ∈ kerρ since 0 ≤ ∥ψ′(y)∥A ≤ ρ(y) = 0.

Now, we consider the morphism ϕ ∈ ΦM(S,A) fixed in Step I above along with the
unique morphism ϕ̃ ∶ F′ → A in VLA1+ making the diagram in Step I commute.
Define the map ˜̃ϕ ∶ F′′ → A where ˜̃ϕ([a]) ∶ = ϕ̃(a) for [a] ∈ F′′. The previous
observation shows that ˜̃ϕ is well-defined.

It is clear that ˜̃ϕ ○ q = ϕ̃ and it is easy to see that ˜̃ϕ is a morphism in VLA1+.
Further, for any [a] ∈ F′′ with [a] ≠ [0],

∥ ˜̃ϕ([a])∥
A

∥[a]∥ = ∥ϕ̃(a)∥A
∥[a]∥ ≤ 1

since ∥[a]∥ ≥ ∥ϕ̃(a)∥A. Hence ˜̃ϕ is contractive. Now, for s ∈ S, we have

˜̃ϕ ○ (q ○ j′) (s) = ˜̃ϕ ([j′(s)]) = ϕ̃(j′(s)) = ϕ(s).

Thus we have the following commutative diagram.

S F′ F′′

A A

ϕ

j′

ϕ̃

q

˜̃ϕ

1A

Note that the map q ○ j′ ∶ S → F′′ has the property that for all s ∈ S,

∥q ○ j′(s)∥ = ∥[j′(s)]∥ = ρ(j′(s)) ≤M(s)

To show that ˜̃ϕ is the unique NVLA1+ morphism that satisfies ˜̃ϕ ○ (q ○ j′) = ϕ, let
˜̃ψ ∶ F′′ → A be any other NVLA1+ morphism that also satisfies this property. It

follows that ( ˜̃ψ ○ q) ○ j′ = ϕ. Since ϕ̃ ∶ F′ → A is the unique VLA1+ morphism that
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100 3. FREE OBJECTS

satisfies ϕ̃ ○ j′ = ϕ, we have that ˜̃ψ ○ q = ϕ̃. Thus for every [a] ∈ F′′, we have

˜̃ψ([a]) = ˜̃ψ ○ q(a) = ϕ̃(a) = ˜̃ϕ ○ q(a) = ˜̃ϕ([a]).

Thus ˜̃ψ = ˜̃ϕ.

Step VIII: Extend to the completion of F′′.

Denote by PBLA1+

Set (S,M) a completion of F′′, which is an object in BLA1+. Denote

by c ∶ F′′ → PBLA1+

Set (S,M) the isometric embedding and define the function jM ∶
S → PBLA1+

Set (S,M) where jM ∶= c ○ q ○ j′. Since c is isometric, we have ∥jM(s)∥ =
∥q ○ j′(s)∥ ≤M(s) for all s ∈ S.

Further, since F′′ is dense in its completion, there exists a unique contractive vector
lattice algebra homomorphism ϕ̄ ∶ PBLA1+

Set (S,M) → A such that ϕ̄ ○ c = ˜̃ϕ. It follows
that

ϕ̄ ○ jM = (ϕ̄ ○ c) ○ q ○ j′ = ˜̃ϕ ○ (q ○ j′) = ϕ.
This gives us the following commutative diagram.

S F′ F′′ PBLA1+

Set (S,M)

A A A

ϕ

j′

ϕ̃

q c

˜̃ϕ ϕ̄

1A 1A

Finally, to see that ϕ̄ ∶ PBLA1+

Set (S,M) → A is the unique BLA1+ morphism with the

property that ϕ̄ ○ jM = ϕ, let ψ̄ ∶ PBLA1+

Set (S,M) → A be any other BLA1+ morphism
with this property. Then

ψ̄ ○ jM = (ψ̄ ○ c) ○ q ○ j′ = ϕ.
Step VII shows that ˜̃ϕ ∶ F′′ → A is the unique morphism in NVLA1+ that satisfies
˜̃ϕ ○ (q ○ j′) = ϕ, hence ψ̄ ○ c = ˜̃ϕ. Since ϕ̄ is the unique extension of ˜̃ϕ from F′′ to its
completion, this implies that ψ̄ = ϕ̄. �

The above approach is readily modified to prove the existence of pseudo-solutions
to free object problems for pairs of categories (X,Y) where X ranges over Table 1
and Y ranges over Table 2 and 3 such that X ⊇ Y. For a particular choice of
category X in Table 1, the corresponding row in Table 5 shows all possible choice
of algebraic free objects that can be used as a ‘foundation’ in Step I of the above
proof. The procedure can then either terminate with either Step VII or Step VIII
depending on whether we are constructing a non-complete or complete pseudo-
solution. Since there are 25 non-trivial algebraic free objects in Table 5 and every
non-trivial algebraic free object can be used as a foundation for both a non-complete
and complete pseudo-solution, the method outlined in Theorem 3.3.6 has delivered
us 50 pseudo-solutions to free object problems.

Theorem 3.3.7. Consider categories X and Y with X ranging over Table 1 and Y
ranging over Table 2 and 3 such that X ⊇ Y. Let S be a set, V a vector space, E
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3.3. PSEUDO-SOLUTIONS OF FREE OBJECT PROBLEMS 101

a vector lattice, R an algebra, R1 a unital algebra, A a vector lattice algebra, and
A1 a unital vector lattice algebra and let X ∈ X denote any one of these objects.
For M ∈ M(X), the following pseudo-solutions to free object problems exist. In all
cases, the morphism jM ∶X → PY

X(X,M) is a morphism in the category X satisfying
∥jM(x)∥ ≤M(x) for all x ∈X.

Y from Table 2:

(1) PNS
Set(S,M)

(2) PNVL
Set (S,M)

(3) PNVL
VS (V,M)

(4) PNA
Set(S,M)

(5) PNA
VS(V,M)

(6) PNA1

Set (S,M)
(7) PNA1

VS (V,M)
(8) PNA1

Alg (R,M)
(9) PNVLA

Set (S,M)

(10) PNVLA
VS (V,M)

(11) PNVLA
VL (E,M)

(12) PNVLA
Alg (R,M)

(13) PNVLA1

Set (S,M)

(14) PNVLA1

VS (V,M)

(15) PNVLA1

VL (E,M)

(16) PNVLA1

Alg (R,M)

(17) PNVLA1

Alg1 (R1,M)

(18) PNVLA1

VLA (A,M)

(19) PNVLA1+

Set (S,M)

(20) PNVLA1+

VS (V,M)

(21) PNVLA1+

VL (E,M)

(22) PNVLA1+

Alg (R,M)

(23) PNVLA1+

Alg1 (R1,M)

(24) PNVLA1+

VLA (A,M)

(25) PNVLA1+

VLA1 (A1,M)

Moreover, the object PY
X(X,M) in the above list of 25 pseudo-solutions is generated

by the subset jM [X].
Y from Table 3:

(1) PBan
Set (S,M)

(2) PBL
Set(S,M)

(3) PBL
VS(V,M)

(4) PBA
Set(S,M)

(5) PBA
VS(V,M)

(6) PBA1

Set (S,M)
(7) PBA1

VS (V,M)
(8) PBA1

Alg (R,M)
(9) PBLA

Set (S,M)

(10) PBLA
VS (V,M)

(11) PBLA
VL (E,M)

(12) PBLA
Alg (R,M)

(13) PBLA1

Set (S,M)

(14) PBLA1

VS (V,M)

(15) PBLA1

VL (E,M)

(16) PBLA1

Alg (R,M)

(17) PBLA1

Alg1 (R1,M)

(18) PBLA1

VLA (A,M)

(19) PBLA1+

Set (S,M)

(20) PBLA1+

VS (V,M)

(21) PBLA1+

VL (E,M)

(22) PBLA1+

Alg (R,M)

(23) PBLA1+

Alg1 (R1,M)

(24) PBLA1+

VLA (A,M)

(25) PBLA1+

VLA1 (A1,M)

For a pair of categories (X,Y) where X and Y both range over Table 2 and 3, the
only modification we need to make to the approach laid out in Theorem 3.3.6 is that
we only consider constraining functions in Mb(X) when X ∈ X. This will ensure
that the morphism jM ∶X → PY

X(X,M) is indeed bounded.

The following three tables show all valid choice of pairs of categories (X,Y) where
X and Y both range over Table 2 and 3 such that X ⊇Y. The entries in the top row
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102 3. FREE OBJECTS

in Table 6 - 8 fix a particular category Y and the categories in the corresponding
column show all valid choices of X with X ⊇Y.

NS NVL NA NA1 NVLA NVLA1 NVLA1+

NS NS NS NS NS NS
NVL NVL NVL

NA NA NA NA
NA1 NA1

NVLA NVLA
NVLA1

Table 6. Valid pairs of categories from Table 2.

Ban BL BA BA1 BLA BLA1 BLA1+

Ban Ban Ban Ban Ban Ban
BL BL BL

BA BA BA BA
BA1 BA1

BLA BLA
BLA1

Table 7. Valid pairs of categories from Table 3.

Ban BL BA BA1 BLA BLA1 BLA1+

NS NS NS NS NS NS
NVL NVL NVL

NA NA NA NA
NA1 NA1

NVLA NVLA
NVLA1

Table 8. Valid pairs of categories from Table 2 and 3.

Given that the proof of the existence of the pseudo-solution (PBLA1+

Set (S,M), jM) in
Theorem 3.3.6 provides a detailed illustration of the general proof method, we will
only give a brief outline of the proof of the existence of a pseudo-solution for one of
the above pairs of categories. Fix N ∈NS and M ∈ Mb(N) where M(x) ∶= C ∥x∥ for

x ∈ N and C > 0. We outline the existence of a pseudo-solution (PNA1

NS (N,M), jM):

We start by fixingB ∈NA1 ⊆Alg1 and ϕ ∈ ΦM(N,B). The free object (FAlg1

VS (N) , j′)
exists and there exists a unique morphism ϕ̃ ∶ FAlg1

VS (N) → B in Alg1 such that

ϕ̃ ○ j′ = ϕ. We equip FAlg1

VS (N) with a submultiplicative seminorm ρ similar to
that in Theorem 3.3.6. Since kerρ is an order ideal, the seminorm ρ induces a

norm on the quotient P ∶= FAlg1

VS (N) /kerρ and thus (P, ∥●∥) is an object in NA1.
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3.3. PSEUDO-SOLUTIONS OF FREE OBJECT PROBLEMS 103

Denote by q ∶ FAlg1

VS (N) → P the quotient map and define jM ∶ = q ○ j′. Since
∥jM(x)∥ ≤ M(s) = C ∥x∥, it follows that jM is a morphism in NS. It can then
be shown that ϕ̄ ∶= ϕ̃ ○ q is the unique morphism in NA1

1 such that ϕ̄ ○ jM = ϕ.
Additionally, the set jM [N] generates P since, as noted at the end of the proof of

Proposition 3.2.21, j′ [N] generates FAlg1

VS (N).
The valid pairs of categories in Table 6 - 8 gives us another 54 pseudo-solutions.

Theorem 3.3.8. Consider categories X and Y ranging over Table 2 and 3 such
that X ⊇ Y. Let N be a normed space, X a Banach space, Y a normed vector
lattice, Z a Banach lattice, U a normed algebra, W a Banach algebra, U1 a unital
normed algebra, W 1 a unital Banach algebra, L a normed vector lattice algebra, B a
Banach lattice algebra, L1 a unital normed vector lattice algebra, B1 a unital Banach
lattice algebra and let O denote any one of these objects. For M ∈ Mb(O), the
following pseudo-solutions to free object problems exist. In all cases, the morphism
jM ∶ O → PY

X(O,M) is a morphism in the category X satisfying ∥jM(x)∥ ≤ M(x)
for all x ∈ O.

X and Y from Table 2:

(1) PNVL
NS (N,M)

(2) PNA
NS(N,M)

(3) PNA1

NS (N,M)

(4) PNA1

NA (U,M)

(5) PNVLA
NS (N,M)

(6) PNVLA
NVL (Y,M)

(7) PNVLA
NA (U,M)

(8) PNVLA1

NS (N,M)

(9) PNVLA1

NVL (Y,M)

(10) PNVLA1

NA (U,M)

(11) PNVLA1

NA1 (U1,M)

(12) PNVLA1

NVLA (L,M)

(13) PNVLA1+

NS (N,M)

(14) PNVLA1+

NVL (Y,M)

(15) PNVLA1+

NA (U,M)

(16) PNVLA1+

NA1 (U1,M)

(17) PNVLA1+

NVLA (L,M)

(18) PNVLA1+

NVLA1 (L1,M)

Moreover, the object PY
X(X,M) in the above list of 18 pseudo-solutions is generated

by the subset jM [X].
X and Y from Table 3:

(1) PBL
Ban(X,M)

(2) PBA
Ban(X,M)

(3) PBA1

Ban(X,M)

(4) PBA1

BA (W,M)

(5) PBLA
Ban (X,M)

(6) PBLA
BL (Z,M)

(7) PBLA
BA (W,M)

(8) PBLA1

Ban (X,M)

(9) PBLA1

BL (Z,M)

(10) PBLA1

BA (W,M)

(11) PBLA1

BA1 (W 1,M)

(12) PBLA1

BLA (B,M)

(13) PBLA1+

Ban (X,M)

(14) PBLA1+

BL (Z,M)

(15) PBLA1+

BA (W,M)

(16) PBLA1+

BA1 (W 1,M)

(17) PBLA1+

BLA (B,M)

(18) PBLA1+

BLA1 (B1,M)

X from Table 2 and Y from Table 3:
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104 3. FREE OBJECTS

(1) PBL
NS(N,M)

(2) PBA
NS(N,M)

(3) PBA1

NS (N,M)

(4) PBA1

NA (U,M)

(5) PBLA
NS (N,M)

(6) PBLA
NVL(Y,M)

(7) PBLA
NA (U,M)

(8) PBLA1

NS (N,M)

(9) PBLA1

NVL (Y,M)

(10) PBLA1

NA (U,M)

(11) PBLA1

NA1 (U1,M)

(12) PBLA1

NVLA(L,M)

(13) PBLA1+

NS (N,M)

(14) PBLA1+

NVL (Y,M)

(15) PBLA1+

NA (U,M)

(16) PBLA1+

NA1 (U1,M)

(17) PBLA1+

NVLA(L,M)

(18) PBLA1+

NVLA1(L1,M)

Now that we have proven the existence of these pseudo-solutions, we can add the
following remark on their structure.

Remark 3.3.9. For a pseudo-solution (PY
X(X,M), jM), we defined the morphism

jM ∶X → PY
X(X,M) to satisfy the bound ∥jM(x)∥ ≤ M(x) for all x ∈ X. We used

this property in Proposition 3.3.5 to show that pseudo-solutions are unique in a
strong sense.

In the case of the pseudo-solution (PBLA1+

Set (S,M), jM), indeed, any of the above
pseudo-solutions over sets, the constraining function M gives a ‘sharp’ bound for the
norms ∥jM(s)∥ for s ∈ S: Since the constraining function M ∶ S → R constrains itself,
i.e. M ∈ ΦM(S,R) and R is an object in BLA1+, it follows by the universal property

of the pseudo-solution (PBLA1+

Set (S,M), jM) that there exists a unique contractive

morphism M̄ ∶ PBLA1+

Set (S,M) → R in BLA1+ such that

M(s) = ∣M(s)∣ = ∣M̄ ○ jM(s)∣ ≤ ∥jM(s)∥
for all s ∈ S. As a result, we have that ∥jM(s)∥ =M(s) for all s ∈ S.

Similar arguments will work for some pseudo-solutions, but not for others. We men-
tion two more examples where the constraining function M gives a sharp bound:
Consider the pseudo-solution (PBA

VS(V,M), jM). For every v ∈ V , an argument with
basis vectors gives us a linear map ϕv ∶ V → R such that ϕv(v) =M(v). By the uni-
versal property of the pseudo-solution, there exists a unique contractive morphism
ϕ̄v ∶ PBA

VS(V,M) → R in BA such that

M(v) = ∣ϕ̄v (jM(v))∣ ≤ ∥ϕ̄v∥ ∥jM(v)∥ ≤ ∥jM(v)∥ .
By [25, Chapter III, Corollary 6.6], the same argument applies to (PBLA1+

NS (N,M) , jM)
since for every x ∈ N there exists a bounded linear map ϕx ∶ N → R such that
ϕx(x) =M(x).

In view of Remark 3.3.3 (ii), it is clear that the 54 pseudo-solutions for free object
problems in Theorem 3.3.8 are in fact full solutions to free object problems when
we restrict ourselves to categories with contractive morphisms.

Corollary 3.3.10. Consider categories X and Y ranging over Table 2 and 3 such
that X ⊇Y. Let N be a normed space, X a Banach space, Y a normed vector lattice,
Z a Banach lattice, U a normed algebra, W a Banach algebra, U1 a unital normed
algebra, W 1 a unital Banach algebra, L a normed lattice algebra, B a Banach lattice
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3.3. PSEUDO-SOLUTIONS OF FREE OBJECT PROBLEMS 105

algebra, L1 a unital normed lattice algebra, B1 a unital Banach lattice algebra and
let O denote any one of these objects. The following free objects exist. In all cases,
the morphism j ∶ O → FY1

X1
(O) is a morphism in the category X1.

