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ABSTRACT Many studies have shown that industrial as well as non-industrial business organisations present
a growing need of robust and more efficient multivariate monitoring schemes in order to be able to monitor
several quality characteristics simultaneous. To monitor two or more parameters simultaneously, several
monitoring schemes are used concurrently in most of the cases instead of using a single scheme. Thus,
in this paper, the exponentially weighted moving average (EWMA), double EWMA (DEWMA) and the
recent triple EWMA (TEWMA) procedures are used to develop new single univariate and multivariate Max-
type monitoring schemes for linear profiles under the assumptions of fixed and random linear models to
monitor the regression parameters and variance error simultaneously. It is observed that the newly proposed
schemes are better alternatives of the classical univariate and multivariate EWMA, DEWMA and TEWMA
schemes for linear profiles in terms of the average run-length (ARL) and expected ARL profiles. Numerical
examples are presented using simulated and real-life data.

INDEX TERMS Quality control, fixed explanatory variable, linear profiles, Max-TEWMA, random
explanatory variable.

NOMENCLATURE MEWMA Multlple exponentially Welghted moving
ARL Average run-length. average.
CUSUM Cumulative Sum. MTEWMA  Multiple triple exponentially weighted
DEWMA Double exponentially weighted moving moving average.
average. 00C Out-of-control.
EARL Expected average run-length. REV Random explanatory variable.
ESDRL Expected standard deviation of the SAS Statistical Analysis Software.
run-length. SDRL Standard deviation of the run-length.
EWMA Exponentially weighted moving average. SPM Statistical Process Monitoring.
FEV Fixed explanatory variable. TEWMA Triple exponentially weighted moving
1C In-control. average.
LCL Lower control limit. UCL Upper control limit.
LPM Linear profile monitoring.
MDEWMA  Multiple double exponentially weighted
moving average. I. INTRODUCTION

Statistical techniques play a vital role in solving analytical

and experimental problems covering all types of fields rang-
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production chains, just to cite a few; [1]-[3]. To achieve
the goal in all these cases and stop worst scenarios, a well-
organised monitoring system is needed. Since the 1920s to
nowadays, researchers have been developing and improving
procedures (or tools) for the well-being of the universe and
all that it contains. The fundamental tools that opened ways
to all modern monitoring tools was introduced by Walter
A. Shewhart of Bell-laboratory in the 1920s and 1930s; [4].
These tools are called Shewhart control charts or monitor-
ing schemes. Since then, researchers took the responsibility
of developing more sophisticated control charts to separate
between the causes of instability in various processes. Statis-
tical process monitoring (SPM) literature distinguishes two
causes of variation namely, natural and special causes of
variation also knows as chance and assignable causes, respec-
tively. A process that runs only under the former causes
is considered to be in-control (IC). An assignable cause of
variation is a sign of instability in the process and must be
investigated in order to make required corrections. Instability
in a process is determined in comparison to a standard target
that is believed to yield better results. Shifts from the target
may be caused by various problems including raw material,
change of climate, poor maintenance, incompetency of the
operators and many more. The size of the shift is very impor-
tant and determine the magnitude of deviation from the target
value. In many applications, moderate and large shifts in the
process are signs of significant deviation from the process
target. However, in other fields, like medicine, even small
shifts are not tolerated. The choice of the type of control
charts depends among others on the size of the shift to be
detected. Thus, the literature distinguishes memoryless from
memory-type control charts. The former is used when the
detection of large shifts is of interest (e.g. Shewhart-type
charts) and the latter for the detection of small and moder-
ate shifts in the process parameters (e.g. the exponentially
weighted moving average (EWMA) chart by [5] and the
cumulative sum (CUSUM) chart by [6]).

Both memoryless and memory-type schemes are used to
monitor the quality characteristic of various processes by
controlling the deviations in the process parameters such as
the mean and the standard deviation of the process. Univari-
ate control charts are used to monitor one quality charac-
teristic of the process (see for example, [7] and [8]) while
multivariate control charts can be used to monitor several
quality characteristics simultaneously; [9]-[11]. Most of the
SPM procedures designed to monitor both the process mean
and standard deviation use two separate control charts; see
for example, [12] and [13]. Recently, authors in [14]-[21]
have developed control procedures for monitoring both pro-
cess parameters using a single control chart. In most of the
cases, these classical control charts are designed to monitor
one or more quality characteristics that are not functionally
related; [22]-[24]. However, in many real-life applications,
there is a functional relationship between one dependent vari-
able and one, two or more explanatory variables. In this case,
profile (or regression) monitoring schemes are used to control
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linear and nonlinear quality profiles; [25], [26]. These control
charts are used to monitor the regression parameters and error
variance simultaneously using several control charts for sim-
ple and general profiles. At the best knowledge of the authors,
only few univariate Max-EWMA control charts for simple
linear profile has been investigated using a fixed explana-
tory variable; see for example, [26]-[28]. Kim ef al. [25]
proposed a simple linear profile monitoring (LPM) chart
where the explanatory variable is coded to set the average to
zero and the authors of [29] proposed a method based on a
F-test for Phase I monitoring with calibration applications
and compared the resulting chart to the ones with the results
of the papers [30], [25]. Mahmoud e? al. [31] proposed control
charts based on the change point linear profiles monitoring
schemes when the parameters are estimated. More details on
simple linear profiles can be found in [29] and [32]-[35].

Later on, Refs. [36]-[38] proposed the multivariate
EWMA (MEWMA) chart for monitoring general linear pro-
files. Abbas et al. [37] proposed the Bayesian EWMA
and MEWMA schemes to monitor linear profiles when
the explanatory variable is random using separate and sin-
gle monitoring schemes. Thus, there is a growing need to
improve and extend the Max-EWMA and Max-MEWMA
regression control charts proposed in [26] for monitoring
the regression parameters and error variance simultaneously
using single schemes.

Motivated by the above discussion, this paper devel-
ops univariate and multivariate Max-type EWMA, double
EWMA (DEWMA) and triple EWMA (TEWMA) control
charts for monitoring linear profiles using both fixed and ran-
dom explanatory variables. The performance of the proposed
profile (or regression) control charts are investigated in terms
of the average run-length (ARL) and standard deviation of
the run-length (SDRL) performance profiles as well as the
expected ARL (EARL) and expected SDRL (ESDRL) profiles.
Our main contributions are summarised as follows:

« Develop single control charts for monitoring the coef-
ficients of the regression model and the error variance
simultaneously.

o Investigate the effect of a fixed explanatory vari-
able (FEV) on the sensitivity (or performance) of the
proposed regression schemes.

« Investigate the random effect of the explanatory variable
on the sensitivity of the proposed regression schemes.

e Develop new univariate and multivariate EWMA,
DEWMA and TEWMA regression control charts to
monitor linear profiles under the assumption of FEV and
random explanatory variable (REV).

o Illustrate the implementation of the proposed control
charts using simulated and real-life data.

The remainder of this paper is presented as follows: Section II
introduces the univariate and multivariate EWMA, DEWMA
and TEWMA monitoring schemes for linear profiles using
fixed and random explanatory variables. Moreover, the oper-
ation procedures of the proposed linear profiles are also
described. In Section III, the performances of the proposed
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schemes are discussed under the assumptions of FEV and
REV. Section IV presents illustrative examples using simu-
lated and real-life data to facilitate the implementation and
application of the proposed schemes. Concluding remarks
and future research works are provided in Section V.

Il. THE PROPOSED UNIVARIATE AND MULTIVARIATE
MEMORY-TYPE LPM TECHNIQUES USING FIXED AND
RANDOM EXPLANATORY VARIABLES

In this section, a brief review of the existing univariate and
multivariate Max-type EWMA schemes for linear profiles is
presented and the new univariate and multivariate Max-type
DEWMA and TEWMA monitoring schemes for simple lin-
ear profiles are also introduced in the literature.

A. MEMORY-TYPE SCHEMES FOR SIMPLE LINEAR
PROFILES USING A FIXED EXPLANATORY VARIABLE

1) THE MAX-TYPE EWMA AND MEWMA SCHEMES

a: THE MAX-TYPE UNIVARIATE EWMA SCHEME

Assume that a random subgroup (x;, y;;) for the j" profile is
collected over time, where y; 1 =1,2,...,n;j=1,2,...)
represent the observations of the response variable y which is
related to the explanatory variable x with observations x;. Let
ap and o be the IC intercept and slope, respectively. Thus,
for an IC process, the underlying mathematical model will be
defined as

yij = ap + arx; + €, (1

where €; is a random error component (for all i =
1,2,...,n;j =1,2,...). Here, we assume that the ¢;’s are
independently and identically normally distributed with mean
0 and variance o2. Based on the j” profile data, the least
square estimators of the regression coefficients of the model
defined in (1) are:

&Oj = )_1] — &11)_6 and &lj = S)alsxy(j)s (2)

where
1 n 1 n n
—.:_2:..’)}:_2)(.’5 .:§ X — X) Vi
Yj n - Yij " - is Dxy(j) - (x; )yU

n
and Sy, = Z (xi — %)%
i=0

The mean vector (i) and covariance matrix (X) of the esti-
mators of the regression coefficients defined in (2) are given

by
Qo Go%g Oapay
M:( )andZ: S G
o1 Oapary g,

where

1 52 X o?
2 2 2 2
o =0 -+—1), o =—0“— ) ando, =—.
«0 <n Sxx ) o (Sxx ) “ Sx
To simplify the analysis, we use the following model pro-
posed in [25]:

vij = Bo + Bix{ + €ij, “4)
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where xif = x; — X and g;;’s are as defined in (1). Eq. (4)
may be regarded as the reparametrised version of (1). The
coefficients Sy and B; are the intercept and slope of the new
model, respectively, and are mathematically expressed as

