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Summary

Title: Applications of direct and inverse limits in analysis
Supervisors: Prof. J.H. van der Walt, Prof. M. de Jeu
Department: Mathematics and Applied Mathematics

Degree: Doctor of Philosophy in Mathematical Sciences

In this dissertation, we use the categorical notions of direct and inverse limits to
solve certain problems in analysis; in particular, in the field of vector lattices. Chap-
ter [1I] provides a general overview and motivation of the problems we will focus on.
Specifically, these are a decomposition theorem for C(X') spaces that are order dual
spaces, and the problem of existence of free objects in certain categories of locally
convex structures. The connecting thread between these two disparate problems will
be our extensive and fundamental use of direct and inverse limits in their solutions.

Chapter [2| deals with the first of these two problems. After settling some prelim-
inaries, the first few sections of Chapter [2| develops the basic theory of direct and
inverse limits in categories of vector lattices. This includes results on existence, per-
manence properties, as well as some examples. After this, we give some results on
the duality between direct and inverse limits. In particular, we will show that the
order (continuous) dual of a direct limit of vector lattices is an inverse limit of order
(continuous) duals, and (under more strict conditions) the order (continuous) dual
of an inverse limit of vector lattices is a direct limit of order (continuous) duals. The
rest of Chapter [2| deals with applications of this duality theory in various contexts,
among these will be our desired decomposition result for certain C(X) spaces, which
is formulated in terms of an inverse limit.

Chapter 3| starts with some further preliminaries we need in order to define certain
categories of algebraic structures, normed structures, and locally convex structures
forming the setting of this chapter. After this, we cover some material from universal
algebra to prove the existence of free objects in these algebraic categories. We use
the existence of these algebraic free objects to expand upon the existing literature
regarding certain ‘free objects’ in categories of normed structures. As we shall detail
below, these are not bona fide free objects in our sense of the term. Inverse limits
re-enter the picture at this point: We will prove a general categorical result involving
inverse limits that allows us to use our results for categories of normed structures to
obtain genuine free objects in categories of locally convex structures. The abstract
material in Chapter |3| will be interspersed with some concrete examples chosen from
two particular cases. We conclude Chapter [3| by giving concrete descriptions of two
free objects in certain categories of locally convex structures whose existence was
proven using our general abstract methods.
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CHAPTER 1

General overview and preliminaries

1.1. General overview and motivation of problems

This study demonstrates how the notions of direct and inverse limits can be used
to address some problems in analysis, particularly in the field of vector lattices.
Direct and inverse limits are special cases of the more general notions of colimits
and limits of a diagram respectively. Informally speaking, a dz’agmmﬂ in a category
C, is some collection of objects Sy in C along with a (possibly empty) collection of
morphisms S; connecting some (or none) the objects in Sy. If we denote by S the
diagram consisting of the data Sy and Sp, a limit or colimit of S can be thought
of as an ‘abstract method’ of using the data in S to construct a new object X in
C along with a collection of new morphisms M in C which connect X with the
objects in Sp. The pair (X, M) forming the limit or colimit of the diagram S is
not just any such pair, but is in some sense a ‘universal pair’ for S. Many of the
standard methods of constructing new objects from old ones used in mathematics
are particular examples of such limit and colimit constructions. Familiar examples
of limits include terminal objects, products, kernels (more generally, equalisers),
pullbacks, and the aforementioned inverse limits. Examples of colimits include initial
objects, coproducts (more specfically, disjoint unions), pushouts, and direct limits.
Asimplied by the names, limits and colimits are categorically dual concepts, meaning
that every example of a limit (resp. colimit) in a category C is an example of a
colimit (resp. limit) in the opposite categoryﬂ Ceop. Much information on these
general constructions can be found in [2], [12], [52], and [54].

Direct and inverse limitﬂ have become fairly standard tools in analysis: The direct
or inverse limits of systems of topological vector spaces or locally convex spaces
are well-known constructions, see for example [22], [25, Chapter IV, § 5], [55], and
[60]. The notion of an inverse limit of measure spaces has also been studied, see [19,
Chapter 5] and [24]. The notions of direct and inverse limits are used extensively
in the book of Beattie and Butzmann on convergence spaces [15].

In the field of vector lattices, the notions of direct and inverse limits have received
comparatively little attention. One source that stands out is the work of Filter in
[37] where he studies the properties of direct limits of vector lattices. This has been
supplemented recently by Ding and de Jeu in [32] where they study direct limits
of normed vector lattices and Banach lattices. However, the literature for inverse
limits of vector lattices is more sporadic: Two relevant sources we could find are

1Category theory books often describe a diagram with data from a category C as a functor F :J — C where
J is an ‘index category’, see [12], Definition 5.15].

2See [52, p. 16].

3Which are also called inductive and projective limits in the literature.

1
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2 1. GENERAL OVERVIEW AND PRELIMINARIES

[31] and [51] which deal with the inverse limits of Banach lattices. Accordingly, the
work in this study will address some of the gaps in the existing literature. Chapter
in particular will develop the basic theory of direct and inverse limits in categories
of vector lattices. Results on (normed) vector lattices and (normed) vector lattice
algebras are found in Chapter [3] although vector lattices are not the particular focus
of that chapter.

With this brief overview of direct and inverse limits in the context of analysis in
mind, we now give some context and motivation for the particular problems we seek
to address.

1.1.1. Decomposition theorem for C(X). The first major question we seek
to address was originally inspired by some connections between the theory of C*-
algebras and the theory of vector lattices. Denote by C(X,C) the space of contin-
uous complex-valued functions on a topological space X and denote by Cqy (X, C)
the space of continuous complex-valued functions on X that vanish at infinity. Of
course, for K a compact Hausdorff topological space, the space C (K, C) is a unital
commutative C*-algebra. In addition, it is well-known that every unital commu-
tative C*-algebra A is isometrically *-isomorphic to a C(K,C) for some uniquely
determined compact Hausdorff space K, see for instance |25, Chapter VII, The-
orem 8.6; Chapter VIII, Theorem 2.1]. More generally, a (not necessarily unital)
commutative C*-algebra A is isometrically *-isomorphic to a Cq(L,C) for some
locally compact topological space L, see [34, Theorem 1.4.1].

Given these representations, it is clear that the self-adjoint part of commutative
C*-algebra is a Banach lattice Co (L):= Co (L,R). In particular, by the Kakutani
Representation Theorem [56, Theorem 2.1.3], the self-adjoint parts of unital com-
mutative C*-algebras are precisely the Archimedean relatively uniformly complete
vector lattices with a strong order unit.

These results relate to the following classic result of Dixmier and Grothendieck.

THEOREM 1.1.1. Let K be a compact Hausdorff space. The following statements
are equivalent.

(i) K is hyper-Stonear}

(ii) C(K) is isometrically isomorphic to a dual Banach space.

The forward implication is found in [33] p. 21] while the reverse implication is in
[43, Théoreme 2]. In addition to this, a theorem of Sakai in [59] tells us that a
Cr-algebra A is a W*—algebraﬁ precisely when A is a dual Banach space. With
this in mind, the result in Theorem [1.1.1] gives us a characterisation of the unital
commutative W*-algebras among the unital commutative C*-algebras.

Given the importance of this characterisation and the clear connection between the
theories of commutative C*-algebras and vector lattices, it seems natural to ask the
following question: We call a vector lattice F an order dual space if there exists a

456e Section
5See [63, Chapter III, § 3].

© University of Pretoria



1.1. GENERAL OVERVIEW AND MOTIVATION 3

vector lattice F' such that £ and F'~ are lattice isomorphic. For which topological
spaces X is the vector lattice C(X') an order dual space? This was answered by
Xiong in [69]. Undefined terms and notation used in the following result are defined

in Sections [2.1.1l and 2.1.2

THEOREM 1.1.2 ([69, Theorems 1 and 2]). Let X be a realcompact space. Denote
by S the union of supports of compactly supported normal measures on X. The
following statements are equivalent.

(1) X is extremally disconnected and vS = X.
(1) C(X) is an order dual space.

Theorem[I.1.2]is a generalisation of Theorem [I.1.1]to the non-compact case since the
compact Hausdorff spaces satisfying (i) in the above theorem are precisely the hyper-
Stonean spaces. The recent book of Dales, Dashiell, Lau, and Strauss on spaces of
continuous functions [26] contains a comprehensive list of characterisations for when
a C(K) is a dual Banach space. Among these is a decomposition result for C(K).

THEOREM 1.1.3 (|26, Theorem 6.4.1]). Let K be a compact Hausdorff space. Con-
sider the following statements.

(i) K is hyper-Stonean.
(ii) C(K) is isometrically isomorphic to a dual Banach space.

(i1i) Let F be a maximal singular family of normal probability measures on K,
and for each € F let S, denote its support. Then

C()> 1= (1l5,), e DS

18 an isometric lattice isomorphism.

The statements (i) and (ii) are equivalent, and both (i) and (i) imply (iii). If K is
Stonean, then all three statements are equivalent.

We can now state the question that we seek to address: In the same vein as [69], can
we find a similar decomposition result for C(X') spaces that are order dual spaces?

Indeed, this is possible and this is precisely where the study of inverse limits in
particular enters our research: We will show that for an extremally disconnected
realcompact space X, the vector lattice C(X) is an order dual space precisely when
C(X) is lattice isomorphic to the inverse limit of the carriers of its order continuous
linear functionals. In its first form, the material in Sections [2.3]- 2.5 was developed
with a view towards answering this question. Given the wider relevance discussed
above, the material in Chapter 2| has taken on a more general form since and we have
added a number of other applications along with the aforementioned decomposition
theorem.

To conclude this section, we give a brief outline of the structure of Chapter |2l In
Section [2.1] we record some preliminary definitions and results that are used in
the rest of the chapter. This includes some topology, topological measure theory,

© University of Pretoria



4 1. GENERAL OVERVIEW AND PRELIMINARIES

and a brief section on measurable cardinals. In Section we define the cate-
gories of vector lattices which from the setting of Chapter [2| and record a number
of results on the properties of various linear operators between vector lattices. Sec-
tions 2.3l and 2.4 contain our treatment of direct and inverse limits of vector lattices.
The structure of these two sections are the same: After stating the definitions of
direct and inverse limits and noting that these constructions are essentially unique
in some sense, we give some results on the existence of direct and inverse limits in
our categories of vector lattices. In Section [2.4) we supplement the work of Filter
by showing that certain properties of vector lattices have permanence under the
construction of inverse limits, similar to what was done in [37] for direct limits. We
conclude both sections with a few natural examples of objects that may be regarded
as direct or inverse limits of vector lattices. While the examples are illustrative of
the ideas involved, some of these examples will be instrumental for applications to
follow. Section contains a number of duality results: We will show that the order
(continuous) dual of a direct limit of vector lattices (in some category of vector lat-
tices) is an inverse limit of order (continuous) duals (in a related category of vector
lattices). Similarly, but under more strict conditions, the order (continuous) dual
of an inverse limit of vector lattices is a direct limit of order (continuous) duals.
The results we have for order (continuous) duals of direct limits of vector lattices
are fairly general while the results for order (continuous) duals of inverse limits re-
quire stronger assumptions. The impediment to more general results in the latter
case will be identified. The rest of the chapter contains various applications of the
preceding theory: Section [2.6|shows how the duality results from Section can be
applied to examples in Sections and to obtain order (continuous) duals of
some function spaces. Section [2.7| contains results on the permanence of the vector
lattice property of perfectness under the construction of direct and inverse limits
along with a decomposition theorem for perfect vector lattices. Section [2.8 contains
results on the permanence of the order dual space property under inverse limits.
In Section [2.9) we record the decomposition result for C(X) spaces that are order
dual spaces. In particular, we use the decomposition result in Section to show
that C(X) can be decomposed as the inverse limit of carriers of its order continuous
functionals. Finally, in Section [2.10] we use the theory of direct and inverse lim-
its of vector lattices to concretely characterise the class of Archimedean relatively
uniformly complete vector lattices and their order duals.

© University of Pretoria



1.1. GENERAL OVERVIEW AND MOTIVATION 5

1.1.2. Free objects. The notion of a free object is ubiquitous in the fields of
category theory and algebra. In order to facilitate the exposition on free objects to
follow, we state the general definition of a free objectlﬂ upfront.

DEFINITION 1.1.4. Let C; be a category and let Cy be a subcategory of C;. Fix
O, € C; and consider an object Fgf(Ol) in Cy and a morphism j : Oy —» Fgf(Ol) in
C;:. The pair (Fgf(Ol) ,j) is called a free object over Oy of Cs if it has the property
that for every Oy € Cy and every morphism ¢ : O; - O, in Cy, there exists a unique
morphism ¢ : Fgf(Ol) — Oy in C; such that the following diagram commutes in
C,.

0, ———=F2(0))

2

Indeed, one may consider any vector space as a free object over its basis: Let V' be
a vector space over a field K with basis B and denote by j : B — V the inclusion
map. Then for any vector space W over K and any set map ¢ : B - W there exists
a unique linear map ¢ : V — W such that the following diagram commutes.

B——_ v
° ]
w

We say that the linear map ¢ is the unique factoring morphism through the pair
(V. 7), which is called a free vector space over B. Conversely, given any non-empty
set S we can construct a vector space Vg and a map j : S — Vs satisfying the
necessary universal property: Let Vg denote the collection of functions f: S - K
where the set {s € S: f(s) # 0} is finite. Define the addition and scalar multiplication
operations on Vg by setting

(f+9)(s)=[f(s)+g(s), (af)(s)=af(s)  (f,geVs, acK).
Further, for every s € S define eg € Vg where

lift=s
st:: ’
es(?) {Oift#s.

Define j : S - Vg where j(s):= e, for s € S. It is clear that {es : s € S} is a basis
for Vs and that for every vector space W and every set map ¢ : S - W there
exists a unique linear map @ : Vg - W such that @ o j = ¢. Thus the pair (Vg, )
may be called a solution to a free object problem between the category of sets (with
functions as morphisms) and the category of vector spaces over K (with linear maps
as morphisms) for the set S.

63ce Section for clarification of the categorical terminology used in the following definition.

© University of Pretoria



6 1. GENERAL OVERVIEW AND PRELIMINARIES

Similarly, the set K[.S] of polynomials with indeterminates {Xj : s € S} equipped
with the standard operations along with the map j : S - K[S] where j(s):= X
is a free (unital) commutative associative algebra over the set S. Thus for every
(unital) commutative associative algebra R over K and every set map ¢ : S - R
there exists a unique (unital) algebra homomorphism @ : K[S] - R such that the
following diagram commutes.

S—3 S K[S]
0 2
R

In addition, if S is a singleton { X}, it is clear that (K[X], ) is a free (unital) asso-
ciative algebra over the singleton {X}. That is to say, (K[X], ) satisfies the above
universal property for both commutative and non-commutative (unital) algebras R.

It can also be shown that a free vector lattice over a set S exists: For every s € .S,
define d, : RS — R where d(f):= f(s) for f € RS. Denote by FVL(S) the vector
sublattice of RE” generated by {d, : s € S} and define j : S - FVL(S) where
j(s):=ds. The pair (FVL(S),j) is then a free vector lattice over S. Results on
free vector lattices are found in [13] and [I8]. More examples of free objects in the
context of algebra can be found in [2] Examples 8.23, p. 135]. In fact, using the
language of universal algebra, one can show that for any abstract algebraic structure
(i.e. a set equipped with operations satisfying certain identities) there exists a free
object of this abstract algebraic type over any non-empty set (see Theorem [3.2.19)).

In contrast with this rather complete picture of free objects we have in the context
of algebra, the picture appears to be more sparse in the context of analysis. One
positive result we have is the following.

PROPOSITION 1.1.5. For everyn € N, let S, = {s1,82,...,5,} be a set. Consider the
n-dimensional Banach space (R™,|+|,) along with the map j:S - R" sending the
it element of S, to the ih basis vector of R*. Then ((R™,||,),7) is a free Banach
space over Sy,.

However, this result does not hold when we consider infinite sets.
PROPOSITION 1.1.6. Given any infinite set S, there is no free Banach space over S.

PROOF. Suppose for the sake of a contradiction that there exists a free Banach
space (X,7) over an infinite set S. Let Sy:= {s1,S2,...} be a denumerable subset
of S. We show that the sequence (j(s,)) is unbounded in X: Consider the Banach
space R and the map ¢ : S - R where ¢(s,):=n for s, € Sy and ¥(s) = 0 for
s € S\ Sy. There exists a unique bounded linear map v : X — R such that for all
neN,

n=(s)l = [0 Gsa))| < [ @] 15Csn)] -

© University of Pretoria



1.1. GENERAL OVERVIEW AND MOTIVATION 7

If we assumed that there exists N € N uniformly bounding the norms of the sequence
(j(sn)), this would contradict the Archimedean property of N. Thus we may choose
a sequence of indices (ny) in N such that j(s,,) # 0 for all k € N and |j(sp,,,)| >
k|j(sn,)| for all k € N. Denote by Sy the subset of Sy indexed by the sequence
(18-

Now, define the map ¢ : S - X where ¢(s,,) =7 (Sn,.,) for ke N and ¢(s) =0 for
s € S\Sy. Then there exists a unique bounded linear map ¢ : X — X such that the
following diagram commutes.

S —

! X
@ ‘w
X
Thus for every k € N, we have

12117 Csnd |l 2 18 (s = T Csm) = 13 Csni ) 2 5 15 (s
which implies that | @] > & for all k € N, which is impossible. O

The picture breaks down even further if consider Banach algebras. The following
result is found in [27, Examples 1(7)]. We reproduce a short proof here since it is
so striking.

ProPOsSITION 1.1.7. Given any non-empty set S, there is no free Banach algebra
over S.

PROOF. Suppose for the sake of a contradiction that there exists a free Banach
algebra (A, j) over a non-empty set S. Fix a point sg € S and for every x € K\ {0},
define the map ¢, : S - K where ¢,(s9) =z and ¢(s) =0 for s € S\{so}. Thus, for
every = € K\ {0}, there exists a unique bounded algebra homomorphism ¢, : A - K
such that the following diagram commutes.

S—2 4
Px
Pz
K

Then for every n € N,

2" = [[[a(50)]"]
= [[@2(i(so)]"|
= @ ([i(50)]")]
<[ @=L (s0)]"]
< [@al 15 (s0) "

© University of Pretoria



8 1. GENERAL OVERVIEW AND PRELIMINARIES

Thus (J|/]l7(s0)|)" < ||@z|| for all n € N which implies that |z| < ||7(so)| for all
x € K\ {0}, which is impossible. O

It is readily seen that the proofs of Propositions [1.1.6| and [1.1.7] respectively show
that there is no free normed space over an infinite set and no free normed algebra
over any non-empty set. Indeed, if we consider Proposition [I.1.6] the result will
also hold if we consider any subcategory C of the category of normed spaces with
bounded linear maps as morphisms where R € C. A similar statement is also true
for Proposition [1.1.7]

It is important to note that the non-existence of free objects proven in Proposi-
tions [1.1.6] and [1.1.7] is done with respect to the definition of a free object given in
Definition [1.1.4] In light of these results, we make some observations. In Proposi-
tion [1.1.6] we constructed a set map ¢ : S - R that grows too quickly for there to
exist a bounded linear factoring morphism ¢ : X — R. In Proposition [1.1.7] on the
other hand, a contradiction arises since there are essentially too many morphisms
that we are required to factor through the fictional free Banach algebra. One way
to negotiate these problems is to restrict ourselves to a smaller class of morphisms
that are required to factor through a free object. For example, the contradictions
arrived at in Propositions [1.1.6] and [1.1.7 will not occur if we only consider mor-
phisms ¢ : S - Y such that [¢(s)| < M for all s € S for some fixed M > 0. Results
of this sort already exist in the literature: Let S be a non-empty, possibly infinite
set and consider

0(5)= {1 eR: T < o0}
seS

along with the map j : S - ¢1(S5) where j(s):= es and e; denotes the indicator
function of {s} as defined above for the free vector space over a set. Then for every
Banach space Y and every set map ¢ : S - Y with [¢(s)| <1 for all s € S there
exists a unique bounded linear map ¢ : ¢1(S) - Y such that goj = ¢. The pair
(01(S), ) is often called the free Banach space over S in the literature. This idea is
generalised in [41] where the author introduces the notion of a ‘normed set’ (.S, 7)
where S is a set equipped with a ‘sizing function’ n : S - [0, 00) serving the role
of a norm. It is then shown that the free Banach space over a normed set (S,n)
is the ¢!'-space weighted by the sizing function 1. The rest of [41] deals with the
(non-)existence of free normed structures over these normed sets. Further, it was
shown in [29] that for any non-empty set S, there exists a Banach lattice FBL(.S)
and a map j : S - FBL(S) with the property that for every Banach lattice B
and every set map ¢ : .S - B with |o(s)| < 1 for all s € S there exists a unique
bounded vector lattice homomorphism @ : FBL(S) - B such that ¢ oj = p. The
pair (FBL(S),7) is called the free Banach lattice over S in [29]. Given the discrep-
ancy between the universal properties of the pairs (¢1(S),7) and (FBL(S),7) and
Definition [I.1.4] we will introduce alternative terminology for these kind of objects,
which we describe shortly.

In recent years, the notion of a free Banach lattice over various different structures
has become a very active area of research. The free Banach lattice over a Banach

© University of Pretoria



1.1. GENERAL OVERVIEW AND MOTIVATION 9

space is defined in [8] and [64], and the free Banach lattice over a lattice is defined
in [10]. Properties of these free Banach lattices are studied in [7], [9], [11], and [46].

It is encouraging to see that a lot more can be said about free objects in categories
of normed structures once one has accepted the compromise of only considering
bounded morphisms. At least, this seems like a compromise when considering the
definition of a free object given in Definition If we instead consider the more
general categorical definition of a free object given in 2, Definition 8.22], it turns
out that the pairs (£1(5),7) and (FBL(S),7) defined above are in fact free objects.

DEFINITION 1.1.8. Let C; and C, be categories with F': Cy — C; a faithful functor.m
Fix O € C; and consider an object A in Cy and a morphism j: O; - F(A) in C;.
The pair (A, j) is called a free object over Oy of the functor F' if for every B € Cy
and every morphism ¢ : O; - F(B) in C; there exists a unique morphism ¢ : A - B
such that the following diagram commutes in Cj.

O, —2 S F(A)
> F(p)
F(B)

We note that Definition|1.1.4is a special case of Definition|1.1.8|since Definition|1.1.4
implicitly makes use of the inclusion functor I : Co — C; where Cy € C;. From the
point of view of Definition [1.1.8] the pair (¢'(S),j) is a free object if we consider
the so-called ‘unit ball functor’ O : Ban - Set which sends every Banach space X
to the underlying set of its closed unit ball By, see [2, Examples 8.23 (12)]. The
same is true of the pair (FBL(S), 7) from [29] if we consider the associated unit ball
functor O : BL - Set.

We will make no further use of the definition of a free object given in Definition|1.1.8
and only use the simpler version of the definition of a free object given in Defini-
tion[l.1.4 Instead, we will consider the free Banach space (¢1(5), j) over a set S and
the free Banach lattice over a set in [29] as particular examples of pseudo-solutions
of free object problems. The term ‘pseudo’ is used to denote that a pair (P,j) is
not a free object in the full sense of Definition [I.1.4] but where some constraint has
been imposed on the morphisms we require to factor through (P,j). One partic-
ular pseudo-solution we will find is the following: Let S be an arbitrary set and
M : S - R any non-negative function. We will construct a positive unital Banach
lattice algebra P (S, M) (see Section along with a map j: S — P (S, M) such
that for every positive unital Banach lattice algebra B and every map ¢ : S - B
such that [¢(s)| < M(s) for all s € S, there exists a unique bounded unital vector
lattice algebra homomorphism @ : P (S, M) — B such that the following diagram

"Qiven categories X and Y, a functor F' : X — Y is faithful if for every A, B € X, the induced function
F4 g :Homx (A, B) - Homy (F(A), F(B)) mapping a morphism f: A — B to F(f): F(A) — F(B) is injective.
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10 1. GENERAL OVERVIEW AND PRELIMINARIES
commutes.
J
S— P(S, M )
@ @
B

The existence of this pseudo-solution will be proven in detail in Theorem |3.3.6,
These pseudo-solutions are similar to the idea of the free Banach space over a normed
set in [41], although they will not be introduced in an attempt to reconcile the
necessity of bounds in this context with the definition of a free object as was done
in [41]. Instead, these pseudo-solutions will be put to a different use in Chapter 3]
which we describe shortly.

In contrast to this approach of constraining the morphisms required to factor through
a free object, another way to negotiate the problem of free objects in categories of
normed structures is to enlarge the category in which a free object is required to re-
side from a category of normed structures to a category of locally convex structures.
This may not immediately seem like useful compromise: If we borrow the notation in
Definition [I.1.4] for a moment, in this larger category there would be more candidate
objects and morphisms among which we can find a pair (F,j) satisfying the neces-
sary universal property, however, there will also be more Oy objects and thus more
¢ : O1 > Oy morphisms that need to factor through (F,j). Nevertheless, this does
turn out to be a viable strategy. We may call the pseudo-solutions approach and
the enlargement of solution-category approach the two alternatives to the problem
of free objects in categories of normed structures.

Indeed, it is not difficult to show that there exists a free (complete) locally convex
space over an arbitrary set S: Fix any set S and consider the free vector space
(Vs,7) over S. Take the class of morphisms ¢ : S - W where W is any (complete)
locally convex space and consider the associated class of unique factoring linear maps
@ : Vg - W. We endow Vg with the initial topology 7 generated by these factoring
morphisms @ ranging over all (complete) locally convex spaces W. The details
in [60, p. 51] show that (Vs,7) is a (Hausdorff) locally convex space and by the
definition of the initial topology this makes ((Vs,7),7) into the free locally convex
space over S and by taking a completion of (Vg,7) we obtain the free complete
locally convex space over S.

It seems reasonable to expect that the above approach of starting with the ab-
stract existence of an algebraic free object as a foundation and then adding an
initial topology should also work for the proof of existence of free objects in other
categories of locally convex structures (see for example Table |4] in Section .
However, the above proof and its modification to other categories would not yield
much more information other than the existence of these free objects. In the se-
quel, we will construct free objects in certain categories of (complete) locally convex
structures as inverse limits of (complete) normed structures. It is known in general
that the complete locally convex spaces are precisely the inverse limits of Banach
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1.1. GENERAL OVERVIEW AND MOTIVATION 11

spaces [60, Chapter II, Theorem 5.4] and that the complete locally m-convex alge-
bras (defined in Section are precisely the inverse limits of Banach algebras
[14] Theorem 4.5.3]. However, our approach will show which normed structures
can be used in the construction of these free locally convex structures via inverse
limits. These will turn out to be nothing else but these pseudo-solutions alluded
to above. As a result, the inverse limit construction we detail in Chapter [3| will
allow us to transmute one alternative to the problem of free objects in categories of
normed structures (restriction to the bounded morphisms) into the other alternative
(enlargement of the solution category).

Beyond their application to the construction of free objects in categories of locally
convex structures, the significant number of pseudo-solutions we will obtain are
also interesting in their own right since they expand the picture of the existing
literature we mentioned above. In particular, the existence of pseudo-solutions in
categories of Banach lattice algebras allows us to give some partial answers to both
Problems 13 and 15 in [67] in Section [3.3]

We now give a brief overview of the structure of Chapter 3} In Section 3.1}, we record
notation, terminology, and some preliminary results used in the rest of the chapter.
For the sake of keeping the chapter self-contained we will repeat the definition of a
free object in Section before we discuss why free objects are essentially unique,
when they exist. Section [3.2] gives an account of results from universal algebra that
are used to prove the existence of free objects in categories of algebraic structures.
In Section [3.3] we define the notion of a pseudo-solution of a free object problem
and give a uniform approach for the construction of various pseudo-solutions. In
Section (3.4, we use the approach developed in Section to concretely describe
the pseudo-solution of free object problems between the categories Ban (Banach
spaces with bounded linear maps as morphisms) and Set (sets with functions as
morphisms) as well as the pseudo-solution of a free object problem between the cat-
egories BA' (unital Banach algebras with bounded unital algebra homomorphisms
as morphisms) and Set. In Section [3.5] we prove general categorical results which
we will use as our tools to transmute our inverse systems of pseudo-solutions into
free objects in categories of locally convex structures. In order to apply these tools,
we need to show that certain categories of locally convex structures are in fact cate-
gories of inverse limits of normed structures; this is done in Section[3.6] Armed with
the pseudo-solutions found in Section [3.3] the tools developed in Section [3.5] and
a characterisation of certain categories of locally convex structures in Section [3.6]
we will be able to prove the existence of free objects in categories of locally con-
vex structures in Section [3.7 Lastly, using the concrete pseudo-solutions found in
Section |3.4] and the general approach outlined in Section [3.7], we will give concrete
descriptions of the free complete unital locally m-convex algebra over a point in
Section as well as the free (complete) locally convex space over a arbitrary set
in Section

This concludes our motivation of the problems we will consider in this study. The
remaining sections in this chapter record some terminology and notation used in the
rest of the document. Readers who are acquainted with both category theory and
vector lattices may happily skip these sections.
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12 1. GENERAL OVERVIEW AND PRELIMINARIES

1.2. Category theory

As outlined in the previous section, this study will make extensive use of some
themes from category theory. However, we note upfront that the conceptual so-
phistication of the category theory we use will be fairly modest throughout. With
a few exceptions in Chapter [3] notably Section [3.5], category theory will mostly be
harnessed as a natural organisational tool for our work.

