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Abstract

We present a short proof of Klartag’s central limit theorem for convex bodies,
using only the most classical facts about log-concave functions. An appendix is
included where we give the proof that thin shell implies CLT. The paper is accessible
to anyone.

1 Introduction

The central limit theorem for convex bodies (Theorem [[lbelow) was conjectured by Brehm
and Voigt [3] and independently (at about the same time) by Anttila, Ball and Perissinaki
[1]. A 1998 preprint of [1] is cited in [2]. It took several years and various partial results
before a full proof by Klartag emerged in [§] (see p95 for the history). A different proof
was given soon afterwards by Fleury, Guédon, and Paouris [4]. Significantly improved
quantitative bounds (from logarithmic to power type) were given by Klartag [9], followed
by improved estimates by various authors on the related 'thin shell property’ [5] [7, [11].
More information can be found in [5] [7, 8, [0} [10] 12].

We present a simple proof that is self-contained (except for very classical results such
as the Prékopa-Leindler inequality) and is accessible to anyone. The bounds on ¢, and
w, that this proof gives are poor; the contribution is simplicity. The methodology is a
variation of that in Klartag’s original proof and uses Fourier inversion; the main difference
being that we apply concentration directly to the Fourier transform as opposed to the
measure of half-spaces. The statement of Theorem [I] below is not identical to Theorem
1.1 in [8], however under log-concavity, a uniform estimate on the cumulative distribution
gives an estimate on the total variation distance, so we do indeed recover Theorem 1.1 in
[8]. The standard Euclidean norm and inner product on R™ are denoted as |-| and (-, -)
respectively.

Theorem 1 There exist sequences (€,); and (wy,)7" in (0,00) with lim,, o €, = lim, 0o wy, =
0 such that the following is true: Let n € N, let X be a random vector in R™ with EX =0
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and Cov (X) = I,. Assume that X has a density f = du/dx that is log-concave, i.e.
f = e 9 where g : R" — (—00,00] is convex. Then there exists a set © C S™ ' with
0n_1 (S™1) > 1 —w, such that for all 0 € O,

sup [P {(X,0) <t} — ()] <&,

teR

where o,y is Haar measure on S™' normalized so that o, (S™') = 1, and ® (t) =

(2m) /2 ffoo exp (—u?/2) du.

The proof uses two nontrivial properties of log-concave functions (see [8, [0l [10] for
more details): with f as in Theorem [I]
o If £ C R"™ is any linear subspace of dimension 1 < k£ < n, then the projection Pgf :
E — [0,00) defined by

Pof(@) = [ Flatndy )

is log-concave. Here integration is performed with respect to n — k dimensional Lebesgue
measure on £+. This is a consequence of the Prékopa-Leindler inequality. Interpreting a
convolution in terms of a projection of R™ x R™ onto R", we see that if ¢ : R™ — [0, 00)
is log-concave with [, p(2)dz = 1, then the convolution f * ¢ is also log-concave.

e If X has the thin shell property, i.e.

X
p{u_l

<evy>1-¢
R E} g

for some ¢/, R > 0 (here we can take R = y/n), then the projection of X onto most
one dimensional subspaces is approximately Gaussian, with estimates depending on &’.
Quantitative results of this type for log-concave measures can be found in [I, 2]. For
completeness, we give a precise statement with proof in Section [3l

2 Proof of Theorem 1

The proof is in three main steps.

Step 1: Approximately spherically symmetric projections. The first step
mimics Milman’s proof of Dvoretzky’s theorem [14], see for example [15], but in a different
way to Klartag [8, Sections 3 and 4]. Let Y = X + ¢Z for some o > 0, where Z has the
standard normal distribution and is independent of X. The density of Y is h = f x ¢,,
where ¢, (z) = (2m02) ™" exp (—=27'o~2|z|*) and * denotes convolution. Then h=f-¢,
where ~ denotes the Fourier transform,

he) = / oxp (~2mi {6, ) (¢) d

and



For any &1, & € R™,

FE)—f&)| < /n lexp (—2mi (&1, 7)) — exp (=27 (&a, 2))| f(w)dx

< [ 2rligs) - (o) fa)ds

- B & —&

- wrle-el [ [(@=gpe)| ome
a-& A\

< 27T|£1_£2‘ <E‘<|£1_£2‘7X> )

