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HIV treatment programs face challenges in identifying patients at risk for loss-to-follow-up and 
uncontrolled viremia. We applied predictive machine learning algorithms to anonymised, patient-
level HIV programmatic data from two districts in South Africa, 2016–2018. We developed patient 
risk scores for two outcomes: (1) visit attendance ≤ 28 days of the next scheduled clinic visit and 
(2) suppression of the next HIV viral load (VL). Demographic, clinical, behavioral and laboratory 
data were investigated in multiple models as predictor variables of attending the next scheduled 
visit and VL results at the next test. Three classification algorithms (logistical regression, random 
forest and AdaBoost) were evaluated for building predictive models. Data were randomly sampled 
on a 70/30 split into a training and test set. The training set included a balanced set of positive and 
negative examples from which the classification algorithm could learn. The predictor variable data 
from the unseen test set were given to the model, and each predicted outcome was scored against 
known outcomes. Finally, we estimated performance metrics for each model in terms of sensitivity, 
specificity, positive and negative predictive value and area under the curve (AUC). In total, 445,636 
patients were included in the retention model and 363,977 in the VL model. The predictive metric 
(AUC) ranged from 0.69 for attendance at the next scheduled visit to 0.76 for VL suppression, 
suggesting that the model correctly classified whether a scheduled visit would be attended in 2 of 
3 patients and whether the VL result at the next test would be suppressed in approximately 3 of 
4 patients. Variables that were important predictors of both outcomes included prior late visits, 
number of prior VL tests, time since their last visit, number of visits on their current regimen, age, and 
treatment duration. For retention, the number of visits at the current facility and the details of the 
next appointment date were also predictors, while for VL suppression, other predictors included the 
range of the previous VL value. Machine learning can identify HIV patients at risk for disengagement 
and unsuppressed VL. Predictive modeling can improve the targeting of interventions through 
differentiated models of care before patients disengage from treatment programmes, increasing cost-
effectiveness and improving patient outcomes.
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Abbreviations
ART​	� Antiretroviral therapy
AUC​	� Area under the curve
PLHIV	� People living with HIV
ROC	� Receiver operating characteristic
UTT​	� Universal test and treat
VL	� Viral load

Globally, it is estimated that in 2019, there were more than 38 million people living with HIV (PLHIV), of which 
8 million (20%) were living in South Africa1. Despite wide-scale HIV prevention efforts and the adoption of a 
‘treat all’ strategy2, where treatment also provides a prevention benefit, South Africa still saw 230,000 new infec-
tions in 2020 alone3. While the implementation of the treat-all policy has increased the uptake of antiretroviral 
therapy (ART) with recent estimates indicating ART coverage levels of approximately 70%4, the challenge of 
patient retention within public sector ART programs in South Africa remains of concern5. In 2020, only 66% of 
PLWH in South Africa were virally suppressed3. To optimize South Africa’s HIV response and reach targets of 
95% of PLHIV tested, 95% of those on ART and 95% of ART patients virally suppressed, the numbers of patients 
initiating and successfully maintaining viral suppression on antiretroviral therapy must increase6,7.

Current interventions to address disengagement from care are typically reactive in nature; attempting to iden-
tify, trace and return to care those who have already disengaged from treatment programs8–10. These approaches 
are costly in terms of human capital and do not optimize resource allocation according to risk prioritization and 
are thus not universally provided. If we could more accurately identify patient groups at risk of disengagement 
and how to target available interventions to these groups while still engaged in care, resources could be allocated 
more efficiently and precisely, addressing higher risk groups while simultaneously reducing health care worker 
burden, a major driver of cost in health care.

Borrowing from techniques widely utilized in credit scoring11, we aimed to determine whether machine 
learning applied to routinely collected longitudinal HIV phenotypic and clinical outcome data in South African 
programmes could consistently identify patients at risk of poor outcomes in terms of two key programmatic 
outcomes: (1) attendance at next scheduled clinic visit and (2) suppression of next HIV viral load (VL).

