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Abstract
Fast initial response (FIR) features are generally used to improve the sensitiv-
ity of memory-type control charts by shrinking time-varying control limits in
the earlier stage of the monitoring regime. This paper incorporates FIR fea-
tures to increase the sensitivity of the homogeneously weighted moving aver-
age (HWMA) monitoring schemes with and without measurement errors under
constant as well as linearly increasing variance scenarios. The robustness and
the performance of the HWMAmonitoring schemes are investigated in terms of
numerous run-length properties assuming that the underlying process param-
eters are known and unknown. It is found that the FIR features improves the
performance of the HWMAmonitoring scheme as compared to the standard no
FIR featureHWMAscheme, and at the same time, it is observed that the simulta-
neous use of a recently proposed FIR feature andmultiplemeasurements signifi-
cantly reduces the negative effect ofmeasurement errors. An illustrative example
on the volume of milk in bottles is used to demonstrate a real-life application.
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1 INTRODUCTION

Statistical process monitoring (SPM) is the application of statistical techniques for measuring and analyzing variation in
various processes to improve the quality of the products and services. The most popular statistical tool designed to serve
this purpose is the control chart (or monitoring scheme). In SPM theory and practical applications, monitoring schemes
are mainly used to distinguish between chance causes of variation and assignable causes of variation, as being able to
distinguish between them is key to knowing whether a change that occurred resulted in either a desired or undesired
end-result; see for instance, the introductory chapters in Montgomery,1 Chakraborti and Graham,2 and Aslam et al.3
When only common causes of variation are present, the process is said to be in-control (IC). However, when the process
has assignable causes present, it is said to be out-of-control (OOC) and corrective action to find and remove them need to
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be taken. Next, when the underlying process parameters are assumed to be known, this is denoted as Case K; however,
when they are assumed to be unknown, this is denoted as Case U. In the Case K scenario, monitoring can immediately
be implemented to check for any departure from the IC state; however, the Case U scenario requires monitoring schemes
to be applied in a two-phase approach, that is, Phase I and Phase II (see Does et al4 for a review of recent Case U articles).
Using an IC reference sample, monitoring schemes are retrospectively implemented in Phase I to estimate unknown
distribution parameters. Thereafter, using the parameters estimated from Phase I, monitoring schemes are prospec-
tively implemented in Phase II to guard against any departures from an IC state, see for instance Does et al4 for further
discussion.
Walter A. Shewhart was the first to introduce the modern monitoring scheme in the 1920s. Since then, there have been

various developments such as cumulative sum (CUSUM) by Page,5 exponentially weighted moving average (EWMA) by
Roberts,6 generally weighted moving average (GWMA) by Sheu and Lin,7 and more recently, homogeneously weighted
moving average (HWMA) by Abbas.8 The HWMA scheme is a memory-type scheme that allocates a specific weight
(equal to the smoothing parameter 𝜆) to the current sample and distributes equally or homogenously the remaining
weights (ie, equal to 1 − 𝜆) to all the previous samples. The HWMA scheme is mostly considered for its effective-
ness in monitoring small-to-moderate shifts in the process parameters; see also the following publications on different
HWMA schemes: Adegoke et al,9,10 Abbas et al,11 Nawaz and Han,12 Raza et al,13 Adeoti and Koleoso,14 Abid et al,15,16
Dawod et al,17 and Thanwane et al.18–20 The HWMA scheme has similar limitations as the CUSUM and EWMA schemes
in that it can be less sensitive in spotting start-up problems (ie, the resistance of a scheme to detect OOC samples
at the beginning of the monitoring process). It is therefore a reason why this paper seeks to incorporate fast initial
response (FIR) features on the HWMA scheme to enhance its responsiveness to any significant shift at the initial start-up
period.
Steiner21 studied the properties of the EWMA scheme with a basic FIR feature (denoted as BFIR). Next, Knoth22 devel-

oped a change point model for the BFIR EWMA scheme. Chiu23 designed a generally weighted moving average (GWMA)
with a BFIR feature. Haq et al24 proposed the modified FIR (denoted as MFIR) feature and showed that the MFIR feature
has better detection ability than the Steiner’s21 BFIR feature when integrated on the EWMA and CUSUM monitoring
schemes. The aforementioned researches and others concluded that FIR features shrink the time-varying control limits
of the CUSUM, EWMA, and GWMA schemes, and therefore, improve their performances in detecting start-up problems.
More recently, Letshedi et al25 proposed the use of a new improved MFIR feature (denoted as IMFIR) to improve the
performance of a single, double and triple EWMA schemes based on the nonparametric Wilcoxon rank-sum statistic. The
IMFIR feature is shown to be more effective than the MFIR and BFIR features in detecting location shifts in a nonpara-
metric setup. Note though, the HWMA scheme is relatively new in the literature; hence, there has not been any work
on it that uses any of the abovementioned FIR features. Therefore, in this paper, the latter FIR features are applied in a
parametric setup of the HWMA 𝑋̄ scheme to improve its sensitivity during start-up period.
As per review paper by Maleki et al,26 real-life data are mostly under the negative effect of measurement errors; which

means that, a difference in magnitude between the real quantities and the measured ones mostly exist, even with highly
refined innovative measuring devices. Since measurements errors are unavoidable, they need to be taken into account
when monitoring items with measurements. Note that the effect of measurement errors on the performance of HWMA
scheme to monitor the process mean is discussed in Thanwane et al18,19 for Cases K and U, respectively. For some early
discussions on measurement errors in SPM context, see Linna and Woodall,27 Maravelakis et al,28 and Maravelakis29;
however, for some recent contributions, see Riaz et al,30 Sabanho et al,31,32 Zaidi et al,33,34 Nguyen et al,35 and Noor-ul-
Amin et al.36
The objective of this paper is to incorporate FIR features in the time-varying control limits of the HWMA scheme to

monitor the mean of processes with and without measurement errors so that its sensitivity in detecting start-up problems
can be improved. In the review papers by Jensen et al,37 Psarakis et al,38 and Does et al,4 it is stated that the estimation
of the process parameters significantly degrades the performance of a monitoring scheme; thus, the investigation of the
effect of parameter estimation on the performance of the HWMA 𝑋̄ scheme for both a constant and linearly increasing
measurement system error variances is conducted.
The rest of this paper is organized as follows: In Section 2, the proposedHWMAschemewith andwithout FIR features is

discussed under the assumption of perfect and imperfect measurements. In Section 3, the robustness and performance of
the proposed schemes are investigated in Cases K andU. Section 4 provides an illustrative example to show the application
of the proposed HWMA scheme under the effect of measurement errors using the best performing FIR feature. Finally,
Section 5 provides some concluding remarks.
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2 HWMA 𝑿̄ SCHEMEWITH ANDWITHOUTMEASUREMENT ERRORS
INTEGRATEDWITH FIR FEATURES