Bo\  [aot+aix
G-

Based on the j” profile data, the least square estimators of
the regression parameters Sy and B; are ﬁoj = y;j and ,élj =
a1j, respectively. The mean vector (u”) and covariance matrix
(X7) of the estimators of the regression coefficients defined
in (5) are given by

2
. 0% 0
= ()= () wer= (T
'uﬂlj 1 aﬁ

1j

2
Z 0
_ n
_ S ©)
0 R
Sxx

The above properties are very important in the design of the
Max-type EWMA scheme. Thus, the EWMA statistics for the
intercept and slope are given as follows:

UEZji = ABoj + (1 — 1) UEZj—1y1
and UEZjp = AB1j + (1 — 1) UEZ ;- 1y, @)

where j = 1,2,...,A(0 < A < 1) is the weighing coeffi-
cient also known as smoothing parameter, UEZy; = B and
UEZ(y, = B;. Using Lemma 1, Appendix A shows that the
means and variances of the EWMA statistics for the intercept
and slope are given as follows:

E(UEZji) = Br-1

ML= (1 =1%) ,
Tae-n & ®

where k € {1,2},0f = 0% /nand 0] = 62 /Sy
When the process has been running for a very long time,
as j — oo, then

and Var(UEZ ) =

Var(UEZ ) ~ of, k=1and2.

2-=2)
Following (7) and (8), define
2

2
UEU/‘ — Z UEZ]k—_ﬂk_] A )
k=1 \ |/ Var (UEZ)

It is to be noted that for the IC process, UEU; follows a x2
distribution with 2 degrees of freedom. Let us also define

n

1 N A 2
UMSEj = —— Z (yij — Poj — ﬂljxf)
=
(. {1 —2)UMSE;
and UEV; = ® F —2;1’1—2 . (10)
o
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Here UMSE; provides an unbiased estimated of the error
variance o2 and (n — 2)UMSE g / o2 follows a x2 distribution
with (n — 2) degrees of freedom when the process is IC,
@1 (.) is the inverse of the c.d.f. (cumulative distribution
function) of the standard normal distribution and F(., v) is
the c.d.f. of a x? distribution with v degrees of freedom.
To control the error variance, let us define the statistic based
on UEV; as

UEZj3 = MUEV; + (1 — L) UEZj-1)3, (11a)

where UEZy3 = E(UEZj3) = 0. Thus, using Lemma 1,

Appendix A shows that the variance of the UEZj3 statistic

is then given by

Ml == 1Y)
2-2

When the process has been running for a very long time,

as j — oo, then

Var(UEZj3) = (11b)

Var(UEZj3) ~ ' (11c)
Define
UEZ;
UEM; = Max { [0 {F (VEU}:2)} |, || 1.
V' Var(UEZ;3)
12)
Then, mean and variance of UEU; are given by
E (UEU)) = 2~ 112838
J) = ﬁ :
2
and Var(UEU;) = (1 — —) ~ (0.3634, (13)
g

respectively.

Let us now define the following Max-EWMA control chart
for simultaneously monitoring the parameters and error vari-
ance of the model stated in (4) as

UEUCL = E(UEU;) + LYE /Var(UEU)
~ 1.12838 4 0.6028LYE (14)

where LUF is the control limit coefficient selected to yield a
desired large nominal IC ARL. Therefore, the Max-EWMA
scheme gives a signal on the j” profile if the charting statistic
defined in (12) plots beyond the control limit defined in (14).

b: MAX-TYPE MULTIVARIATE EWMA SCHEME

The multivariate EWMA (MEWMA) scheme for monitoring
the regression parameters and the standard deviation of a gen-
eral linear profile was introduced in [36]. Assume (X}, Y;),
j = 1,2,..., represent the observations of the j profile
where Y; is a n—variate response vector and X; (denoted
as X)isanxp(n > p) matrix corresponding to the covariates.
When the process is IC, the underlying process model for the
j™ profile is mathematically defined by

Y;=XB+e¢, (15)
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where 8 = (B1, 82, ..., ﬂp)T is the p—dimensional regres-
sion coefficient vector and ¢; is an n—dimentional vector of
random errors which follows N (0, o->I ;). Thus, the Max-type
MEWMA (denoted as Max-MEWMA) scheme is used to
monitor (p 4+ 1) parameters of which p parameters are the
regression coefficients of the model and one is the standard
deviation o. Let us suppose that the parameters of the model
defined in (15) are unknown. The least square estimators of
the parameters are

P Ty\“lyT
Bi=XX) X'Y;

and MMSE; = Y — XBj)T(Y —XB). (16)

n—p
It is then to be noted that MMSE; is an unbiased estimator
of 02 and (n — p)MMSE;/o* follows a x? distribution with
(n — p) degrees of freedom when the process is IC. Then,
it follows that

N N -1
E (ﬁj) — B and Var (ﬁj) - (XTX) % (7
The MEWMA statistic for the parameters representing the
regression coefficients of the model (15) is defined as
MEZj; = AB; + (1 — ) MEZ_yy, (18)

where MEZy, = E(WMEZ;) = . Using Lemma 1, it is
shown in Appendix A that the variance of the MEWMA
statistic for a simultaneous monitoring of the parameters
representing the regression coefficients is given by

A1 = (1 = 1)¥)o2

2—A

When the process has been running for very long time, that
is, in steady-state, the variance in (19a) becomes

Var(MEZ;;) = x’x)"".

(19a)

ro2 -1 .
Var (MEZj1) ~ 5=~ (XTX> asj— oo. (19b)
Define
MEU; = (MEZ;, — B)" (Var(MEZ;,))” (MEZ;, — B).
(20)

It follows that, for an in-control process, MEU ; follows a X2
distribution with p degrees of freedom. Define

(n_p)MMSEj'n—p)} e

> ;
Here, it is to be noted that MMSE; is an unbiased estimator
of o2 and (n — p)MMSE j/02 follows a x? distribution with
(n— p) degrees of freedom when the process is IC. To control
the error variance, let us define the statistic based on MEV; as

MEV; = &~! {F(
’ o

MEZj3 = AMEVj + (1 — &) MEZ j_1)3, (22a)

where MEZ 3 = E(MEZj3) = 0. It follows that the variance
of the MEZ 3 statistic is given by

A1 — (1 = 1)%)

Var(MEZj3) = 2-%

(22b)
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In steady-state, the variance of MEZ ;3 becomes:

A
Var (MEZj3) ~ m asj — oo. (22¢)
Define
MEZ;
MEM;=Max { |&~' {F (MEU}: p)}| || | .
 Var(MEZ3)

(23)

Then, mean and variance of MEU ; are given by
E (MEU)) = 2~ 112838
J) = ﬁ .

2
and Var(MEU;) = <1 - —) ~ 0.3634, 24)
T

respectively.

Let us now define the following Max-MEWMA control
chart for simultaneously monitoring the parameters and error
variance of the model stated in (15) as

MEUCL = E(MEU;) + LME /Nar((MEU )
~ 1.12838 + 0.6028LME (25)

where LME is the control limit coefficient selected to yield a
desired large nominal IC ARL. Therefore, the Max-MEWMA
scheme gives a signal on the j” profile if the charting statistic

defined in (23) plots beyond the control limit defined in (25).

2) DESIGN OF THE MAX-TYPE DEWMA AND MDEWMA
SCHEMES

a: THE MAX-TYPE UNIVARIATE DEWMA SCHEME

To develop the DEWMA statistics for the intercept and slope
parameters, we define in continuation to (7) the following
statistics:

UDEZj;1 = MUEZj + (1 — 1) UDEZ ;1)
and UDEZj; = AUEZjp + (1 — M) UDEZ(j—1y2, (26)
where UDEZ(y; = Bo and UDEZyy = B;. Using Lemma 1,
itis shown in the Appendix B that the means and variances of
the DEWMA statistics for the intercept and slope are given
as follows:
E(UDEZj) = Br-1
and Var (UDEZj) = A*yof, ke (1,2}, (27
where 012 and 022 are defined in (8) and v, as shown at the

bottom of the next page.
In steady-state case, the variances given in (27) become:

A+ 22
Var (UDEZj.) ~ (—Jr{;a,? asj— oo, kef{l,2}.
(1-1¢2)
Following (26) and (27), define
2 2
UDEZjy. — Bi—
vpey; = Y [ Y2EGx — Prot (28)

k=1 \ / Var (UDEZj)
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It is to be noted that for the IC process, UDEU; follows a x>
distribution with 2 degrees of freedom. To control the error
variance, let us define the DEWMA statistic in continuation

to (11a) as
UDEZj3 = AUEZj3 + (1 — &) UDEZ (13, (29a)

where UDEZ3 = E(UDEZj3) = 0. Thus, it is to be noted

that the variance of the UDEZ 3 statistic is then given by
Var(UDEZj3) = A*y. (29b)

In steady-state mode, the variance of UDEZ 3 becomes:

M+
Var(UDEZ3) ~ (—+C3 asj — o0o. (29¢)
(1-¢2)
Define
UDEM,
UDEZ;
= Max { |~ {F (UDEU;: 2)} | |~ | -
/ Var(UDEZ3)
(30)
Then, mean and variance of UDEM  are given by
E (UDEM;) = 2~ 112838
J) — ﬁ ~ L.
2
and Var(UDEM j) = <1 — —) ~ 03634, (31)
T

respectively.