Methods
Data source and study population.  We utilized routinely collected, anonymised, longitudinal data from 
patients accessing HIV care and treatment at public sector treatment sites in Mpumalanga and the Free State 
between January 2016 and December 2018. Data were used to train two predictive models: (1) retention model 
and (2) VL suppression model. Data included demographic, clinical and antiretroviral treatment records indi-
cating clinical visits, laboratory test results and other key HIV indicators. For this study, we included records 
from patients who had accessed HIV care (observed in routine HIV electronic records) and, during the period 
2016–2018, had at least one recorded clinic visit (Fig. 1).

Outcome variables.  We defined two primary outcomes for this analysis: one for each model. First, for the 
retention model, we defined retention based on the 2019 PEPFAR definitions of loss to follow-up according to 
visit attendance12. A visit was defined as “attended” if a clinic visit was observed before or within 28 days of the 
next scheduled appointment date. Patients with an observed attended visit were considered retained in care at 
that time. A visit was considered “missed” if a patient did not attend within 28 days of their scheduled appoint-
ment, and at that point, the patient was considered not retained in care. Second, for the VL suppression model, 
a patient was considered to have an unsuppressed VL if the VL test result indicated an HIV viral load of > 400 
copies/mL. During the study period, national treatment guidelines indicated VL monitoring for all patients on 
ART with the first VL at six months after initiation and then yearly thereafter13. These two primary outcomes 
were targeted for model building, as both represent established clinical treatment outcomes and are objectively 
defined (diagnostically measurable reading). Each visit and VL test were considered unique events, such that a 
single patient would have each visit and VL test outcome measured and a patient’s outcomes (missed/attended 
and suppressed/unsuppressed) could change across subsequent visits and tests.

For the VL model, we included patient records with at least one VL test recorded between 2016 and 2018, 
while for the retention model, visit data were included only where a valid next scheduled visit date was recorded 
(between 14 and 99 days after the current visit). Patients without any recorded visit to a recognized three-drug 
highly active antiretroviral treatment regimen were excluded from analysis. For both models, we included patients 
commencing ART prior to 2016 provided that we observed visit or viral load data for that patient during the 
period 2016–2018.

In addition, for the VL outcome, we excluded any VL tests from analysis that followed a high VL value (> 1000 
copies/mL) due to the majority of these being repeat confirmatory tests and thus having a high probability of 
also being unsuppressed. We also removed any VL observation that had a recent prior VL (within the previous 
6 months) again due to the high probability of concordance between these results (Fig. 1). These exclusions 
remove results that are more clinically “obvious” to a human observer and easy for the algorithm to correctly 
classify. This allowed us to build a model focusing on patients who have either previously been virologically 
stable or not yet been tested, i.e., have the prediction focus on those most at risk of converting to the new ‘state’ 
of virologically unsuppressed.

Predictor variables.  All raw data available in the source datasets were considered potential predictors of 
retention and VL suppression for the model building process. The large number of potential predictor variables, 
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75, were reduced to a prioritised set of predictor input features for each model, through a preliminary process 
of recursive feature selection and elimination against predictive metrics, producing the most predictive set of 
input features (Table 1A, B). These included data characterizing patient demographics (e.g., age, gender), drug 
regimen data, visit history and patterns (e.g., number of visits, frequency of missed visits, number of treatment 
facilities attended), ART treatment history (e.g., current regimen, number of regimen switches) and ART moni-
toring laboratory test results. Additional potential predictor variables were calculated or inferred from existing 
data. For example, the date of each visit was used to create variables indicating the day of the week or day of the 
month that the visit was scheduled for.

