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ABSTRACT Many studies have shown that industrial as well as non-industrial business organisations present
a growing need of robust and more efficient multivariate monitoring schemes in order to be able to monitor
several quality characteristics simultaneous. To monitor two or more parameters simultaneously, several
monitoring schemes are used concurrently in most of the cases instead of using a single scheme. Thus,
in this paper, the exponentially weighted moving average (EWMA), double EWMA (DEWMA) and the
recent triple EWMA (TEWMA) procedures are used to develop new single univariate and multivariate Max-
type monitoring schemes for linear profiles under the assumptions of fixed and random linear models to
monitor the regression parameters and variance error simultaneously. It is observed that the newly proposed
schemes are better alternatives of the classical univariate and multivariate EWMA, DEWMA and TEWMA
schemes for linear profiles in terms of the average run-length (ARL) and expected ARL profiles. Numerical
examples are presented using simulated and real-life data.

INDEX TERMS Quality control, fixed explanatory variable, linear profiles, Max-TEWMA, random
explanatory variable.

NOMENCLATURE
ARL Average run-length.
CUSUM Cumulative Sum.
DEWMA Double exponentially weighted moving

average.
EARL Expected average run-length.
ESDRL Expected standard deviation of the

run-length.
EWMA Exponentially weighted moving average.
FEV Fixed explanatory variable.
IC In-control.
LCL Lower control limit.
LPM Linear profile monitoring.
MDEWMA Multiple double exponentially weighted

moving average.

The associate editor coordinating the review of this manuscript and
approving it for publication was Qi Zhou.

MEWMA Multiple exponentially weighted moving
average.

MTEWMA Multiple triple exponentially weighted
moving average.

OOC Out-of-control.
REV Random explanatory variable.
SAS Statistical Analysis Software.
SDRL Standard deviation of the run-length.
SPM Statistical Process Monitoring.
TEWMA Triple exponentially weighted moving

average.
UCL Upper control limit.

I. INTRODUCTION
Statistical techniques play a vital role in solving analytical
and experimental problems covering all types of fields rang-
ing from the domain ofmilitarisation to peacemaking treaties,
engineering to management services, manufacturing to
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production chains, just to cite a few; [1]–[3]. To achieve
the goal in all these cases and stop worst scenarios, a well-
organised monitoring system is needed. Since the 1920s to
nowadays, researchers have been developing and improving
procedures (or tools) for the well-being of the universe and
all that it contains. The fundamental tools that opened ways
to all modern monitoring tools was introduced by Walter
A. Shewhart of Bell-laboratory in the 1920s and 1930s; [4].
These tools are called Shewhart control charts or monitor-
ing schemes. Since then, researchers took the responsibility
of developing more sophisticated control charts to separate
between the causes of instability in various processes. Statis-
tical process monitoring (SPM) literature distinguishes two
causes of variation namely, natural and special causes of
variation also knows as chance and assignable causes, respec-
tively. A process that runs only under the former causes
is considered to be in-control (IC). An assignable cause of
variation is a sign of instability in the process and must be
investigated in order to make required corrections. Instability
in a process is determined in comparison to a standard target
that is believed to yield better results. Shifts from the target
may be caused by various problems including raw material,
change of climate, poor maintenance, incompetency of the
operators and many more. The size of the shift is very impor-
tant and determine the magnitude of deviation from the target
value. In many applications, moderate and large shifts in the
process are signs of significant deviation from the process
target. However, in other fields, like medicine, even small
shifts are not tolerated. The choice of the type of control
charts depends among others on the size of the shift to be
detected. Thus, the literature distinguishes memoryless from
memory-type control charts. The former is used when the
detection of large shifts is of interest (e.g. Shewhart-type
charts) and the latter for the detection of small and moder-
ate shifts in the process parameters (e.g. the exponentially
weighted moving average (EWMA) chart by [5] and the
cumulative sum (CUSUM) chart by [6]).

Both memoryless and memory-type schemes are used to
monitor the quality characteristic of various processes by
controlling the deviations in the process parameters such as
the mean and the standard deviation of the process. Univari-
ate control charts are used to monitor one quality charac-
teristic of the process (see for example, [7] and [8]) while
multivariate control charts can be used to monitor several
quality characteristics simultaneously; [9]–[11]. Most of the
SPM procedures designed to monitor both the process mean
and standard deviation use two separate control charts; see
for example, [12] and [13]. Recently, authors in [14]–[21]
have developed control procedures for monitoring both pro-
cess parameters using a single control chart. In most of the
cases, these classical control charts are designed to monitor
one or more quality characteristics that are not functionally
related; [22]–[24]. However, in many real-life applications,
there is a functional relationship between one dependent vari-
able and one, two or more explanatory variables. In this case,
profile (or regression) monitoring schemes are used to control

linear and nonlinear quality profiles; [25], [26]. These control
charts are used to monitor the regression parameters and error
variance simultaneously using several control charts for sim-
ple and general profiles. At the best knowledge of the authors,
only few univariate Max-EWMA control charts for simple
linear profile has been investigated using a fixed explana-
tory variable; see for example, [26]–[28]. Kim et al. [25]
proposed a simple linear profile monitoring (LPM) chart
where the explanatory variable is coded to set the average to
zero and the authors of [29] proposed a method based on a
F-test for Phase I monitoring with calibration applications
and compared the resulting chart to the ones with the results
of the papers [30], [25].Mahmoud et al. [31] proposed control
charts based on the change point linear profiles monitoring
schemes when the parameters are estimated. More details on
simple linear profiles can be found in [29] and [32]–[35].

Later on, Refs. [36]–[38] proposed the multivariate
EWMA (MEWMA) chart for monitoring general linear pro-
files. Abbas et al. [37] proposed the Bayesian EWMA
and MEWMA schemes to monitor linear profiles when
the explanatory variable is random using separate and sin-
gle monitoring schemes. Thus, there is a growing need to
improve and extend the Max-EWMA and Max-MEWMA
regression control charts proposed in [26] for monitoring
the regression parameters and error variance simultaneously
using single schemes.

Motivated by the above discussion, this paper devel-
ops univariate and multivariate Max-type EWMA, double
EWMA (DEWMA) and triple EWMA (TEWMA) control
charts for monitoring linear profiles using both fixed and ran-
dom explanatory variables. The performance of the proposed
profile (or regression) control charts are investigated in terms
of the average run-length (ARL) and standard deviation of
the run-length (SDRL) performance profiles as well as the
expected ARL (EARL) and expected SDRL (ESDRL) profiles.
Our main contributions are summarised as follows:
• Develop single control charts for monitoring the coef-
ficients of the regression model and the error variance
simultaneously.

• Investigate the effect of a fixed explanatory vari-
able (FEV) on the sensitivity (or performance) of the
proposed regression schemes.

• Investigate the random effect of the explanatory variable
on the sensitivity of the proposed regression schemes.

• Develop new univariate and multivariate EWMA,
DEWMA and TEWMA regression control charts to
monitor linear profiles under the assumption of FEV and
random explanatory variable (REV).

• Illustrate the implementation of the proposed control
charts using simulated and real-life data.

The remainder of this paper is presented as follows: Section II
introduces the univariate and multivariate EWMA, DEWMA
and TEWMA monitoring schemes for linear profiles using
fixed and random explanatory variables. Moreover, the oper-
ation procedures of the proposed linear profiles are also
described. In Section III, the performances of the proposed
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schemes are discussed under the assumptions of FEV and
REV. Section IV presents illustrative examples using simu-
lated and real-life data to facilitate the implementation and
application of the proposed schemes. Concluding remarks
and future research works are provided in Section V.