2.1 Phase I analysis

In Case U, Phase I analysis need to be conducted first, and thereafter, monitoring takes place in Phase II. Hence, when
the process is IC,𝑚 reference samples each of size 𝑛 are used to estimate the process parameters. The unbiased estimators
for 𝜇0 and 𝜎0 are defined by

𝜇̂0 =

∑𝑚

𝑗=1

∑𝑛

𝑖=1
𝑌𝑗𝑖

𝑚𝑛
(1)

and

𝜎̂0 =

√∑𝑚

𝑗=1

∑𝑛

𝑖=1 (𝑌𝑗𝑖−𝑌̄𝑗)
2

𝑚(𝑛−1)

𝑐4,𝑚
, (2)

respectively, where 𝜇̂0 is the IC process mean, 𝜎̂0 is the IC process standard deviation, and {𝑌𝑗𝑖: 𝑗 = 1,. . . ,𝑚 and 𝑖 = 1,. . . ,𝑛}

is a sequence of IC Phase I observations, with 𝑌̄𝑗 =
𝑛∑
𝑖=1

𝑌𝑗𝑖∕𝑛 and in Abbas8 it is stated that the unbiasing constant is given

by 𝑐4,𝑚 =
√
2 Γ(

𝑚(𝑛−1)+1

2
)√

𝑚(𝑛−1) Γ(
𝑚(𝑛−1)

2
)
.

2.2 Covariate error model for a constant and linearly increasing variance in Phase II

Let 𝑋𝑡𝑖 {𝑡 = 1, 2, . . . , and 𝑖 = 1, 2, . . . , 𝑛} be a set of samples from Phase II of independent normal random variables such
that 𝑋𝑡𝑖 ∼ 𝑁(𝜇̂0 + 𝛿𝜎̂0, 𝜎̂20) where 𝜇̂0 and 𝜎̂0 represent the estimated IC mean and standard deviation, respectively, and
𝛿 denotes the magnitude of the shift in standard deviation units such that whenever 𝛿 = 0, the process is said to be IC,
that is, 𝑋𝑡𝑖∼ 𝑁(𝜇̂0, 𝜎̂20); otherwise, the process is OOC. When multiple measurements are used, an additional variable is
introduced; that is, an integer 𝑘 ∈ {1, 2, … , 𝑟}, which denotes the number of measurements taken in each sampled unit.27
Thus, the latter sequence of observations (ie,𝑋𝑡,𝑖) can only be observed through the following sequence {𝑋∗𝑡,𝑖,𝑘 ∶𝑡 = 1,2,. . . ;
𝑖 = 1,2,. . . , 𝑛; 𝑘 = 1,. . . , 𝑟}. Each value in the sequence is calculated by

𝑋∗
𝑡,𝑖,𝑘

= 𝐴 + 𝐵𝑋𝑡,𝑖 + 𝜀𝑡,𝑖,𝑘, (3)

where 𝜀𝑡,𝑖,𝑘 ∼ 𝑁(0, 𝜎2𝑀) is a random error due to measurement error and it is distributed independently of 𝑋𝑡,𝑖 .26 Note
that 𝜎2

𝑀
is the variance of the measurement system. Moreover, the two constants, 𝐴 and 𝐵 in Equation (3), depend on the

measurement system location error.27 In addition, according to Linna andWoodall27 when themeasurement system error
variance is assumed to be constant, it follows that

𝑋∗
𝑡,𝑖,𝑘

∼ 𝑁
(
𝐴 + 𝐵𝜇̂0, 𝐵

2𝜎̂2
0
+ 𝜎2

𝑀

)
. (4)

However, in some of the real-life applications, the measurement system error variance, 𝜎2
𝑀
is an increasing function of

the mean of the variable 𝑋𝑡,𝑖 , that is, 𝜎2𝑀 = 𝐶 + 𝐷𝜇̂0, where 𝐶 and 𝐷 are two constants depending on the measurement
system variability error. Hence, Linna and Woodall27 showed that in the case of the corresponding linearly increasing
error variance, Equation (4) becomes

𝑋∗
𝑡,𝑖,𝑘

∼ 𝑁
(
𝐴 + 𝐵𝜇̂0, 𝐵

2𝜎̂2
0
+ 𝐷𝜇̂0

)
. (5)
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Thus, the mean of 𝑛 observations from the sequence 𝑋∗
𝑡,𝑖,𝑘

at each sampling point is defined by

𝑋̄∗𝑡 =
1

𝑛𝑟

𝑛∑
𝑖=1

𝑟∑
𝑘=1

𝑋∗
𝑡,𝑖,𝑘

= 𝐴 + 𝐵
1

𝑛

𝑛∑
𝑖=1

𝑋𝑡,𝑖 +
1

𝑛𝑟

𝑛∑
𝑖=1

𝑟∑
𝑘=1

𝜀𝑡,𝑖,𝑘. (6)

Note that

𝐸
(
𝑋̄∗𝑡

)
= 𝐴 + 𝐵

1

𝑛

𝑛∑
𝑖=1

𝐸
(
𝑋𝑡,𝑖

)
+
1

𝑛𝑟

𝑛∑
𝑖=1

𝑟∑
𝑘=1

𝐸
(
𝜀𝑡,𝑖,𝑘

)
= 𝐴 + 𝐵𝜇̂0. (7a)

Next,

Var
(
𝑋̄∗𝑡

)
= Var (𝐴) + Var

(
𝐵
1

𝑛

𝑛∑
𝑖=1

𝑋𝑡,𝑖

)
+ Var

(
1

𝑛𝑟

𝑛∑
𝑖=1

𝑟∑
𝑘=1

𝜀𝑡,𝑖,𝑘

)

= 𝐵2
1

𝑛2
Var

(
𝑛∑
𝑖=1

𝑋𝑡,𝑖

)
+

1

(𝑛𝑟)
2

𝑛∑
𝑖=1

𝑟∑
𝑘=1

Var
(
𝜀𝑡,𝑖,𝑘

)
= 𝐵2

1

𝑛2

(
𝑛∑
𝑖=1

Var
(
𝑋𝑡,𝑖

)
+ 2

∑
𝑡<𝑣

∑
Cov

(
𝑋𝑡,𝑖, 𝑋𝑣,𝑖

))

+
1

(𝑛𝑟)
2

(
𝑛∑
𝑖=1

𝑟∑
𝑘=1

Var
(
𝜀𝑡,𝑖,𝑘

)
+ 2

∑
𝑡<𝑣

∑∑
Cov

(
𝜀𝑡,𝑖,𝑘, 𝜀𝑡,𝑖,𝑘

))
.