Model selection criteria.  Three classification algorithms were tested, namely, logistic regression, random 
forest and AdaBoost. Logistic regression is an example of a linear classifier and is best suited for separating 
the predictor hyperspace with a linear boundary between the two classes. The random forest approach is an 
ensemble approach consisting of a collection of different randomly composed decision trees whose results are 
aggregated (through a tournament style voting process) into one best breed result. Their random nature often 
limits overfitting while controlling error, making them attractive modeling tools for complex hyperspaces with 
nonlinear separations in classes. Like random forest, AdaBoost (“Adaptive Boosting”) classifier is a meta-estima-
tor that fits a classifier on the original dataset and then fits additional copies of the same classifier on the same 
dataset; in this case with decision trees as the classifier. However, it uses boosting to evaluate the performance 
of subtrees sequentially as the training develops instead of waiting to the end as per the random forest method. 
These three algorithms were selected to test the diverse approaches to learning the input data space that each 
algorithm represents and to evaluate the fit of each algorithm to the study dataset with respect to the different 
strengths, weaknesses and applications of each.

Both ensemble methods are designed to predict a binary outcomes based on various inputs but do not have 
the linear separation limitation of logistic regression. Both ensemble learning algorithms have the benefit of 
upweighting the combination of variables at certain thresholds on how they correlate with an output variable—
thus often being more sensitive to minority classes or multiple subgroups that may emerge in the data.

Model building.  In total, 75 predictor variables (raw and engineered) were investigated for inclusion in the 
models. Laboratory, visit and patient demographic data were linked and deduplicated, and invalid or implausible 
fields were removed, as outlined in Fig. 1. This analytic set was evaluated to establish the baseline prevalence of 
each outcome (% of all visits that were late by > 28 days and % of all VL tests that were unsuppressed). The ana-
lytic set was then randomly sampled on a 70/30 split into a training (70%) and test (30%) set. The training set for 
each outcome was then downsampled to equal shares (50% each) of positives (visits classified as missed in the 
retention dataset and unsuppressed VL result in the VL dataset) and negatives (visits classified as attended and 

All Pa�ents with Demographic Record
n = 885,718

All Pa�ents with any VL result
363,977 pa�ents

1,395,123 VL test results

All Pa�ents with any Visit Record
445,636 pa�ents

9,236,676 visit observa�ons

Visits observed during study period 
2016-2018

385,612 pa�ents
5,044,871 visit observa�ons

VL results (deduplicated) observed 
during study period 2014-2018

342,464 pa�ents
1,050,684 VL test results

Remove Invalid observa�ons
381,577 pa�ents

4,663,816 visit observa�ons

Remove confirmatory or obvious 
tests* 

313,264 pa�ents
704,383 VL test results

Figure 1.   Flow chart of data source inclusion. *Notes: All VL tests immediately following a high test (> = 1000) 
and subsequent tests done < 6 months after first test removed. All visits with a ‘next appointment date’ that was 
either missing or more than 99 days were removed.
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suppressed VL result) to produce a balanced training set of positive and negative examples for the classification 
algorithm to learn from. This step also addresses bias tendency toward predicting the majority class observed in 
many machine learning algorithms known as the class imbalance problem14 and as such should be interpreted as 
the primary analytic output. An additional model was tested with unbalanced class membership (60–40) in the 
training data; we present the results of these for comparison and demonstration of this principle.

The classifier algorithm was trained using the training data set, consisting of input of predictor variables as 
well as the specified target outcomes per visit. This training produces an optimal configuration (predictive model) 
such that the predictor variables correspond to the specified target outcomes as often as possible. After the model 
was trained, we separated the unseen test set into predictor variable data and outcome data. The model then was 
tested on the unseen data set by generating predicted outcomes using the predictor variables from the unseen test 
set as input for each observation. In this case, observations were each scheduled visit for the retention outcome 
and each viral load test for the VL outcome. The predictions were then scored for accuracy against the known 
outcomes in the unseen test set (whether a scheduled visit was attended within 28 days for the retention model 
and whether a viral load test result was suppressed for the VL suppression model).