II. THE PROPOSED UNIVARIATE AND MULTIVARIATE
MEMORY-TYPE LPM TECHNIQUES USING FIXED AND
RANDOM EXPLANATORY VARIABLES
In this section, a brief review of the existing univariate and
multivariate Max-type EWMA schemes for linear profiles is
presented and the new univariate and multivariate Max-type
DEWMA and TEWMA monitoring schemes for simple lin-
ear profiles are also introduced in the literature.

A. MEMORY-TYPE SCHEMES FOR SIMPLE LINEAR
PROFILES USING A FIXED EXPLANATORY VARIABLE
1) THE MAX-TYPE EWMA AND MEWMA SCHEMES
a: THE MAX-TYPE UNIVARIATE EWMA SCHEME
Assume that a random subgroup

(
xi, yij

)
for the jth profile is

collected over time, where yij (i = 1, 2, . . . , n; j = 1, 2, . . .)
represent the observations of the response variable y which is
related to the explanatory variable x with observations xi. Let
α0 and α1 be the IC intercept and slope, respectively. Thus,
for an IC process, the underlying mathematical model will be
defined as

yij = α0 + α1xi + εij, (1)

where εij is a random error component (for all i =
1, 2, . . . , n; j = 1, 2, . . .). Here, we assume that the εij’s are
independently and identically normally distributed withmean
0 and variance σ 2. Based on the jth profile data, the least
square estimators of the regression coefficients of the model
defined in (1) are:

α̂0j = ȳj − α̂1jx̄ and α̂1j = S−1xx Sxy(j), (2)

where

ȳj =
1
n

n∑
i=1

yij, x̄ =
1
n

n∑
i=1

xi, Sxy(j) =
n∑
i=1

(xi − x̄) yij

and Sxx =
n∑
i=0

(xi − x̄)2 .

The mean vector (µ) and covariance matrix (6) of the esti-
mators of the regression coefficients defined in (2) are given
by

µ =

(
α0
α1

)
and 6 =

(
σ 2
α0

σα0α1

σα0α1 σ 2
α1

)
, (3)

where

σ 2
α0
=σ 2

(
1
n
+
x̄2

Sxx

)
, σα0α1=−σ

2
(
x̄
Sxx

)
and σ 2

α1
=
σ 2

Sxx
.

To simplify the analysis, we use the following model pro-
posed in [25]:

yij = β0 + β1xτi + εij, (4)

where xτi = xi − x̄ and εij’s are as defined in (1). Eq. (4)
may be regarded as the reparametrised version of (1). The
coefficients β0 and β1 are the intercept and slope of the new
model, respectively, and are mathematically expressed as(

β0
β1

)
=

(
α0 + α1x̄
α1

)
. (5)

Based on the jth profile data, the least square estimators of
the regression parameters β0 and β1 are β̂0j = ȳj and β̂1j =
α̂1j, respectively. Themean vector (µτ ) and covariancematrix
(6τ ) of the estimators of the regression coefficients defined
in (5) are given by

µτ =

(
µ
β̂0j

µ
β̂1j

)
=

(
β0
β1

)
and 6τ =

 σ 2
β̂0j

0

0 σ 2
β̂1j



=


σ 2

n
0

0
σ 2

Sxx

 . (6)

The above properties are very important in the design of the
Max-type EWMA scheme. Thus, the EWMA statistics for the
intercept and slope are given as follows:

UEZ j1 = λβ̂0j + (1− λ)UEZ (j−1)1

and UEZ j2 = λβ̂1j + (1− λ)UEZ (j−1)2, (7)

where j = 1, 2, . . . , λ(0 < λ ≤ 1) is the weighing coeffi-
cient also known as smoothing parameter, UEZ01 = β0 and
UEZ02 = β1. Using Lemma 1, Appendix A shows that the
means and variances of the EWMA statistics for the intercept
and slope are given as follows:

E(UEZ jk ) = βk−1

and Var(UEZ jk ) =
λ(1− (1− λ)2j)

(2− λ)
σ 2
k , (8)

where k ∈ {1, 2}, σ 2
1 = σ

2
/
n and σ 2

2 = σ
2
/
Sxx .

When the process has been running for a very long time,
as j→∞, then

Var(UEZ jk ) ∼
λ

(2− λ)
σ 2
k , k = 1 and 2.

Following (7) and (8), define

UEUj =
2∑

k=1

UEZjk − βk−1√
Var

(
UEZjk

)
2

. (9)

It is to be noted that for the IC process, UEUj follows a χ2

distribution with 2 degrees of freedom. Let us also define

UMSE j =
1

n− 2

n∑
i=1

(
yij − β̂0j − β̂1jxτi

)2
and UEVj = 8−1

{
F
(
(n− 2)UMSE j

σ 2 ; n− 2
)}

. (10)
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Here UMSE j provides an unbiased estimated of the error
variance σ 2 and (n− 2)UMSE j

/
σ 2 follows a χ2 distribution

with (n − 2) degrees of freedom when the process is IC,
8−1 (.) is the inverse of the c.d.f. (cumulative distribution
function) of the standard normal distribution and F(., v) is
the c.d.f. of a χ2 distribution with v degrees of freedom.
To control the error variance, let us define the statistic based
on UEVj as

UEZ j3 = λUEV j + (1− λ)UEZ (j−1)3, (11a)

where UEZ03 = E(UEZ j3) = 0. Thus, using Lemma 1,
Appendix A shows that the variance of the UEZ j3 statistic
is then given by

Var(UEZ j3) =
λ(1− (1− λ)2j)

(2− λ)
. (11b)

When the process has been running for a very long time,
as j→∞, then

Var(UEZ j3) ∼
λ

(2− λ)
. (11c)

Define

UEM j = Max

{∣∣∣8−1 {F (UEU j; 2
)}∣∣∣ , ∣∣∣∣∣ UEZ j3√

Var(UEZ j3)

∣∣∣∣∣
}
.

(12)

Then, mean and variance of UEU j are given by

E
(
UEU j

)
=

2
√
π
≈ 1.12838

and Var(UEU j) =
(
1−

2
π

)
≈ 0.3634, (13)

respectively.
Let us now define the followingMax-EWMA control chart

for simultaneously monitoring the parameters and error vari-
ance of the model stated in (4) as

UEUCL = E(UEU j)+ LUE
√
Var(UEU j)

≈ 1.12838+ 0.6028LUE , (14)

where LUE is the control limit coefficient selected to yield a
desired large nominal IC ARL. Therefore, the Max-EWMA
scheme gives a signal on the jth profile if the charting statistic
defined in (12) plots beyond the control limit defined in (14).

b: MAX-TYPE MULTIVARIATE EWMA SCHEME
The multivariate EWMA (MEWMA) scheme for monitoring
the regression parameters and the standard deviation of a gen-
eral linear profile was introduced in [36]. Assume (X j,Y j),
j = 1, 2, . . . , represent the observations of the jth profile
where Y j is a n−variate response vector and X j (denoted
asX) is a n×p(n > p) matrix corresponding to the covariates.
When the process is IC, the underlying process model for the
jth profile is mathematically defined by

Y j = Xβ + εj, (15)

where β = (β1, β2, . . . , βp)T is the p−dimensional regres-
sion coefficient vector and εj is an n−dimentional vector of
random errors which followsN (0, σ 2In). Thus, theMax-type
MEWMA (denoted as Max-MEWMA) scheme is used to
monitor (p + 1) parameters of which p parameters are the
regression coefficients of the model and one is the standard
deviation σ . Let us suppose that the parameters of the model
defined in (15) are unknown. The least square estimators of
the parameters are

β̂ j = (XTX)
−1
XTY j

andMMSE j =
1

n− p
(Y − X β̂ j)

T
(Y − X β̂ j). (16)

It is then to be noted that MMSE j is an unbiased estimator
of σ 2 and (n − p)MMSE j/σ 2 follows a χ2 distribution with
(n − p) degrees of freedom when the process is IC. Then,
it follows that

E
(
β̂ j

)
= β and Var

(
β̂ j

)
=

(
XTX

)−1
σ 2. (17)

The MEWMA statistic for the parameters representing the
regression coefficients of the model (15) is defined as

MEZj1 = λβ̂ j + (1− λ)MEZ(j−1)1 (18)

where MEZ01 = E(MEZj1) = β. Using Lemma 1, it is
shown in Appendix A that the variance of the MEWMA
statistic for a simultaneous monitoring of the parameters
representing the regression coefficients is given by

Var(MEZj1) =
λ(1− (1− λ)2j)σ 2

2− λ
(XTX)

−1
. (19a)

When the process has been running for very long time, that
is, in steady-state, the variance in (19a) becomes

Var
(
MEZj1

)
∼

λσ 2

2− λ

(
XTX

)−1
as j→∞. (19b)

Define

MEU j = (MEZj1 − β)T (Var(MEZj1))−1(MEZj1 − β).

