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Abstract

In this work, we focus on a general procedure for finding exact travelling wave
solutions for evolution equations with polynomial nonlinearites. Mathemat-
ically, looking for travelling wave solutions is asking the question whether a
given PDE has solutions invariant under a Galilean transformation; in such
a case, it can be reduced to an ODE. We discuss the existence of travelling
wave solutions by using phase plane analysis. We show that popular methods
such as the tanh-method, G’/G-method and many more are special cases of
the presented approach. Analytical solutions to several examples of nonlin-
ear equations are illustrated. In the application, we use the Maple program

to compute solutions to nonlinear systems of equations.
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Chapter 1

Introduction

The study of non-linear partial differential equations has been conducted in
many fields of study by various researchers. The fields like Applied Mathe-
matics, Theoretical Physics and Engineering utilize partial differential equa-
tions (PDEs) to solve their daily problems [1]. These equations are classi-
fied as linear PDEs or nonlinear PDEs. PDEs may be divided into three
categories, which are elliptic equations, parabolic equations and hyperbolic
equations. The Laplace equation is the example of an elliptic equation,
heat equations are parabolic equation and wave equations are hyperbolic
equations. Both linear and non-linear PDEs often appear in various fields,
like Mathematical Biology [2], Physics 28], Plasma Physics [4], Solid-state
Physics [5], and Chemistry [6]. Equations like reaction-diffusion equations
are used to model the spread of populations and tumors in mathematical
biology, and they are also used in chemistry to study heat conduction prob-
lems. Physicists use the Schrodinger equation in quantum mechanics and

Maxwell’s equation in electrodynamics. The mathematical methods devel-
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oped to deal with linear and nonlinear equations are different. The solution
space for a linear, homogeneous PDE is a vector space and the linear structure
of that space can be used in constructing solutions with desired properties
that can meet diverse boundaries and initial conditions. This is not the case
for nonlinear equations [1]. Nonlinear PDEs are more useful to solve world
problems. The solution methods for nonlinear equations are perturbation
methods, similarity methods, transformation, numerical methods and trav-
elling wave solutions. In current mathematics, the theory of travelling wave
solutions of nonlinear PDEs is applied to describe various situations in ecol-
ogy [7], farming [8], forestry [9], cell structure [10], etc. The motive of the
presented study is to find exact solutions to nonlinear PDEs using an ap-
propriate method. Methods like variation iteration [18], tanh method [23],
G’ /G-expansion method [24], extended G'/G-expansion method [22], etc.,
have been employed to generate exact traveling wave solutions of nonlinear
PDEs. Some other researchers claim that their methods produce travelling
wave solutions when, in fact, this is not true. For instance, by the definition
of the travelling wave solution to be introduced, the modified tanh — coth
method [25] does not generate travelling wave solutions. It must be noted
that no single method mentioned above can be utilized to solve all types of
nonlinear PDE’s. The hyperbolic tangent method (tanh-method) is men-
tioned and tested as a potent method helps in finding exact traveling waves
solutions of nonlinear PDEs [23]. The tanh method was first introduced by

W. Malfliet. Its solutions are functions of a hyperbolic tangent.

In this thesis, we focus on a general procedure for finding exact travelling
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wave solutions of nonlinear evolution equations with polynomial nonlineari-
ties. The structure of the thesis is as follows. In Chapter 2, we introduce the
theory behind travelling wave solutions. In Chapter 3 we give theory for sys-
tems of differential equations. The chapter then proceeds to the phase plane
analysis showing the existence of travelling wave solutions for non-integrable
equations (equations like reaction-diffusion, one of them is the Fisher equa-
tion). Chapter 4 gives an overview of the method used to find travelling
wave solutions. In Chapter 5, we apply the method outlined in Chapter 4.
In Chapter 6, we present the second approach (slightly different from the one
presented in Chapter 4) to finding exact travelling wave solutions and their
application. Chapter 7 summarizes the results we obtained with the method
developed in the thesis and compares the results with previous results by

other authors.
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Chapter 2

Travelling wave solutions

The travelling wave is a wave that moves in a certain direction and keeps the
same shape as it moves. Its travelling speed remains constant for the entire
motion. In real life, travelling waves describe movement processes. The
normal case is a movement from one equilibrium to another. The travelling
wave solutions of Reaction-Diffusion PDE can be obtained using the tanh-
method, G'/G-method and many more. We want to show that all these
methods are examples of one general approach. The objective of the thesis is
to describe the theory behind method of finding travelling wave solutions and
later demonstrate its application by giving examples. The number of natural
processes involve mechanisms of both diffusion and reaction [16], and such
problems are often modelled with equations of the form

ou 9*u

5 = Qg + ). (2.1)

In this equation, f is a nonlinear function (which describes reaction processes)

and d,, is a diffusion constant. Our interest is to investigate the existence of

10
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travelling wave solutions to Eq.(2.1). The method of travelling wave solutions
discussed in this work is based on the assumption that the solution of a
PDE is a function of a linear combination of the space variable x and time
t, z(x,t) = k(x — ct). Then the solutions of the form u(x,t) = U(k(x —
ct)) = U(z), where the function U(z) has finite limits as z — =+oo, are
called travelling wave solutions. The constants, k and c, are called the wave
number and wave speed, respectively. The wave front solution is described

as a travelling wave solution with different constant states at oo, that is,

lim U(z) =u; and lim U(z) = us. (2.2)

z——00 z—+00
Figure 2.1 shows the profile of a travelling wave front. Here, U(z) decreases
monotonically with z from the constant value u; to the constant value us.
The wave front occurs in waves of combustion, waves in chemical kinetics,
etc. If uy = us, then the travelling wave is called a pulse. The wave form
U, k and c are unknown. The function U is called a standing wave solution
when c is equal to zero. If Eq.2.1 transforms from two independent variables
to a single independent variable u(x,t) = U(z) and use the Chain Rule, we

obtain
dU Oz 0z [0zd*U dU d [0z
ot Mo \owar T s (a_ﬂ ).
Hence, Eq.2.1 can be written as the ordinary differential equation (ODE)
au d*U

—ch— =d, k2— + f(U). (2.4)

(2.3)

The canonical form of Eq.2.4 is

au d22/1
=S b nf ), (25)

where h = dLCk and n = i To further illustrate the various forms of travelling

11
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Figure 2.1: Travelling wave: wave front.

wave solutions, we present the travelling wave solutions of two equations ,

the Burgers equation and the KdV equation.

2.1 Burgers equation

As the first example, we consider the Burgers equation arising in fluid dy-

namics,

o ou o
ot u@x ox?

where d is a constant. It is an equation consisting of three terms, time

=0, (2.6)

2%u
0x2"

u
ot

nonlinear convection term u2% and linear diffusion term

evolution g
X

Using the travelling wave transformation, we get

au a U
12
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Integrating Eq.2.7 with respect to z yields

k d
—ckU + ~U* — dk2—u + Ay =0,
2 dz

where A, is a constant of integration. After rearranging, we have

d/#% = —cklU + gzﬁ + As,.

z
Factorizing the right hand side of Eq.2.9, we obtain
ko
—ckU + 5]/{ + A2 = (U — ul)(Z/{ — 'LLQ),
where

up = ck +/2k? — 2kAs  and  uy = ck — \/2k? — 2k A,,

provided c?k? > 2kA,. Hence, the wave speed

. U + Uo
2k
Eq.2.9 turns to
au
dk’2a = (Z/l - Ul)(u — Ug).

(2.8)

(2.10)

(2.11)

(2.12)

(2.13)

We assume that uq,us € R and u; > us. Introducing the integral in Eq.2.13

results in

1 1
/ (Z/{ _u1)<u_u2)du = %(24‘143)

Integration gives

—1 1 1 1 1
= — (24 A).
u2—u1/2/l—u1du+u2—u1/l/{—u2du dl{?2(z+ 3>
1 Z/{—U,l 1
1 = — A
Uy — U2 . Z/{—UQ dk’2<z+ 3)
13
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In Eq.2.16, we only consider the case where us < U < uy (travelling wave
solution exists only in between this interval; more details are given in the
next section on the theory for systems of ODEs). This leads us to

Ui — U Up — Uz
| = As) . 2.1
8 <u - u2> T (2.17)

Hence, the wave form is given by

Uy —u
Uy + Upe arz FTA3)

Uz) = . 2.18
&= (218)

From Eq.2.18, we notice that indeed

lim U(z) =u; and  lim U(z) = us. (2.19)

Z——00 zZ—+00

The plot of Eq.2.18 takes the same shape as in Figure.2.1, U(z) decreases
monotonically with z from the constant value u; to us. The wave profile
travels from left to the right at a constant speed ¢ = “12—*];“2 The presence
of the diffusion term in this problem prevents formation of the shock wave.
The diffusion coefficient d changes the shape of the wave profile. Large d has
a significant diffusive effect and the wave profile has a shallow gradient. If d

is small, the gradient becomes steeper.