Let us now define the following Max-DEWMA control
chart for simultaneously monitoring the parameters and error
variance of the model stated in (4) as

UDEUCL = E(UDEM;) + LYPE /Nar(UDEM)
~ 1.12838 + 0.6028LYPE (32)

where LUPE is the control limit coefficient selected to yield a
desired large nominal IC ARL. Therefore, the Max-DEWMA
scheme gives a signal on the j profile if the charting statistic
defined in (30) plots beyond the control limit defined in (32).

b: MAX-TYPE MULTIVARIATE DEWMA SCHEME

In continuation to the statistic defined in (18), let us
define the following statistic to introduce the multivariate
DEWMA (MDEWMA) statistic for monitoring the param-
eters representing the regression coefficients of the model
given in (15):

MDEZ;; = A\AMEZj; + (1 — M) MDEZ; 1) 33)

where MDEZy, = E(MDEZ;;) = B. Using Lemma 1, it can
be shown that the variance of the MDEWMA statistic for a
simultaneous monitoring of the parameters representing the
regression coefficients is given by
Var(MDEZ;j)) = ot xTx) (34a)

VOLUME 10, 2022
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In steady-state mode, the variance in Equation (34a) becomes
2,4 2
oA (1+ -1
Var (MDEZ;;) ~ [%} (x7X) " asj— oo,
1-¢
(34b)

Define
MDEU j=(MDEZ; — ﬂ)T(Var(MDEZjl))’]

x (MDEZj; —B). (35)

It follows that, for an IC process, MDEU; follows a X2
distribution with p degrees of freedom. To control the error

variance, let us define the statistic based on MEZ;3 as
MDEZj = \BMEZj3 + (1 — M) MDEZ j_1)3,  (36a)

where MDEZy3 = E(WMDEZp3) = 0. It follows that the
variance of the MDEZ j3 statistic is given by

Var(MDEZ3) = A*y. (36b)
In steady-state mode, the variance of MDEZ 3 becomes:

AM(1+¢?)

Var (MDEZj3) ~ = j— 00 (36¢)
(1-¢?)
Define
MDEM;
MDEZ;
= Max { |0~ {F (MDEU}: p)} |, | | 1 .
/ Var(MDEZ j3)
(37)
Then, mean and variance of MDEM ; are given by
E (MDEM;) = 2~ 112838
J) — ﬁ .
2
and Var(MDEM ) = (l — —) ~ (0.3634, (38)
b4

respectively.

Let us now define the following Max-MDEWMA control
chart for simultaneously monitoring the parameters and error
variance of the model stated in (15) as

MDEUCL = E(MDEM;) + LMPE . /Var(MDEM;)
~ 1.12838 + 0.6028LMPE (39)

where LMPE is the control limit coefficient selected to
yield a desired large nominal IC ARL. Therefore, the
Max-MDEWMA scheme gives a signal on the j” profile if
the charting statistic defined in (37) plots beyond the control
limit defined in (39).

3) DESIGN OF THE MAX-TYPE TEWMA AND MTEWMA
SCHEMES
a: THE MAX-TYPE UNIVARIATE TEWMA SCHEME
To develop the TEWMA statistics for the intercept and slope
parameters, we define in continuation to (26) the following
statistics:
UTEZj = MUDEZj + (1 — 1) UTEZ j_1y

and UTEZjp = AUDEZj» + (1 — A) UTEZj_1y2, (40)
where UTEZy, = PBo and UTEZy; = B;. Using Lemma 1,
Appendix C shows that the means and variances of the
TEWMA statistics for the intercept and slope are given as
follows:

E(UTEZ k) = Br-1

and Var (UTEZj) = Aoo?, ke{l,2), 41)

where 012 and 022 are defined in (8) and

o= & |02
[t
(1-2¢2)
-2 [M} 24 [(’JF_W]
(1- §2)3 (1- §2)4
g ]
[ e
6[zl ;;J“H %[ I:](]-ll—i);;j ]
[Z(IﬂLl)sz} N [2 ZJH)H
U_f) 0—5)
’ [(El_——f;)z) - (%)} and t =1— 1.

In steady-state mode, the variances given in (27) become:

6120 1222¢4

Var (UTEZji) ~ [

e-»> @e-n
7A3§2 )\4 ) .
+(2—A)3 (Z—A)z 0} asj — 0o,
ke{l,2}.

o [1+§2—(iz+2j+1) ¢¥ 4+ (22 +2j—1) ¢¥+2 —j2§2]+4:|

and¢=1-2x
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Following (40) and (41), define

2 2

UTEU; = )
k=1 \/ Var (UTEZj)

UTEZjx — Br—1 42)

It is to be noted that for the IC process, UTEU; follows a x 2
distribution with 2 degrees of freedom. To control the error
variance, let us define the TEWMA statistic in continuation

to (29a) as
UTEZj3 = \UDEZj3 + (1 — A) UTEZ j—1y3,  (43a)

where UTEZ 3 = E(UTEZj3) = 0. Thus, it is to be noted that

the variance of the UTEZ 3 statistic is then given by
Var(UTEZ 3) = A5¢. (43b)

In steady-state mode, the variance of UDEZ j3 becomes:

610 12224 7232

Var (UTEZj3) ~[ ¢ = §4 ‘ >

2-=2 2C-=2" 2-»

)»4
+ —2] asj — oo. (43¢)
2=

Define
UTEM;

UTEZ3

/ Var(UTEZ j3)

’

= Max “cb—l {F (UTEU; 2))

(44)

Then, mean and variance of UTEM ; are given by
E (UTEM)) = 2~ 112838
J) = \/E '

2
and Var(UTEM j) = (1 — —) ~ 0.3634, 45)
b1

respectively.

Let us now define the following Max-TEWMA control
chart for simultaneously monitoring the parameters and error
variance of the model stated in (4) as

UTEUCL = E(UTEM,) + LY /Var(UTEM)
~ 1.12838 + 0.6028LYTE (46)

where LYTE is the control limit coefficient selected to yield a

desired large nominal IC ARL. Therefore, the Max-TEWMA
scheme gives a signal on the j” profile if the charting statistic
defined in (44) plots beyond the control limit defined in (46).

b: MAX-TYPE MULTIVARIATE TEWMA SCHEME

In continuation to the statistic defined in (33), let us
define the following statistic to introduce the multivariate
TEWMA (MTEWMA) statistic for monitoring the param-
eters representing the regression coefficients of the model
given in (15):

MTEZj; = \MDEZj; + (1 — \) MTEZj_1y;  (47)
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where MTEZy, = E(MTEZj;) = B. Using Lemma 1 it can
be shown that the variance of the MDEWMA statistic for a
simultaneous monitoring of the parameters representing the
regression coefficients is given by

Var(MEZ;1) = 5902 (X7X)”". (482)
In steady-state mode, the variance in (48a) becomes
620 1222¢% TA3¢?
Var (MTEZj,) ~ 02[ ¢ - 44 ¢ ;
2-=2x 2-x) 2-x)

a4 o\l
+—2} (X X) asj — co.  (48b)
2-2)

Define
MTEU; = (MTEZ;, — B)" (Var(MTEZj;))™"

x (MTEZ;; — B). (49)
It follows that, for an IC process, MTEU; follows a X2
distribution with p degrees of freedom. To control the error
variance, let us define the statistic based on MTEZj3 as

MTEZj3 = AMDEZj3 + (1 — A) MTEZj_1)3, (50a)

where MTEZy; = EWMTEZj3) = 0. It follows that the

variance of the MTEZ j3 statistic is given by
Var(MTEZ3) = 25¢. (50b)

In steady-state mode, the variance of MTEZ 3 becomes:

6120 1222¢4 232
Var (MTEZj3) ~ s 7 3
Q-1 Q2=-0* 2-n
)\'4
+—— | asj — oo. 50c
@- A)J ! (00
Define
MTEM;

MTEZ 3

J/Var(MTEZ3)

’

= Max { |®~ ' {F (MTEU;; p
ot tr )

(G

Then, mean and variance of MTEM ; are given by

2
E (MTEM;) = — ~ 1.12838

AT
2
and Var(MTEM }) = (1 — —) ~ 0.3634, (52)
b

respectively.

Let us now define the following Max-MTEWMA control
chart for simultaneously monitoring the parameters and error
variance of the model stated in (15) as

MTEUCL = E(MTEM) + LM™E  /Nar(MTEM )
~ 1.12838 4 0.6028LM"E (53)

where LMTE s the control limit coefficient selected to

yield a desired large nominal IC ARL. Therefore, the
Max-MTEWMA scheme gives a signal on the j profile if
the charting statistic defined in (51) plots beyond the control
limit defined in (53).
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B. THE PROPOSED UNIVARIATE AND MULTIVARIATE
MEMORY-TYPE LPM TECHNIQUES USING RANDOM
EXPLANATORY VARIABLE

1) SIMPLE LINEAR PROFILE

In Section 2, the proposed schemes are designed using fixed
random variables (i.e. x; represents a FEV). However, if
x; represents a random explanatory variable (with x; ~
N(ey, crxz)), the mean vector and covariance matrix defined
in (6) become:

w' = Bo+ Biux

ool

and £° = " 2| (54)
0 J—
Sxx

where axz is the variance of the explanatory variable x; and
B1 is the slope of the regression model. Therefore, when the
proposed schemes are implemented using REV, the equations
(or formulas) developed in Section 2 remain applicable with
the only difference that the mean vector and variance of
the estimate of the intercept is replaced with Sy + B1x and
(02 + 02B})/n, respectively.