(20)

It follows that, for an in-control process,MEU j follows a χ2

distribution with p degrees of freedom. Define

MEVj = 8−1
{
F
(
(n− p)MMSE j

σ 2 ; n− p
)}

. (21)

Here, it is to be noted that MMSE j is an unbiased estimator
of σ 2 and (n − p)MMSE j/σ 2 follows a χ2 distribution with
(n−p) degrees of freedom when the process is IC. To control
the error variance, let us define the statistic based onMEVj as

MEZ j3 = λMEV j + (1− λ)MEZ (j−1)3, (22a)

where MEZ03 = E(MEZ j3) = 0. It follows that the variance
of the MEZ j3 statistic is given by

Var(MEZ j3) =
λ(1− (1− λ)2j)

(2− λ)
. (22b)
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In steady-state, the variance ofMEZ j3 becomes:

Var
(
MEZ j3

)
∼

λ

(2− λ)
as j→∞. (22c)

Define

MEM j=Max

{∣∣∣8−1 {F (MEU j; p
)}∣∣∣ , ∣∣∣∣∣ MEZ j3√

Var(MEZ j3)

∣∣∣∣∣
}
.

(23)

Then, mean and variance ofMEU j are given by

E
(
MEU j

)
=

2
√
π
≈ 1.12838

and Var(MEU j) =
(
1−

2
π

)
≈ 0.3634, (24)

respectively.
Let us now define the following Max-MEWMA control

chart for simultaneously monitoring the parameters and error
variance of the model stated in (15) as

MEUCL = E(MEU j)+ LME
√
Var(MEU j)

≈ 1.12838+ 0.6028LME , (25)

where LME is the control limit coefficient selected to yield a
desired large nominal IC ARL. Therefore, the Max-MEWMA
scheme gives a signal on the jth profile if the charting statistic
defined in (23) plots beyond the control limit defined in (25).

2) DESIGN OF THE MAX-TYPE DEWMA AND MDEWMA
SCHEMES
a: THE MAX-TYPE UNIVARIATE DEWMA SCHEME
To develop the DEWMA statistics for the intercept and slope
parameters, we define in continuation to (7) the following
statistics:

UDEZ j1 = λUEZ j1 + (1− λ)UDEZ (j−1)1

and UDEZ j2 = λUEZ j2 + (1− λ)UDEZ (j−1)2, (26)

where UDEZ01 = β0 and UDEZ02 = β1. Using Lemma 1,
it is shown in the Appendix B that the means and variances of
the DEWMA statistics for the intercept and slope are given
as follows:

E(UDEZ jk ) = βk−1
and Var

(
UDEZ jk

)
= λ4ψσ 2

k , k ∈ {1, 2}, (27)

where σ 2
1 and σ 2

2 are defined in (8) and ψ , as shown at the
bottom of the next page.
In steady-state case, the variances given in (27) become:

Var
(
UDEZ jk

)
∼
λ4(1+ ζ 2)(
1− ζ 2

)3 σ 2
k as j→∞, k ∈ {1, 2}.

Following (26) and (27), define

UDEUj =
2∑

k=1

UDEZjk − βk−1√
Var

(
UDEZjk

)
2

. (28)

It is to be noted that for the IC process, UDEUj follows a χ2

distribution with 2 degrees of freedom. To control the error
variance, let us define the DEWMA statistic in continuation
to (11a) as

UDEZ j3 = λUEZ j3 + (1− λ)UDEZ (j−1)3, (29a)

where UDEZ03 = E(UDEZ j3) = 0. Thus, it is to be noted
that the variance of the UDEZ j3 statistic is then given by

Var(UDEZ j3) = λ4ψ. (29b)

In steady-state mode, the variance of UDEZ j3 becomes:

Var(UDEZ j3) ∼
λ4(1+ ζ 2)(
1− ζ 2

)3 as j→∞. (29c)

Define

UDEM j

= Max

{∣∣∣8−1 {F (UDEU j; 2
)}∣∣∣ , ∣∣∣∣∣ UDEZ j3√

Var(UDEZ j3)

∣∣∣∣∣
}
.

(30)

Then, mean and variance of UDEM j are given by

E
(
UDEM j

)
=

2
√
π
≈ 1.12838

and Var(UDEM j) =
(
1−

2
π

)
≈ 0.3634, (31)

respectively.
Let us now define the following Max-DEWMA control

chart for simultaneously monitoring the parameters and error
variance of the model stated in (4) as

UDEUCL = E(UDEM j)+ LUDE
√
Var(UDEM j)

≈ 1.12838+ 0.6028LUDE , (32)

where LUDE is the control limit coefficient selected to yield a
desired large nominal IC ARL. Therefore, the Max-DEWMA
scheme gives a signal on the jth profile if the charting statistic
defined in (30) plots beyond the control limit defined in (32).

b: MAX-TYPE MULTIVARIATE DEWMA SCHEME
In continuation to the statistic defined in (18), let us
define the following statistic to introduce the multivariate
DEWMA (MDEWMA) statistic for monitoring the param-
eters representing the regression coefficients of the model
given in (15):

MDEZj1 = λMEZj1 + (1− λ)MDEZ(j−1)1 (33)

whereMDEZ01 = E(MDEZj1) = β. Using Lemma 1, it can
be shown that the variance of the MDEWMA statistic for a
simultaneous monitoring of the parameters representing the
regression coefficients is given by

Var(MDEZj1) = λ4ψσ 2(XTX)
−1
. (34a)
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In steady-state mode, the variance in Equation (34a) becomes

Var
(
MDEZj1

)
∼

[
σ 2λ

4 (
1+ ζ 2

)(
1− ζ 2

)3
](

XTX
)−1

as j→∞.

(34b)

Define

MDEU j= (MDEZj1−β)T (Var(MDEZj1))−1

× (MDEZj1−β). (35)

It follows that, for an IC process, MDEU j follows a χ2

distribution with p degrees of freedom. To control the error
variance, let us define the statistic based onMEZj3 as

MDEZ j3 = λMEZ j3 + (1− λ)MDEZ (j−1)3, (36a)

where MDEZ03 = E(MDEZ j3) = 0. It follows that the
variance of theMDEZ j3 statistic is given by

Var(MDEZ j3) = λ4ψ. (36b)

In steady-state mode, the variance ofMDEZ j3 becomes:

Var
(
MDEZ j3

)
∼
λ4
(
1+ ζ 2

)(
1− ζ 2

)3 j→∞. (36c)

Define

MDEM j

= Max

{∣∣∣8−1 {F (MDEU j; p
)}∣∣∣ , ∣∣∣∣∣ MDEZ j3√

Var(MDEZ j3)

∣∣∣∣∣
}
.