2.2 Korteweg-de Vries equation.

The KdV equation is
ou ou  Fu

o Yor T om

It is derived from fluid mechanics to describe shallow water waves in a rect-

= 0. (2.20)

angular channel [1]. Rewriting Eq.2.20 in terms of z by setting u(z,t) =

14
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U(k(z —ct)) =U(2), we get the ODE

au au d*u
—ck— + kU— + kK*— = 0. 2.21
Nz * udz + dz? 0 (221)
We can integrate Eq.2.21 to get
U? Ld°U

where A; is a constant of integration. Multiplying Eq.2.22 by %, we get
a k dU du d*u au 0

—ckU— + - U*— + kP —— + A — = 0. 2.23
¢ dz+2 alz+ dzalz2+ Yz ( )
After integrating Eq.2.23, we obtain
KB (dUN? ko )
— | — = —— A A 2.24
5 <d2> 62/{ + ckU* + AU + As, ( )
hence
diU 1 2c 2 2
— = U+ =U+ AU+ A= /MU 2.25
dz g T et e @), (2:25)

where A, is the constant of integration and we use plus sign in the square root.
Imposing boundary conditions lim, , . U(z) = uy and lim,_, ;U (2) = us,

we get

k
Al = EU% — k:cu1 — Agul,

(2.26)
Al = EU% — k?C’LLQ — AQUQ.
From Eq.2.26, we determine the wave speed to be
1 A
c= 6(u2+u1) — ?2 (2.27)

Eq.2.25 is separable and its expression on the right-hand side is a cubic

in U. To factorize the cubic expression, different cases must be considered

15
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depending on the number of real roots. The cases lead to solitary waves and
cnoidal waves. The cnoidal wave case is when the solution oscillates between
two values hy < hy (which we can assume are also roots of M (U) without
loss of generality). In this study, we are interested in the case when one is a

double root (solitary wave), hence

——u3 —u2+ 3A1L{+ A2 U—a)*(ay—U) , 0<a; <.

3k? k? k k3
(2.28)
After arranging Eq.2.25 and integrating, we get
1
/ U = /dz + Az, (2.29)
V(U —a1)* (o —U)
where As is a constant of integration. If we let
U = a; + (g — ap)sech’w,
then
dUd = —2(a — ) tanh wsech®wdw, (2.30)
and

(U — a1)*(a2 —U) = (a2 — aq)?sech*v ((a — 1) — (2 — a)sech’w) |
= (a2 — ap)?sech*w (1 — sech’w),

= (ay — ay)®sech*w tanh?® w

(2.31)
Substituting Eq.2.31 and Eq.2.30 into Eq.2.29, we get
/ —2(ae — ) tanhwsech w du — /dz+A3,
\/ (g — 1) 3sech4w tanh? w (2.32)

/ —2(ay — o) tanh wsech*w
(o — oy )sech®w tanh wy/am — o

16
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Eq.2.32 becomes
-2
——dw = As. 2.33
/ =z + 4, (2.33)
Evaluating the integral, we get

w= Y2014, (2.34)

-2
Hence, the travelling wave solution is given by

VT8 ),
YRSty (2.35)

U(z) = a;y + (g — a;)sech?

= + (062 — Oél) (1 — tanh2

4
= + (042 — Oél) — e .
(e et g g e (Z+A3))

2.3 Solving PDEs

Many equations of mathematical physics present pulse-type solutions, e.g.,
the Boussinesq equation, the Sine-Godon equation, the Born-Infeld equation,
and the nonlinear Schrodinger equation [28]. The methods used in Example
1 and Example 2 can not solve more challenging PDEs problems. Reaction-
diffusion equations can not be solved in closed form. In the following Chapter
we give a geometric approach for solving reaction-diffusion equations. Before
we introduce reaction-diffusion travelling wave solution theory, we start by
giving a relevant theory for ODEs which might be useful in determining the

existence of travelling waves for R-D equations.

17
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Figure 2.2: Pulse wave profile (KdV equation profile), where ay = 1, ap = 2.
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Chapter 3

Theory for systems of

differential equations

In this chapter we introduce the general theory of one and two dimensional
(scalar) autonomous equations and use it to find qualitative information

about their solutions.

3.1 Equilibria and their stability

Consider the system of autonomous equations

dU

— =P(U), (3.1)

where P : R® — R", n > 1. Eq.3.1 is called an autonomous system because
function P(U) does not depend explicitly on z. A point U* is an equilibrium
point of Eq.3.1 if

P(U") =0.

19

© University of Pretoria



Then, the equilibrium solution is
U(z) = U", Vz.

The stability definition states that the solution U(z) of Eq.3.1 is stable if ev-
ery other solution U(zy) = Uy (for different choice of initial data) that starts
sufficiently close to U(z) will remain close to it for all times and asymp-
totically stable if it returns to equilibrium point. The precise definition of

stability of equilibrium points is:

Definition 3.1.1 The equilibrium point U* is stable if for any given € > 0
there exists a 6 > 0 such that if Uq satisfies

U0 = U*[| <,
then the solution U(z) satisfies
||U(z) = U"|| <€ Vz>0.

If U* is not stable, then it is called unstable. Additionally, U* is called
attracting if there is 6* such that if

|Up — U*|| < 07,

then

Z—00
If 6* = oo, then U* is called a globally attracting equilibrium. Furthermore,
the equilibrium U* is called asymptotically stable if it is both stable and at-
tracting. If U* is globally attracting and stable, then it is called globally

asymptotically stable equilibrium.

20
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3.2 Scalar equations

Consider a one dimensional scalar autonomous equation

dUu

i PU), (3.2)
where P(U) is a nonlinear function. All autonomous equations are separable
and hence can be solved by quadrature. Although the explicit formula for
the solution is often impossible or difficult to derive, can we use graphical
methods to represent and better understand it. As an example, we consider

P(U) = pU? +~U + o, then

aU
- = pU? + U + 0. (3.3)

In this case, P(U) = 0 implies

Uy — Y+ VY —dpo U, — - — V7 —4po
2p

2p

where 7> —4po > 0. These points represent what we call equilibrium solutions
to Eq.3.3. These are solutions of the form U(z) = Uy and U(z) = U;. An
equilibrium solution means that, if we start the system from the initial state
being an equilibrium point, the physical system does not move. The next
step is to present a solution of Eq.3.3 by constructing a phase diagram. For
simplicity, we let p = —1, v = 1 and ¢ = 0, then we plot the polynomial
function P(U) = U — U?. Hence, the equilibrium points are Uy = 0 and
Uy = 1. In the interval P > 0, we have an increasing solution (that is
indicated by right arrow) and if P < 0, the solution decreases (shown by left
arrow), as shown in Figure 3.1. The phase diagram of Eq.3.3 is shown in

Figure 3.1. Equilibrium point (1,0) is an attractor (stable), point (0,0) is a

21
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(0,0)

U
; (1,0)

Figure 3.1: The graph of P(U) =U — U*.

repeller (unstable). We also have semi-stable (but not graphically represented
here) if and only if the solution flows towards the equilibrium point on one

side and flows away from the other side.

Theorem 3.2.1 (Stability of nonlinear equation) Let U, be an equilib-
rium point of Eq.3.2 such that P'(Uy) # 0.

o The equilibrium point Uy is stable if and only if P'(Uy) < 0.
o The equilibrium point Uy is unstable if and only if P'(Uy) > 0.