X and Y from Table 2:

(1) FNVL1

NS1
(N)

(2) FNA1

NS1
(N)

(3) F
NA1

1

NS1
(N)

(4) F
NA1

1

NA1
(U)

(5) FNA1

NS1
(N)

(6) FNVLA1

NVL1
(Y )

(7) FNVLA1

NA1
(U)

(8) F
NVLA1

1

NS1
(N)

(9) F
NVLA1

1

NVL1
(Y )

(10) F
NVLA1

1

NA1
(U)

(11) F
NVLA1

1

NA1
1

(U1)

(12) F
NVLA1

1

NVLA1
(L)

(13) F
NVLA1+

1

NS1
(N)

(14) F
NVLA1+

1

NVL1
(Y )

(15) F
NVLA1+

1

NA1
(U)

(16) F
NVLA1+

1

NA1
1

(U1)

(17) F
NVLA1+

1

NVLA1
(L)

(18) F
NVLA1+

1

NVLA1
1
(L1)

Moreover, the object FY1

X1
(X) in the above list of 18 solutions to free object problems

is generated by the subset j [X].
X and Y from Table 3:

(1) FBL1

Ban1
(X)

(2) FBA1

Ban1
(X)

(3) F
BA1

1

Ban1
(X)

(4) F
BA1

1

BA1
(W )

(5) FBLA1

Ban1
(X)

(6) FBLA1

BL1
(Z)

(7) FBLA1

BA1
(W )

(8) F
BLA1

1

Ban1
(X)

(9) F
BLA1

1

BL1
(Z)

(10) F
BLA1

1

BA1
(W )

(11) F
BLA1

1

BA1
1

(W 1)

(12) F
BLA1

1

BLA1
(B)

(13) F
BLA1+

1

Ban1
(X)

(14) F
BLA1+

1

BL1
(Z)

(15) F
BLA1+

1

BA1
(W )

(16) F
BLA1+

1

BA1
1

(W 1)

(17) F
BLA1+

1

BLA1
(B)

(18) F
BLA1+

1

BLA1
1
(B1)

X from Table 2 and Y from Table 3:

(1) FBL1

NS1
(N)

(2) FBA1

NS1
(N)

(3) F
BA1

1

NS1
(N)

(4) F
BA1

1

NA1
(U)

(5) FBLA1

NS1
(N)

(6) FBLA1

NVL1
(Y )

(7) FBLA1

NA1
(U)

(8) F
BLA1

1

NS1
(N)

(9) F
BLA1

1

NVL1
(Y )

(10) F
BLA1

1

NA1
(U)

(11) F
BLA1

1

NA1
1

(U1)

(12) F
BLA1

1

NVLA1
(L)

(13) F
BLA1+

1

NS1
(N)

(14) F
BLA1+

1

NVL1
(Y )

(15) F
BLA1+

1

NA1
(U)

(16) F
BLA1+

1

NA1
1

(U1)

(17) F
BLA1+

1

NVLA1
(L)

(18) F
BLA1+

1

NVLA1
1
(L1)
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106 3. FREE OBJECTS

We conclude this section with remarks on Problems 13 and 15 in [67], which we
quote here for ease of reference.

Question 3.3.11 ([67, Problem 13]). There is a theory of free Banach lattices, [29].
Is there a sensible notion of a free Banach lattice algebra? If so, what can be said
about its representations?

Using the terminology from [29], in Theorem 3.3.6 we proved the existence of
the free positive unital Banach lattice algebra over a set. In addition, in Theo-
rems 3.3.7 and 3.3.8 we proved the existence of substantial number of free ((posi-
tive) unital) Banach lattice algebras over both algebraic and normed structures. As
a result, we can consider the first part of Question 3.3.11 as settled. However, we
have nothing to report at this stage regarding representations of these free Banach
lattice algebras.

Question 3.3.12 ([67, Problem 15]). If A is a non-unital Banach lattice algebra,
can it be embedded in a unital Banach lattice superalgebra B in such a way that
every lattice algebra homomorphism from A into a unital Banach lattice algebra
C extends uniquely to a unital lattice and algebra homomorphism from B into C?
If we restrict C to lie in the class of unital Banach lattice algebras with positive
identities, can we make B have a positive identity?

We will use some of the pseudo-solutions obtained in this section to get rather close
to a full answer for Question 3.3.12. Consider a Banach lattice algebra A. We use
some observations from [27, Remark 2.3 and Lemma 2.4] in the sequel. It is routine
to verify that the vector lattice direct sum A⊕R supplied with the multiplication

(x,α) ⋅ (y, β) ∶= (αy + βx,αβ)
and the norm ∥(x,α)∥ ∶= ∥x∥B + ∣α∣ makes A⊕R into a positive unital Banach lattice
algebra. The inclusion J ∶ A → A ⊕ R where J(x) ∶= (x,0) is clearly an isometric
Banach lattice algebra embedding. For every constant C ≥ 1, consider MC ∈ Mb(A)
where MC(x) ∶= C ∥x∥A. Since ∥J∥ ≤ C, by the universal property of the pseudo-

solution (PBLA1+

BLA (A,MC) , jMC
), there exists a unique contractive BLA1+-morphism

J̄ ∶ PBLA1+

BLA (A,MC) → A⊕R such that J̄ ○ jMC
= J . Thus, for x, y ∈ B with x ≠ y we

have

J̄ (jMC
(x)) = J(x) ≠ J(y) = J̄ (jMC

(y))
which implies that jMC

(x) ≠ jMC
(y). As a result, for every C ≥ 1, the morphism

jMC
∶ A → PBLA1+

BLA (A,MC) is an injective BLA1+-morphism where ∥J(x)∥ ≤ C ∥x∥.
On the other hand, the definition of the norm in Theorem 3.3.6 implies that for
every x ∈X,

∥jMC
(x)∥ ≥ ∥J̄ (jMC

(x))∥ = ∥J(x)∥ = ∥x∥ .

We conclude that if C = 1, then jMC
∶ A → F

BLA1+
1

BLA1
(A) is an isometric BLA-

embedding, and if C > 1, then jMC
∶ A → PBLA1+

BLA (A,MC) is an isomorphic BLA-
embedding.
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3.3. PSEUDO-SOLUTIONS OF FREE OBJECT PROBLEMS 107

Using the universal property of the free object

(F
BLA1+

1

BLA1
(A) , j)

we have the following. The Banach lattice algebra A is isometrically embedded

in the positive unital Banach lattice algebra F
BLA1+

1

BLA1
(A). In addition, for every

positive unital Banach lattice algebra B1+ and every contractive VLA-morphism

ϕ ∶ A → B1+, there exists a unique contractive VLA1-morphism ϕ̄ ∶ F
BLA1+

1

BLA1
(A) →

B1+ extending ϕ.

Similarly, using the universal property of the pseudo-solutions

(PBLA1+

BLA (A,MC) , jMC
)

we have the following. For every constant C > 1, the Banach lattice algebra A is
isomorphically embedded in a positive unital Banach lattice algebra PBLA1+

BLA (A,MC).
In addition, for every positive unital Banach lattice algebra B1+ and every bounded
VLA-morphism ϕ ∶ A → B1+ such that ∥ϕ∥ ≤ C, there exists a unique contractive

VLA1-morphism ϕ̄ ∶ PBLA1+

BLA (A,MC) → B1+ extending ϕ.

If we consider a unital Banach lattice algebra A1 along with the Banach lattice
algebra A fixed above, one may readily verify that the argument we just performed
can also be applied to pseudo-solutions of the following respective forms

(PBLA1

BLA (A,MC) , jMC
) (PBLA1+

BLA1 (A1,MC) , jMC
)

The same argument also applies to the corresponding free objects for categories
with contractive morphisms found in Corollary 3.3.10. We summarise our findings
on unitisations and extensions of bounded vector lattice algebra homomorphisms in
the following proposition.

Proposition 3.3.13. Let A be a Banach lattice algebra and A1 a unital Banach
lattice algebra. Then the following holds:

Extensions of contractive morphisms:

(i) There exists F1(A) in BLA1 into which A is isometrically embedded with the
property that for every B1 in BLA1 and every contractive VLA-morphism
ϕ ∶ A→ B1, there exists a unique contractive VLA1-morphism ϕ̄ ∶ F1(A) →
B1 extending ϕ.

(ii) There exists F1+ (A1) in BLA1+ into which A1 is isometrically embedded
with the property that for every B1+ in BLA1+ and every contractive VLA1-
morphism ϕ ∶ A1 → B1+, there exists a unique contractive VLA1-morphism
ϕ̄ ∶ F1+ (A1) → B1+ extending ϕ.

(iii) There exists F1+(A) in BLA1+ into which A is isometrically embedded with
the property that for every B1+ in BLA1+ and every contractive VLA-
morphism ϕ ∶ A → B1+, there exists a unique contractive VLA1-morphism
ϕ̄ ∶ F1+(A) → B1+ extending ϕ.

Extensions of bounded morphisms:
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108 3. FREE OBJECTS

(i) For every constant C > 1, there exists P1
C(A) in BLA1 into which A is

isomorphically embedded with the property that for every B1 in BLA1 and
every bounded VLA-morphism ϕ ∶ A→ B1 such that ∥ϕ∥ ≤ C, there exists
a unique contractive VLA1-morphism ϕ̄ ∶ P1

C(A) → B1 extending ϕ.

(ii) For every constant C > 1, there exists P1+
C (A1) in BLA1+ into which A1

is isomorphically embedded with the property that for every B1+ in BLA1+

and every bounded VLA1-morphism ϕ ∶ A1 → B1+ such that ∥ϕ∥ ≤ C, there
exists a unique contractive VLA1-morphism ϕ̄ ∶ P1+

C (A1) → B1+ extending
ϕ.

(iii) For every constant C > 1, there exists P1+
C (A) in BLA1+ into which A is

isomorphically embedded with the property that for every B1+ in BLA1+ and
every bounded VLA-morphism ϕ ∶ A→ B1+ such that ∥ϕ∥ ≤ C, there exists
a unique contractive VLA1-morphism ϕ̄ ∶ P1+

C (A) → B1+ extending ϕ.

However, by [71, Theorem 18.4], we know that positive operators between Banach
lattices are automatically bounded. Thus vector lattice algebra homomorphisms
between Banach lattice algebras must also be automatically bounded. With this fact
we can rearrange the findings in the last proposition to obtain something relatively
close to a full answer for Question 3.3.12.

Corollary 3.3.14. Let A be a Banach lattice algebra and A1 a unital Banach lattice
algebra. Then the following holds:

(i) Consider B1 in BLA1 and ϕ ∶ A → B1 a VLA-morphism, then ϕ is auto-
matically bounded and there exists a constant C ≥ 1 such that ∥ϕ∥ ≤ C.

(a) If C = 1, there exists F1(A) in BLA1 into which A is isometrically
embedded with the property that there exists a unique contractive VLA1-
morphism ϕ̄ ∶ F1(A) → B1 extending ϕ.

(b) If C > 1, there exists P1
C(A) in BLA1 into which A is isomorphically

embedded with the property that there exists a unique contractive VLA1-
morphism ϕ̄ ∶ P1

C(A) → B1 extending ϕ.

(ii) Consider B1+ in BLA1+ and ϕ ∶ A1 → B1+ a VLA1-morphism, then ϕ is
automatically bounded and there exists a constant C ≥ 1 such that ∥ϕ∥ ≤ C.

(a) C = 1, there exists F1+ (A1) in BLA1+ into which A1 is isometrically
embedded with the property that there exists a unique contractive VLA1-
morphism ϕ̄ ∶ F1+ (A1) → B1+ extending ϕ.

(b) If C > 1, there exists P1+
C (A1) in BLA1+ into which A1 is isomorphically

embedded with the property that there exists a unique contractive VLA1-
morphism ϕ̄ ∶ P1+

C (A1) → B1+ extending ϕ.

(iii) Consider B1+ in BLA1+ and ϕ ∶ A → B1+ a VLA-morphism, then ϕ is
automatically bounded and there exists a constant C ≥ 1 such that ∥ϕ∥ ≤ C.
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3.4. TWO CONCRETE FAMILIES OF PSEUDO-SOLUTIONS 109

(a) C = 1, there exists F1+(A) in BLA1+ into which A is isometrically
embedded with the property that there exists a unique contractive VLA1-
morphism ϕ̄ ∶ F1+(A) → B1+ extending ϕ.

(b) If C > 1, there exists P1+
C (A) in BLA1+ into which A is isomorphically

embedded with the property that there exists a unique contractive VLA1-
morphism ϕ̄ ∶ P1+

C (A) → B1+ extending ϕ.

3.4. Two concrete families of pseudo-solutions

Using the method of constructing pseudo-solutions outlined in the previous section,
we are able to give concrete descriptions of certain pseudo-solutions. This will be
done in two cases where the underlying algebraic free object used in the construction
of the pseudo-solution is known explicitly.

3.4.1. Pseudo-solution for the free object problem over a point be-
tween unital Banach algebras and sets. In this section we consider algebras
over C. Fix a one-point set S ∶= {s} and fix a constant M > 0. We will give a con-

crete description of the pseudo-solution (PBA1

Set (S,M), jM). By omission of certain
details, the work to follow will also give concrete descriptions of the pseudo-solutions
(PBA

Set(S,M), jM), (PNA1

Set (S,M), jM), and (PNA
Set(S,M), jM).

For the sake of brevity, we write PM ∶= PBA1

Set (S,M). The pair (PM , jM) satisfies the
following universal property: For every B ∈ BA1 and every morphism ϕ ∶ S → B
such that ∥ϕ(s)∥ ≤M there exists a unique bounded unital algebra homomorphism
ϕ̄ ∶ PM → B such that the following diagram commutes in Set.

S PM

B

ϕ

jM

ϕ̄

Recall that for a given B ∈ BA1, the collection of morphisms ϕ ∶ S → B such that
∥ϕ(s)∥ ≤ M is denoted by ΦM(S,B) and the associated collection of morphisms ϕ̄
in Alg1 that uniquely factor through (PM , jM) is denoted by Φ′

M(S,B).
As outlined in Section 3.3, the object PM is obtained by starting with the free unital
algebra over a one-point set (C [X] , j′) where C [X] is the polynomial ring over C
in one variable and j′(s) ∶=X. As was done in Theorem 3.3.6, define ρM ∶ C [X] → R
where

ρM(p) ∶= sup{∥ϕ̄(p)∥ ∶ B ∈ BA1, ϕ̄ ∈ Φ′
M(S,B)} .

Since the morphisms ϕ̄ ∈ Φ′
M(S,B) are unital algebra homomorphisms, it follows

that for p = ∑k
n=0 anX

n ∈ C [X], we have

∥ϕ̄(p)∥ = ∥
k

∑
n=0

anϕ̄ (X)n∥ ≤
k

∑
n=0

∣an∣ ∥ϕ(s)∥n ≤
k

∑
n=0

∣an∣Mn.

Thus ρM(p) ≤ ∑k
n=0 ∣an∣Mn. We claim that this last inequality is in fact an equality

for every p = ∑k
n=0 anX

n ∈ C [X]. For the reverse inequality, consider the following:
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110 3. FREE OBJECTS

Denote N0 ∶= {0,1,2, . . .} and define the weight wM ∶ N0 → N where wM(n) ∶= Mn

and consider the weighted sequence space

`1 (N0,wM) ∶= {(xn) ∈ RN0 ∶
∞
∑
n=0

∣xn∣wM(n) < ∞} .

The space `1 (N0,wM) is made into a Banach space when equipped with the coordinate-
wise vector space operations and the weighted norm

∥x∥ ∶=
∞
∑
n=0

∣xn∣wM(n), (x = (xn) ∈ `1 (N0,wM)) .

For n ∈ N0, define the element δn ∈ `1 (N0,wM) where

δn(k) ∶= {1 if k = n,
0 if k ≠ n.

In addition, the space `1 (N0,wM) is made into a unital Banach algebra when
equipped with the Cauchy product : For x = (xn) ∈ `1 (N0,wM) and y = (yn) ∈
`1 (N0,wM), the nth index of the product xy is given by

(xy)(n) ∶=
n

∑
i=0

xiyn−i.

The definition of the Cauchy product makes it clear that the element δ0 is the
multiplicative identity of `1 (N0,wM). Further, we also have that (δ1)n = δn and
∥δn∥ =Mn for n ∈ N0. A standard series rearrangement argument shows that ∥xy∥ ≤
∥x∥ ∥y∥ for x, y ∈ `1 (N0,wM)
Returning to the pseudo-solution (PM , jM), consider the morphism ϕ ∶ S → `1 (N0,wM)
where ϕ(s) ∶= δ1. Then ∥ϕ(s)∥ = ∥δ1∥ = M and so there exists a unique morphism
ϕ̄ ∶ C [X] → `1 (N0,wM) in Alg1 factoring through (C [X] , j′). By the definition of
ρM , for p = ∑k

n=0 anX
n ∈ C [X], we have

ρM(p) ≥ ∥ϕ̄ (p)∥ =∥
k

∑
n=0

an (ϕ̄(X))n∥ = ∥
k

∑
n=0

an (δ1)n∥

=∥
k

∑
n=0

anδn∥ =
k

∑
n=0

∣an∣Mn.

The desired equality follows and it is easy to see that ρM actually forms a submul-
tiplicative norm on C [X] and thus (C [X] , ρM) is an object in NA1. Following the
general approach in Section 3.3, it only remains to complete (C [X] , ρM) in order
to obtain our desired pseudo-solution.