Given how extensive our use of the notions of categories and subcategories are, we
record these definitions here for the sake of completeness.

DEFINITION 1.2.1. A category C consists of a pair of classes (Objc, Home) where
the elements in Objs and Homc are called C-objects and C-morphisms respectively.
These classes satisfy the following statements.

(i) Domains and co-domains: For every C-morphism f, there are two unique
C-objects called the domain and co-domain of f. We denote these as d(f)
and c(f) respectively. If g is a C-morphism with A, B € Objs such that
d(g) = A and ¢(f) = B, then we encode this information by using the
function notation g: A - B.

(i) Composition of morphisms: For C-morphisms f: A - B and g: B - C,
there exists a C-morphism h : A - C which we call the composition of f
and g and denote by go f:=h.

(iii) Identity morphisms: For each C-object A, there exists an identity morphism
1,:A—> Ain C.

(iv) Associativity of composition: Let f: A—- B, g: B— C, and h: C - D be
C-morphisms. The composition of morphisms is associative, i.e.

ho(gof)=(hog)of.
(v) Composition with identity: For each C-morphism f: A — B, we have that
foly=f=1pof.

DEFINITION 1.2.2 (Subcategories). Consider a category C:= (Objs, Home). Then
a pair of subclasses Objp € Obj- and Homp € Home forms a subcategory D:=
(Objp, Homp) of C if the following conditions are satisfied:

(i) For every A € Objp, the identity morphism 14 is in Homp.
(ii) If f: A— B is in Homp, then A and B are in Objp.
(iii) If f: A—> B and g: B — C are in Homp, then the composition go f: A - C
is also in Homp.
We denote the fact that D is a subcategory of C by writing D ¢ C. Occasionally,
we will call the category C the larger or weaker category when compared with D.

The function notation f : d(f) — c¢(f) for morphisms used above is standard in
category theory. This is due to its evident utility, despite the fact that objects
and morphisms in arbitrary categories need not be sets or functions between sets.
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1.2. CATEGORY THEORY 13

However, all categories we consider in the sequel will be subcategories of Set, thus
the morphisms we consider will indeed be functions between sets.

Even though a category consists of both objects and morphisms, we will occasionally
commit an abuse of notation by using the shorthand X € C when a structure X is
an object in a category C. For morphisms, we will always write that f: A - B
is a morphism in C or say that f: A - B is a C-morphism. Further, if C is a
category and X,Y e C, we denote by Homc(X,Y") the collection of all morphisms
f:X ->Y in C. A morphism f: A — B in C is called a C-isomorphism if there
exists a morphism ¢ : B - A such that go f=14 and fog=1g. If f: A—> Bis an
C-isomorphism then the objects A and B are isomorphic in C.

The following basic definition is, despite its simplicity, a fundamental example of a
universal property.

DEFINITION 1.2.3 (Initial objects and terminal objects). Let C be any category. An
object I € C is called an initial object if for any object C' € C, there exists a unique
morphism f: I - C. Similarly, an object T' € C is called a terminal object if for any
object C' € C, there exists a unique morphism ¢g:C - T.

The following result states that initial and terminal objects are ‘essentially unique’
with respect their universal property, when they exist. A proof is found in [2]
Chapter II, Proposition 7.3]

PrROPOSITION 1.2.4. Initial objects are unique up to a unique isomorphism and
all objects isomorphic to an initial object are themselves initial objects. Dually,
terminal objects are unique up to a unique isomorphism and all objects isomorphic
to a terminal object are themselves terminal objects.

This last result shows that we get a lot of information for free when a particular
object is identified as an initial or terminal object in some category. In the relevant
sections, we will note how the universal property of direct limits, inverse limits,
and free objects make these categorical objects into initial or terminal objects in
some derived category. We briefly motivate this concept of a derived category: If C
is any category, then a derived category C’ is any category where the objects and
morphisms in C’ are built up from objects and morphisms in C. For example, fix
an object X in C and construct the category C’ in the following way:

(i) Objects in C': Pairs (A, f) where Ae C and f: A — X is a morphism in C.

(ii) Morphisms in C': A morphism between objects (A, f) and (B,g) in C' is
a morphism ¢ : A - B such that the following diagram commutes.

S

B
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14 1. GENERAL OVERVIEW AND PRELIMINARIES

It is easily verified from Definition that C’ is indeed a category.

These few definitions and pieces of terminology from category theory will be suffi-
cient for the moment. We will introduce the central categorical concepts of direct
limits, inverse limits, and free objects mentioned above in the chapters where these
are relevant. This is done for the sake of readability and ease of reference.

1.3. Vector lattices

Since the notion of a vector lattice is used in both Chapter |2 and |3, we take the
opportunity here to very briefly recall a few concepts and facts from the theory of
vector lattices. For undeclared terms and notation we refer to the reader to any of
the standard texts in the field, for instance [4], [6], [53], and [70].

We will only consider real vector lattices in this document. Let E be a vector lattice.
For u € E, the elements u*:=u Vv 0, u™:= (-u) v 0, and |u|:= u Vv (-u) are called the
positive part, negative part, and absolute value of u, respectively. Vectors u,v € E are
disjoint if |u| A [v| = 0. For subsets A, B< E, denote Av B:={uvv : ue A, veB}.
The sets AA B, A*; A~ and |A| are defined similarly. In particular, the set E* is
called the positive cone of E. Theset A4:={u e FE : |u|alv| =0 for all v e A} is called
the disjoint complement of A. For u,v € E, the collection [u,v]:={xe E:u<z<v}
is an order interval and subsets of order intervals are order bounded. We write A | u
if A is downwards directed and inf A = u. Similarly, we write B 1 u if B is upwards
directed and sup B = u.

A vector lattice E is Archimedean if %u } 0 for every u € E*. In both Chap-
ters 2] and B we do mot assume that vector lattices are Archimedean unless this is
stated explicitly.

Given u € E*, a sequence (v,,) in E converges u-uniformly to v € E if for every e >0
there exists N, € N such that if n > N, then |v, — v| < eu. Further, the sequence (v,,)
is u-uniformly Cauchy if for every e > 0 there exists M, € N such that if n,m > M,
then |v, — v,,| < eu. A vector lattice E is relatively uniformly complete if for every
u € E* we have that every u-uniformly Cauchy sequence has a u-uniform limit in F.

A subset S ¢ E is solid in E if for every uw € S and v € E, |[v| < |u| implies that
v e S. A linear subspace A of E is a vector sublattice if for every u,v € E we have
that uvv e A and uAwv e A. Solid linear subspaces are order ideals. Further, an
order ideal B is a band if B has the following property: If D ¢ B such that sup D
exists in F, then sup D € B. Given a subset A € F, the order ideal generated by A
is the smallest order ideal in E containing A, which we denote as E4. The band
generated by A is defined similarly and is denoted by B,4. In particular, if A = {u}
for some u € E, we write E, and B, to denote the ideal and band generated by {u},
respectively. These are respectively referred to as the principal order ideal generated
by u and the principal band generated by u. If E is Archimedean and A € E, then
By = A% [6l, Theorem 1.39].

A band B in F is a projection band if B& B = E. A vector lattice E has the projec-
tion property if all of the bands in E are projection bands. If the previous statement
only holds for principal bands, then F has the principal projection property. A vec-
tor lattice E is Dedekind complete if every non-empty subset of £ which is bounded
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1.3. VECTOR LATTICES 15

above (resp. bounded below) in E has a supremum (resp. infimum) in E. If the
previous statement only holds for sequences (u,) in E which are bounded above
(resp. bounded below), then FE is called o-Dedekind complete. Further, a vector
lattice F is laterally complete if every non-empty subset of pairwise disjoint vectors
has a supremum [6, p. 106]. Lastly, a vector lattice E is universally complete if E
is both Dedekind complete and laterally complete. Using the obvious abbreviations
for the vector lattice properties defined thus far, we have the following implications
for any vector lattice F, see [53], Theorems 25.1,42.8].

c-DC

1

ucC DC \‘_SDC + PP —— PPP —— Arch
b /

Let E and F' be vector lattices and T': ' — F' be a linear operator. Recall that T is
positive if T [E*] ¢ F*, and regular if T is the difference of two positive operators.
T is order bounded if T maps order bounded sets in £ to order bounded sets in F.
It is an important result that when F' is Dedekind complete, T" is order bounded
precisely when T is regular [71], Theorem 20.2]. Further, T is order continuous if
inf |T[A]| = 0 whenever A | 0 in E. Every order continuous operator is necessarily
order bounded [6, Theorem 1.54]. Denote by E~ the collection of order bounded
linear functionals ¢ : £ — R and denote by FE; the collection of order continuous
linear functionals. We refer to £~ and E; respectively as the order dual and the
order continuous dual of E. For any vector lattice F, it is known that E is a band
in £~ [71, Theorem 22.2]. If Ac E and B ¢ E~ we define the annihilator of A and
the pre-annihilator of B as the sets

A ={peE" : p(u)=0, ueA}, °B={ueFE : p(u)=0, pe B}
respectively. For ¢ € E~, the null ideal (or absolute kernel) of ¢ is
Ng={ueE : |g[(|u]) = 0}.

The carrier of ¢ is C,:= N4, The null ideal N, of ¢ is an order ideal in E and its
carrier C,, is a band; if ¢ is order continuous then N, is also a band in E, see for
instance [70l §90].

A linear operator T : ' — I between vector lattices is a lattice homomorphism if it
preserves suprema and infima of finite sets, and a normal lattice homomorphism if it
preserves suprema and infima of arbitrary sets. Equivalently, T is a normal lattice
homomorphism if and only if 7" is an order continuous lattice homomorphism, see
[53] p. 103]. Further, T"is a lattice isomorphism if it is bijective lattice homomor-
phism; equivalently, if it is bijective and bipositive (i.e. both T and T-! are positive
operators) [71], Theorem 19.3]. Lastly, we say that T is interval preserving if for all
u € E*, we have T[[0,u]] = [0,7(u)]. An interval preserving map need not be a
lattice homomorphism, nor is a (normal) lattice homomorphism in general interval
preserving, see for instance [6 p. 95]. However, if T is bijective then T is a lattice
homomorphism if and only if 7" is interval preserving, if and only if 7" is bipositive.
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16 1. GENERAL OVERVIEW AND PRELIMINARIES

Lastly, let £/ be a vector lattice with B an ideal in E~. For u € E, define ¥, € By
where U, (¢):=¢(u) for ¢ € B. The map o: E - B where u+— Vg, is a lattice
homomorphism and is injective precisely when °B = {0}, see [70l p. 404-405]. Given
that B is a band in B~, we will occasionally also consider the map o : £ — B~.
When °B = {0}, we refer to the map o : E — B as a canonical embedding. We will
most often consider the cases where B = E~ or B = E;;. In particular for B = E}, a
vector lattice E is called perfect if o[E] = (Ey),.

This concludes our general overview and preliminaries. The next chapter starts with
some additional brief preliminaries specific to Chapter [2|
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CHAPTER 2

Direct and inverse limits of vector lattices

2.1. Preliminaries

2.1.1. Topological preliminaries. Let X and Y be topological spaces and
denote by C(X,Y") the collection of all continuous functions f: X — Y. In partic-
ular, we write C(X):= C(X,R) where R is given the standard topology. We recall
some topological definitions and results pertaining to the structure of C(X).

Denote by Cy,(X) the order ideal of bounded continuous functions in C(X). Both

C(X) and Cy,(X) are relatively uniformly complete vector lattices [53, Theorem 43.1].
A topological space X is Hausdorff if for every x,y € X with x # y there exists open

sets U and V with z € U and y € V such that U nV = @. Further, X is completely

reqular if for every every closed set C'in X and x ¢ C, there exists f € C(X) such

that f(«) =1 and f|, = 0. Completely regular Hausdorff spaces are called Tychonoff
spaces. The following result shows that there is no loss of generality in only con-

sidering Tychonoff spaces X when studying the vector lattice structure of a C(X)

space.

THEOREM 2.1.1 ([39, Theorem 3.9]). For every topological space X there exists a
Tychonoff space Y and a surjective continuous map 7: X — Y such that the map
T:C(Y) - C(X) where f > fort is a vector lattice isomorphism.

A compactification of a Tychonoff space X is any compact Hausdorff space, say c¢X,
into which X can be homeomorphically embedded as a dense subset. The Stone-
Cech compactification, which is in some sense the ‘maximal’ compactification of a
Tychonoff space X (see [36, Sections 3.5,3.6]), is characterised by the following
result.

THEOREM 2.1.2 (The Stone-Cech compactification). Let X be a Tychonoff space.
There exists a unique (up to a unique homeomorphism) compact Hausdorff space
BX and a homeomorphic embedding 5 : X — X with B[X] dense in 5X such that
for every compact Hausdorff space K and every f € C(X, K) there exists a unique
feC(BX,K) such that the following diagram commutes.

x —2 px

17
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18 2. DIRECT AND INVERSE LIMITS OF VECTOR LATTICES

We call the compact Hausdorff space BX satisfying the above conditions the Stone-
Cech compactification of X.

Since the closure of the range of elements in C,(X) is bounded, hence compact, in
R, we have the following result.

COROLLARY 2.1.3. For every Tychonoff space X, the restriction map
R:C(X) - Cph(X)

18 a vector lattice isomorphism.

Recall that a subspace S of a topological space X is C-embedded in X if every con-
tinuous function on S admits a continuous extension to X. Similarly, the subspace
S is C*-embedded in X if every bounded continuous function on S admits a con-
tinuous bounded extension to X. A Tychonoff space X is realcompact if X cannot
be embedded into a Tychonoff space X as a proper, dense C-embedded subspace
[36], p. 214]. Realcompact spaces are characterised as the closed subspaces of R™
where m is some cardinal [36, Theorem 3.11.3]. As a result, all Euclidean spaces
R" are realcompact. Further, X is a compact topological space if and only if X
is realcompact and pseudocompact [36, Theorem 3.11.1]. The realcompactification
vX of a Tychonoff space X is constructed as the largest subspace of X in which
X is C-embedded [66] § 1.53, p. 30] and satisfies the following universal property.

THEOREM 2.1.4 (Universal property of the realcompactification). Let X be a
Tychonoff space. There exists a unique (up to a unique homeomorphism) realcom-
pact space vX and a homeomorphic embedding v: X - vX with v[X] dense in vX
such that for every realcompact space’ Y and every f € C(X,Y') there exists a unique
feC(vX,Y) such that the following diagram commutes.

X ————0vX
f f
Y

It is clear that a Tychonoff space X is realcompact if and only if X = v.X and it
follows from the construction of the realcompactification that X is pseudocompact
if and only if vX = X. Further, since R is realcompact, we have the following
result.

COROLLARY 2.1.5. Let X be a Tychonoff space. The spaces of continuous functions
C(X) and C(vX) are isomorphic as vector lattices.

As aresult, in view of Theorem [2.1.1] there is no loss of generality in only considering
realcompact spaces X when studying the vector lattice structure of C(X) spaces.
In fact, realcompact spaces are homeomorphic precisely when the associated spaces
of continuous functions are isomorphic as vector lattices.
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THEOREM 2.1.6 ([42, Theorems 9.1, 9.2]). Realcompact topological spaces X andY
are homeomorphic if and only if the vector lattices C(X) and C(Y') are isomorphic.

As discussed in Section [1.1.1] we are interested in the case when the vector lattice
C(X) is an order dual space. Since order dual spaces are necessarily Dedekind
complete, we need to consider what topological properties on X make C(X) into a
Dedekind complete vector lattice.

A topological space X is extremally disconnected if the closure of every open set
is open. An extremally disconnected compact Hausdorff space is called a Stonean
space. This terminology is motivated by the fact that the Stone spaces of Dedekind
complete Boolean algebras are precisely the extremally disconnected compact Haus-
dorff spaces [44, Chapter F-06]. It is well-known that the Stone-Cech compactifica-
tion of a infinite discrete space is extremally disconnected. Extremally disconnected
spaces are also characterised by the fact that the collection of regular open setﬂ
(resp. regular closed sets) coincide with the collection of clopen sets [28] Defini-
tion 12.11, Exercise 12.F]. Recall that a topology is semi-regular if it has a base of
regular open sets. All regular topological spaces are semi-regular [68, Exercise 14E,
p. 98], and therefore every extremally disconnected Tychonoff space has a base of
clopen sets.

Using [26], Proposition 1.5.9], [26, Theorem 2.3.3], and [53, Theorem 43.2] along
with Corollary [2.1.5] we have the following characterisation of extremally discon-
nected spaces.

THEOREM 2.1.7. Let X be a Tychonoff space. The following statements are equiv-
alent.
(i) X is extremally disconnected.
(i1) vX is extremally disconnected.
(iii) X is Stonean.
(iv) C(X) is Dedekind complete.
(v) Co(X) is Dedekind complete.
(vi) C(X) has the projection property.
(vii) Cp(X) has the projection property.
2.1.2. Measures on topological spaces. Since the usage of terminology re-
lated to measures on topological spaces is inconsistent across the literature, we
declare our conventions explicitly. Let X be a Hausdorff topological space. For a

function u : X - R we denote by Z, the zero set of u and by Z¢ its co-zero set, that
is, the complement of Z,. If A< X then 1, denotes the indicator function of A.

Denote by By the Borel o-algebra generated by the open sets in X. A (signed)
Borel measure on X is a real-valued and o-additive function on Bx. We denote
the space of all signed Borel measures on X by M,(X). This space is a Dedekind

1See [28, Definition 12.8]
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20 2. DIRECT AND INVERSE LIMITS OF VECTOR LATTICES
complete vector lattice with respect to the standard pointwise operations and order
[71, Theorem 27.3]. In particular, for p,v € M, (X),
(uvv)(B)=sup{u(A)+v(B\A) : Ac B, AeBx}, BeBy.
For any upward directed set D ¢ M, (X)* with sup D = v in M, (X)),
v(B) =sup{u(B) : pe D}, Be®By.

Following Bogachev [20], we call a Borel measure p on X a Radon measure if for
every B e By,

lu|(B) = sup{|p|(K) : K < B is compact}.
Equivalently, u is Radon if for every B € %8 x and every € > 0 there exists a compact
set K ¢ B so that |u|(B\ K) <e. Observe that if u is Radon, then also

lu|(B) = inf{|u|(U) : U2 B is open}.

Denote the space of Radon measures on X by M(X). Recall that the support of a
Borel measure p on X is defined as

Sp={zeX : |p|(U)>0for all U 3 x open}.
One may verify the following equality for the support of a Borel measure p on X.
S,=({CeBx : C closed, n(X\C)=0}.

Thus the support of a Borel measure is always closed. A non-zero Borel measure p
may have empty support, and even if S, is non-empty, S, may have measure zero, see
for instance [20, Vol. II, Example 7.1.3]. However, if 4 is a nonzero Radon measure,
then S, # @ and |p|(S,) = ||(X); in fact, for every B € By, |u/(B) = |p[(BnS,).
We list the following useful properties of the support of a measure; the proofs are
straightforward and therefore omitted.

PROPOSITION 2.1.8. Let p and v be Radon measures on X. The following state-
ments are true.

(1) If |u| < |v| then S, < S,.
(i) Spw € Sl
(m) S|H|+|l,‘ = SM U SV.
A Radon measure p is called compactly supported if S, is compact. We denote the
space of all compactly supported Radon measures on X as M.(X). Further, a Radon
measure j on X is called a normal measure if |u|(L) = 0 for all closed nowhere dense
sets L in X. The space of all normal Radon measures on X is denoted N(X'), and
the space of compactly supported normal Radon measures by N.(X).
THEOREM 2.1.9. The following statements are true.
(i) M(X) is a band in M, (X)
(7i) M.(X) is an order ideal in M(X).
(11i) N(X) is a band in M(X).
(1v) No(X) is a band in M.(X).
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PROOF. For the proof of (i), let u,v € M(X). Consider a Borel set B and a
real number € > 0. There exists a compact set K ¢ B so that |u|(B\K) < €/2 and
[V|(B\K) < ¢/2. We have |u+ v|(B\K) < |u|/(B\K) + |v|(B\ K) < €. Therefore
p+veM(X). A similar argument shows that ap € M(X) for all @ € R. A similar
argument also shows that for all v € M, (X) and p € M(X), if |v| < |u| then v € M(X).
By definition of a Radon measure, |u| € M(X) whenever € M(X). Therefore M(X)
is an order ideal in M, (X).

To see that M(X) is a band in M,(X), consider an upward directed subset D
of M(X)* so that supD = v in M,(X). Fix a Borel set B and a real number
€ > 0. There exists p € D so that v(B) —€/2 < u(B). But p is a Radon measure,
so there exists a compact subset K of B so that pu(K) > pu(B) — €/2. Therefore
V(K) > u(K)>pu(B)-€/2>v(B)—e. Therefore v € M(X) so that M(X) is a band
in M, (X).

The statement in (ii) follows immediately from the definition of the support of a
measure and Proposition [2.1.8] It is clear that N(X) is an order ideal in M(X), and
that it is a band follows from the expression for suprema in M, (X). Hence (iii) is
true. The fact that (iv) is true follows immediately from (iii). O

The results in this subsection and the previous subsection are supplemented by the
results in Appendix [A.I] We state the main results of Appendix here since they
are used in the following two subsections.

THEOREM 2.1.10. Let X be a realcompact space. There is a lattice isomorphism
U:C(X)" - M(X) where ¢ —> vy so that for every ¢ e C(X)",

o(f)= [ Fdve  FeC(X).

THEOREM 2.1.11. Let X be a realcompact space. Consider the lattice isomorphism
U:C(X)" = M(X) where ¢ —> vy defined in Theorem [2.1.10. Then ¥ [C(X)]] =
N.(X).

2.1.3. Hyper-Stonean spaces. Recall that a compact Hausdorff space K is
hyper-Stonean if K is Stonean and the union of supports of normal measures on K
is dense in K. The following result shows that the definition of a hyper-Stonean
space can be expressed purely in the language of vector lattices.

PROPOSITION 2.1.12. Let X be a realcompact space. The union of supports of
measures in N, (X) is dense in X if and only if C(X), separates C(X).

PROOF. First, denote by S the union of supports of elements in N.(X) and
assume that S is dense in X. Take 0 # f ¢ C(X) and assume without loss of
generality that the open set U:= {x € X : f(z) >0} is non-empty. Since S is dense,
there exists € N.(X)" such that Un S, # @. Take any x € Un S, then there
exists an open neighbourhood V' of z and € > 0 such that (V) > 0 and f|, > e.
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Let ¢ € C(X). denote the order continuous functional identified with p € N, (X)",
which exists by Theorem [2.1.11] Then ¢ >0 and we have

¢(f):v/sufd,u:fodMZ'/Vfd,u>e-,u(V)>O.

For the reverse implication, we consider the contrapositive statement. Assume that
S not dense in X. Then there exists a non-empty open set U where U n S, = @ for
every p € No(X). Thus S, € X\U for all e N, (X). Since X is Tychonoft, for every
x € U there exists g, € C(X) such that g,|y, =0 and g,(z) = 1. Let ¢, € C(X);
denote the order continuous functional identified with p € N.(X), which exists by
Theorem [2.1.11] Then for every y € N.(X) and every such g, € C(X), we have

Qb,u(g:c) = ./;‘ 9z dluzo'

Thus C(X); does not separate C(X). O

COROLLARY 2.1.13. Let K be a compact Hausdorff space. The following statements
are equivalent.

(i) K is hyper-Stonean.
(1) C(K) is Dedekind complete and C(K), separates C(K).

2.1.4. Measurable cardinals. We will occasionally need to refer to
non-measurable cardinals in some of our results. Let x be a cardinal. A set function
w:P(k) > [0,1] is called k-additive measure if the following holds.

(i) p(r) =1

(ii) For all A ¢ k, and all collections {B; : i € A} of pairwise disjoint subsets of
Kk, we have

M(U Bz’) = > u(B;).

ieA i€A

Such a k-additive measure p is non-trivial if p({i}) = 0 for all i € k, and p is
two-valued if (A) € {0,1} for all A € P(x). An infinite cardinal  is measurable if
there exists a non-trivial two-valued k-additive measure on &, see [35 Chapter 6,
Definition 1.6]. If no such measure exists, then x is non-measurable. It is known that
all measurable cardinals are strongly inaccessible and, in fact, the non-existence of
a measurable cardinal is consistent with ZFC, see [35, Chapter 6].

The following result is a combination of [39, Theorem 12.2, p.163] and Corol-
lary [A.1.9]
THEOREM 2.1.14. Let X be a non-empty set equipped with the discrete topology.
The following statements are equivalent.

(i) |X| is non-measurable.

(i) The discrete topology on X is realcompact.
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(11i) For every ¢ € C(X)~, there exists p € M.(X) such that
o) = [ fu  [eC(X).

2.2. Operators on vector lattices

In this section, we record a number of results regarding various kinds of linear
operators between vector lattices that we need in the rest of this chapter. Before
we proceed with this, we define the categories that form the setting of this chapter.
It is readily verified that these are indeed categories.

OBJECTS MORPHISMS

VL Vector lattices | Lattice homomorphisms

NVL | Vector lattices | Normal lattice homomorphisms

IVL | Vector lattices | Interval preserving lattice homomorphisms

NIVL | Vector lattices | Normal, interval preserving lattice homomorphisms

TABLE 1. Table of categories of vector lattices under consideration

We refer to these four categories as categories of vector lattices. Below we depict
the subcategory relationships between these categories.

NVL

VL ~ NIVL
N 2
IVL

N
U

The results in this section will give us information on the morphisms in these cate-
gories of vector lattices. Our first result is simple, however, since we could not find
a reference in the literature we include the proof.

ProOPOSITION 2.2.1. Let E and F be vector lattices and T : E — I a positive
operator. The following statements are true.

(i) If T is injective and interval preserving, then T is a lattice isomorphism
onto an order ideal in F', hence a normal lattice homomorphism into .

(i1) If T is a lattice homomorphism and T[E] is an order ideal in F, then T is
interval preserving.

PROOF OF (i). Assume that T is injective and interval preserving. T[E] is an
order ideal in F' by [49, Proposition 14.7]. Therefore, because T is injective, it
suffices to show that T is a lattice homomorphism. To this end, consider u,v € E*.
Then 0 < T'(u) AT(v) < T(u) and 0 < T'(u) AT(v) < T(v). Since T is interval
preserving and injective there exists w € [0,u] n[0,v] = [0,u A v] so that T'(w) =

T(u) AT(v). We have
T(w)<T(unv)<T(u) and T(w) < T(unv) <T(v).
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Hence T'(u) AT (v) = T(w) <T(uAv) <T(u) AT (v) so that T(uav) =T (u) AT (v).

To see that T is a normal lattice homomorphism, let A | 0 in E. Then T[A] | 0 in
T[E] because T is a lattice isomorphism onto T[E]. But T[F] is an order ideal in
F,s0T[A]|0in F. O

PROOF OF (ii). Assume that 7T is a lattice homomorphism and T[E] is an order
ideal in F'. Let 0 <ue F and 0 < v < T(u). Because T[E] is an order ideal in F
there exists w € F so that T'(w) = v. Let w’ = (wv 0)Au. Then 0 < w’ < u and
T(w)=(vv0)Au=uv. O

We list some properties of band projections which will be used frequently in the
sequel.

PROPOSITION 2.2.2. Let E be a vector lattice, A and B projection bands in E, Py
and Pg the band projections of E onto A and B, respectively, and Ig the identity
operator on E. Assume that A< B. The following statements are true.