The last step is to plot solutions on the Uz-plane using information in Figure
3.1. Here, we take the horizontal axis of Figure 3.1 to be the vertical axis
of the Uz-plane. In Figure 3.2, the z-dependent solutions are in red or green
and the equilibrium solution in blue. Equilibrium points in Figure 3.2 are
called equilibrium solutions in the Uz-plane. The equilibrium solution U = 1
is stable (represented by a blue solid line) and the equilibrium solution U = 0

is unstable (represented by a blue dotted line). Next we find the analytical

22
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unstable

U
1 % stable
N ¥

Figure 3.2: The graph of solution U for different U(0).

solutions for Eq.3.3

du
gsz2+7U+a.

Eq.3.3 is a separable first order ODE which can be solved by integrating both
sides, that is,

1
dU = [ dz+ A, if pU?+~U 0 3.4

where A is the integration constant. The integral of this kind can give us three
different solutions under different cases of the discriminant of pU? +~U + o,
which are 4% — 4po > 0(we get two real roots), 72 — 4po = 0 (one real root)

and 72 — 4po < 0 (no real roots). In this study we only consider the case

72 —4po > 0. (3.5)

© University of Pretoria



Factorizing the polynomial, we get

- A -y = VA
pUr + AU +0 = |U — L\/_ U— M
2 2 (3.6)
1
= 4—p(2,0U + 4 — VA (20U +~ — VA),
where A = ~% — 4po. The equilibrium points of Eq.3.3 are
g T1+VA
2p
and
U = ﬂ
2p
We then rewrite our integral as
4 / L dur / FA BT
p =/ z ) .
(2pU +~ = VA)(2pU + 7+ VA)

After introducing partial fractions on the left hand side of Eq.3.7, we get

2 ! v — 2P ! U
VA 20U +— VA VA J 2pU +v+VA

Substituting z = 2pU + v — VA and y = 2pU + v + VA, we get

1 (1 1 (1
— [ cdr— — [ ~dy =2+ A,
7=z [

1

= [z+A (3.8

20U +v — VA (3.9)
\/ZH2PU—|—7—|—\/Z =z+ A.
An absolute value can be eliminated by considering three cases:
2pU +v — VA n(%) @+ > VA,
U va| | (EERR) @) < VA,
\hl (%) if —vA < (2pU +7) < VA.
24
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Due to its implications for travelling wave solutions, described later, we shall

focus on the case which lies between equilibrium points. Then the third case

—VA < (20U 4 ) < VA leads us to

1 A — (2
(VA= @UE)) oy (3.10)
VA 20U + v+ VA
Solving Eq.3.10, we get U as an exponential or hyperbolic function
\/Z — (2,0U + 'Y) :e\/Z(Z+A)
20U + v + VA
2pUeVBEHA) 4 2ol =v/A — y — 7eVBEHA) _ {/NeVAGEHA)
U(2p(1 4 eV2EHY)) =y/A(1 — eVAETA) _ (1 4 ¢VAEHA) (3.11)

\/Z(l _ e\/Z(erA)) —~(1+ ex/Z(z+A))
2p(1 + eVAG+HA))

v VA (1 _ e\/Z(z—i-A))

2p 2p 1+ eVA(z+A4)

Furthermore,

%

N ) (#4+4) _ o (z+4)
tan z+ = .
2 ( ) e=F2(+A) 4 B (=+A)

B

™

5

5 (4 A)) by €20 t
z+4 A) Ty we ge

1 — e\/Z(z—i-A)
A) — .

Substituting tanh (—‘F Z+ A)) in Eq.3.11, we get

If we multiply tanh ( 5

ﬁ

tanh

2

U(z) = = 4 V=400 o (_71 (m(z v A))) . (312)

2p 2p

25
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3.3 Two-dimensional nonlinear system

Consider a two-dimensional autonomous system

dIl
% :gl(m,Iz),
(3.13)
%: (21, 22)
dt g2(T1,T2),

where functions g¢;(z1,z3) and go(x1,22) are nonlinear. The solution of
Eq.3.13 is graphically represented in the x;25 plane, called phase plane. The
solution curve is called an orbit, path, or trajectory of Eq.3.13. The function
g1(x1, ) determines the motion of the solutions in a phase plane in the x;
direction at location (xy,z3). Similarly, ga(x1,22) determines the motion in
xo direction at location (z1,x2). The point (&1, &) is called equilibrium point
if and only if

91(&1,62) =0, 92(&1,&2) = 0. (3.14)

The trajectories of Eq.3.13 and equilibrium points graphed in the phase plane
are called the phase diagram. We then assume that g;, go have Taylor ex-

pansion at equilibrium point £. That is,

91(71, 2) = 91(61,&2) + g—zi(&?&)(% — &)+ g—g;(&?&)(@ — &)+,

09s

92(71, 2) = g2(61,&2) + 8—x1(§17§2)($1 — &)+ g—ﬁ(&?&)(% — &)t

Let X7 = (71 — &), Xo = (22 — &) and G1 = 91(£1, &), Go = 92(&1,&2)-

Therefore, we get

0G 0G1

g1(x1,29) = G1 + 0_x1X1 + a—IzX2+... ’
(3.15)
(QJ .1')—G —|—@X +@X 4o
92(%1,T2) = G2 oz, 1 By 9 )
26
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Looking back, we have 1 = X; +&; and x5 = X5+ &; and equilibrium points

(&1, &) are constants, that means

d$1 dX1 d$2 dX2
_ dXy ary _ dXa 3.16
@~ a ™ T a (3.16)

If we substitute Eq.3.16 and Eq.3.15 into Eq.3.13, we get

dX oG oG

o+ 22X X

dXQ 8G’2 8GQ '
dt G2 + (%1 1+ 6.1‘2 2+

If we neglect second order terms in Xy, Xy and use Gy = G5 = 0 since &1, &

are equilibrium points, then we obtain linearization of Eq.3.17 at (£, &)

dX,  0G, ,  9Gh

= X X
ng_(?GgX +(9G2X '
dt N 8331 ! 6.1'2 2
which can be written as
aG1 9G4
dt 0Gy  9Gs )
X By 0w X
or, in compact form,
dX (t
% =GX(t), (3.20)

where G is the Jacobi matrix at (£1,&2). The equilibrium points of two di-
mensional nonlinear systems are classified in line with the eigenvalues of their
corresponding linearization. The eigenvalues \ of a square matrix G(&;, &)

are the solutions of

det(G(&1,&) — M) = 0. (3.21)
(Classification of an equilibria of linear 2-dimensional systems.
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Definition 3.3.1 [16] The equilibrium point (§1,&2) of a square matriz (2X2)

18:

a stable node if Ao < A1 <0, both eigenvalues of G are negative;

a unstable node if 0 < \; < Ay, both eigenvalues of G are positive;

e a saddle if \{ <0 < Ay or Ay <0 < A\, one ergenvalue of G is positive

and the other is negative,

e a stable degenerate node if \1 = Ao = X < 0, equal negative eigen-

values;

e o unstable degenerate node if \y = Xy = A\ > 0, equal positive

ergenvalues;

e q center if \y = v+iw, \y =v—1w and v = 0, both eigenvalues of G

are pure 1maginary;

a stable focus if \1 = v+ iw, \y =v —iw and v < 0;

a unstable focus if \y = v +iw, \og = v — 1w and v > 0.

Equilibrium point (&, §2) is sometimes called hyperbolic if real part of A\ » #
0.

Theorem 3.3.1 [16] Suppose that g is a differentiable function in some
neighborhood of the equilibrium point (&1,&). Then,

o The equilibrium point (&1, &2) is asymptotically stable if all the eigenval-

ues of the matriz G have negative real parts, that is, if the equilibrium
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solution X (t) = 0 of the linearized system is asymptotically stable. In
particular, for sufficiently small initial conditions the solutions are de-

fined for all t.

o The equilibrium point (&1, &) is unstable if at least one eigenvalue has

a positive real part.

o [f all the eigenvalues of G have non-negative real part but at least one
of them has real part equal to 0, then the stability of the equilibrium
point (£1,&) of the Eq.8.20 can not be determined from the stability of

its linearization.

In summary, a phase diagram can be determined by finding all equilibrium
points, analyzing their nature and stability and examining global behavior
and structure of the trajectories. If a trajectory connects two equilibrium
points in the system, that connection is called a heteroclinic trajectory. The
trajectory connecting an equilibrium point to itself is called homoclinic tra-

jectory.