2) GENERAL LINEAR PROFILE
For the general linear profile model, the mean vector and
covariance matrix of 8; defined in (17) become:
E(@.):Mandz I
J o2 +XjTXjE (ﬂj) oz—i—XjTij’
(55)

respectively, where B represents p-dimensional coefficient
vector of the hyperparameters and X is the variance-
covariance matrix. The formulas for the general profile mon-
itoring described in Section 2 are still valid here with the
only difference that the mean vector and covariance matrix
are computed using (55).

C. OPERATION OF THE PROPOSED MEMORY-TYPE LPM
SCHEMES

In this section, the important steps in the design and imple-
mentation of the proposed scheme are provided in Figure 1.
Figure 1 presents the flow chart of the operations of the
proposed Max-EWMA, Max-DEWMA and Max-TEWMA
schemes using fixed and random explanatory variables where
UM and UCL represent the j™ charting statistic and upper
control limit of the corresponding scheme. That is, UM; =
UEM;, UDEM; and UTEM; for the Max-EWMA, Max-
DEWMA and Max-TEWMA, respectively; and UCL =
UEUCL, UDEUCL and UTEUCL for the Max-EWMA,
Max-DEWMA and Max-TEWMA, respectively. The opera-
tions of the proposed Max-MEWMA, Max-MDEWMA and
Max-MTEWMA schemes for general linear profiles using
FEV and REV are similar to the ones described in Figure 1
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with the only difference that the matrix X is find by generat-
ing n vectors from a X; ~ N ([LO, Zo).

Ill. PERFORMANCE ANALYSIS

This section investigates the IC and OOC performances of
the proposed univariate and multivariate Max-EWMA, Max-
DEWM and Max-TEWMA control charts when n = 4,
g = 3 and ag = 2 for anominal ARLy = 200. For FEV, x; =
2,4,6 and 8. However, for the REV, the explanatory variable
is generated for a normal distribution with a mean p, = 0 and
standard deviation o, = 1.

A. PERFORMANCE MEASURES

The performance a control chart is mostly evaluated using
the characteristics of its run-length distribution. The most
popular measures used in the SPM literature are the ARL,
median run-length and SDRL. In this paper, we make use of
the ARL and SDRL profiles to investigate the specific per-
formances of the proposed control charts for different shifts
in the parameters and error variance of a linear regression.
Therefore, the change in the intercept of the regression model
is observed when By has shifted from By to B + dog,. A shift
in the slope of a regression model is observed if the slope
B1 has shifted to B; + Aog,. When 6§ = 0 and A = 0, the
intercept and slope of the regression model are considered to
be IC. However, a shift in the error variance has occurred if
the error standard deviations has shifted from ¢ to yo which
means that the error variance is IC when y = 1. In this paper,
the model parameters and the error variance are monitored
simultaneously. To investigate the overall performance of the
propose control charts we use the EARL and ESDRL profiles
which are mathematically defined by

Umax
EARL(ﬁmimﬁmax] = - Z ARL(’L?),
¥ =0Umin
d ESDRL = Ly opri 56
an @ minsOmax] = ;Zﬁ:ﬁmm ( )7 ( )

respectively, where ARL(%) and SDRL(?) are the values of
the ARL and SDRL for a specific shift ¢ in standard deviation
unit (with ¥ = §, A or y) and 7 represents the number of
increments between the lower and upper bound shifts, that is,
Vinin and Vpay (With (Dmin, Pmax] = Gmin, Smax)s (Amins Dmax]
or (Vminv Vmax])-

B. DISCUSSION OF THE RESULTS

1) IC PERFORMANCES OF THE PROPOSED CONTROL
CHARTS

The performances of the proposed regression Max-type con-
trol charts are investigated using SAS® 9.4 for a nominal
ARL( of 200 when n = 4, A €{0.05,0.5,0.95}, a9 = 3,
o) =2, uxy = 0 and axz = 1. From Table 1, it is observed
that the control limit constants of the Max-TEWMA, Max-
DEWMA and Max-TEWMA charts under FEV are smaller
compared to the ones of the corresponding control charts
under the REV. This means that the control limits under REV
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Specify n, A, NARL(, 8, number of simulations
(@), the IC model of y;; as defined in Equation

)

\ 4

Transform the x;-values to
find the xf-values as
described in Section 2.1.1

y

Generate the €; from the N(0,1)
distribution and use Equation (4) to
find the y;j-values

l

Estimate the mean vector (#%) and covariance
matrix (£%) using Equation (6) and use LSM to
estimate the coefficients and MSE of the model
of the corresponding profile.

|

\ 4

Calculate the charting statistic UM; using the
appropriate equation and calculate the
corresponding UCL using the appropriate
equation by setting the control limit constant L
such that ARL, ~ 200.

Take necessary corrective action to find and remove assignable causes

q

Issue an OOC signal

Are the x;-values fixed?

A

Generate x;-values from
the N(0,1) distribution
and transform them to
find the x}-values

l

Generate the €; from the N(0,1)
distribution and use Equation (4) to
find the y;j-values

a A

Estimate the mean vector (#%) and covariance
matrix (27) using Equations (54) and use LSM to
estimate the coefficients and MSE of the model
of the corresponding profile.

Calculate the charting statistic UM; using the
appropriate equation and calculate the
corresponding UCL using the appropriate
equation by setting the control limit constant L
such that ARL, =~ 200.

Take necessary corrective action to find and remove assignable causes

Issue an OOC signal

FIGURE 1. Flow chart of the proposed monitoring schemes using FEV and REV.

are wider than the corresponding ones under FEV. The IC
SDRL (SDRLy) are larger under REV which means that the
probability of false alarm is larger under REV and smaller
under FEV. Since both univariate and their corresponding
multivariate counterparts are designed to monitor the same
intercept and slope parameters as well as the error variance
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using single control charts under FEV, the distances from
the centerline to the control limits of these control charts are
equal to the ones of their corresponding counterparts. For
instance, it is found that LVE = LME = 2724 so that both
the Max-EWMA and Max-MEWMA charts yield an attained
IC ARL(ARL) value of 200 and SDRLy = 200.6. However,
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TABLE 1. Control limit constants along with the attained ARL, and SDRL, values for a nominal ARL, = 200.

Univariate processes Multivariate processes
Scheme 4 L slgizLL Lo slgizLL L s/:)RRLL L sﬁﬁ& e s‘gizLL L SI:)‘::L
0.05 2724 582:(1) 2022 %(3)(3):(1) 1.635 %ggié 2724 ggg:(l) 2022 %(3)(3):(1) 1.635 %ggié
o | o | B0 a9 | e B | w0 | B0 | e B0
095 | 3.146 %ggg 3.147 ;g?é 3.150 58‘1):2 3.146 fggg 3.147 ;g?é 3.150 58(1):2
0.05 3474 égg:g 2.964 égg:; 2759 g%é 2727 ﬁgﬂf 2.005 Zg:g 1.634 %gg:g
v N:;"E'f,;”MA 0.5 3.480 ggg? 3470 }ég; 3427 3‘7)8:‘6‘ 3.126 }ggg 3.034 fggg 2926 ;g?:g
095 | 3.320 gg;; 3.344 gggg 3.359 5(3)2:3 3.143 ggg? 3.150 %g?‘ﬁ‘ 3.137 gggé

TABLE 2. IC and 00C ARL (15t row) and SDRL (2" row) profiles of the proposed univariate Max-type control charts for simple linear profiles for FEV and

REV with an intercept shift of size § for a nominal ARL, = 200.

Exploratory )
4 Scheme variable 0.00 025 0.50 0.75 1.00 1.25 1.50 1.75 2.00
FEV 200.0 338 9.5 45 27 1.9 15 1.0 1.0
Max.EWMA 206.1 242 5.1 2.1 1.0 0.6 0.5 0.0 0.0
REV 201.0 1446 70.0 238 11.5 6.5 43 3.1 23
690.8  505.1 3032 80.2 24.7 10.8 6.0 4.0 2.8
FEV A IR s Ry I - R
0.05 Max-DEWMA REV 200.1 122.1 45.0 16.7 9.1 6.0 42 2.9 23
8373 5742 1897 42.0 15.4 8.9 5.9 4.0 2.9
FEV 199.7 30.2 0.1 4.0 21 13 1.0 1.0 1.0
Max TEWMA 243.7 222 6.1 24 1.0 0.5 0.0 0.0 0.0
REV 197.9 1205 404 163 9.9 6.6 4.6 32 25
878.9 6110 144.1 32.6 15.6 9.9 6.9 47 3.4
FEV 2001 1213 26.4 8.2 3.8 23 1.6 12 1.0
MaxEWMA 1974 1185 24.2 6.2 2.1 0.9 0.5 0.4 0.0
REV 2003 1822 1534 1062 713 39.8 185 8.6 4.9
3975 3638 3388 2622 2061 1372 68.4 33.1 19.6
FEV 1974 sex 137 4 12 87 a5 o4 00
05 Max-DEWMA REV 199.4 1820 1384 89.7 50.1 233 10.4 52 3.1
429.8 4228 3573 2585  168.7 85.1 39.0 17.4 7.7
FEV 200.3 785 13.9 52 3.0 2.0 1.5 1.1 1.0
Max TEWMA 200.3 74.6 10.7 26 L1 0.7 0.5 0.2 0.0
REV 2004 1855 1365 80.8 433 17.0 8.0 43 2.6
470.6 4518 3873 2629 1537 60.8 27.6 113 48
FEV 2000 193.2 82.8 28.6 10.8 47 23 12 1.0
Max.EWMA 1984 1923 81.9 275 102 4.0 1.6 0.4 0.0
REV 2011 1952 1732 1465  109.9 75.6 489 26.8 123
3223 3109 2869 2731 2181 1702 1392 86.1 50.0
FEV Wle 12 Ty 34l 85 a4 13 64 60
0.95 Max-DEWMA REV 2005 197.5 1746 1405 1073 724 44.1 236 123
3203 3247 3017 2619 2188  173.8 1208 81.6 52,9
FEV 2000 1819 683 21.7 83 37 2.0 12 1.0
Max TEWMA 2028 1817 67.3 20.9 7.4 238 1.1 0.4 0.0
REV 2004 197.6 1729 1400 103.1 69.6 41.6 216 10.0
3364 3373 3063 2659 2167 1710 1269 81.4 39.7

under REV, the control limits for multivariate control charts
are narrower compared to the ones of their corresponding
univariate counterparts.