Since the sequence {𝑋𝑡,𝑖} is i.i.d., it follows that Cov (𝑋𝑡,𝑖, 𝑋𝑣,𝑖) = 0 for any 𝑡 ≠ 𝑣 and Var (𝑋𝑡,𝑖) = 𝜎̂
2
0
. Similarly,

Cov (𝜀𝑡,𝑖,𝑘, 𝜀𝑣,𝑖,𝑘) = 0 and Var (𝜀𝑡,𝑖,𝑘) = 𝜎2𝑀 . Thus, it follows that

Var
(
𝑋̄∗𝑡

)
=
𝐵2𝜎̂2

0

𝑛
+
𝜎2
𝑀

𝑛𝑟
=
𝑟𝐵2𝜎̂2

0
+ 𝜎2

𝑀

𝑛𝑟
. (7b)

2.3 HWMA scheme with measurement errors

The HWMA 𝑋̄∗ scheme under the negative effect of measurement errors in Case U were discussed in Thanwane et al19
and its plotting statistic is given by

𝐻∗𝑡 = 𝜆𝑋̄
∗
𝑡 + (1 − 𝜆)𝑋

∗

𝑡−1, (8)

where 𝑋̄∗𝑡 is given in Equation (6), 𝑋
∗

𝑡−1 is the mean of the previous t–1 sample means computed by

𝑋
∗

𝑡−1 =
1

𝑡 − 1

𝑡−1∑
𝑙=1

𝑋̄∗
𝑙
,

The initial value of 𝑋
∗

0 (at t = 1, ie, 𝑋
∗

0) is set to be equal to the target mean 𝐴 + 𝐵𝜇̂0 in Equation (7a) and its variance is
given by

𝑉𝑎𝑟

(
𝑋
∗

0

)
= 𝑉𝑎𝑟 (𝐴 + 𝐵𝜇̂0) = 0. (9)
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Thus, using Equation (7a), it follows that the expected value of𝐻∗𝑡 is given by

𝐸
(
𝐻∗𝑡

)
= 𝜆𝐸

(
𝑋̄∗𝑡

)
+ (1 − 𝜆) 𝐸

(
𝑋
∗

𝑡−1

)
= 𝐴 + 𝐵𝜇̂0. (10)

The variance of Equation (8) is calculated in two parts, that is, 𝑡 = 1 and 𝑡 > 1. That is, using Equations (7b) and (9), it
follows that at 𝑡 = 1,

Var
(
𝐻∗
1

)
= 𝜎2

𝐻∗
1

= 𝜆2 Var
(
𝑋̄∗
1

)
+ (1 − 𝜆)

2
Var

(
̄̄𝑋∗
0

)
= 𝜆2

𝑟𝐵2𝜎̂2
0
+ 𝜎2

𝑀

𝑛𝑟
.

However, since the observations are i.i.d. and using Equation (7b),

Var
(
̄̄𝑋∗
𝑡−1

)
= Var

(
1

𝑡 − 1

𝑡−1∑
𝑙=1

𝑋̄∗
𝑙

)
=

1

(𝑡 − 1)
2

𝑡−1∑
𝑙=1

Var
(
𝑋̄∗
𝑙

)
=

1

𝑡 − 1

(
𝑟𝐵2𝜎̂2

0
+ 𝜎2

𝑀

𝑛𝑟

)

and thus, it follows that at 𝑡 > 1,

Var
(
𝐻∗𝑡

)
= 𝜎2

𝐻∗𝑡
= 𝜆2Var

(
𝑋̄∗𝑡

)
+ (1 − 𝜆)

2
Var

(
̄̄𝑋∗
𝑡−1

)
= 𝜆2

(
𝑟𝐵2𝜎̂2

0
+ 𝜎2

𝑀

𝑛𝑟

)
+ (1 − 𝜆)

2 1

𝑡 − 1

(
𝑟𝐵2𝜎̂2

0
+ 𝜎2

𝑀

𝑛𝑟

)
.

Stated differently,

Var
(
𝐻∗𝑡

)
= 𝜎2

𝐻∗𝑡
=

⎧⎪⎪⎨⎪⎪⎩
𝜆2
𝑟𝐵2𝜎̂2

0
+ 𝜎2

𝑀

𝑛𝑟
, 𝑡 = 1(

𝜆2 +
(1 − 𝜆)

2

𝑡 − 1

)
𝑟𝐵2𝜎̂2

0
+ 𝜎2

𝑀

𝑛𝑟
, 𝑡 > 1.

(11)

The time-varying control limits of the HWMA 𝑋̄∗ scheme with a constant measurement system variance and 𝑟-
measurements are defined by:

𝑈𝐶𝐿𝑡∕𝐿𝐶 𝐿𝑡 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

(𝐴 + 𝐵𝜇̂0) ± 𝐿
∗

√
𝜆2𝜎̂2

0

𝑛

(
𝑟𝐵2 + 𝛾2

𝑟

)
, 𝑡 = 1

(𝐴 + 𝐵𝜇̂0) ± 𝐿
∗

√√√√(
𝜆2𝜎̂2

0

𝑛
+
(1 − 𝜆)

2
𝜎̂2
0

𝑛 (𝑡 − 1)

)(
𝑟𝐵2+𝛾2

𝑟

)
, 𝑡 > 1,

(12a)

where 𝐿∗ is a control limit coefficient of the HWMA 𝑋̄∗ scheme and 𝛾 = 𝜎𝑀

𝜎̂0
denotes the standardized ratio of the vari-

abilities of the measurement system to that of the process one. However, the time-varying control limits of the HWMA 𝑋̄∗
scheme with a linearly increasing variance and 𝑟-measurements are defined by

𝑈𝐶𝐿𝑡∕𝐿𝐶 𝐿𝑡 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

(𝐴 + 𝐵𝜇̂0) ± 𝐿
∗

√√√√𝜆2

(
𝑟𝐵2𝜎̂2

0
+ 𝐶 + 𝐷𝜇̂0

𝑛𝑟

)
, 𝑡 = 1

(𝐴 + 𝐵𝜇̂0) ± 𝐿
∗

√√√√(
𝜆2 +

(1 − 𝜆)
2

𝑡 − 1

)(
𝑟𝐵2𝜎̂2

0
+ 𝐶 + 𝐷𝜇̂0

𝑛𝑟

)
, 𝑡 > 1.

(12b)
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F IGURE 1 Comparison of the BFIR, MFIR, and IMFIR adjustment features with respect to the time 𝑡

Note that the HWMA 𝑋̄∗ scheme without measurement errors is designed in similar way; however, assuming that 𝛾 =
𝜎𝑀

𝜎̂0
= 0 or 𝜎2

𝑀
= 𝐶 + 𝐷𝜇̂0 = 0 and 𝑟 = 1.