3.4 Reaction-diffusion travelling wave solu-
tions: theory

In this subsection, we give a procedure to understand the travelling wave
solutions of reaction-diffusion equations and we also perform phase plane
analysis. We then consider the reaction-diffusion equation,

ou 9%u
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where f(u) represents reaction and it is a nonlinear function of u. Applying
u(z,t) =U(z) in Eq.2.1, we get

au d*U
—ck—— = d,k*— R. 2

We now have a second order ODE of a single independent variable. The
equation can’t be solved explicitly. To understand its solution, we write the
equation as a first order system. The system turns out to be an autonomous
system. A phase plane can then be used to study it. Transforming Eq.3.23

into a first order ODEs of two unknowns, ¢ and % =), we get

d
N, (3.24)
dz — d kT

To continue with our investigation, let us assume that f(U) = U(1—U). Then
the equation becomes the well known Fisher equation. Eq.3.24 becomes
au
dz
av 1
v _ e,
dz duk d,k?

V?
(3.25)

Ul -Uu.
We are interested in travelling wave solutions, i.e., the solutions ¢ such that
le\rinoou(Z) = Ukoo!

It can be proved that

So, we are interested in solution such that

lim (U, V) = (tizoo, 0).

z—+oo
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But points (u+s,0) are the equilibria of Eq.3.22. So, looking for travelling
wave solutions for Eq.3.22 is equivalent to looking for solutions of Eq.3.22
joining equilibrium points. Points &; and &, are equilibrium points of Eq.3.25
if

g, V)=V =0,

w1 (3.26)

gg(U,V):d T kQ(u—zﬂ):o.

Hence, we get two equilibrium points, &; = (0,0) and &, = (1,0). The Jacobi

matrix of the linearized system is

0 1
cuvy=|_ . | (3.27)
duk?  duk

Jacobi matrix of the linearized system at the equilibrium point 6, is

0 1
coo=( | (3.28)
T 4k

By using Eq.3.21, we get two eigenvalues,

e A= et I
A= = E R and o, = C+2dck v (3.29)

If ¢* > 4d,, the eigenvalues are real and both are negative (thus point (0,0)
is a stable node) and if ¢® < 4d,,, (0,0) is a stable spiral (the eigenvalues are

complex with negative real part). The second equilibrium point, &, leads us

to
0 1
G(1,0) = , B (3.30)
duk?  duk
and the eigenvalues are
A= —c— 2\/d02k+ 4d, and Ny — —c+ 2\/d02k—|— 4du. (3.31)
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Here A1, Ay are real numbers of opposite signs. It means (1,0) is a saddle
point. Point (0,0) is stable and point (1,0) is unstable and they are sepa-
rated. For the existence of a travelling wave, there must be a path connecting
two points: (0,0) and (1,0). As indicated by arrows, the path only connects
from unstable point (1,0) to stable point (0,0). Figure 3.3 shows how we
connected the stable and unstable points using dashed lines. Assuming that
the path connecting (0,0) and (1,0) exists, then the path is expressed by
U,V with boundary conditions

Vv

Travelling wave trajectory

Figure 3.3: The Fisher equation phase plane trajectories.

lim U(z)=1 and lim U(z) =0. (3.32)

z—»—00 z—+00
The path connecting (0,0) and (1, 0) represents a monotone decreasing trav-
elling wave solution (Figure.3.4). The existence of a travelling wave solution

is based on the existence of a path connecting two equilibrium points in the
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-6 —4

Figure 3.4: Travelling wave solution to Fisher’s equation when ¢? > 4d,

phase plane.

-2

0

z
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Chapter 4

Beyond the ’tanh’ expansion

The method is based on a method proposed by [15]. In this section we
propose a more systematic way of that extent to find exact solutions of
nonlinear equations with polynomial nonlinearities. The examples include
equations such as the KdV equation, Burgers Equation, as well as Reaction
Diffusion equations. We focus on nonlinear PDEs of only two independent

variables, space x and time t of the form

ou L o0u *Mu

where
/8 .
O(u) =Y e, (4.2)
§=0

and 7, w,f are natural numbers. As explained earlier, we seek travelling
wave solutions using travelling wave coordinates, u(x,t) = U(z), where z =

k(x — ct), ¢ > 0. Then Eq.4.1 turns to an ODE in terms of z,

™ ™y g et

d =0. 4.
dz dz dzvw +oW) =0 (4.3)
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We presume that the solution of Eq.4.3 can be written as
Uz) = Zaifi7 (4.4)
i=1

where a; = a1, a9, , a,, m, are constants to be determined and fy,--- , f,,
are functions from a given set F = {fi, fo, -+, fm, - }. We denote the
set of linear combinations of f;’s by LinF. We assume that F satisfies the

following assumptions

Al. F =A{fi,fo, -, fm, -} is a given linearly independent set of func-
tions.
The infinite set of functions F = {f1, fo, -+, fm, -+ } is linearly inde-
pendent if and only if every finite subset G = {f1, fo, -+, fin} Of F is
linearly independent. A subset {fi, fo, -, fin} is linearly independent
if {f1, -+, fm} of functions

cfi(x) 4+ cafe(z) + -+ e fmz =0, Vo, (4.5)

implies that ¢y = ¢y = -+ = ¢,,, = 0, where ¢, o, -+ , ¢, are constants.
Sometimes it is not easy to just use definition to show that a given set
of functions is linearly independent. We find Wronskian as a powerful

tool to determine independence of functions. The Wronskian matrix of

{f1, 2o+ fn} 18

N1 Lo fm
W(fi for oo fn) = f f fj“ . (46)
fl(mfl) 2(mfl) o félmfl)
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Then, the set {fi, fo, -, fm} is linearly independent if and only if

det(W<f1?f27 T >fm)) 7& 0.

A2. The product of any two functions f;, f; € F satisfies f; x f; € F.

Lemma 4.0.1 For any f;, f; € LinF, fi x f; € LinF.

Proof of Lemma 4.0.1: Let g = Y 1" a;f; and h = 3 7" b; f; be two

of functions in LinF. Then,

mi1 m2

g*xh= Zzaibjfifj = chfsa
s=0

i=0 j=0

where a; * b; = ¢; and f; * f; = fs, s € N. By A2, f, € F and we

conclude that f; * f; € LinF.

A3. If f; € F, then L f; € LinF.

Lemma 4.0.2 (a) If g € LinF, then Lg € LinF.

(b) If g € LinF, L9 € LinFn € N.
(c) g jz—nnh € LinF for any g,h € LinF.

Proof of lemma 4.0.2.
(a) Let g € LinF, then
d o~ d
ag = ; ai@fi
=D i) bif;
i=0  j=0
mi,2

= Z Cifi7
=0

36

© University of Pretoria

(4.7)



Y
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

Q= YUNIBESITHI YA PRETORIA

for f; € F, hence % € LinF by A3. (b) Consider higher derivative,
from proof (a), let d% g = g1 € LinF, then

d
g1 = Z ai%fi

=0

m3
=>_ail;
j=0

(4.8)

and
d o d
@91 = ; Oéi@fz

mq ms
IZ%’Z@JZ’ (4.9)
i=0 =0
mas

= Z Yifi
i=0

for f; € F, thus d%gl € LinF. It follows the same trend for the third,
fourth, derivative. Therefore

n

d

where n is a natural number.

(c) If g € LinF, then from (b) £=h € LinF, therefore

n mi m2 dn
g * ﬁh = ; aifi jgo bj@fj
m1 ma ms
:Zaifizbjzckfk (4.11)
i=0 =0 k=0
me
= Z agbjcr fi * fr.
ij.k=0
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From A2 f; x fi, € LinF = f, then

mn

mr
—h - iJs-
g% o ;5 f
Therefore g x L-h € LinF for any g,h € LinF.

In the next subsections, we introduce four different examples of functions
that can be used to express a nonlinear PDE solution. In each example, we

also demonstrate that the introduced conditions are satisfied.