(i) Py is an order continuous lattice homomorphism.
(ZZ) Py<Ig.
(iii) PyPg = PgPy = Pa.
(iv) Py is interval preserving.
PRroOOF. For (i), see [53, Theorem 24.6 and Exercise 24.11]. For (ii) and (iii),

see [6, Theorem 1.44] and 6, Theorem 1.46] respectively. Lastly, (iv) follows from
Proposition (ii), since P4[E]= A is a band, hence an order ideal, in E. O

In the following theorem, we briefly recall some basic facts concerning the order
adjoint of a positive operator T': F - F' which we will make extensive use of in the
sequel.

THEOREM 2.2.3. Let E and F' be vector lattices and T : E - F' a positive operator.
Denote by T~ : F~ - E~ its order adjoint, @ — pol'. The following statements are
true.

(i) T~ is positive and order continuous.
(i1) If T is order continuous then T~[F;] < E;.
(i5i) If T is interval preserving then T~ is a lattice homomorphism.
(iv) If T is a lattice homomorphism then T~ is interval preserving. The converse

is true if °F~ = {0}.

PROOF. For (i), the positivity of T is easily verified and order continuity follows
directly from the proof of [70, Theorem 83.4]. The statement in (ii) follows directly
from the fact that composition of order continuous operators is order continuous.
The statements in (iii) and (iv) are special cases of [6, Theorem 2.16]. We note that
although [6] declares a blanket assumption at the start of the book that all vector
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lattices under consideration in [6] are Archimedean, the proof of [6, Theorem 2.16]
does not make use of this assumption. 0

PROPOSITION 2.2.4. Let E and F' be vector lattices and T : E — F' a lattice homo-
morphism onto F'. The following statements are true.

(i) T~[F~] = ker(T)".
(1) If T is order continuous then T~[F;]=ker(T)" n Ey.

PROOF OF (i). Let ¢ € F*. If u € ker(T") then T (¢)(u) = (T (u)) = ¢(0) = 0.
Hence ¢ € ker(T')°. On the other hand, let ¥ € ker(7)°. Define p: F' - R by setting
o) =¢(u) if v=T(u). Then ¢ € F~ and T~(p) = . O

PROOF OF (ii). It follows from (i) and Theorem[2.2.3|(ii) that T~[F;] € ker(7)°n
Ez. We show that if T~(y) € E7 for some ¢ € F~ then ¢ € F;. From this and (i) it
follows that T~[F;] =ker(T)° n E;. We observe that it suffices to consider positive
p € F~. Indeed, T is a surjective lattice homomorphism and therefore also interval
preserving. Hence by Theorem m (iii), T~ is a lattice homomorphism.

Suppose that 0 < ¢ € F~ and that T~(¢) € E. Let A] 0 in F. Define B:=T"1[A]n
E,. Then B is downward directed and T[B] = A. In particular, p[A] = T~(p)[B].
Let C:={weF : 0<w<wvforallve B}. If we C then 0 < T(w) < u for all
u e A so that T'(w) = 0. Hence C ¢ ker(T'). We have B—C'| 0 in E. Since T~(yp) is
order continuous, T~(¢)[B - C] | 0. That is, for every € > 0 there exists v € B and
w € C so that o(T'(v)) = (T (v-w)) =T"(p)(v—-w) < e. Hence, for every € >0
there exists u € A so that p(u) < e. This shows that ¢[A] | 0 so that ¢ € F; as
required. 0

2.2.1. Products of vector lattices. Let I be a non-empty set and {E, }aes a

collection of vector lattices. The product H E,, is a vector lattice when equipped
ael
with the standard coordinate-wise operations. In the sequel, if the index set of a

product is clear form the context, we will omit it and write H E,. For gel, let
75 : [ [ B« = Es be the coordinate projection onto Eg and 15 : Eg — [ | E, the right
inverse of 73 where
u if a=p4
malis(1)) :{ 0 if a#p.
We denote by @Ea the order ideal in HEa consisting of u € HEa for which

Ta(w) # 0 for only finitely many o € I. The following properties of [ | E, and @ E,
are used frequently in the sequel and so we record them here for ease of reference.

PROPOSITION 2.2.5. Let I be a non-empty set and {Eq}acr a collection of vector
lattices with U ¢ H E, and u = (uq)aer € H E.. The following statements are true.

(i) inf 7y, [U] = uqy in Ey for all ae I if and only if inf U = u in HEa.
(i) supmo [U] = uq in Ey for all ae I if and only if suapU = u in [ ] Ea.
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PRrROOF. We only prove (i) since the proof of (ii) follows similarly. For the forward
implication, consider v € U. Then for every « € I, we have 7, (v) > inf 7w, [U] = u,
in £,. Thus u is a lower bound of U in H E,. Let [ be any lower bound for U in
[] E«, then 7,(1) is a lower bound for m, [U] in E, which implies that u > {. Thus
infU =w in HEQ.

For the reverse implication, fix v € I. Since u is a lower bound for U, we have that
U is a lower bound for 7, [U] in E,. Consider any lower bound m of m, [U] in E,
and define m € [ E, where m, () =m and 7 () = ug for 8 € I\{a}. Then m is
a lower bound for U in H E,,, which implies that u, > m. O

THEOREM 2.2.6. Let I be a non-empty set with E, a vector lattice for every av e I.
The following statements are true.

(i) The coordinate projections mz and their right inverses vz are normal, interval
preserving lattice homomorphisms.

(ii) H E, is Archimedean if and only if E, is Archimedean for every a € I.

(111) H E,, is Dedekind complete if and only if E, is Dedekind complete for every
ael.

() If I has non-measurable cardinal, then the order dual of HEQ is P E;.
(v) The order continuous dual of [| Es is @ (Ea);-

ael

(vi) The order dual of P E, is [[ Ey.
(vii) The order continuous dual of @ E, is [ (Ea)s;-

PROOF OF (7). Fix 3 € I. The coordinate-wise operations defined on [] E,
make it clear that 7 is a lattice homomorphism. Fix z € E*. By positivity, it
follows that 73 [0,2] ¢ [0,73(x)]. For y € [0,73(x)], we have tz5(y) € [0,2] and
y =73 (ts(y)) € m3[0,2]. Thus g is interval preserving. It follows from Propo-
sition (i) that coordinate projections are order continuous and thus normal
lattice homomorphisms. Similarly, it is easy to verify that ¢z is both a lattice homo-
morphism and interval preserving and the order continuity of ¢4 also follows from

Proposition 2.2.5 (i). O

PROOF OF (ii). This is easily verified from the definition of an Archimedean
vector lattice. O

PROOF OF (iit). First, assume that E, is Dedekind complete for every « € I.
Take D c HEa with d € HEa an upper bound for D. By the positivity of the
coordinate projections, the element 7,(d) is an upper bound for 7, [D] in E, and
by Proposition [2.2.5] (ii) it follows that sup D = (supm, [D])

Next, assume that H E,, is Dedekind complete and fix g € I. Consider a collection
G ¢ Ejs with g € Es an upper bound for G. Then t4(g) is an upper bound for

ael”
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15 [G] in [] Ea and thus sup g [G] exists in [ | E, and since 74 is a normal lattice
homomorphism we conclude that sup G = g (sup g [G]) exists. O

PROOF OF (iv). Assume that I has non-measurable cardinal. By (i) of this
theorem and Theorem|2.2.3|(iii) and (iv), ¢j; : (H EQ)N — E7 is an interval preserving

normal lattice homomorphism for every § € I. Because each ¢ € (H Ea)N is linear
and order bounded, the set I,;:= {8 €l : 13(p) # 0} is finite. Define S: (H Ea)N -
@ E7 by setting

S(SO) = (L;(Qp))aela P e (HEa)N-

Then S is a lattice homomorphism. It remains to verify that S is bijective.

We show that S is injective. Let 0 # ¢ € (H EQ)N. Fix 0 < u ¢ HEa so that
¢(u) # 0. For f e R let fue []E, be defined by mo(fu) = f(a)ma(u), a € I.
Define ¢ : R - R by setting

p(f)=we(fu),  feR"

Then ¢ is a non-zero order bounded linear functional on R!. Since I has non-
measurable cardinal, by Theorem [2.1.14] I equipped with the discrete topology
is realcompact and there exists a non-zero finitely supported countably additive
measure p: P(I) - R such that

o= [fdu=Y f@ul@),  feR

ael

Let a be in the support of p, and let g be the indicator function of {a}. Then
0+ p(a)=p(g) =p(gu) = 2(p)(u). Therefore Sy + 0 so that S is injective.

To see that S is surjective, observe that for every § e I, m; : Ej — (H Ea)N is
an interval preserving normal lattice homomorphism by (i) of this theorem and
Theorem m (ili) and (iv). Define T: P E;; —» ([ ] Ea)N by setting

T(?/J) = ZW;(¢a): w = (dja} € EBE;

Then T is a positive operator. We claim that SoT is the identity on € E;. Indeed,
for any ¢ € @ E, we have

SoT(¥) = Y (15(m(Ya)))ser = D (Va0 Ta © 1) per-

ael ael

By definition of the ¢4 it follows that SoT'(¢)) = ¢ which verifies our claim. Therefore
S is a lattice isomorphism. O

PROOF OF (v). We point out that, unlike the proof of (iv), the following proof
is independent of the cardinality of I. Define S : ( H Ea)N - P E;, as in the proof

of (iv). By Theorem (ii), S maps (H Ea):1 into P (E,),. A similar argument
to that given in proof of (iv) shows that S is a surjective lattice homomorphism.
Hence it remains to show that S is injective.
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Denote by F(I) the collection of finite subsets of I. Let 0 < ¢ € (H Ea):1 and
suppose that S(p) = 0. Then ¢3(¢) =0 for every S e l. But for any 0 <u e []E..

uzsup{z to(u) : Fe}"(I)}.

acF

Therefore by the order continuity of ¢,

so<u>:sup{zF () (u) Fef(f)} 0

for all 0 < u € [] Ea; hence ¢ = 0. Because S is a lattice homomorphism it follows
that, for all p € (H Ea);, if S(¢) =0 then ¢ = 0; that is, S is injective. O

PROOF OF (vi). Define S: (P E,)" — [] E; by setting

S ()= (1a(P)) aer -

By (i) of this theorem and Theoremm (iii), it follows that the maps ¢}, : (@ Ea)™ —
E7 are lattice homomorphisms and thus S is a lattice homomorphism. It is then
enough to verify that S is bijective. To show that S is injective, fix ¢ € (D E,)”
such that Sp = 0. Take u € @ E, where u = 37", o, (Uq,) for {aq,...,a,} € F(I).
Then

o) = (S0 ) = 32,9 () 0.
Thus ¢ = 0. For ¢ = (¢a),e; € [ [ E5, define ¢ € (B E,)” where
wO (U’) ::ilpai (uai)7 u:ibai (uai) E@Ea-

Define T': [ E; —» (B Ea)” by setting T (¢) = ¢ for ¢ = (o) € [[ B Tt is
clear that SoT (¢) = ¢ and thus S is surjective. O

PROOF OF (wii). The proof of (vi) is easily modified to prove (vii). O

2.3. Direct limits

First, we introduce the notions of direct systems and direct limits. After discussing
some basic properties of direct systems and direct limits, we will consider the ex-
istence of direct limits in our categories of vector lattices and list some properties
of vector lattices that have permanence under the construction of a direct limit.
Additional results are found in [37]. Lastly, we give a number of examples of direct
limits which we make use of later.

DEFINITION 2.3.1. Let C be any category and (7, <) an upwards directed set. Con-
sider a family of objects {E,}aer in C. For all a < fin I, let e, p: E, - Ej be a
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morphism in C. The pair D:= ((Ea)aer, (€a)axs) is called a direct system in C if,
for all a < 8 <~ in I, the diagram

E, N O
e(k Ay.y
Ejg

commutes in C. We refer to the maps e, g for «, 8 € I as the linking maps of D.

Let E be an object in C and e, : F, - F a morphism in C for every « € I. The pair
(E, (ea)acr) is called a compatible system over D if for all a < 8 in I the diagram

E, Co )
Eg

commutes in C.

A direct limit of D in C is a compatible system (F,(eq)acr) over D satisfying the
universal property that for any compatible system (E’, (€,)acr) over D there exists
a unique morphism 7 : £ - E’ so that for all a € I the diagram

E\T s B
E,

commutes in C. Where convenient, we denote by limD the direct limit of D in C.

In order to show that direct limits of a direct system D are essentially unique when
they exist, we define the derived category of compatible systems over D: Denote by
C(D) the category whose objects are the compatible systems over D and where a
morphism between compatible systems (F, (€4 )acr) and (£, (€],)aer) is @ morphism
f:E — E’"in C such that for all a € I the diagram

y EY

E\f/
E,

commutes in C. The universal property of a direct limit in Definition makes
it clear that a compatible system S:= (E, (€4 )acr) over D is a direct limit of D in
C precisely when § is the initial object in C(D). As a result, any two compatible
systems satisfying the universal property of a direct limit are connected by a unique
isomorphism in C that makes the above diagram commute. In the sequel, we will
therefore refer to the direct limit of a direct system in a fixed category, when it
exists.

The following simple categorical result will be indispensable in the sequel.
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PROPOSITION 2.3.2. Let C be any category and (I,<) an upwards directed set.
Consider direct systems D:= ((Ea)aer, (€a8)axp) and D' := ((E&)ad, (e’aﬁ)asg) in
C with direct limits S:= (E,(eq)acr) and 8":= (E’,(€,)acr) in C respectively. For
every a €I, let fo: E, — E! be a morphism in C so that the diagram

E,— B

(2.3.1) €a.p €08
!/
Eg f—;;) Ej
commutes in C for all a < in I. The following statements are true.
(i) There exists a unique lattice homomorphism f: E — E' so that the diagram

E,—1

(2.3.2)
E ﬁ E,
commutes in C for every ac€ I.
(i) If fo is an isomorphism in C for every a € I, then so is f.
PROOF. For (i), we note that the pair (E’, (€, o fu)aer) is a compatible system

over D: Fix aw < in I, then by (2.3.1) and the fact that S’ is a compatible system

over D', we have

(s fa)oeas=eso(faocaps)=eso(ehs0fa)=eyo fa

By the universal property of the direct limit, there exists a unique morphism
f+E - E'"in C such that the following diagram commutes in C for all a € [.

E,
(2.3.3) / \f
\ /
E 7 » B

Decomposing the morphism on the right side of the above triangle gives us ex-
actly the square in (2.3.2)). For (ii), assume that f, is an isomorphism for every
a € I. We start by imitating the first step in (i): It is easy to verify that the
pair (E, (eq o f51)aer) is a compatible system over D’. Thus there exists a unique
morphism ¢g: £/ - E in C such that the following diagram commutes in C.

E’ g s E
(2:34) N
£,
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Putting (2.3.3]) and (2.3.4) together gives us the following diagram for every « € [.
-1
E 7 > B’ 7 > B

Thus for every a € I, we have

(gof)oeazgo(foea):go(e;ofa)z(goe’a)ofa:(eaofo_[l)ofa=ea,

However, it is also clear that 1z oe, = e, holds in C for all a € I. By the universal
property of the direct limit we conclude that go f = 15. A similar argument will
show that f og = 1g and thus the morphism f : F — E’ making diagram ([2.3.2))
commute is indeed an isomorphism. O

2.3.1. Existence and permanence properties of direct limits. In [37],
Filter defines the direct limit of a direct system D= ((Eq)aer, (€a,8)a<s) in VL to be
the set-theoretic direct limit of D (see [21], Chapter 111, §7.5]) equipped with suitable
vector space and order structures. It is not difficult to see that this construction is
exactly the direct limit in the sense of Definition [2.3.1]since it satisfies the necessary
universal property. We briefly recall the details.

Let D:= ((Ey)aers (€a.8)a<p) be a direct system in VL. For u in the disjoint union
¥ £, of the collection {E,},.;, denote by a(u) that element of I so that u € Ey ).
Define an equivalence relation on ¥ F, by setting u ~ v if and only if there exists
B = a(u),a(v) in I so that ey s(t) = eaw),s(v). Let E:=1 E,/ ~ and denote the
equivalence class generated by u € ¥ E, by .

Let @,0 € E. We set @ < v if and only if there exists § > a(u),a(v) in I so that
Ca(u),3(1) < €q(vy,3(v). Further, for a,b € R define

at + bv = aea(u)ﬁ(u) + bea(v)vﬁ(v)’

where 5 > a(u),a(v) in [ is arbitrary. With addition, scalar multiplication and the
partial order defined in this way, E is a vector lattice. The lattice operations are
given by

UAD = €a(u),s(U) A €a(w)s(V)

and

UG = a(u)s(1) V ea()s(v),

with 8 > a(u),a(v) in I arbitrary. The reader may verify that the lattice operations
will be well-defined when the linking maps in D are lattice homomorphisms. For
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each « € I define e, : E, - E by setting e,(u):= 4 for u € E,. Each e, is a lattice
homomorphism and the diagram

E, Co )
eok‘ %
Egs

commutes in VL for all a < 3 in I so that §:= (E, (€a)aer) is a compatible system
of D in VL. Further, if § = (F, (€, )aer is another compatible system over D in VL
then

T:E3d|—>éa(u)(u)EE~'

is the unique lattice homomorphism so that the diagram

E\ r /,E
E,

commutes for every e € I. Hence S is indeed the direct limit of D in VL. We give
two further existence results for direct limits of direct systems in other categories of
vector lattices.

THEOREM 2.3.3. Let D:= ((Ey)aer; (€a,8)a<p) be a direct system in IVL, and let
S:=(F,(eq)acr) be the direct limit of D in VL. Then S is the direct limit of D in
IVL.

Proor. We show that each e, is interval preserving. To this end, fix aw € I and
0<ue E,. Suppose that 0 < 0 < e,(u) = @. Then there exists a 8 > o, a(v) in I so
that 0 < eq(0),8(v) < eap(u). But eq g is interval preserving, so there exists 0 <w < u
in B, so that e, g(w) = eq(),3(v). Therefore e,(w) = = ©. Hence e, is interval
preserving.

Let S:= (E, (€a)aer) be a compatible system over D in IVL, thus also in VL.
We show that the unique lattice homomorphism r : E — F is interval preserving.
Consider & € E*. Let 0 <v < () in B, that is, 0 < v < 40, (1). But én(y) is interval
preserving so there exists 0 < w < u in E, ) so that v = €4, (w). Thus 0<w<a
and r(w) = v in E. Therefore r is interval preserving. O

THEOREM 2.3.4. Let D= ((En)aer, (€ap)axs) be a direct system in NIVL, and let
S:=(E,(ea)acr) be the direct limit of D in VL. Assume that e, is injective for all
axpfin . Then S is the direct limit of D in NIVL.

PRrROOF. We start by proving that e, : F, — E is injective for every a € I Fix
a €l and u € E, so that e,(u) = 0 in E. Then there exists 8 > « in [ so that
eqp(u) =0. But e, 4 is injective, so u = 0. Hence e, is injective.

By Theorem [2.3.3] e, : E, - E is an injective interval preserving lattice homomor-
phism for every « € I. It follows from Proposition m (i) that e, is a NIVL-
morphism for every a € I.
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Let S:= (E, (4)qer) be a compatible system over D in NIVL. By Theorem ,
the canonical map r : F — F is an interval preserving lattice homomorphism. We
claim that 7 is a normal lattice homomorphism. To this end, let A | 0 in E. Without
loss of generality we may suppose that A is bounded from above in E, say by 1.
There exists a € I and ug € E, so that 1y = e,(ug). Because e, is injective and
interval preserving, there exists for every 4 € A a unique u € [0,ug] € E, so that
eq(u) = 4. In particular, e;'[A] € [0,up]. We claim that infe ![A] =0 in E,. Let
0 <w e E, be alower bound for e ![A]. Then e, (v) >0 is a lower bound for A in E,
hence e, (v) = 0. But e, is injective, so v = 0. This verifies our claim. By definition,
r[A] = é,[e;'[A]]. Because é, is a normal lattice homomorphism it follows that
infr[A] =0 in E. O

The following list of vector lattice properties that have permanence under the con-
struction of direct limits is taken from [37].

THEOREM 2.3.5. Let D= ((Eyn)aer; (€a,8)a<s) be a direct system in a category C of
vector lattices. Assume that e, g is injective for all o < 8 in I. Let 8= (E, (eq)aer)
be the direct limit of D in VL. Then the following statements are true.

(i) E is Archimedean if and only if E, is Archimedean for all cce 1.
(i1) If C is IVL then E is order separable if and only if E, is order separable

for every a e I.
(i1i) If C is IVL then E has the (principal) projection property if and only if E,
has the (principal) projection property for every a e 1.

(i) If C is IVL then E is (0-)Dedekind complete if and only if E, is
(0-)Dedekind complete for every a € I.

(v) If C is IVL then E is relatively uniformly complete if and only if E, is
relatively uniformly complete for every av e I.

Before we proceed to discuss examples of direct limits, we make some clarifying
remarks about the structure of the direct limit of vector lattices.

REMARK 2.3.6. Let D:= ((Eq)aer, (€a)axs) be a direct system in VL and let
S:=(F, (eq)aer) be the direct limit of D in VL.

(i) Unless clarity demands it, we henceforth cease to explicitly express elements
of E as equivalence classes; that is, we write v € E instead of u € F.

(ii) For every u € E there exists at least one « € I and u,, € E,, so that u = e, (uy)-
If u = eg(ug) for some other § € I and ug € Eg, then there exists v > a, 5 in
I so that eq~(ua) = €g~(us), and hence

ey(Can(ta)) =u=e,(es(us)).

(iii) It is proven in Theorem that if e, g is injective for all o < in I then
€. is injective for all v € I. In this case we identify F, with the sublattice

e[ Eo] of E.
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(iv) An element u € E is positive if and only if there exists a < fin I and u, € E,,
so that e,(ua) = u and e, 5(uq) 20 in Eg. Combining this observation with
(ii) we see that u > 0 if and only if there exists a € I and 0 < u, € E, so that

u=eq(Un)-

2.3.2. Examples of direct limits. In [37], a number of examples are pre-
sented of naturally occurring vector lattices which can be expressed as direct limits
of vector lattices. We provide further examples which will be used in the sequel.

EXAMPLE 2.3.7. Let E be a vector lattice. Let {E,} ., be a collection of order
ideals in E where E, ¢ Ejz if and only if @ < . Assume that | JE, = E. For all
ax<finl, let egp: B, > Eg and e, : £, — E be the inclusion mappings. Then
D:= ((Ea)acr, (€ap)ass) is a direct system in NIVL and S:= (E, (€n)aer) is the
direct limit of D in NIVL.

PROOF. It is clear that D is a direct system in NIVL and that § is a compatible
system over D in NIVL. Let S:= (E, (€4 )acr) be any compatible system over D in
NIVL. We show that there exists a unique NIVL-morphism r: F - E so that for

all a € I the diagram
E \ d /, E
Eq

commutes. If u € E and o, € I are such that u € E,, Ej, then é,(u) = és(u).
Indeed, for any v > «a, 5 in [

&y(u) = &y (ean(u)) = €a(u)
and
&y (u) = & (es5(u)) = ep(u)
Therefore the map r: E - E given by
r(u) = éq(u), ueFE,

is well-defined. It is clear that this map makes the above diagram commute. Further,
if u,v € E then there exists o € I so that u,v € E,. Then for all a,b € R we have
au+bv,uvveFE, sothat

r(au+bv) = é,(au +bv) = aés(u) + béy(v) = ar(u) +br(v)
and
r(uvo)=eé,(uvo)=_éy(u)Vves(v)=r(u)vrv).
Hence r is a lattice homomorphism. A similar argument shows that r is interval
preserving. To see that r is a normal lattice homomorphism, let A | 0 in E. Without
loss of generality, assume that there exists 0 < ug € E so that u < ug for all u € A.

Then A ¢ E, for some « € I so that r[A] = é,[A]. Hence, because é, is a normal
lattice homomorphism, inf r[A] = 0. Therefore r is a NIVL-morphism.

It remains to show that r is the unique NIV L-morphism making the diagram above
commute. Suppose that 7 is another such morphism. Let u € E. There exists a €
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so that v € E,. We have 7(u) = 7(ea(u)) = é4(u) = r(u), which completes the
proof. 0

The remaining examples in this section may readily been seen to be special cases of
Example [2.3.7] Therefore we omit the proofs.

EXAMPLE 2.3.8. Let E be a vector lattice. For every 0 < u € E let E, be the order
ideal generated by v in E. For all 0 <u <w, let e, , : &, = E, and ¢, : E/, = E be the
inclusion mappings. Let I be an upward directed subset of E*\{0} so that E = J E,.
Then D:= ((Ey)uer, (€uw)usw) is a direct system in NIVL and S:= (E, (€y)uer) is
the direct limit of D in NIVL.

EXAMPLE 2.3.9. Let (X, 3, ;) be a complete o-finite measure space. Let =:= (X,,)
be an increasing sequence (w.r.t. inclusion) of measurable sets with positive measure

so that X = JX,. For n<m in N let e, ,, : LP(X,,) - L?(X,,) be defined (a.e.) by
setting
() (1) = { u(n it N
for each u € LP(X,,). Further, define
L2 (X)={uelP(X) : u=0a.e. on X\ X, for some neN}.
For n e N let e, : LP(X,,) - L% __(X) be given by

Cfu(t) it teX,
6”(“)(t)“{0 it teX\X,

The following statements are true.

(i) DE = ((LP(X}))nens (€nm)nem) s a direct system in NIVL.
(i) S2 .= (L2 .(X),(en)nen) is the direct limit of DZ__ in NIVL.

EXAMPLE 2.3.10. Let X be a locally compact Hausdorff space. Let I'i= (X,)aer
be an upward directed (w.r.t. inclusion) collection of non-empty open precompact
subsets of X so that | JX, = X. For each a € I, let M(X,) be the space of Radon
measures on X, and M.(X) the space of compactly supported Radon measures on
X. For all a < B in I, let e, 5: M(X,) = M(X3) be defined by setting

€a,s(1)(B) = u(Bn X,) for all e M(X,,) and B e B, .
Likewise, for o € I, define e, : M(X,) = M.(X) by setting
ea(p)(B) = (B nX,) for all e M(X,) and B e Bx.
The following statements are true.

(i) Dr:= ((M()_(a)ad, (Gaﬁ)asg) is a direct system in NIVL and e, g is injective
forall axfin I.

(il) Sr= (Mc(X), (eq)aer) is the direct limit of Dr in NIVL.
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EXAMPLE 2.3.11. Let X be a locally compact Hausdorff space. Let I':= (X, )acs be
an upward directed (w.r.t. inclusion) collection of open precompact subsets of X so
that | J X, = X. For each a € I, let N(X,) be the space of normal Radon measures
on X, and N.(X) the space of compactly supported normal Radon measures on X.
For all a x B in I, let e, 5 : N(X,) = N(X3) be defined by setting

eas(1)(B) = u(BnX,) for all peN(X,) and B¢ By,
Likewise, for o € I, define e, : N(X,) = N.(X) by setting
ea(p)(B) = (B nX,) for all peN(X,) and B € By.

The following statements are true.

(i) &r:= ((N()_(a)ad, (eaﬁ)agg) is a direct system in NIVL and e, g is injective
forall axfin I.

(i) Tr=(No(X), (€a)aer) is the direct limit of Jr in NIVL.

2.4. Inverse limits

Next, we introduce the concepts of inverse systems and inverse limits. We inves-
tigate analogous questions of existence and permanence for inverse limits in our
categories of vector lattices below.

DEFINITION 2.4.1. Let C be any category and (7, <) an upwards directed set. Con-
sider a family of objects {E,}aer in C. For all > a in I, let ps,: Es > E, be a
morphism in C. The pair Z:= ((Ey)aer, (Pg.0)p2a) is called an inverse system in C
if, for all « < f < in I, the diagram

P,
E, ’ s B,
Eg

commutes in C. We will refer to the maps pg, for a, 8 € I as the linking maps of I.

Let E be an object in C and p,, : E - E, a morphism in C for every « € I. The pair
(E, (pa)acr) is called a compatible system over Z if for all a < § in I the diagram

E Po sy E,
% /B,{a
Ejg

commutes in C.

An inverse limit of Z in C is a compatible system (E, (pa)aer) over Z satisfying the
universal property that for any compatible system (E’, (p/,)acr) over I there exists
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a unique morphism s: E’ - E so that for all « € [ the diagram

E’ = s B
Ph A
E,

commutes in C. Where convenient, we denote by l(iLnI the inverse limit of Z in C.

As was done for direct limits, we define the derived category of compatible systems
over I: Denote by C(Z) the category whose objects are the compatible systems over
7 and where a morphism between compatible systems (£, (pa)acr) and (E’, (p,)aer)
is a morphism f: E - E’ in C such that for all o € I the diagram

> 7

E f
E,

commutes in C. The universal property of an inverse limit in Definition [2.4.1| makes
it clear that a compatible system S:= (E, (pa)aer) over Z is an inverse limit of Z in
C precisely when § is the terminal object in C(Z). Thus, as with direct limits, we
consider the inverse limit of an inverse system in a category to be essentially unique
and therefore we may refer to the inverse limit of an inverse system, when it exists.