2.4 HWMAmonitoring scheme with FIR features

Mostly known to some authors as a “head-start,” a FIR feature enhances the sensitivity of the monitoring schemes during
start-up period. This feature improves the performance of a scheme at a start-up or after an OOC signal. FIR features
may be implemented when a practitioner suspects there is a possibility of very small shift or wants to guard against pos-
sible small or large shifts during start-up period.39 Initial response features considered here are a power transformation
adjustment factor (denoted as FIRadj) such that when the effect of FIR has completely disappeared, the FIRadj equals 1.
According to Steiner,21 Haq et al,24 and Letshedi et al,25 the BFIR, MFIR, and IMFIR features are respectively given by

BFIRadj = 1 − (1 − 𝑓)
1+𝑎(𝑡−1)

, (13a)

MFIRadj =
{
1 − (1 − 𝑓)

1+𝑎(𝑡−1)
}1+ 1

𝑡
, (13b)

IMFIRadj =
{
1 − (1 − 𝑓)

1+𝑎(𝑡−1)
}√

𝑡
(
1+

1

𝑡

)
, (13c)

where 𝑓 denotes a segment of an interval from a start-up value to the control limits, where 𝑎 and 𝑓 were suggested to be
equal to 0.3 and 0.5, respectively.
Using 𝑎 = 0.3, 𝑓 = 0.5, and 𝑡 ≥ 1, it is observed in Figure 1 that the IMFIRadj has the lowest magnitude as compared

to MFIRadj (second lowest) and BFIRadj (highest). The MFIRadj is smaller than the BFIRadj when 𝑡 < 19 (see also Haq
et al24) and converges to 1 at 𝑡 ≥ 24. However, the IMFIRadj is smaller than the BFIRadj andMFIRadj when 𝑡 < 32 (see also
Letshedi et al25) and from 𝑡 ≥ 32, all the FIR features are exactly equal to 1. While the effect of FIR features disappears as
time increases, it is important to note that for the standard “no FIR” scenario, the FIRadj is equal to 1 for all values of 𝑡.
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Incorporating Equations (13a) to (13c) into Equations (12a) and (12b), then it follows that the control limits of theHWMA
scheme with FIRadj for the constant measurement system variance is given by

𝑈𝐶𝐿𝑡∕𝐿𝐶 𝐿𝑡 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

(𝐴 + 𝐵𝜇̂0) ± FIRadj𝐿
∗

√
𝜆2𝜎̂2

0

𝑛

(
𝑟𝐵2 + 𝛾2

𝑟

)
, 𝑡 = 1

(𝐴 + 𝐵𝜇̂0) ± FIRadj𝐿
∗

√√√√(
𝜆2𝜎̂2

0

𝑛
+
(1 − 𝜆)

2
𝜎̂2
0

𝑛 (𝑡 − 1)

)(
𝑟𝐵2 + 𝛾2

𝑟

)
, 𝑡 > 1;

(14a)

however, for the linearly increasing measurement system variance, the control limits are given by

𝑈𝐶𝐿𝑡∕𝐿𝐶𝐿𝑡 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

(𝐴 + 𝐵𝜇̂0) ± FIRadj𝐿
∗

√√√√𝜆2

(
𝑟𝐵2𝜎̂2

0
+ 𝐶 + 𝐷𝜇̂0

𝑛𝑟

)
, 𝑡 = 1

(𝐴 + 𝐵𝜇̂0) ± FIRadj𝐿
∗

√√√√(
𝜆2 +

(1 − 𝜆)
2

𝑡 − 1

)(
𝑟𝐵2𝜎̂2

0
+ 𝐶 + 𝐷𝜇̂0

𝑛𝑟

)
, 𝑡 > 1,

(14b)

where FIRadj denotes the BFIRadj,MFIRadj, and IMFIRadj given in Equations (13a), (13b), and (13c), respectively.
Note that theHWMA 𝑋̄∗ scheme integratedwith BFIR,MFIR, and IMFIR features are denoted as BFIR-HWMA,MFIR-

HWMA, and IMFIR-HWMA, respectively. Hence, the BFIR-HWMA, MFIR-HWMA, and IMFIR-HWMA schemes with
the constant and linearly increasing variances give a signal when the plotting statistic defined in Equation (8) plots beyond
the control limits defined in Equations (14a) and (14b), respectively.

3 PERFORMANCE OF HWMA 𝑿̄∗ SCHEMEWITH ANDWITHOUT FIR FEATURES

3.1 Performance metrics

To investigate the sensitivity of amonitoring scheme, the characteristics of the run-length (RL) distribution are often used.
The RL represents the number of charting statistics to be plotted on the scheme before the first OOC signal. The expected
RL, that is, average RL (ARL), is the most used performance metric when the operator is interested to assess the perfor-
mance of a scheme for a specific shift (𝛿). TheARL can be computed using exact formulas,27 Markov chain technique,39 or
Monte Carlo simulation.24 In this paper, Monte Carlo simulations with 50 000 replications were implemented in SAS R©
v9.4 software to compute the RL properties of the proposed HWMA 𝑋̄∗ scheme with and without FIR features. Other
popular RL properties that are used to evaluate the performance of a monitoring scheme are the standard deviation of the
RL (SDRL) as well as the percentiles run-length (PRL), that is, 5th, 25th, 50th, 75th, and 95th percentiles (denoted as P5,
P25, P50, P75, and P95), respectively.
When the operator is interested to assess the performance of a scheme for a range of shifts, the expected ARL (EARL)

is usually preferred.40,41 In this paper, the EARL metric is used to investigate the overall performance of the proposed
schemes for a range of shifts and it is defined by the following Riemann sum:

𝐸𝐴𝑅𝐿(𝛿min,𝛿max] =
1

Δ

𝛿max∑
𝛿=𝛿min

𝐴𝑅𝐿 (𝛿) , (15)

where 𝛿min = 0 (lower limit of 𝛿, not included in the summation) and 𝛿max = 1 (upper limit of 𝛿) and Δ = 10 represents
the number of increments between 𝛿min and 𝛿max .
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TABLE 1 IC ARL and SDRL profiles of the HWMA 𝑋̄∗ scheme with and without FIR features whenm = 100, n = 5, and 𝜆 = 0.1 under
different continuous probability distributions with a nominal 𝐴𝑅𝐿0= 500

IC ARL IC SDRL
None BFIR MFIR IMFIR None BFIR MFIR IMFIR

N(0,1) 500.5 501.9 501.6 505.9 569.3 804.3 1082.1 1262.4
t(5) 234.3 208.3 159.0 142.3 205.3 247.3 270.9 279.9
t(10) 365.7 349.2 310.4 300.9 369.2 457.5 595.6 649.3
t(20) 436.0 434.3 404.2 393.0 476.2 607.4 837.3 917.2
GAM(1, 1) 292.4 244.2 175.1 147.4 354.6 385.6 416.7 381.4
GAM(3, 1) 409.4 383.6 326.4 312.5 485.0 589.1 777.7 875.3
GAM(10, 1) 466.1 468.1 438.6 438.0 540.3 706.2 979.8 1161.7