4.1 Example 1
As an example, we consider a function U(z). We define
F={1,UU%. -} (4.12)
We assume that the solution of Eq.4.3 is expressed as
UU) = i a;U", (4.13)
i=0

with U = U(z) satisfies Eq.3.2. We then introduce the Wronskian (W (f, -, fa))
to test independence. Any finite subset {1, U, U?, - - } is contained in {1,U, U?,--- ,U"}
for some n. Then, from the definition of linear independence of functions,

the set {1,U,U?,---} is linearly independent iff for any n, the only solution
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to Eq4.14is0=c¢c, =+ =cpy1 =0.
1 U U? e ur
0 1 22U - nU" 1 a1 0
0 0 2 n(n —1)U"2 o 0
= . (4.14)
0 0 0 - nn—1)(n-2)U"3 :
: Cn+1 0
n!
For condition A2, we let
fi=U,  fieF, ieN, (4.15)
and
fi=U7, f;i €F, j€N. (4.16)
Then,
fix fj=0", (4.17)

Therefore, f; * f; € F. Conditions Al and A2 are satisfied. to prove that
A3 to satisfied, we use f; = U’. Then

d -, dU

—f, = -szl_.

dzf ! dz
We see that for A3 to be satisfied, % must be a polynomial in U, hence we
must have &2 = P(U), see section 3.2. Postulate is that

Iim U = Uugne.
z—*+oo

This means that

lim U = ﬂ:l:om
z—+oo

where U(z) is given by Eq.3.12.

39

© University of Pretoria



UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
W YVUNIBESITHI YA PRETORIA

4.2 Example 2

Here, we consider function U% ,with 0 < a < 1, we define F as
F={1,U0%(U%?---}. (4.18)

We then assume that the solution is expressed as
UU) = a; (U (4.19)
i=0
In this study, we assume that a = % for k € N. By following the same

procedure as in Example 1, we can easily conclude that all three conditions

are satisfied if F = {1,U%, (U*)?,--- }.

4.3 Example 3

Now consider the extended-Example 1 method. This extended method is
derived from the so-called the extended-G’/G method. The G’/G method
was introduced by Wang, Li and Zhang [17] to search for travelling wave
solutions of nonlinear evolution equations. The main step of this method is

to assume that the solutions of Eq.4.3 can be expressed in the form

N

G\’
U=SN a(=), 4.20
> () (1.20)
where G = G(z) satisfies the differential equation
G"+ NG+ pG = 0. (4.21)

Later, Shimin Guo and Yubin Zhou expanded the so-called G'/G method.
They formed the method called the extended G’/G-expansion method. The
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method is applied to find travelling wave solutions of Whitham-Broer-Kaup-
Like equations and coupled Hirota-Satsuma KdV equations [22]. In the ex-
tended method, we assume that the solution of the nonlinear ODE is ex-

pressed as

U(z) = ap + éa (%) + éb (%)H o (1 + % (%>2> (4.22)

where ag, a;, b; are constants to be computed; o = &1, n is a positive integer

and G = G(z) satisfies

G+ uG =0, (4.23)

where 1 is a constant. Simplifying and modifying the method, we let G'/G =
U and obtain

n

U(2) = ag + zn: a;(U)" + Z bi(U) 1/ pU2 + U + o, (4.24)

=1

where U = U(z) satisfies the first order ODE

au

= —(pU? + U + o) = —P(U). (4.25)

Here (Example 3), F is a set given by

F = {1>U> W» U2>U\/m""}' <4'26>

We assume that the solution is expressed as
UU) =ag+ > aU'+> biU/P(U). (4.27)
i=1 i=1

To show that the product of two functions belongs to F, we let

g = U+ U/ pU2 +~U + 0, g € F, i €N, (4.28)
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and

g =0 + U/ pU2+4U +0, g €F, jeEN (4.29)
Then,
gix g; = U™ 4 pU™ 4 qU™I=1 4 U972 42U 1/P. (4.30)

Hence, g;*g; € F. For the third condition, we only prove that g, = U'~!'v/P
satisfies condition A3 because we already proved that g; = U® satisfies all

conditions in Example 1. Then,

dgi aU U1 dp dU
i _; _pyiYypy LAY
5. U DU VPt s

~(i = 1) (pUVP + AU VP + aU VP - (4.31)
pUNP — %UH\/J_D.

Hence, %% € F, £% ¢ F and ¢;2% € F.

’ o dz 7 dzm dzm

4.3.1 Description of method

Summary of main steps of finding travelling wave solutions by using Exam-
ple 1-3.
Step 1. We transform the nonlinear PDE to a nonlinear ODE using travel-

ling wave coordinates z = k(x — ct) such that

u(z,t) =U(z).
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Step 2. We assume that the solution of a nonlinear ODE can be expressed

by one of the following (depending on the type of equation under study):

U) :Zai(Ua)i, (4.32)
UU) =ay + Xm: a;U" + Xm: LU/ P(U),

where U = U(z) satisfies the first order linear ODE in form

dU
E:pU2+7U—|—a’.

The positive integer m can be determined by balancing the highest degree
terms in U. It can be achieved by substituting one of E.q4.32 together with
a linear ODE into a nonlinear ODE.

Step 3. After determining the value of m, we then substitute one of Eq.4.32
along with a linear ODE into a nonlinear ODE. We collect all terms of the
same order of U, U \/m , UlnU together and equate their coefficients to
zZero.

Step 4. We then solve for the unknown constants (ag, -+ , @), (b1, , bm),
k and c. Substituting these constants and the general solution Eq.3.12 of a

linear ODE, into one of Eq.4.32, we can obtain a travelling wave solution.

4.3.2 Balancing exponents

In this study we consider the equations containing the following elements:

linear diffusion, nonlinear advection and nonlinear reaction. Such an equation
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is given by Eq.4.1. By reconsidering an ODE of Eq.4.1, we assume that the
solution of Eq.4.3 has the form:

U= Xm: aifi7
1=0

where f; is any function in Examples 1-3 and U = U(z) satisfies first order
ODE dU/dz = pU?+~U+o. Here, we want to determine the parameter m by
balancing highest degree terms in U. In giving the formula of m for balancing
exponents of Eq.4.3, we consider three cases or equations that can come from
Eq.4.1. The Eq.4.1 is a nonlinear advection reaction diffusion equation. For
equations of this type, we can mention the Burgers like-Huxly equation, and
many more. The second equation arises by dropping the advection term
to get a diffusion equation with nonlinear source terms, normally called the
reaction-diffusion equation,

% = dug—;j + O (u). (4.33)
There are many equations of this form; equations like the Fisher equation, the
Zeldovich equation, the Nagumo equation, the Newell-Whitehed equation,
ect. The third case is obtained if the reaction term does not form part of

Eq.4.1. We get a nonlinear advection diffusion equation

ou Lou *Mu

Equations of this kind are the Burgers equation, KdV equation, ect. So,
Eq.4.1 accommodates three different equations. The next step is to give
formulas of the value of m for different functions, based on Examples 1-3.

We write the terms with the highest powers coming from each term in Eq.4.3.
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4.3.2.1 Example 1, balancing

In Example 1, by writing the term with highest powers, we assume that the
solution is expressed as

U=an U+, (4.35)

where a,, # 0 and U = U(z) satisfies Eq.3.2. Taking derivatives of Eq.4.35,

we get
T =mpa, U™ + mya, U™ + moa, U™ 4+ -+ |
2
du =m(m — 1)pan, (pU™* + U™ +oU™) + -
dz? (4.36)
d°u 2 m+w m+tw—1 m—+tw—2
T =(m* — m)pa, (pU™ + U +oU )4
T du 2 m+m7+1 2 m+mTt 2 m+m7r—1
U i mpa,, U + mya;,U +moa;, U +---. (4.37)
z

The polynomial ®(U/) becomes

— ic' (ia-UZ)j (4.38)

: : m TdU mr+m+1  dYU m-—4w dau
The highest power of ®(U) is U™, U T isU , o s U™ and 9F

is U™*!. Equating the exponents of U, we have

w

T (4.39)

m =
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where balancing is between diffusion term and reaction term. If the balancing

is between nonlinear advection term and diffusion term, we have

w—1

m =

(4.40)

-
To determine the term with the highest exponents between diffusion, advec-
tion and reaction terms, we start by using both Eq.4.39 and Eq.4.40. After
comparing the two values, we then use the lowest value of m. If the obtained
m value is found to be a fraction, we then use Example 2 and Table 2 to

address the problem. We only use Eq.4.40 to determine the value of m for the

Table 4.1: Possible values of w, 3, 7 and m.