2) OOC PERFORMANCES OF THE PROPOSED CONTROL
CHARTS

In Tables 2-5, the performances of the proposed schemes are
investigated in terms of the ARL (1% row) and SDRL (2"
row). Table 2 displays the performances of univariate Max-
EWMA, Max-DEWMA and Max-TEWMA control charts
for simple linear profile with fixed and random explanatory
variables for a shift in the intercept regression parameter
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when n = 4, A € {0.05,0.5,0.95}, a9 = 3, a1 =2, uy =
0 and 02 = 1 for a nominal ARL( = 200. For the FEV case,
we used x; = 2, 4, 6 and 8 where i = 1,2,3 and 4; while for
the REV case, the explanatory random variable is generated
from standard normal distribution as explained earlier in this
section. The results in Table 2 can be summarised as followed:

« The proposed control charts are faster in detecting shifts
in the intercept when the explanatory variable is fixed.
Under a random effect model, the performance of the
proposed charts deteriorates considerably. For instance,
for a small shift of 0.25 standard deviation in the inter-
cept of the regression model, the Max-EWMA chart for
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TABLE 3. IC and 00C ARL (15t row) and SDRL (2"d row) profiles of the proposed multivariate Max-type control charts for linear profiles for FEV and REV
with an intercept shift of size § for a nominal ARLy = 200.

o)
A Scheme Exploratory variable 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Fixe xi 200.0 357 10.5 52 33 2.3 1.8 1.5 1.3
Max-MEWMA 206.1 26.7 6.2 2.8 1.6 1.1 0.8 0.6 0.5
Random xi 200.3 36.0 10.4 53 33 2.3 1.8 1.5 1.2
205.3 26.8 6.2 29 1.7 1.1 0.8 0.6 0.5
Fixe xi 200.1 319 10.2 5.1 3.1 2.1 1.6 1.3 1.1
0.05 Max-MDEWMA 233.0 24.1 6.7 32 1.8 1.2 0.8 0.5 04
Random xi 199.9 31.7 10.1 5.0 3.0 2.1 1.6 1.3 1.14
229.0 24.0 6.7 3.2 1.8 1.2 0.8 0.54 0.37
Fixe xi 199.7 312 10.8 53 3.1 2.1 1.5 1.2 1.0
Max-MTEWMA 243.7 24.6 7.9 3.8 2.1 1.3 0.8 0.5 0.3
Random xi 200.6 31.1 10.7 53 3.1 2.1 1.5 1.25 1.1
245.8 24.5 7.9 3.8 22 1.3 0.8 0.55 0.33
Fixe xi 200.1 119.8 28.8 92 4.5 2.8 2.1 1.7 1.4
Max-MEWMA 197.4 112.3 26.5 7.3 29 1.5 1.0 0.7 0.6
Random xi 199.8 115.8 29.2 9.4 4.5 2.8 2.1 1.6 1.3
199.8 113.8 26.9 7.5 3.0 1.5 1.0 0.7 0.5
Fixe xi 200.3 88.6 18.1 6.7 3.7 2.5 1.9 1.6 1.3
05 Max-MDEWMA 197.4 86.4 15.5 4.5 2.0 1.2 0.8 0.6 0.5
Random xi 200.2 89.2 18.1 6.7 3.7 2.5 1.9 1.55 1.3
198.6 88.3 15.6 4.5 2.0 1.2 0.8 0.63 0.49
Fixe xi 200.3 79.7 15.5 6.1 3.7 2.6 1.9 1.5 1.2
Max-MTEWMA 200.3 76.4 12.4 37 1.8 1.2 0.9 0.6 04
Random xi 200.8 80.2 15.5 6.2 3.7 2.5 1.9 1.5 1.3
201.3 77.4 12.3 3.8 1.8 1.2 0.9 0.7 0.5
Fixe xi 200.0 160.9 82.0 30.4 12.0 54 3.0 1.9 1.5
Max-MEWMA 198.4 159.9 80.6 29.9 11.3 4.8 2.3 1.3 0.8
Random xi 199.8 158.7 81.2 30.1 11.9 54 3.0 1.93 1.43
201.8 158.7 80.2 29.9 11.2 4.8 2.3 1.27 0.74
Fixe xi 200.2 158.4 752 26.7 10.3 4.9 2.8 1.9 1.5
0.95 Max-MDEWMA 201.6 157.1 73.9 26.3 9.5 4.1 2.1 1.2 0.8
Random xi 200.4 157.9 76.2 26.6 10.3 4.9 2.8 1.9 1.4
201.6 156.6 75.1 26.2 9.6 4.1 2.0 1.1 0.7
Fixe xi 201.0 155.7 69.2 23.8 9.1 44 2.6 1.8 1.4
Max-MTEWMA 202.8 154.2 67.9 229 8.3 3.6 1.8 1.0 0.7
Random xi 200.4 150.6 67.9 234 9.0 44 2.6 1.8 1.4
200.8 151.0 67.3 22.5 8.3 35 1.7 1.1 0.7

TABLE 4. 00C ARL (15t row) and SDRL (2"d row) profiles of the proposed multivariate Max-type control charts for linear profiles for FEV and REV with a
shift of size ¢ for a nominal ARL, = 200.

Univariate schemes Multivariate schemes
Max-EWMA Max-DEWMA Max-TEWMA Max-MEWMA Max-MDEWMA Max-MTEWMA
2 ¢ FEV REV FEV REV FEV REV FEV REV FEV REV FEV REV
050 | 33 16.7 2.8 152 2.7 41.0 1.1 252 1.1 235 1.1 229
) 13 49.5 13 46.2 1.5 123.9 0.4 36.8 03 36.8 02 33.1
1.00 1.0 6.7 1.0 6.3 1.0 114 1.0 8.0 1.0 74 1.0 7.7
0.05 : 0.0 20.8 0.0 15.6 0.0 483 0.0 13.1 0.0 11.6 0.0 12.6
: 1,50 1.0 38 1.0 36 1.0 5.8 1.0 4.1 1.0 38 1.0 38
: 0.0 7.2 0.0 54 0.0 32.1 0.0 6.8 0.0 6.0 0.0 6.1
200 1.0 2.6 1.0 2.6 1.0 32 1.0 2.6 1.0 24 1.0 24
: 0.0 4.7 0.0 5.9 0.0 139 0.0 3.7 0.0 3.8 0.0 53
0s0 | 51 67.9 38 475 3.6 41.0 1.2 71.9 11 527 1.2 48.1
) 33 159.1 1.8 135.0 15 123.9 04 92.8 0.0 752 04 723
1.00 1.1 20.8 1.0 13.1 1.0 114 1.0 203 1.0 14.0 1.0 12.1
0.5 i 0.3 67.85 02 484 0.0 483 0.0 42.6 0.0 29.8 0.0 26.7
: 1.50 1.0 8.9 1.0 6.1 1.0 58 1.0 8.0 1.0 6.0 1.0 54
: 0.0 353 0.0 28.6 0.0 32.1 0.0 24.1 0.0 16.8 0.0 13.5
200 1.0 5.0 1.0 3.6 1.0 32 1.0 4.0 1.0 35 1.0 3.1
: 0.0 23.7 0.0 14.9 0.0 13.9 0.0 9.8 0.0 104 0.0 6.4
050 | 139 1133 138 1104 12.0 106.8 1.2 121.0 1.2 117.9 1.2 112.0
) 153 1923 13.1 200.0 11.2 195.7 0.5 1332 0.0 132.0 0.0 126.5
1.00 1.1 46.6 1.1 44.5 1.1 412 1.0 4538 1.0 432 1.0 388
0.95 : 03 100.5 03 99.3 0.3 98.1 0.0 72.9 0.0 713 0.0 65.6
: 150 1.0 21.1 1.0 19.7 1.0 17.5 1.0 19.5 1.0 18.1 1.0 15.6
: 0.0 60.0 0.0 62.4 0.0 54.0 0.0 439 0.0 41.8 0.0 374
1.0 1.0 10.5 1.0 9.5 1.0 9.6 1.0 8.8 1.0 7.6
2000 g0 8 TS| g0 413 0.0 38.7 0.0 28.0 0.0 28.1 0.0 21.5
simple linear profile with FEV gives a signal on the deviation and a large shift of 2 standard deviation, the
34™ sample. However, the one with REV give a signal FEV Max-EWMA chart gives a signal on the 3™ and
on the 145™ sample. For a moderate shift of 1 standard 1%t samples, while the REV Max-EWMA chart gives
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TABLE 5. 00C ARL (15t row) and SDRL (24 row) profiles of the proposed univariate and multivariate Max-type control charts for linear profiles with FEV
and REV with a shift of size y in the error standard deviation for a nominal ARL, = 200.