3.2 Robustness study

A monitoring scheme is said to be IC robust when the characteristics of the IC RL are approximately the same or much
closer across all continuous probability distributions; see Chakraborti and Graham2 for more details on this concept.
To evaluate whether the HWMA 𝑋̄∗ scheme with and without FIR features is robust, the standard normal distribution
(denoted by N(0,1)), Student’s t distribution (denoted by t(v)) and the Gamma distribution (denoted by GAM(𝜔, 𝛽)) are
considered. For the t(v) distribution, the degrees of freedom considered are 𝜈 = 5, 15, 30; however, for the GAM(𝜔, 𝛽)
distribution, the location, and scale parameters considered are 𝜔 = 1, 3, 10 and 𝛽 = 1, respectively. More importantly, the
latter distributions with different parameters are each transformed such that the mean and standard deviation are equal
to 0 and 1, respectively.
In general, it is observed from Table 1 that the values of the IC ARL and SDRL values are not approximately the same

for different underlying distributions and thus, each of the four monitoring schemes are not IC robust. Stated differently,
the HWMA 𝑋̄∗ scheme with and without the FIR features are not IC robust, for any level of measurement error, since
the RL properties (ie, the IC ARL and SDRL) are not approximately equal across different distributions. Note that, while
the process is IC, the SDRL of the HWMA schemes with FIRs are generally larger than that of the “no FIR” one. While
this is shown for𝑚 = 100, it also holds for other Phase I sample sizes. Furthermore, in Figure 2, it is shown that the PRL
characteristics are not approximately equal (or form a horizontal plot) across the different distributions in both Cases K
and U (with the exception of the P5, P25, and P50 in some few instances). Note that, although not shown here, it is worth
mentioning that similar patterns as those in Table 1 and Figure 2 are also observed for different Phase I and Phase II sample
sizes as well as different 𝐴𝑅𝐿0 values.

3.3 Sensitivity analysis

3.3.1 HWMA 𝑋̄∗ scheme for different FIR features with no measurement errors

Note that increasing values of the ARL and EARL are indicative of a deteriorating process; however, decreasing values are
indicative of an improving process. For the HWMA 𝑋̄∗ scheme without measurement errors, the effect of integrating FIR
feature on the HWMA scheme is illustrated in Table 2 for Cases K and U. It is observed that the ARLs are higher in Case
U as compared to Case K for each corresponding HWMA 𝑋̄∗ scheme with a FIR feature; this indicates that the Phase I
estimation has a negative effect on the Phase II performance. More importantly, for a specific value of𝑚, the magnitude
of the ARL (for each shift) and EARL (over range of shifts), it is observed that the HWMA 𝑋̄∗ schemes can be sorted as
follows, in both Cases K and U:

HWMA > BFIR − HWMA > MFIR − HWMA > IMFIR − HWMA. (16)

According to Table 3, when parameters are estimated from Phase I, the HWMA scheme with “no FIR” has the worst
SDRL especially when𝑚 is small; however, in Case K, it has the best OOC SDRL performance as compared to the HWMA
scheme with FIR features. Moreover, the relation in Equation (16) for the SDRL only holds in Case U scenario; not in

8



F IGURE 2 Robustness of the HWMA 𝑋̄∗ scheme with and without FIR features when n = 5 and 𝜆 = 0.1 under different continuous
probability distribution with a nominal 𝐴𝑅𝐿0= 500
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TABLE 2 The 𝐴𝑅𝐿 and 𝐸𝐴𝑅𝐿 profiles of the HWMA 𝑋̄∗ scheme with different FIR features for perfect measurements (𝛾 = 0 or 𝐶 = 𝐷 =
0) when 𝜆 = 0.1 and 𝑛 = 5

Case U (ie,m = 20) Case U (ie,m = 100) Case K (ie,m =∞)
𝜹 None BFIR MFIR IMFIR None BFIR MFIR IMFIR None BFIR MFIR IMFIR
0.1 308.0 199.5 113.2 87.8 165.4 131.3 91.3 76.1 95.8 85.9 65.9 60.4
0.2 75.2 34.3 16.3 14.2 43.0 33.2 21.7 17.1 34.1 29.1 21.6 17.6
0.3 23.7 12.9 7.4 5.1 20.6 15.1 10.2 7.3 17.9 14.1 10.1 7.6
0.4 13.2 7.3 4.3 2.9 12.6 8.4 5.7 3.9 11.2 7.9 5.6 4.0
0.5 8.8 4.6 2.8 2.0 8.6 5.3 3.6 2.5 7.8 5.0 3.4 2.6
0.6 6.3 3.3 2.1 1.6 6.3 3.7 2.5 1.9 5.9 3.5 2.4 1.9
0.7 4.9 2.5 1.7 1.5 4.9 2.7 1.9 1.6 4.7 2.6 1.8 1.6
0.8 4.0 2.1 1.5 1.3 4.0 2.2 1.6 1.4 3.9 2.1 1.5 1.4
0.9 3.4 1.8 1.4 1.3 3.4 1.9 1.4 1.3 3.3 1.8 1.3 1.3
1.0 2.9 1.6 1.3 1.2 2.9 1.6 1.3 1.2 2.9 1.5 1.2 1.2
𝐸𝐴𝑅𝐿(0,1] 45.0 27.0 15.2 11.9 27.2 20.5 14.1 11.4 18.7 15.4 11.5 10.0
𝐿∗ 3.493 3.569 3.703 3.752 3.330 3.435 3.613 3.667 2.938 3.005 3.166 3.225

TABLE 3 The 𝑆𝐷𝑅𝐿 and 𝐸𝑆𝐷𝑅𝐿 profiles of the HWMA 𝑋̄∗ scheme with different FIR features for perfect measurements (𝛾 = 0 or 𝐶 =
𝐷 = 0) when 𝜆 = 0.1 and 𝑛 = 5

Case U (ie,m = 20) Case U (ie,m = 100) Case K (ie,m =∞)
𝜹 None BFIR MFIR IMFIR None BFIR MFIR IMFIR None BFIR MFIR IMFIR
0.1 1105.2 1043.7 969.8 947.7 246.1 242.2 241.9 194.8 68.8 76.0 84.4 86.9
0.2 355.2 215.8 38.4 32.3 37.0 37.7 34.8 31.6 21.7 24.7 26.6 26.1
0.3 33.8 19.3 14.9 12.1 14.4 15.9 15.3 13.4 10.7 12.3 12.9 11.7
0.4 12.3 10.1 8.1 5.9 7.9 8.8 8.4 6.6 6.3 7.3 7.2 5.9
0.5 7.3 6.0 4.7 3.1 5.1 5.5 5.1 3.5 4.2 4.6 4.5 3.2
0.6 4.8 3.9 2.9 1.8 3.6 3.6 3.2 2.0 3.0 3.0 2.8 1.9
0.7 3.5 2.6 1.9 1.1 2.7 2.4 2.1 1.3 2.3 2.2 1.9 1.3
0.8 2.7 1.8 1.4 0.8 2.1 1.8 1.5 0.9 1.8 1.6 1.3 1.0
0.9 2.1 1.4 1.0 0.6 1.8 1.4 1.1 0.7 1.5 1.3 0.9 0.7
1.0 1.7 1.1 0.8 0.5 1.5 1.1 0.8 0.6 1.3 1.0 0.7 0.6
𝐸𝑆𝐷𝑅𝐿(0,1] 152.9 130.6 104.4 100.6 32.2 32.0 31.4 25.5 12.2 13.4 14.3 13.9
𝐿∗ 3.493 3.569 3.703 3.752 3.330 3.435 3.613 3.667 2.938 3.005 3.166 3.225

Case K—see the pattern depicted by the ESDRL values. More importantly, it is observed in Table 3 that there is a higher
variability (ie, SDRL) when the Phase I sample is small and as𝑚 increase, the OOC SDRL values decrease for the HWMA
scheme with or without the FIRs. Thus, it is highly recommended in Case U to use a relatively higher Phase I sample
size. Finally, while the IC SDRL of the IMFIR-HWMA scheme is the highest (especially in Case U); however, in the OOC
situations, the SDRLs are either the smallest or comparatively the same as other competing schemes in Table 3.