Indeed, the weighted sequence space `1 (N0,wM) turns out to be a completion of
the unital normed algebra (C [X] , ρM) since the map J ∶ C [X] → `1 (N0,wM)
where ∑k

n=0 anX
n z→ ∑k

n=0 an (δ1)n is an isometric unital algebra homomorphism
and J [C [X]] is dense in `1 (N0,wM).
Define j ∶ S → `1 (N0,wM) where j(s) ∶= δ1. Then the pair (`1 (N0,wM) , j) is the
pseudo-solution for the free object problem over S between the categories BA1 and
Set: Let B ∈ BA1 and ϕ ∶ S → B a morphism in ΦM(S,B), then there exists
a unique morphism ϕ̃ ∶ C [X] → B in Alg1 factoring through (C [X] , j′). By
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3.4. TWO CONCRETE FAMILIES OF PSEUDO-SOLUTIONS 111

definition of the norm ρM , the morphism ϕ̃ is bounded. Since `1 (N0,wM) is a
completion of (C [X] , ρM), there exist a morphism ϕ̄ ∶ `1 (N0,wM) → B in BA1

uniquely extending ϕ̃ from C [X]. The morphism ϕ̄ satisfies the necessary universal
property:

ϕ̄ ○ j(s) = ϕ̄ (δ1) = ϕ̄ (J(X)) = ϕ̃(X) = ϕ̃ ○ j′(s) = ϕ(s).
Thus for x = ∑∞

n=0 xn (δ1)n ∈ `1 (N0,wM), we have

ϕ̄ (x) =
∞
∑
n=0

xn (ϕ(s))n .

If we let ψ̄ ∶ `1 (N0,wM) → B be any other morphism in BA1 such that ψ̄○j = ϕ, then
it is easily seen that ϕ̄ and ψ̄ coincide on J [C [X]] and by density it follows that ϕ̄ =
ψ̄. Thus we have a concrete description of the pseudo-solution (PBA1

Set (S,M), jM).

If we remove all mention of multiplicative identities above, the above derivation will
show that (`1 (N,wM) , j) is also a concrete description of (PBA

Set(S,M), jM). Further,
if we replace all instances of the category BA1 with NA1, the above argument will
show that the pair ((C [X] , ρM) , j′) is a concrete description of (PNA1

Set (S,M), jM).
Lastly, if we take this last modification of the above argument and remove all men-
tion of multiplicative identities, then the pair ((C [X] , ρM) , j′) is also a concrete
description of (PNA

Set(S,M), jM).

3.4.2. Pseudo-solution for free object problem over a set between
Banach spaces and sets. Let S be a set and denote by M>0(S) the elements
M ′ ∈ M(S) such that M ′(s) > 0 for all s ∈ S. Fix some M ∈ M>0(S). In this section
we give a concrete description of the pseudo-solution (PBan

Set (S,M), jM). Following
the same procedure as in the previous section, we start with the free vector space
(VS, j′) where VS consists of functions f ∶ S → C with finite support and j′(s) ∶= es
for all s ∈ S. The collection {es ∶ s ∈ S} is a basis for VS. For every X ∈ Ban and
every ϕ ∈ ΦM(S,X) there exists a unique morphism ϕ̄ ∶ VS → X in VS factoring
through (VS, j′). Define ρM ∶ VS → R where

ρM(f) ∶= sup{∥ϕ̄(f)∥ ∶ X ∈ Ban, ϕ̄ ∈ Φ′
M(S,X)} .

As was done before, we show that ρM is a norm on VS. Take f = ∑s∈F αses ∈ VS
where F is a finite subset of S. Then for any ϕ ∈ ΦM(S,X) with unique associated
morphism ϕ̄ ∶ VS →X, we have

∥ϕ̄ (f)∥ = ∥∑
s∈F

αsϕ̄ (es)∥ ≤ ∑
s∈F

∣αs∣M(s).

Thus ρM(f) ≤ ∑s∈F ∣αs∣M(s). For the reverse inequality, consider the weighted `1

space

`1 (S,M) ∶= {f ∈ RS ∶ ∑
s∈S

∣f(s)∣M(s) < ∞} .

Denote by F(S) the collection of all finite subsets of S. Note that the quantity
∑s∈S ∣f(s)∣M(s) is defined if the net (∑s∈F ∣f(s)∣M(s))F ∈F(S) converges in R. For
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112 3. FREE OBJECTS

every s ∈ S, define the element δs ∈ `1 (S,M) where

δs(t) ∶= {1 if t = s,
0 if t ≠ s.

The space `1 (S,M) is made into a Banach space when equipped with the pointwise
vector space operations and the norm

∥f∥M ∶= ∑
s∈S

∣f(s)∣M(s), (f ∈ `1 (S,M)) .

Indeed, it is clear that ∥●∥M ′ is a seminorm for any M ′ ∈ M(S) and ∥●∥M ′ is a norm
if and only if M ′ ∈ M>0(S). Now, define the morphism ϕ ∶ S → `1 (S,M) where
ϕ(s) ∶ = δs and let ϕ̄ ∶ VS → `1 (S,M) be the unique morphism in VS factoring
through (VS, j′). Then for every f = ∑s∈F αses ∈ VS, we have

ρM(f) ≥ ∥ϕ̄(f)∥M = ∥∑
s∈F

αsϕ̄(es)∥
M

= ∥∑
s∈F

αsδs∥
M

= ∑
s∈F

∣αs∣M(s).

Thus the pair (VS, ρM) is a normed space and the map J ∶ VS → `1 (S,M) where
∑s∈F αses z→ ∑s∈F αsδs is an isometry between normed spaces with dense image.
Thus `1 (S,M) is a completion of (VS, ρM). Define j ∶ S → `1 (S,M) where j(s) ∶= δs.
The argument in the previous section can also be used to conclude that (`1 (S,M) , j)
is a concrete description of the pseudo-solution (PBan

Set (S,M), jM). By replacing all
instances of Ban with NS and omitting the completion, it will follow that the pair
((VS, ρM) , j′) is a concrete description of the pseudo-solution (PNS

Set(S,M), jM).

3.5. Free objects and inverse limits

In Section 3.2, we gave an account of the algebraic free objects we have at our
disposal. These were used in Section 3.3 to prove the existence of a number of
pseudo-solutions to free object problems. In this section, we develop some general
categorical machinery that we will use to construct free objects in categories of
locally convex structures. The central part of this machinery is the notion of an
inverse limit which we used extensively in Chapter 2.

3.5.1. Inverse systems and limits. In order to make the reading of this
chapter independent from Chapter 2, we recall the definitions of inverse systems
and inverse limits.

Definition 3.5.1. Let C be any category and (I,≼) an upwards directed set. Con-
sider a family of objects {Xα}α∈I in C. For all β ≽ α in I, let pβ,α ∶ Xβ → Xα be a
morphism in C. The pair P ∶= ((Xα)α∈I , (pβ,α)β≽α) is called an inverse system in C
if, for all α ≼ β ≼ γ in I, the diagram

Xγ Xα

Xβ

pγ,β

pγ,α

pβ,α

commutes in C.
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3.5. FREE OBJECTS AND INVERSE LIMITS 113

Let X be an object in C and pα ∶ X → Xα a morphism in C for every α ∈ I. The
pair (X, (pα)α∈I) is called a compatible system over P in C if for all α ≼ β in I the
diagram

X Xα

Xβ

pβ

pα

pβ,α

commutes in C.

Lastly, an inverse limit of P in C is a compatible system (X, (pα)α∈I) in C satisfying
the property that for any compatible system (X ′, (p′α)α∈I) in C there exists a unique
morphism s ∶X ′ →X in C so that for all α ∈ I the diagram

X ′ X

Xα

p′α

s

pα

commutes in C.

Recall the following result, proven in [21, Chapter III, §7.1], which we will make use
of in the sequel.

Theorem 3.5.2 (Canonical inverse limit in Set). Let I ∶= ((Xα)α∈I , (pβ,α)α≼β)) a
inverse system in Set. Define the set

X ∶= {(xα)α∈I ∈ ∏
α∈I
Xα ∶ pβ,α(xβ) = xα, ∀β ∈ I, β ≽ α} .

For every α ∈ I, let πα ∶ ∏α∈IXα → Xα denote the coordinate projections and define
pα ∶= πα∣X . Then the pair (X, (pα)α∈I) is the inverse limit of I in the category Set.

In Chapter 2, Section 2.4, we argued using the universal property of an inverse
limit that an inverse limit of an inverse system is essentially unique in a similar
sense as that for free objects. In the sequel, we will often have to consider the
following set-up: Let C and D be categories with C ⊆ D. Consider an inverse
system I ∶= ((Xα)α∈I , (pβ,α)β≽α) in C. Since the objects and morphisms in C are
among those in D, we can also consider I as an inverse system in D. It may then
happen that SC ∶= (X, (pα)α∈I) is an inverse limit of I in C and SD ∶= (Y, (qα)α∈I) is
an inverse limit of I in D.

These inverse limits need not coincide in general and it may also happen that the
inverse limit of I exists in one of these categories but not in the other: If we suppose
that an inverse limit SC of I exists in C, then SC need not satisfy the universal
property of an inverse limit with respect to all compatible systems over I in D.

On the other hand, if an inverse limit SD of I exists in D, it is the case that all
compatible systems (X ′, (p′α)α∈I) over I in C are also compatible systems over I in
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114 3. FREE OBJECTS

D, but SD need not necessarily be a compatible system over I in C, i.e. the object
or the morphisms in SD are not found in the smaller category C.

Further, it may even be the case that an inverse limit SD of I in D is also a
compatible system over I in C and yet SD need not be an inverse limit of I in C:
For a compatible system (X ′, (p′α)α∈I) over I in C, there may be a unique morphism
s ∶X ′ → Y in D making the diagram

X ′ Y

Xα

p′α

f

qα

commute in D for all α ∈ I, but s may not be a morphism in C and thus SD would
not be an inverse limit of I in C.

In light of the above, when considering inverse systems residing in more than one
category, it is vital to unambiguously state in which category a purported inverse
limit exists. These observations along with the definition of a full subcategory (see
Section 3.1.3) give us the following result.

Proposition 3.5.3. Let C and D be categories with C ⊆D and consider an inverse
system I ∶= ((Xα)α∈I , (pβ,α)β≽α) in C with inverse limit SD in D. Assume that the
following holds:

(i) C is a full subcategory in D.

(ii) The inverse limit SD in D is also a compatible system over I in C.

Then SD is an inverse limit of I in C.

The following definition will be important in the sequel.

Definition 3.5.4. Let C and D be categories with C ⊆D. We assume that for every
inverse system I in C an inverse limit SI of I exists in D. Denote by X (SI ,I) ∈D
the object in an inverse limit SI of an inverse system I in D. Denote by D-lim←ÐC the

full subcategory of D whose objects are such X (SI ,I) in D obtained from inverse
limits of inverse systems I in C. The category D-lim←ÐC will be called a category of

inverse limits.

To avoid any possible ambiguity, the notation for a category of inverse limits ex-
plicitly notes both which category the concerned inverse systems come from and in
what category the inverse limit is taken.

Remark 3.5.5. Let C be any category with X ∈ C. We note that the pair T ∶=
(X,1X) trivially satisfies the definition of an inverse system. Further, for any A ∈C
and any morphism f ∶ A→X in C, the pair (A,f) is a compatible system over T in
C. It is then easy to see that T is the inverse limit of itself in C. As a result, when
considering categories C and D which satisfy the conditions in Definition 3.5.4, it
follows that C ⊆D-lim←ÐC.
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3.5. FREE OBJECTS AND INVERSE LIMITS 115

With these preliminaries in place, it is not difficult to use the universal property
in Definition 3.3.4 to show that pseudo-solutions (PY

X(S,M), jM) varying over M ∈
M(X) form an inverse system in Y. We prove this for the particular case of X = Set
and Y = BLA1+. The details remain the same for other choices of X and Y with
X ⊇Y.

Proposition 3.5.6. Fix a set S and for every M ∈ M(S) consider the pair
(PBLA1+

Set (S,M), jM) constructed in Theorem 3.3.6. For every M1,M2 ∈ M(S) with

M2 ≥ M1, there exists a unique contractive morphism pM2,M1 ∶ PBLA1+

Set (S,M2) →
PBLA1+

Set (S,M1) in BLA1+ such that the following diagram commutes in Set.

S PBLA1+

Set (S,M2)

PBLA1+

Set (S,M1)

jM1

jM2

pM2,M1

Then P ∶= ((PBLA1+

Set (S,M))M∈M(S), (pM2,M1)M2≥M1
) is an inverse system in BLA1+.

Proof. Given M1,M2 ∈ M(S) with M2 ≥ M1, the existence of the unique

contractive morphism pM2,M1 ∶ PBLA1+

Set (S,M2) → PBLA1+

Set (S,M1) in BLA1+ follows by
Theorem 3.3.6 since ∥jM1(s)∥ ≤M1(s) ≤M2(s) for all s ∈ S. Now, for M1,M2,M3 ∈
M(S) with M3 ≥M2 ≥M1 we have the following diagram.

S PBLA1+

Set (S,M3)

PBLA1+

Set (S,M2)

PBLA1+

Set (S,M1)

jM3

jM2

jM1

pM3,M2

pM3,M1

pM2,M1

It follows that

(pM2,M1 ○ pM3,M2) ○ jM3 = pM2,M1 ○ (pM3,M2 ○ jM3) = pM2,M1 ○ jM2 = jM1 .

Since pM3,M1 is the unique map satisfying pM3,M1 ○ jM3 = jM1 , we conclude that

pM3,M1 = pM2,M1 ○ pM3,M2 . Thus P ∶= ((PBLA1+

Set (S,M))M∈M(S), (pM2,M1)M2≥M1
) is an

inverse system in BLA1+. �
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116 3. FREE OBJECTS

It is clear from the general argument displayed in Proposition 3.5.6 that the concrete
descriptions of pseudo-solutions in Section 3.4 will also form inverse systems. In the
following remark we characterise these inverse systems for use in the sequel.

Remark 3.5.7. Let S0 ∶= {s0} be any one-point set. For M ′ ≥M > 0, consider the
pseudo-solutions (`1 (N0,wM ′) , jM ′) and (`1 (N0,wM) , jM) found in Section 3.4.1.

We write δ
(M)
n , for example, to denote that the sequence is considered as a member

of `1 (N0,wM). In this case, ∥δ(M)
n ∥ = Mn. Since ∥jM(s0)∥ = ∥δ(M)

1 ∥ = M ≤ M ′,

there exists a unique morphism pM ′,M ∶ `1 (N0,wM ′) → `1 (N0,wM) in BA1 such that
pM ′,M ○ jM ′ = jM . The argument in Proposition 3.5.6 will also show that

((`1 (N0,wM))M∈R+ {0}, (pM ′,M)M ′≥M)

is an inverse system in BA1. We characterise the linking maps pM ′,M : Fix M ′ ≥
M > 0 and consider x = ∑∞

n=0 xn (δ
(M ′)
1 )

n
∈ `1 (N0,wM ′), then

pM ′,M(x) =
∞
∑
n=0

xn (pM ′,M(jM ′(s0)))n =
∞
∑
n=0

xn (δ(M)
1 )

n
= x.

Thus the linking maps pM ′,M are inclusions.

Similarly, fix any set S. For M1,M2 ∈ M>0(S) with M2 ≥M1, consider the pseudo-
solutions (`1 (S,M1) , jM1) and (`1 (S,M2) , jM2) found in Section 3.4.2. As above,
there exists a unique morphism pM2,M1 ∶ `1 (S,M2) → `1 (S,M1) in Ban satisfying
pM2,M1 ○ jM2 = jM1 giving us the inverse system

((`1 (S,M))M∈M>0(S), (pM2,M1)M2≥M1
)

in Ban. Since the span of {δ(M2)
s ∶ s ∈ S} is dense in `1 (S,M2), it follows by

continuity that the linking maps pM2,M1 are also inclusion maps.

Having shown that our pseudo-solutions form inverse systems, the following purely
categorical lemma will allow us to find free objects in categories of inverse limits.

Lemma 3.5.8. Let C1 and C2 be categories such that C2 ⊆ C1. Fix O1 ∈ C1 and
consider an upwards directed set (M,≤). For every M ∈ M, let PM be an object in
C2 and jM ∶ O1 → PM a morphism in C1 such that the following holds:

(i) For every O2 ∈C2 and every morphism ϕ ∶ O1 → O2 in C1, there exists M0 ∈
M such that for all M ≥M0 there exists a unique morphism ϕM ∶ PM → O2

in C2 such that the following diagram commutes in C1.

O1 PM

O2

ϕ

jM

ϕM
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3.5. FREE OBJECTS AND INVERSE LIMITS 117

(ii) For every M,M ′ ∈ M with M ′ ≥M , there exists a unique morphism pM ′,M ∶
PM ′ → PM in C2 such that the following diagram commutes in C1.

O1 PM ′

PM

jM

jM ′

pM ′,M

Thus P ∶= ((PM)M∈M, (pM ′,M)M ′≥M) is an inverse system in C2 and (O1, (jM)M∈M)
is a compatible system over P in C1.

(iii) Let C3 be a category with C2 ⊆ C3 ⊆ C1 such that P has an inverse limit
(PM, (pM)M∈M) in C3 where (PM, (pM)M∈M) is also an inverse limit of P
in C1. Let j ∶ O1 → PM be the unique morphism in C1 making the following
diagram commute in C1 for all M ∈ M.