(37)

Then, mean and variance ofMDEM j are given by

E
(
MDEM j

)
=

2
√
π
≈ 1.12838

and Var(MDEM j) =
(
1−

2
π

)
≈ 0.3634, (38)

respectively.
Let us now define the following Max-MDEWMA control

chart for simultaneously monitoring the parameters and error
variance of the model stated in (15) as

MDEUCL = E(MDEM j)+ LMDE
√
Var(MDEM j)

≈ 1.12838+ 0.6028LMDE , (39)

where LMDE is the control limit coefficient selected to
yield a desired large nominal IC ARL. Therefore, the
Max-MDEWMA scheme gives a signal on the jth profile if
the charting statistic defined in (37) plots beyond the control
limit defined in (39).

3) DESIGN OF THE MAX-TYPE TEWMA AND MTEWMA
SCHEMES
a: THE MAX-TYPE UNIVARIATE TEWMA SCHEME
To develop the TEWMA statistics for the intercept and slope
parameters, we define in continuation to (26) the following
statistics:

UTEZ j1 = λUDEZ j1 + (1− λ)UTEZ (j−1)1

and UTEZ j2 = λUDEZ j2 + (1− λ)UTEZ (j−1)2, (40)

where UTEZ01 = β0 and UTEZ02 = β1. Using Lemma 1,
Appendix C shows that the means and variances of the
TEWMA statistics for the intercept and slope are given as
follows:

E(UTEZ jk ) = βk−1
and Var

(
UTEZ jk

)
= λ6ϕσ 2

k , k ∈ {1, 2}, (41)

where σ 2
1 and σ 2

2 are defined in (8) and

ϕ =
ζ 6

4

[
−

[
j
(
j2 − 1

)
(j− 2) ζ 2j−6

1− ζ 2

]

− 4

[
j
(
j2 − 1

)
ζ 2j−4(

1− ζ 2
)2

]

− 12

[
j (j+ 1) ζ 2j−2(

1− ζ 2
)3

]
− 24

[
(j+ 1) ζ 2j(
1− ζ 2

)4
]

+ 24

[
1− ζ 2j+2(
1− ζ 2

)5
]]
+ 2ζ 4

[
−

[
j
(
j2 − 1

)
ζ 2j−4

1− ζ 2

]

− 3

[
j (j+ 1) ζ 2j−2(

1− ζ 2
)2

]
− 6

[
(j+ 1) ζ 2j(
1− ζ 2

)3
]

+ 6

[
1− ζ 2j+2(
1− ζ 2

)4
]]
+

7ζ 2

2

[
−

[
j (j+ 1) ζ 2j−2

1− ζ 2

]

−

[
2 (j+ 1) ζ 2j(
1− ζ 2

)2
]
+

[
2
(
1− ζ 2j+2

)(
1− ζ 2

)3
]]

+

[(
1− ζ 2j+2(
1− ζ 2

)2
)
−

(
(j+ 1) ζ 2j

1− ζ 2

)]
and ζ = 1− λ.

In steady-state mode, the variances given in (27) become:

Var
(
UTEZ jk

)
∼

[
6λζ 6

(2− λ)5
+

12λ2ζ 4

(2− λ)4

+
7λ3ζ 2

(2− λ)3
+

λ4

(2− λ)2

]
σ 2
k as j→∞,

k ∈ {1, 2}.

ψ =

[
1+ζ 2−

(
j2+2j+1

)
ζ 2j+

(
2j2+2j−1

)
ζ 2j+2 − j2ζ 2j+4(

1− ζ 2
)3

]
and ζ = 1− λ.
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Following (40) and (41), define

UTEUj =
2∑

k=1

UTEZjk − βk−1√
Var

(
UTEZjk

)
2

. (42)

It is to be noted that for the IC process, UTEUj follows a χ2

distribution with 2 degrees of freedom. To control the error
variance, let us define the TEWMA statistic in continuation
to (29a) as

UTEZ j3 = λUDEZ j3 + (1− λ)UTEZ (j−1)3, (43a)

whereUTEZ03 = E(UTEZ j3)= 0. Thus, it is to be noted that
the variance of the UTEZ j3 statistic is then given by

Var(UTEZ j3) = λ6ϕ. (43b)

In steady-state mode, the variance of UDEZ j3 becomes:

Var
(
UTEZ j3

)
∼

[
6λζ 6

(2− λ)5
+

12λ2ζ 4

(2− λ)4
+

7λ3ζ 2

(2− λ)3

+
λ4

(2− λ)2

]
as j→∞. (43c)

Define

UTEM j

= Max

{∣∣∣8−1 {F (UTEU j; 2
)}∣∣∣ , ∣∣∣∣∣ UTEZ j3√

Var(UTEZ j3)

∣∣∣∣∣
}
.

(44)

Then, mean and variance of UTEM j are given by

E
(
UTEM j

)
=

2
√
π
≈ 1.12838

and Var(UTEM j) =
(
1−

2
π

)
≈ 0.3634, (45)

respectively.
Let us now define the following Max-TEWMA control

chart for simultaneously monitoring the parameters and error
variance of the model stated in (4) as

UTEUCL = E(UTEM j)+ LUTE
√
Var(UTEM j)

≈ 1.12838+ 0.6028LUTE , (46)

where LUTE is the control limit coefficient selected to yield a
desired large nominal IC ARL. Therefore, the Max-TEWMA
scheme gives a signal on the jth profile if the charting statistic
defined in (44) plots beyond the control limit defined in (46).

b: MAX-TYPE MULTIVARIATE TEWMA SCHEME
In continuation to the statistic defined in (33), let us
define the following statistic to introduce the multivariate
TEWMA (MTEWMA) statistic for monitoring the param-
eters representing the regression coefficients of the model
given in (15):

MTEZ j1 = λMDEZ j1 + (1− λ)MTEZ (j−1)1 (47)

where MTEZ01 = E(MTEZ j1) = β. Using Lemma 1 it can
be shown that the variance of the MDEWMA statistic for a
simultaneous monitoring of the parameters representing the
regression coefficients is given by

Var(MEZ j1) = λ6ϕσ 2(XTX )
−1
. (48a)

In steady-state mode, the variance in (48a) becomes

Var
(
MTEZ j1

)
∼ σ 2

[
6λζ 6

(2− λ)5
+

12λ2ζ 4

(2− λ)4
+

7λ3ζ 2

(2− λ)3

+
λ4

(2− λ)2

] (
XTX

)−1
as j→∞. (48b)

Define

MTEU j = (MTEZ j1 − β)T (Var(MTEZ j1))−1

× (MTEZ j1 − β). (49)

It follows that, for an IC process, MTEU j follows a χ2

distribution with p degrees of freedom. To control the error
variance, let us define the statistic based onMTEZj3 as

MTEZ j3 = λMDEZ j3 + (1− λ)MTEZ (j−1)3, (50a)

where MTEZ03 = E(MTEZ j3) = 0. It follows that the
variance of theMTEZ j3 statistic is given by

Var(MTEZ j3) = λ6ϕ. (50b)

In steady-state mode, the variance ofMTEZ j3 becomes:

Var
(
MTEZ j3

)
∼

[
6λζ 6

(2− λ)5
+

12λ2ζ 4

(2− λ)4
+

7λ3ζ 2

(2− λ)3

+
λ4

(2− λ)2

]
as j→∞. (50c)

Define

MTEM j

= Max

{∣∣∣8−1 {F (MTEU j; p
)}∣∣∣ , ∣∣∣∣∣ MTEZ j3√

Var(MTEZ j3)

∣∣∣∣∣
}
.