3.3.2 HWMA 𝑋̄∗ scheme for different FIR features with measurement errors

Next, Table 4 displays the ARL and EARL profiles of the HWMA 𝑋̄∗ scheme with “no FIR,” BFIR, MFIR, and IMFIR
features with a constant variance for single measurements when 𝐵 =1 and 𝛾 ∈{0, 0.5, 0.9}. However, Table 5 displays the
same for the SDRL and ESDRL profiles. First, the constant 𝐴 in Equations (3) to (6) do not have any effect on the RL
performance; hence, for any value of 𝐴, the ARL and EARL values are the same. Second, as 𝛾 increases, the performance
of the HWMA 𝑋̄∗ scheme for each FIR and “no FIR” feature deteriorates in terms of the ARL, SDRL, EARL, and ESDRL.
That is, for the same input parameters, theARL, SDRL, EARL, and ESDRL values for 𝛾 = 0 in Tables 2 and 3 are lower than
those of 𝛾 = 0.5 and 0.9 in Tables 4 and 5. Moreover, in Table 4, the ARL and EARL values for 𝛾 = 0.5 are lower than those
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TABLE 4 The 𝐴𝑅𝐿 and 𝐸𝐴𝑅𝐿 profiles of the HWMA 𝑋̄∗ scheme with different FIR features for a constant measurement system error
when 𝛾 ∈{0.5, 0.9}, 𝑟 = 1,m = 100, 𝜆 = 0.1, and n = 5

𝜸 = 0.5 𝜸 = 0.9
Shift None BFIR MFIR IMFIR None BFIR MFIR IMFIR
0.1 199.1 164.4 114.5 98.3 259.2 217.4 168.9 141.4
0.2 53.2 41.3 27.5 21.7 76.9 58.2 38.9 31.8
0.3 25.3 18.6 12.6 9.2 35.1 26.8 18.0 13.7
0.4 15.2 10.5 7.2 5.0 21.0 15.4 10.2 7.4
0.5 10.4 6.6 4.6 3.0 14.2 9.7 6.6 4.5
0.6 7.5 4.6 3.1 2.2 10.4 6.6 4.5 3.0
0.7 5.9 3.4 2.3 1.8 7.9 4.8 3.3 2.3
0.8 4.8 2.7 1.9 1.5 6.4 3.7 2.5 1.9
0.9 4.0 2.2 1.6 1.4 5.3 3.0 2.1 1.7
1.0 3.4 1.9 1.4 1.3 4.5 2.5 1.8 1.5
𝑬𝑨𝑹𝑳(0,1] 32.9 25.6 17.7 14.5 44.1 34.8 25.7 20.9

TABLE 5 The 𝐴𝑅𝐿 and 𝐸𝐴𝑅𝐿 profiles of the HWMA 𝑋̄∗ scheme with different FIR features for a constant measurement system error
when 𝛾 ∈{0.5, 0.9}, 𝑟 = 1,m = 100, 𝜆 = 0.1, and n = 5

𝜸 = 0.5 𝜸 = 0.9
Shift None BFIR MFIR IMFIR None BFIR MFIR IMFIR
0.1 302.4 304.8 291.8 301.0 371.9 381.8 460.3 411.1
0.2 53.9 49.8 44.9 41.4 96.4 78.0 72.3 61.9
0.3 18.1 20.0 18.9 17.0 27.8 29.0 28.0 25.3
0.4 9.8 11.0 10.7 8.8 14.6 16.1 15.5 13.5
0.5 6.4 6.9 6.6 4.7 9.3 10.2 9.8 7.9
0.6 4.4 4.7 4.2 2.7 6.4 7.0 6.6 4.8
0.7 3.3 3.2 2.9 1.8 4.7 4.9 4.5 3.1
0.8 2.6 2.3 2.0 1.2 3.7 3.6 3.3 2.0
0.9 2.1 1.8 1.5 0.9 3.0 2.7 2.4 1.5
1.0 1.8 1.4 1.1 0.7 2.4 2.1 1.8 1.1
𝑬𝑺𝑫𝑹𝑳(0,1] 40.5 40.6 38.4 38.0 54.0 53.5 60.5 53.2

of 𝛾 = 0.9; a similar pattern is observed in Table 5 for the SDRL and ESDRL. Finally and more importantly, it is observed
that the relation outlined in Ref. (16) also hold for the HWMA 𝑋̄∗ scheme with constant measurement system variance in
terms of ARL and EARLmetrics.
Table 6 displays the ARL and EARL profiles of the HWMA 𝑋̄∗ scheme with “no FIR,” BFIR, MFIR, and IMFIR features

for a linearly increasing variance when𝐶 = 0, 𝐵 =1 and𝐷 ∈{1,2,3}. It is observed that for a specific 𝐵 and𝐶, as𝐷 increases,
the ARL and EARL values also increase for the HWMA 𝑋̄∗ schemes integrated with each FIR feature. Similarly, for a
specific 𝐵 and 𝐷, as 𝐶 increases, the ARL and EARL values also increase (this not shown to preserve space). For some
specific input parameters, the IMFIR-HWMAscheme has the best OOCARL andEARL performance than the competitors
in Table 6. For instance, when 𝐷 = 1, the ARLwhen 𝛿 = 0.1 is equal to 272.9, 238.0, 185.1, and 160.0 for the HWMA, BFIR-
HWMA, MFIR-HWMA, and IMFIR-HWMA, respectively. The SDRL and ESDRL depict a similar pattern as 𝐷 increases;
hence for brevity, this is not shown here.