O1 PM

PM

jM

j

pM

Then there exists a family of morphisms in C3

Ψ ∶= {ψO2,ϕ ∶ PM → O2 ∶ O2 ∈C2, ϕ ∈ HomC1 (O1,O2)}

satisfying the following two properties:

(a) For every O2 ∈ C2 and every morphism ϕ ∶ O1 → O2 in C1, the morphism
ψO2,ϕ ∶ PM → O2 in C3 makes the following diagram commutes in C1.

O1 PM

O2

ϕ

j

ψO2,ϕ

(b) Let Oα and Oβ be objects in C2 with ϕα ∶ O1 → Oα and ϕβ ∶ O1 → Oβ

morphisms in C1. If there exists a morphism pβ,α ∶ Oβ → Oα in C2 such
that the following diagram commutes in C1,

Oβ Oα

O1

pβ,α

ϕβ ϕα
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118 3. FREE OBJECTS

then the morphisms ψOα,ϕα , ψOβ ,ϕβ ∈ Ψ make the following diagram commute
in C3.

Oβ Oα

O1

pβ,α

ψOβ,ϕβ ψOα,ϕα

Proof. It follows by the same reasoning as in the proof of Proposition 3.5.6
that the pair P = ((PM)M∈M, (pM ′,M)M ′≥M) is an inverse system in C2 (thus also
in C3 and C1). The diagram in (ii) above makes it clear that (O1, (jM)M∈M) is a
compatible system over P in C1.

We first construct the family of morphisms Ψ: Fix an object O2 in C2 and a mor-
phism ϕ ∶ O1 → O2 in C1. By (i) above, there exists M0 ∈ M such that for all M ≥M0

there exists a unique morphism ϕM ∶ PM → O2 in C2 such that the following diagram
commutes in C1.

O1 PM

O2

ϕ

jM

ϕM

Fixing M0 ∈ M, the previous diagram may be extended for each M ≥M0.

O1 PM

PM

O2

j

jM

ϕ

pM

ϕM

The large outer triangle commutes in C1 for each M ≥M0 since (ϕM ○ pM)○j = ϕM ○
(pM ○ j) = ϕM ○jM = ϕ. Thus we may define ψO2,ϕ ∶= ϕM ○pM in C3 if it can be verified
that this definition is independent of the choice of M ∈ M with M ≥M0. Since M
is upwards directed, it is sufficient to consider M,M ′ ∈ M with M ′ ≥ M ≥ M0.
Since M ′ ≥ M and (PM, (pM)M∈M) is a compatible system over P in C3 we have
pM ′,M ○ pM ′ = pM in C3. Thus ϕM ○ pM = ϕM ○ (pM ′,M ○ pM ′) = (ϕM ○ pM ′,M) ○ pM ′ in
C3 where ϕM ○ pM ′,M ∶ PM ′ → O2 is a morphism in C2.

By (i) above, the morphism ϕM ′ ∶ PM ′ → O2 in C2 is the unique morphism in C2

such that ϕM ′ ○jM ′ = ϕ in C1. However, since (O1, (jM)M∈M) is a compatible system
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3.5. FREE OBJECTS AND INVERSE LIMITS 119

over P in C1 it follows that

(ϕM ○ pM ′,M) ○ jM ′ = ϕM ○ (pM ′,M ○ jM ′) = ϕM ○ jM = ϕ.
Thus we conclude that ϕM○pM ′,M = ϕM ′ which implies ϕM○pM = (ϕM ○ pM ′,M)○pM ′ =
ϕM ′ ○pM ′ . Hence the morphism ψO2,ϕ in C3 is well-defined. As a result, we have the
desired family of C3-morphisms Ψ and the statement in (a) follows by the definition
of the morphisms in Ψ.

For the statement in (b), fix objects Oα and Oβ in C2 with ϕα ∶ O1 → Oα and
ϕβ ∶ O1 → Oβ morphisms in C1. Consider a morphism pβ,α ∶ Oβ → Oα in C2 such
that the following diagram commutes in C1.

(3.5.1)

Oβ Oα

O1

pβ,α

ϕβ ϕα

By (i) above and sinceM is directed, there exists M0 ∈ M such that for all M ≥M0

there exists unique morphisms ϕM,α ∶ PM → Oα and ϕM,β ∶ PM → Oβ such that the
following diagrams commute in C1.

(3.5.2)

O1 PM O1 PM

Oα Oβ

ϕα

jM

ϕM,α
ϕβ

jM

ϕM,β

By part (a), we have morphisms ψOα,ϕα ∶ PM → Oα and ψOβ ,ϕβ ∶ PM → Oβ in Ψ
where

ψOα,ϕα = ϕM,α ○ pM , ψOβ ,ϕβ = ϕM,β ○ pM .
The diagrams in (3.5.1) and (3.5.2) show that the following diagram commutes in
C1.

O1 PM

Oβ

Oα

j

ϕβ

ϕα

ϕM,β

pβ,α

The uniqueness in (i) above implies that pβ,α ○ ϕM,β = ϕM,α and thus

ψOα,ϕα = ϕM,α ○ pM = (pβ,α ○ ϕM,β) ○ pM = pβ,α ○ (ϕM,β ○ pM) = pβ,α ○ ψOβ ,ϕβ
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120 3. FREE OBJECTS

which proves the statement in (b). �

With many of the details relegated to the statement of the previous lemma, we are
now able to state the following shorter result.

Corollary 3.5.9. Let C1, C2, and C3 be categories such that C2 ⊆ C3 ⊆ C1. Fix
O1 ∈ C1 and consider an upwards directed set (M,≤). For every M ∈ M, let PM

be an object in C2 and jM ∶ O1 → PM a morphism in C1 satisfying conditions (i)-
(iii) in Lemma 3.5.8. Let I ∶= ((Oα)α∈I , (pβ,α)β≽α) be an inverse system in C2 with
inverse limit (O, (pα)α∈I) in C3 such that (O, (pα)α∈I) is also an inverse limit of I
in C1. Let ϕ ∶ O1 → O be a morphism in C1, then there exists ϕ̄ ∶ PM → O in C3

such that the following diagram commutes in C1.

O1 PM

O

ϕ

j

ϕ̄

Proof. Since (O, (pα)α∈I) is a compatible system over I in C3, the following
diagram commutes in C1 for all α,β ∈ I with β ≽ α.

O1 Oα

Oβ

pα○ϕ

pβ○ϕ pβ,α

Thus (O1, (pα ○ ϕ)α∈I) is a compatible system over I in C1. For every α ∈ I, consider
the morphism ψOα,pα○ϕ ∶ PM → Oα in C3 constructed in Lemma 3.5.8 (a) satisfying
the following diagram in C1.

O1 PM

Oα

pα○ϕ

j

ψOα,pα○ϕ

It follows directly from the fact that (O1, (pα ○ ϕ)α∈I) is a compatible system over I
in C1 and Lemma 3.5.8 (b) that (PM, (ψOα,pα○ϕ)α∈I) is a compatible system over I in
C3. Since (O, (pα)α∈I) is an inverse limit of I in C3 there exists a unique morphism
ϕ̄ ∶ PM → O such that the following diagram commutes in C3 for all α ∈ I.

PM O

Oα

ϕ̄

ψOα,pα○ϕ
pα
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3.6. LOCALLY CONVEX SPACES AND INVERSE LIMITS 121

From the previous two diagrams, we see that the following holds in C1.

pα ○ (ϕ̄ ○ j) = (pα ○ ϕ̄) ○ j = ψOα,pα○ϕ ○ j = pα ○ ϕ.
However, since (O1, (pα ○ ϕ)α∈I) is a compatible system over I in C1 and (O, (pα)α∈I)
is an inverse limit of I in C1, we conclude that the morphism ϕ ∶ O1 → O is the
unique morphism in C1 making the following diagram commute in C1.

O1 O

Oα

ϕ

pα○ϕ pα

This uniqueness implies that ϕ̄ ○ j = ϕ, as required. �

With the progress we have made thus far, some observations are in order: Let Y be
a category from Table 2 or 3 with X any category from Table 1 such that X ⊇ Y.
Take X ∈X and consider the pseudo-solutions (PY

X(X,M), jM) for M ∈ M(X). In
order to apply Corollary 3.5.9 to these pseudo-solutions, the conditions (i)-(iii) from
Lemma 3.5.8 need to be in place: Condition (i) was addressed in Remark 3.3.3 (i)
and Theorem 3.3.7. The work done previously in this section takes care of (ii).
For (iii), we will need to show that our inverse system of pseudo-solutions P has
an inverse limit SP in the associated category of locally convex structures LCY
where SP is also an inverse limit in X. The work in the next section will give
us the information we need regarding inverse limits in categories of locally convex
structures.

Lastly, we were not able to show from general categorical considerations in Corol-
lary 3.5.9 that the morphism ϕ̄ ∶ PM → O is unique with respect to the diagram
in Corollary 3.5.9. In the end, we will make use of the properties of the inverse
limit (PM, (pM)M∈M) along with the properties of the pseudo-solutions derived in
Section 3.3 to conclude uniqueness.

3.6. Locally convex spaces and inverse limits

In this section, we put the last few results in place that we need to finally conclude
the existence of free objects in categories of locally convex structures in the next
section. In particular, we will show that our categories of locally convex structures
are closed under the formation of inverse limits. More specifically, this means that
the inverse limits of normed structures exist in the relevant category of locally convex
structures. Beyond this, we will also expand a known result to show that every object
in a category of complete locally convex structures ComLCŶ is in fact an inverse
limit of an inverse system in Ŷ with the inverse limit taken in ComLCŶ.

We start our exposition with the following simple proposition for which we omit the
proof.

Proposition 3.6.1. Let I be an index set and for every α ∈ I, let Aα be an object
in ComLM-C-SVLA1+. Consider the product ∏α∈I Aα with the projections πα ∶
∏α∈I Aα → Aα. Then the following holds:
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122 3. FREE OBJECTS

(i) The product ∏α∈I Aα equipped with component-wise operations is an object
in VLA1+ and for every α ∈ I, the projection πα ∶ ∏α∈I Aα → Aα is a
VLA1+-morphism.

(ii) The product topology τ makes ∏α∈I Aα into an object in LM-C-SVLA1+.

(iii) If Aα is complete for every α ∈ I, then (∏α∈I Aα, τ) is an object in
ComLM-C-SVLA1+.

As we saw for other cases in Chapter 2, the inverse limit of an inverse system of
locally convex structures I ∶= ((Aα)α∈I , (pβ,α)β≽α) is easily obtained by taking the
inverse limit of the underlying sets in I and inducing the natural algebraic and
topological structure on this inverse limit of sets from the product.

Proposition 3.6.2. Let I ∶= ((Aα)α∈I , (pβ,α)β≽α) be an inverse system in LM-C-SVLA1+.
Define the set

A ∶= {(xα)α∈I ∈ ∏
α∈I
Aα ∶ pβ,α(xβ) = xα,∀β ≽ α}

and define pα ∶ A → Aα where pα ∶ = πα∣A for α ∈ I. Equipping A with the sub-
space topology from (∏α∈I Aα, τ) makes the pair (A, (pα)α∈I) an inverse limit of I
in LM-C-SVLA1+. In addition, if I is an inverse system in ComLM-C-SVLA1+,
then (A, (pα)α∈I) is an inverse limit I in ComLM-C-SVLA1+.

Proof. It follows directly from the definitions in Section 3.1.3 along with the
definitions of the product and subspace topology thatA is an object in LM-C-SVLA1+

and that pα ∶ A → Aα are morphisms in LM-C-SVLA1+. Further, it is immediate
from the definition of the set A that (A, (pα)α∈I) is a compatible system over I in
LM-C-SVLA1+.

Let (Ã, (p̃α)α∈I) be any compatible system over I in LM-C-SVLA1+. Define the

VLA1+-morphism s ∶ Ã → A where s(y) ∶= (p̃α(y))α∈I for y ∈ Ã. It follows precisely

from the compatibility of (Ã, (p̃α)α∈I) that s [Ã] ⊆ A and it follows by the continuity

of the p̃α morphisms that s is continuous, hence s is a LM-C-SVLA1+-morphism.
Let s′ ∶ Ã → A be any morphism in LM-C-SVLA1+ such that pα ○ s′ = p̃α for all
α ∈ I. Then pα (s′(x)) = pα (s(x)) which implies that s′ = s. Thus (A, (pα)α∈I) is an
inverse limit of I in LM-C-SVLA1+.

For the case where I is an inverse system in ComLM-C-SVLA1+, by Proposi-
tion 3.6.1 (iii), the product ∏α∈I Aα is complete and since A is a closed subvector
lattice algebra of ∏α∈I Aα, it follows that A is an object in ComLM-C-SVLA1+.
The rest of the proof for this case proceeds in the same manner as the above. �

In the above result, since every Aα is a vector space and every morphism pβ,α is a
linear map, it follows that 0 ∈ A and A is thus never empty. As a result, the inverse
limit of an inverse system of locally convex structures is never empty.

Remark 3.6.3. Let Y be a category of normed structures from Table 2 or 3 with
LCY the associated category of locally convex structures. The above proof is easily
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3.6. LOCALLY CONVEX SPACES AND INVERSE LIMITS 123

repurposed to show that the category LCY is also closed under the formation of
inverse limits of inverse systems in LCY. In particular, since Y ⊆ LCY it is then
also clear that the inverse limits of inverse systems in Y always exist in LCY.

Further, if we consider an algebraic category X ⊆ A(Y) ⊆Y and an inverse system
I ∶= ((Aα)α∈I , (pβ,α)β≽α) in Y, since the objects Aα and the morphisms pβ,α are also
in X, it follows that (A, (pα)α∈I) as constructed above is both an inverse limit in
LCY and in X.

With these results on the existence of inverse limits in categories of locally convex
structures in mind, we are now in a position to use Definition 3.5.4 to form categories
of inverse limits. We list this new collection of categories.

Proposition 3.6.4. The following list of categories defined using Definition 3.5.4
exist. By definition, for each category Y from Table 2 or 3, the category of inverse
limits LCY-lim←ÐY is a full subcategory in LCY.

Categories of inverse limits of normed structures:

(i) LCS-lim←ÐNS,

(ii) LC-SVL-lim←ÐNVL,

(iii) LM-CA-lim←ÐNA,

(iv) LM-CA1-lim←ÐNA1,

(v) LM-C-SVLA-lim←ÐNVLA,

(vi) LM-C-SVLA1-lim←ÐNVLA1,

(vii) LM-C-SVLA1+-lim←ÐNVLA1+.

Categories of inverse limits of complete normed structures:

(i) ComLCS-lim←ÐBan,

(ii) ComLC-SVL-lim←ÐBL,

(iii) ComLM-CA-lim←ÐBA,

(iv) ComLM-CA1-lim←ÐBA1,

(v) ComLM-C-SVLA-lim←ÐBLA,

(vi) ComLM-C-SVLA1-lim←ÐBLA1,

(vii) ComLM-C-SVLA1+-lim←ÐBLA1+.

For the next result, we need to recall some terminology. Let X be a locally convex
space. The family of seminorms P generating the topology on X is saturated if for
every finite collection {ρ1,⋯, ρn} ⊆ P the seminorm ρ1 ∨⋯∨ ρn ∶X → R is also in P
where (ρ1 ∨⋯ ∨ ρn) (x) ∶= ρ1(x) ∨⋯ ∨ ρn(x).
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124 3. FREE OBJECTS

For a family of seminorms P , the collection P ′ obtained by adding all of the el-
ements of the form above is called the saturation of P . It is clear that if P is a
family of submultiplicative (Riesz) seminorms then the elements in P ′ will also be
submultiplicative (Riesz) seminorms.

It is known that the objects in ComLCS are precisely the inverse limits of objects
in Ban with the inverse limit taken in ComLCS, see [60, Chapter II, Theorem 5.4].
It is also known that the objects in ComLM-CA are precisely the inverse limits of
objects in BA with the inverse limit taken in ComLM-CA, see [14, Theorem 4.5.3].
In the language we have developed this is stated as

ComLCS-lim←ÐBan =ComLCS, ComLM-CA-lim←ÐBA =ComLM-CA.

We adapt the proof in [14, Theorem 4.5.3] to obtain the following result.

Theorem 3.6.5. The following equality of categories holds.

ComLM-C-SVLA1+ =ComLM-C-SVLA1+-lim←ÐBLA1+

Proof. Since lim←ÐBLA1+ is a full subcategory of ComLM-C-SVLA1+, it is

enough for us to verify that the object classes of these two categories are equal.
Fix an object Y ∈ ComLM-C-SVLA1+, then there exists a separating family of
submultiplicative Riesz seminorms P ′ ∶ = {ρα ∶ α ∈ I} generating the topology on
Y . We assume without loss of generality that the family P ′ is saturated. Define a
partial order ≼ on I where α ≼ β if and only if ρα(x) ≤ ρβ(x) for all x ∈X. The pair
(I,≼) is upwards directed since P ′ is saturated.