Cases w|B|T|m
w=p-1 12 1
2|2 2
213 1
g >2 312 3
314 1
412 4
413 2
415 1
w>7and w+ 7 = odd 2 171
w>2 3 211
T>1 4 113
4 311

KdV equation, Burger equations and many more if the following conditions
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are satisfied:

w<B—1,  wfB>2, (4.41)

and

w+T=2N+1, w > T, w, T > 2, (4.42)

where N is a natural number. Table 1 shows the possible values of 3, w, 7
and m. Balancing the reaction diffusion equation with no advection term, we
use Eq.4.39. If the mentioned conditions are not satisfied, we use Example

2.

Table 4.2: Possible values of w, £, 7, a and m.

Cases wl|B|T|] m a | Results (m)
w<f—-1 215 1/2a0 | 1/2 1
w>2 24| |2/3a|2/3 2
B>2 35| |3/da|3/4 3
w>B—1 33| |3/2a]3/2 3
B>2 w>2 4|4 4/3c | 4/3 4
513 5/2a | 5/2 5
w>71and w+ T = even 5 3| 4/3c | 4/3 4
4 2| 3/2a | 3/2 3
8 2 | 7/2a | 7/2 7
w-1<7 2 2 1/2a | 1/2 1
2 311/2a | 1/2 1
2 4] 1/4a | 1/4 1
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4.3.2.2 Example 2, balancing

In Example 2, we have U = Y " a;(U*)". Balancing terms with highest

powers lead us to
w

= m, (4.43)
if the balancing is between a nonlinear advection term and diffusion term,
but

me =1 (4.44)
aTt

if the balancing is between diffusion term and the reaction term. Table 2

gives possible values of «, w, 7 and m.

4.3.2.3 Example 3, balancing

UU) =ag+ Y v, aU + 30 b;U " /P(U), we obtain same results as of
UU) =3 aU
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Chapter 5

Application

5.1 Whitham-Broer-Kaup equation

In this chapter, we have studied the 1-dimensional Whitham-Broer-Kaup
equation, Fisher equation and Burger Fisher equation by using Example
1-3 to find exact travelling wave solutions. The Whitham-Broer-Kaup equa-
tion is an important equation in the field of mathematical physics. The
Whitham-Broer-Kaup model is generally used to study tsunami waves. The
model describes the tsunami wave dynamics under gravity [26]. It was de-
veloped based on the fluid mechanics assumption, which says that fluid is

incomprehensible and irrotational. The Whitham-Broer-Kaup model can be

written as
ou ou Oh 0%u
o or o Tl T 51)
O 0L P O '
ot oW T % T Ve T Y
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where h, a, b, are constants. The main variables u describe the horizontal
velocity and h is the height deviating from the equilibrium position of the

liquid. After the transformation of u(x,t) = U(z) and h(z,t) = H(z), we get

al Al dH U

—ck— + kU— + kh— + k’b— =0
Nz * udz * dz * dz? ’ (5.2)
dH d a3u d*H '
—ck— + k— Ka— — k*h—= = 0.
Nz + dz (HU) + Ka dz3 dz?
Integrating Eq.5.2 with respect to z, we get
1
—ckU + ékzﬁ + khH + k%iiﬂ + A =0,
z
5 dU o, dH (5:3)
—ckH + EHU + kPa—— — k*b— + A = 0,
dz? dz

where A; and A, are integration constants. By Example 3, we assume that

the solution of Eq.5.3 is expressed as

Uiz)=ag+ > aU' + > biUVU - U2,
wom (54)
H(z)=cot+ > aU' +> dUVU - U2

i=1 i=1
where U = U(z) satisfies a first order ODE

dU

— =U%*-U.
dz

The highest power of the product of H and U is given by
HU = apcp, UMY + -1 (5.5)

Balancing the highest exponents between ‘57%’ and HU in the second equation

of Eq.5.3, we have n + 2 and n + n; respectively. Hence, ny = 2. The value
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of n in the first equation can be determined using table 4.1. That is, n = 1.

Therefore

Z/{(Z) :ag—l—a1U+b1vU—U2,

(5.6)
H(2) = co+ U + U + diVU — U2 + dyUVU — U2.

Substituting Eq.5.6 in Eq.5.3 and equating coefficients of powers of U? and
UU —U? (i =0,1,---) to zero, we obtain the following:
U° . —2ckag + ka(z) + 2hkcy + 2A, = 0,
U': —2cka, + 2kaga; + kb? + 2khc, — 2k*ba; = 0,
U? : ka] — kb] + 2khcy + 2k*ba; = 0,
UNU = U? . —2ckby + 2agby + 2khd, — k*bby = 0,
UVU — U? : kayby 4 khds + k*bby = 0,
U : kageo — ckeg + A2 = 0,
Ul Kaay + k*bey + kagey + kayco + kbydy — ckey = 0, .
U? : —=3k3aa, — k*bey + 2k%bey + kages + kayey — kbydy+ D
kbidy — ckey = 0,
U3 : 2k%aa; — 2kbey + kaycy — kbyds = 0,
UNU — U2 : KPaby + 2k*bd, + 4kagdy + 4kbycy — 4ckd, = 0,
UNVU = U? . —4k3ab, — 2k>bdy + 3k>bdy + 2kaydy + 2kbic; —
2ckdy + 2kagdy = 0,
UNTU —U? : 2k3ab, — 2k*bdy + kayds + kbicy = 0.
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After solving the unknowns of Eq.5.7, we get the following list of solutions.

Solution 1:
1 1 _d2_ 2
Al = 51{362 — Eb%,AQ = 070,: 22k—2062’a0 =c,a; = 0,
2
—b1d
b= ﬁ’bl - blyc: ¢, C = 08_2761 = —C2,C = (2,
2

d —_—1d dy =d ﬁ—b—%k—k
1_2 2, W2 — W2, _2027 -

Solution 2:

—b?k? + af — 2apc + 2
k2h

a; = —2ag+ 2¢,b =>b,by =0,c=c,co =0,c; =
(2¢ — 2a9)(—bk + ag — ¢)

1
A = —§kag+ckao,A2:O,a: » @ = @,
(2ag — 2¢)(—bk + ag — ¢)

h Y

Coy = 7 ,dlzo,dgzo,h:h,k:k.
(5.8)
We get the following exact solutions of the systems,
Solution 1:
k2 ST
—k? 2k —2k?
U) = U U?
) = Gaar+n T agaz s Y T iUt
20k3 1 4bk3 1
— vU -U? + UvU — U2
b £v—2ak* — k? h £v—2ak* — k?
(5.9)
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(a) U(z) =2+ I\J/fz ’
L R
\\ o
L. H%zL
1 1
0.5
‘ ‘ ‘ Z
(c) U(z) =2 — L=,
H(z) = (1+ez)(4ez+(f)++ez)+22\/e7(ez,3)

‘ z
i) 10
(b) U(z) =2 — 1@ ’
H(Z) = (1+ez)(4ezﬁ(‘f2:éz;2\/€7(3+62)
B S
H(z
1 |
—10 5 10
(d) U(z) =2+ %’
H(Z) = (1+€Z)(4ez‘i{f2:;z)*22\/€7(5+62)

Figure 5.2: Solution 1:The pulse wave profiles of Witham-Broer-Kaup

equation where hy =1, ¢c=2,b=1, and a = —1.
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By substituting Eq.3.12 into Eq.5.9 yields a pulse wave solution

65

U =c=t
(2) =c 20k +1 \1+e¢?

H(2) — + 247 S
e
4h(2ak?> +1)  h(2ak%2 4+ 1) \ 1+ €?

—2k? 1\’
5.10
h(2ak? 1+ 1) (1+ez> * (5.10)

2bk3 1 Ver
T Th v —2ah — k2 (1+ez)+
4bk? 1 Ver

h wm(mw?)’