3.3.3 HWMA 𝑋̄∗ scheme for different FIR features with multiple measurements

In Table 7 that when 𝑟 is increases from 1 to 4 (in parenthesis), the ARL and EARL values decrease for each HWMA
𝑋̄∗ schemes with and without FIR features. Although the latter improvement is illustrated for 𝛾 = 0.5, it is important to
note that it occurs whenever 𝛾 > 0. Moreover, it is again observed that the relation in Equation (16) also holds for the
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TABLE 6 𝑅𝐿 and 𝐸𝐴𝑅𝐿 profiles of the HWMA 𝑋̄∗ scheme with linearly increasing variance where 𝐷 ∈{1, 2, 3} 𝐵 =1, C = 0, 𝜆 =0.1, n = 5,
𝑟 = 1, and𝑚 = 100

None BFIR MFIR IMFIR
Shift 𝑫 = 𝟏 𝑫 = 𝟐 𝑫 = 𝟑 𝑫 = 𝟏 𝑫 = 𝟐 𝑫 = 𝟑 𝑫 = 𝟏 𝑫 = 𝟐 𝑫 = 𝟑 𝑫 = 𝟏 𝑫 = 𝟐 𝑫 = 𝟑

0.1 272.9 329.0 366.7 238.0 296.3 348.0 185.1 237.7 293.1 160.0 217.8 256.7
0.2 85.7 127.8 164.6 65.5 100.8 131.0 44.1 65.9 90.8 35.7 55.5 76.2
0.3 38.6 57.7 75.7 29.3 43.6 57.4 19.6 29.4 38.3 15.4 23.4 31.2
0.4 23.0 33.1 43.1 16.8 25.0 33.2 11.4 16.9 22.2 8.2 12.9 17.4
0.5 15.4 22.3 28.5 10.7 16.3 21.4 7.3 10.8 14.6 5.1 7.8 11.1
0.6 11.3 16.0 20.8 7.4 11.3 14.9 5.0 7.5 10.1 3.4 5.2 7.4
0.7 8.7 12.3 15.9 5.3 8.3 11.0 3.6 5.6 7.6 2.6 3.8 5.2
0.8 6.9 9.8 12.5 4.1 6.2 8.4 2.8 4.2 5.7 2.1 2.8 3.8
0.9 5.8 8.0 10.3 3.3 4.9 6.5 2.3 3.3 4.5 1.8 2.4 3.0
1.0 4.9 6.7 8.6 2.7 3.9 5.3 1.9 2.7 3.5 1.6 2.0 2.5
𝑬𝑨𝑹𝑳(0,1] 47.3 62.3 74.6 38.3 51.7 63.7 28.3 38.4 49.0 23.6 33.3 41.4

TABLE 7 The 𝐴𝑅𝐿 and 𝐸𝐴𝑅𝐿 profiles of the HWMA 𝑋̄∗ scheme with a constant variance where 𝛾 = 0.5 whenm = 100, 𝐵 = 1, 𝜆 = 0.1, n
= 5, and 𝑟 = 1 (with 𝑟 = 4 in parenthesis)

Shift None BFIR MFIR IMFIR
0.1 199.1 (174.0) 164.4 (138.1) 114.5 (97.1) 98.3 (79.9)
0.2 53.2 (45.5) 41.3 (35.4) 27.5 (23.2) 21.7 (18.6)
0.3 25.3 (21.7) 18.6 (15.9) 12.6 (11.0) 9.2 (7.8)
0.4 15.2 (13.1) 10.5 (8.9) 7.2 (6.0) 5.0 (4.1)
0.5 10.4 (9.0) 6.6 (5.6) 4.6 (3.9) 3.0 (2.6)
0.6 7.5 (6.6) 4.6 (3.9) 3.1 (2.7) 2.2 (1.9)
0.7 5.9 (5.2) 3.4 (2.9) 2.3 (2.0) 1.8 (1.6)
0.8 4.8 (4.2) 2.7 (2.3) 1.9 (1.7) 1.5 (1.4)
0.9 4.0 (3.5) 2.2 (2.0) 1.6 (1.5) 1.4 (1.3)
1.0 3.4 (3.1) 1.9 (1.7) 1.4 (1.3) 1.3 (1.2)
𝑬𝑨𝑹𝑳(0,1] 32.9 (28.6) 25.6 (21.7) 17.7 (15.0) 14.5 (12.1)

different HWMA schemes with and without FIR features for any given 𝑟 value (this is, in part, further illustrated in the
next subsection). In Table 8, it is shown that the corresponding OOC SDRL also decrease for each HWMA scheme with
and without FIR features when more measurements per item are taken.
Similarly (although not shown here to preserve space, but part of it is illustrated in the next subsection), the HWMA

𝑋̄∗ scheme with linearly increasing variance has the same relation shown in Equation (16) for the magnitude of the ARL
and EARL in Cases K and U when multiple measurements are taken and the SDRLs decrease when 𝑟 increases.
Given that Tables 2–8 indicate that the IMFIR-HWMA 𝑋̄∗ scheme has the best OOC ARL performance than the other

considered HWMA 𝑋̄∗ scheme with and without FIR features; hence, in the next subsection, the IMFIR-HWMA 𝑋̄∗

scheme is studied in more details.

3.3.4 IMFIR-HWMA 𝑋̄∗ scheme

In this subsection, the effect of varying the design parameters 𝐵, 𝑟, and 𝜆 are illustrated graphically for the IMFIR-HWMA
𝑋̄∗ scheme when the measurement system has a constant and linearly increasing variance using the ARL and SDRL.
First, increasing either 𝐵 or 𝑟, it is observed in Figures 3 and 4 that the OOC ARL and SDRL values decrease indicating
an improving performance of the IMFIR-HWMA 𝑋̄∗ scheme. Second, for small shift values, the ARL are smaller than the
corresponding SDRL; however, as the shift increases, the SDRLs tend to be smaller than the correspondingARLs. Third, as
the smoothing parameter 𝜆 increases, it is observed that at each shift value the ARLs and SDRLs have higher magnitudes
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TABLE 8 The 𝑆𝐷𝑅𝐿 and 𝐸𝑆𝐷𝑅𝐿 profiles of the HWMA 𝑋̄∗ scheme with a constant variance where 𝛾 = 0.5 whenm = 100, 𝐵 = 1, 𝜆 = 0.1,
n = 5, and 𝑟 = 1 (with 𝑟 = 4 in parenthesis)

Shift None BFIR MFIR IMFIR
0.1 302.4 (261.2) 304.8 (247.8) 291.8 (252.2) 301.0 (203.4)
0.2 53.9 (41.6) 49.8 (40.8) 44.9 (37.2) 41.4 (34.3)
0.3 18.1 (15.1) 20.0 (16.8) 18.9 (16.4) 17.0 (14.1)
0.4 9.8 (8.3) 11.0 (9.4) 10.7 (8.9) 8.8 (7.0)
0.5 6.4 (5.4) 6.9 (5.8) 6.6 (5.4) 4.7 (3.8)
0.6 4.4 (3.8) 4.7 (3.8) 4.2 (3.5) 2.7 (2.2)
0.7 3.3 (2.8) 3.2 (2.6) 2.9 (2.3) 1.8 (1.4)
0.8 2.6 (2.3) 2.3 (1.9) 2.0 (1.6) 1.2 (1.0)
0.9 2.1 (1.9) 1.8 (1.5) 1.5 (1.2) 0.9 (0.8)
1.0 1.8 (1.6) 1.4 (1.2) 1.1 (0.9) 0.7 (0.6)
𝑬𝑨𝑹𝑳(0,1] 40.5 (34.4) 40.6 (33.1) 38.4 (32.9) 38.0 (26.9)