The following result is the analogue of Proposition for inverse systems and
inverse limits. We omit the proof since the same approach may be used.

PROPOSITION 2.4.2. Let C be any category and (I,<) an upwards directed set.
Consider inverse systems L:= ((Ea)aer, (Dp.a)a<s) and I':= ((E;)ad, (p’ﬁ’a)asg) in
C with inverse limits 8= (E, (pa)acr) and 8= (E', (p.)aecr) in C respectively. For
every ael, let fo: Ey — E! be a morphism in C so that the diagram

B

(2.4.1) P

P,a

commutes for all a < 3 in I. The following statements are true.

(i) There exists a unique lattice homomorphism f: E — E' so that the diagram
FE % E’

(2.4.2) Pe vl

Ey ———
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commutes for every a € I.

(i) If fo is an isomorphism in C for every a€ I, then so is f.

2.4.1. Existence of inverse limits. Our first task is to establish the existence
of inverse limits in our categories of vector lattices. As one might expect, the
analogue of Filter’s approach can be used where one starts with the set-theoretic
inverse limit of an inverse system of vector lattices (see [21], Chapter 111, §7.1]) after
which one adds the ‘obvious’ vector space and order structures.

THEOREM 2.4.3. Let Z:= ((Ea)acr; (Ps.a)pa) be an inverse system in VL. Define
the set

E:= {u e[[Ea : ma(w) =psal(ms(u)) for all a< B in ]}.
For every o € I define po = mo|g. The following statements are true.

(i) E is a vector sublattice of [ | Ea.
(i) The pair 8= (E,(Pa)acr) s the inverse limit of Z in VL.

PROOF OF (7). We verify that E is closed under the lattice operations on [ ] Eq;
that it is a linear subspace follows by a similar argument, as the reader may readily

verify. Consider v and v in E. Then 7, (uVvv) = m,(u) v (v) for all e I. Fix any
a, B €I so that 8 > «. Then

Paa(ms(u v v)) = psa(ms(u)) v psalms(u)) = Ta(u) v ma(v) = Ta(u v v).
Therefore u v v e E. One can show similarly that uAav e E. U

PROOF OF (ii). From the definitions of E and the p, it is clear that S is a
compatible system over Z in VL. Let S:= (E, (Ja)aes) be any compatible system
over T in VL. Define s : E - E by setting s(u):= (Pa(u))aes. Let 8 > a in I.
Because S is a compatible system

Poa(Ps(u)) = Pa(u),  uek.

Therefore s(u) € E for all u € E. Because each p, is a lattice homomorphism, so
is s. By the definitions of s and the p,, respectively, it follows that p, o s = p, for
every a € I. We show that s is the unique lattice homomorphism with this property.
To this end, let §: E - E be a lattice homomorphism so that p, o § = p, for every
ael. Fix ue E. Then for every a € I,

Ta(8(w)) = Pa(8(w)) = Pa(u) = ma(s(u)).

Hence s = 5 and therefore (E, (pa)aer) is the inverse limit of Z in VL. O

THEOREM 2.4.4. Let Z:= ((Eq)aer; (Pp.a)psa) be an inverse system in NVL and
S:=(E, (pa)acr) its inverse limit in VL. The following statements are true.

(i) Let Ac E and assume that inf A=u or supA=u in [[Ea, thenue E.

ael

(i1) If E, is Dedekind complete for every a € I, then S is the inverse limit of
i NVL.
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PROOF OF (i). It is sufficient for us to consider infima of downward directed
subsets of £. Let A ¢ E and assume that A | v in E,. Since the coordinate
projections are normal homomorphisms (Theorem i)), for every a € I we have
PalA] = Ta[A] | mo(u) in E,. Since the linking maps in Z are normal homomor-
phisms, for > « in I, we have

Ta(w) = infpo[A] = inf pg o[ps[Al] = ps.a(inf ps[A]) = psa (ms(u)) .
Therefore u € F. O

PROOF OF (ii). First, we prove that the p, are normal homomorphisms: Fix
ael and let A | 0 in E. Since E, is Dedekind complete for every a € I, by
Theorem m (iii), the product [ ] E, is also Dedekind complete. Therefore A | u
in [] E, for some ue [[ E,. By (i), we have u € E which implies A | v in E. Since
Al 0in E, we conclude that A | 0 in H E,. By the normality of the coordinate
projections 7,, it follows that

inf p, [A] =inf 7, [A] = 7, [inf A] = 0.

Hence the pair § is a compatible system over Z in NVL. It remains to verify that
S satisfies the universal property of the inverse limit in NVL: Let S:= (E, (ja)aer)
be a compatible system in NVL. Following the proof of Theorem [2.4.3] we need
only show that s: £ - E where s(v):= (§a(v))acs is @ NVL-morphism: Let A | 0
in E, then since each i, is a normal homomorphism, we have po[s[A]] = pa[A] | 0
in E, for each « € I. By Proposition , it follows that s[A] | 0 in [] E., and by
(i) above s[A] | 0 in E. Therefore s is a NVL-morphism. O

2.4.2. Permanence properties. In this section, we establish some perma-
nence properties for inverse limits along the same vein as those for direct limits
given in Theorem [2.3.5] These follow easily from the construction of inverse limits
given in Theorem [2.4.3| and the properties of products of vector lattices given in

Theorem 2.2.6]

THEOREM 2.4.5. Let T:= ((Eq)aer, (Pa)pra) an inverse system in VL and S:=
(E, (pa)acr) its inverse limit in VL. The following statements are true.

(i) If E, is Archimedean for every € I, then so is E.

(i1) If E, is Archimedean and relatively uniformly complete for every a € I, then
E is relatively uniformly complete.

ProOF. We note that (i) follows immediately from Theorems [2.2.6] (ii) and the
construction of an inverse limit in VL.

For (ii), assume that FE, is relatively uniformly complete for every a € I. We
show that every relatively uniformly Cauchy sequence in E is relatively uniformly
convergent: Because E is Archimedean by (i), it follows from [53, Theorem 39.4]
that it suffices to consider increasing sequences. Let (u, ) be an increasing, relatively
uniformly Cauchy sequence in E. Then for every a € I, (po(u,)) is an increasing
sequence in E,. According to [53, Theorem 59.3], (pa(uy,)) is relatively uniformly
Cauchy in F,. Because each E, is relatively uniformly complete, there exists u, € E,
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so that (pa(u,)) converges relatively uniformly to wu,. In fact, because (p,(u,)) is
increasing, u, = sup{p,(u,) : n € N}. Therefore u:= (uq)aer = sup{u, : n € N} in
[ ] E« by Proposition (ii). By Theorem @ (i), u € E so that u = sup{u, :n €
N} in E. Therefore (u,) converges relatively uniformly to « by [53, Lemma 39.2].
We conclude that E is relatively uniformly complete. 0

THEOREM 2.4.6. Let Z:= ((Eq)aer; (Pp.a)psa) be an inverse system in NVL and
S=(E, (pa)acr) its inverse limit in VL. The following statements are true.

(i) If E, is o-Dedekind complete for every a € I then so is E.
(i1) If E, is Dedekind complete for every o€ I then so is E.
(i11) If E, is laterally complete for every o€ I then so is E.

() If E, is universally complete for every a € I then so is E.

PROOF. We prove (ii). The statements in (i) and (iii) follow by almost identical
arguments, and (iv) follows immediately from (ii) and (iii).

Let D ¢ E be an upwards directed set bounded above by u € E. For every a € I,
the set p,, [D] is bounded above in E, by 7, (u). Since E, is Dedekind complete for
every a € I, v,:=supp, [D] exists in E, for all a € I and by Proposition [2.2.5] (ii),
we have that supD = (v,),.; in [[ Ea. By Theorem m (i), we have v € E and
since F forms a sublattice of H E, it follows that v =sup D in F. 0

2.4.3. Examples of inverse limits. In this section, we present a number of
examples of inverse systems and inverse limits in our categories of vector lattices.
These will be used in conjunction with the examples in Section in the sequel.
Our first example is related to Example [2.3.9]

EXAMPLE 2.4.7. Let (X, 3, 1) be a complete o-finite measure space. Let =:= (X,,)
be an increasing sequence (w.r.t. inclusion) of measurable sets with positive measure
so that X = JX,,. For 1 <p<oolet LZ , (X) denote the set of (equivalence classes
of) measurable functions u : X - R so that uly, € LP(X) for every n e N. Form >n
in N let rp,,, : LP(X,,) - LP(X,,) and r,, : L2 , (X) = LP(X,,) be the restriction
maps. The following statements are true.

(i) ZZ ,..= ((LP(X}) )news (Tmon)men) is an inverse system in N'VL.
(i) SZ .= (L

—loc* E—foc

(X), (rn)new) is a compatible system over Z£ , in N'VL.
(iii) SE_, . is the inverse limit of Z2 , in N'VL.

ProoOF. The validity of (i) and (ii) is clear. We prove (iii).

By Theorem [2.4.4] since LP(X,,) is Dedekind complete for every n € N, the inverse
limit (F, (pn)nen) of ZE . exists in NVL. Since SE , _ is a compatible system over
¢ (X) -

2 1o 11 NVL, there exists a unique normal lattice homomorphism s: LZ ,
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F' so that the diagram
L2 ,..(X) : > F
N %
LP(Xn)

commutes for every n € N. We show that s is bijective. To see that s is injective,
suppose that s(u) = 0 for some uw e LZ , (X). Then r,(u) =0 for every n € N; that
is, the restriction of u to each set X, is 0. Since UX,L = X it follows that v =0. To
see that s is surjective, consider u € F. If m > n then p,(u) = 7pn(pm(w)); that is,

pn(u) = pm(u) a.e. on X,,. Therefore v: X — R given by
v(z) = pp(u)(x), reX,

is a.e. well-defined on X =[JX,,. For n € N, v restricted to X,, is p,(u) € LP(X,,).
Therefore v e L% , (X). Furthermore, p,(s(v)) = rn(v) = p,(u) for all n € N so that
s(v) = u. We conclude that s is a lattice isomorphism. O

Our second example is a companion result for Examples [2.3.10] and [2.3.11].

EXAMPLE 2.4.8. Let X be a topological space and O:= {O,, : « € I} collection of
non-empty open subsets of X which is upward directed with respect to inclusion;
that is, o < 8 if and only if O, € Og. Assume that U0, is dense and C-embedded
in X. For 8 > a, denote by 75, : C(Os) - C(O,) and r, : C(X) - C(O,) the
restriction maps. The following statements are true.

(1) Zo = ((C(On))aer, (T5.0) p>a) is an inverse system in VL.
(i

) So=(C(X), (ra)aer) is a compatible system over Zp in VL.
(iii) So is the inverse limit of Zp in VL.
)

(iv) If X is a Tychonoff space and O, is precompact for every a € I then Zp is
an inverse system in NIVL, and Sp is a compatible system of Zp in NIVL.

PrOOF. The validity of (i), (ii), and (iii) follows from arguments similar to those
used in the proof of Example[2.4.7, We therefore omit the proofs of these statements.
We only note that for (iii), we use the fact that every u € C(|_JO,) has a unique
continuous and real-valued extension to X; that is, restriction from X to | JO,
defines a lattice isomorphism from C(|_JO,) onto C(X).

To verify (iv), it is sufficient to show that the r, and r, g maps are order continuous
and interval preserving. The fact that these maps are order continuous follows from
[48, Theorem 3.4]. That they are interval preserving will follow from the fact that
every compact subset of a Tychonoff space is C*-embedded: We show that the r,
maps are interval preserving, the proof for r, g being identical. Consider an o € I,
ue C(X)* and v e C(O,) so that 0 < v < ry(u). Because O, is C*-embedded in X
there exists a continuous function v’ € C(X) so that r,(v') = v. Let w:= (0vv') Au.
Then 0 < w < u and, because 7, is a lattice homomorphism, 7,(w) = v. Therefore
[0,74(u)] € ra[[0,u]]. The reverse inclusion follows since r, is positive. O
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Our next example is of a more general nature. It is an essential ingredient in our
solution of the decomposition problem for C(X) mentioned in Section [1.1.1]

EXAMPLE 2.4.9. Let E be an Archimedean vector lattice. Denote by By the Boolean
algebra of projection bands in E' where the ordering on Bg is inclusion. Let M be a
non-trivial ideal in Bg. That is, M c Bg is downward closed, upward directed and
does not consist of the trivial band {0} only. For notational convenience we express
M as indexed by a directed set I, M = {B, : « €[}, so that o < 3 if and only if
B, c Bﬁ.

For B, € Bg in M, denote by P, the band projection of E onto B, and by Ps, the
band projection of Bs onto B,; that is, Pg o = P By The following statements are
true.

(1) Zm:= (M, (Psa)pra) is an inverse system in NIVL and (E, (Py)aer) is a
compatible system over Zy; in NIVL.

(ii) The inverse limit imZy:= (F,(pa)aecr) exists in VL. If E is Dedekind
complete then (F, (pa)acr) is the inverse limit of Zy; in NVL.

(iii) The map Py : E 3 u = (P,(u))aer € F' is the unique lattice homomorphism
so that the diagram

E P s
B,

commutes in VL for every « € I. Furthermore, Py[F] is an order dense
sublattice of F. If E is Dedekind complete then Py[F] is an order ideal in
F.

(iv) Py is injective if and only if {P, : o € I} separates the points of E. In this
case, Py is a lattice isomorphism onto an order dense sublattice of F.

PRrOOF. The statement in (i) follows immediately from Proposition as band
projections are both interval preserving and order continuous. The statement in (ii)
follows immediately from (i) and Theorems [2.4.3| and [2.4.4 The fact that (iv) is
true is a direct consequence of the definition of Py;.

It remains to prove (iii). Since P, is a lattice homomorphism for every a € I, Py is
a lattice homomorphism into [ [ Ba. If u € E and o < 3 then Pso(Pa(u)) = Pa(u)
by Proposition [2.2.2] (iii). Hence Py[E] is a sublattice of F. It follows from the
construction of F' as a sublattice of H B, given in Theorem that p,o Py =P,
for all av € I.

Let 0 < u = (u,) € F. There exists ag € I so that u,, > 0 in B,, € E. Then
0 < Py(tay) <uwin F. Hence Py[E] is order dense in F.

Assume that E is Dedekind complete. We show that Py[E] is an order ideal in F:
Consider v € E* and u = (u,) € F'* so that 0 < u < Py(v). Then u, < P,(v) < v for
all weI. Let w=sup{u, : ael}in E. We claim that Py(w) = u. Because u, < w
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for all awe I, uy = P,(uy) < Poy(w). Therefore u < Py(w). For the reverse inequality
we note that for all 5 € I,
Ps(w) =sup{Psu, : ael}.

We claim that Ps(u,) < ug for all o, 8 € I. Tt follows from this claim that Ps(w) < ug
so that Py(w) < u. Thus we need only verify that, indeed, Ps(u,) < ug for all
a,B el. To this end, fix o, f € I. Let v € I be a mutual upper bound for o and S.
Because u = (u,) € F, S is compatible with Zy and u., u, € E we have

Ps(ua) = Ps(Pya(uy)) < Pa(uy) = Py g(Py(uy)) = Py g(uy) = ug.
This completes the proof. 0

REMARK 2.4.10. Consider the setting of Example where limZy; = (£, (pa)aer)

is the inverse limit of Zy; in VL. Assume that {FP, : a € I} separates the points of
E. It may happen that Py : E — F' is surjective, but this is not always the case. If
this is the case, then (E, (Py)aer) is the inverse limit of Zy; in NIVL. A sufficient,
but not necessary, condition for Py; to be surjective is that E' € M. Consider the
following examples:

(i) Consider the vector lattice RN. For G ¢ N let
Ba={ueRY : supp(u) c G}.

Then M:= {Bg : @+ G <N finite} is an order ideal in the Boolean algebra
of projection bands Bgn and {Pg : @ # G ¢ N finite} separates the points of
RN, Tt is easy to see that Py is surjective and RN ¢ M.

(ii) Consider the vector lattice ¢*. As in (i), for G € N define
Bg={uel' : supp(u) c G}

Then M:= {Bs : @ # G ¢ N finite} is an order ideal in By and {Pg : @ #
G ¢ N finite} separates the points of 1. However, F' = RN and so Py is not
surjective.

Based on the observations in Example and Remark we ask the following
question: Given a Dedekind complete vector lattice E, does there exist a proper
ideal M in Bp so that the map Py : E - F defined in Example 2.4.9] (iii) is an
isomorphism onto F'?7 We do not pursue this question any further here, except to
note the following example.

ExXAMPLE 2.4.11. Let X be an extremally disconnected Tychonoff space. Let O:=
{O, : @ € I} be a proper, non-trivial ideal in the Boolean algebra Ry of clopen
subsets of X. Assume that UO, is dense and C-embedded in X. Then M:=
{C(O,) : a e} is a proper, non-trivial ideal in B¢(x) and Py : C(X) — F defined
in Example [2.4.9] (iii) is a lattice isomorphism onto F.

PROOF. The Boolean algebras Rx and B¢(x) are isomorphic. In particular, the
isomorphism is given by

Rx >0+ Bp={ueC(X) : supp(u) € O},
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see [28, Theorem 12.9]. Therefore M is a proper, nontrivial ideal in B¢(x). More-
over, for O € Rx the band projection onto By is given by restriction to O. Finally,
we note that for O € Rx the band By may be identified with C(O). It follows from
Example that F' = C(X), i.e. Py :C(X) — F is a lattice isomorphism onto
F. 0]

2.5. Dual spaces and the duality between direct and inverse limits

The results presented in this section form the technical heart of this chapter. Roughly
speaking, we will show, under fairly general assumptions, that the order (continu-
ous) dual of a direct limit is an inverse limit. On the other hand, more restrictive
conditions are needed to show that the order (continuous) dual of an inverse limit
is a direct limit. These results form the basis of the applications to follow after this
section.

2.5.1. Duals of direct limits.

DEFINITION 2.5.1. Let D:= ((Ey)aer; (€a5)a<s) be a direct system in IVL. The
dual system of D is the pair D~ = ((E;)ad, (e;ﬁ)a%ﬁ).

If D is a direct system in NIVL, define the order continuous dual system of D as
the pair Dy := (((Ea)y)acr: (€5 5)ass) With €7 4 (Es), = (Ea);-

PROPOSITION 2.5.2. Let D:= ((Ea)acr; (€ap)ass) be a direct system in VL. The
following statements are true.

(i) If D is a direct system in IVL, then the dual system D~ is an inverse system
in NIVL.

(i) If D is a direct system in NIVL, then the order continuous dual system Dy,
15 an inverse system in NIVL.

ProOOF. We present the proof of (i). The validity of (ii) follows by a similar
argument, so we omit the proof.

Assume that D is a direct system in IVL. Then the maps e, g : £, — Ej3 are interval
preserving lattice homomorphisms for all @ < 8. By Theorem [2.2.3] the adjoint
maps e, 5 B - Ej are all normal interval preserving lattice homomorphisms. Fix

a,B,vel such that o < 8 <. Since D is a direct system in NIVL, we have e, ~ =
€g,y © €qa,p 80 that e | = e joey . Thus the dual system D~ = ((E )ael (eaﬁ)mg)
is an inverse system in NIVL.

PROPOSITION 2.5.3. Let D:= ((E4)aer; (€ap)) be a direct system in IVL and S:=
(E,(en)acr) a compatible system over D in IVL. The following statements are true.

(i) 8 := (E~,(€)acr) is a compatible system over the inverse system D~ in
NIVL.

(i7) If D is a direct system in NIVL, then S;:= (E7,(€5)acr) i a compatible
system over the inverse system Dy in NIVL.
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PROOF. Again, we only prove (i) as the proof of (ii) is similar. By Theorem
2.2.3, e;,: E~ - E7 is a normal interval preserving lattice homomorphism for every
a € I. Furthermore, if o < 3 then e, = eg o e, p so that e}, = €50 s Therefore &~
is a compatible system of D~ in NIVL. O

The main results of this section are the following.

THEOREM 2.5.4. Let D:= ((Ey)aers (€a.8)asxs) be a direct system in IVL, and let
S:=(F,(en)acr) be the direct limit of D in IVL. The following statements are true.

(i) Um D~ := (F, (pa)aer) exists in NVL.

(1) (h_l)nD)N = imD~ in NVL. That is, there exists a lattice isomorphism
T : E~ — F such that the following diagram commutes for all cc € I.

E~ T > F
(2.5.1) \ %
E;

PROOF. The fact that (i) is true follows from Proposition [2.5.2 (i) and Theorem
(ii) because E; is Dedekind complete for every « € I.

We prove (ii): By Proposition (i), 8~:= (E~,(€)aer) is a compatible system
over D~ in NIVL, hence also in NVL. Therefore there exists a unique normal
lattice homomorphism 7" : E~ - F' so that the diagram commutes. We show
that T is bijective.

To see that T is injective, let 1 € E~ and suppose that T'(1)) = 0. Consider any
u € E. There exists a € I and u, € E, so that u = e,(u,), see Remark Then
P(u) = P(ea(uq)) = e (V) (uq) = pa(T(¥))(u) = 0. This holds for all v € E so that
1 = 0. Therefore T' is injective.

It remains to show that 7' maps E~ onto F. To this end, consider (¢4 )aer € F*. We
construct a functional 0 < ¢ € E~ so that T'(¢) = (¢a)aer-

Let u € E. Consider any a, 5 € I, u, € E, and ug € Eg so that e,(uy) =u = eg(ug),
see Remark [2.3.61 We claim that ¢, (ua) = ¢p(ug). Indeed, there exists v > o, 5 in [
so that e, (ua) = eg(ug). Furthermore, e,(eq(ua)) =u =e,(es,(ug)). Because
(¢a)aer € F' we have o, = €7, (¢,) and g = €;_(¢,); that is,

Qpa(ua) = ‘pv(ean(ua)) = 90”/(6677(“,8)) = SOB(UB)~
Thus our claim is verified.

For u € E define ¢(u) = @q(ua) if u = e4(uy). By our above claim, ¢ is a well-defined
map from F into R. We show that ¢ is linear. Consider u,v € F and a,b € R. Let
u = eq(uy) and v = eg(vg) where a, S € I, u, € E, and vg € E. There exists v > o, 8
in I so that

au+bv = e, (aeq(uq) + beg~(vg)).
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Then

p(au+bv) = g (aeay(ua) +begy(v5)) = apy(€ay(ta)) + by (e, (v5)).
But e, (eqy(ta)) = €alta) = u and e,(es,(vg)) = €5(vg) = v. Hence ¢y (€any(ta)) =
o(u) and ¢, (es~(vs)) = ¢(v). Therefore p(au +bv) = ap(u) + bp(v).
We show that ¢ is positive. If 0 < u € E then there exist « € I and 0 < u, € F, so

that u = e, (uq), see Remark [2.3.6, Then ¢(u) = pa(eq(uq)) >0, the final inequality
following from the fact that (@4 )aer € F*.

It follows from the definition of ¢ and the commutativity of the diagram ([2.5.1))
that po(T()) = ex(@) = o for every a € I. Hence T(¢) = (¢n)acr so that T is
surjective. 0

THEOREM 2.5.5. Let D= ((Eq)aer; (€a8)axs) be a direct system in NIVL, and let
S:=(F,(eqa)acr) be the direct limit of D in IVL. The following statements are true.

(i) im Dy = (G, (Pa)aer) exists in NVL.

(111) If e p is injective for all < B in I, then (h_r)nD) =lim Dy in NVL. That
18, there exists a lattice isomorphism S : Ey — G such that the following
diagram commutes for all o€ 1.

Er 5 > G
(2.5.2) \ /

(Ea)y

PROOF. The proof proceeds in a similar fashion to that of Theorem [2.5.4 The
fact that (i) is true follows from Proposition and Theorem [2.4.4]

For the proof of (ii), assume that e, s is injective for all & < in I. By Proposition
2.5.3 S is a compatible system over D; in NIVL, hence in NVL. Therefore there
exists a unique normal lattice homomorphism S : E;; - G so that the diagram ([2.5.2))
commutes.

It follows by exactly the same reasoning as employed in the proof of Theorem
that S is injective. It remains to verify that S maps E; onto G. Let (¢4 )aer € G*.
As in the proof of Theorem we define a positive functional ¢ € E~ by setting,
for each u € F,
o(u) = pa(uy) if u = eq(uy).

We claim that ¢ is order continuous. To see that this is so, let A | 0 in E. Without
loss of generality, we may assume that A is bounded above by some 0 < w € E. By
Remark |2.3.6| (ii), there exists an o € I and a 0 < w, € F, so that e,(w,) = w, and, by
Remark [2.3.6| (iii), e, is injective for all « € I. Because ¢, is also interval preserving,
there exists for every u € A a unique 0 < u, < w, in E, so that e,(uy) = u. Let
Ay={uy : ueA}. Then A, | 0in E,. Indeed, let 0 < v € E, be a lower bound for
A,. Then 0 < e,(v) < eq(uq) = u for all ue A. Because A | 0 in FE it follows that
ea(v) = 0, hence v = 0. By definition of ¢ and the order continuity of ¢, we now
have p[A] = pa[Aa] | 0. Hence ¢ € E7.
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By definition of ¢ and the commutativity of the diagram ([2.5.2)), it follows that
S(¢) = (¢a)acr- Therefore S is surjective. O

REMARK 2.5.6. Let D:= ((E4)aer, (€a5)asp) be a direct system in IVL, and let S:=
(E, (€a)acr) be the direct limit of D in IVL. In general, the fact that °E~ = {0} does
not follow from °(E,)” = {0} for all a € I, even if all the E, are non-trivial and the e,
injective. Indeed, it is well known that LO[0, 1], the space of Lebesgue measurable
functions on the unit interval [0,1], has trivial order dual, see for instance [70,
Example 85.1]. However, by Example [2.3.8| L°[0,1] can be expressed as the direct
limit of its principal order ideals, each of which has a separating order dual.

In view of the above remark, the following proposition is of interest.

PROPOSITION 2.5.7. Let D= ((Ea)aer; (€a,8)axp) be a direct system in IVL, and let
S:=(F,(ea)acr) be the direct limit of D in IVL. Assume that for every a € I, e, is
injective and e[ Ey] is a projection band in E. The following statements are true.

(1) If °(E,)" = {0} for every a €I then °E~ = {0}.
(ii) If °(E.). = {0} for every ae I then °E; ={0}.

PROOF. For (i), assume that °(F,)" = {0} for every a € I. Let u € F be non-zero.
Then there exists « € I and a non-zero u, € E, so that e,(u,) = u, see Remark .
By assumption, there exists ¢, € E,” so that ¢, (us) # 0. Denote by P, : E - e,[Fq |
the projection onto e,[E,]. We note that e, is an isomorphism onto e,[E,]. Let
v:=(e;l o Py)"(¢a). Then p e E~ and p(u) = pa(e;'(Pa(u))) = paluys) # 0. Hence
°E~={0}.

The proof of (ii) is identical to the above with the additional note that for all v € I,
eq and ;! are order continuous by Proposition 2.2.1] (i). O

2.5.2. Duals of inverse limits. We now study analogous results for duals of
inverse limits. In the special case of inverse systems indexed by N, we are able to
prove similar results to those of Theorems [2.5.4] and 2.5.5l Beyond this, we will
identify the main obstacle to more general results for inverse systems over arbitrary
index sets: Positive (order continuous) functionals defined on a proper sublattice of
a vector lattice &£ do not necessarily extend to F.

DEFINITION 2.5.8. Let Z:= ((Ey)aer; (Pg,a)pa) be an inverse system in IVL. The
dual system of T is the pair Z~:= ((Eg)ad, (p&a)gm).

If 7 is an inverse system in N'VL, define the order continuous dual system of T as
the pair Z; = (((Ea)}act, (00 )ssa) With p o+ (Ba); ~ (Eg)..

The following preliminary results, analogous to Propositions [2.5.2] and [2.5.3] are
proven in the same way as the corresponding results for direct limits. As such, we
omit the proofs.

PROPOSITION 2.5.9. Let Z:= ((Eq)aer, (Ppa)psa) be an inverse system in VL. The
following statements are true.
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(i) If T is an inverse system in IVL, then the dual system I~ is a direct system
in NIVL.

(i1) If T is an inverse system in NIVL, then the order continuous dual system
I is a direct system in NIVL.
PROPOSITION 2.5.10. Let Z:= ((Eu)acr, (Pg.a)p=a) be an inverse system in IVL and
S:= (E,(pa)acr) a compatible system of T in IVL. The following statements are
true.