Model evaluation and risk grouping.  The model’s performance was evaluated in terms of accuracy (pro-
portion of observations correctly classified by the algorithm among all observations in the unseen test set), 
sensitivity (the proportion of known positive outcomes in the unseen test set that are correctly identified as 
such by the algorithm), positive predictive value also known as precision (the proportion of positive outcomes 
predicted by the algorithm that correspond to known positive outcomes in the unseen test set) and specificity 
(the proportion of known negative outcomes in the unseen test set that are correctly identified as such). Next, 
we utilized the area under the curve (AUC) of a receiver operating characteristic (ROC) curve to evaluate the 
broad predictive classification performance of the model. A range of 0.5 indicates no predictive power, while 1.0 
indicates perfect predictive power.

Finally, we repeated the fitting of the model after looking individually at the highest- and lowest-ranked 
patients and each of their characteristics. We manually checked for areas of obvious commonality and where 
the algorithm might be choosing obvious answers or making erroneous assumptions.

Ethics approval.  No experiments on animal or human tissues were conducted as part of this study. All 
methods relating to the analysis of de-identified data from human subjects were approved by and carried out in 
accordance with relevant guidelines and regulations as set out by the Human Research Ethics Committee of the 

Table 1.   Input features for the (A) retention model and (B) unsuppressed VL model.

Input feature Description

(A) Retention model

3 days late ratio Ratio of patient’s historical visits which they have been late by 3 + days

28 days late count How many times previously has the patient been late by 28 + days

Visits at this facility How many visits has the patient had at this facility (in total)

Number of VL tests The number of VL tests the patient has had (in total)

Months since first visit Months since the patients’ earliest recorded visit in patient record

Months since last visit Months since the patients’ most recent recorded visit in patient record

Current age Patient’s age at the current visit

Day of month next appointment Day of the month (1–31) that the next appointment is schedule for

Last VL value Patient’s last VL test value in copies/mL

Day of week next appointment Day of the week (1–7) that the next appointment is schedule for

# Visits on current regimen The number of recorded sequential visits the patient has had on the current ART treatment regimen

Is male Gender of the patient encoded as 1 for Male, and 0 for Female

#Missed Months The number of times the patient has had a whole month with no recorded clinical visit

(B) Unsuppressed VL model

Age started ART​ Patient’s age on starting ART​

Last VL value Patient’s last VL test value in copies/mL

Duration on ART​ Total number of months on ART treatment ever

Month of test Calendar Month of Test

#Visits on current regimen The number of recorded sequential visits the patient has had on the current ART treatment regimen

# of visits ever The number of recorded visits the patient has had ever

Visits miss ratio The proportion of patient’s historical visits which they have missed completely

Months since last VL test Months since a last VL test was taken

Months since last visit Months since the patient was last recorded to have visited a facility

Year of test The year of the test

# Missed visits ever The number of appointments the patient has missed ever
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University of the Witwatersrand (Medical). This study involved secondary analysis of deidentified data collected 
as part of routine care, and the requirement for individual patient consent was waived by the Human Research 
Ethics Committee of the University of the Witwatersrand for protocols M140201 and M210472 during the study 
approval.

Results
In total, 445,636 patients were included in the retention model and 363,977 in the VL model. Nearly one-third 
(30%) of patients were male, with a median age of 39 years (IQR 31–49 years) at the time of visit. In the retention 
dataset, patients had a median of 18 (IQR 10–25) visits since entering care and had been in care for a median of 31 
(IQR 15–43) months. The vast majority (91%) of patients visited a single facility during the period under analysis.

Predictor variables and baselines.  We generated 75 potential predictor variables per visit and 42 pre-
dictor variables per VL test. The retention and VL suppression models were built using the AdaBoost and ran-
dom forest15 binary classification algorithms, respectively, from the scikit-learn16 open source project and tested 
against unseen data to evaluate predictive performance.