For every α ∈ I, consider the quotient Ỹα ∶= Y /kerρα which is made into a positive
unital normed vector lattice algebra when equipped with the standard quotient
vector lattice algebra structure and the norm ∥●∥α ∶ Ỹα → R where ∥[x]α∥α ∶= ρα(x).
For every α ∈ I, the quotient map q̃α ∶ Y → Ỹα is a continuous unital vector lattice
algebra homomorphism. For every α ∈ I, let (Yα, ∥●∥α) denote a completion of

(Ỹα, ∥●∥α). Thus (Yα, ∥●∥α) is an object in BLA1+ for all α ∈ I. Clearly for α,β ∈ I
with β ≽ α, we have kerρα ⊆ kerρβ. For β ≽ α, define the unital vector lattice

algebra homomorphism p̃β,α ∶ Ỹβ → Ỹα where [x]β ↦ [x]α. It is easy to verify that
for all β ≽ α in I we have

(3.6.1) p̃β,α ○ q̃β = q̃α.
Since kerρα ⊆ kerρβ it is clear that p̃β,α is contractive and thus the maps p̃β,α ∶
Ỹβ → Ỹα ⊆ Yα extend uniquely to contractive morphisms pβ,α ∶ Yβ → Yα in BLA1+.

Hence, the pair Ĩ ∶= ((Ỹα)α∈I , (p̃β,α)β≽α) forms an inverse system in NVLA1+ and
a standard density argument shows that the pair I ∶= ((Yα)α∈I , (pβ,α)β≽α) forms an
inverse system in BLA1+. Now, define the positive unital vector lattice algebra

Ỹ ∶= {([yα]α)α∈I ∈ ∏
α∈I
Ỹα ∶ p̃β,α([yβ]β) = [xα]α,∀β ≥ α} .

Define the family of seminorms Q ∶= {σγ ∶ γ ∈ I} where for each γ ∈ I,

(3.6.2) σγ (([yα]α)α∈I) ∶= ∥[yγ]γ∥γ = ργ(yγ).
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3.6. LOCALLY CONVEX SPACES AND INVERSE LIMITS 125

Define the projections p̃α ∶ Ỹ → Ỹα for α ∈ I. By Proposition 3.6.2, the pair
(Ỹ , (p̃α)α∈I) is the inverse limit of Ĩ in LM-C-SVLA1+.

By (3.6.1), it is clear that the pair (Y, (q̃α)α∈I) is a compatible system over Ĩ in
LM-C-SVLA1+ and so there exists a unique morphism Φ ∶ Y → Ỹ in LM-C-SVLA1+

where y ↦ (q̃α(y))α∈I for y ∈ Y . We show that Φ is an isomorphism in LM-C-SVLA1+,
i.e. a bijective bicontinuous unital vector lattice algebra homomorphism. Continu-
ity and the homomorphism property has already been given universal property of
the inverse limit of Ĩ. For injectivity, since P ′ is a separating family seminorms,
we have that ⋂α∈I kerρα = {0}. If y ∈ Y is such that Φ(y) = (qα(y))α∈I = 0, then
y ∈ ⋂α∈I kerρα. Hence y = 0.

To show surjectivity, fix ([uα]α)α∈I ∈ Ỹ . Denote by F(I) the collection of all finite
subsets of I, which set inclusion makes into a partially ordered upwards directed
set. Note that for every S ∈ F(I) there exists βS ∈ I such that βS ≽ α for all α ∈ S.
For every S ∈ F(I), fix such a βS ∈ I. Since all the quotient maps {q̃α ∶ α ∈ I} are
surjective, for every S ∈ F(I) with fixed associated upper bound βS ∈ I, fix xS ∈ Y
such that q̃βS(xS) = [uβS]βS . This gives us a net (xS)S∈F(I) in Y . By (3.6.1) above,
for every S ∈ F(I) and all α ∈ S we have

q̃α(xS) = p̃βS ,α ○ q̃βS(xS) = p̃βS ,α([uβS]βS) = [uα]α.
Consider S1, S2 ∈ F(I) with S1 ∩ S2 ≠ ∅. It follows from the previous observation
that

q̃α(xS1) = [uα]α = q̃α(xS2)
for all α ∈ S1 ∩ S2, which implies that xS1 − xS2 ∈ kerρα ⊆ {y ∈ Y ∶ ρα(y) < ε}
for arbitrary ε > 0. It is now easy to see that (xS)S∈F(I) is a Cauchy net in Y :
Fix an open neighbourhood U of zero, there exists a basis element of the form
⋂kj=1{y ∈ Y ∶ ραj(y) < εj} ⊆ U . Define S0 ∶= {α1,⋯, αk}, then for all S,T ⊇ S0 we
have that xS − xT ∈ kerραj ⊆ {y ∈ Y ∶ ραj(y) < εj}. Since Y is complete there
exists x ∈ Y such that (xS)S∈F(I) → x. Fix any α ∈ I. Since q̃α is continuous, we
have that q̃α(xS) → q̃α(x) but the net (q̃α(xS))S∈F(I) is eventually constant since
q̃α(xS) = [uα]α for all S ⊇ {α}. It follows that Φ(x) = ([uα]α)α∈I .

The definition of the seminorms on Ỹ given in (3.6.2) makes it clear that for a net
(Φ(yj))j∈J in Ỹ and Φ(y) ∈ Ỹ , if (Φ(yj))j∈J → Φ(y) in Ỹ , then (yj)j∈J → y in Y .

Thus the map Φ ∶ Y → Ỹ is a LM-C-SVLA1+-isomorphism, which implies that Ỹ
is complete.

Now, consider the inverse system I ∶= ((Yα)α∈I , (pβ,α)β≽α) in BLA1+ defined above.
Define the set

Ȳ ∶= {(ŷα)α∈I ∈ ∏
α∈I
Yα ∶ pβ,α(ŷβ) = ŷα,∀β ≥ α}

By inducing structure on Ȳ as in Proposition 3.6.2 and defining the projections
pα ∶ Ȳ → Yα, we obtain the inverse limit (Ȳ , (pα)α∈I) of I in ComLM-C-SVLA1+.

Given that Ỹα forms a subvector lattice algebra in Yα for all α ∈ I and the morphisms
{pβ,α ∶ Yβ → Yα}β≽α are extensions of the morphisms {p̃β,α ∶ Ỹβ → Ỹα}β≽α, we may
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identify Ỹ with a subvector lattice algebra of Ȳ and since Ỹ is complete, we conclude
that Ỹ is closed in Ȳ . To conclude the result, we will show that Ỹ is dense in Ȳ :

Fix any ŷ ∶ = (ŷα)α∈I ∈ Ȳ . We construct a net in Ỹ converging to ŷ in Ȳ . For
every S ∈ F(I), fix βS ∈ I such that βS ≽ α for all α ∈ S. Since the quotient map
q̃βS ∶ Y → ỸβS is surjective and ỸβS is dense in YβS , for every ε > 0 there exists xS,ε ∈ Y
such that

∥q̃βS(xS,ε) − ŷβS∥ < ε.
Since the linking maps pβ,α in I extend the contractive linking maps p̃β,α in Ĩ, for
all α ∈ S we have

∥q̃α(xS,ε) − ŷα∥ = ∥p̃βS ,α ○ q̃βS(xS,ε) − pβS ,α(ŷβS)∥
= ∥pβS ,α ○ q̃βS(xS,ε) − pβS ,α(ŷβS)∥
≤ ∥q̃βS(xS,ε) − ŷβS∥ < ε.

Denote R>0 ∶= R+ {0} and define the ordering ≤ on F(I)×R>0 where (S1, r1) ≤ (S2, r2)
if and only if S1 ⊆ S2 and r2 ≤ r1. It follows that the net (q̃α(xS,ε))(S,ε)∈F(I)×R>0
converges to ŷα ∈ Yα and since ∏α∈I Yα possesses the product topology it follows
that (Φ(xS,ε))(S,ε)∈F(I)×R>0 converges to ŷ ∈ Ȳ . Hence Ỹ = Ȳ .

Thus we have the isomorphism Φ ∶ Y → Ȳ in ComLM-C-SVLA1+. Since (Ȳ , (pα)α∈I)
is an inverse limit of I in ComLM-C-SVLA1+, it follows that (Y, (pα ○Φ)α∈I) is
also an inverse limit of I in ComLM-C-SVLA1+. Hence Y ∈ lim←ÐBLA1+. �

Let Ŷ be a category of complete normed structures from Table 3. The proof of
Theorem 3.6.5 can be modified to show that ComLCŶ-lim←ÐŶ = ComLCŶ. The

crucial steps in the above proof is showing that the map Φ ∶ Y → Ỹ is an isomor-
phism and showing that Ỹ is a dense subspace in Ȳ . These steps rely on topological
arguments and the universal property of compatible systems and will therefore re-
main essentially the same when verifying the analogous statement for the category
Ŷ. Modifying the other parts of the proof is routine and largely amount to dealing
with different underlying algebraic structures. Thus we have the following equalities
of categories.

Corollary 3.6.6. The following equalities hold:

(i) ComLCS-lim←ÐBan =ComLCS.

(ii) ComLC-SVL-lim←ÐBL =ComLC-SVL.

(iii) ComLM-CA-lim←ÐBA =ComLM-CA.

(iv) ComLM-CA1-lim←ÐBA1 =ComLM-CA1.

(v) ComLM-C-SVLA-lim←ÐBLA =ComLM-C-SVLA.

(vi) ComLM-C-SVLA1-lim←ÐBLA1 =ComLM-C-SVLA1.

(vii) ComLM-C-SVLA1+-lim←ÐBLA1+ =ComLM-C-SVLA1+.
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3.7. FREE OBJECTS IN CATEGORIES OF INVERSE LIMITS 127

We close this section with a few observations. For a category of complete normed
structures Ŷ, the equality ComLCŶ-lim←ÐŶ =ComLCŶ tells us that every object

in ComLCŶ is the inverse limit of some inverse system Ŷ (with the inverse limit

taken in ComLCŶ). However, it is implicit in the proof of Theorem 3.6.5 that

every object in ComLCŶ is in fact an inverse limit of an inverse system in Ŷ with
contractive linking maps.

As a separate note, consider a category of normed structures Y and an inverse
system I in Y. Since an inverse limit SI exists in LCY, the category LCY-lim←ÐY

is a full subcategory of LCY, and SI is a compatible system over I in LCY-lim←ÐY,

it follows by Proposition 3.5.3 that SI is an inverse limit of I in LCY-lim←ÐY.

3.7. Free objects in categories of inverse limits

With the results from the last section in place, we are now in a position to apply
Corollary 3.5.9 to the pseudo-solutions listed in Theorem 3.3.7 in order to obtain
free objects in categories of locally convex structures.

The formulation of Lemma 3.5.8 uses categories C1, C2, and C3 satisfying C2 ⊆
C3 ⊆ C1. In the rest of this section, we will only consider categories X and Y
with Y from Table 2 or 3 and X from Table 1 such that X ⊇ Y. We note that
for any choice of category X from Table 1 we have Y ⊆ LCY-lim←ÐY ⊆ A(Y) ⊆ X.

Thus the categories X, Y, and LCY-lim←ÐY may take the role of C1, C2, and C3 in

Lemma 3.5.8 respectively. We now state once and for all that the conditions (i)-(iii)
in Lemma 3.5.8 are satisfied for these choices of categories X and Y.

Proposition 3.7.1. Let Y be a category from Table 2 or 3 and X a category from
Table 1 such that X ⊇ Y. Fix X ∈ X and for every M ∈ M(X) consider the
pseudo-solution (PY

X(X,M), jM). Then the following holds:

(i) For every Y ∈ Y and every morphism ϕ ∶ X → Y , there exists Mϕ ∈ M(X)
such that for all M ≥ Mϕ there exists a unique contractive morphism ϕ̄M ∶
PY

X(X,M) → Y such that the following diagram commutes in X.

X PY
X(X,M)

Y

ϕ

jM

ϕ̄M

(ii) For every M,M ′ ∈ M(X) with M ′ ≥ M , there exists a unique contractive
morphism pM ′,M ∶ PY

X(X,M ′) → PY
X(X,M) in Y such that the following
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128 3. FREE OBJECTS

diagram commutes in X.

X PY
X(X,M ′)

PY
X(X,M)

jM

jM ′

pM ′,M

Thus P ∶= ((PY
X(X,M))M∈M(X), (pM ′,M)M ′≥M) is an inverse system in Y

and (X, (jM)M∈M(X)) is a compatible system over P in X.

(iii) The inverse system P has an inverse limit (PM(X), (pM)M∈M) in LCY-lim←ÐY

which is also an inverse limit of P in X. Since (X, (jM)M∈M(X)) is a com-
patible system over P in X, there exists a unique morphism j ∶ X → PM(X)
in X such that the following diagram commutes in X for all M ∈ M(X).

X PM(X)

PY
X(X,M)

jM

j

pM

Proof. Condition (i) is addressed in Remark 3.3.3 and Theorem 3.3.7. For
(ii), it follows from the proof for Proposition 3.5.6 that P is an inverse system in
Y and the fact that (X, (jM)M∈M(X)) is a compatible system over P in X is seen
from the diagram in condition (ii). The discussion in Remark 3.6.3 shows that the
pair (PM(X), (pM)M∈M) constructed in Proposition 3.6.2 is both an inverse limit of
P in LCY and X. It follows from the fact that LCY-lim←ÐY is a full subcategory

in LCY and Proposition 3.5.3 that (PM(X), (pM)M∈M) is an inverse limit of P in
LCY-lim←ÐY. �

Applying Corollary 3.5.9 to Proposition 3.7.1, we almost have a new collection of
free objects.

Corollary 3.7.2. Let Y be a category from Table 2 or 3 and X a category from
Table 1 such that X ⊇ Y and fix X ∈ X. Then there exists an object PM(X) in
LCY-lim←ÐY and a morphism j ∶ X → PM(X) in X such that for every object O in

LCY-lim←ÐY and every morphism ϕ ∶ X → O in X there exists ϕ̄ ∶ PM(X) → O such

that the following diagram commutes in X.

X PM(X)

O

ϕ

j

ϕ̄
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3.7. FREE OBJECTS IN CATEGORIES OF INVERSE LIMITS 129

It remains to establish that the morphism ϕ̄ factoring through (PM(X), j) is unique.

For a given pseudo-solution (PY
X(X,M), jM), it was shown in Proposition 3.3.5

that the object in A(Y) generated by the subset jM [X] is dense in PY
X(X,M).

Using this fact along with the construction of the alleged free object as an inverse
limit of pseudo-solutions will be enough for us to show uniqueness of the factoring
morphisms. We will show how this is done in a particular case.

Proposition 3.7.3. Consider the categories ComLM-C-SVLA1+ and Set and fix
S ∈ Set. By Corollary 3.5.9, there exists an object PM(S) in ComLM-C-SVLA1+

and a morphism j ∶ S → PM(S) such that for every Y in ComLM-C-SVLA1+

and every morphism ϕ ∶ S → Y in Set there exists a morphism ϕ̄ ∶ PM(S) → Y in

ComLM-C-SVLA1+ such that the following diagram commutes in Set.

S PM(S)

Y

ϕ

j

ϕ̄

In addition, the object in VLA1+ generated by the subset j [S] in PM(S) is dense

in PM(S). As a result, the pair (PM(S), j) is the free object over S of the category

ComLM-C-SVLA1+.

Proof. Let Y be an object in ComLM-C-SVLA1+ and ϕ ∶ S → Y in Set.
The existence of the morphism ϕ̄ ∶ PM(S) → Y satisfying the above diagram follows
by Corollary 3.7.2.

Denote by G the sub-vector lattice algebra in PM(S) generated by the subset j [S].
We show that G is dense in PM(S). For every M ∈ M(S), denote by ∥●∥M the

norm of the pseudo-solution PBLA1+

Set (S,M) and consider the family of seminorms
{ρM ∶ PM(S) → R}M∈M(S) where ρM (x) ∶ = ∥πM(x)∥M generating the locally m-
convex-solid topology on PM(S). Fix y0 ∈ PM(S) and consider the basis element

B ∶=
n

⋂
i=1

{x ∈ PM(S) ∶ ρMi
(x − y0) < εi}

where n ∈ N and {ε1, . . . , εn} ⊆ R+. Define ε∗ ∶ = min{ε1, . . . , εn}. Since M(S) is
upwards directed, there exists M∗ ≥ Mi for all 1 ≤ i ≤ n. Denote by GM∗ the sub-
vector lattice algebra generated by jM∗ [S] in PBLA1+

Set (S,M∗). By Theorem 3.3.7,

GM∗ is dense in PBLA1+

Set (S,M∗), thus there exists s1, . . . , sk ⊆ S for some k ∈ N and
an element p̃ ∶= P (jM∗(s1), . . . , jM∗(sk)) ∈ GM∗ where P is some combination of the

operations defined on PBLA1+

Set (S,M∗) such that

∥p̃ − πM∗ (y0)∥M∗ < ε∗.

Consider the element p ∶= P (j(s1), . . . , j(sk)) ∈ G where πM∗(p) = p̃. Since M∗ ≥Mi

for all 1 ≤ i ≤ n, by the properties of the inverse limit (PM(S), (pM)M∈M(S)) and the
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fact that the morphisms in the inverse system P are contractive, we have that for
every 1 ≤ i ≤ n,

ρMi
(p − y0) = ∥πMi

(p) − πMi
(y0)∥Mi

= ∥pM∗,Mi
(πM∗(p − y0))∥Mi

≤ ∥πM∗(p) − πM∗(y0)∥M∗ = ∥p̃ − πM∗(y0)∥M∗ < ε∗ ≤ εi.
Thus B ∩G ≠ ∅ and we conclude that G is dense in PM(S).

Now, let ψ̄ ∶ PM(S) → X be any morphism in ComLM-C-SVLA1+ such that
ψ̄ ○ j = ϕ. Since ϕ̄ and ψ̄ coincide on j [S], it follows by Proposition 3.2.11 that ϕ̄
and ψ̄ coincide on G since ϕ̄ and ψ̄ are morphisms in VLA1+. Since ϕ̄ and ψ̄ are
continuous, we conclude that ϕ̄ = ψ̄. �

This informs the following more general result.