(i) 8= (E~,(DP)aer) is a compatible system for the direct system I~ in NIVL.

(ii) If T is an inverse system in NIVL, then S; = (Ey, (D )acr) is a compatible
system for the direct system Z; in NIVL.

LEMMA 2.5.11. Let T:= ((Ep)nens (Pmn)msn) be an inverse system in IVL and let
S:= (E, (pn)nen) be the inverse limit of T in VL. Assume that pp,, is a surjection
for all m >n in N. Then p, is surjective and interval preserving for every n € N.

PRrROOF. Fix ng € N. Consider any u,, € E,,. For n < ng let u, = ppyn(tin,)-
Because ppg+1n, 1 a surjection, there exists tpgs1 € Engr1 50 that ppgitng (Ungs1) =
Un,- Inductively, for each n > ng there exists u, € E,, so that p, -1 () = Up-1.

We show that (u,) € E. Let n < m in N. By the definition of an inverse system,
it follows that py,n = Priin © Pne2ns1 ©° © Pim—1.m-2 © Pmm-1- 1t thus follows that
DPmn(Um) = uy, so that (u,) € E. We have p,,((up)) = Uy, so that p,, is a surjection.
It follows from Proposition that p,, is interval preserving. O

THEOREM 2.5.12. Let Z:= ((Ep)nen; (Pmn)msn) be an inverse system in IVL, and
let S:= (E, (pn)nen) be the inverse limit of T in VL. Assume that py,, is a surjection
for all m >n in N. Then the following statements are true.

(i) imZ~:= (F, (en)nen) ezists in NIVL.

(i1) (hmI)N = limZ~ i NIVL. That is, there exists a lattice isomorphism
<~ —
T :F — E~ such that the following diagram commutes for all n € N.

> B~

F T
E:

Proor. By Proposition [2.5.9] Z~ is a direct system in NIVL. Because the p,, ,,
are surjections their adjoints are injective. Thus by Theorem h_r)nI“ exists in

NIVL.

We proceed to prove (ii). Because the py, ,, : (E,)” - (E,,)" are injective, so are the
en: (E,)" — F, see Remark [2.3.6, By Lemma [2.5.11} each p, : E - E, is surjective

and interval preserving. This implies that S is a compatible system over Z in IVL
and that p; : (E£,)” - E~ is an injection for every n in N.
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By Proposition [2.5.10) 8~ = (E~, (p},)nen) is a compatible system over Z~ in NIVL.
Therefore there exists a unique interval preserving normal lattice homomorphism
T:F — E~ so that the diagram

F T y B~
EN

commutes for all n € N. We show that T is a lattice isomorphism.

Our first goal is to establish that T is injective. Consider ¢ € F' so that T'(y) = 0.
There exists an n € N and a unique ¢, € E> so that e,(p,) = ¢. Then p;(p,) =
T(en(vn)) =T(p) =0. But p;, is injective so that ¢, =0, hence ¢ = ¢e,(¢,) = 0.

It remains to show that 7" maps F' onto E~. This will follow from the equality

“=Upi [(E£2)7]

which we now establish: Suppose that E~ # | Jp;[E;] and take 0 < ¢ € E~ \
Up;[E;]. By Proposition 2.2.4] (i), p;[E;] = ker(p,)° for every n € N so that
Y ¢ ker(p,)° for n € N. Hence, for every n € N, there exists 0 < u(™ ¢ ker(p,) so
that ¢ (u(™) = 1. We claim that there exists w € E so that w > u(® + .- + u( for
all n € N. This claim leads to ¥ (w) > ¢ (u + -+ u() = n for every n € N which is

impossible, contradicting the supposition that E~ # | p;[ E;

It remains to prove the claim: Write u( = (u\) e E ¢ [[En FixmeN. Ifn>m
then u? = prm (pn(u™)) = 0 because u™ ¢ ker(p,). Let wy, = uly) + -+ ul” and
w:= (wy,). Then w > u +-+u for every n € N because u'l) >0 for all m,n € N,
To see that w € E consider my > mg in N. Then

1 m
Pmi,mg (W, ) = Pmi,mo (ufﬂf) “t Pmy MO(U( 1))

But u™ = (u{”) € E for all n €N, so

Py mo (W, ) = u( ) -t UT(nngl)-

(n) _ =0 for all n>m in N we have

Pmy mo(wml) u(l) -t U%O) = Wy -

Finally, because u,

Hence w € E, which verifies our claim. This completes the proof. 0

THEOREM 2.5.13. Let Z:= ((En)nen, (Pmn)msn) be an inverse system in NIVL, and
let S:= (E, (pn)nen) be the inverse limit of T in VL. Assume that py,n is a surjection
for all m >n in N. The following statements are true.

(i) imZ5 = (G, (en)nen) exists in NIVL.

(i1) <hmI) = lim7Z; in NIVL. That is, there exists a lattice isomorphism
S:G-Ey such that the following diagram commutes for all n € N.
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PRrOOF. The existence of im 77 in NIVL follows by the same reasoning as given

in Theorem 2.5.121

For (ii), as in the proof of Theorem [2.5.12) we see that e, : (E,). - G and
Pyt (E,), = E; are injective interval preserving maps for all n € N. In addition,
S is a compatible system over Z in IVL.

By Proposition 2.5.10, S; = (E5, (p; )nen) is a compatible system over Z7 in NIVL.
Therefore there exists a unique interval preserving normal lattice homomorphism
S : G - Ey so that the diagram

G 5 > B
(En),
commutes for all n € N. The reader may verify that exactly the same argument as

used in the proof of Theorem [2.5.12] shows that S is a lattice isomorphism, this time
making use of Proposition (ii). O

We observe that the proofs of Theorems [2.5.12] and [2.5.13] cannot be generalised to
systems over an arbitrary directed set I. Indeed, the assumption that the inverse
system Z is indexed by N is used in essential ways to show that the mappings T'
and S in Theorems [2.5.12|and [2.5.13, respectively, are both injective and surjective:
The injectivity of S and T follows from the surjectivity of the maps p,, which in
turn follows from Lemma [2.5.11] where the total ordering of N is used explicitly.
We are not aware of any conditions on a general inverse system Z in VL, indexed
by an arbitrary directed set, which implies that the projections from inverse limit
to the components are necessarily surjective. Furthermore, the method of proof for
surjectivity of S and T cannot be generalised to systems over arbitrary directed sets.
As we show next, this issue is related to the extension of positive linear functionals.

THEOREM 2.5.14. Let T:= ((Eu)aers (Ps.a)a<p) be an inverse system in IVL and
S:= (E, (Pa)acr) its inverse limit in VL. Assume that pg. and p, are surjections
for all 8>« in I. Then the following statements are true.

(i) imZ~:= (F, (ea)aer) eists in NIVL.

(ii) There ezists an injective normal interval preserving lattice homomorphism
T:F — E~ so that the diagram
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commutes for every a e I.

(15i) If T is a bijection, hence a lattice isomorphism, then every positive linear
functional on E has a positive linear extension to HEQ. The converse is
true if I has non-measurable cardinal.

PrOOF. The fact that (i) and (ii) are true follow as in the proof of Theorem
2512

We verify (iii): Let ¢: E — [ [ Ea be the inclusion map. The diagram
E ; > [ Ea
Eq
commutes in VL for every a € I, and therefore the diagram

(£ ——

also commutes in VL for each a € I. Hence, for each « € I, the diagram

(

[1E.) - > B
T
Er — s F

commutes in VL. Assume that 7" is a lattice isomorphism, and therefore a surjection.
Let ¢ € E~. There exists a ¢ € F' so that T'(¢) = ¢. By Remark there exist
a €l and v, € E; so that e, (1) = 1. Then

U (ma (V) = pa(ta) = T(ea(va)) = ¢.
Therefore ¢~ is a surjection; that is, every ¢ € E~ has an order bounded linear
extension to H E,.

Next, assume that I has non-measurable cardinal and every order bounded linear
functional on E extends to an order bounded linear functional on HEa. Then

L (H Ea)N - E~ is a surjection. Fix ¢ € E~. By assumption, there exists
¢ e ([]Ea) so that ¢ =.7(¥). By Theorem [2.2.6| (iv), there exists a1, ..., € I

and 1 € EY ..., 1, € B so that ¢ =75 (Ya,) + ... + 7, (¥a, ). Then
o= (B0 = S 00) = K00 = 1o () =T (e
i=1 i=1 i=1 i=1 i=1
Therefore T is surjective, and hence a lattice isomorphism. 0

A similar result holds for the order continuous dual of an inverse limit. We omit the
proof of the next theorem, which is virtually identical to that of Theorem [2.5.14]
Note, however, that unlike in Theorem we make no assumption on the car-
dinality of I.
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THEOREM 2.5.15. Let T:= ((Ey)aers (Pg.a)psa) be an inverse system in NIVL and
S:= (E, (pa)acr) its inverse limit in VL. Assume that pg. and p, are surjections
for all B>« in I. Then the following statements are true.

(i) lim (Z7) = (G, (€a)aer) exists in NIVL.

(ii) There exists an injective and interval preserving normal lattice homomor-
phism S : G - E; so that the diagram

G 5 > Ex
re\ Pa
(Ea)y
commutes for every a € I.
(iii) S is a lattice isomorphism if and only if every order continuous linear func-

tional on E has an order continuous linear extension to H E,.

The following two results are consequences of Theorems [2.5.14] and [2.5.15] respec-
tively.

COROLLARY 2.5.16. Let Z:= ((Ea)aer, (Pg.a)ass) be an inverse system in IVL,
UmT:= (B, (pa)aer) its inverse limit in VL, and imZI~:= (F,(eq)acr) the direct
limit of I~ in NIVL. Assume that pg. and p, are surjections for all B> o in I. If
E is majorising in HEa then (LiI_nZ)N = li_n>11N i NIVL. That is, there exists a
lattice isomorphism T : ' — E~ such that the diagram

F T s B~
EN

(67

commutes for all e l.

ProOF. This follows immediately from [6, Theorem 1.32] and Theorem [2.5.14]
U

COROLLARY 2.5.17. Let Z:= ((Ea)aers (Pga)a<p) be an inverse system in NIVL,
imZ:= (E,(pa)acr) its inverse limit in VL, and imZ; := (F,(en)aecr) the direct
P —

limit of Z;; in NIVL. Assume that pg. and p, are surjections for all 8 > « in I.
If E is majorising and order dense in HEa then (l(lnl') o h_r)nIg in NIVL. That
18, there exists a lattice isomorphism S : F — E; such that the diagram

F 5 > Er

commutes for all ael.
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PRrOOF. This follows immediately from [6, Theorem 1.65] and Theorem [2.5.15]
0

In contrast with direct limits, the inverse limit construction always preserves the
property of having a separating order (continuous) dual.

PROPOSITION 2.5.18. Let Z:= ((Ey)acr; (Pp.a)psa) be an inverse system in VL and
S=(E, (pa)acr) its inverse limit in VL. Then the following statements are true.

(1) If °(E,)" = {0} for every a €I then °E~ = {0}.
(ii) If O(Eoc); ={0} and p, is order continuous for every « € I then °E; ={0}.

PROOF. The proofs of (i) and (ii) are identical. Hence we omit the proof of (ii).

Assume that °(E,)" = {0} for every a € I. Let u € E be non-zero. Then there
exists a € I so that p,(u) # 0. Since °(E,)” = {0}, there exists ¢ € (E,)” so that
©(pa(u)) #0; that is, p;(¢)(u) # 0. Hence °E~ = {0}. O

In the last few sections of this chapter, we put the duality theory developed in
Section to use. First, we use the duality theory to easily obtain the order (con-
tinuous) duals of some function spaces. After this, we investigate the permanence
of the vector lattice property of perfectness under both direct and inverse limits and
also give a decomposition result for perfect vector lattices. We will also show that
order dual spaces have permanence under the construction of inverse limits. Our
decomposition result for perfect vector lattices will then be used in the particular
case of C(X) spaces to solve the decomposition problem mentioned in Section .
Lastly, we use the Kakutani representation theorem for unital AM-spaces [56, The-
orem 2.1.3] along with the result in Example [2.3.8/ and our duality theory to charac-
terise to give a characterisation of Archimedean relatively uniformly complete vector
lattices and their order duals using direct and inverse limits.

2.6. Duals of function spaces

First, we apply the duality theory to the examples in Sections [2.3.2] and 2.4.3] to
obtain characterisations of the order and order continuous duals of some function
spaces. All of these results follow immediately from the corresponding examples and
the appropriate duality result.

THEOREM 2.6.1. Let (X,%, 1) be a complete o-finite measure space. Let =Z:= (X,,)
be an increasing sequence (w.r.t. inclusion) of measurable sets with positive measure
so that X = JX,. Let 1<p<oo and1<q< o satz’sfy%+%:1. ForneN let e,
and r, be as in Fxamples|2.5.9 and|2.4.7, respectively.

For every n e N, let T,, : L9(X,,) = LP(X,,)~ be the usual (isometric) lattice isomor-
phism,

Tn(u)(v)zfxn uv dy, uwel9(X,), ve lP(X,).
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There exists a unique lattice isomorphism T : LL
diagram

(X) - LZ (X)~ so that the

—Loc

LqE—Zoc(X) g Lg—c()()~

La(X,) ——— LP(X,)”

commutes for every n € N.

PROOF. The result follows immediately from Examples[2.3.9)and [2.4.7], Theorem
[2.5.4] and Proposition [2.4.2] O

THEOREM 2.6.2. Let (X,%, 1) be a complete o-finite measure space. Let Z:= (X,,)
be an increasing sequence (w.r.t. inclusion) of measurable sets with positive measure
so that X = JX,,. Let 1 <p<oo and 1<q< oo satisfy%Jr%:l. ForneN let e,
and r, be as in Fxamples|2.5.9 and|2.4.7, respectively.

For every neN, let S, : L9(X,,) - LP(X,,). be the usual (isometric) lattice isomor-
phism,

Sp(u)(v) = [Xn uv dy, uwel9(X,), velP(X,).

There exists a unique lattice isomorphism S : LL , (X) - LE_(X). so that the
diagram
Lq

=—Lloc

(X) ——— LL_(X),

2

L1(X,) ———5— L?(X,);

commutes for every n € N.

PROOF. We observe that the mappings e, in Example are injective for
all n <m in N. Therefore the result follows immediately from Examples [2.3.9) and
[2.4.7, Theorem [2.5.5] and Proposition [2.4.2 O

THEOREM 2.6.3. Let (X,%, 1) be a complete o-finite measure space. Let =Z:= (X,,)
be an increasing sequence (w.r.t. inclusion) of measurable sets with positive measure
so that X = JX,,. Let 1 <p<oo and 1< q< oo satz’sfy%+%:1. ForneN let e,
and r, be as in Examples|2.5.9 and|2.4.7, respectively.

For every n e N, let T,, : L9(X,,) = LP(X,,)~ be the usual (isometric) lattice isomor-
phism,

Tn(u)(v)zfxn uv dy, uwel9(X,), ve lP(X,).
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There exists a unique lattice isomorphism R : L4(X)z_. - LE , (X)~ so that the
diagram

Li(X,) — 5 L(X,,)"

2

LL (X) 5 LL , (X)

=—loc

commutes for every n € N.

PRrOOF. We note that the mappings py,,, in Example are surjective for all
m >n in N. Therefore the result follows immediately from Examples|2.3.9 and [2.4.7]
Theorem [2.5.12], and Proposition [2.3.2] 0

THEOREM 2.6.4. Let (X,3, ) be a complete o-finite measure space. Let Z:= (X,,)
be an increasing sequence (w.r.t. inclusion) of measurable sets with positive measure
so that X = JX,,. Let 1<p<oo and 1<q< oo satisfy%Jr%:l. ForneN let e,
and r, be as in FExamples|2.5.9 and|2.4.7, respectively.

For every n e N, let S, : L9(X,,) - LP(X,,). be the usual (isometric) lattice isomor-
phism,

Sn(u)(v):fxn wodp, weld(X,), velP(X,).

There exists a unique lattice isomorphism @ : LZ_(X) — L2

2 1o (X)" 50 that the
diagram

LI(X,) — 5 LP(X,)"

LqE—c(X) T> Lg—ﬁoc(X):l

commutes for every n € N.

PROOF. Because the mappings py, , in Example are surjective for all m >n
in N, the result follows immediately from Examples[2.3.9 and [2.4.7, Theorem [2.5.13]
and Proposition [2.3.2] O

The following result is a special case of the Riesz Representation Theorem [25]
Chapter III, Theorem 5.7].

THEOREM 2.6.5. Let X be a locally compact and o-compact Hausdorff space. Let
[':= (X,) be an increasing sequence (w.r.t. inclusion) of open precompact sets in
X so that X = JX,,. ForneN let e, and r, be as in Examples|2.3.10 and [2.4.8,
respectively.
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For every n € N, let T,, : M(X,)) - C(X,)~ denote the usual (isometric) lattice
1somorphism,

yggg(u)zjﬁnudu,;Lemuj;),uecxx;)

There exists a unique lattice isomorphism T : M.(X) — C(X)~ so that the diagram

M(X,) — 2 C(X,)"

2

M (X) ———— C(X)~

commutes for every n € N.

PROOF. The result follows immediately from Examples [2.3.10| and [2.4.8| Theo-
rem [2.5.12] and Proposition [2.3.2] 0

THEOREM 2.6.6. Let X be a locally compact and o-compact Hausdorff space. Let
[':= (X,) be an increasing sequence (with respect to inclusion) of open precompact

sets in X so that X = UXn. Forn eN let e, and r, be as in Examples|2.3.11| and
2.4.8, respectively.

For every n € N, let S, : N(X,,) - C(X,,). denote the (isometric) lattice isomor-
phism,

AMMM=AUW;MM&%MW&)
There exists a unique lattice isomorphism S : N.(X) - C(X). so that the diagram

N(X,) —— C(X,);

Ne(X) ——5—— C(X),

commutes for every n € N.

PROOF. The result follows immediately from Examples [2.3.11] and [2.4.8] Theo-
rem [2.5.13] and Proposition [2.3.2 O

2.7. Perfect spaces

Recall that a vector lattice F is perfect if the canonical embedding E' 5 u —— W, €
(Ey). is a lattice isomorphism [70, p. 409]. We say that a vector lattice E is is an
order continuous dual, or has an order continuous predual if there exists a vector
lattice F' so that E and F} are isomorphic vector lattices. From the definition it is
clear that every perfect vector lattice has an order continuous dual. On the other
hand, see [70, Theorem 110.3], F}; is perfect for any vector lattice F'. Therefore, E
is perfect if and only if £ has an order continuous predual.
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LEMMA 2.7.1. Let E be a vector lattice and 0 < @, € E. The following statements
are true.

(i) There exist functionals 0 < 1,11 € EY so that o1 A1 =0, o1 <, P <P
and Vi =1 V.

(i1) If E has the principal projection property and ¢ is strictly positive, then for
allwe E, if n(u) =0 for all functionals 0 <n < ¢ then u=0.

PROOF. The statement in (i) follows from [56, Lemma 1.28 (ii) & Exercise
1.2.E1].

We prove the contrapositive of (ii). Let w # 0 in E. Without loss of generality
assume that u* # 0. Denote by B the band generated by u* in E. Define n:= po Pp.
Then 7 is order continuous, 0 <7 < ¢ and n(u) = p(u*) # 0. O

Using the duality results obtained in Section [2.5] we can now show that the vector
lattice property of perfectness also has permanence under the inverse limit construc-
tion.

THEOREM 2.7.2. Let Z:= ((Ey)aer; (Ps.a)p=a) be an inverse system in NIVL, and
let S:= (E, (pa)aer) be its inverse limit in VL. Assume that ps . is surjective for all
Bxain l. If E, is perfect for every o€ I then so is E.

PROOF. By Proposition [2.5.9, the pair Z; := (((Ea);)ad, (pE,a)asB) is a direct
system in NIVL. Because every pg, is surjective, each pjy , is injective. Hence, by
Theorem the direct limit of Z; exists in NIVL. Let S:= (F, (€4)acr) be the
direct limit of Z;; in NIVL.

By Proposition , the pair Zr~ = (((Ea);;)ad, (pg,ja)asg) is an inverse system in
NIVL, and S; = (FY, (€} )aer) is the inverse limit of Z7; in N'VL by Theorem [2.5.5
For every a € I, let 0, : E, — (E,).. denote the canonical lattice isomorphism. We
observe that the diagram

og o
Eg ——— (E3),,
PB,« pgja

By ——— (Fa)mm

commutes for all § > « in I. By Proposition [2.4.2] there exists a unique lattice
isomorphism X : ¥ — F~ so that the diagram

F—=% L F

Eo ——— (Ba)u

commutes for every o € I. Since F} is perfect, we conclude that E is also perfect. [J
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Our next result is a decomposition theorem for perfect vector lattices (i.e. vector
lattices with an order continuous dual). The result follows as an application of
Example and the duality results in Section [2.5

THEOREM 2.7.3. Let E be a Dedekind complete vector lattice. Recalling the termi-
nology and notation introduced in Example denote by M, € Bg the collection
of carriers for positive, order continuous functionals on E; that is,

M,={C, : 0<pekE;}.
For C, ¢ Cy in My, denote by P, the band projection of E onto C, and by Py, the
band projection of Cy onto C,. Consider the inverse system Iy, = (Mn, (Pdw)ww)
with im Ty, = (F, (pcp)OS(peE;) in VL. The following statements are true.

(i) My, is an ideal in Bg.

(i1) My, is a non-trivial ideal in Bg if and only if E admits a non-zero order
continuous functional.

(11i) My, is a proper ideal in By if and only if E admits no strictly positive order
continuous functional.

(iv) The map P, : E 3 u = (Py(u))ocper; € F is injective if and only if *E}; =
{05

(v) If E is perfect then Py, is a lattice isomorphism.

PROOF OF (i). For 0 <, ¢ € Ey,
M, is upwards directed.

Take B € Bg and 0 < ¢ € E} such that B ¢ C,. Define 9:= ¢ o Pg. Then ¢ >0
and by the order continuity of band projections, we have 1) € E;. We show that
Ny = B¢ For u € B4, we have Pg(|u|) = 0 so that ¥ (Ju]) = ¢ (Ps(|u|)) = ¢(0) = 0.
Therefore B4 € N,,. For the reverse inclusion, let v € Ny. Then ¢ (Pg(Jv])) =0 so
that Pg(Jv]) € N, € B Hence Pg(|v|) =0 so that v € B We conclude that B = Cy.
Therefore B € M,, so that M,, is downward closed, hence an ideal in Bg. O

we have Cy,C, € Cuyy € M, and therefore

PROOF OF (4i). This is clear. O

PROOF OF (iii). A functional 0 < ¢ € Ey is strictly positive if and only if N, =
{0}, if and only if C, = E; hence the result follows. O

PROOF OF (iv). According to Example 2.4.9] (iii), Py, is injective if and only
if {P, : 0< e E;} separates the points of E. It therefore suffices to prove that
°E; ={0} if and only if {P,:0< ¢ € E;;} separates the points of E.

Assume that °E; = {0}. Fix u € E' with u # 0. Then there exists ¢ € E such that
@(u) #0. Therefore 0 < |p(u)| < |¢|(Ju]). Hence u ¢ N, and thus B,j(u) # 0.

Conversely, assume that {P,:0< ¢ € E;} separates the points of E. We first prove
the statement for positive elements: Let 0 < v € E*. There exists 0 < ¢ € E such
that P,(v) > 0. Since every positive functional is strictly positive on its carrier, it
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follows that ¢(v) > ¢ (P,(v)) > 0. Now, consider any non-zero w € E. There exists
0 < ¢ € B such that p(w*) # 0. Let B denote the band generated by w* in E and
define the functional ¢ := p o Pg. Then 0 < € Er and ¢¥(w) = p(w*) # 0. O

PROOF OF (v). It follows from Example (ii) that Py, is a lattice homo-
morphism. Since E is perfect, we have °E; = {0} [T0, Theorem 110.1] and so by
(iv), Py, is injective. We show that Py, is surjective.

Let 0 <w = (u,) € F. Define the map Y : (E;)* - R by setting T (¢) = ¢ (u,) for
v e (E;)*. We claim that T is additive. Let 0 < ¢, € E;. Then
Tlo+y) = (p+9) (Upey)
= ¢ (ugsp) + 9 (forn)
p o Py (tpry) + 100 Py (tpsy) -
Because (uy,) € F ' we have P, (Upiyp) = Pory o (Upry) = Uy and Py (Ugpry) = Pprypyp (Upry) =

uy. Hence

T(p+1) =0 (ug) + ¢ (up) =T () + T (¥).
By [3, Theorem 1.10] T extends to a positive linear functional on E;, which we
denote by T as well.

We claim that T is order continuous. To see this, consider any D | 0 in E7. Fix
€>0and ¢ € D. By [6, Theorem 1.18] there exists ¢y < ¢ in D so that 0 < ¢(u,) < €
for all ) < in D. Consider 1 < 1bg. Since u € F' we have uy = P, (u,) < uy, S0
that 0 < (uy) <¥(u,) <e. Thatis, 0 < T()) < € for all 1 < 4py. Therefore Y[D] |0
in R so that T is order continuous, as claimed.

Since F is perfect, there exists v € E* so that T (¢) = ¢ (v) for all ¢ € E. We claim
that Py, (v) = u; that is, P,(v) = u, for every 0 < ¢ € E7. For every 0 < ¢ € E we
have p(u,) =T (¢) = p(v) =@ (Py(v)). Let 0<n < in E;. Then
1 (up) =1 (Pyug) =1 (uy) = T(n) =n(v),
and,
1 (Pe(v)) =1 (PyPy(v)) =1 (Fy(v)) = n(v).
Thus 1 (u, - P,(v)) = 0. By Lemma (ii), applied on Cy,, we conclude that

P,(v) = u,. This verifies our claim. Therefore Py, maps E* onto F'* which shows
that Py, is surjective. U

REMARK 2.7.4. We observe that the converse of Theorem [2.7.3| (v) is false. Indeed,
(co). = £~ so that ¢y is not perfect. However, there exists a strictly positive
functional ¢ € (cp). = ¢1. Therefore ¢y = C, € M,, so that Py, maps ¢, lattice
isomorphically onto F', see Remark

COROLLARY 2.7.5. Let E be a Dedekind complete vector lattice. Let M, € Bg consist
of the carriers of all positive, order continuous functionals on E which are perfect;
that s,

M,={C, : 0<peE; and C, is perfect}.

The following statements are true.

(1) M, is an ideal in Bp.
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(ii) Py, is a lattice isomorphism if and only if E is perfect.

PROOF OF (i). It follows from Theorem (i) and the fact that bands in
a perfect vector lattices are themselves perfect [70, Theorem 110.3] that M, is
downwards closed in Bg. To see that M, is upwards directed, fix C,,Cy € M,,. By
Lemma (i) there exist functionals 0 < 1 < ¢ and 0 <4y <% in E7 such that
p1 AP =0and p; v = v, Because 0 < ¢y < and 0 < ¢y < it follows that
C,, € C, and Cy, € Cy. Therefore C,, and C,, are perfect. By [70, Theorem 90.7],
we have

Coyvin = (Cpy + Cy )= Cy, + Cy,.

By [70, Theorem 90.6], since ¢ A1)y =0, we have C,, L Cy,. Thus C,, nCy, = {0}
which implies Cy, vy, = Cy, ® Cy,. Hence it follows from Theorem [2.2.6] (v) and (vii)
that (Cy vy, ) 2 Coivg, - That is, Cuyy = Cyyvy, s perfect. Since Cy,, Cy € Cuyy it
follows that M, is upward directed, hence an ideal in Bg. O

PRrROOF OF (ii). If E is perfect then M, = M,,, and so the result follows from
Theoremm (v). Conversely, if Py, is an isomorphism then Theorem implies
that F is perfect. O

Given the duality results obtained in Section [2.5] one would expect there to be
at least some analogue of Theorem for direct limits. Due to the inherent
limitations of duality results for inverse limits observed in Section [2.5.2] these results
will be less general than the preceding results in this section.

THEOREM 2.7.6. Let D= ((Ey)nen, (€nm)n<m) be a direct system in NIVL, and let
S=(E, (en)nen) be the direct limit of D in IVL. Assume that e;, ,, is surjective for
alln <m in N. If E, is perfect for every n e N then so is E.

PRrROOF. By Proposition , the pair Dy := (((En):l)neN, (e;ym)ngm) is an in-
verse system in NIVL, and by Theorem [2.4.4] the inverse limit Sy:= (F, (pn)nen) of
Dy, exists in NVL.