— k2 \/ek(:t—ct)
'U/(xa t) = C:l: \/2a/€2 + 1 (1 + ek($—ct)> 9
— k2 k2 1
h(x,t
(z,6) = 4h(2ak? + 1) h(2ak2 +1) <1 + ek(ac—ct)) +
—2k2 1 2
h(2ak? + 1) \ 14 eklz=e) (5.11)

2bk3 1 ek(:p ct)
h Ty zakt 2 \ 1+t ) ©

or

4bk3 1 ek(z—ct)
W tv/—2akt =2 \ (1 + ch—eh)2
Solution 2:

UU) = ¢ £ Vak?h+ 1Pk + 2v/ak?h + 2k2U,
VR 1k (b + VaFPh TR

H(U) = . (5.12)
£ Vak?h 1 1k (b £ ValPh 1+ TR)
h
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Again, substituting Eq.3.12 in Eq.5.12, we get an exact travelling wave solu-

tion
1
U(2) = ¢+ Vak?h + b2k2 £ 2V ak2h + b2k2 (1 + ) ,
62
++v/ak?h + b2k (bki ak2h+b2k2) 1
Hiz) = +, (5.13)
h 14 e*
+vak?h + b’k (—bk + Vak2h + b2k2) 1 2
h 1+e*) 7

or

1
_ Vak? 212 4 9/ )2 27.2
u(z,t) = ¢ £ Vak?h + b2k? + 2V ak?h + 0k 15 ok ) °

£V ak2h + 0%k (bk £ v ak2h + 07k?) 1
h(z,t) = - e ) (614
+Vak?h + b2k (—bk + Vak2h + b%k?) ( 1 )2
A 1+ ek(z—ct) ’

In this example, we applied Example 3 to find exact travelling wave so-
lutions of the Whitham-Broer-Kaup equation. Comparing the solutions re-
ported by [22], we notice that we obtained the same wave speed in Solution
1 and parameter d; as an arbitrary parameter, while in their case d; = 0.
They also wrongly claimed that by setting A; = 0, Ay # 0 you get a pulse
wave solution. In Figure 5.2, pulse wave solutions b, ¢, and d might not be
used in application of the study of tsunami waves because they are negative
pulse wave solutions. Solution 2 is the travelling wave front of Eq.5.1. The
travelling wave profile is shown by Figure 5.4. Application of Example 1 has
successfully lead us to new pulse wave solutions. The Example 1 method is
very powerful and that is emphasized by some similarities in wave profiles ob-

tained by [26]. By using Example 3, we more clearly illustrate the method’s
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utility, simplicity, and briefness in comparison to the extended G’/G method

for finding travelling solutions for Whitham-Broer-Kaup equations.

1 1
‘ ‘ < ‘ ‘ _Z
—10 -5 ) 10 —10 ) 5 10
(a) U(z) = V2 + 2+ L&, (b) U(z) = V2 +2 - 1Y%,
H(z) = ﬁmﬁ)(%fjgf\@(ﬂ_l) H(z) = ﬁ(H‘/ﬁ)(HfQ;fﬂ(ﬂ_l)

2,,

1 1
2 i
0.5
‘ ‘ 2 z
-0 -5 5 10 BT 5 10
_ _ V2 =— V2
() Ulz) = —v2+2 - &, (d) U(z) = —vV2+ 2+ 7,
H(z) = YR/ 2V H(z) = YEI=VB)2VaA)

Figure 5.4: Solution 2:The travelling wave profiles of Witham-Broer-Kaup
equation where hy =1, c=2,b=1, k=1and a = 1.
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5.2 Fisher equation

The Fisher’s equation [2],

ou  O*u
E == @—Fu(l —u),

is the model that describes the evolution of a population density function
u(x,t) at time ¢ and location x. It is a model of diffusion of a species in a one
dimensional habitat. As in the previous example, we first transform Eq.6.15

to get

a dU
k= +k*— + U1 —U) = 0. .
ch—— + K UL =U) =0 (5.15)

We introduced earlier the Example 1, hence we assume that the solution of
Eq.5.15 is expressed as Eq.4.13 with U = U(z) satisfies Eq.3.2. From Table

1, we can see that m = 2. Therefore, we have
U(2) = ag + a U + ayU?. (5.16)

Substituting Eq.5.16 into Eq.5.15 with Eq.3.2 and equating coefficients of

powers of U to zero, we obtain the following system of nonlinear equations:

U°:ag— ag + ckoa; + kQ*yaal + 2k%0%ay, = 0,

Ul a; — 2apa; + ckvyay + 2ckoas + 2k2paa1—|—
k*va, + 6k*yoay = 0,

U? : ay — 2apay — aj + ckpay + 2ckyas+ (5.17)
3k?pya; + 8k*poay + 4k*yay = 0,

U3 —2ajas + 2ckpay + 2k2p2a1 + 10/{:2,07(12 =0,

Ut : 6k*p*ay — a3 = 0.
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In solving the above algebraic equations with the aid of Maple, we get

-3 1 1
ag = — k272 4+ Z(6ky £ V6)ky + =, k =k,

2 2 4
)
a; = (6ky £ V6)pk, as = 6k*p* c = ig\/é, (5.18)
1 6k%y2 -1
= = o= ——

Hence, putting what we obtained in Eq.5.18 into Eq.5.16 we get

-3 1 1
U(z) =K + 5 (k7 £ VB)ky + -+
(5.19)

(6ky + v6)pkU + 6k>p*U?.
By substituting Eq.3.12 into Eq.5.19, we obtain the final solution of the
Fisher equation to be
1 kv6 Vi —4 5k
u(z,t) :—:I:i\/%—llpatanh A Py )
4 2 2 V6
3k2~? Vi —4 5k
T panh? [ - Y27 (g 4 —t+A| |-
2 2 V6

2 _
6k*0p tanh? (——”24” (kx + 3—%1& + A)) .

(5.20)

It is the travelling wave moving to the left or right if Eq.2.2 is satisfied.
Hence, that can be achieved by considering different values of p, ¢ and ~.

Here, we consider few cases:
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ecase l: f p=—1,7=0, 0 =1, then
1 1 5
— —tanh | £—— (2 + —¢ +A>+
o (7 (= )
1 5
tanh? (j:— ($:I:—t>+A),
216 6
+1t h(jzl (j:5t>+A>+
— tan — o+ —
2 216 V6
1 5
tanh? | +—— [z £ —=t —|—A).
( 2\/6( \/6)

i) u(z,t) =

(5.21)
i) u(x,t) =

N N N L N

vk et) +A) 4+

(
tanh? (12—16 T EL %t) + A) , )
+

xi%t>+A)+

e case 3: Given that p =4, v=3, 0 = —1, we get
1 1 5
—tanh ( £—— | x &= —t +A>+
3o (75 (7 7)
1 5
rt—t|+A),
(e (= 531) 1)
1 5
+—— (ot —t|+A)+
(e (= 531) +4)
1 5
tanh? | + r+ —t +A).
( 2 6( f6)

=

=

8

=
!

—+
&
=
=
N}
T

(5.23)

|
—
Q
=
=

i1) u(

8

~
~—
|

Y

1
2

| |
N N N L N

4
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e case 4: For p=—1,v=1, 0 = 0, we obtain

1 1 1 )
i) u(z,t) =1 étanh (:I:— <:13 + %t) + A)
1 5
— tanh? ( ( t) )
4 Y
1 V6 (5.24)
+

[ B

i) u(, ) =% ltanh( \;( \/5_>+A)
A

— tanh? ( + A)

In each case we got two travelling waves solutions, propagating in different

directions. Therefore, Eq.5.20 becomes a travelling wave solution if
v — 4po > 0.

The four cases demonstrate that we get same result for 42 — 4po > 0.

5.3 Burgers-Fisher equation

The Burgers-Fisher equation is normally used to model fluid dynamics, num-
ber theory, heat conduction, elasticity and many more [27], [28]. The tanh
method for generalized forms of Burgers-Fisher equations was presented by
[28]. As an example, we provide solution of the generalized Burgers-Fisher

equation by using Example 2. The generalized Burgers-Fisher equation is

given by
ou  ,0u %u
— — — — =u(l —u?). 2
ot Tu Jxr  0x? u(l =) (5:25)
Transforming to the z variable yields
au 2alZ/{ 2(1!27/{ 3 _
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After comparing the values of m using Eq.4.39 and Eq.4.40, we obtained m
to be a fraction. Hence, we move to Example 2 and Table 2 to find that
m = 1 and a = 1/2. Therefore, we can seek the solution of Eq.5.26 in the

form

1
=> a(U), (5.27)
1=0

where U = U(z) satisfies

aw o,
—=U-U.