(51)

Then, mean and variance ofMTEM j are given by

E
(
MTEM j

)
=

2
√
π
≈ 1.12838

and Var(MTEM j) =
(
1−

2
π

)
≈ 0.3634, (52)

respectively.
Let us now define the following Max-MTEWMA control

chart for simultaneously monitoring the parameters and error
variance of the model stated in (15) as

MTEUCL = E(MTEM j)+ LMTE
√
Var(MTEM j)

≈ 1.12838+ 0.6028LMTE , (53)

where LMTE is the control limit coefficient selected to
yield a desired large nominal IC ARL. Therefore, the
Max-MTEWMA scheme gives a signal on the jth profile if
the charting statistic defined in (51) plots beyond the control
limit defined in (53).
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B. THE PROPOSED UNIVARIATE AND MULTIVARIATE
MEMORY-TYPE LPM TECHNIQUES USING RANDOM
EXPLANATORY VARIABLE
1) SIMPLE LINEAR PROFILE
In Section 2, the proposed schemes are designed using fixed
random variables (i.e. xi represents a FEV). However, if
xi represents a random explanatory variable (with xi ∼
N(µx , σ 2

x )), the mean vector and covariance matrix defined
in (6) become:

µτ = β0 + β1µx

and 6τ =


σ 2
+ σ 2

x β
2
1

n
0

0
σ 2

Sxx

 , (54)

where σ 2
x is the variance of the explanatory variable xi and

β1 is the slope of the regression model. Therefore, when the
proposed schemes are implemented using REV, the equations
(or formulas) developed in Section 2 remain applicable with
the only difference that the mean vector and variance of
the estimate of the intercept is replaced with β0 + β1x and
(σ 2
+ σ 2

x β
2
1 )
/
n, respectively.

2) GENERAL LINEAR PROFILE
For the general linear profile model, the mean vector and
covariance matrix of β̂j defined in (17) become:

E
(
β̂ j

)
=

σ 2β +
(
XTj Yj

)
6

σ 2 + XTj Xj6
and 6(

β̂j

)= σ 26

σ 2 + XTj Xj6
,

(55)

respectively, where β represents p-dimensional coefficient
vector of the hyperparameters and 6 is the variance-
covariance matrix. The formulas for the general profile mon-
itoring described in Section 2 are still valid here with the
only difference that the mean vector and covariance matrix
are computed using (55).

C. OPERATION OF THE PROPOSED MEMORY-TYPE LPM
SCHEMES
In this section, the important steps in the design and imple-
mentation of the proposed scheme are provided in Figure 1.
Figure 1 presents the flow chart of the operations of the
proposed Max-EWMA, Max-DEWMA and Max-TEWMA
schemes using fixed and random explanatory variables where
UM j and UCL represent the jth charting statistic and upper
control limit of the corresponding scheme. That is, UM j =

UEM j, UDEM j and UTEM j for the Max-EWMA, Max-
DEWMA and Max-TEWMA, respectively; and UCL =
UEUCL, UDEUCL and UTEUCL for the Max-EWMA,
Max-DEWMA and Max-TEWMA, respectively. The opera-
tions of the proposed Max-MEWMA, Max-MDEWMA and
Max-MTEWMA schemes for general linear profiles using
FEV and REV are similar to the ones described in Figure 1

with the only difference that the matrix X j is find by generat-
ing n vectors from a X j ∼ N

(
µ0,60

)
.

III. PERFORMANCE ANALYSIS
This section investigates the IC and OOC performances of
the proposed univariate and multivariate Max-EWMA, Max-
DEWM and Max-TEWMA control charts when n = 4,
α0 = 3 and α0 = 2 for a nominal ARL0 = 200. For FEV, xi =
2,4,6 and 8. However, for the REV, the explanatory variable
is generated for a normal distribution with a meanµx = 0 and
standard deviation σx = 1.

A. PERFORMANCE MEASURES
The performance a control chart is mostly evaluated using
the characteristics of its run-length distribution. The most
popular measures used in the SPM literature are the ARL,
median run-length and SDRL. In this paper, we make use of
the ARL and SDRL profiles to investigate the specific per-
formances of the proposed control charts for different shifts
in the parameters and error variance of a linear regression.
Therefore, the change in the intercept of the regression model
is observed when β0 has shifted from β0 to β0+ δσβ0 . A shift
in the slope of a regression model is observed if the slope
β1 has shifted to β1 + 1σβ1 . When δ = 0 and 1 = 0, the
intercept and slope of the regression model are considered to
be IC. However, a shift in the error variance has occurred if
the error standard deviations has shifted from σ to γ σ which
means that the error variance is IC when γ = 1. In this paper,
the model parameters and the error variance are monitored
simultaneously. To investigate the overall performance of the
propose control charts we use the EARL and ESDRL profiles
which are mathematically defined by

EARL(ϑmin,ϑmax] =
1
η

ϑmax∑
ϑ=ϑmin

ARL(ϑ),

and ESDRL(ϑmin,ϑmax ] =
1
η

∑ϑmax

ϑ=ϑmin
SDRL(ϑ), (56)

respectively, where ARL(ϑ) and SDRL(ϑ) are the values of
the ARL and SDRL for a specific shift ϑ in standard deviation
unit (with ϑ = δ, 1 or γ ) and η represents the number of
increments between the lower and upper bound shifts, that is,
ϑmin and ϑmax (with (ϑmin,ϑmax]= (δmin, δmax], (1min,1max]
or (γmin, γmax]).

B. DISCUSSION OF THE RESULTS
1) IC PERFORMANCES OF THE PROPOSED CONTROL
CHARTS
The performances of the proposed regression Max-type con-
trol charts are investigated using SAS R© 9.4 for a nominal
ARL0 of 200 when n = 4, λ ∈{0.05,0.5,0.95}, α0 = 3,
α1 = 2, µx = 0 and σ 2

x = 1. From Table 1, it is observed
that the control limit constants of the Max-TEWMA, Max-
DEWMA and Max-TEWMA charts under FEV are smaller
compared to the ones of the corresponding control charts
under the REV. This means that the control limits under REV
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FIGURE 1. Flow chart of the proposed monitoring schemes using FEV and REV.

are wider than the corresponding ones under FEV. The IC
SDRL (SDRL0) are larger under REV which means that the
probability of false alarm is larger under REV and smaller
under FEV. Since both univariate and their corresponding
multivariate counterparts are designed to monitor the same
intercept and slope parameters as well as the error variance

using single control charts under FEV, the distances from
the centerline to the control limits of these control charts are
equal to the ones of their corresponding counterparts. For
instance, it is found that LUE = LME = 2.724 so that both
the Max-EWMA and Max-MEWMA charts yield an attained
IC ARL(ARL0) value of 200 and SDRL0 = 200.6. However,
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TABLE 1. Control limit constants along with the attained ARL0 and SDRL0 values for a nominal ARL0 = 200.

TABLE 2. IC and OOC ARL (1st row) and SDRL (2nd row) profiles of the proposed univariate Max-type control charts for simple linear profiles for FEV and
REV with an intercept shift of size δ for a nominal ARL0 = 200.

under REV, the control limits for multivariate control charts
are narrower compared to the ones of their corresponding
univariate counterparts.

2) OOC PERFORMANCES OF THE PROPOSED CONTROL
CHARTS
In Tables 2-5, the performances of the proposed schemes are
investigated in terms of the ARL (1st row) and SDRL (2nd

row). Table 2 displays the performances of univariate Max-
EWMA, Max-DEWMA and Max-TEWMA control charts
for simple linear profile with fixed and random explanatory
variables for a shift in the intercept regression parameter

when n = 4, λ ∈ {0.05,0.5,0.95}, α0 = 3, α1 = 2, µx =
0 and σ 2

x = 1 for a nominal ARL0 = 200. For the FEV case,
we used xi = 2, 4, 6 and 8 where i = 1,2,3 and 4; while for
the REV case, the explanatory random variable is generated
from standard normal distribution as explained earlier in this
section. The results in Table 2 can be summarised as followed:

• The proposed control charts are faster in detecting shifts
in the intercept when the explanatory variable is fixed.
Under a random effect model, the performance of the
proposed charts deteriorates considerably. For instance,
for a small shift of 0.25 standard deviation in the inter-
cept of the regression model, the Max-EWMA chart for
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TABLE 3. IC and OOC ARL (1st row) and SDRL (2nd row) profiles of the proposed multivariate Max-type control charts for linear profiles for FEV and REV
with an intercept shift of size δ for a nominal ARL0 = 200.