Univariate scheme Multivariate scheme
Max-EWMA Max-DEWMA Max-TEWMA Max-MEWMA Max-MDEWMA Max-MTEWMA
i Yy FEV REV FEV REV FEV REV FEV REV FEV REV FEV REV
1.20 34.1 15.2 333 15.2 32.1 16.8 34.1 343 333 333 32.0 32.02
32.0 25.6 33.6 25.6 33.6 259 32.0 32.1 33.6 334 33.6 33.36
1.50 79 5.4 8.0 5.7 8.1 6.6 7.9 7.8 8.0 7.8 8.1 8.0
005 7.1 57 8.3 6.7 9.3 79 72 7.1 8.3 8.1 9.3 9.2
: 175 3.7 32 3.7 34 3.7 3.8 3.7 3.7 3.7 3.6 3.7 3.7
’ 33 2.9 39 35 44 42 33 33 39 3.8 44 44
2.00 24 23 23 2.4 23 2.6 24 24 23 2.3 23 2.3
) 1.9 1.8 23 22 2.6 2.7 1.9 1.9 23 22 2.6 2.6
1.25 414 28.6 41.4 25.9 43.5 24.6 414 425 414 424 435 72.9
’ 40.8 50.6 40.6 492 42.8 484 40.8 40.3 40.6 414 42.8 55.2
1.50 8.4 6.5 8.7 6.0 9.3 5.9 8.4 8.43 8.7 8.6 9.3 16.5
05 7.6 8.1 7.8 7.4 8.4 7.2 7.6 7.7 7.8 7.9 8.4 13.5
175 39 33 4.0 33 42 34 39 39 4.0 4.0 4.2 7.1
3.1 3.1 34 3.1 3.6 32 3.1 3.1 34 34 3.6 6.9
2.00 24 23 2.5 24 2.7 24 24 2.5 2.5 2.6 2.7 4.0
1.8 1.8 2.0 1.8 2.2 2.0 1.8 1.8 2.0 2.0 22 4.2
125 47.0 40.8 46.4 39.1 459 382 47.0 46.6 46.4 46.3 459 45.1
46.8 62.0 46.2 60.6 45.6 60.5 46.8 46.1 46.4 457 45.6 44.9
1.50 9.8 8.6 9.6 8.4 9.5 8.1 9.8 9.7 9.6 9.6 9.5 9.4
0.95 92 11.1 9.1 10.9 9.0 10.5 9.2 9.1 9.1 9.1 9.0 8.8
175 4.1 39 4.1 4.0 4.0 39 4.1 4.1 4.1 4.1 4.0 4.0
3.6 42 35 42 34 4.1 3.6 35 35 3.5 34 34
200 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5
1.9 23 1.9 22 1.9 2.7 1.9 2.0 1.9 2.0 1.9 1.9

a signal on the 12" and 2" samples, respectively.
Similar findings in the patterns of the ARL profiles of
the Max-DEWMA and Max-TEWMA control charts is
observed for simple linear profiles with FEV and REV.

o Regardless of the size of the shift in the inter-
cept of the regression model, the Max-DEWMA
and Max-TEWMA control charts are similar in
performance. However, these two schemes outperform
the Max-EWMA control chart for small and moderate
shifts in the intercept.

o The smaller the smoothing parameter A, the more effi-
cient the proposed Max-EWMA, Max-DEWMA and
Max-TEWMA control chart are. As A increases, the
performance of these monitoring schemes deteriorates
dramatically.

o Similar findings are also observed in terms of the SDRL
profile; that is, the SDRL values increase as A increases.
This indicates that the probability of giving a false alarm
signal is directly proportional to the values of A. There-
fore, it is recommended to use smaller values of A to get
reliable monitoring scheme.

o For very small shift the Max-EWMA with REV yields
smaller SDRL compared to the Max-DEWMA and Max-
TEWMA charts with REV. The latter is less reliable than
the Max-DEWMA control chart in terms of the SDRL
profile for very small shifts. As the magnitude of the
shift increases, the Max-TEWMA scheme with REV
becomes more reliable than the Max-EWMA and Max-
DEWMA control charts in similar conditions.

o The random effect deteriorates considerably the perfor-
mances of the proposed Max-EWMA, Max-DEWMA
and Max-TEWMA control chart regardless of A. This
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means, a preliminary study is necessary in order to find
the appropriate explanatory variable that has a strong (or
nearly perfect) functional relationship with the profile.

Table 3 displays the performances of Max-MEWMA,
Max-MDEWMA and Max-MTEWMA control charts for lin-
ear profiles with fixed and random explanatory variables for
a shift in the intercept regression parameter whenn =4, A €
{0.05,0.5,0.95}, bo = 3,51 =2, uy =0and 6> = 1 fora
nominal ARLy = 200. Table 3 shows that for small smooth-
ing parameters (say, A = 0.05), the Max-MTEWMA charts
outperforms both the Max-MEWMA and Max-MDEWMA
charts in terms of the ARL profile for very small shifts
(e.g., § €(0,0.25)) in the intercept under the assumptions
of both FEV and REV. As the magnitude of the shift in
the intercept increases, the three multivariate charts perform
almost similarly. For moderate values of A (say, A = 0.5),
the Max-MTEWMA chart is faster than the Max-MEWMA
and Max-MDEWMA charts in detecting small shifts in the
intercept of the regression model for both assumptions. For
moderate and large shifts, the proposed monitoring schemes
are almost equivalent in terms of the ARL profile. For large
values of A, the Max-MTEWMA chart remains superior
over the Max-MEWMA and Max-MDEWMA charts for
small and moderate shifts in the intercept and for large
shifts, the three multivariate Max-type charts are similar in
performance. Similar to the findings for univariate processes,
the performance of Max-MEWMA, Max-MDEWMA and
Max-MTEWMA charts deteriorate significantly as the value
of A increases. In terms of the SDRL profile, for small and
moderate shifts in the intercept, the Max-MEWMA chart is
likely to give a false OOC signal than the Max-MDEWMA
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FIGURE 2. Overall performance of the proposed Max-type control chart for linear profiles with FEV when n = 4, ¢y = 3, oy = 2 with y;,;, = 1.2 and
Ymax = 2 for a nominal ARL, = 200: (a) Univariate monitoring schemes; (b) Multivariate monitoring schemes.
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FIGURE 3. Overall performance of the proposed Max-type control chart for simple and general linear profiles with REV when n = 4, ag = 3, oy = 2 with
Ymin = 1.2 and ymax = 2 for a nominal ARL, = 200: (a) Univariate monitoring schemes; (b) Multivariate monitoring schemes.

and Max-MTEWMA control charts for moderate and large
values of A. However, for small values of A, the three moni-
toring schemes are all reliable.

Table 4 presents the performances of both the uni-
variate and multivariate Max-EWMA, Max-DEWMA and
Max-TEWMA control charts for linear profiles with fixed
and random explanatory variables for a shift in the slope (¢)
of the regression model when n = 4, & €{0.05,0.5,0.95},
b = 3,b1 =2, uy = 0 and UXZ = 1 for a nominal
ARLo = 200. It can be clearly observed that the proposed
control charts are very sensible under the assumption of FEV
as compared to REV. The sensitivities of the proposed charts
increase as the magnitude of the shift in standard deviation
unit increases. The smaller the value of XA, the more sensitive
the proposed charts are. The univariate schemes are faster
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in detecting shifts in the slope of the regression model as
compared to multivariate schemes. In terms of the SDRL
profile, it can be seen that the proposed charts are less reliable
under the assumption of REV.

Table 5 presents the IC and OOC performances in terms of
the ARL and SDRL profiles of both univariate and multivari-
ate Max-EWMA, Max-DEWMA and Max-TEWMA control
charts for linear profiles with FEV and REV for a shift in the
error variance (y) of the regression model whenn =4, A €
{0.05,0.5,0.95}, bp = 3,b; =2, uy =0and 6> = 1 fora
nominal ARLq = 200. Table 5 reveals that the three univariate
monitoring schemes as whole are quite similar in terms of the
ARL and SDRL profiles under the assumptions of FEV and
REV. This finding is also true for the multivariate schemes
as a whole. However, the univariate monitoring schemes are

VOLUME 10, 2022
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FIGURE 4. Overall performances of the proposed Max-type control charts for linear profiles under FEV and REV when n = 4, oy = 3, ¢y = 2 with
Smin = 0.25 and §max = 2 for a nominal ARL, = 200: (a) EARL profile comparison under FEV; (b) EARL profile comparison under REV; (c) ESDRL
profile comparison under FEV; (d) ESDRL profile comparison under REV; (e) EARL profile comparison under FEV; (f) SDRL profile comparison under

REV.

faster than the multivariate ones in detecting shifts in the
error variance (or standard deviation) of the regression model.
Under the assumption of REV, the univariate Max-EWMA,
Max-DEWMA and Max-TEWMA control charts are more
sensitive to the shifts in the error variance as compared to the
ones under the assumption of FEV.

3) OVERALL PERFORMANCE ANALYSIS

Figures 2 and 3 depict the patterns of the overall perfor-
mances of the proposed univariate and multivariate monitor-
ing schemes, respectively, when there is a shift in the error
variance with yynqx = 1.2 and e = 2 with an increment of
0.25 standard deviation. The following findings are observed:
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1) Under the assumption of FEV:
e For both univariate and multivariate processes, the

overall performances of the proposed Max-TEWMA,
Max-DEWMA and Max-TEWMA control charts
decrease as A increases; see Figures 2 (a) and (b).