Putting Eq.5.27 into Eq.5.26 together with Eq.3.3, collecting all terms with
like powers U7 and U7 and setting them to zero, we get the system of six

equations,
U a9 — aj =0,
U' :kaga} — 3aga; = 0,

U? : — kaga: = 0,

(5.28)
UY? . — 2ckay + k?a; + Zkalag - 12a§a1 + 4a, = 0,
Us/? 2cka; — 4k*a; — Qkalag + Qka‘;’ — 4@? =0,
U®? 3k%ay — 2ka’ = 0.
Solving the above equations, we get the following set of solutions:
10 2
{ao :O,Cll = 1702 Eak: 5}7
(5.29)
0 1 10 k 2
an = a1 = — C = — = — .
0 » U1 ) 3 ) 3
Substituting the above set into Eq.5.27, we get
UU) = U2, (5.30)
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Finally, after substituting Eq.3.12 into Eq.5.30, we get two travelling wave

1 1 ANY?

u(z,t) = —3 <1 + tanh <§ - got) + 5) ,
1 1 A2

u(z,t) = 3 (1 + tanh (g - Eot) + 5) :

Figure 5.5 shows the shape of two exact travelling solutions, in which both

solutions:

(5.31)

waves are travelling at the same speed but in opposite directions. The same

results have been obtained by many researchers. In [28] work, they found m

(a) B
£) =1 (1+tanh (2 - 0?4 =0 u(z,t) = =3 (1+ tanh (2 — 0))7? 4 =g

urger Fisher solution, (b) Burger Fisher solution,

Figure 5.5: Burger Fisher solution profiles

to be a fraction. Hence, they utilize substitution to get rid of that fraction.
Here, we demonstrate a simple, general and straightforward method that can

be used to solve problems that involve m as a fraction. Example 2 together
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with Table 1 and Table 2 proved to be an effective way of solving such
problems without any tedious calculations. Our results are totally different
to what [25] obtained. The modified tanh — coth method utilized in [25] does

not produce travelling wave solutions.
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Chapter 6

Second approach of finding

exact travelling wave solutions

In Chapter 2, we stated that travelling wave solutions occur between two
equilibrium. We also assume that P(U) is a quadratic polynomial. Here, we
want to show that P(U) can be UlnU—U. Consider a first order autonomous
equation

dUu

— =UInU — U . 6.1
P Uln u , >0 (6.1)

We then find the exact expression for the solution to Eq.6.1. An ODE is

separable. By arranging and integrating both sides, we get

1
———dU = [ dz + A;. .
/U(an—l) U / Z+ A (62)
Let h=InU — 1, so dh:%dU, implies
1
/EdU:/derAl, (6.3)
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where A; is the integration constant. By using partial fractions, we get

In|lnU — 1] =z + Ay,

(6.4)
InU — 1] = e,
|IInU -1 =InU -1, if U >e. (6.5)
Finally, we have
U(z) = e M, (6.6)

In this case, Eq.6.6 does not need to satisfy Eq.2.2 but Eq.2.2 needs to be
satisfied when Eq.6.6 is substituted into the following assumption. Let us
assume that the solution of an ODE is of the form:
U(z) = ap+ Zm:zn:aibjl]”l(ln Uy, (6.7)
i=1 j=1
where U = U(z) satisfies the first order nonlinear ODE:

au
—=UhU-U , U>0 (6.8)

We then demonstrate the application of the method by solving two well

known equations, the Fisher equation and Korteweg-de Vries equation.

6.1 Korteweg-de Vries equation

The Korteweg-de Vries equation is a third order nonlinear partial differential
equation. It was derived from fluid mechanics to describe shallow water

waves in a rectangular channel. The equation is written as

ou ou u
E + u% + b% = 07 (69>
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where constant b > 0. After transformation and integrating once, we obtain

1 U

where Bj is the integration constant. After balancing exponents, we again

have m = 1 and n = 2. Then, Eq.6.7 leads us to
U(z) = ag + arby (InU) " + arby(InU) ™2 (6.11)

Substituting Eq.6.11 with Eq.6.6 into Eq.6.10 and collecting and equating
coefficients of U~ (InU)™/ to zero, we obtain
U(InU)° : — 2ckag + kaj — 2B; = 0,
Uo(ln U)_l L= ck:albl + ka0a1b1 + kaClel = 0,
(hl U)_2 L= 26]6&1[)2 + 2ka0a1b2 + ka%b% - 6bk‘2a1b1 + 8bk’2(11b2 = 0,
U(InU)~2 :ka3biby + 2bk*a1by — 10bk*arby = 0,
(InU)

U'(InU)~* :kaib; + 12bk*a;by = 0.

(6.12)
Solving the above equations, we have
1 1 12bk
{Bl = —bzl{?g — —C2]€,a0 = —bk -+ c,ap = — b s
2 2 2 (6.13)
bbby = —by, by = by, c = ¢, k = k}
Hence, Eq.6.11 becomes
UU(2)) = (=bk +c) + 12bk(In U) " — 12bk(In U) 2,
U(z) =(—bk + c) bk:( e >
z) =(=bk+c)+ 12 —_—
z4+A 2
(et +1) (6.14)

:(—bk:+c)+3bk( 1 )

ez+A + 2 + e—z—A
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-6 -4 -2 0 2 4 6

e? 61—2
() U(z) = 1+ 255, A1 =0 (b)u(x,t)=1+(e+%@,f1:o

Figure 6.1: Korteweg-de Vries equation profiles, where A; =0, c =2, k =1,
b=1.

Comparing these results with the results we obtained in Chapter 2 ( Eq.2.35),

we have same results.

6.2 Fisher equation

Reconsider the Fisher equation,

ou  0%*u
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After balancing the exponents, we get m = 1 and n = 2. Following all steps

as in previous examples, we get the system of equations
U'(nU)° :ap — aj = 0,
U'(InU)7! :a1by — 2apa1by — ckayby + k*a by = 0,
U(InU) ™2 :a1by — 2apa1by — a2b? + cka by — 2ckaby — 3k*a1by + 4k*a1by = 0,
( )73 = 2a2b1by + 2ckayby + 2k*arb; — 10k%a1by = 0,
U(InU)™* : — alb3 + 6k*a by = 0.
(6.16)

From the above equations, we get the following results,

1 5 1
a0:07a1:_7b1207b2:b27cz_\/éak:—\/é )

by 6 6

1 —5 1
a():o)al:_7b1:O,b2:b27C:—\/67k:——\/6 ,

bg 6 6

! = L 6.17)
00:1;(11:—,b1:—2b2,b2:b2702—\/67]{;:_\/6 , (

bg 6 6

1 5 1
(Iozlaal:—,b1:—2b2,b2:b2702—\/6’]{;:__\/6 ,

bg 6 6

The the following exact travelling wave solutions are produced,
1

(cFGtvar 1)
1
<6—%<x+%\/6t)+,41 + 1)27

u(z,t) =

(6.18)

and
2 1

+
A B L M L
2 1
+ .
R U G G MM Vi

u(x,t) =1—

’

o

(6.19)
u(z,t) =1—

S

e
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The presented solution of the Fisher equation solutions shows the same result
as the previous method where P(U) was treated as a second order polynomial.
The intention of presenting the second approach was to emphasize that any
function P(U) (either a polynomial or not, but it must have more than
one root) can be utilized to produce exact travelling wave solutions. That
goal has been achieved; the Fisher equation and KdV equation produced
travelling wave solutions in both cases. The application to established PDEs,
demonstrated that the method technique is simple and capable of finding

analytical travelling wave solutions for nonlinear evolution equations.
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Chapter 7

Discussion

The general presented method of finding travelling wave solutions for non-
linear PDEs as linear combinations of functions satisfying certain assump-
tions provides a straightforward algorithm to work out nonlinear PDEs ex-
act travelling wave solutions. It is shown that the methods like the G'/G,
tanh-method and many more, are examples of th general method introduced
in the dissertation. The main procedure of the method lies in the fact
that U(z) must approach constant states, that is U(z — —o0) = u; and
U(z — +00) = uy, which must be at equilibria of P(U), hence P(U) must

have at least two roots.
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