and we see that j? is 2m-Lipschitz on R". Let I’ € G, be any fixed subspace and U
a random matrix uniformly distributed in O(n) (k < n to be determined later). Then
E =UF € G,y is a random k-dimensional subspace uniformly distributed in G, ;. Let
e €(0,1/2) and let N' C Sp = S" ' N F be an e-dense subset (i.e. for all § € Sk there
exists w € N such that |6 —w| < . By considering the volume of disjoint balls, such a
subset can be chosen with cardinality |[N| < (3/e)". Assume that k < ¢ (loge™)"" on.
By Lévy’s concentration inequality for Lipschitz functions on a sphere, see e.g. [10], and
the union bound, with probability at least

[e'¢) k 2
21
1 } : <§) exp _{ 82 + Em} n|>1—Cexp (—cézn)

m=0

the following event occurs: for all m € {0,1,2...}, and all § € N,
~ m 1 m 4 Inm m 1
‘f(U(1+5) Vo 9>—M((1+5) Vo ))<C b+ = ) A+ oV

where
M@= f (t0) o,y (0)

m

With the same probability, the same event holds with (1 + &)™ replaced with (1 +¢)™™.
Setting & = (14 &)™ Vko 10, making m the subject of the formula, and using the
Lipschitz property of f, with high probability, for all £ € F',

R Inet 1 o [¢] vk
f(Ug)—M(|§|)‘<C 5+8+\/T+Jnlnlnmax{\/%,o_£} €]

Optimizing over ¢ we set ¢ = /(Inn) /n. Let Pr : R" — E denote the orthogonal
projection onto FE, let Fgn : L' (R™) — L (R") denote the Fourier transform on R™ and
let g : L' (E) — L™ (E) denote the Fourier transform on E (E as a Hilbert space in
its own right). Recall the definition in (Il). By Fubini’s theorem, the function Pgh is the




density of the random vector PgX (with respect to k-dimensional Lebesgue measure in
E). The Fourier transform works well with orthogonal projections, in particular

(Frnh) |g = Fg (Pgh)

where (Fgrnf) |p denotes the restriction of Fgnf to E. By Fourier inversion in E, for all
r el

P (x) = [E exp (2mi (x, €)) T (€) dé

so for all W € O (F), (applying a change of variables)

n

< / \h& we)| de
_ | 1 V2 2
< C (2707 (kH)/z/ 5+\/ﬁ+ —InInmax vl , mk e~ ™ y| dy
E n n ok |yl
_ 1
< C (2107 w“ﬂz<5+ -Eﬁ>v% 2)

Step 2: Behavior of t — Pgh (t0) (in the spirit of Lemmas 4.3 and 4.4 in [§]).
Consider any z,y € Sp = ENS™ ! and define A, B : [0,00) — R by

Pgh (tz) = e 4® Pph (ty) = e 50

Since f and ¢ are log-concave, i.e. —log f and — log ¢ are convex with values in (—o0, 0o},
h = f % ¢ is also log-concave. It follows from the Prékopa-Leindler inequality (see for ex-
ample the discussion in [8]) that Pgh too is log-concave, and therefore A and B are convex.
Since Pgph = (Pgf) * (Pg¢s), A and B are infinitely differentiable. In preparation for an
integral over F in polar coordinates, we now study t — t*le=4® and t — tF-le B0,
t € [0,00). These functions are maximized at t,,t, € (0,00) that satisfy

A ()t =k —1 B (t)t,=k—1

Such numbers exist since A’(¢)t is continuous with limit 0 (resp. oo) as t — 0 (resp.
t — o0), similarly for B. After a possible re-labeling of  and y we may assume that
t, < t,. Our goal is to show that these numbers cannot be too far apart (in the sense
that their ratio is close to 1). If t, = t, there is nothing to show, so assume ¢, < t,. By
convexity,

Alt) = At = A ()0t = -1 (1)

T

B(t,) = B(t:) < B'(t,)(t,—t:)=(k—1) (1 _ i_fv)