TABLE 4. OOC ARL (1st row) and SDRL (2nd row) profiles of the proposed multivariate Max-type control charts for linear profiles for FEV and REV with a
shift of size ς for a nominal ARL0 = 200.

simple linear profile with FEV gives a signal on the
34th sample. However, the one with REV give a signal
on the 145th sample. For a moderate shift of 1 standard

deviation and a large shift of 2 standard deviation, the
FEV Max-EWMA chart gives a signal on the 3rd and
1st samples, while the REV Max-EWMA chart gives
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TABLE 5. OOC ARL (1st row) and SDRL (2nd row) profiles of the proposed univariate and multivariate Max-type control charts for linear profiles with FEV
and REV with a shift of size γ in the error standard deviation for a nominal ARL0 = 200.

a signal on the 12th and 2nd samples, respectively.
Similar findings in the patterns of the ARL profiles of
the Max-DEWMA and Max-TEWMA control charts is
observed for simple linear profiles with FEV and REV.

• Regardless of the size of the shift in the inter-
cept of the regression model, the Max-DEWMA
and Max-TEWMA control charts are similar in
performance. However, these two schemes outperform
the Max-EWMA control chart for small and moderate
shifts in the intercept.

• The smaller the smoothing parameter λ, the more effi-
cient the proposed Max-EWMA, Max-DEWMA and
Max-TEWMA control chart are. As λ increases, the
performance of these monitoring schemes deteriorates
dramatically.

• Similar findings are also observed in terms of the SDRL
profile; that is, the SDRL values increase as λ increases.
This indicates that the probability of giving a false alarm
signal is directly proportional to the values of λ. There-
fore, it is recommended to use smaller values of λ to get
reliable monitoring scheme.

• For very small shift the Max-EWMA with REV yields
smaller SDRL compared to theMax-DEWMA andMax-
TEWMA charts with REV. The latter is less reliable than
the Max-DEWMA control chart in terms of the SDRL
profile for very small shifts. As the magnitude of the
shift increases, the Max-TEWMA scheme with REV
becomes more reliable than the Max-EWMA and Max-
DEWMA control charts in similar conditions.

• The random effect deteriorates considerably the perfor-
mances of the proposed Max-EWMA, Max-DEWMA
and Max-TEWMA control chart regardless of λ. This

means, a preliminary study is necessary in order to find
the appropriate explanatory variable that has a strong (or
nearly perfect) functional relationship with the profile.

Table 3 displays the performances of Max-MEWMA,
Max-MDEWMA andMax-MTEWMA control charts for lin-
ear profiles with fixed and random explanatory variables for
a shift in the intercept regression parameter when n = 4, λ ∈
{0.05,0.5,0.95}, b0 = 3, b1 = 2, µx = 0 and σ 2

x = 1 for a
nominal ARL0 = 200. Table 3 shows that for small smooth-
ing parameters (say, λ = 0.05), the Max-MTEWMA charts
outperforms both the Max-MEWMA and Max-MDEWMA
charts in terms of the ARL profile for very small shifts
(e.g., δ ∈(0,0.25)) in the intercept under the assumptions
of both FEV and REV. As the magnitude of the shift in
the intercept increases, the three multivariate charts perform
almost similarly. For moderate values of λ (say, λ = 0.5),
the Max-MTEWMA chart is faster than the Max-MEWMA
and Max-MDEWMA charts in detecting small shifts in the
intercept of the regression model for both assumptions. For
moderate and large shifts, the proposed monitoring schemes
are almost equivalent in terms of the ARL profile. For large
values of λ, the Max-MTEWMA chart remains superior
over the Max-MEWMA and Max-MDEWMA charts for
small and moderate shifts in the intercept and for large
shifts, the three multivariate Max-type charts are similar in
performance. Similar to the findings for univariate processes,
the performance of Max-MEWMA, Max-MDEWMA and
Max-MTEWMA charts deteriorate significantly as the value
of λ increases. In terms of the SDRL profile, for small and
moderate shifts in the intercept, the Max-MEWMA chart is
likely to give a false OOC signal than the Max-MDEWMA
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FIGURE 2. Overall performance of the proposed Max-type control chart for linear profiles with FEV when n = 4, α0 = 3, α1 = 2 with γmin = 1.2 and
γmax = 2 for a nominal ARL0 = 200: (a) Univariate monitoring schemes; (b) Multivariate monitoring schemes.

FIGURE 3. Overall performance of the proposed Max-type control chart for simple and general linear profiles with REV when n = 4, α0 = 3, α1 = 2 with
γmin = 1.2 and γmax = 2 for a nominal ARL0 = 200: (a) Univariate monitoring schemes; (b) Multivariate monitoring schemes.

and Max-MTEWMA control charts for moderate and large
values of λ. However, for small values of λ, the three moni-
toring schemes are all reliable.

Table 4 presents the performances of both the uni-
variate and multivariate Max-EWMA, Max-DEWMA and
Max-TEWMA control charts for linear profiles with fixed
and random explanatory variables for a shift in the slope (ς)
of the regression model when n = 4, λ ∈{0.05,0.5,0.95},
b0 = 3, b1 = 2, µx = 0 and σ 2

x = 1 for a nominal
ARL0 = 200. It can be clearly observed that the proposed
control charts are very sensible under the assumption of FEV
as compared to REV. The sensitivities of the proposed charts
increase as the magnitude of the shift in standard deviation
unit increases. The smaller the value of λ, the more sensitive
the proposed charts are. The univariate schemes are faster

in detecting shifts in the slope of the regression model as
compared to multivariate schemes. In terms of the SDRL
profile, it can be seen that the proposed charts are less reliable
under the assumption of REV.

Table 5 presents the IC and OOC performances in terms of
the ARL and SDRL profiles of both univariate and multivari-
ate Max-EWMA, Max-DEWMA and Max-TEWMA control
charts for linear profiles with FEV and REV for a shift in the
error variance (γ ) of the regression model when n = 4, λ ∈
{0.05,0.5,0.95}, b0 = 3, b1 = 2, µx = 0 and σ 2

x = 1 for a
nominal ARL0 = 200. Table 5 reveals that the three univariate
monitoring schemes as whole are quite similar in terms of the
ARL and SDRL profiles under the assumptions of FEV and
REV. This finding is also true for the multivariate schemes
as a whole. However, the univariate monitoring schemes are
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FIGURE 4. Overall performances of the proposed Max-type control charts for linear profiles under FEV and REV when n = 4, α0 = 3, α1 = 2 with
δmin = 0.25 and δmax = 2 for a nominal ARL0 = 200: (a) EARL profile comparison under FEV; (b) EARL profile comparison under REV; (c) ESDRL
profile comparison under FEV; (d) ESDRL profile comparison under REV; (e) EARL profile comparison under FEV; (f) SDRL profile comparison under
REV.

faster than the multivariate ones in detecting shifts in the
error variance (or standard deviation) of the regressionmodel.
Under the assumption of REV, the univariate Max-EWMA,
Max-DEWMA and Max-TEWMA control charts are more
sensitive to the shifts in the error variance as compared to the
ones under the assumption of FEV.