For the retention model, the test set consisted of 1,399,145 unseen visits randomly selected from across 
2016–2018. The test set’s baseline prevalence of missed visits was 10.5% (n = 146,881 visits), consistent with the 
LTFU prevalence observed in both the full data set and the training set. This observed baseline was comparable 
with meta-studies of LTFU at 1 year in South Africa 2011–201517. For the VL suppression model, the dataset 
was split into training and testing sets, with the test set consisting of 30% (n = 211,315) of the original unseen 
tests randomly selected from across the study period. In the VL test set, there were 21,679 unsuppressed (> 400 
copies/mL) viral load results for a baseline prevalence of unsuppressed VL results of 10.3%.

Retention model results.  We selected two approaches to the training sets: first, the sample was balanced 
in terms of the output classes (50% missed and 50% not missed visits); and second, with an unbalanced sam-
ple—60% not missed and 40% missed visits). The AdaBoost classifier was trained with a 50:50 balanced sample 
of the modeling set, which resulted in 343,078 of each visit classification (missed or not missed visits) in the train-
ing set. Using the test set, the retention model correctly classified 926,814 of the test set (~ 1.4 m visits) correctly, 
yielding an accuracy of 66.2% (Table 2A). In total, 89,140 patients missed their scheduled visit and were correctly 
identified out of a possible 146,881 available known missed visits, yielding a sensitivity of 60.6% for all positives. 
Conversely, 837,674 visits were correctly identified as not missed out of a total of 1,252,264 visits observed as not 
missed for a specificity of 67% and a negative predictive value of 94%.

Next, the AdaBoost classifier was trained with an unbalanced 60:40 sample of the modeling set. This translated 
into 343,180 missed visits and 514,770 visits attended on time in the training set. The retention model trained on 
the unbalanced sample correctly classified 1,100,341 of the test set (~ 1.4 m), for an accuracy of 78.6% (Table 2B). 
However, only 59,739 of the missed visits were correctly identified, yielding a sensitivity of 40.6% for all positives 
and a false negative rate of 59.3%. The model’s negative predictive value remained high at 92%, further suggesting 
that attended scheduled visits are easier to identify than missed visits.

Table 2.   Late visit model metrics based on (A) balanced and (B) unbalanced training sets. The F1 score is the 
harmonic mean of sensitivity and specificity such that 1.0 is the best score. Accuracy is the number of correct 
predictions out of the total number of predictions over the test set observations. Se = sensitivity; Sp = specificity; 
PPV = positive predictive value; NPV = negative predictive value.

Missed visit observed Missed visit not observed Total observations Se/Sp metrics F1-score

A: Balanced 50:50 model performance using test set

Missed visit predicted 89,140 414,590 503,730 Se = 61% 0.27

Missed visit not predicted 57,741 837,674 895,415 Sp = 67% 0.78

146,881 1,252,264 1,399,145

PPV 18%

NPV 94%

AUC​ 0.688

Accuracy 66.2%

B: Unbalanced 60:40 model performance using test set

Missed visit predicted 59,739 211,764 271,503 Se = 41% 0.29

Missed visit not predicted 87,040 1,040,602 1,127,642 Sp = 83% 0.87

146,779 1,252,366 1,399,145

PPV 22%

NPV 92%

AUC​ 0.688

Accuracy 78.6%
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The two models demonstrated the potential trade-off in accuracy, precision and sensitivity that can be manip-
ulated in the training of the models18. However, the predictive power or utility of the model to separate between 
classes—represented by the AUC metric—remained consistent across models. The two ROC curves are depicted 
in Fig. 2A,B with the same AUC and identical shapes. Whilst this difference of sampling approach demonstrates 
the manipulation of the metrics, it is important to note that this rebalancing and re-sampling of the training set 
can also introduce under or misrepresentation of sub classes, with each data set uniquely sensitive to imbalance 
problems particularly at smaller sample sizes19,20.

Suppressed VL model results.  For the suppressed VL model, the final training set was down sampled to 
101,976 tests, such that it had a 50:50 balanced sample. The model correctly classified 153,183 VL results out of 
the test set of 211,315 correctly, yielding an accuracy of 72.5% (Table 3). In total, 14,225 unsuppressed viral load 
tests were correctly predicted out of a possible 21,679 unsuppressed test results, yielding a sensitivity of 65.6%. 