By Proposition , the pair Dy = (((En);;)neN , (e;jm)ngm) is a direct system in
NIVL. Since we assumed that the e; . are surjective, it follows by Theorem
that (Sp). is the direct limit of Dy in NIVL. For every n e N, let 0, : £, > (E,,) ..
denote the canonical lattice isomorphism. The diagram

By ——— (En

nn
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commutes in VL for all n» < m in N. By Proposition [2.3.2] there exists a unique
lattice isomorphism ¥ : ' — F~ so that the diagram

% ~
E . F

commutes in VL for every n € N. Since F} is perfect, we conclude that E is also
perfect. 0

COROLLARY 2.7.7. Let D:= ((Ey)nen, (€nm)n<m) be a direct system in NIVL, and
let S:= (E, (en)nen) be the direct limit of D in IVL. Assume that e, ., is injective
and enm[En] is a band in E,, for alln <m in N. If E,, is perfect for every n e N
then so is E.

PRrROOF. The result will follow directly from Theorem [2.7.6] if we can show that
ey m 18 surjective for all n <m in N. We observe that each E), is Dedekind complete
and thus has the projection property. Fix n <m in N. Let P, ,, : E,,, - epm[En] be
the band projection onto e, ,,[ E,]. The diagram

e
E, e s B,

en,m[En

commutes in NIVL. Therefore

(

€

By 2 (B);
an,\ 4
(en[En]);

commutes as well in NIVL. Since e, : E, = e,m[En] is a lattice isomorphism,
the adjoint e, ,, : (enm[En]), = (En), is also a lattice isomorphism. Therefore it
follows from the last diagram that e;, ,, : (En), = (£,), is indeed a surjection. [

n

COROLLARY 2.7.8. Let E be an Archimedean vector lattice. Assume that there exists
an increasing sequence (@, ) of positive order continuous functionals on E such that
(¢n) separates E and, for every neN, C,, is perfect. Then E is perfect.

PROOF. Since () is increasing, we have that C,, ¢ C for every n e N.
Further, since (¢,,) separates E we also have that | JC,, = E.

Pn+l

For all n < m denote by e, : C,, - C,,, and e, : C, — FE the inclusion maps.
By Example [2.3.7, the pair D:= ((Cy, Jnen: (€nm)nem) is a direct system in NIVL,
and S:= (E, (en)nen) is the direct limit of D in NIVL. By Corollary 2.7.7, E is
perfect. 0J
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2.8. Order dual spaces

In this section, we study the permanence of order dual spaces under the inverse
limit construction. As mentioned in Section [1.1.1) a reasonable definition for a
vector lattice F to be an order dual space is to simply require that there exists a
vector lattice F such that E and F'~ are lattice isomorphic. Hence, by [70, Theorem
110.2], all order dual spaces are perfect vector lattices.

However, this definition appears to be problematic for our purposes for the following
reason: For perfect vector lattices it was clear how we can approach questions of
permanence under direct and inverse limits since a vector lattice is perfect when
the canonical embedding o : E — (Ej). is a lattice isomorphism. It is then easily
seen that canonical embedding o interacts nicely with linking maps of direct and
inverse systems in the square diagrams in Propositions[2.3.2|and [2.4.2] However, our
‘reasonable’ definition of an order dual space only gives us some lattice isomorphism
T : E — F~ and it is not immediately obvious that this isomorphism 7" can also be
used in the same way with Propositions and [2.4.2] Fortunately, it can be
shown that this reasonable definition is equivalent to a more specific statement

for which it is clear that a similar approach as that for perfect vector lattices via
Propositions [2.3.2| and [2.4.2| can be used.

First, we make the following simple but very important observation.

PROPOSITION 2.8.1. Let F' be a vector lattice. There exists a vector lattice G with
separating order dual G~ such that F~ and G~ are lattice isomorphic.

PROOF. Note that since F~ is an order ideal in itself, the pre-annihilator °( ™)
is an order ideal in F', see [T1, Theorem 30.2]. Thus the quotient G:= F/°(F~) is a
vector lattice and the quotient map ) : F' - G is a surjective lattice homomorphism.
Since Q [F'] = G is an order ideal in G, it follow by Proposition (ii) that @ is
interval preserving. Therefore, by Theorem [2.2.3 (iii) and (iv), the order adjoint
@~ : G - F~ is an injective interval preserving lattice homomorphism. Since
Q is a surjective lattice homomorphism, it follows by Proposition (i) that
Q" [G*] = (ker Q)" = (°(F~))° = F~. Thus Q" is a lattice isomorphism.

The definition of the vector lattice G guarantees that G~ separates G: Take u € G
with v € F' such that Q(v) = u and assume that ¢ (u) = 0 for all ) € G~. Then for

all ¢ € G,

Q" (¥) (v) =¥ (Q(v)) =4 (u) =0.
Since )~ is a lattice isomorphism it follows that p(v) = 0 for all ¢ € F~. Hence,
v e (F~) =ker @ which implies u = 0. O

PROPOSITION 2.8.2 ([4, Theorem 3.11)). Let E be a vector lattice with B an order
tdeal in E~. The canonical map op : E — By is a vector lattice embedding if and
only if B separates the points of E.

PROPOSITION 2.8.3. Let E be a vector lattice. The following statements are equiv-
alent.

(i) There exists a vector lattice F' such that E and F~ are lattice isomorphic.
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(i1) There exists a vector sublattice G of Ey such that G~ separates G and the
canonical embedding op : E — G~ s a latlice isomorphism.

PROOF. It is clear that (ii) is a special case of (i). We prove that (i) implies (ii):
By Proposition [2.8.1] we may assume without loss of generality that F~ separates
F. Thus the canonical map op : F' — (F~). is a vector lattice embedding by
Proposition 2.8.2, Let T': E - F~ be a lattice isomorphism. Then 7™ : (F~). - E7.
Denote G:= T~ o o [F] which is a vector sublattice of E;. Then T~ oop: F - G
and S: G~ - "~ where S:= (T~ oop)"” are lattice isomorphisms. Since '~ separates
F, it follows that G~ separates (G. Define the canonical map og : E - G~ where
(cu(f)) (p)=@(f) for fe E and v € G € E;. We claim that the following diagram
commutes.
> F~

- 5
E
Take x € F and u € F', then

(Seop(x)) (u) = (T"eor) con(x)) (u) = (0p(x)) (T7 0 or(u))
= (T"eop(u)) (x) = (0r(u)) (Tz) = (Tx) (u).

Therefore S oog =T, which implies that o = S~1 o T' is a lattice isomorphism. [J

In light of this result, we take the statement in (ii) above as the definition of an
order dual space.

DEFINITION 2.8.4. A vector lattice E is an order dual space if there exists a vector
sublattice F' of E; such that '~ separates F' and the canonical map op: E - F~ is
a lattice isomorphism. The sublattice F' of £ is called an order predual of E.

In the particular case where E; is an order predual of F, we call E an immaculate
vector lattice.

A similar result to that of Proposition can be proven in the particular case of
immaculate vector lattices.

PROPOSITION 2.8.5. Let E be a vector lattice. The following statements are equiv-
alent.

(i) There exists a lattice isomorphism T : E' — (E})

(ii) E is an immaculate vector lattice.

PROOF. As before, the statement in (ii) is just a special case of (i). For (i)
implies (ii), we note that since E is a perfect vector lattice, the canonical map
op + E - (E;)" is a vector lattice embedding with og [E] = (Ej).. However,
since T' is a lattice isomorphism and F is perfect it follows that there is a lattice
isomorphism S : (E;). — (E)". Since (Ej). is a band in (£})", we conclude that
(E;). = (E;)" and thus op : E — (E;)" is a lattice isomorphism. Lastly, since Ey
is a perfect vector lattice it follows by [70, Theorem 110.1] that (E;)" separates E
and thus (ii) follows. O
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The specific formulations of Definition [2.8.4] and Proposition [2.8.1] allows us to show
that the order dual space property has, under fairly general conditions, permanence
under the inverse limit construction.

THEOREM 2.8.6. Let Z:= ((Ey)aer; (Pg.a)p=a) be an inverse system in NIVL, and
let S:= (E,(pa)acr) be the inverse limit of T in VL. Assume that E, is an order
dual space for every o € I with F, the order predual of E,. Further, assume that
Pha [F,] is an order ideal in Fy for every a, 5 € I with B > o. Then E is an order
dual space.

ProOOF. By Proposition [2.5.9 the pair Z; := (((Ea);)ad, (pﬁ}’a)agg) is a direct
system in NIVL. For every o, € I with § > «, define eyp : F,, - Fps where
a3 = p&a‘F and denote R:= ((Fu)aer; (€a,5)a<p)- Since the linking maps in Z;; are

lattice homomorphisms it follows that the e, 3 maps are lattice homomorphisms and
it follows precisely by the assumption that e, g [F,] is an order ideal in Fj that the
e, maps are also interval preserving (Proposition (ii)). Thus R is a direct
system in IVL and by Theorem the direct limit (F, (eq)aer) of R exists in
IVL.

By Proposition [2.5.2] the pair R~:= ((F&)ad,(e;ﬂ)aw) Is an Inverse system in
NIVL and by Theorem (F~,(€3)aer) is the inverse limit of R~ in NVL. We
observe that the diagram

By —"— F;

PB,«a ea’ﬁ

EQU—Q>F&

commutes in VL for all 8 > « in I. By Proposition [2.4.2] there exists a unique
lattice isomorphism 7' : £ — '~ so that the diagram

E—7> 5 F~

2

Ea0—a>F(;

commutes for every a € I. By Proposition [2.8.3] it follows that £ is an order dual
space. 0

We note that the assumptions in the previous theorem cannot be weakened in an
obvious way and still deliver the same outcome: We need to assume that pj , [F.] <
Fj in order to form the direct system of preduals R. Further, the assumption that
Pho [Fa] is an order ideal in Fj is used to guarantee that R is a direct system in
IVL. This step cannot be dispensed with since the duality result in Proposition|2.5.2
requires the linking maps in R to be interval preserving in order to ensure that R~
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is at least an inverse system in VL. For similar reasons, the duality result in
Proposition [2.5.9| requires Z to be an inverse system in NIVL.

The analogous result to Theorem for immaculate vector lattices follows as a
corollary of Theorem since the linking maps pj , : (Ea), > (Es), are NIVL-
morphisms and so by [49} Proposition 14.7], p; , [(Ea),] is an order ideal in (Ep);.

COROLLARY 2.8.7. Let T:= ((Ea)aer, (Pp.a)psa) be an inverse system in NIVL,
and let §:= (E,(pa)aer) be the inverse limit of T in VL. Assume that E, is an
immaculate vector lattice for every ace I. Then E is an immaculate vector lattice.

We show that more can be said in Theorem 2.8.6] if we consider Banach lattices
where the underlying vector lattice is an order dual space.

THEOREM 2.8.8. Let E be a Banach lattice that is an order dual space. Then there
exists a Banach lattice G such that E and G* are isomorphid| as Banach lattices.

PRrROOF. Let F be a vector lattice such that I~ and E are lattice isomorphic.
By Proposition we may assume without loss of generality that F~ separates
F. By Proposition the canonical map or : ' — (F~)” = (F~)" is a vector
lattice embedding. Define Fy:= o [F], then Fy is a sublattice of (F~)" and thus Fj
is a normed vector lattice. We claim that F = Fj: In general, we know that Fj is
an order ideal in F{.

For the reverse inclusion, take ¢ € FJ. Consider a sequence (op(uy)) in Fy C
(F~)" such that (op(u,)) converges to zero in the norm topology. Since the weak-x
topology on (F~)" is weaker than the norm topology on (F~)", it follows that

(or(un)) () = p(un) — 0
in R for every ¢ € F~. In particular, consider ¢q:=1 oop € F~, then

¥ (or(un)) = po(un) = (0r(un)) (w0) — 0
in R. Hence 1 € Fj, which implies that Fj = Fj.

Denote by G the completion of Fy; then G is a Banach lattice and we know that Fi
and G* are isomorphic as Banach lattices. Since F and F{ are lattice isomorphic
it follows that there is a lattice isomorphism 7' : E - G*. Since positive operators
between Banach lattices are automatically norm bounded [71, Theorem 18.4], we
conclude that 7" is norm bounded and 7! is also automatically norm bounded by
the Bounded Inverse Theorem [57, Theorem 14.5.1]. O

We call a Banach lattice F an isomorphic dual Banach lattice if there exists a Banach
lattice GG such that E and G* are isomorphic as Banach lattices. The next result is
a direct consequence of Theorems [2.8.6| and [2.8.8|

COROLLARY 2.8.9. Let E be a Banach lattice and T := ((Eqa)aer, (Pg.a)psa) an inverse
system in NIVL such that (E,(pa)acr) is the inverse limit of T in VL. That is to
say, the underlying vector lattice of the Banach lattice E is obtained as the inverse

2A bi-continuous lattice isomorphism between Banach lattices.
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limit of Z wn VL. If E, is an order dual space for every o € I, then E is an
1somorphic dual Banach lattice.

To end this section, we make some comments on the properties of being an immac-
ulate vector lattice, an order dual space, and a perfect vector lattice. It is clear that
the following implications hold in general.

Immaculate = Order dual space = Perfect

However, there are examples which demonstrate that the reverse implications do
not hold in general. Therefore these three notions are indeed distinct.

EXAMPLE 2.8.10 (An order dual space which is not immaculate). Since ¢! = (¢p)",

it follows that ¢! is an order dual space. By the Riesz Representation Theorem [61],
Theorem 18.4.1],

(6'5) = (£)" = M(BN).
Since ¢! is an atomic Banach lattice [56], p. 113] but M(SN) is not, we conclude
that ¢! is not an immaculate vector lattice.

EXAMPLE 2.8.11 (A perfect vector lattice that is not an order dual space). The
Banach lattice L![0,1] is perfect [3, Theorem 9.22, Theorem 9.34]. Suppose for a
contradiction that L'[0,1] is an order dual space. By Theorem [2.8.8] there exists
a Banach lattice G’ such that L!'[0,1] and G* are isomorphic as Banach lattices.
Since L1[0, 1] is separable, so is G*. Every separable dual Banach space has the
Radon-Nikodym property [30L Appendix D3]. Therefore G*, hence also L'[0, 1], has
the Radon-Nikodym property. But L![0,1] does not possess the Radon-Nikodym
property [58, Example 5.15]. Therefore L![0,1] is not an order dual space.

2.9. Decomposition theorem for C(X)

This section deals with decomposition theorems for spaces C(X) which are order
dual spaces: We will show that a naive generalisation of the decomposition theorem
for C(K) in Theorems[l.1.3|to the non-compact case fails and present an alternative
approach using the theory of inverse limits of vector lattices we have developed. In
order to facilitate the discussion to follow, we recall some basic facts concerning the
structure of the carriers of positive functionals on C(X). Throughout this section
X will denote a realcompact space.

Let 0 < p e C(X)". According to Theorem there exists a measure 1, € M (X)*
so that

o(w) = [ udng, weC(X).
Denote by S, the support of the measure p,. The null ideal of ¢ is given by
Ny ={ueC(X) : u(z)=0for all xeS,}.

Indeed, the inclusion {u € C(X) : u(z) =0 for all z € S,} € N, is clear. For the
reverse inclusion, consider u € C(X) so that u(xg) # 0 for some zy € S,. Then there
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exists a neighbourhood V' of xy and € > 0 so that |u|(x) > € for all x € V. Because
xg € S, we have 1,(V') > 0. Therefore

o(lul) > [ luldu, > (V) >0
so that u ¢ No,. It therefore follows that
Co={ueC(X) : u(x)=0forall ze X \ S,}.

The band C, is a projection band if and only if S, is open, hence compact and
open, see [48, Theorem 6.3]. In this case we identify C, with C(S,) and the band
projection P, : C(X) — C, is given by restriction of u € C(X) to S,,.

PROPOSITION 2.9.1. Let X be extremally disconnected. Then C,, is perfect for every
0+peC(X)..

PROOF. Fix 0 # ¢ € C(X),. By Theorem [2.1.7, since X is extremally discon-
nected, then C(X), and hence also C,, is Dedekind complete. Furthermore, |¢| is
strictly positive and order continuous on C,,. It follows by Corollary that S,
is hyper-Stonean and thus by Theorem , we know that C, = C(S,,) is an order
dual space, hence perfect. O

The work of Xiong in [69] characterises those C(X) spaces which are order dual
spaces. A slight rearrangement of the material in [69)] allows us to expand this
equivalence.

THEOREM 2.9.2. Let X be a realcompact space. Denote by S the union of the
supports of all compactly supported normal measures on X. The following statements
are equivalent.

(1) C(X) is an immaculate vector lattice.
(11) C(X) is an order dual space.
(11i) C(X) is perfect.

(iv) X is extremally disconnected and vS = X ; that is, C(X) is Dedekind com-
plete and

C(X) s fr— flg e C(5)

18 a lattice isomorphism.

PRrOOF. The implications (i) implies (ii) implies (iii) holds for general vector
lattices. It is proven in [69] Theorem 1] that (iv) implies (i) and the argument in
the proof of [69] Theorem 2] shows that (iii) implies (iv). O

A naive attempt to generalise the decomposition theorem in Theorem [1.1.3] (iii) is
to replace the ¢*-direct sum of carriers of a maximal singular family F in C(K)
with simply the Cartesian product of the carriers in F. In next two results, we show
that this is approach is not correct.
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PrROPOSITION 2.9.3. Let X be an extremally disconnected realcompact space, and
let F be a mazimal (w.r.t. inclusion) singular family of positive order continuous
linear functionals on C(X). Consider the following statements.

(i) The map
C(X)s fr— (P € [T C,

peF

1s a lattice 1somorphism.
(11) C(X) is an immaculate vector lattice.
(i1i) C(X) is an order dual space.
(iv) C(X) is perfect.
Then (i) implies (ii), (iii), and (iv) while (ii), (iii), and (iv) are equivalent.

PRrROOF. The equivalence of (ii), (iii), and (iv) is given in Theorem [2.9.2] Assume

that (i) is true. By Theorem (v) and (vii), C(X),, is isomorphic to | [ (C,)- .
But each C, is perfect so that | J(C,):" is isomorphic to []C,, hence C(X) is
isomorphic to C(X), . O

EXAMPLE 2.9.4. As is well known, C(8N) = ¢~ = (¢!)", hence C(N) is an order
dual space. For every x € N, denote by d, : C(6N) — R the point mass centred at z.
Then F = {0, : = €N} is a maximal singular family in C(SN)_ = ¢!, Since C;, =R
for every = € N, it follows that []Cs, = RY. Since []Cs, does not have a strong
order unit while C(SN) does have a strong order unit, we conclude that

C(ON) > u+— (Ps,u) € HC(;I

is not an isomorphism.

The final result of this section resolves the decomposition problem for C(X') which
are order dual spaces. We briefly recall the notation in Theorem 2.7.3f Let M, € Bg
denote the collection of carriers for positive, order continuous functionals on FE.
Consider the inverse system Zyy, := (M,, (Pwﬁ,)ww) with limZy, == (F, (py)osper ) in
VL.

THEOREM 2.9.5. Let X be an extremally disconnected realcompact space. Denote
by S the union of the supports of all order continuous functionals on C(X). The
following statements are equivalent.

(1) C(X) is an immaculate vector lattice.
(11) C(X) is an order dual space.
(i1i) C(X) is perfect.

(iv) vS = X.

(v) Py, : C(X) — F is a lattice isomorphism.
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PROOF. By Theorem [2.9.2] it suffices to show that (iii) and (v) are equivalent.
By Proposition [2.9.1} the carriers C,, are perfect for every 0 < ¢ € C(X),. The
desired equivalence then follows immediately from Corollary [2.7.5] O

2.10. Structure theorems for Archimedean relatively uniformly
complete vector lattices

Let F be an Archimedean vector lattice. In Example [2.3.8] it is shown that the
principal order ideals of F form a direct system in NIVL and that E can be ex-
pressed as the direct limit of this system. In this section, we exploit this result
and the duality results in Section [2.5]to obtain structure theorems for Archimedean
relatively uniformly complete vector lattices and their order duals.

A frequently used technique in the theory of vector lattices is to reduce a problem to
one confined to a fixed principal order ideal E, of a space E. Once this is achieved,
the problem becomes equivalent to one in a C(K') space for a compact Hausdorff
topological space K via the Kakutani Representation Theorem, see [47] or [56,
Theorem 2.1.3]. For instance, this technique is used in [56, Theorem 3.8.6] to study
tensor products of Banach lattices. The following result is essentially a formalisation
of this method in the language of direct limits.

THEOREM 2.10.1. Let E be an Archimedean, relatively uniformly complete vector
lattice. For all 0 < u < v there exists compact Hausdorff spaces K, and K, and
injective, interval preserving normal lattice homomorphisms e, : C(K,) - C(K,)
and e, : C(K,) — E so that the following is true.

(i) E., is lattice isomorphic to C(K,,) for every 0 <u e E.

(11) Dg:= ((C(Ky))ocuer (€un)ucw) s a direct system in NIVL with injective
linking maps.

(i1i) Sg= (F, (ey)o<er) is the direct limit of Dg in NIVL.
(iv) E is Dedekind complete if and only if K, is Stonean for every 0 <u e E.
(v) If E is perfect, then K, is hyper-Stonean for every 0 <u e E.

PROOF. By [56], Proposition 1.2.13], we know that every principal order ideal
in F is a unital AM-space. Therefore the statements in (i), (ii), and (iii) follow
immediately from Example and Kakutani’s Representation Theorem for unital
AM-spaces. The proof of (iv) follows immediately from Theorem and [56],
Proposition 2.1.4].

For the proof of (v), assume that F is perfect. Then, in particular, F is Dedekind
complete and has a separating order continuous dual [70, Theorem 110.1]. Therefore
the same is true for each E,. By (i), C(K,) is Dedekind complete and has a
separating order continuous dual, i.e. K, is hyper-Stonean. 0

A converse to the statement in (ii) in the previous result follows directly from the
permanence results for direct limits of vector lattices in [37].
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COROLLARY 2.10.2. Let I be an index set and K, a compact Hausdorff topological
space for every ae I. If D= ((C(Ka))aer; (€a.p)axs) is a direct system in IVL with
injective linking maps, then the direct limit (E, (e )aer) ezists in IVL and E is an
Archimedean, relatively uniformly complete vector lattice.

PROOF. The result follows directly by the existence result for direct limits in
Theorem and the permanence results in Theorem [2.3.5] (i) and (v) along with
the fact that every C(K) space is Archimedean and relatively uniformly complete
[53, Theorem 43.1]. O

Thus Archimedean relatively uniformly complete vector lattices are characterised
as precisely those vector lattices obtained in the direct limit of a direct system of
C(K) spaces for compact Hausdorff K with injective linking maps. In the last few
results of this section and this chapter, we examine the order duals of Archimedean
relatively uniformly complete vector lattices.

COROLLARY 2.10.3. Let E be a Archimedean relatively uniformly complete vector
lattice. There exists an inverse system I := ((M(K4))aer, (Pg.a)psa) in NIVL, with
each K, a compact Hausdorff space, and normal lattice homomorphisms p, : £~ —
M(K.,), so that §:= (E~,(Pa)acr) is the inverse limit of T in N'VL.

PROOF. The result follows immediately from Theorems [2.10.1] and [2.5.4], and
the Riesz Representation Theorem [25, Chapter III, Theorem 5.7]. 0

In order to obtain a converse of Corollary we require a more detailed descrip-
tion of the interval preserving normal lattice homomorphisms e, , : C(K,) - C(K,)
in Theorem [2.10.1] Let X and Y be topological spaces and p: X - Y a continuous
function. Recall that p is almost open if for every non-empty open subset U of

X, int (p[U ]) + @. It is clear that all open maps are almost open and thus every
homeomorphism is almost open.

PROPOSITION 2.10.4. Let K and L be compact Hausdorff spaces and T : C(K) —
C(L) a positive linear map. T is a lattice homomorphism if and only if there exist
a unique 0 <w € C(L) and a unique continuous function p:ZS, — K so that

{ w(z)u(p(z)) if veZ
if xely,

(2.10.1) T(u)(x) =

for alluwe C(K). In particular, w=T(1k).

Assume that T is a lattice homomorphism. Then the following statements are true.
(i) T is order continuous if and only if p is almost open.
(11) T is injective if and only if p[Z¢,] is dense in K.

(111) T is interval preserving if and only if p[Z<,] is C*-embedded in K and p is
a homeomorphism onto p[Z<,].
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PRrROOF. The statement in (i) is well known, see for instance [1, Theorem 4.25].
Now suppose that T is a lattice homomorphism. The statement (i) follows from [65]
Theorem 4.4], or, from [17, Theorem 7.1 (iii)].

We prove (ii). Assume that p[Z¢ ] is dense in K. Let u € C(K) satisfy T'(u) = 0.
Then w(x)u(p(x)) =0 for all z € Z¢,. Hence u(z) =0 for all z € p[Z¢,]. Since p[Z¢ ]
is dense in K it follows that w = 0. Thus T is injective. Conversely, suppose that
p[Z¢)] is not dense in K. Then there exists 0 < u € C(K) so that u(z) = 0 for all
z € p[Z¢]; that is, u(p(z)) =0 for all x € Z¢,. Hence T(u)(x) = w(x)u(p(x)) =0 for
all z e Z¢,. By definition T'(u)(z) = 0 for all z € Z,, so that T'(u) = 0. Therefore T
is not injective. Thus (ii) is proved.

Lastly we verify (iii). Suppose that T is interval preserving. We first show that
p[Z¢,] is C*-embedded in K. Consider 0 < f e C,(p[ZS,]). We must show that there
exists a function g € C(K) so that g(z) = f(z) for all z € p[ZS]. We may assume
that f < 1,zc]. Define v: L — R by setting

( )_{ w(z)f(p(z)) if zeZ
v(z) = . o

for every = € K. It is clear that v is continuous on Z¢, and on the interior of Z,,. For
all other point x € K, continuity of v follows from the inequality 0 < v < w. From
this last inequality and the fact that T is interval preserving it follows that there
exists 0 < g < 1 so that Tg = v. If 2 € p[Z¢ ] then w(x)f(p(x)) = v(x) = Tg(z) =
w(z)g(p(z)) so that f(p(x)) = g(p(z)); that is, g(z) = f(z) for all z € p[Z].

Next we show that p is a homeomorphism onto p[Z¢]. First we show that p is
injective. Consider distinct xg,x; € Z¢, and suppose that p(zg) = p(z1). There
exists v € C(L) with 0 < v < w such that v(xy) = 0 and v(z;) > 0. Because T
is interval preserving there exists 0 < u < 1k in C(K) so that T'(u) = v. Then
u(p(zo)) = 0 and u(p(x1)) > 0, contradicting the assumption that p(xg) = p(x1).

Therefore p is injective.

It remains to verify that p=! is continuous. Let (x;) be a net in Z¢ and z € Z¢
so that (p(x;)) converges to p(x) in K. Suppose that (x;) does not converge to x.
Passing to a subnet of (x;) if necessary, we obtain a neighbourhood V' of = so that
x; ¢ V for all i. There exists a function 0 < v < w in C(L) so that v(z) > 0 and
v(z;) =0 for all 4. Because T is interval preserving there exists a function u € C(K)
so that T'(u) = v. In particular, w(z)u(p(z)) = v(z) > 0 so that u(p(x)) > 0, but
w(z;)u(p(x;)) = v(x;) = 0 so that u(p(z;)) =0 for all i. Therefore (u(p(z;))) does
not converge to u(z), contradicting the continuity of u. Hence (z;) converges to z
so that p~! is continuous.

Conversely, suppose that p is a homeomorphism onto p[Z¢ ], and that p[Z¢ ] is C*-
embedded in K. Let 0 <u e C(K) and 0 <v <T'(u) in C(L). Define f:p[Z¢] - R
by setting

1 -1 € c
f(z)= mv(p (2)), zeplZy].

Because p~! : p[Z¢)] — Z¢, is continuous, f is continuous. Furthermore, 0 < f(z) <
u(z) for all z € p[Z¢]. Therefore f is a bounded continuous function on p[Z¢]. By
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assumption, there exists a continuous function g : K — R so that g(z) = f(z) for all
z € p[Zs)]. Since 0 < f <w on p[Z¢ ], the function g may to chosen so that 0 < g < w.
For x € Z¢, we have

w(z)o(r)

T(g9)(x) = w(x)g(p(x)) = w(x) f(p(2)) = — = w(2) (),

and for = € Z,, we have v(x) =0=T(g)(x). Therefore Tg = v so that T is interval
preserving. 0

THEOREM 2.10.5. Let E be a vector lattice. The following statements are equivalent.