Y



and therefore

sup |A(t) _ B(t)| > {A (ty> —A (tm)} ; {B (ty> - B (tm)} _ (k — 1;(% - tm) (3)
te{ts ty} 2ty

Assume momentarily that there exists t € {¢,,t,} such that A(t) — B(t) > 1. Since Pgh is
the log-concave density of a random vector in E with covariance (1 + ¢2) I, it follows from

Theorem 5.14 in [13] (see also (@) here) that Pgh (0) > 277F (1 + 02)_k/2. By convexity
again,

—A(t)

}e — e‘B(t)} = e }e -4l _ 1‘ (1 — e‘l) e B0
> (1— ) exp (~B(O) — tB' 1)
> (1- ‘1) Pgh (0 )GXP( yB' (ty))
> (e—1)27 7k(l—l—a) exp( k)

However, by (2]),

- 1
e — &P = |Pyh (tz) - Pph (ty)| < C (2m0%) """ <6+ M) Vi

n

We will choose the parameters 0, k, and ¢ so that the upper bound on ‘e‘A(t) — e_B(t)‘ is

less than the lower bound, which implies that we may assume that B(t) — A(t) > —1 for
all t € {t;,t,}. Now let ¢t € {t,,t,} such that

[A(t) = B(1)| = Jup }IA(U) — B(u)]

By @),

‘e—A(t) _ BB — B ‘eB(t 1‘

> exp (= B(U)—B()) e |B(t) — A(t)]

2

_ kK—1)(t, —t;
> 9Tk (1+02) k/2 e—k( ;t(;/ )
xly

SO

n

t, —t k/4 Inn\ Y
yt T S v o= Ceck: (1 4 0_2) O_—(k+1)/2 51/2 4 (_)
Y

For an appropriate choice of parameters this will achieve our goal of showing that ¢,
and t, cannot be too far apart (relatively). What this means is that in any direction
r € S" ' N E, the function t + t*"'Pph (tz) achieves its peak in about the same place.
Our next goal is to show that the mass in

/ t*=L Pph (tx) dt

0



is concentrated around t,. Since A lies above its tangent lines, defining ¢ by

qt) = "0 <exp ((k—1)Int — A (t,) — (t — t,) A (t))

_ exp( _A(t (:—1—111% lntx) (k:—l))
= exp< At ( lntx+ij_1 (i—l)j) (k—l))
=2 te
th=le=A) oxp <_E (i -~ 1)2)
3 \t

provided ’é — 1’ < 1/2. We now translate this to tail probabilities. Fix any t € [t,, 3t, /2]
and s > t. By log-concavity of ¢,

Vo) < [( a(t) )”“‘“’] ) < oo (_(k — (=1 (- m) o0

q(ty) 3t2

xT

IN

and therefore

> 3t2q(t)
/t 1)ds < 3w

On the other hand, for any s € [t,, ],

. [(q<tx>)”“—“>] T s e ((k: — 1) (t—s) (- m) .

q(t) 3tz

SO
> f 3t2q(t) (k—1)(t—t,)
> > L —1
/0 q(s)ds > /t; q(s)ds > =) (=1 exp 312
and
= (k= 1) (t - 1.)° e
/ q(s)ds < |exp ( - ) - 1] / q(s)ds
’ 3t3 0
A similar bound holds for the left hand tail. Combining these,
(1+u)te e’}
/ q(s)ds > (1 — Cexp (—cku?)) (/ q(s)ds) (4)
(1-u)te 0

provided u € [0,1/2].
Step 3: Thin shell and small details. Now fix an arbitrary x € B} N E. By polar

integration,
PrY

—1‘<C’(u—|—7)}21—0exp(—ck‘u2) (5)



which is the so called ’thin shell property’ of PrY in E (see Section [3 for more details),
and by a result of Bobkov [2] (following Anttila, Ball and Perissinaki [I] in the symmetric
case) this implies that with probability at least

1= CVkexp (—ck {u+ 7+ exp (—chku?) })

a further random projection Py PgY is approximately Gaussian (with mean zero and
variance 1 + 0?2), where @' is uniformly distributed in Sg,

t
V1+ o2

See Theorem 2l Now (¢, PgY) = (¢, PgX) + (0',0PrZ), and (¢, PgZ) ~ N(0,1).
Assume that ¢ > 0 and ¢ < 1, and consider any v € (0,1). Since

B{(#, PoY) gt}_q>< )‘ < C (u+ 7+ exp (—cku?))