Figure 2.   ROC Curve of (A) 50:50 balanced late visit classifier, (B) 60:40 unbalanced late visit classifier and (C) 
50:50 balanced unsuppressed VL classifier.

Table 3.   Unsuppressed VL model metrics based on balanced (50:50) training sets. The F1 score is the 
harmonic mean of sensitivity and specificity such that 1.0 is the best score. Accuracy is the number of correct 
predictions out of the total number of predictions over the test set observations. Se = sensitivity; Sp = specificity; 
PPV = positive predictive value; NPV = negative predictive value.

Unsuppressed VL 
observed

Unsuppressed VL not 
observed Total observations Se/Sp metrics F1-score

VL Balanced 50:50 model performance using test set

Unsuppressed VL predicted 14,225 50,678 64,903 Se = 66% 0.33

Unsuppressed VL not 
predicted 7,454 138,958 146,412 Sp = 73% 0.83

21,679 189,636 211,315

PPV 22%

NPV 95%

AUC​ 0.758

Accuracy 72.5%
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The model’s negative predictive value was very high at 95%, again suggesting that suppressed VL results (i.e., 
lower risk) are simpler to recognize. Overall, the model had an AUC of 0.758 (Table 3, Fig. 2C).

Predictor importance.  The original set of over 75 input predictor variables for the retention model (and 
42 for the unsuppressed VL model) were reduced to a more practical number through feature selection using 
a Random Forest algorithm on all inputs. Random Forest permutes the inputs into trees of different groups of 
predictors, and the change in predictive power (as measured by AUC) of the model for each permutation was 
calculated. This process prioritises groups of predictor variables that together improve predictive power and 
deprioritises those that contribute little or no improvement to AUC. Random Forest was able to rank the relative 
feature importance of the total input set for each model. Figure 3A,B illustrate their relative importance in help-
ing correctly and repeatedly classify a particular observation as a correct or incorrect prediction of the target out-
come. The predictor variables with higher importance help the algorithm distinguish between its classifications 
more often and more correctly than those with lower importance. For example, in the retention model (Fig. 3A), 
gender represented in the Boolean variable ‘Is Male’ has some correlation with the missed visit target outcome 
and measurably more than the eliminated predictor variables that had zero correlation. However, it is clear that 
the algorithm relied on correlations in the patients’ prior behavior (frequency of lateness, time on treatment, 
etc.) to segment the risk of outcome, and together, these described more of the difference than gender alone.

Figure 3.   (A) Final input features included in late visit model ranked by importance. (B) Final input features 
included in unsuppressed VL model ranked by importance.
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Our results indicated that prior patient behavior and treatment history were extremely important in predicting 
both visit attendance and viral load results in these datasets and that traditional demographic predictor variables 
were less useful than behavioral indicators. These more powerful predictor variables can also be used to further 
stratify populations by risk and segment more granularly for targeted interventions and differentiated care.

During feature selection we investigated overfitting to particular features through comparative tests of features 
permutation importances with the goal of identifying any overfitted but erroneous highly correlated features 
in the training set that weren’t a reflected phenomenon in the test set (Supplementary Figure 1). We also per-
formed correlation checks on the candidate input features. Rather than assuming that multicollinearity in the 
input variables was necessarily leading to information loss, during the feature selection phase, we tried several 
combinations of feature groupings to test the relationship of certain groups against the prediction metrics. The 
matrix of these feature correlation checks is depicted in Supplementary Figure 2.

We also report the model performance metrics considering various subsets of the ranked input features to 
determine whether reducing the model to the 10 most important features impacted on performance metrics. As 
noted in Supplementary table 1, overall model accuracy varied by only 5% comparing a model including only 
the 5 most important features (62%) with a model including all 75 features (67%). Difference in AUC between 
these two models was less than 0.04 (Supplementary Figure 3).

