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Statistical analyses: Source code for phylogenetic generalized least squares regression models 

implemented using the caper v1.0.1 package in R v3.6.1. 

 

#Load packages: 

library(caper) 

library(nlme) 

library(MCMCglmm) 

#Import data: 

data <- read.csv("Cardiac trait.csv") 

#Import phylogenetic tree: 

tree <- read.nexus("phylogenetic tree.nex") 

#Take only the tree with best dates: 

tree <- tree[[1]] 

#See if tree is dichotomous, i.e. no polytomies: 

is.binary.tree(tree) 

#Plot the tree: 

par(mfrow = c(1,1), mar = c(0,0,0,0) + 0.5) 

plot(tree, show.tip.label = F) 

#Plot the data: 

par(mfrow = c(1,1), mar = c(4,4,0,0) + 0.5) 

plot(Log_cardiactrait ~ Log_bodymass, data = data) 

#Model the OLS: 

model.ols <- lm(Log_cardiactrait ~ Log_bodymass, data = data) 

summary(model.ols) 

#Get list of residuals 

res.ols <- resid(model.ols) 

#Produce residual vs. fitted plot 

plot(fitted(model.ols), res.ols) 
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#Add a horizontal line at 0  

abline(0,0) 

#Create Q-Q plot for residuals 

qqnorm(res.ols) 

#Add a straight diagonal line to the plot 

qqline(res.ols) 

#Create density plot of residuals 

plot(density(res.ols)) 

#Before you run the PGLS, check for species in phylogeny but not in data: 

setdiff(tree$tip.label, data$Binomial) 

#Before you run the PGLS, check for species in data but not in phylogeny: 

setdiff(data$Binomial, tree$tip.label) 

#Run the PGLS: 

Log_cardiactrait.cdat <- comparative.data(phy = tree, 

     data = data, 

     names.col = "Mesquite_name", 

     vcv = TRUE) 

#Take a look at the constructed matrix: 

Log_cardiactrait.cdat$vcv 

#Take a look at the pruned tree: 

plot(Log_cardiactrait.cdat$phy) 

#Plot the data (again): 

par(mfrow = c(1,1), mar = c(4,4,0,0) + 0.5) 

plot(Log_cardiactrait ~ Log_bodymass, data = data) 

#Model the PGLS: 

model.pgls <- pgls(Log_cardiactrait ~ Log_bodymass, data = Log_cardiactrait.cdat, lambda = "ML") 

summary(model.pgls) 

#Get list of residuals 
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res.pgls <- resid(model.pgls) 

#Produce residual vs. fitted plot 

plot(fitted(model.pgls), res.pgls) 

#Add a horizontal line at 0  

abline(0,0) 

#Create Q-Q plot for residuals 

qqnorm(res.pgls) 

#Add a straight diagonal line to the plot 

qqline(res.pgls) 

#Create density plot of residuals 

plot(density(res.pgls)) 

#Likelihood profiles for lambda: 

lambda.profile <- pgls.profile(model.pgls, "lambda") 

plot(lambda.profile) 

pgls.confint(model.pgls, "lambda")$ci.val  
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Figure S1: Evolutionary tree and phylogenetic signal (lambda) used to inform phylogenetic 

generalized least squares scaling (solid line) of cardiac capillary numerical density (profile counts per 

mm2 of cardiomyocyte) against body mass in 39 species of mammal. Ordinary least squares scaling 

(dashed line) superimposed for comparison. 

 

 

Figure S2: Evolutionary tree, phylogenetic signal (lambda) and phylogenetic generalized least 

squares scaling (solid line) of cardiac mitochondrial volume density (% volume of cardiomyocyte) 

against body mass in 33 species of mammal. Ordinary least squares scaling (dashed line) 

superimposed for comparison.  
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Figure S3: Analyses of the fitted phylogenetic generalized least squares scaling models, comprising 

the distribution of residuals, q-q plots and density plots for cardiac capillary numerical density (39 

species of mammal; left-side panels) and cardiac mitochondrial volume density (33 species of 

mammal; right-side panels).  
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Data extraction: The literature was searched for studies on the numerical density of capillaries and 

volume density of mitochondria in the hearts of mammals, preferably obtained by unbiased 

stereological analysis of light and electron micrographs. Brevity of methodological detail often meant 

that we could not verify the absolute integrity of the presented values and so most studies were 

accepted under the assumption that appropriate unbiased stereological methods were followed. For 

example, estimates of capillary numerical density are affected by image orientation, and in many 

studies we had to assume that only cross-sectional images were assessed for this purpose because it 

was not explicitly stated in the text. We further assumed that capillary numerical density (in units of 

mm-2) is approximately equivalent to its length density (mm mm-3) because of the near-anisotropic 

geometry of capillary networks that service the tissue of the heart. It is standard practice to present 

both capillary numerical density and mitochondrial volume density with the cell (cardiomyocyte) as 

the reference space, although it was not always possible to confirm that all studies followed this 

convention. The literature search was not exhaustive with priority given to maximising species 

diversity and body mass range. A small proportion of identified studies were not included (prior to 

any analysis) over concerns primarily with either stereological methods, lack of suitable control group 

data, failure to use a cardiomyocyte reference space, or lack of extractable data.  
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Table S1: Mean values of cardiac capillary numerical density (profile counts per mm2 of 

cardiomyocyte) and body mass in 39 species of mammal sourced from the literature. 