3) OVERALL PERFORMANCE ANALYSIS
Figures 2 and 3 depict the patterns of the overall perfor-
mances of the proposed univariate and multivariate monitor-
ing schemes, respectively, when there is a shift in the error
variance with γmax = 1.2 and γmax = 2 with an increment of
0.25 standard deviation. The following findings are observed:

1) Under the assumption of FEV:
• For both univariate and multivariate processes, the

overall performances of the proposed Max-TEWMA,
Max-DEWMA and Max-TEWMA control charts
decrease as λ increases; see Figures 2 (a) and (b).

• The Max-EWMA control chart outperforms the
Max-DEWMA and Max-TEWMA control charts
except for small shifts where the Max-TEWMA chart
performs better; see Figure 2 (a). The Max-TEWMA
chart outperforms the Max-DEWMA chart except for
moderate shifts in the error variance.

• The Max-MTEWMA control chart outperforms both
the Max-MEWMA and Max-MDEWMA control
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charts except formoderate shift where theMax-EWMA
chart performs better; see Figure 2 (b).

2) Under the assumption of REV:
• For univariate processes, the overall performances

of the proposed Max-TEWMA, Max-DEWMA and
Max-TEWMA control charts decrease as λ increases;
see Figures 3 (a).

• For multivariate processes, the overall performances of
the Max-MEWMA and Max-MDEWMA charts dete-
riorate as λ increases. However, the performance of
the Max-MTEWMA chart decreases for small to mod-
erate values of λ and increases for large values of λ;
Figure 3 (b).

• The Max-TEWMA control chart outperforms the
Max-EWMA and Max-DEWMA control charts except
for small shifts where the Max-EWMA chart per-
forms better. The Max-DEWMA chart outperforms the
Max-TEWMA chart except for moderate shifts in the
error variance; Figure 3 (a).

• The Max-MTEWMA control chart outperforms
both the Max-MEWMA and Max-MDEWMA con-
trol charts except for moderate shifts where the
Max-EWMA chart performs better; see Figure 3 (b).

Figure 4 displays the overall comparisons of the proposed
regression Max-type control charts under FEV and REV in
terms of the EARL and ESDRL profiles when n = 4, α0 = 3,
α1 = 2 with δmin = 0.25 and δmax = 2 for a nominal
ARL0 = 200. From Figure 4, it can be seen that the proposed
regression control charts perform better for small values of
λ. As λ increases, the overall performances of these charts
decrease dramatically. It can also be noticed that the perfor-
mances of the proposed charts degrade significantly under
the assumption of REV. For small and moderate values of λ,
the Max-TEWMA charts outperform the Max-EWMA and
Max-DEWMA charts, respectively. For large values of λ, the
Max-EWMA chart outperforms slightly the Max-DEWMA
and Max-TEWMA charts in terms of the EARL and ESDRL
profiles. Similar findings are observed for the multivariate
case.

4) THE PROPOSED SCHEMES VERSUS THE EXISTING
MEMORY-TYPE SCHEMES
In this section, the performances (or sensitivities) of the
proposed Max-EWMA, Max-DEWMA and Max-TEWMA
schemes are compared to the ones of the existing EWMA,
DEWMA and TEWMA schemes for monitoring of the
regression parameters and error variance concurrently. The
latter three schemes are denoted as EWMA3, DEWMA3 and
TEWMA3 schemes, respectively. The comparison is done
under the assumption of FEV when n = 4, α0 = 3, α1 = 2,
µx = 0 and σx = 1 for a nominal ARL0 = 200. In this com-
parison, it is assumed that the slope and error variance remain
IC while the shift in the intercept varies from 0.25 to 2 with
an increment of 0.25. From Figure 5, it can be seen that the
proposed Max-EWMA, Max-DEWMA and Max-TEWMA
schemes outperforms their respective counterparts except for

FIGURE 5. Performance comparison of the proposed schemes and the
existing counterparts: (a) The Max-EWMA scheme versus the EWMA3
scheme; (b) The Max-DEWMA scheme versus the DEWMA3 scheme;
(c) The Max-TEWMA scheme versus the TEWMA3 scheme.

very small shifts (i.e. 0 < δ ≤ 0.25). Similar findings are
observed for themultivariate processes (this is not shown here
to preserve space). The proposed schemes are also preferred
over the existing schemes because of their simplicity and
interesting overall properties.
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FIGURE 6. Proposed univariate and multivariate Max-type control charts under the assumption of FEV using simulated data when n = 4, α0 = 3 and
α1 = 2 and xi ∈ {2,4,6,8}: (a) Max-EWMA; (b) Max-DEWMA; (c) Max-TEWMA; (d) Max-MEWMA; (e) Max-MDEWMA; (f) Max-MTEWMA.

TABLE 6. Truncated VDP data and charting statistics of the proposed regression max-type control charts for a nominal ARL0 = 200.

IV. ILLUSTRATIVE EXAMPLES
A. ILLUSTRATIVE EXAMPLE USING SIMULATED DATA
In this section, we illustrate the implementation and applica-
tion of the proposed regression control chart using simulated
data (100 subgroups i.e. j = 1, 2, . . . , 100) under both the
assumptions of fixed and random explanatory variables for a
nominal ARL0 = 200. For the FEV, the explanatory variable
n = 4, xi ∈ {2, 4, 6, 8}, α0 = 3 and α1 = 2. However, for

the REV, the explanatory variable is generated from a normal
distribution with mean 0 and variance 1, n = 4, α0 = 3 and
α1 = 2. The control constant of the regression control charts
under consideration are given in Table 1. For instance, with
the regression Max-EWMA control chart we found that
LUE = 2.724 yields an attained ARL0 = 200 under
the assumption of FEV. However, under the assumption
of REV, we found that LUE = 3.474 yields an attained
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FIGURE 7. Proposed univariate and multivariate Max-type control charts under the assumption of REV using simulated data when n = 4, α0 = 3 and
α1 = 2 and xi ∼ N(0,1): (a) Max-EWMA; (b) Max-DEWMA; (c) Max-TEWMA; (d) Max-MEWMA; (e) Max-MDEWMA; (f) Max-MTEWMA.

ARL0 = 200.5. The investigation is done when: (i) the
process is assumed to be IC, (ii) a shift of 0.5 standard
deviation has occurred in the intercept of the regressionmodel
assuming the slope and error variance both remain IC and
(iii) there is only a shift of 0.25 standard deviation in the
slope of the regression model assuming that the intercept
and error variance are IC. The plots of the charting statistics
of the Max-EWMA, Max-DEWMA, Max-TEWMA, Max-
MEWMA, Max-MDEWMA and Max-MTEWMA control
charts for FEV are shown in Figures 6 (a)-(f), respectively; the
ones for the REV are shown in Figures 7 (a)-(f), respectively.

From Figures 6 (a)-(f), the findings are summarised as
follows (FEV):

• When the process is IC, the proposed univariate and
multivariate regression control charts do not give a signal
(See Case 1 in Figures 6 (a)-(f)).

• For univariate processes, for a shift of 0.5 standard
deviation in the intercept, the Max-EWMA chart gives
a signal on the 22nd profile; the Max-DEWMA and
Max-TEWMA charts give a signal on the 11th pro-
file. In addition, for a shift of 0.25 standard deviation,
assuming no shift occurred in the intercept and error
variance, the proposed Max-EWMA chart gives a signal
on the 7th profile while the Max-DEWMA and Max-
TEWMA charts give signals on the 7th and 9th profiles,
respectively.

• For multivariate processes, for a shift of 0.5 standard
deviation in the intercept, theMax-MEWMAchart gives
a signal on the 24th profile; the Max-DEWMA and

Max-MTEWMA charts give a signal on the 15th and
18th profiles, respectively. In addition, for a shift of
0.25 standard deviation, assuming no shift occurred
in the intercept and error variance, the proposed
Max-MEWMA chart gives a signal on the 4th profile
while both the Max-MDEWMA and Max-MTEWMA
charts give signals on the 2nd profile.