F IGURE 3 Effect of 𝐵, 𝑟, and 𝜆 on the Phase II performance of the IMFIR-HWMA 𝑋̄∗ scheme in terms of ARL and SDRL when the
measurement system is under the effect of a constant variance with 𝛾 = 0.75,𝑚 = 100, 𝑛 = 5, and 𝐴𝑅𝐿0= 500
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F IGURE 4 Effect of 𝐵, 𝑟, and 𝜆 on the Phase II performance of the IMFIR-HWMA 𝑋̄∗ scheme in terms of ARL and SDRL when the
measurement system is under the effect of a linearly increasing variance with 𝐶 = 𝐷 = 1,𝑚 = 100, 𝑛 = 5, and 𝐴𝑅𝐿0= 500

as compared to the corresponding values with smaller 𝜆 values. For the ICARL to be approximately equal to 500when𝑚=
100 in Figures 3 and 4, then the pair of design parameters, that is, (𝜆, 𝐿∗), are given by (0.1, 3.6674), (0.5, 3.6163), and (0.9,
3.6515). It is worth mentioning that similar patterns are also observed for the HWMA schemes (for constant and linearly
increasing variance scenarios) with BFIR andMFIR features; however, in each instance, the HWMA scheme with IMFIR
feature yields the best OOC ARL performance than the latter competing features.

4 ILLUSTRATIVE EXAMPLE

In order to illustrate the implementation of the HWMA and IMFIR-HWMA 𝑋̄∗ schemes with measurement error under
constant variance in Case U, the data from Tran et al42 are used (see Table 9). The data are based on a real-life application
from the volume of milk within a bottle where the quality characteristic 𝑋∗

𝑡,𝑖,𝑗
is the volume (in milliliters) of milk. In

this example, using 𝑚 = 20 Phase I samples, the IC mean and the IC standard deviation are 𝜇̂0 = 500.023 𝑚𝑙 and 𝜎̂0 =
0.9616 mL, respectively. The data contain one set of 20 subgroups each of size 5 (ie, 𝑛 = 5, 𝑟 = 1 and 𝑡 = 1, … , 20). As in
Tran et al,42 the parameters of the covariate model are 𝛾 = 0.28, 𝐴 = 0 and 𝐵 = 1. For a nominal 𝐴𝑅𝐿0 value of 500 and
𝜆 = 0.1, it is found that 𝐿∗ = 3.493 and 3.752 for the HWMA and IMFIR-HWMA 𝑋̄∗ schemes, respectively. The plotting
statistics and control limits of the HWMA and IMFIR-HWMA 𝑋̄∗ schemes when 𝜆 = 0.1 are shown in Figure 5(A). When
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TABLE 9 Dataset on the volume of milk in each bottle during a filling process (in milliliters)

𝒕 𝑿∗
𝒕,𝟏,𝟏

𝑿∗
𝒕,𝟐,𝟏

𝑿∗
𝒕,𝟑,𝟏

𝑿∗
𝒕,𝟒,𝟏

𝑿∗
𝒕,𝟓,𝟏

1 500.46 498.99 500.22 500.41 498.96
2 500.06 500.20 499.31 501.07 499.57
3 498.82 501.55 499.48 499.20 501.56
4 502.64 502.86 500.06 499.08 500.72
5 500.06 500.03 500.09 498.88 497.64
6 500.50 499.54 499.02 498.09 499.87
7 498.89 500.20 501.10 502.01 500.99
8 500.37 499.28 500.15 500.87 500.88
9 499.81 500.62 500.68 500.67 500.00
10 499.79 499.87 500.98 499.12 500.79
11 502.39 500.61 501.29 500.32 500.74
12 500.35 500.57 501.80 502.03 499.56
13 499.49 501.09 499.53 499.82 499.90
14 500.96 500.87 502.71 500.70 499.71
15 500.85 499.88 500.58 501.62 501.04
16 500.48 502.82 501.00 501.78 501.73
17 502.01 501.18 500.67 501.31 499.98
18 501.36 501.11 500.27 501.12 501.98
19 499.92 500.13 501.46 502.29 502.78
20 502.19 500.30 499.03 500.17 502.19

𝜆 = 0.9, it is found that 𝐿∗ = 3.227 and 3.548 for the HWMA and IMFIR-HWMA 𝑋̄∗ schemes, respectively (see Figure 5B).
From Figure 5, it can be seen that the control limits of the IMFIR-HWMA 𝑋̄∗ scheme shrunk considerably for 𝑡 < 15,
as compared to the standard one. Thus, for a small smoothing parameter, that is, 𝜆 = 0.1, there are no major start-up
problems; both schemes give a signal on the 16th subgroup. However, for a large smoothing parameter, that is, 𝜆 = 0.9, the
standard HWMA scheme signals on the 16th subgroup; while the one with the IMFIR feature gives a signal much sooner,
that is, on the 4th subgroup. Therefore, the IMFIR-HWMA 𝑋̄∗scheme is found to be superior to the standard HWMA 𝑋̄∗
scheme with no FIR feature.

5 CONCLUSION

In this paper, different FIR features are incorporated to the design of the HWMA 𝑋̄∗ scheme in order to improve its
sensitivity in detecting shifts in the mean during start-up period for processes with and without measurement errors.
Moreover, a comparative study of the HWMA 𝑋̄∗ schemes with and without measurement errors reveal that the IMFIR
feature outperforms the “no FIR” feature as well as the BFIR and MFIR features. This study has also shown that the
simultaneous use of the IMFIR feature and multiple measurements with 𝑟 ≤ 4, yields a significant improvement on
the performance of the HWMA 𝑋̄∗ scheme during start-up period. In addition, a higher value for the coefficient 𝐵
in the covariate error model yields a better performance in the proposed monitoring scheme. Practitioners in the indus-
tries are recommended to use the IMFIR-HWMA scheme in real-life applications in order to efficiently detect start-up
problems. Finally, relatively high Phase I sample sizes are recommended for a better Phase II HWMA 𝑋̄∗ schemes’ per-
formance.
The scope of current study covers the processes in which characteristics follow a normal distribution and observations

are assumed to be i.i.d. Therefore, it is recommended to study the corresponding performance for nonnormal distributions
and simultaneously taking autocorrelation andmeasurement errors into account. Moreover, the IMFIR feature need to be
implemented for different time-varying memory-type schemes to monitor variability, joint mean and variability param-
eter(s) for better detection at start-up period. Also, in an effort to improve detection ability at start-up for the HWMA
scheme to monitor variability,43 we intend to incorporate the FIR features discussed here in the latter scheme. Finally, the
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F IGURE 5 Illustration example of the standard
“no FIR” HWMA and IMFIR-HWMA 𝑋̄∗ schemes in
Case U using the filling process of milk bottles

FIR features discussed here can also be incorporated on the double and hybrid HWMA schemes, which are discussed in
Alevizakos et al.44
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