Animal Species Body mass (kg) 
Capillary numerical 
density (mm-2) 

Etruscan shrew Suncus etruscus 0.00245 6268
Musk shrew Crocidura russula 0.00850 7018
Common shrew Sorex araneus 0.00607 4173
Water shrew Neomys fodiens 0.0126 4059
Greater mouse-eared bat Myotis myotis 0.0213 5233
Black mastiff bat Molossus rufus 0.0357 4861
Pale spear-nosed bat Phyllostomus discolor 0.0433 3708
Egyptian fruit bat Rousettus aegyptiacus 0.147 2853
House mouse Mus musculus 0.0280 2739
Wood mouse Apodemus sylvaticus 0.0228 4577
Black rat Rattus rattus 0.245 4025
Brown rat Rattus norvegicus 0.329 3273 (± 678)
Guinea pig Cavia porcellus 0.494 2648
Hamster Mesocricetus auratus 0.103 5445
Bank vole Myodes glareolus 0.0311 4796
Mole rat Spalax ehrenbergi 0.182 2340
Agouti* Dasyprocta leporina 3.00 1834
Rabbit Oryctolagus cuniculus 3.07 2643 (± 652)
European hare Lepus europaeus 3.89 3456
Cat Felis catus 2.32 2739
Red fox Vulpes vulpes 4.16 3133
Dog Canis lupus 23.78 3386 (± 124)
Goat Capra hircus 30.41 3196 (± 286)
Sheep Ovis aries 44.20 3818
Common duiker Sylvicapra grimmia 13.33 5255
Springbok Antidorcas marsupialis 24.33 4864
Blesbok Damaliscus pygargus 56.00 2792
Gemsbok Oryx gazella 114.3 3451
Blue wildebeest Connochaetes taurinus 149.3 4081
Common eland Taurotragus oryx 206.3 3226
Vicuna Vicugna vicugna 46.50 3713
Llama Lama glama 167.5 2470
Pig Sus scrofa 44.48 2504 (± 302)
Horse/pony Equus caballus 290.0 2631 (± 264)
Cattle/steer Bos taurus 920.0 2311
Human Homo sapiens 65.10 1955 (± 489)
Harbour porpoise Phocoena phocoena 50.00 1975
Elephant^ Elephas maximus 1700 1660
Red kangaroo Macropus rufus 25.60 1808
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Data were taken from adult, normal, healthy, control, sham, non-exercised and disease-free groups 

only. Values were accepted from either, or both, the left and right ventricular chambers (myocardium, 

endocardium, epicardium or papillary). In many instances, the mean values presented above are 

averages across multiple studies. Where mean values were derived from at least three studies, the 

standard deviation is provided in parentheses. In some studies, body masses were estimated based on 

adult averages for that species (or strain), and species were deduced for some common domestic or 

laboratory animals. *Agouti data assumed to belong to Dasyprocta leporine. ^Elephant data assumed 

to belong to Elephas maximus.  
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Table S2: Mean values of cardiac mitochondrial volume density (% volume of cardiomyocyte) and 

body mass in 33 species of mammal sourced from the literature. 

Animal Species Body mass (kg) 
Mitochondrial volume 
density (%) 

Etruscan shrew Suncus etruscus 0.00233 36.96 (± 3.08)
White-toothed shrew Crocidura russula 0.00790 29.40
Greater horseshoe bat Rhinolophus ferrumequinum 0.0170 28.54
House mouse Mus musculus 0.0287 34.62 (± 3.21)
Wood mouse Apodemus sylvaticus 0.0207 35.50
Black rat Rattus rattus 0.237 31.47 (± 5.07)
Brown rat Rattus norvegicus 0.326 31.42 (± 4.33)
Guinea pig Cavia porcellus 0.374 30.80 (± 4.75)
Hamster Mesocricetus auratus 0.150 28.60
Ferret Mustela putorius 1.50 32.31
Agouti* Dasyprocta leporina 3.00 25.15
Rabbit Oryctolagus cuniculus 2.62 32.41 (± 5.34)
Cat Felis catus 2.57 24.65 (± 4.41)
Red fox Vulpes vulpes 4.16 24.85
Coyote Canis latrans 12.60 25.40
Dog/wolf Canis lupus 21.87 22.78 (± 2.65)
Goat Capra hircus 31.96 22.96 (± 1.65)
Sheep Ovis aries 44.20 21.89
Common duiker Sylvicapra grimmia 13.33 21.75
Springbok Antidorcas marsupialis 24.33 22.49
Blesbok Damaliscus pygargus 56.00 22.24
Gemsbok Oryx gazella 114.3 20.37
Blue wildebeest Connochaetes taurinus 149.3 19.82
Common eland Taurotragus oryx 206.3 18.30
Pig Sus scrofa 37.71 23.71
Horse/pony Equus caballus 405.0 22.29 (± 3.26)
Cattle/steer Bos taurus 920.0 20.63
Human Homo sapiens 70.00 24.07
Fat-tailed dunnart Sminthopsis crassicaudata 0.0179 31.30
Brush-tailed bettong Bettongia penicillata 0.990 29.20
Tammar wallaby  Macropus eugenii 6.20 21.65
Western grey kangaroo Macropus fuliginosus 32.59 22.72
Red kangaroo Macropus rufus 25.60 24.30

See footnote to Table S1 for further explanation.  
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