The Max-EWMA control chart outperforms the
Max-DEWMA and Max-TEWMA control charts
except for small shifts where the Max-TEWMA chart
performs better; see Figure 2 (a). The Max-TEWMA
chart outperforms the Max-DEWMA chart except for
moderate shifts in the error variance.

The Max-MTEWMA control chart outperforms both
the Max-MEWMA and Max-MDEWMA control
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charts except for moderate shift where the Max-EWMA
chart performs better; see Figure 2 (b).
2) Under the assumption of REV:

e For univariate processes, the overall performances
of the proposed Max-TEWMA, Max-DEWMA and
Max-TEWMA control charts decrease as A increases;
see Figures 3 (a).

e For multivariate processes, the overall performances of
the Max-MEWMA and Max-MDEWMA charts dete-
riorate as A increases. However, the performance of
the Max-MTEWMA chart decreases for small to mod-
erate values of A and increases for large values of A;
Figure 3 (b).

e The Max-TEWMA control chart outperforms the
Max-EWMA and Max-DEWMA control charts except
for small shifts where the Max-EWMA chart per-
forms better. The Max-DEWMA chart outperforms the
Max-TEWMA chart except for moderate shifts in the
error variance; Figure 3 (a).

e The Max-MTEWMA control chart outperforms
both the Max-MEWMA and Max-MDEWMA con-
trol charts except for moderate shifts where the
Max-EWMA chart performs better; see Figure 3 (b).

Figure 4 displays the overall comparisons of the proposed
regression Max-type control charts under FEV and REV in
terms of the EARL and ESDRL profiles when n = 4, o9 = 3,
a1 = 2 with 8,;, = 0.25 and §,,,x = 2 for a nominal
ARL( = 200. From Figure 4, it can be seen that the proposed
regression control charts perform better for small values of
A. As X increases, the overall performances of these charts
decrease dramatically. It can also be noticed that the perfor-
mances of the proposed charts degrade significantly under
the assumption of REV. For small and moderate values of A,
the Max-TEWMA charts outperform the Max-EWMA and
Max-DEWMA charts, respectively. For large values of A, the
Max-EWMA chart outperforms slightly the Max-DEWMA
and Max-TEWMA charts in terms of the FARL and ESDRL
profiles. Similar findings are observed for the multivariate
case.

4) THE PROPOSED SCHEMES VERSUS THE EXISTING
MEMORY-TYPE SCHEMES

In this section, the performances (or sensitivities) of the
proposed Max-EWMA, Max-DEWMA and Max-TEWMA
schemes are compared to the ones of the existing EWMA,
DEWMA and TEWMA schemes for monitoring of the
regression parameters and error variance concurrently. The
latter three schemes are denoted as EWMA3, DEWMA3 and
TEWMAZ3 schemes, respectively. The comparison is done
under the assumption of FEV when n = 4, op = 3, o1 = 2,
iy = 0 and o, = 1 for a nominal ARLy = 200. In this com-
parison, it is assumed that the slope and error variance remain
IC while the shift in the intercept varies from 0.25 to 2 with
an increment of 0.25. From Figure 5, it can be seen that the
proposed Max-EWMA, Max-DEWMA and Max-TEWMA
schemes outperforms their respective counterparts except for
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FIGURE 5. Performance comparison of the proposed schemes and the
existing counterparts: (a) The Max-EWMA scheme versus the ENMA3
scheme; (b) The Max-DEWMA scheme versus the DEWMA3 scheme;
(c) The Max-TEWMA scheme versus the TEWMA3 scheme.

very small shifts (i.e. 0 < § < 0.25). Similar findings are
observed for the multivariate processes (this is not shown here
to preserve space). The proposed schemes are also preferred
over the existing schemes because of their simplicity and
interesting overall properties.
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@y =2 and x; € {2, 4, 6, 8): (a) Max-EWMA; (b) Max-DEWMA; (c) Max-TEWMA; (d) Max-MEWMA; (e) Max-MDEWMA; (f) Max-MTEWMA.

TABLE 6. Truncated VDP data and charting statistics of the proposed regression max-type control charts for a nominal ARL, = 200.

IV. ILLUSTRATIVE EXAMPLES

A. ILLUSTRATIVE EXAMPLE USING SIMULATED DATA

In this section, we illustrate the implementation and applica-
tion of the proposed regression control chart using simulated
data (100 subgroups i.e. j = 1,2, ..., 100) under both the
assumptions of fixed and random explanatory variables for a
nominal ARLy = 200. For the FEV, the explanatory variable
n=4x €{2,4,6,8}, g = 3 and a; = 2. However, for
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Max-EWMA/ Max-DEWMA/ Max-TEWMA/
X; 0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018  0.02 Max-MEWMA Max-MDEWMA Max-MTEWMA
profile 1 | 60.26 59.62 59.53 59.08 58.64 57.85 57.34 5674 5649 5582 55.58 6.71 6.71 6.71
profile2 | 55.62 5513 5472 54.08 53.60 53.84 5344 5282 5297 5289 5220 6.28 6.71 6.71
profile3 | 60.97 60.41 59.77 5896 5923 5896 5825 5851 57.81 57.12 56.95 6.78 6.71 6.71
profile4 | 59.54 59.63 5926 58.72 5836 5791 57.82 5720 56.34 5591 5557 7.81 7.47 6.93
profile 5 58.51 5771 57.19 57.01 55.98 55.65 55.73 5498 54.65 5440 53.75 8.75 8.24 7.55
profile 6 | 52.80 5233 5186 51.63 51.10 50.50 50.28 49.98 49.32 4889 48.60 10.31 9.16 8.20
profile 7 | 56.96 5627 5594 5535 5493 5436  53.87 5331 52.83 5276 5198 11.51 10.09 8.87
profile 8 | 59.39 5841 58.15 57.63 5728 5643 56.18 5585 5560 5527 5446 12.20 10.91 9.53
profile9 | 5538 54.56 53.92 53.61 53.06 5259 52.75 52.13 5190 51.07 51.00 12.72 11.64 10.16
profile 10 | 59.48 59.30 58.86 58.07 5729 57.38 56.37 5587 5529 5554 5481 13.12 12.27 10.74
profile 11 | 53.19 52.57 5226 51.88 51.35 51.05 50.83 5046 49.80 49.66 49.37 14.11 12.95 1131
Y, profile 12 | 57.36  56.76  56.25 5493 54.85 5412 53.65 53.72 52.86 52.17 51.71 14.43 13.56 11.86
I profile 13 | 58.51 58.69 5825 57.81 57.81 5747 5696 56.79 56.53 5620 55.70 15.17 14.17 12.39
profile 14 | 58.65 5822 57.70 5736 56.76  56.43 56.09 55.60 5495 54.55 5439 16.13 14.83 12.92
profile 15 | 59.50 59.14 58.78 58.61 57.74 58.08 57.57 57.14 56.71 56.05 55.71 16.56 15.44 13.44
profile 16 | 52.00 51.62 51.24 50.86 50.63 50.04 49.75 49.23 49.16 48.73 48.73 17.22 16.06 13.95
profile 17 | 57.00 55.82 5557 5524 5475 5435 5403 5339 53.00 52.69 52.61 17.56 16.63 14.46
profile 18 | 56.80 56.04 5571 5530 5472 5392 5352 5337 5298 5236 5236 17.92 17.19 14.95
profile 19 | 57.97 5841 57.71 5728 57.03 5643 5635 5560 5535 55.03 54.38 18.23 17.71 15.44
profile 20 | 58.47 57.68 5743 57.08 56.15 5540 5491 54.67 5475 5443 54.11 18.18 18.17 15.91
profile 21 | 61.08 60.53 59.98 5935 59.26 5881 5820 57.59 5725 56.83 56.24 18.87 18.66 16.36
profile 22 | 60.03 59.29 58.75 58.12 58.03 57.59 5724 5629 5578 5553 55.11 19.26 19.14 16.81
profile 23 | 59.64 59.55 5857 57.79 5753 56.76  56.51 56.01 5559 5551 5527 19.30 19.58 17.25
profile 24 | 56.50 55.83 55.58 55.08 54.84 54.43 53.79 53.16 52.77 52.54 52.16 19.87 20.04 17.69
| Control limit constant 20.126 25.694 28.663
| Upper control limit 13.260 16.617 18.406

the REV, the explanatory variable is generated from a normal
distribution with mean 0 and variance 1, n = 4, g = 3 and
a1 = 2. The control constant of the regression control charts
under consideration are given in Table 1. For instance, with
the regression Max-EWMA control chart we found that
LVE 2.724 yields an attained ARL 200 under
the assumption of FEV. However, under the assumption
of REV, we found that LVF = 3.474 yields an attained
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FIGURE 7. Proposed univariate and multivariate Max-type control charts under the assumption of REV using simulated data when n = 4, oy = 3 and
o7 =2 and x; ~ N(0, 1): (a) Max-EWMA; (b) Max-DEWMA; (c) Max-TEWMA; (d) Max-MEWMA; (e) Max-MDEWMA; (f) Max-MTEWMA.

ARLy = 200.5. The investigation is done when: (i) the
process is assumed to be IC, (ii) a shift of 0.5 standard
deviation has occurred in the intercept of the regression model
assuming the slope and error variance both remain IC and
(iii) there is only a shift of 0.25 standard deviation in the
slope of the regression model assuming that the intercept
and error variance are IC. The plots of the charting statistics
of the Max-EWMA, Max-DEWMA, Max-TEWMA, Max-
MEWMA, Max-MDEWMA and Max-MTEWMA control
charts for FEV are shown in Figures 6 (a)-(f), respectively; the
ones for the REV are shown in Figures 7 (a)-(f), respectively.