Discussion
In September 2016, the National Department of Health revised its treatment guidelines to extend the availability 
of ART to all people living with HIV, irrespective of CD4 cell count and stage of disease2. This policy, widely 
referred to as “treat all” or “universal test and treat” (UTT), holds promise to offer substantial advancements not 
only in the health of those living with HIV21,22 but also in the country’s efforts to initiate and retain 95% of all 
people living with HIV (PLWH) who know their status on antiretroviral therapy (ART) as part of UNAIDS’ global 
95-95-95 strategy. However, implementation of a policy such as UTT requires a rapid scale-up and expansion of 
the ART program on a country-wide level, a shift that is often challenging in communities with the most cases 
of HIV and the largest ARV programs globally.

As South Africa increases efforts toward 95-95-95 goals, knowing which patients require additional services 
and interventions to achieve successful treatment outcomes at each step of the care cascade is critical. As national 
health monitoring systems expand to collect large volumes of increasingly detailed data, the application of data 
science technology and methodology to these and other data sources holds the potential to improve individual 
health across population groups. Traditional approaches to estimating the risk of losses from the care cas-
cade and designing interventions to address those losses have not realized the improvements in outcomes they 
promise. Reasons for disengagement differ widely, yet studies investigating these typically look at individual or 
combinations of baseline characteristics (usually at a fixed point such as initiation on ART) and then treat large 
groups (e.g., men or those in specific age ranges) as homogenous. These approaches make two potentially flawed 
assumptions: (1) it assumes that large subpopulation groups are homogenous and should be addressed as a single 
entity (for example, adolescent-friendly services), and (2) it assumes predictive characteristics are fixed from a 
random baseline point of assessment through to specific endpoints ranging anywhere from 6 months to several 
years after assessment of these features. Behavioral science, however, tells us that behavioral drivers of health 
seeking patterns not only differ by patient but also over time for individuals.

To address these challenges, we applied machine learning to routinely collected demographic, visit and 
laboratory data and built a predictive model able to effectively separate high-risk from low-risk patients using 
a combination of routinely available clinical, laboratory and behavioral (visit patterns) data. With continuous 
challenges in funding to run and operationalize HIV/TB programmes in South Africa, precision programming 
pivoted by targeted cost-effective, data driven interventions in an almost near to real-time fashion are critical. 
This approach is enhanced by the implementation of predictive analytics and machine learning within existing 
programmes.

Our results suggest some important implications for the application of this methodology in clinical practice. 
First, utilizing only routinely collected demographic, visit and laboratory data, and depending on the training 
method, predictive models have the ability to correctly predict attendance in a range of 66–79% of scheduled 
clinic visits and VL suppression in 76% of viral load test results, two key predictors of UNAID’s 95-95-95 targets. 
Second, the shape of the ROC curve allows us to identify thresholds and ranges of differing group risk profiles 
(groups that represent an important share of those with each outcome). For example, in the unsuppressed VL 
model, 20% of the population accounted for > 50% of the unsuppressed VL results, indicating different risk strata 
within population groups. Thresholds can be identified to segment the population into risk groups (“Red” = high 
risk of outcome, “Yellow” = medium risk of outcome and “green” = low risk of outcome). This stratification of risk 
groups can be leveraged for gains in predictive power estimated through population segments. Targeting at-risk 
patients before they disengage from care or virally unsuppressed allows for greater resource use efficiencies.