The findings in Figures 7 (a)-(f) can be summarised as follows
(REV):
• When the process is IC, the proposed univariate and
multivariate regression control charts do not give a signal
(See Case 1 in Figures 7 (a)-(f)).

• For univariate processes, for a shift of 0.5 standard
deviation in the intercept, the Max-EWMA chart gives
a signal on the 14th profile; the Max-DEWMA and
Max-TEWMA charts give signals on the 10th and
14th profiles, respectively. However, for a shift of
0.25 standard deviation, assuming no shift occurred
in the intercept and error variance, the proposed
Max-EWMA chart gives a signal on the 35th profile
while the Max-DEWMA and Max-TEWMA charts give
signals on the 36th and 41st profiles, respectively.

• For multivariate processes, for a shift of 0.5 standard
deviation in the intercept, the Max-EWMA chart gives
a signal on the 23rd profile; the Max-MDEWMA and
Max-MTEWMA charts give signals on the 21st profile.
In addition, for a shift of 0.25 standard deviation,
assuming no shift occurred in the intercept and
error variance, both the proposed Max-MEWMA and
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FIGURE 8. The proposed monitoring schemes for the truncated vertical
density profile data using FEV with a nominal ARL0 = 200:
(a) Max-EWMA/ Max-MEWMA chart; (b) Max-DEWMA/ Max-MDEWMA
chart; (c) Max-TEWMA/ Max-MTEWMA chart.

Max-MDEWMA charts give signals on the 35th profile
while the Max-MTEWMA chart gives a signal on the
38th profiles.

B. ILLUSTRATIVE EXAMPLE USING REAL-LIFE DATA
To illustrate the application and implementation of the pro-
posed regression Max-type control charts, the data from [39]
on the truncated vertical density profile are used under
the assumption of FEV. The profile data (Yj = yij, i =
1, 2, . . . , 11 and j = 1, 2, . . . , 24) represent the density
of the wood board that takes measurements at a series of
fixed depths (X = xi, i = 1, 2, . . . , 11; i.e. n = 11) (see
Table 6). The purpose of this application is to monitor the
intercept, slope and error variance of the simple regression
model of the density of the wood board’s surface simultane-
ously using a single control chart. The control limits constants
are determined such that the nominal ARL0 = 200 when
n = 11 and X = 0 (0.002) 0.02. For instance, we find
that the control limit constants of the Max-EWMA, Max-
DEWMA and Max-TEWMA control charts as well as their
corresponding multivariate counterparts are given by 20.126,
25.694 and 28.663 so that they yield attained ARL0 values
of 200.4, 200.2 and 200, respectively. The plots of the chart-
ing statistics of the Max-EWMA, Max-DEWMA and Max-
TEWMA charts are shown in Figures 8 (a)-(c), respectively
(see also Table 6). From Figure 8 and Table 6, it can be seen
that the Max-EWMA and the Max-DEWMA charts give a
signal on the 11th and 17th profiles, respective, while the
Max-TEWMA chart does not give a signal in the prospec-
tive phase. In this particular case, the Max-MEWMA, Max-
MDEWMA and Max-MDEWMA charts are equivalent to
the Max-EWMA, Max-DEWMA and Max-TEWMA charts,
respectively. This example demonstrates the superiority of
the Max-EWMA chart over the Max-DEWMA and Max-
TEWMA charts under the assumption of FEV.

V. CONCLUSION AND REMARKS
In this paper, we proposed new univariate and multivari-
ate Max-EWMA, Max-DEWMA and Max-TEWMA control
charts for simple linear profiles to monitor the coefficients of
a regression model and error variance simultaneously under
the assumptions of FEV and REV.

The results of this study reveal that the proposed control
charts perform better under the assumption of FEV as com-
pared to the one based on REV. The use of small smoothing
parameters provides reliable and more efficient monitoring
schemes. The use of large smoothing parameters is not rec-
ommended since large values of λ inflate the ARL and SDRL
values of the proposed control charts especially under REV.
When a process is susceptible to shifts in the error variance
only, theMax-EWMA control chart is recommended because
of its simplicity and interesting properties which are as attrac-
tive as the ones of the Max-DEWMA and Max-TEWMA
control charts.

In this study, we assumed that the REV is a standard normal
random variable. When the explanatory variable departures
from the assumed distribution, the results and properties of
the proposed control charts need to be revisited under new
settings. Thus, researchers who are interested in this topic
can consider the investigation of the proposed control charts
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under the assumption of REV with unknown underlying
distribution. In addition, researchers can also investigate the
performances the proposed control charts for nonlinear pro-
files. In addition, researchers can also look at the Bayesian
profiles scheme proposed in [40] to build new max-type pro-
file monitoring schemes. Following the multivariate homo-
geneously weighted moving average (MHWMA) design
developed by [41], researchers can also look at the design of
the max-type MHWMA scheme.

APPENDICES
The following Lemma will be helpful in deriving the expec-
tations and the variances used in this paper
Lemma 1: For any k ≥ 1 and 0 < d ≤ 1, we have

k∑
l=1

ld l−1=
1− dk+1

(1− d)2
−
(k + 1) dk

1− d
, (A.1)
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and
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APPENDIX A
PROPERTIES OF THE UEZjk AND MEZjk STATISTICS
Thus, Eq. (7) can be re-written as

UEZj1 = λ
j∑

i=1

(1− λ)j−i β̂0i + (1− λ)j UEZ01

and UEZj2 = λ
j∑

i=1

(1− λ)j−i β̂1i + (1− λ)j UEZ02.

(A.5)

Hence,

E
(
UEZj1

)
=

λ j∑
i=1
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β0 = β0
E
(
UEZj2

)
=

λ j∑
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(1− λ)j−i + (1− λ)j

β1 = β1.
(A.6)

In addition, from Lemma 1, we get
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The derivations of Var(UEZ j3), E(MEZ j1),Var(MEZ j1) and
Var(MEZ j3) of Eqs. (11b), (18), (19a) and (22b) are done in
a similar way.

APPENDIX B
PROPERTIES OF THE UDEZjk AND MDEZjk STATISTICS
Eq. (26) can be simplified to

UDEZj1 = λ2
j∑

i=1

(j− i+ 1) (1− λ)j−i β̂0i

+ 2 (1+ λi) (1− λ)iUDEZ01,

and UDEZj2 = λ2
j∑

i=1

(j− i+ 1) (1− λ)j−i β̂1i

+ 2 (1+ λi) (1− λ)iUDEZ02. (B.1)

Using Lemma 1, we get

E
(
UDEZj1

)
= β0 and E

(
UDEZj2

)
= β1

and Var
(
UDEZj1

)
= λ4

 j∑
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 σ 2

n
, (B.2)

where d = (1− λ)2. Then, using Lemma 1, we get

Var
(
UDEZj1

)
= λ4ψσ 2

1 , (B.3)

where σ 2
1 is as defined in Eq. (8) and ψ , as shown at the top

of the next page.
In a similar manner, we have

Var
(
UDEZj2

)
= λ4ψσ 2

2 , (B.4)

where σ 2
2 is as defined in Eq. (8).

The derivations of Var
(
UDEZj3

)
, E(MDEZ j1),

Var
(
MDEZj1

)
and Var

(
MDEZj3

)
of Eqs. (29b), (33), (34a)

and (36b) are done in a similar way.
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APPENDIX C
PROPERTIES OF THE UTEZjk AND MTEZjk STATISTICS
Eq. (40) can be simplified to
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Using Lemma 1, we get
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where d = (1− λ)2. Using Lemma 1, we get
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In a similar manner, we have
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where σ 2
2 is as defined in Eq. (8).

The derivations of Var
(
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)
,

E(MTEZ j1), Var
(
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)
and Var

(
MTEZj3

)
of Eqs. (43b),

(47), (48a) and (50b) are done in a similar way.
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