Proposition 3.7.4. Let Y be a category from Table 2 or 3 and X a category from
Table 1 such that X ⊇ Y and fix X ∈ X. Consider the pair (PM(X), j) constructed
in Corollary 3.7.2, then the object in A(Y) generated by the subset j [X] in PM(X)
is dense in PM(X).

Proof. We treat two separate cases. For a category of complete normed struc-
tures Ŷ from Table 3, it is clear that the proof of Proposition 3.7.3 can be adapted
to obtain the desired result since the proof only relies on the topological structure

on PM(X), the density of GM in PŶ
X(X,M) for M ∈ M(X) and the properties of

inverse limits.

On the other hand, the proof of Proposition 3.7.3 is adjusted in the following way
for categories of normed structures Y from Table 2: Fix y0 ∈ PM(X) and consider
the basis element

B ∶=
n

⋂
i=1

{x ∈ PM(X) ∶ ρMi
(x − y0) < εi} .

Fix M∗ ≥Mi for all 1 ≤ i ≤ n. Since PY
X(X,M∗) is generated by the subset jM∗ [S],

there exists x1, . . . , xk ⊆X for some k ∈ N such that πM∗(y0) = P (jM∗(x1), . . . , jM∗(xk))
where P is some combination of the operations defined on PY

X(X,M∗). Define p ∶=
P (j(x1), . . . , j(xk)) satisfying πM∗(p) = πM∗(y0). This implies that ρMi

(y0 − p) = 0
for all 1 ≤ i ≤ n. Thus p ∈ B and it follows that G is dense in PM(X). �

It is clear that the work in Section 3.3 is of independent interest given the connec-
tions that have been made to the existing literature, however, all the work after
Section 3.4 has led up to the following list of free objects in categories of locally
convex structures. Their existence follows immediately from Corollary 3.7.2 and
Proposition 3.7.4.

The notation we have developed does not lead to the most aesthetic list of answers,
but this is preferable over ambiguous notation.

Theorem 3.7.5. Let S be a set, V a vector space, E a vector lattice, R an algebra,
R1 a unital algebra, A a vector lattice algebra, and A1 a unital vector lattice algebra
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3.7. FREE OBJECTS IN CATEGORIES OF INVERSE LIMITS 131

and let X denote any one of these objects. The following free objects exist. In all

cases, the morphism j ∶X → F
LCY-lim←ÐY

X (X) is a morphism in the category X.

Categories of inverse limits of normed structures:

(1) F
LCS-lim←ÐNS

Set (S)

(2) F
LC-SVL-lim←ÐNVL

Set (S)

(3) F
LC-SVL-lim←ÐNVL

VS (V )

(4) F
LM-CA-lim←ÐNA

Set (S)

(5) F
LM-CA-lim←ÐNA

VS (V )

(6) F
LM-CA1-lim←ÐNA1

Set (S)

(7) F
LM-CA1-lim←ÐNA1

VS (V )

(8) F
LM-CA1-lim←ÐNA1

Alg (R)

(9) F
LM-C-SVLA-lim←ÐNVLA

Set (S)

(10) F
LM-C-SVLA-lim←ÐNVLA

VS (V )

(11) F
LM-C-SVLA-lim←ÐNVLA

VL (E)

(12) F
LM-C-SVLA-lim←ÐNVLA

Alg (R)

(13) F
LM-C-SVLA1-lim←ÐNVLA1

Set (S)

(14) F
LM-C-SVLA1-lim←ÐNVLA1

VS (V )

(15) F
LM-C-SVLA1-lim←ÐNVLA1

VL (E)

(16) F
LM-C-SVLA1-lim←ÐNVLA1

Alg (R)

(17) F
LM-C-SVLA1-lim←ÐNVLA1

Alg1 (R1)

(18) F
LM-C-SVLA1-lim←ÐNVLA1

VLA (A)

(19) F
LM-C-SVLA1+-lim←ÐNVLA1+

Set (S)

(20) F
LM-C-SVLA1+-lim←ÐNVLA1+

VS (V )

(21) F
LM-C-SVLA1+-lim←ÐNVLA1+

VL (E)

(22) F
LM-C-SVLA1+-lim←ÐNVLA1+

Alg (R)

(23) F
LM-C-SVLA1+-lim←ÐNVLA1+

Alg1 (R1)

(24) F
LM-C-SVLA1+-lim←ÐNVLA1+

VLA (A)

(25) F
LM-C-SVLA1+-lim←ÐNVLA1+

VLA1 (A1)

Categories of complete locally convex structures:

(1) FComLCS
Set (S)

(2) FComLC-SVL
Set (S)

(3) FComLC-SVL
VS (V )

(4) FComLM-CA
Set (S)

(5) FComLM-CA
VS (V )

(6) FComLM-CA1

Set (S)

(7) FComLM-CA1

VS (V )

(8) FComLM-CA1

Alg (R)

(9) FComLM-C-SVLA
Set (S)

(10) FComLM-C-SVLA
VS (V )

(11) FComLM-C-SVLA
VL (E)

(12) FComLM-C-SVLA
Alg (R)

(13) FComLM-C-SVLA1

Set (S)

(14) FComLM-C-SVLA1

VS (V )

(15) FComLM-C-SVLA1

VL (E)

(16) FComLM-C-SVLA1

Alg (R)

(17) FComLM-C-SVLA1

Alg1 (R1)

(18) FComLM-C-SVLA1

VLA (A)

(19) FComLM-C-SVLA1+

Set (S)

(20) FComLM-C-SVLA1+

VS (V )

(21) FComLM-C-SVLA1+

VL (E)

(22) FComLM-C-SVLA1+

Alg (R)

(23) FComLM-C-SVLA1+

Alg1 (R1)
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132 3. FREE OBJECTS

(24) FComLM-C-SVLA1+

VLA (A) (25) FComLM-C-SVLA1+

VLA1 (A1)

It is interesting to note that although the notion of an inverse limit is used in a
fundamental sense in the construction of these free objects (both in constructing a
candidate free object F from pseudo-solutions and showing that the image of the
accompanying morphism j is dense in F), for the above collection of free objects in
categories of complete locally convex structures there is no explicit mention of an
inverse limit in sight anymore.

The above list of free objects contains all possible solutions we could obtain using
the pseudo-solutions in Theorem 3.3.7 as building blocks in our procedure. Can
the same not be done with the pseudo-solutions in Theorem 3.3.8? The pseudo-
solutions in Theorem 3.3.8 are between categories X and Y, both ranging over
Table 2 and 3 such that X ⊇ Y. Unfortunately, the formulation of Lemma 3.5.8
and Corollary 3.5.9 does not allow for this: The categories X and Y need to satisfy
the inclusions Y ⊆ LCY-lim←ÐY ⊆X in order for us to apply Lemma 3.5.8. However,

the inclusion LCY-lim←ÐY ⊆X will not hold in general for such categories X and Y

since the objects in LCY-lim←ÐY are locally convex structures and the objects in X

are normed structures.

It is possible to address this problem by introducing a category Z such that X ⊆ Z
and LCY ⊆ Z and requiring that the inverse system

P ∶= ((PY
X(X,M))M∈Mb(X), (pM ′,M)M ′≥M)

has an inverse limit (PM(X), (pM)M∈Mb(X)) in both LCY-lim←ÐY and Z. One can

reformulate the results in Lemma 3.5.8 and Corollary 3.5.9 where this ‘upper bound’
category Z is included. In the end, the following can be proven for categories X and
Y, both ranging over Table 2 and 3 such that X ⊇ Y: Fix an object X ∈ X and
consider an upper bound category Z for X and Y. Then there exists an object Q in
LCY-lim←ÐY and a morphism j ∶ X → Q in Z such that for every O in LCY-lim←ÐY

and every morphism ϕ ∶ X → O in Z there exists a unique morphism ϕ̄ ∶ Q → O in
LCY-lim←ÐY such that the following diagram commutes in Z.

X Q

O

ϕ

j

ϕ̄

For example, we can take Y = BL and X = Ban then LCY-lim←ÐY =ComLC-SVL.

We may take ComLCS as upper bound category Z for ComLC-SVL and Ban. For
X ∈ Ban, there exists an object Q in ComLC-SVL and a morphism j ∶ X → Q in
ComLCS such that for every O in ComLC-SVL and every morphism ϕ ∶X → O in
ComLCS (i.e. a continuous linear map) there exists a unique morphism ϕ̄ ∶ Q→ O
in ComLC-SVL (i.e. a continuous vector lattice homomorphism) such that ϕ̄○j = ϕ
holds in ComLCS. Given that the pair (Q, j) satisfies a universal property similar
to that of a free object, one might want to call the pair (Q, j) a quasi-free object
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3.7. FREE OBJECTS IN CATEGORIES OF INVERSE LIMITS 133

over X of LCY-lim←ÐY via Z. The category Z needs to be noted since the choice of

Z affects the universal property we obtain in the diagram above.

Returning to our genuine free objects in Theorem 3.7.5, we can ask the following
question: It may happen when we consider a particular choice of categories X and
Y and X ∈ X that the free object (FY

X(X) , j) does indeed exist. The procedure

outlined in this chapter will still deliver us a free object (F
LCY-lim←ÐY

X (X) , j′) in the

larger category LCY-lim←ÐY. One would hope that our procedure for constructing

free objects would be able to recover this prior answer, in the sense that there is

an isomorphism Φ ∶ F
LCY-lim←ÐY

X (X) → FY
X(X) in Y such that the following diagram

commutes in X.

F
LCY-lim←ÐY

X (X)

X

FY
X(X)

Φ

j′

j

This would mean that F
LCY-lim←ÐY

X (X) is in fact a normed space and the pair (FY
X(X) , j)

is not just a free object over X of the category of normed structures Y, but is also
a free object over X of the larger category of inverse limits of normed structures
LCY-lim←ÐY. The following result shows that this is indeed the case.

Proposition 3.7.6. Let Y be a category from Table 2 or 3 and X a category from
Table 1 such that X ⊇ Y and fix X ∈ X. Assume that the free object (F, j) over
X of Y exists and consider the free object (F′, j′) over X of LCY-lim←ÐY from

Theorem 3.7.5. Then there exists a unique isomorphism Φ ∶ F′ → F in Y such that
the following diagram commutes in X.

F′

X

F

Φ

j′

j

Proof. We note that since a linear map between normed spaces is continuous
if and only if it is bounded, it follows that Y is a full subcategory in LCY-lim←ÐY.

Since F ∈Y ⊆ LCY-lim←ÐY, it follows by the universal property of (F′, j′) that there

exists a unique morphism Φ ∶ F′ → F in LCY-lim←ÐY such that Φ ○ j′ = j. We will

show that Φ is in fact an isomorphism in LCY-lim←ÐY.

Since Φ would then be a homeomorphism between a locally convex structure and a
normed structure, it would follow by [25, Chapter IV, Proposition 2.6] that F′ ∈Y.
Since Y is a full subcategory in LCY-lim←ÐY, it would follow that Φ is the unique

isomorphism in Y such that Φ ○ j′ = j.
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134 3. FREE OBJECTS

It remains to construct an inverse morphism of Φ ∶ F→ F′ in LCY-lim←ÐY: For every

M ∈ M(X), the pseudo-solution PY
X(X,M) is an object in Y with a morphism

jM ∶ X → PY
X(X,M). By the universal property of (F, j), for every M ∈ M(X)

there exists a unique morphism ψ̄M ∶ F → PY
X(X,M) in Y such that the following

diagram commutes in X.

(3.7.1)

X F

PY
X(X,M)

jM

j

ψ̄M

We claim that the pair (F, (ψ̄M)M∈M(X)) is a compatible system over the inverse

system P ∶= ((PY
X(X,M))M∈M(X), (pM ′,M)M ′≥M) in LCY-lim←ÐY: For M ∈ M(X),

denote by GM the object in A(Y) generated by the subset jM [X] in PY
X(X,M).

By Theorem 3.3.7, the subset GM is at least dense in PY
X(X,M) for M ∈ M(X).

Fix M ′ ≥M in M(X) and take j(x0) ∈ j [X]. By (3.7.1), we have

ψ̄M (j(x0)) = jM(x0)
and,

pM ′,M ○ ψ̄M ′ (j(x0)) = pM ′,M (jM ′(x0)) = jM(x0).
Thus pM ′,M ○ ψ̄M ′ and ψ̄M coincide on j [X]. By Proposition 3.1.3, the object G
in A(Y) generated by the subset j [X] is dense in F. Since pM ′,M ○ ψ̄M ′ and ψ̄M
are morphisms in Y, it follows that pM ′,M ○ ψ̄M ′ = ψ̄M . Hence, (F, (ψ̄M)M∈M(X)) is

a compatible system over P in LCY-lim←ÐY. Since (F′, (pM)M∈M(X)) is an inverse

limit of P in LCY-lim←ÐY, there exists a unique morphism Ψ ∶ F→ F′ in LCY-lim←ÐY

such that the following diagram commutes in LCY-lim←ÐY.

(3.7.2)

F F′

PY
X(X,M)

ψ̄M

Ψ

pM

It remains to verify that Φ and Ψ are inverse morphisms in LCY-lim←ÐY: By (3.7.1)

and (3.7.2), for every M ∈ M(X), we have

pM ○ (Ψ ○ j) = (pM ○Ψ) ○ j = ψ̄M ○ j = jM .
By Proposition 3.7.1 (iii), since j′ ∶ X → F′ is the unique morphism in X such that
pM ○ j′ = jM , it follows that Ψ ○ j = j′. Consider the morphism Ψ ○Φ ∶ F′ → F′, then
for j′(x0) ∈ j′ [X], we have

(Ψ ○Φ) (j′(x0)) = Ψ ○ j(x0) = j′(x0).
Thus Ψ○Φ and 1F′ coincide on j′ [X]. By Proposition 3.7.4, we know that the object
G′ in A(Y) generated by the subset j′ [X] is dense in F′ and thus Ψ○Φ = 1F′ . Since
Φ ○ j′ = j and Ψ ○ j = j′ it follows by a similar argument that Φ ○Ψ = 1F. �
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3.8. THE FREE COMPLETE LOCALLY M-CONVEX ALGEBRA OVER A POINT 135

In the last two sections, we apply the free object machinery we have developed to
the concrete pseudo-solutions in Section 3.4 to obtain concrete descriptions of two
of the free objects whose existence was derived above.

3.8. The free complete locally m-convex algebra over a point

In this section, we give a concrete description of the free complete locally convex
unital algebra over a one-point set by applying the inverse limits construction to the
pseudo-solutions found in Section 3.4.1. We only consider algebras over C in this
section.

Fix a one-point set S ∶ = {s0}. For every M > 0, consider the pseudo-solution

(`1 (N0,wM) , jM) where jM(s0) ∶= δ(M)
1 found in Section 3.4.1. We note that condi-

tions (i)-(iii) in Lemma 3.5.8 are satisfied:

(i) For every Y ∈ BA1 and every morphism ϕ ∶ S → Y in Set there exists M0 > 0
such that for all M ≥M0 there exists a unique morphism ϕ̄M ∶ `1(N0,wM) →
Y in BA1 such that the following diagram commutes in Set.

S `1(N0,wM)

Y

ϕ

jM

ϕ̄M

(ii) As shown in Remark 3.5.7, the pair P ∶= ((`1 (N0,wM))M>0, (pM2,M1)M2≥M1)
is an inverse system in BA1 and the linking maps pM2,M1 are inclusions.
Further, the pair (S, (jM)M>0) is a compatible system over P in Set.

(iii) For every M > 0, denote by ∥●∥M the norm on `1(N0,wM). Define the set

E ∶= {(fM) ∈ ∏
M>0

`1(N0,wM) ∶ pM2,M1(fM2) = fM1 ,∀M2 ≥M1} .

For M > 0, define pM ∶ E → `1(N0,wM) where pM ∶= πM ∣E and equip E with
the topology τ0 generated by the seminorms induced by the component
norms. The results in Section 3.6 show that (E, τ0) is a complete unital
locally m-convex algebra and the pair ((E, τ0), (pM)M>0) is an inverse limit
of P in both Set and ComLM-CA1. Since (S, (jM)M>0) is a compatible
system over P in Set, there exists a unique morphism j′ ∶ S → E in Set
such that pM ○ j′ = jM holds in Set for all M > 0.

Thus we know from our previous work that ((E, τ0), j′) is the free complete unital
locally m-convex algebra over S. We consider a related inverse system to show that
this free object has a more familiar guise.

For every M > 0, denote DM ∶= {z ∈ C ∶ ∣z∣ <M} and define the collection of functions

HM ∶= {f ∶ D̄M → C ∶ f =
∞
∑
k=0

akz
k,

∞
∑
k=0

∣ak∣Mk < ∞} .
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136 3. FREE OBJECTS

It is clear that each element in HM is holomorphic on DM and continuous on D̄M .
Adding the standard vector space and multiplication operations along with the norm
∥●∥HM ∶HM → R where

∥f∥HM ∶=
∞
∑
k=0

∣ak∣Mk

makes HM into a unital Banach algebra. For a given M > 0 and every x = (ak) ∈
`1(N0,wM) define the associated power series fx ∈HM where fx(z) ∶= ∑∞

k=0 akz
k for z ∈

D̄M . It is easy to see that the map TM ∶ `1(N0,wM) → HM where x = (ak) z→ fx is
an isometric unital algebra isomorphism. For M2 ≥M1 > 0 denote by rM2,M1 ∶HM2 →
HM1 the restriction map. It is clear that the pair H ∶= ((HM)M>0, (rM2,M1)M2≥M1)
forms an inverse system in BA1 where the linking maps rM2,M1 are contractive BA1-
morphisms. Define

H ∶= {(gM) ∈ ∏
M>0

HM ∶ rM2,M1(gM2) = gM1 ,∀M2 ≥M1} .