(i) E' = F~ where F' is some Archimedean relatively uniformly complete vector
lattice.

(i1) There exists an inverse system I:= ((M(K4))aer, (Pg.a)psa) in NIVL, with
each K, a compact Hausdorff space, such that the following holds.

(a) For each B > o in I there exist a function w e C(Kg)* and homeomor-
phism t : Z¢, — t[Z¢)] € K, onto a dense C*-embedded subspace of K,
so that for every pe M(Kp),

pral)(A) = [ wd, AeBy,.
t-1[A]

(b) For every o« € 1 there exists a normal lattice homomorphism
Po i B> M(Ka) such that imT = (E, (pa)aer)-

PROOF OF (i) IMPLIES (ii). By Theorem [2.10.1] there exists a direct system
D:= ((C(K4))aer: (ap)a<p) in NIVL, with each K, a compact Hausdorff space,
and interval preserving normal lattice homomorphisms e, : C(K,) — F so that S:=
(F,(eq)aer) is the direct limit of D in NIVL. By Theorem and the Riesz
Representation Theorem [61), Theorem 18.4.1], §~:= (E, (€)aer) is the inverse limit
of the inverse system D~:= (M(K,), (6;75)a$5) in NVL. Thus the claim in (b) holds.

Fix > ain I. We show that e, ; is of the form given in (a). By Proposition [2.10.4]
there exists w € C(Kp)* and a homeomorphism ¢ : Z¢, — t[Z¢] € K, onto a dense
C*-embedded subspace of K, so that

w(x)u(t(x)) if zeZs
eas(u)(7) = ,
0 if xeZ,

for all uw e C(K,). Let T': C(K,) — Cn(ZS) and M, : Cp(ZS,) —» C(Kj3) be given
by T(u) = uot and My,(v) = wo for all u € C(K,) and v € Cy(ZsS), with wv
defined as identically zero outside Z¢,. Then 7" and M,, are positive operators and
€a,5 = MyoT; hence e} 5 =T~o M. It follows from [20, Theorems 3.6.1 & 9.1.1] that

T~(n)(A) = pu(t 1A ]) for every e M(Z¢,)) and A € B . The Riesz Representatlon
Theorem shows that, for each v € M(Kjp) and every Borel set B in Z¢,

M (v)(B) = [dey.
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Hence for 1€ M(Kp) and A € B,
. ) = [ d
o= [ wis
as claimed. N

PROOF OF (ii) IMPLIES (7). Fix 8 > « in [ and consider the function w e
C(Kp)* and the homeomorphism ¢ : ZS — t[Z¢] ¢ K, given in (b). Define the
map e, 5 : C(K,) > C(Kp) as

w(z)u(t(z)) if xeZg
eap(u)(z) = _
0 if xeZ,

We show that D:= ((C(K4))aer, (€as)a<p) is a direct system in NIVL.

It follows by Proposition that each e, g is an injective interval preserving
normal lattice homomorphism. It remains to show that e,~ = eg o eqp for all
a < f <7 in I. An argument similar to that in the proof that (i) implies (ii)
shows that €, 5 = pgo for all a < §; hence €5 = pj; ,. By Proposition m I :=
((M(Ka);)ae 1 (P30) @a) is a direct system in NIVL and therefore e}, = e o€y,
for all @ < B <+ in I. Since C(K,) has a separating order dual for every « € I, it
follows that e, = eg 0 eq 3. Hence D is a direct system in NIVL.

Since each eq is injective, imD:= (F, (€a)aer) exists in NIVL by Theorem .

Since C(K,,) is relatively uniformly complete for each « € I it follows from Theorem
2.3.5| (v) that F is also relatively uniformly complete. Because €5 = Ppa for all
a < in I, D~ =1. Therefore, by Theorem there exists a lattice isomorphism
T : F~ — FE such that the diagram

F-~ a s E
M(Ka)
commutes for all o € I. This completes the proof. O
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CHAPTER 3

Free objects

We now move on to our second major problem regarding the existence of free objects
in some categories we have not yet defined. We start with the definitions and
terminology we need to define these categories.

3.1. Preliminaries

3.1.1. Algebraic structures. Denote by K either R or C. We refer to associa-
tive algebras (over K) as algebras. Algebras possessing a multiplicative identity are
called wnital. Algebra homomorphisms between unital algebras need not preserve
multiplicative identities unless explicitly indicated.

We make use of the same notation and conventions for vector lattices that was
introduced in Chapter [I Section We do not assume that vector lattices are
Archimedean unless stated explicitly. A wvector lattice algebra A (also called a Riesz
algebra in the literature) is an algebra over R equipped with a partial order < that
makes A into a vector lattice with the additional property that the positive cone
At is closed under multiplication. Further, A is called a unital vector lattice algebra
if the underlying algebra possesses a multiplicative identity 14, and A is a positive
unital vector lattice algebra if 14 € A*. The vector lattice algebra homomorphisms
are the maps that are both lattice and algebra homomorphisms, also not necessarily
unital unless indicated.

This gives us the following categories:

OBJECTS MORPHISMS
Set Sets Total functions
VS Vector spaces Linear maps
VL Vector lattices Vector lattice homomorphisms
Alg Algebras Algebra homomorphisms
Alg’ Unital algebras Unital algebra homomorphisms
VLA | Vector lattice algebras Vector lattice algebra homomorphisms
VLA?! | Unital vector lattice algebras Unital vector lattice algebra homomorphisms
VLA | Positive unital vector lattice algebras | Unital vector lattice algebra homomorphisms

TABLE 1. Table of algebraic categories under consideration

75
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Set 2 VS 2 VL

N N
Alg 2 VLA 2 VLA! > VLAY
N 2
Alg!

FiGURE 1. Figure depicting subcategory relationships between the various alge-
braic categories of interest.

We will refer to the categories in Table [1] excluding Set, as algebraic categories. A
subspace in each of the above contexts is a subset of that algebraic object that is
closed with respect to all the different operations defined on that space.

Recall that a subset S of a vector lattice E is solid in F if for x € S and y € E, the
condition that |y| < |z| implies y € S. A linear solid subspace of a vector lattice is an
order ideal.

Given an algebra R, a linear subspace I is a left (resp. right) algebra ideal if for
all x € R and a € I we have xa € I (resp. ax € I). If I is both a left and right
algebra ideal then I is called a two-sided algebra ideal. It is clear that every algebra
ideal (left, right, or two-sided) is closed under multiplication and is thus an algebra
subspace (i.e. a subalgebra). A linear subspace of a vector lattice algebra that is
both an order ideal and a two-sided algebra ideal is called a bi-ideal.

3.1.2. Normed structures. A vector lattice E equipped with a norm || :
E — R* is called a normed vector lattice if the underlying vector space is a normed
space and if the norm satisfies the following property: For z,y € E such that |z| < |y|
we have |z| < |y|. Norms that satisfy this property are called Riesz norms and
Riesz seminorms are defined in the same way. We make the following observations
for Riesz (semi)norms: For x € E, since |x| = ||z|]|, it follows that |x| = |[|z||-.

An algebra or unital algebra R equipped with a norm || : R - R* is a normed
algebra if the norm is submultiplicative: For x,y € R we have |lzy| < |z| |y|. One
defines a submultiplicative seminorm in the same way. A vector lattice algebra (non-
unital, unital, or positive unital) equipped with a submultiplicative Riesz norm is a
normed vector lattice algebra. The multiplicative identity in a normed vector lattice
algebra is not assumed to have norm 1 when it exists.

Complete normed vector lattices, normed algebras, and normed vector lattice al-
gebras are known as Banach lattices, Banach algebras, and Banach lattice algebras
respectively. These definitions give us the following two collections of categories.
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OBJECTS MORPHISMS

NS Normed spaces Bounded linear maps

NVL Normed vector lattices Bounded vector lattice homomorphisms
NA Normed algebras Bounded algebra homomorphisms

NAT Unital normed algebras Bounded unital algebra homomorphisms
NVLA | Normed vector lattice algebras Bounded V.L.A. homomorphisms
NVLAT | Unital normed vector lattice algebras Bounded unital V.L.A. homomorphisms
NVLA"™ | Positive unital normed vector lattice algebras | Bounded unital V.L.A. homomorphisms

TABLE 2. Table of categories of normed structures under consideration.

OBJECTS MORPHISMS

Ban Banach spaces Bounded linear maps

BL Banach lattices Bounded vector lattice homomorphisms
BA Banach algebras Bounded algebra homomorphisms

BA'T Unital Banach algebras Bounded unital algebra homomorphisms
BLA | Banach lattice algebras Bounded V.L.A. homomorphisms
BLA" | Unital Banach lattice algebras Bounded unital V.L.A. homomorphisms
BLA"™ | Positive unital Banach lattice algebras | Bounded unital V.L.A. homomorphisms

TABLE 3. Table of categories of complete normed structures under consideration.

For a category C of normed structures from Table [2or [3|above, we denote by C; the
subcategory whose morphisms are contractive. For a category of normed structures
Y in Table [ or [3] denote by A(Y) the smallest category X in Table [I] such that
X 2Y. For example, if we consider the category BLA, the categories X such that
X 2Y form the collection {Set, VS, Alg, VL, VLA}. Consulting Figure [I] we see
that VLA is the smallest category among the above with the necessary property,
so we write A (BLA) = VLA. Thus A(-) associates with each category of normed
structures from Table [2| and [3] the ‘canonical” algebraic supercategory.

Let Y be a category of normed structures from Table |2 I and denote by Y the associ-
ated category of complete normed structures in Table[3| For Y €Y, a completion of
Y is an object Y €Y for which there exists an isometric Y- isomorphism 7":Y" - Y
where T[Y] is a dense subspace of Y. For objects N ¢ Y and BeY and a morphism
f:N - Bin Y, one may verify that there exists a unique morphism f N > B
inY extending f. This means that, for example, if NV is a normed space then the
completion N along with the inclusion j: N — N is the free Banach space over the
normed space N.

3.1.3. Locally convex structures. All topological vector spaces are assumed
to be Hausdorff. A topological vector space is a locally convex space if the origin has
a neighbourhood basis of convex sets. An algebra (non-unital or unital) equipped
with a linear topology is a locally multiplicatively-convex algebra (or a locally m-
convex algebra for short) if the origin has a neighbourhood basis of convex sets that
are closed under multiplication,E] see [65] Definition 1.3, p. 5|. Further, a vector

1Locally m-convex algebras are a particular sort of locally convex algebra. Some care must be taken when dealing
with definitions of topological algebras and locally convex algebras since these definitions vary across the literature: A
topological algebra is defined in [55] Definition 1.1, p. 4] and [38] Definition 1.6] as an algebra equipped with a linear
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lattice equipped with a linear topology is a locally convez-solid vector lattice if the
origin has a neighbourhood basis of convex solid sets. Lastly, a vector lattice algebra
(non-unital, unital, or positive unital) equipped with a linear topology is a locally
multiplicatively-convex-solid vector lattice algebra (or locally m-convez-solid vector
lattice algebra for shorter) if the origin has a neighbourhood basis of convex solid
sets that are closed under multiplication. This gives us another batch of categories.

OBJECTS MORPHISMS

LCS Locally convex spaces Continuous linear maps

LC-SVL Locally convex-solid vector lattices Cts. vector lattice homomorphisms
LM-CA Locally m-convex algebras Cts. algebra homomorphisms
LM-CA? Unital locally m-convex algebras Cts. unital algebra homomorphisms
LM-C-SVLA | Locally m-convex-solid vector lattice algebras Cts. V.L.A. homomorphisms
LM-C-SVLA" | Unital locally m-convex-solid vector lattice algebras Cts. unital V.L.A. homomorphisms
LM-C-SVLA™ | Positive unital locally m-convex-solid vector lattice algebras | Cts. unital V.L.A. homomorphisms

TABLE 4. Table of categories of locally convex structures under consideration.

The names of the above categories of locally convex structures are unfortunately
not very elegant, but at least they are not misleading.

For a category Y of normed structures from Table [2) we denote by LCY the asso-
ciated category of locally convex structures in Table 4] such that A(LCY) = A(Y)
(with the notation A (+) defined for Table [4] as above for Table [2] and [3)).

A locally convex structure in Table[d]is complete if every Cauchy net converges. The
details of the construction of a completion of a locally convex space are recorded
in [50, p. 208] and completions of other locally convex structures in Table {4 fol-
low by modification. We add the prefix Com to the categories of locally convex
structures above to denote the subcategory consisting of complete objects. Thus
we denote (rather clumsily, but at least descriptively and not misleadingly) by
ComLM-C-SVLA' the category of complete positive unital locally multiplicatively-
convex-solid vector lattice algebras with continuous unital vector lattice algebra
homomorphisms as morphisms. Similarly, for a category of complete normed struc-
tures Y in Table , denote by ComLCY the associated category of complete locally
convex structures such that A (ComLCY) =A (Y)

Let C and D be categories with C ¢ D. Recall that C is a full subcategory of D
when all morphisms in D between objects in C are included in C. Thus for any set
S € Objp there exists a unique full subcategory Cg of D where Objs, = S. Thus

for any category Y from Table , it is clear that Y is a full subcategory of Y and
ComLCY is a full subcategory of LCY.

topology making multiplication separately continuous whereas an algebra equipped with a linear topology making
multiplication jointly continuous is called a topological algebra with continuous multiplication in [55] Definition 1.1,
p. 4] and [38, Example 1.8]. On the other hand, these formulations of topological algebras with separate continuity
and joint continuity are called weak topological algebras and just topological algebras respectively in [14], p. 84].
Taking the above difference in terminology into account, the authors of [14], [38], and [55] define a locally convex
algebra as a topological algebra where the topology makes the underlying vector space into a locally convex space
(see [55] Definition 1.1, p. 4], [38] Definition 1.7], and [14} Definition 4.4.1]). We adopt the terminology of [55]
and [38] for these definitions. In any case, it is easy to see that a locally m-convex algebra is then in fact also a
locally convex algebra with continuous multiplication in our terminology.
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Although the above definitions for the locally convex structures in Table [4/ should be
considered the ‘natural’ definitions, in practice, it is often preferable to work with
seminorm characterisations for locally convex structures. We record these seminorm
characterisations for the locally convex structures in Table [4] in the next result.

ProPOSITION 3.1.1. The following statements are true.

(i) A topological vector space X is a locally convex space if and only if there
exists a separating family of seminorms generating the topology on X.

(ii) A topological algebra R (non-unital or unital) is a locally m-conver algebra
if and only if there exists a separating family of submultiplicative seminorms
generating the topology on R.

(i1i) A topological vector lattz’ceﬂ E is a locally convex-solid vector lattice if and
only if there exists a separating family of Riesz seminorms generating the
topology on E.

(iv) A topological vector lattice algebrd] A (non-unital, unital, or positive unital)
18 a locally m-convex-solid vector lattice algebra if and only if there exists a
separating family of submultiplicative Riesz seminorms generating the topol-
ogy on A.

PRrROOF. The proofs of (i), (ii), and (iii) are found in [25, Chapter IV, Propo-
sition 1.15], [55, Theorem 3.1, p. 18] or [14, Lemma 4.4.2], and [5, Theorem 2.25]
respectively. We prove (iv): First, assume that A locally m-convex-solid vector lat-
tice algebra and let V' be any convex solid neighbourhood of the origin that is closed
under multiplication. Since every solid set is balanced and every neighbourhood of
the origin is absorbing, it follows by [25, Chapter IV, Proposition 1.14] that the
Minkowski functional py : A - R is a seminorm and that V = {z € A: py(z) < 1}.
It follows by [5l p. 59] that py is a Riesz seminorm since V' is solid and it follows by
[38], Proposition 1.5] that py is submultiplicative since V is closed under multipli-
cation. Thus there exists a separating family of submultiplicative Riesz seminorms
generating the topology on A. Conversely, let A be a topological vector lattice al-
gebra whose topology is generated by a separating family of submultiplicative Riesz
seminorms P. Let N be any neighbourhood of the origin, then there exists p € P
and € € (0, 1] such that

Us={xeA:p(x)<e}cN.
The properties of p make it easy to verify that U, is convex, solid, and closed under
multiplication. O

3.1.4. Free objects. For the sake of recording all the important definitions
used in the rest of this chapter all in one place, we repeat the definition of a free
object before discussing some of its properties.

2A topological vector lattice is a vector lattice equipped with a linear topology that is locally solid, i.e. the
origin has a neighbourhood basis of solid sets, see [60, Chapter V, Section 7].

3A topological vector lattice algebra is a vector lattice algebra equipped with a linear topology that makes the
underlying algebra into a topological algebra and the underlying vector lattice into a topological vector lattice.
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DEFINITION 3.1.2. Let C; and Cs, be categories with C; 2 C,. Fix O € C; and
consider an object Fgf(Ol) in Cy and a morphism j : O; - Fgf(Ol) in C;. The
pair (Fgf(Ol) ,j) is called a free object over Oy of C, if it has the property that
for every Oy € Cy and every morphism ¢ : O; - O in Cy, there exists a unique

morphism @ : Fgf(Ol) — Oy in C, such that the following diagram commutes in
Ci.

0, ———=F2(0))

6

2

If the above holds, the pair (Fgf(Ol) ,j), or by abuse of notation just the object

Fgf(Ol), is also called a solution for the free object problem over Oy between the
categories Cy and C,.

As was done for direct and inverse limits in Chapter [2| Sections and 2.4 a
slight change in perspective will allow us to easily conclude that free objects (F,j)
are essentially unique in a particular sense: Consider categories C; and C,y with
C, 2 C; and fix O, € C;. We construct the derived category Cpc, c,] Where:

(i) Objects in Cpic,,c,) are pairs (Og, f) where O, is an object in C, and
f: 01 = Oy is a morphism in C;.

(ii) A morphism between (O, f) and (0’,g) in Cpc,,c,] is a morphism ¢ : O —
O’ in C, such that the following diagram commutes in C;.

Ol

Thus, it is clear that an object (F,7) in Cpic,,c,] is a free object over O; of C, in
the sense of Definition if and only if the object (F, j) is the initial object in the
derived category Cpyc,,c,]- As a result (F,j) is unique up to a unique isomorphism
in Cpyc,,c,], meaning that for any other candidate free object (G, k) there exists a

unique isomorphism ¢ : F' - GG in C, such that the following diagram commutes in
C;.
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Beyond establishing this essential uniqueness, the universal property of the free
object also gives us information on the structure of free objects in categories of
normed structures.

PROPOSITION 3.1.3. Let Y be any category of normed structures from Table[d or[3
with X any category from Table[1], [3, or[d such that X 2Y. Fiz X € X and assume
that the free object (FX(X),j) exists. Consider the associated category A(Y) in
Table and denote by G the object in A(Y) generated by the subset j[X] in F¥ (X).
Then G is dense in FX(X).

PROOF. Let H be the closure of G in FX (X)), then H is an object in Y. Define
the morphism j': X - H where j'(x):= j(z). We claim that the pair (H,j’) is a
free object over X in Y: Let Y be an object in Y and ¢ : X - Y a morphism in
X. Then there exists a unique morphism @ : FX(X) - Y such that goj = ¢. The
restriction @|, : H - Y is also a morphism in Y and satisfies the diagram

X—71 H
<P|H

Y

Let 1 : H - Y be any other morphism in Y such that ¢ o j’ = ». Thus @|,
and 1) coincide on G and since the morphisms in Y are continuous, it follows that
@l = . Thus (H,j') is a free object over X in Y and so there exists an isomorphism
®: H - FY(X) in Y such that the following diagram commutes in X.

H
01 P
T
FX(X)
We conclude that G is dense in F¥ (X). O

With these preliminaries in place, the real work of this chapter can begin in the next
section. We start by reviewing existence results for certain algebraic free objects.
These will be used in the sequel as the foundation for the construction of other free
objects.

3.2. Existence of algebraic free objects

The main goal of this section is to summarise all the major results in [27] which
show that we can construct free objects (F%’(X ), 7] ) for categories X and X’ from
Table [1f with X 2 X’. This will be done using methods from universal algebra
where the principle object of study is abstract algebras. Although abstract algebras
are usually just called ‘algebras’ in the universal algebra literature, we will have to
make use the term ‘abstract algebras’ to distinguish this general notion from the
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particular example of a vector space equipped with an associative multiplication,
which are usually called ‘algebras’ in analysis.

Along with the development of the theory we need to achieve the stated goal for this
section, we will also explain how the algebraic categories in Table [I| may be viewed
as categories of abstract algebras of particular types.

First, we define the notion of an abstract algebra. Let A be a set and n € N. A
function f: A" — A is called an operation on A of rank n. We write rank(f) =n. In
particular, operations of rank one and two are most often called unary and binary
operations respectively.

We fix the notation No:={0,1,2,...}.

DEFINITION 3.2.1 (Abstract algebras). Let F be a non-empty and possibly infinite
set and let p : F - Ny be any function. The pair (F,p) is called a type. Let A be
a non-empty set and (F,p) a type. Suppose that for every f e F, the following is
given:

(I) If p(f) =0, f4 is an element in A, which is called a constant.

(IT) If p(f) > 1, fA: APU)) - A is an operation of rank p(f) on A.
Define the collection FA:= {fA4: feF}. The pair (A, F4) is called an abstract
algebra of type (F,p).

The set A is called the universe of the abstract algebra (A, F4) and the set F4 is
called the collection of basic operations on A. We view the constants as operations
on A, which can also be thought of as operations of rank zero [16, p. 3|.

As an example, let (M,-,e) be a monoid, i.e. a non-empty set equipped with an
associative binary operation - : M x M — M with identity element e. Let F:= { fo, f1}
be a set and p: F - Ny a function where p(fy) =0 and p(f1) = 2. The pair (F,p)
is then the type associated with all monoids. In particular, define f}:= e and
MM x M - M where fM(z,y):= z-y. The pair (M,{f}, fM}) is then the
abstract algebra of type (F,p) associated with the monoid (M,-,e). However, a
monoid is not just a non-empty set equipped with an arbitrary pair of rank zero
and rank two operations, but also has to satisfy certain identities: For x,y,z € M,

r-e=ux, e-r=ux,
z-(y-z)=(x-y) 2

The formal definition of what it means for an abstract algebra to satisfy an identity
will be given below (Definition [3.2.14)) as we continue to develop the theory.

DEFINITION 3.2.2 (Abstract algebra homomorphisms). Let (A4,F4) and (B,F?)
be abstract algebras of type (F,p) with h: A - B a function. We call h an abstract
algebra homomorphism of type (F,p) if

(i) h(f4) = fB for all constants in f4 e FA,

(i) 2 (fA(a1, ... anp))) = fB(R(ar),....h(ayyp)) for all operations f4 e F4
with p(f) > 1.
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With the above example of a monoid viewed as an abstract algebra in mind, it is not
difficult to see that we can also construct a type associated with all vector spaces over
K: Informally speaking, this will consist of a constant 0 (zero vector), a binary map
® (vector addition), a unary map © (additive inverse), and for every A € K a unary
map m, (scalar multiplication by \). One can similarly also associate a type with all
(unital) algebras. Leaving aside the matter of what it means for an abstract algebra
to satisfy an identity for the moment, it seems rather natural that the categories
VS, Alg, and Alg! can be envisaged as categories of abstract algebras, each of these
categories with its own associated type (F,p). The morphisms in these categories
can then also naturally be viewed as abstract algebra homomorphisms.

Indeed, in general, any type (F,p) will encode a particular category with abstract
algebras of this type as objects and the associated abstract algebra homomorphisms
as morphisms.

DEFINITION 3.2.3. Let (F,p) be a type. The class of all abstract algebras of type
(F,p) and the class of all abstract algebra homomorphisms of type (F,p) forms a
subcategory of Set, which we denote as AbsAlg ).

Although it needs to be made precise, we have already made a tentative natural
connection between the categories VS, Alg, and Alg' and categories of abstract
algebras associated with an appropriate type (F,p). However, this connection is
not as immediately obvious for subcategories of VL from Table [1] since the ob-
jects in these categories are not only axiomatised by equalities (i.e. identities), but
also inequalities, as well as the assumption of the existence of suprema and infima of
two-element sets. Interestingly, it turns out that vector lattices and vector lattice al-
gebras can in fact be represented as abstract algebras in the sense of Definition |3.2.1}
We follow the exposition in [27], Section 4] for this, which in turn traces back to [16,
Definition 1.7, Exercise 2.4.1].

DEFINITION 3.2.4 ([27, Definition 4.1]). Let S be a non-empty set.

(i) Let < be a partial order on S, then (5, <) is called a partially ordered lattice
if, for all z,y € S, the supremum z v y and the infimum x A y exist in S.

(ii) Suppose S has binary operations ® and @. Then the triple (S, ®,®) is
called an algebraic lattice if, for all x,y,z € S,

tO(yoz)=(z0y) 0z, TQ((y©z)=(z0y)©z,
rdx=1x, rQxr=ux,

r0Yy=yduw, TQY=yQuw,

TP (rQy) =1, r@(x0vy)=x.

We note that the operations ® and @ need not satisfy distributive properties.
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LEMMA 3.2.5 (|27, Lemma 4.2]). Let S be a non-empty set.

(i) Let < be a partial order on S making (S,<) into a partially ordered lattice.
For x,y e S, define binary operations ® and @ where

TDY=xANY
and
rQy=rVy.
Then the triple (S,@,®) is an algebraic lattice.

(ii) Given binary operations ® and @ on S such that (S,®,®) forms an alge-
braic lattice. Then define a relation < on S where x <y if and only if

rTPyY=1z.

Then (S,<) is a partially ordered lattice. Moreover, for x,y € S the supre-
mum and infimum of the set {x,y} with respect to the partial order < exists
and we have

TAY=xDyY
and

TVY=rQUy.

The notion of a partially ordered lattice was described in Definition as a triple
(S,®,®) consisting of a set and two binary operations. This can be made more
precise using the language of abstract algebras by encoding the type (F,p) of all
partially ordered lattices, as was done for monoids above.

In the next result, we will describe a positive unital vector lattice algebra as a set
equipped with a collection of operations satisfying a long list of identities. We stick
to this more informal description over the formalism of Definition for the sake
of readability. It is in any case routine (but tedious) to encode positive unital vector
lattice algebras as abstract algebras of a certain type.

We will see in the results below, however, that the formalism of abstract algebras
is useful for the formulation of elegant results and that this formalism is not just a
rather esoteric way of describing the well-liked and well-understood notion of ‘a set
equipped with operations and identities’ that is seen throughout mathematics.

LEMMA 3.2.6 (]27, Lemma 4.4 and p. 124]). Let A be a set equipped with (not
necessarily different) constants 0 and 1, a binary map ®, a unary map ©, a unary
map my for every A € R, a binary map ©, and binary maps ® and &. Assume that
the following identities are satisfied:

(1) (zdy)dz=x&(y®=z2) for all z,y,z € A;
(2) @ 0=x for all x € A;

(3) x@ (ex)=0 for all v € A;

(4) r@y=ydx for all x,y € A;
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(5) my(z@y) =my(z) ®my(y) for all \eR and z,y € A;
(6) mysp(z) =my(x) ®my(x) for all \,peR and x € A;
(7) myu(2)) =ma(my(z)) for all \,peR and x € A;

(8) my(x) =z for all x € A;

(9) (roy)oz=00(yoz) foralx,y,z€c A;
(10) xo(y@z)=(r0y)d (x0z) for al z,y,z € A;
(11) (z@y)oz=(x0z2)®(yo=2) for all x,y,z€ A;
(12) my(z@y) =my(x) Oy =z 0my(y) for all \eR and z,y € A;
(13) lox=x01l=xa for all x € A;
(14) 2D (y®2)=(20y) Oz and z Q@ (Y@ 2) = (xQy) @z for all x,y,z € A;
(15) x®x =2 and x @z = for all v € A;
(16) 2 y=yB®z and xQy=yQx for all x,y € A;
(17) 2@ (xQy) =2 and 2 @ (x O y) =x for all z,y € A;
(18) zd(y®z)=(rdy)®(r®z2) for all x,y,z € A;
(19) mx(0® z) =0® (mx(x)) for all X e R* and x € A;
(20) 0 ((z® (ex)) o (y® (ey))) =0 for all z,y € A;
(21) 091 =0.

Define

(a) c+y=x®y forz,yecA;

(b) Ax:=my(z) for N\eR and z € A;

(c) xzy=x 0y forx,y e A.

Equipping the set A with the operations in (a)-(c) makes A into a unital algebra
over R with zero vector 0 and multiplicative identity 1. Further, define a relation
< on A where x <y if and only if x ®y =x. Then (A,<) forms a partially ordered
lattice where for x,y e A, we have tAy=x®y and xvy =xQy. Finally, the partial
order < together with the operations defined in (a)-(c) make A into a positive unital
vector lattice algebra with zero vector O and multiplicative identity 1.