Third, we demonstrated high negative predictive value (94% and 95% for the retention and VL models, respec-
tively) and sensitivity > 60% for both models. This, combined with a low positive predictive value (PPV ~ 20%), 
potentially indicates that low-risk or so-called “green” patients are readily and accurately identified by the model 
and have common traits. In contrast, patients at high risk of poor outcomes or so-called “red” patients can be 
readily identified as “not green” but demonstrated much heterogeneity in terms of presentation and underly-
ing reason for disengaging from care. Or, to paraphrase the Anna Karenina principle23, “all happy patients are 
alike; each unhappy patient is unhappy in its own way”. While the models cannot provide the underlying reason 
for disengagement from care, the ability to identify low-risk patients with high accuracy could prove to be of 
immense value for health systems, as it allows health care workers to prioritise patients not classified as low risk 
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who may be at higher risk of disengagement, prioritizing time and resources toward these patients for targeted 
intervention as appropriate to their individual context.

Our results should be interpreted in light of some limitations. First, as anonymised routinely collected facility-
level data were used to fit the models, it was not possible to trace missing data or correct erroneously linked 
visits and laboratory data. Second, facility-level data used to define the outcome in each of the models do not 
account for all silent transfers to another facility, so to the extent that this outcome misclassification has occurred, 
we will overestimate missed visits and blur the predictive efforts of the model. Future models would benefit 
from being fit to national cohorts where a system-wide view accounts for the effect of silent transfers24 Third, 
one of the recognized limitations in the nature of black-box machine learning methods such as classification 
trees is that while these predictors contribute to differences in risk, we cannot yet fully explain how or why they 
contribute within the context of an individual patient. The next step is to understand which values or ranges of 
the predictor’s spectrum in combination with the other variables at certain levels may correlate with a certain 
outcome. For example, it is unclear whether the risk relationship between visits and age and poor outcomes is 
with younger people coming on time or older people being late or vice versa. Additional analysis and modeling 
activities are underway to provide interpretable descriptions of how the algorithm is able to segment the popula-
tions of observations. Finally, much of the understanding as to why certain visit or demographic predictors are 
important may lie in more subtle social nuances related to an individual’s social circumstances and health-seeking 
behaviors (such as disclosure, employment or family support)25. To this end, our approach can be utilized and 
further refined by applying it to different data sources with richer social and behavioral predictors.

Despite these limitations, the analysis has several strengths. First, our findings highlight the importance of 
better understanding the risk profile of individuals, supporting recent calls for advancing data science toward 
precision public health models26. Accurately identifying those at risk for poor treatment outcomes will allow for 
health care services to better triage patients, improving efficiency and resource utilization. By prioritizing those 
most at-risk, clinics can realize better health outcomes without additional investments in data collection and 
staff. In addition, the results of the algorithm can also be aggregated and used to risk score population subgroups 
at the facility level to identify where programs need to target specific interventions.

Second, while most retention interventions are directed at tracing patients disengaged from care and then 
returning them to care, our model offers the opportunity to shift the focus and resources directed at retention 
efforts to a period while the at-risk patient is still engaged at the point of care. By anticipating future issues before 
any visible clinical signs are present (e.g., an unsuppressed VL), clinics can intervene proactively while patients 
are still accessible, engaged in health services and provide targeted services earlier. Early detection of patients at 
high risk of becoming virologically unsuppressed has implications not only for the individual patient’s health but 
also for the risk of onward transmission of the virus and impact on breaking transmission chains27–29.

Conclusions
Predictive models and machine learning can identify and target HIV patients at risk for disengaging from care 
and not being virally suppressed. Our approach could enable anticipation of future outcomes before any visible 
signs and/or poor outcomes occur (e.g., an unsuppressed VL) and, most importantly, while the patient is still 
engaged in care. This affords the opportunity to take a proactive approach to patient management—specific tar-
geted interventions can be designed on identified subsets of the treatment cohorts, allowing for cost-effective dif-
ferentiated models on care and treatment to be applied across the cascade. This approach could also be extended 
to other key HIV outcomes, allowing for the use of a cost-effective and precision programming approach.

Data availability
The data that support the findings of this study are owned by the South African Government and were used under 
license for the current study. Access to these is subject to restrictions owing to privacy and ethics policies set by 
the South African Government, so they are not publicly available. Requests to access these should be directed 
to pedro.pisa@righttocare.org.
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