For M > 0, define rM ∶ H → HM where rM ∶= πM ∣H and equip H with the topol-
ogy τ generated by the family of seminorms {ηM ∶H → R ∶ M > 0} where ηM(x) ∶=
∥πM(x)∥HM for x ∈H. As before, the pair ((H,τ), (pM)M>0) is an inverse limit of H
in ComLM-CA1. For every M > 0, define IM ∈ HM as the function IM(z) ∶= z for
z ∈ D̄M and define the morphism j′′ ∶ S → H in Set where j′′(s0) ∶= (IM)M>0. We
note that the following diagram commutes in BA1 for all M2 ≥M1 > 0.

`1(N0,wM2) HM2

`1(N0,wM1) HM1

TM2

pM2,M1 rM2,M1

TM1

Since TM is an BA1-isomorphism for every M > 0, it follows by Proposition 2.4.2
in Chapter 2 that there exists a unique BA1-isomorphism T ∶ E → H such that the
following diagram commutes in BA1 for all M > 0.

E H

`1(N0,wM1) HM

T

pM rM

TM

which implies that

rM ○ T ○ j′(s0) = TM ○ pM ○ j′(s0) = TM (δ(M)
1 ) = IM = rM ○ j′′(s0).

It follows that T ○ j′ = j′′ and thus by the essential uniqueness of free objects we
conclude that ((H,τ), j′′) is also a free complete unital locally m-convex algebra
over S.

Now, consider the unital algebra of entire functions H(C). Denote by I ∈ H(C)
the function I(z) ∶= z for z ∈ C and define j ∶ S → H(C) where j(s0) ∶= I. Since
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3.8. THE FREE COMPLETE LOCALLY M-CONVEX ALGEBRA OVER A POINT 137

every entire function can be represented as a power series f = ∑k=0 akz
k converging

everywhere in C one sees that the map R ∶ H(C) → H where f z→ (f ∣D̄M )
M>0

is a

unital algebra isomorphism. For M > 0, define the seminorm ρM ∶H(C) → R where
ρM ∶= ηM ○R and denote by τM the topology generated by this family of seminorms.
By [57, Theorem 5.7.3], we have that (H,τ) and (H(C), τM) are isomorphic via the
ComLM-CA1-isomorphism R and since R ○ j = j′′ it follows that ((H(C), τM), j)
is also a free complete unital locally m-convex algebra over S.

We claim that H(C) equipped with the τM topology derived from the pseudo-
solutions construction is homeomorphic to H(C) equipped with the familiar topol-
ogy of uniform convergence on compact sets: Denote by K(C) the collection of
compact subsets of C and for every K ∈ K(C), define the seminorm pK ∶H(C) → R
where pK(f) ∶= maxz∈K ∣f(z)∣. The family of seminorms {pK ∶K ∈ K(C)} generates
the topology of uniform convergence on compact sets, which we denote as τK . First,
we show that the identity map J1 ∶ (H(C), τM) Ð→ (H(C), τK) is continuous: Fix
K ∈ K(C), then there exists M > 0 such that ∣z∣ ≤M for all z ∈ K. Then for every
f = ∑∞

k=0 akz
k ∈H(C) and all z ∈K, we have

∣f(z)∣ ≤
∞
∑
k=0

∣ak∣ ∣z∣k ≤
∞
∑
k=0

∣ak∣Mk = ρM(f)

which implies that pK ≤ ρM and thus J1 is continuous. Next, we show that the
identity map J2 ∶ (H(C), τK) Ð→ (H(C), τM) is continuous: Fix M > 0. By the
Cauchy integral formula [62, Chapter 2, Corollary 4.2], for every f = ∑∞

k=0 akz
k ∈

H(C), we have

ak =
f (k)(0)
k!

= 1

2πi ∮∣z∣=2M

f(z)
zk+1

dz.

Denote C ∶= {z ∈ C ∶ ∣z∣ = 2M}. This gives the upper estimate

∣ak∣ ≤
4πM

2π
max
z∈C

∣f(z)
zk+1

∣ = 1

(2M)k max
z∈C

∣f(z)∣ .

As a result

ρM(f) =
∞
∑
k=0

∣ak∣Mk ≤
∞
∑
k=0

( 1

(2M)k+1
max
z∈C

∣f(z)∣)Mk =
∞
∑
k=0

1

2k
max
z∈C

∣f(z)∣ = 2pC(f).

This implies that J2 is continuous and we conclude that (H(C), τM) and (H(C), τK)
are indeed homeomorphic. This gives us the concrete description ((H(C), τK), j)
for the free complete unital locally m-convex algebra over S.

Now that we have calculated the answer ((H(C), τK), j) as the solution to the free
object problem between the categories ComLM-CA1 and Set, it is not difficult to
verify that this pair is a solution by showing directly that the necessary universal
property is satisfied: Fix B ∈ComLM-CA1 and a morphism ϕ ∶ S → B in Set. We
show that there exists a unique morphism ϕ̄ ∶ H(C) → B in ComLM-CA1 such
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138 3. FREE OBJECTS

that the following diagram commutes in Set.

S (H(C), τK)

B

ϕ

jM

ϕ̄

Define the map ϕ̄ ∶H(C) → B where

ϕ̄(f) ∶=
∞
∑
k=0

ak (ϕ(s0))k , (f =
∞
∑
k=0

akz
k ∈H(C)) .

We first need to verify that ϕ̄ is well-defined: Fix f = ∑∞
k=0 akz

k ∈ H(C). We

show that (∑n
k=0 ak (ϕ(s0))k)

n∈N0

is a Cauchy sequence. Denote by PB the family of

seminorms defining the topology on B and take p ∈ PB. For m > n in N0, we have

p(
m

∑
k=0

ak (ϕ(s0))k −
n

∑
k=0

ak (ϕ(s0))k) ≤
m

∑
k=n+1

∣ak∣p(ϕ(s0))k.

Since f ∈ H(C), it follows that ∑∞
k=0 ∣ak∣p(ϕ(s0))k < ∞ for every p ∈ PM which

implies that (∑n
k=0 ak (ϕ(s0))k)

n∈N0

is indeed a Cauchy sequence. We conclude from

the completeness of B that ϕ̄ is indeed well-defined.

Denote by P (C) the collection of polynomials on C, which is dense in H(C). To
verify that ϕ̄ is continuous let p ∈ PB and f = ∑∞

k=0 akz
k ∈H(C), then

p (ϕ̄(f)) = p( lim
n→∞

n

∑
k=0

ak (ϕ(s0))k) = lim
n→∞p(

n

∑
k=0

ak (ϕ(s0))k) ≤ lim
n→∞

n

∑
k=0

∣ak∣p (ϕ(s0))k .

For every M > 0 with M ≥ p (ϕ(s0)), it follows that p (ϕ̄(f)) ≤ ρM(f). Since
τM = τK , this implies that ϕ̄ ∶ (H(C), τK) → B is continuous. It is then easy to
verify using the density of P (C) in H(C) and the continuity of ϕ̄ that ϕ̄ is linear on
H(C) and since ϕ̄ is multiplicative on P (C) it also follows by continuity that ϕ̄ is
multiplicative on H(C). Thus ϕ̄ is a ComLM-CA1-morphism satisfying ϕ̄ ○ j = ϕ.

Let ψ̄ ∶ (H(C), τK) → B be any ComLM-CA1-morphism satisfying ψ̄ ○j = ϕ. Since
the function I ∈ H(C) generates the sub-algebra P (C) in H(C) and both ϕ̄ and ψ̄
are unital algebra homomorphisms it follows that ϕ̄ and ψ̄ coincide on P (C) and
by density of P (C) in H(C) we conclude that ϕ̄ = ψ̄. Thus ((H(C), τK), j) does
indeed satisfy the desired universal property.

3.9. The free complete locally convex space over a set

Lastly, we make use of the concrete descriptions of pseudo-solutions found in Sec-
tion 3.4.2 to construct the free (complete) locally convex space over an arbitrary set
S. It turns out that this free object can be viewed both as an inverse limit and a
direct limit.
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3.9. THE FREE COMPLETE LOCALLY CONVEX SPACE OVER A SET 139

3.9.1. Inverse limit construction. Fix any set S. It is important to note
that in Section 3.4.2, we only gave concrete descriptions of the pseudo-solutions
(PBan

Set (S,M), jM) as (`1(S,M), jM) for M ∈ M>0(S). However, thanks to the for-
mulation of Lemma 3.5.8 and Corollary 3.5.9 as well as the fact thatM>0(S) forms
a confinal subset in M(S), this will be sufficient for us to construct a concrete de-
scription of the free complete locally convex space over S. We note that conditions
(i)-(iii) in Lemma 3.5.8 are satisfied in this situation:

(i) It is clear thatM>0(S) is upwards directed and cofinal inM(S). As a result,
from Section 3.4.2 we know that for every X ∈ Ban and every morphism
ϕ ∶ S → X in Set there exists M0 ∈ M>0(S) such that for all M ≥ M0 in
M>0(S) there exists a unique morphism ϕ̄M ∶ `1(S,M) → X in Ban such
that the following diagram commutes in Set.

S `1(S,M)

X

ϕ

jM

ϕ̄M

(ii) As shown in Remark 3.5.7, the pair P ∶= ((`1 (S,M))M∈M>0(S), (pM2,M1)M2≥M1
)

is an inverse system in Ban and the linking maps pM2,M1 are inclusions. Fur-

ther, the pair (S, (jM)M∈M>0(S)) is a compatible system over P in Set.

(iii) For every M ∈ M>0(S), denote by ∥●∥M the norm on `1(S,M). Define the
set

F ∶=
⎧⎪⎪⎨⎪⎪⎩
(fM) ∈ ∏

M∈M>0(S)
`1(S,M) ∶ pM2,M1(fM2) = fM1 ,∀M2 ≥M1

⎫⎪⎪⎬⎪⎪⎭
.

For M ∈ M>0(S), define pM ∶ F → `1(S,M) where pM ∶= πM ∣F and equip F
with the topology τ generated by the family of seminorms

{ηM ∶ F → R ∶ M ∈ M>0(S)}
where ηM(x) ∶ = ∥πM(x)∥M for x ∈ F . From the considerations in Sec-
tion 3.6, we know that (F, τ) is a complete locally convex space and the
pair (F, (pM)M∈M>0(S)) is an inverse limit of P in both Set and ComLCS.

Since (S, (jM)M∈M>0(S)) is a compatible system over P in Set, there exists
a unique morphism j′ ∶ S → F in Set such that pM ○ j′ = jM holds in Set for
all M ∈ M>0(S).

Thus from the procedure we have developed we know that ((F, τ), j′) is the free
complete locally convex space over S. However, more can be said about the structure
of this free object.

We claim that F is isomorphic as a vector space to the free vector space VS over S:
Consider the map T ∶ VS → F where f z→ (f)M∈M>0(S). It is clear that T is an injec-

tive linear map. Fix (fM)M∈M>0(S) ∈ F and fix indices M1,M2 ∈ M>0(S). Then there

exists M∗ ≥M1,M2 inM>0(S) such that pM∗,M1(fM∗) = fM1 and pM∗,M2(fM∗) = fM2 .
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140 3. FREE OBJECTS

Since the linking maps in P are the inclusions maps it follows that fM1 = fM∗ = fM2 .
This implies that fM1 ∈ `1(S,M) for all M ≥ M1 in M>0(S). However, it is clear
that the quantity ∑s∈S ∣fM1(s)∣M(s) is not defined for sufficiently large M ≥ M1 if
the set {s ∈ S ∶ fM1(s) ≠ 0} is infinite. Thus fM1 ∈ VS and this shows that T is indeed
a vector space isomorphism.

Denote by τM the topology on VS generated by the family of seminorms

{ρM ∶ VS → R ∶ M ∈ M>0(S)}
where ρM(f) ∶= ∑s∈S ∣αs∣M(s) for f = ∑s∈S αses ∈ VS. We note that ρM is in fact a
norm for every M ∈ M>0(S). Since T ∶ VS → F is a vector space isomorphism and
ρM ○ T = ηM for all M ∈ M>0(S) it is clear that (F, τ) and (VS, τM) are isomorphic
as locally convex spaces. Define j ∶ S → VS where j(s) ∶= es ∈ VS. Using the universal
property of ((F, τ), j′) and the fact that T ○ j = j′, it is not difficult to show that
((VS, τM), j) is also a free complete locally convex space over S. However, this also
follows by direct computation: Let Y be a complete locally convex space and denote
by PY the collection of seminorms generating the topology on Y . Let ϕ ∶ S → Y
be any morphism in Set. By the universal property of the free vector space (VS, j)
over S, there exists a unique linear morphism ϕ̄ ∶ VS → Y . For every p ∈ YP and
f = ∑s∈S αses ∈ VS, we have

p (ϕ̄ (f)) ≤ ∑
s∈S

∣αs∣p (ϕ(s)) .

Define M̃ ∶ S → R where M̃(s) ∶= p (ϕ(s)) and choose M ∈ M>0(S) such that M ≥ M̃ ,
then we have p ○ ϕ̄ ≤ ρM and by [57, Theorem 5.7.3] it follows that ϕ̄ ∶ VS → Y is
continuous. Since ϕ̄ is uniquely determined on j [S], our direct computation has
also verified that ((VS, τM), j) is free complete locally convex space over S. Since the
completeness of Y is not used in the above verification, it follows that ((VS, τM), j)
is also the free locally convex space over S.

If S is a finite set with ∣S∣ = n, it is clear that (VS, τM) is homeomorphic to
(Rn, ∥●∥1) since all norms on a finite-dimensional vector space are equivalent. Thus
((VS, τM), j) is also the free Banach space over S when S is finite.

There is yet another construction of the free locally convex space over an arbitrary
set S: Consider the free vector space (VS, j) over S and equip VS with the strongest
locally convex topology on VS (i.e. the topology generated by the collection of all
seminorms on VS) which we denote as τs. The locally convex space (VS, τs) has
the property that every linear map T ∶ VS →W where W is a locally convex space
is automatically continuous: Let W be a locally convex space and denote by PW
the collection of seminorms generating the topology τW on W . Fix p ∈ PW and let
T ∶ VS → W be a linear map. It is clear that p′ ∶= p ○ T ∶ VS → R is a seminorm on
VS and since p ○ T ≤ p′ it follows that T ∶ (VS, τs) → (W,τW ) is continuous. Thus
the universal property of the free vector space over S implies that ((VS, τs), j) is
the free locally convex space over S. We know by the essential uniqueness of free
objects that (VS, τM) and (VS, τs) are homeomorphic, but it is also not difficult to
show this directly: Let ρ ∶ VS → R be a seminorm and f = ∑s∈S αses ∈ VS, then

ρ(f) ≤ ∑
s∈S

∣αs∣ρ(es).
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3.9. THE FREE COMPLETE LOCALLY CONVEX SPACE OVER A SET 141

Define Mρ ∶ S → R where Mρ(s) ∶= ρ(es) and choose M ∈ M>0(S) such that M ≥Mρ.
Then ρ ≤ ρM . It follows by [57, Exercise 5.203 (c), p. 152] that (VS, τM) and (VS, τs)
are homeomorphic.

The pair ((VS, τs), j) is also a ‘natural guess’ answer to the question of what is the
free locally convex space over S: We start with the free vector space (VS, j) over S.
What locally convex topology τ can we place on VS such that for every locally convex
space W and every morphism ϕ ∶ S → W in Set there exists a unique continuous
linear map ϕ̄ ∶ (VS, τ) →W making the following diagram commute in Set?

S VS

W

ϕ

j

ϕ̄

It would have to be τs since for every linear map T ∶ VS →W there exists ϕT ∶ S →W
in Set where ϕT (s) ∶ = T (s). The morphism ϕT needs to extend uniquely to a
continuous linear map ϕ̄T ∶ (VS, τ) →W and since ϕ̄T = T it is clear that every such
T needs to be continuous with respect to the locally convex topology τ . Thus τ can
only be τs.

It is satisfactory to see that our approach to the construction of free objects via
inverse limits of pseudo-solutions delivers us an answer which is easily reconciled
with this ‘natural guess’ answer.

3.9.2. Direct limit construction. Fix any set S. In addition to the previous
section, it turns out that it is also possible to construct the free locally convex space
over S as a direct limit.