The operations (a)-(c) along with the constants 0 and 1 give us an informal de-
scription of the type associated with the category VLA, By making appropriate
omissions to this list, we can obtain an informal description of the type associated
with any other algebraic category X in Table[I] Further, appropriate omissions from
the above list of 21 identities will be used in the sequel to describe the algebraic
categories in Table [I] in the language of abstract algebras.

We now return to the further development of the basic universal algebra theory that
we need. We have defined the notion of an abstract algebra as well as the notion of
a structure-preserving map between abstract algebras, the next concept one would
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want to consider is that of a subobject. This will be given in two different flavours,
one where the subobject is considered as an entity within a larger whole, and one
where the subobject is considered as a separate entity in its own right. It will often
be more convenient to make use of one formulation over the other.

DEFINITION 3.2.7 (Subuniverses and abstract subalgebras). Let (A4, F4) be an ab-
stract algebra of type (F,p). A subset B ¢ A is called a subuniverse of the ab-
stract algebra (A, F4) if B contains all the constants in F4 and if for every n € N
and every f4 € FA with rank(f4) = n we have that by,...,b, € B implies that
FA(by,... by) € B.

Further, if B ¢ A is a subuniverse of (A, F4), define
FP= {fA : p(f)zO}U{fA‘Bp(f) : p(f)21}'

Then the pair (B,F?B) forms an abstract algebra of type (F,p) and is called an
abstract subalgebra of (A, F4).

Let (A, F4) be an abstract algebra of type (F, p). The above definitions imply that
every abstract subalgebra of (A, F4) forms a non-empty subuniverse of (A, F4)
and every non-empty subuniverse of (A, F4) gives rise to an abstract subalgebra.
Another important concept is that of a subuniverse generated by a subset.

DEFINITION 3.2.8 (Generated subuniverse). Let (A, F4) be an abstract algebra of

type (F,p) with X a subset of A. The set of all subuniverses of the abstract algebra
(A, F4) is denoted by Sub(A). The subuniverse generated by X is defined as

Sg? (X):=({U eSub(A) : XcU}.
In particular, if A = Sg (X), we say that the abstract algebra (A, FA4) is generated
by the set X.

The idea of the subuniverse generated by a subset will play a very important role
in the sequel.

PROPOSITION 3.2.9. Let (A, FA) be an abstract algebra of type (F,p) with X ¢
A. The pair (SgA (X) ,ngA(X)) is the smallest abstract subalgebra of (A, F4) that
contains X.

The following result gives a useful characterisation of the subuniverse generated by
a set.

THEOREM 3.2.10 ([16, Theorem 1.14]). Let (A, F4) be an abstract algebra of type
(F,p) with X ¢ A. Define a sequence of subsets (X )nen, of A by recursion:

X05=XU{fA:P(f):0}a
Xn+1::Xnu{fA(al,...,ap(f)) Dar,... a0 € Xy, f€F st p(f)zl}.
Then 8¢ (X) = Unenip Xa-
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PROPOSITION 3.2.11. Let (A, F4) and (B,FPB) be abstract algebras of type (F,p)
with hy: A — B and hy : A - B abstract algebra homomorphisms. If X ¢ A is such

PROOF. The result follows directly from Proposition and the fact that the
set of elements in A on which hy and hy coincide forms subuniverse of (A, F4) which
contains X. m

We can take the idea of generation given above one step further by defining the
abstract algebra of a given type generated over a set. Given a non-empty set X, a
word on X is defined as a finite string of elements from X. For example, if a,b € X
then ‘aaa’ and ‘ababbb’ are words on X.

DEFINITION 3.2.12 (Abstract term algebras). Let (F,p) be a type and let S be a
non-empty set that is disjoint from F. We define a sequence of sets (7,,(.S))nen,
consisting of words on S uF by recursion:

Ty(S)=Su{f:p(f) =0},

Te1(S)=To(S) U{fti- . tppy & tryeostpry € Tn(S), f e F st p(f)>1}.
Define Tz )(S) = Upen, Tn(S) which we call the terms of type (F,p) over S.
For every f € F, define the following:

(i) If p(f) = 0, define fTFn (= f.

(ii) If p(f) > 1, define frEn() (tl,...,tp(f)):z fti.typy for t,.. .ty €
Tir ) (S).

Define Flr.n(5) = {fTWP)(S) i f e .7-"}, then the pair (T(}-,p)(S),]:TwP)(S)) forms an
abstract algebra of type (F,p), which we call the abstract term algebra of type
(F,p) over the set S.

Let j : S = T(r,(S) denote the inclusion map. It follows directly from Theo-
rem |3.2.10] and Proposition m that (T(r ) (S), FLxn () is the smallest abstract
subalgebra of itself that contains j [S].

The idea behind the construction of the abstract term algebra of a given type over a
set can be viewed as a more refined version of the construction of a free monoid over
aset S (see [12] § 1.7]). The free monoid over a set S consists of words on S equipped
with concatenation as an associative binary operation. Indeed, the abstract term
algebra of type (F,p) over a set S turns out to be nothing but the free abstract
algebra of type (F,p) over a set S.

THEOREM 3.2.13 ([16, Theorem 4.21]). Let (F,p) be a type and let S be a non-
empty set disjoint from F. For every abstract algebra (A, F4) of type (F,p) and
every function h : S — A, there exists a unique abstract algebra homomorphism
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h:T(r,)(S) = A such that the following diagram commutes in Set.

S " T(z,)(S)
h h
A

That is to say, the pair (T(f,p)(S),j) is the free object over S of AbsAlgr .
Furthermore, the abstract algebra (T(gp)(S),]-"T(f’ﬂ)(S)) 15 generated by the subset
jils].

Our previous result is not yet enough for us to construct free objects in an algebraic
category from Table [I] over a set. This is because we have thus far only formalised
which operations are carried by an abstract algebra, which are encoded in its type.
At this stage a free abstract algebra over a set will just be a set equipped with
operations with no further information about how these operations interact with
each other. We now turn to the missing ingredient: identities.

We will illustrate the idea of what it means for an abstract algebra to satisfy an
identity by means of the following example: Consider an abstract algebra (A, F4) of
type (F,p). Let f € F with p(f) =2, thus we have a binary operation f4: AxA - A,
which we represent by @ where z ® y:= f4(x,y). We wish to express that the
operation @ is associative, i.e. for xy,x9,x3 € A,

11 ® (ro®x3) = (11 ®x2) ® 3.

Let S, denote a fixed countable set. By its construction, the abstract term al-
gebra T(r ,)(S,) contains all possible grammatical combinations of elements in
S, with operations from (F,p). In particular, for si,ss,s3 € S, we have the
terms fs1fs283, f 515283 € T(,0)(Sw). The pair (fs1fsass, ffs15253) € T(F,5)(S.) x
T7,)(S,) will be used to encode our prescription that the operation given by f € F
in an abstract algebra of type (F,p) needs to be associative. Similarly, for g € F
with p(g) = 2, the pair (gs152,95251) € T(#,p)(Sw) X T(F,p)(S.) can be used to encode
the prescription that the operation given by ¢g € F in an abstract algebra of type
(F,p) needs to be commutative. The pairs (t1,t2) € T(x,)(Sw) X T(F,p)(S.) will be
called identities of type (F,p) and the set Tz ,)(S.) x T( £ ) (S.) then contains the
collection of all possible identities for an abstract algebra of type (F,p). We denote
a particular identity (Z1,t2) € T(x,p)(Sw) x T(#,)(S.) by writing ¢; ~ .

How do we use this set of all possible identities of type (F,p) to express that the
operation f4 of the particular abstract algebra (A, F4) of type (F, p) is associative?
This is given to us by the universal property of Theorem [3.2.13! Fix s1, 59,53 € S,,.
Then for every 1,9, x5 € A there is a map h: S, - A where h(s;) = z;. By Theo-
rem there exists a unique abstract algebra homomorphism A : Tirp(Sy) = A
extending h. Fixing the terms t:= fsfsys3 and t/:= ffsis055 in T# ,)(S,,), it fol-
lows that the operation f4 in (A, F4) will satisfy associativity for a choice of three

© University of Pretoria



Y
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

W YVUNIBESITHI YA PRETORIA

3.2. EXISTENCE OF ALGEBRAIC FREE OBJECTS 89

elements 1, 79,73 € A if and only if h(t) = h(t') since

h(t) = B(fA (sl,fA (32,33))) = f4 (h(sl),fA (h(52),h(53))) = (71 ® 1) @ 73.

and

]_Z(t,) = ]TL (fA (fA (Sl, 82) ,53)) = fA (fA (h(Sl), h(SQ)) , h(Sg)) = (1’1 @ 132) ® 3.
This leads us to the following definition.

DEFINITION 3.2.14. Let (A, F4) be an abstract algebra of type (F,p). Consider
terms t1,ts € T(#,)(S.). The abstract algebra (A, F4) satisfies the identity t; =~ ¢,
if h(t1) = h(tz) for every abstract algebra homomorphism A : T(x ,(S,) = A.

For a collection of identities X € Tz ,)(S.) x T(x,)(Sw), we say A satisfies ¥ when
A satisfies t1 ~ ty for every (t1,t2) € 2.

Further, if we consider any X ¢ T(x ,)(S.) x T(#,)(S.), then the collection of all
abstract algebras (A, F4) of type (F,p) which satisfy ¥ is called the equational
class defined by X.

Let (F,p) be a type and X € T (£ ) (S.) X T(7,)(S.) a collection of identities. Define
the category AbsAlg r .5 whose objects are the abstract algebras in the equational
class defined by > and whose morphisms are abstract algebra homomorphisms of
type (F,p). It is clear that AbsAlg z . forms a subcategory of AbsAlgr ).

As one might expect, one can also force an abstract algebra to satisfy a particular
identity by passing to a quotient of some kind. To formulate this precisely, we need
the following definitions.

DEFINITION 3.2.15 (Congruence relations). Let (A, F4) be an abstract algebra of
type (F,p). A relation 6 ¢ A x A is called a congruence relation on A if 6 is both
an equivalence relation and satisfies the substitution property: For every f e F with
p(f)>1andfor z,...,z,) € Aand yy, ..., Yy € A such that z; 0 y; for 1 <i < p(f)
we have that

FH @ won) 014 (g upi) -

DEFINITION 3.2.16 (Abstract quotient algebras). Let (A, F4) be an abstract algebra
of type (F,p) and 6 a congruence relation on A. Denote by A/6 the collection of
equivalence classes in A with respect to 6 and let go : A > A/6 denote the canonical
map. For every f e F, define the following:

(i) T p(f) = 0, define F47:= gy (£4).

(ii) If p(f) > 1, define fA/° (qe(:vl),...,qe(xp(f))):: ) (fA (;Bl,..‘,a:p(f))) for
L1y Tp(f) e A.

Define FA/%:= { fAl?: f € F}, then the pair (A/0, FA/?) forms an abstract algebra of
type (F,p) which we call an abstract quotient algebra.

It follows precisely from the fact that 6 satisfies the substitution property that
the induced basic operations on A/6 from (A, F4) are well-defined. The definition
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of the basic operations on A/ also immediately implies that the canonical map
qo: A — A[0 is an abstract algebra homomorphism.

We will use the next two results in the formulation of our main theorem for this
section.

PROPOSITION 3.2.17. Let (A, F4) be an abstract algebra of type (F,p) and 0 a
congruence relation on A. If X € A and A = Sg* (X), then AJ6 = Sg™? (¢ [X]).

PROOF. By Theorem [3.2.10] we have that A = Sg* (X) = Unen, Xn where the
sequence of sets (X, )nen, is defined. Then

Ap=a)=0| U x| U alx.

nENo nGNo

Define the following sequence of subsets (Y}, )nen, of A/0 by recursion:
Yo:=qo [XTU {fY: p(f) =0},
Yn+1::Ynu{fA/e(ylv"wyp(f)) : yla"'ayp(f)eynvaFSt' p(f)21}

By Theorem , we have that Sg/? (¢o [X]) = Unen, Yn- The desired result will
follow if we can verify that Y, = g9 [X,]. We prove this by induction. It follows
directly from the definition of the basic operations on A/# in Definition that
Yo = g9 [Xo]. Fix any n € N and assume that Y;, = ¢o [ X,,]. Since

Xn+1 = Xn U {fA (al, . ,ap(f)) A, .., Qp0) € Xn, f e F st. p(f) > 1}
from Definition [3.2.16| we have that Y,,; = gg [Xp.1]. Thus A/6 = Sg*? (¢o[X]). O

LEMMA 3.2.18 (|27, Lemma 5.2]). Let (A, F4) be an abstract algebra of type (F,p)
and let 0 be a congruence relation on A. The abstract algebra (AJ0, FAI?) satis-
fies t1 ~ ty if and only if (h(t1),h(t2)) € @ for all abstract algebra homomorphisms
h: T(]:,p)(sw) - A.

Our development of the theory above leads us next to the main result of this section,
which states in precise language that for every type (F, p) and every set of identities
Y € Tirp)(Su) x T(£,)(S,) and every non-empty set S, there exists a free object
over S in the category AbsAlgx 5. This result is found in [45], Theorem 2.10,
p. 82] and a proof is also given in [27, Theorem 5.4].

THEOREM 3.2.19. Let (F,p) be a type and take X € T(x ) (Su) x T(rp)(S.). Let
S be a non-empty set and consider the smallest congruence relation § on T(x ,(S5)
containing the pairs (h(t1),h(t2)) for all (t1,t3) € ¥ and all abstract algebra homo-
morphisms h: Tz p(Sy) = T(r,)(S). Then the following holds:

(II) Letv: S — Tir ) (S) denote the inclusion map and qo : T(r, 5)(S) = T(x,)(S)/0
the quotient map. Define j = qgot. The abstract algebra T(x ,)(S)/0 is gen-
erated by the subset j[S].
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(1I) For every (A,F4) € AbsAlgz .5 and every function h : S — A, there

exists a unique abstract algebra homomorphism h : Tirp(S)]0 - A such
that the following diagram commutes in Set.

S —— s Tz (5)/6
> 3
A

That is to say, the pair (T(fjp)(S)/G,j) is the free object over S of
AbSA']'g(.'F,p)7E

Using the content in Lemma |3.2.6| as a guidebook, the following can be done: Let
X be any algebraic category in Table [I We can encode the operations defined
on the objects in X into a type (F,p) (if the objects in X have lattice structure,
we use Lemma to encode the lattice structure using the operations @ and @).
Consulting the list of 21 identities in Lemma|3.2.6| we choose those identities that are
appropriate to the category X to generate a formal set of identities ¥ ¢ T(x ,)(S,,) x
T(7,)(S,). This gives us an associated category of abstract algebras AbsAlgx .5
By following the example of Lemma [3.2.5] we can construct a bijection between the
objects in X and the objects in AbsAlg x .y and this bijection will also preserve
the morphisms in X and the morphisms in AbsAlg r 5. Thus the categories X
and AbsAlg r .5 are isomorphic. By viewing each algebraic category X in Table
in this way, an application of Theorem will give us the following free objects.

COROLLARY 3.2.20 (27, Theorem 6.2]). Let S be a set. The following free objects
er1st.

(i) (FYS.(5).4),
(ii) (FY%(S).J),
(iii) (Fsef (S).).
(iv) (F&sE (5).4),
(v) (FYEA(S) . J),
(vi) (FYEA'(S).4).
(vii) (FYEAY(S), j).
Denote by F any of the objects in (i)-(vii), then the subset j[S] generates F.

The free objects listed above are, of course, not new findings. The free vector
space over a set is described in Section and the free (unital) algebra over a
set is obtained directly by taking the non-commutative version of the construction
(K[S],7) in Section [1.1.2] For the free vector lattice over a set, both the direct
construction and the universal algebra approach to existence has been known for a

© University of Pretoria



92 3. FREE OBJECTS

long time (see [13] and [18]). There is, however, no direct construction of the free
((positive) unital) vector lattice algebra over a set and the existence of these were
first recorded in [27].

We have thus far proven the existence of free objects for the pairs (Set, X) where
X is an algebraic category from Table [l There are a further 18 non-trivial pairs
of categories (X,Y) with X 2 Y for which we can construct a free object. It
turns out that it is not difficult to derive the existence of a free object between
these pairs of categories (X,Y) by using the existence of a free object between
(Set,Y). More details and examples are supplied in [27), Section 6], but the idea
behind the general approach is illustrated well enough by means of an example. We
will prove the existence of a free unital algebra over a vector space V. The free
algebra over a vector space is usually called the tensor algebra of a vector space
(see [23] Chapter III, Section 5]). However, our approach will prove the existence

of Félsgl (V') for a vector space V from the existence of F lszltgl (|V]) where |V| denotes
the underlying set of the vector space V.

PROPOSITION 3.2.21. Let V' be a vector space. The free object (F\A,lsgl(V) ,j) exists.

PROOF. Let V be a vector space and denote by |V| the underlying set of V

without any operations or identities. We have already established in Corollary|3.2.20
1

that the free object (Fgelf (v ,Jg ) exists. That is, for every unital algebra R! and

every set map ¢ : |V| - R! there exists a unique unital algebra homomorphism

E FAlg1(|V|) — R! such that the following diagram commutes

Set
V| —L—— FE% (V)
o @
Rl

For every A e R and x,y € V', consider elements of the form

J@+y) = (x)+5(y)),
J(Ax) = Aj(z).

Denote the above collection of elements by L and let I be the two-sided algebra

ideal generated by L. The quotient F‘Sd‘étgl(|V|) /I forms a unital algebra and the

quotient map ¢y : Fgéfl(|V|) - F’Stifl(WD /I is automatically a unital algebra ho-
momorphism thanks to the definition of the operations on the quotient (Defini-

tion [3.2.16)). The definition of the two-sided algebra ideal guarantees that the map

qroj:V — F‘Sb‘éfl(|V|) /I is linear: For z,y € V', we have

qroj(z+y)=qr(i(x) +j(y)) =qroj(x) +qroj(y).
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The analogous expression for scalar multiplication can also easily be verified. We

verify that the pair (F‘géfl (V) /I,qr0j ) has the necessary universal property: Fix

a unital algebra R' and fix a linear map ¢ : V' - R! and let ¢ : Fééfl(|V|) - R!
be the unique extension of ¢ when ¢ is considered as a set map. For the element
jx+y)-(j(x)+7j(y)) € L, we have

¢ (J(z+y) - (G(x)+35(y)))
=@z +y)) -e((x)) +o(i(y))
= p(r+y) —e(r) -p(y) =0.

Similarly, one can verify that ¢ vanishes on elements of the form j(Ax)—-\j(z) € L.
Since L generates I and ¢ vanishes on L we conclude that I € kerp. Now, define
the map @ : Fg‘;tgl(|V|)/I — R where ¢ ([a]) = ¢(a). Since I € ker @, the map ¢
is well-defined and is a unital algebra homomorphism. The definition of ¢ makes it
clear that ¢ o q; = ¢ and further ¢ is unique with respect to this property since for

Alg?!

any unital algebra homomorphism ¢ : Fg.¢ (|V]) /I - R satisfying £ o q; = ¢, we

have that
£([a]) =€oqi(a) =p(a) =poqr(a) = ¢ ([a])

for [a] € FAlg1(|V|) /I. Thus ¢ = &. As a result,

Set
@o(qroj)=(poqr)oj=poj=ep.

Let ¢ : Féétgl(|V|) /I — R!' be any unital algebra homomorphism such that 1 o

(qr07) = . Thus (¢poqr) o j = ¢ and the uniqueness of the map ¢ : Fgéfl(|V|) -

R' implies that 1 o g; = ¢ and the uniqueness of ¢ implies that ¢ = 1. Hence,

(F‘;f (|V|)/I,q10j) is the free object over V of Alg'. We note here that the

construction of this free object as a quotient along with the fact that j [|V|] generates
1

Fgi8 (JV]) (Corollary [3.2.20| (iv)) and Proposition 3.2.17|implies that gy o5 [V] does

indeed generate FAlg1(|V|) /1. O

Set

In summary, we have the following 25 non-trivial algebraic free objects.

THEOREM 3.2.22 ([27, Theorem 6.2]). Let S be a set, V' a vector space, E a vector
lattice, R an algebra, R' a unital algebra, A a vector lattice algebra, Al a unital
vector lattice algebra, and A'* a positive unital vector lattice algebra. Let Y be an
algebraic category from Table[1] and X any supercategory of Y from Table[l Ranging
over all valid choices of X 2Y generates the following table of existing free objects.
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Set VS VL Alg Alg! VLA VLA! VLAY
Set | S |FYS(S)|FYE(S) | FE¥(S) | F4E (S) | FYEA(S) | FYEN(S) | FYEA(S)
\E Vo EVE(V) | FOE(V) | Fo (V) | FYEA(V) | FVEA' (V) | FYEA" (V)
VL E FYRA(E) | FYEA' (E) | FYEA" (E)
Alg R | FAE(R) | FYEA(R) | FYEA'(R) | FYEA"(R)
Alg! R! FYLY (RY) | FYEAT(RY
VLA A | FVRA(4) | TV (A
VLA' Al FYLAT(AY)
VLA Al

TABLE 5. Table of algebraic free objects.

The top row and leftmost column of the table runs through all pairs of categories
(X,Y) from Table 1] with X chosen from the leftmost column and Y chosen from
the top row. If a cell in the above table has an entry FY (X)), then the free object
(FX(X),J) exists. Entries along the diagonal correspond to the pairs of categories
(X,X) where the free object in X over an object in X is just the object itself.
Entries below the diagonal are all blank since these pairs of categories (X,Y) do
not satisfy X 2Y as required in the definition of a free object. Blank entries above
the diagonal correspond to those choice of categories that are incompatible.

3.3. Pseudo-solutions of free object problems

In this section, we will define and prove the existence of a substantial number of
pseudo-solutions of free object problems. We will give a uniform approach for the
construction of these objects: All these constructions start with the abstract exis-
tence of some algebraic free object (F,j) from Table 5| This algebraic free object
is equipped with a seminorm p whose definition exploits the universal property of
(F,7) to give this seminorm necessary properties (i.e. the Riesz property and/or
submultiplicativity). By taking the quotient of (F,p) by kerp, we end up with a
normed structure that satisfies the necessary universal property of a pseudo-solution
and we may pass to a completion if the pseudo-solution is required to be complete.

Beyond the routine verifications one needs to make in these constructions of pseudo-
solutions, the most non-trivial step is the formulation of these seminorms mentioned
above. Credit needs to be given to Mr. Mitchell Taylor and Prof. Marcel de Jeu
for first developing the above approach which they used to prove the existence of,
amongst others, pseudo-solutions to the free object problem between the categories

BLA and Set.

We start with our definition of a pseudo-solution, for which we will need to introduce
some notation.

DEFINITION 3.3.1. Let X be a category from Table [T} 2 or 3] and consider X € X.
Define the collection of morphisms

M(X)={M e Homget(X,R) : M(2) >0 Vr e X}.
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Define the relation < on M(X) where M; < M, if and only if M;(z) < My(x) for
all z € X. This makes (M(X),<) into an upwards directed partially ordered set.
In particular, if X is a category of normed structures from Table [2] or [3, we may
consider elements of M(X) of the form M(x):= C |z| where C > 0. Denote this
subcollection by My(X).

DEFINITION 3.3.2. Let Y be any category of normed structures from Table [2] or
with X any category from Table [I} 2, or [ such that X 2 Y. Fix X ¢ X and
M e M(X). For Y €Y, define

Py (X,Y )= {p e Homx(X,Y): |o(z)|y < M(z) Ve X}.

REMARK 3.3.3. Let Y be any category of normed structures in Table [2| or [3| with
X any category from Table [T} 2 or 3] such that X 2Y.

(i) Let Y € Y and consider a morphism ¢ : X - Y in X. If X is a category
from Table [I], there exists M, € M(X) such that for all M > M, we have
that ¢ € @3/(X,Y), namely, M,(x):= |p(z)| for all x € X. Otherwise,
if X is a category from Table [2[ or |3| then ¢ is a bounded morphism and
there exists C, > 0 such that |¢(z)| < C, |z| for all € X. In this case,
we define M, (z):= C, |z| then ¢ € ®p(X,Y) for all M > M,. This simple
observation will be crucial in the sequel.

(ii) Let X and Y be categories of normed structures, either from Table [2] or [3]
such that X 2 Y. Fix X € X and consider the constraining function M e
M(X) where M(z):=|z|. For every Y € Y we have

®,,(X,Y) = Homx, (X,Y)

where X; is the subcategory of X with contractive morphisms.

DEFINITION 3.3.4. Let Y be any category of normed structures in Table 2] or [3] with
X any category from Table [T} [2] or [3] such that X 2 Y. Let X be an object in X.
If X is a category from Table , consider any M € M(X). Otherwise, if X is a
category from Table [2 or , let M € M,(X). Consider an object PX(X,M) in Y
and a morphism jy : X - PY(X, M) in X such that |jp(z)] < M(z) for all z € X.
The pair (PX(X, M), jar) is called a pseudo-free object over X of Y constrained by
M if it has the property that for every Y € Y and every ¢ € ®,,(X,Y") there exists
a unique contractive morphism ¢ : PX(X, M) -» Y in Y such that the following
diagram commutes in X.

X — P s PY(X, M)
> &
Y

If the above holds, the pair (P¥(X, M), ja), or by abuse of notation just the object
PY(X, M), is also called a pseudo-solution for the free object problem over Oy between
the categories X and Y constrained by M.
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This definition will allow us to prove that pseudo-solutions are essentially unique in
a very strong sense.

PROPOSITION 3.3.5. Fiz a category Y from Table [ or[3 and a category X from
Table [1, [3, or [ with X 2Y. Let X € X and fiz a constraining function M from
either M(X) or My(X) as appropriate. Then the following holds:

(i) Pseudo-solutions for the free object problem over X between the categories
X and Y constrained by M are unique up to a compatible isometric Y -
isomorphism, i.e. if pseudo-solutions (P, ja) and (P, 7%,) exist, then
there is an isometric Y -isomorphism ¢ : P, — Py making the following di-
agram commute in X.

Py
I
X )
k‘
Py

(11) Given a pseudo-solution (P, ja), the object in A(Y) generated by jy [X]
1s dense in Pyy.

(11i) In light of (ii), pseudo-solutions for the free object problem over X be-
tween the categories X and Y constrained by M are unique up to a unique
compatible isometric Y -isomorphism, i.e. if pseudo-solutions (P, jar) and
(P, dhy) ewist, then there is a unique isometric Y -isomorphism ¢ : P}, —
Py making the diagram in (i) commute in X.

ProOF. We prove (i): Consider pseudo-solutions (P, jr) and (P}, 75,). By
definition we have jy € ®a (X, Pyr) and jj, € @ (X, P),). Clearly the identity
morphism 1p,, : Pj; = Py satisfies 1p,, o jps = jar and is contractive. On the other
hand, by the universal property of a pseudo-solution there exists unique contractive
morphisms jTM : Py — P, and PIvE P’, = Py each uniquely satisfying their own
diagram in X.

j 7
X ———Py X ———P),
J i M Jm
P, Py

Thus the morphisms jj; o jM Py — Py and jM NIVE P’, = P, are contractive
and also satlsfy (]M OjM) OjM = jy and (]M O]M) o jy = jy- By uniqueness, we
have jas ojy = 1p,, and jj, o jm = 1p , thus ]M is a Y-isomorphism. To see that

Jm is an isometry, for x € P!, note that since jj, is contractive, we have

2l = 153 0 as @) < | e (@) < [l7e
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Since jjs is contractive, we conclude that j,; is an isometric Y-isomorphism.

For (ii), consider a pseudo-solution (P, jar). Let G denote the object in A(Y)
generated by the subset jy [X] in Py;. Denote by H the closure of G in Py, and
define the morphism j': X — H where j/(z):= j(z). The proof of Proposition
is easily imitated to show that (H,j’) is a pseudo-solution. By (i), there exists an
isometric Y-isomorphism ¢ : H — Pj; such that ¢oj = 5/, hence G is dense in Py;.

For (iii), consider the pseudo-solutions (P, ja) and (P, j},) we had in (i) where
we proved that jys : Py, = Py, is an isometric Y-isomorphism satisfying jaroj4, = ja-
If ¢ : P, — Py is any isometric Y-isomorphism satisfying ¢ o j), = ju, it follows
immediately from the fact that the object in A(Y') generated by j;,[X] is dense in
P’ that ¢ = jy. O

In the next result, we will construct the pseudo-solution to the free object problem
over a set S between the categories 