(0, PY)<t—v} = {(,PeX)<t}V{{0,0PpZ) < —v}
{0, PeX) <t} = {(0,PpY)<t+v}Vv{(#,0PsZ) > v}

by the union bound and (7)), P {(¢’, PzX) < t} is bounded below by
P{(#, PpY) <t—v}—P{(#,0PpZ) < —v}
) - C (u + v+ exp (—cku2)) —Cexp (—00_21/2)

t—v

V1+ o2

> ®(t)—C(v+o+u+y+exp(—cku?) +exp (—co 1))

v

o

and above by

IP’{(G’,PEY) <t+ V} +P{<9/,UPEZ> > V}
< Q)+ C(v+o+u+y+exp(—cku®) +exp (—co 7))

Choosing
E o ciln(n+1) 6:1n(n+1) > 1
Inln (n +2) vn In(n+1)
Cylnln (n + 2) B Cy

In(n+1) Y VIn(n+1)

(a fairly arbitrary choice), where ¢; is chosen first to be small and then C; is chosen to

be appropriately large, we get v < Cn~'/% and the error bound reduces to
C'lnl 2
PO, PoX) < 1} — 0(1)] < 5, o= S in (0 +2)
In(n+1)

the probability bound (of failure) reduces to
wy, < Cexp (—052n) + CVk exp (—ck {u + v+ exp (—cku2) }2) < C (log n)_c3

7



where (3 can be made arbitrarily large by taking C5 large enough. The upper and
lower bounds for |e=4(!) — ¢=B®)| earlier in the proof become (respectively) Cn~1/20-1
and Cn~%! which achieves the desired contradiction, and the required bound k <
c6? (In n)_ln is satisfied. Note that Py Pr = P, where 6 is uniformly distributed in
S™=1 so we have shown that the projection of X onto most one dimensional subspaces is
approximately Gaussian, and Theorem [I] follows.

Note: Radius of the thin shell. When stating and applying the fact that the
thin shell property implies CLT, it is convenient to replace t, with vk in (B). Let W
(0 € S*' N E) be a random variable with density proportional to ga(t) = t*=1Pgh (t6),
t > 0. From (@),

Ct?
E[W,> = (E[Wy|)®+ Var(Wp) < (tg + Ck™2t)" + =2

C't?

< £2(1+Cy)(1+CE ) + -

SO

E|PpY|? = volpy (S¥7) /SHIOE (/000 tZQG(t)W) </0°° C_Ie(s)ds) doy—1 (0)

< (1+Cy+CE'P)E
The last inequality follows since vol,_; (S*!) [ aninp Jo @o(s)dsdog_1 (0) = 1. Similarly,
E|PY "> (1 - Cy—Ck™V2) ¢
But E |PgY|* = k, so
(1-Cy=Ck'")VEk<t, < (1+Cy+Ck ) VE

and (changing the constants involved) we may replace t, with vk in (F).

Note: Lower bound on Pgf(0). To simplify notation we work with the original
function f : R™ — [0,00), but the corresponding result can then be applied to Pgf :
E — [0,00) by replacing n with k. By log-concavity, {z € R": f(x) > f(0)} is convex
and there exists § € S"~! such that (6, z) > 0 implies f(x) < f(0). It is an interesting
exercise to show that for any log-concave random variable in R with zero mean and unit
variance, such as (0, X'), P{(0, X) > 0} > /8 for some universal constant 5 > 0 (actually
for 3 =e"1). Now

1 n
_RIXE > A2 P Plix] > Aa ] U s 4202 " (52 F(0)2vol, [ Aa, ./ Br
n | | - an2ﬂ_€ | |— Qp 27T€ - an271'6 ﬁ f(O)QVOn 07% 27'('6 2

where «, is such that vol, (e, /3%) = 1and o, — L asn — oo (and By = {z : |z| < 1}).
Optimizing in A yields

£(0) > Cn*2 (ev/2r) - (6)

In the symmetric case one gets the optimal base v/2me. The estimate f(0) > 27™ can be
found, for example, in [I3, Theorem 5.14].