If we consider the set S equipped with the discrete topology, we see that the free
vector space VS may be identified with Cc(S), the compactly supported continuous
functions f ∶ S → K. Denote by K(S) the collection of all compact (i.e. finite)
subsets of S. For every K ∈ K(S), denote by Cc(S;K) the subspace of Cc(S)
consisting of functions f ∶ S → K where {s ∈ S ∶ f(s) ≠ 0} ⊆K. For compact subsets
K,K1,K2 ∈ K(S) with K1 ⊆K2 we have the inclusion maps

eK1,K2 ∶ Cc(S;K1) → Cc(S;K2)

and,

eK ∶ Cc(S;K) → Cc(S).
Using Definition 2.3.1, we see that D ∶= ((Cc(S;K))K∈K(S), (eK1,K2)K1⊆K2

) is a di-

rect system in VS and (Cc(S), (eK)K∈K(S)) is the direct limit of D in VS. Fur-
ther, equipping each finite-dimensional vector space Cc(S;K) for K ∈ K(S) with its
unique linear topology makes D into a direct system in LCS. Using the approach
in [22, Chapter II, § 4, No. 4] we construct the direct limit topology on Cc(S):
Let B be the collection of all absorbing convex balanced sets V in Cc(S) such that
V ∩Cc(S;K) is a neighbourhood of zero in Cc(S;K) for all K ∈ K(S). Then B is a
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142 3. FREE OBJECTS

neighbourhood base of a locally convex topology τdl on Cc(S). The locally convex
space (Cc(S), τdl) has the following properties:

(i) τdl is the strongest locally convex topology on Cc(S) such that the inclusions
{eK ∶ K ∈ K(S)} are all continuous.

(ii) Let F be a locally convex space and T ∶ Cc(S) → F a linear map. Then
T is continuous with respect to τdl if and only if T ○ eK ∶ Cc(S;K) → F is
continuous for all K ∈ K(S).

Using the fact that (Cc(S), (eK)K∈K(S)) is the direct limit of D in VS and the above

properties of direct limit topology on Cc(S), we conclude that ((Cc(S), τdl), (eK)K∈K(S))
is the direct limit of D in LCS. Since VS is identified with Cc(S), we may consider
the identity map

I ∶ (Cc(S), τdl) → (Cc(S), τM)
where τM was defined in the previous section. By property (ii) of the direct limit
topology, the identity map I is continuous if and only if I ○ eK ∶ Cc(S;K) →
(Cc(S), τM) is continuous for all K ∈ K(S). Denote by PM the family of norms
defining the locally convex topology τM on Cc(S) and take ρM ∈ PM . Then, for
every K ∈ K(S),

ρM ○ (I ○ eK) ≤ ρM .
It is clear that ρM is a norm on Cc(S;K) and thus generates the unique linear
topology on Cc(S;K). By [57, Theorem 5.7.3], it follows that I ○ eK is continuous
for all K ∈ K(S) and thus I is continuous. This implies that τM ⊆ τdl, but the
topology τM was identified in the previous section as the strongest locally convex
topology on Cc(S). Thus (Cc(S), τM) and (Cc(S), τdl) are homeomorphic which
implies that ((Cc(S), τdl), j) is the free locally convex space over S.
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APPENDIX A

Measures and functionals

A.1. A Riesz Representation Theorem

In this section, we prove a Riesz Representation Theorem for C(X) with X real-
compact which is used in Section 2.9 and in the work of Xiong in [69]. Some of
these results are also found in [40]. However, our first result, which is Theorem 3.1
in [40], avoids an inconsistency occurring between the notation introduced before
Definition 3.1 in [40] and the statement of Theorem 3.1 in [40]. This modification
ends up making the proof a little simpler.

Theorem A.1.1. Let X be a Tychonoff space and let φ ∈ C(X)∼. For every f ∈
C(X)+ there exists N ∈ N such that if n ≥ N then

φ (f ∧ n1X) = φ(f).

Proof. We first prove the statement for 0 ≤ φ ∈ C(X)∼. Denote by αR the one-
point compactification of R. Fix f ∈ C(X)+ ⊆ C (X,αR) and consider its unique
extension f̄ ∈ C (βX,αR). For every n ∈ N, define hn ∶= f − f ∧ n1X ∈ C(X). Note
that since f ∧ n1X ≤ f for all n ∈ N, we have that hn ≥ 0 for all n ∈ N. Suppose for
the sake of a contradiction that εn ∶= φ (hn) > 0 for all n ∈ N. For n ∈ N, define the
closed sets

Kn ∶= {x ∈ βX ∶ f̄(x) ≥ n} , Gn ∶= {x ∈ βX ∶ f̄(x) ≤ n − 1} .
By Urysohn’s Lemma, for every n ∈ N define p̄n ∈ C(βX) where the range of p̄n is
contained in [0,1/εn] and where p̄n [Gn] = 0 and p̄n [Kn] = 1/εn. For every n ∈ N,
consider the function pn ∈ Cb(X) where pn = p̄n∣X . Define the function g ∶ X → R
where

g(x) ∶= ∑
n∈N

pn(x)f(x).

We verify that g is real-valued and continuous: Fix x ∈X; then there exists m0 ∈ N
such that f(x) <m0 − 1. Since f is continuous, there exists an open neighbourhood
Ux of x such that f(y) <m0−1 for all y ∈ Ux. Since f = f̄ ∣

X
, it follows that Ux ⊆ Gm

for all m ≥m0. Thus pm(y) = 0 for all y ∈ Ux, which implies

g(y) =
m0−1

∑
n=1

pn(y)f(y)

for all y ∈ Ux. Thus g is real-valued and since g coincides with a continuous function
on an open neighbourhood Ux of every point x ∈X, we conclude that g ∈ C(X).
We claim that pnf ≥ hn/εn for all n ∈ N: Fix n ∈ N and x ∈ X. We either have
f(x) ≤ n or f(x) > n. If f(x) ≤ n, then hn(x) = f(x) − f(x) ∧ n = 0 and thus
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144 A. MEASURES AND FUNCTIONALS

pn(x)f(x) ≥ 0 = hn(x)/εn. On the other hand, if f(x) > n then x ∈Kn and it follows
that

pn(x)f(x) = 1/εnf(x) ≥ 1/εn (f(x) − n) = hn(x)/εn.
Thus the claim is verified. However, since g ≥ ∑N

n=1 pnf for every N ∈ N, this implies
that

φ(g) ≥ φ(
N

∑
n=1

pn ⋅ f) =
N

∑
n=1

φ (pn ⋅ f) ≥
N

∑
n=1

φ (hn/εn) = N,

which is impossible. We conclude that there exists N ∈ N such that φ(hn) = 0 for
all n ≥ N .

Now, consider ψ ∈ C(X)∼ and u ∈ C(X)+. There exists 0 ≤ ψ+, ψ− ∈ C(X)∼ such
that ψ = ψ+ − ψ+. From the work above, there exist N ∈ N such that if n ≥ N , then

ψ+ (u) = ψ+ (u ∧ n1X) , and ψ− (u) = ψ− (u ∧ n1X) .
Therefore ψ (u) = (ψ+ − ψ+) (u) = (ψ+ − ψ+) (u ∧ n1X) = ψ (u ∧ n1X). �

Corollary A.1.2. Let X be a Tychonoff space and let φ ∈ C(X)∼. The following
statements are true.

(i) If φ(g) = 0 for all g ∈ Cb(X), then φ = 0.

(ii) The restriction operator R ∶ C(X)∼ → Cb(X)∼ is a vector lattice embedding.

Proof. The statement in (i) follows directly from Theorem A.1.1. For (ii),
since Cb(X) is an ideal in C(X), it follows by [49, p. 84-85] that R is a lattice
homomorphism and the injectivity of R is given by (i). �

The following result follows directly from the previous result, the fact that Cb(X)∼
and C(βX)∼ are lattice isomorphic, and the Riesz Representation Theorem [61,
Theorem 18.4.1] applied to C(βX)∼ = C(βX)⋆.

Corollary A.1.3. Let X be a Tychonoff space and let φ ∈ C(X)∼. There exists a
unique Radon measure µφ ∈ M (βX) such that

φ(g) = ∫
βX
g dµφ, g ∈ Cb(X) ≅ C(βX).

In addition, the map Φ ∶ C(X)∼ → M (βX) where φ z→ µφ is a vector lattice
embedding.

In the sequel, we will make no distinction between elements in Cb(X) and their
uniquely associated elements in C(βX). The following characterisations of realcom-
pact topological spaces are found in [36, Section 3.11].

Proposition A.1.4. Let X be a Tychonoff space. Then the following statements
are equivalent.

(i) X is realcompact.

(ii) X is homeomorphic to a closed subspace of Rm for some cardinal m.
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A.1. A RIESZ REPRESENTATION THEOREM 145

(iii) For every point x ∈ βX X, there exists h ∶ βX → [0,1] with h(x0) = 0 and
h(x) > 0 for all x ∈X.

Proposition A.1.5. Let X be a realcompact space. Let φ ∈ C(X)∼ with µφ ∈ M (βX)
the unique Radon measure identified with φ in Corollary A.1.3. Then Sµφ ⊆X.

Proof. Fix x0 ∈ βX X. We show that x0 ∈ βX Sµφ . By Proposition A.1.4 (iii),
there exists a continuous function h ∶ βX → [0,1] such that h(x0) = 0 and h(x) > 0
for all x ∈X. Define u ∈ C(X) where u(x) ∶= 1/h(x) and define

Vn ∶= {x ∈ βX ∶ h(x) ∈ [0,1/n)} .
Then x0 ∈ Vn for all n ∈ N and u(x) > n if and only if x ∈ Vn ∩X. By Theorem A.1.1
and Corollary A.1.3, there exists N0 ∈ N such that for all n ≥ N0, we have

φ(u) = φ (u ∧ n1X) = ∫
βX
u ∧ n1X dµφ

Therefore

∫
βX
u ∧ (N0 + 1)1X − u ∧N01X dµφ = 0.

However, for all x ∈ VN0+1 ∩X, we have

u(x) ∧ (N0 + 1) − u(x) ∧N0 = N0 + 1 −N0 = 1.

As a result

0 ≤ µφ (VN0+1) = ∫
VN0+1

1X dµφ

= ∫
VN0+1

u ∧ (N0 + 1)1X − u ∧N01X dµφ

≤ ∫
βX
u ∧ (N0 + 1)1X − u ∧N01X dµφ = 0.

Therefore x0 ∈ βX Sµφ and we conclude that Sµφ ⊆X. �

Corollary A.1.6. Let X be a realcompact space. Let φ ∈ C(X)∼ with µφ ∈ M (βX)
the unique Radon measure identified with φ in Corollary A.1.3. Then

φ(f) = ∫
Sµφ

f dµφ, f ∈ C(X).

Proof. Fix 0 ≤ φ ∈ C(X)∼ and f ∈ C(X). By Theorem A.1.1 and Corol-
lary A.1.3, there exists N ∈ N such that for all n ≥ N , we have

φ(f) = φ (f ∧ n1X) = ∫
Sµφ

f ∧ n1X dµφ.

By Proposition A.1.5, since Sµφ ⊆ X ⊆ βX, and Sµφ is closed in βX, it follows that
Sµφ is a compact subset of X. Therefore there exists m ≥ N such that f(x) <m for
all x ∈ Sµφ . Therefore,

φ(f) = ∫
Sµφ

f ∧m1X dµφ = ∫
Sµφ

f dµφ. �

Denote by M0 (βX) the collection of measures µ ∈ M (βX) such that Sµ ⊆X.
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146 A. MEASURES AND FUNCTIONALS

Theorem A.1.7. Let X be a realcompact space. For every φ ∈ C(X)∼, denote by
µφ ∈ M0 (βX) the unique Radon measure identified with φ in Corollary A.1.3. The
map Φ ∶ C(X)∼ →M0(βX) where φz→ µφ is a lattice isomorphism.

Proof. By Corollary A.1.3, the map Φ ∶ C(X)∼ → M(βX) where φ z→ µφ is
a vector lattice embedding and by Proposition A.1.5, Φ [C(X)∼] ⊆ M0(βX). Take
ν ∈ M0(βX). Since Sν is a compact subset of X, the map ψ ∶ C(X) → R where

ψ(f) ∶= ∫
Sν
f dν, f ∈ C(X)

defines an order bounded functional on C(X). By Corollary A.1.3 and Proposi-
tion A.1.5, there exists a unique νψ ∈ M0(βX) such that

ψ(g) = ∫
βX
g dν = ∫

βX
g dνψ

for all g ∈ Cb(X), which implies that Φ(ψ) = νψ = ν. Thus Φ [C(X)∼] = M0(βX),
which proves the theorem. �

Recall that Mc(X) denotes the space of compactly supported Radon measures on
X.

Proposition A.1.8. Let X be a realcompact space. The vector lattices M0(βX)
and Mc(X) are isomorphic.

Proof. Let ν ∈ M0(βX). For every B ∈ BX , there exists B′ ∈ BβX such that
B′ ∩X = B [40, p. 108]. If we have B′,B′′ ∈ BβX so that B′ ∩X = B′′ ∩X then
ν(B′) = ν(B′ ∩ Sν) = ν(B′′ ∩ Sν) = ν(B′′). Define ν∗ ∈ Mc(X) where

ν∗(B) ∶= ν(B′) with B′ ∈BβX so that B′ ∩X = B.
It follows from the previous observation that ν∗ is well-defined and it is clear that
the map T ∶ M0(βX) →Mc(X) where ν z→ ν∗ is an injective positive linear map.
To show surjectivity, let µ ∈ Mc(X). For every B ∈BβX let ν(B) ∶= µ(B ∩X). Then
ν ∈ M0(βX) and ν∗ = µ. Thus T is a bijective bipositive linear map, hence a lattice
isomorphism. �

Combining Theorem A.1.7 and Proposition A.1.8 with Corollary A.1.6 gives us the
following result.

Corollary A.1.9. Let X be a realcompact space. There is a lattice isomorphism
Ψ ∶ C(X)∼ →Mc(X) where φz→ νφ so that for every φ ∈ C(X)∼,

φ(f) = ∫
Sνφ

f dνφ, f ∈ C(X).

Recall from Section 2.1.2 that a measure µ ∈ Mc(X) is normal if ∣µ∣ (L) = 0 for all
closed nowhere dense sets L in X. We denote by Nc(X) the space of compactly
supported normal measures on X.

Lemma A.1.10. Let X be a realcompact space with µ ∈ Nc(X). Then Sµ is regular
closed.
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A.1. A RIESZ REPRESENTATION THEOREM 147

Proof. Since Sµ = S∣µ∣, there is no loss of generality in assuming that µ ≥ 0. Note

that Sµ = intSµ ∪Sµ intSµ. The result will follow if Sµ intSµ is shown to be empty.
The set Sµ intSµ is closed nowhere dense since int (Sµ intSµ) ⊆ intSµ intSµ = ∅.

Thus µ(Sµ intSµ) = 0. Further note that Sµ intSµ ⊆ Sµ intSµ, which implies that

µ(Sµ intSµ) = 0.

Now, assume for the sake of a contradiction that there exists x ∈ Sµ intSµ. Since X

is a regular topological space and intSµ is closed, there exists an open neighbourhood

V of x such that V ∩ intSµ = ∅. Now µ(V ) = µ(V ∩ Sµ) > 0 since x ∈ Sµ. However,

since Sµ = Sµ intSµ ∪ intSµ, it follows that V ∩ Sµ = V ∩ (Sµ intSµ) ⊆ Sµ intSµ.

Hence µ(V ) = µ(V ∩ Sµ) ≤ µ(Sµ intSµ) = 0, a contradiction. �

The following result shows that we also have a Riesz Representation Theorem for
order continuous functionals on C(X) for X realcompact.

Theorem A.1.11. Let X be a realcompact space. Consider the lattice isomorphism
Ψ ∶ C(X)∼ →Mc(X) where φ z→ νφ defined in Corollary A.1.9. Then Ψ [C(X)∼n] =
Nc(X).

Proof. First, take 0 ≤ µ ∈ Mc(X) which is not normal. Then there exists a
closed nowhere dense L in X such that µ(L) > 0. Since µ (X Sµ) = 0, we may
assume that L ⊆ Sµ ⊆X ⊆ βX. Since Sµ is compact in X, it follows that Sµ is closed
in βX. The properties of topological interiors and closures imply that L is a closed
nowhere dense in βX. By Urysohn’s Lemma, there exists a collection (gα)α∈I ↓ 0 in
C(βX) with gα [L] = 1 for all α ∈ I. Since C(βX) is lattice isomorphic to Cb(X)
and Cb(X) is an ideal in C(X), thus a regular sublattice in C(X), it follows that
(gα)α∈I ↓ 0 in C(X). Let φ ∈ C(X)∼ such that Ψ(φ) = µ. Then

φ (gα) = ∫
X
gα dµ ≥ ∫

L
gα dµ = µ(L) > 0.

Which implies that φ /∈ C(X)∼n. Thus Ψ [C(X)∼n] ⊆ Nc(X).
Conversely, take ν ∈ Nc(X) with ψ ∈ C(X)∼ the associated functional. We show
that ψ is order continuous. Consider (fα)α∈I ↓ 0 in C(X). By Lemma A.1.10, Sν is
a regular closed subset of X and by [48, Theorem 3.4], we have that (fα∣Sν)α∈I ↓ 0

in C(Sν). Define ν∗ ∈ Mc(Sν) where ν∗(B) ∶= ν(B) for B ∈ BSν ⊆ BX [20, Vol. II,
Lemma 6.2.4]. Since every subset of Sν that is closed nowhere dense is also closed
nowhere dense in X, it follows that ν∗ ∈ Nc(Sν). Since Sν is compact, it follows by
[26, Definition 4.7.1, Theorem 4.7.4] that

ψ(fα) = ∫
Sν
fα dν = ∫

Sν
fα∣Sν dν∗ Ð→ 0.

Thus ψ ∈ C(X)∼n. �
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Birkhäuser/Springer, Cham (E. Kikianty, M. Mokhwetha, M. Messerschmidt, J.H. van der Walt, and M. Wortel,
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