From Figures 6 (a)-(f), the findings are summarised as
follows (FEV):

o When the process is IC, the proposed univariate and
multivariate regression control charts do not give a signal
(See Case 1 in Figures 6 (a)-(f)).

o For univariate processes, for a shift of 0.5 standard
deviation in the intercept, the Max-EWMA chart gives
a signal on the 22" profile; the Max-DEWMA and
Max-TEWMA charts give a signal on the 111 pro-
file. In addition, for a shift of 0.25 standard deviation,
assuming no shift occurred in the intercept and error
variance, the proposed Max-EWMA chart gives a signal
on the 7™ profile while the Max-DEWMA and Max-
TEWMA charts give signals on the 7 and 9™ profiles,
respectively.

o For multivariate processes, for a shift of 0.5 standard
deviation in the intercept, the Max-MEWMA chart gives
a signal on the 24" profile; the Max-DEWMA and
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Max-MTEWMA charts give a signal on the 15" and
18™ profiles, respectively. In addition, for a shift of
0.25 standard deviation, assuming no shift occurred
in the intercept and error variance, the proposed
Max-MEWMA chart gives a signal on the 4™ profile
while both the Max-MDEWMA and Max-MTEWMA
charts give signals on the 2™ profile.

The findings in Figures 7 (a)-(f) can be summarised as follows

(REV):

o When the process is IC, the proposed univariate and
multivariate regression control charts do not give a signal
(See Case 1 in Figures 7 (a)-(f)).

o For univariate processes, for a shift of 0.5 standard
deviation in the intercept, the Max-EWMA chart gives
a signal on the 14" profile; the Max-DEWMA and
Max-TEWMA charts give signals on the 10" and
141 profiles, respectively. However, for a shift of
0.25 standard deviation, assuming no shift occurred
in the intercept and error variance, the proposed
Max-EWMA chart gives a signal on the 35" profile
while the Max-DEWMA and Max-TEWMA charts give
signals on the 36 and 41°¢ profiles, respectively.

o For multivariate processes, for a shift of 0.5 standard
deviation in the intercept, the Max-EWMA chart gives
a signal on the 23" profile; the Max-MDEWMA and
Max-MTEWMA charts give signals on the 21% profile.
In addition, for a shift of 0.25 standard deviation,
assuming no shift occurred in the intercept and
error variance, both the proposed Max-MEWMA and

VOLUME 10, 2022



J.-C. Malela-Majika et al.: Univariate and Multivariate Linear Profiles Using Max-Type Extended EWMA Schemes

IEEE Access

200

1751

1504

UEUCL=13.260

UEMj

1254

1004

— T
2 4 6 § 10 12 14 16 18 20 22 24
Profile number

(€))

200

1754

UDEUCL=16.617

15.0

1254

UDEMj

10.0

7.59

504

T

T T T
2 4 6 § 10 12 14 16 18 20 22 24
Profile number

(b)

20.0

UTEUCL=18.406
17.54

1504

12,54

UTEMj

10.04

7.5

504

T T T T T T T T T T

T T
2 4 6 § 10 12 14 16 18 20 22 24
Profile number

(©
FIGURE 8. The proposed monitoring schemes for the truncated vertical
density profile data using FEV with a nominal ARL; = 200:
(a) Max-EWMA/ Max-MEWMA chart; (b) Max-DEWMA/ Max-MIDEWMA
chart; (c) Max-TEWMA/ Max-MTEWMA chart.

Max-MDEWMA charts give signals on the 35" profile
while the Max-MTEWMA chart gives a signal on the
38 profiles.
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B. ILLUSTRATIVE EXAMPLE USING REAL-LIFE DATA

To illustrate the application and implementation of the pro-
posed regression Max-type control charts, the data from [39]
on the truncated vertical density profile are used under
the assumption of FEV. The profile data (¥; = y;, i =
1,2,...,11 and j = 1,2,...,24) represent the density
of the wood board that takes measurements at a series of
fixed depths (X = x;,i = 1,2,...,11;ie.n = 11) (see
Table 6). The purpose of this application is to monitor the
intercept, slope and error variance of the simple regression
model of the density of the wood board’s surface simultane-
ously using a single control chart. The control limits constants
are determined such that the nominal ARLy = 200 when
n = 11 and X = 0 (0.002) 0.02. For instance, we find
that the control limit constants of the Max-EWMA, Max-
DEWMA and Max-TEWMA control charts as well as their
corresponding multivariate counterparts are given by 20.126,
25.694 and 28.663 so that they yield attained ARL( values
of 200.4, 200.2 and 200, respectively. The plots of the chart-
ing statistics of the Max-EWMA, Max-DEWMA and Max-
TEWMA charts are shown in Figures 8 (a)-(c), respectively
(see also Table 6). From Figure 8 and Table 6, it can be seen
that the Max-EWMA and the Max-DEWMA charts give a
signal on the 11" and 17 profiles, respective, while the
Max-TEWMA chart does not give a signal in the prospec-
tive phase. In this particular case, the Max-MEWMA, Max-
MDEWMA and Max-MDEWMA charts are equivalent to
the Max-EWMA, Max-DEWMA and Max-TEWMA charts,
respectively. This example demonstrates the superiority of
the Max-EWMA chart over the Max-DEWMA and Max-
TEWMA charts under the assumption of FEV.

V. CONCLUSION AND REMARKS
In this paper, we proposed new univariate and multivari-
ate Max-EWMA, Max-DEWMA and Max-TEWMA control
charts for simple linear profiles to monitor the coefficients of
a regression model and error variance simultaneously under
the assumptions of FEV and REV.

The results of this study reveal that the proposed control
charts perform better under the assumption of FEV as com-
pared to the one based on REV. The use of small smoothing
parameters provides reliable and more efficient monitoring
schemes. The use of large smoothing parameters is not rec-
ommended since large values of A inflate the ARL and SDRL
values of the proposed control charts especially under REV.
When a process is susceptible to shifts in the error variance
only, the Max-EWMA control chart is recommended because
of its simplicity and interesting properties which are as attrac-
tive as the ones of the Max-DEWMA and Max-TEWMA
control charts.

In this study, we assumed that the REV is a standard normal
random variable. When the explanatory variable departures
from the assumed distribution, the results and properties of
the proposed control charts need to be revisited under new
settings. Thus, researchers who are interested in this topic
can consider the investigation of the proposed control charts
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under the assumption of REV with unknown underlying
distribution. In addition, researchers can also investigate the
performances the proposed control charts for nonlinear pro-
files. In addition, researchers can also look at the Bayesian
profiles scheme proposed in [40] to build new max-type pro-
file monitoring schemes. Following the multivariate homo-
geneously weighted moving average (MHWMA) design
developed by [41], researchers can also look at the design of
the max-type MHWMA scheme.

APPENDICES
The following Lemma will be helpful in deriving the expec-
tations and the variances used in this paper

Lemma 1: Forany k > 1 and 0 < d < 1, we have

z":ldl_l_l—dk“ (k + 1) d*
= (- 1-d

k k—1 k

1 2 1
Zl(l—l)dl_2=—k(k+)d 3 k+1)d
=1
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2(1 —d*)
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APPENDIX A

PROPERTIES OF THE UEZj, AND MEZj, STATISTICS
Thus, Eq. (7) can be re-written as

J
UEZji =) (1 =Y~ foi + (1 = 1Y UEZo:
i=1
j . s A .
and UEZjp = A Z (1 =AY~ Bii+ (1 — 1Y UEZp,.
i=1
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Hence,
- .
E(UEZ1) = |2 (1=2/"+ (1 =) | fo=fo
i=1
= - 7
E(UEZp) = |2 (1=2/7"+ (1 =2 [ B =B1.
i=1
) (A.6)

In addition, from Lemma 1, we get
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The derivations of Var(UEZj3), E(MEZj,), Var(MEZ ;) and
Var(MEZ3) of Egs. (11b), (18), (19a) and (22b) are done in
a similar way.

APPENDIX B
PROPERTIES OF THE UDEZik AND MDEZik STATISTICS
Eq. (26) can be simplified to

j
UDEZj = 32 (—i+ 1) (1= fo
i=1
+2 (1 + x) (1 — 1) UDEZy,,

J
and UDEZp = 2> " (G—i+ 1) (1 =2y By
i=1
+2 (1 + ) (1 —21) UDEZy. (B.1)

Using Lemma 1, we get

E (UDEZ;) = po and E (UDEZp) = B

J 2
and Var (UDEZ;1) = x* [ Y 2d=' | 2=, B.2)
n
=1
where d = (1 — ). Then, using Lemma 1, we get
Var (UDEZj1) = A*yof, (B.3)

where 012 is as defined in Eq. (8) and v, as shown at the top

of the next page.
In a similar manner, we have

Var (UDEZp) = »*yo3, (B.4)
where 622 is as defined in Eq. (8).
The derivations of Var(UDEZ3), E(MDEZj),

Var (MDEZ;1) and Var (MDEZ;3) of Egs. (29b), (33), (34a)
and (36b) are done in a similar way.
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APPENDIX C
PROPERTIES OF THE UTEZl-k AND MTElik STATISTICS
Eqg. (40) can be simplified to
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Using Lemma 1, we get
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In a similar manner, we have

Var (UTEZp) = 15903, (C.4)
where 022 is as defined in Eq. (8).
The derivations of Var (UTEZ}3),

E(MTEZ;), Var (MTEZ;1) and Var (MTEZ;3) of Egs. (43b),
(47), (48a) and (50b) are done in a similar way.
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