3 Appendix: Thin shell implies CLT

For completeness we collect and prove various known results and tailor them to our specific
use. We refer the reader to [2] Theorems 1.1 and 1.2, Eq. (1.7) Proposition 3.1] and [1] for
a more extensive discussion. Our proof of Proposition 3.1 in [2] on the Lipschitz constant
of 0 — M (0,1) is slightly simplified.

Theorem 2 Let ¢ > 0. Let pu be a probability measure on R with center of mass 0,
identity covariance, and log-concave density f = du/dx. If u has the following thin shell
J=l

property:
>ep<e
vk }

then there exists © C S* with 0,,_, (0) > 1 — CVkexp (—cke?) such that for all § € ©,

,u{:ceRk:

sup |® (t) — p{z € R" : (z,0) < t}| < Ce
teR

Proof. Write M (0,t) = p{z € R*: (z,0) <t}. For any 6,0, € S*! that are suffi-
ciently close, say |01 — 0| < 1/10,

[M (01,1) = M (63,)] = pu (M (61,8) AM (02,1))

where AAB = (A\B)U(B\A) denotes the symmetric difference of A and B. By projecting
onto span {61, 0,} and identifying span {0;,6,} with R? we conclude that

t () oo  p(l—zcosB)/sinp
M- @l- [ o@yydz+ [ [ o(z)dyds
—oo J(1—zcosB)/sin B t —00

where ¢ is the density of the measure projection of y into E (identified with R?), see (),
and cos § = (61,02). By the Prékopa-Leindler inequality ¢ is log-concave, and defines a
probability measure with mean 0 and identity covariance. It is an elementary fact that
for such a function, q(z,y) < Cexp (—cx; — cxy) with universal constants C, ¢ > 0. By a
change of variables (through translation),

0 —ytan 8
M (6,.,8) — M (ba, 1)] < 2C / / exp (—c'z — ¢y) dedy < Ce (9, — 6
—o0 Jt

This implies that M (0,t) is Ce~*l-Lipschitz in 6. Now let § € S*~! be chosen randomly,
uniformly distributed on S*~! and let F((t) = EM (,t). By concentration on S"~! (see
e.g. [10]) and the union bound, with probability at least 1 — Ce™'exp (—cne?) = 1 —
CVk (ke?) ™ exp (—cke?), the following event occurs: forall 1 < j < m, |M (6,t;) — F(t;)| <
e, where m = |7 | and t; = F~' (j/m). Using monotonicity in ¢, we conclude that (with
high probability) |M (6,t) — F(t)| < Ce for all t € R. We now compare F' to ®. Let
O (t) =P {\/E@l < t}, where @ is still uniform on S*~!. Let X be a random vector in



R¥ with distribution g and independent of . The vector Y = (6, k2| X ' X ) is inde-
pendent of k72| X| and has the same distribution as #;. Using Fubini’s theorem and
independence, and assuming ¢ > 0,

F(t) = P{(6,X)<t}= P{l)ﬂ< J\)_()f><t} P{Y<%}
(Bl )
o e 2 A [ B

tVk

A similar lower bound holds. For any 9,z > 0,
P((1+0)z)—P(x) <P (2)dx <C§ (7)

It follows from rotational invariance of the standard normal distribution and uniqueness
of Haar measure that if Z is a standard normal vector in R¥ then v/k |Z|~" Z is uniformly
distributed on v/kS*!. Simulating § = vk |Z|™" Z

- e - 2\ 12 [ K ;
0u(t) - wu(-0) = P{lz] st 2z} =Pz < (1- ) (322

which (after a bit of fiddling using (7)) and Gaussian concentration of |Z| about k'/2)
implies the well known estimate |®(t) — ®,(t)] < ck~'/2 for all ¢ € R (this can also be
seen by considering the density @}, similar details in [0, Section 3]). Putting all this
together,

F(t)g¢k<(1f€))+eg<1><(1f€))+%+egq>(t)+ce+%

with a similar lower bound. Similarly, this also holds for t < 0. m
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