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Abstract

A homogeneously weighted moving average (HWMA) monitoring scheme is a recently pro-

posed memory-type scheme that gained its popularity because of its simplicity and superior-

ity over the exponentially weighted moving average (EWMA) and cumulative sum (CUSUM)

schemes in detecting small disturbances in the process. Most of the existing HWMA

schemes are designed based on the assumption of normality. It is well-known that the per-

formance of such monitoring schemes degrades significantly when this assumption is vio-

lated. Therefore, in this paper, three distribution-free monitoring schemes are developed

based on the Wilcoxon rank-sum W statistic. First, the HWMA W scheme is introduced. Sec-

ondly, the double HWMA (DHWMA) W scheme is proposed to improve the ability of the

HWMA W scheme in detecting very small disturbances in the location parameter and at last,

the hybrid HWMA (HHWMA) W scheme is also proposed because of its flexibility and better

performance in detecting shifts of different sizes. The zero-state performances of the pro-

posed schemes are investigated using the characteristics of the run-length distribution. The

proposed schemes outperform their existing competitors, i.e. EWMA, CUSUM and DEWMA

W schemes, in many situations, and particularly the HHWMA W scheme is superior to these

competitors regardless of the size of the shift in the location parameter. Real-life data are

used to illustrate the implementation and application of the new monitoring schemes.

1. Introduction

There are numerous monitoring schemes documented in the statistical process monitoring

(SPM) literature. Over the years, a fact has been proven that SPM tools are crucial tools to

monitor most industrial processes to enhance the quality of products and services. Monitoring

schemes are intended to monitor and identify unnatural (i.e., assignable) causes of variation as

soon as they occur. In-control (IC) processes are favourable as they consist of common (or
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natural) causes of variations that cannot disturb the process to the extent of ruining the out-

puts. Walter A. Shewhart was the first to design a modern monitoring scheme in the 1920s, see

the introductory chapter of [1]. Shewhart schemes are widely known to be responsive to large

shifts in a process. However, they are relatively slow in detecting small to moderate shifts in a

process. When it comes to a quick detection of small to moderate shifts, the SPM literature rec-

ommends the use of memory-type monitoring schemes such as the exponentially weighted

moving average (EWMA) by [2] and the cumulative sum (CUSUM) by [3]. Memory-type

schemes have their disadvantages of being slow in detecting large shifts. More contributions

and modifications of the memory-type schemes have been recorded over the years (see, [4–

13]; just to cite a few). More recently, [14] introduced a new memory-type scheme called the

homogeneously weighted moving average (HWMA). The charting statistic of the HWMA

scheme assigns a weight λ (i.e., a smoothing parameter, where 0< λ< 1) to the current sample

and a weight (1 − λ) is homogeneously (or equally) distributed to all the previous samples.

Some recent publications on HWMA schemes can be found in [15–21].

Researchers have also introduced different combinations of control charts for better results

in improving the quality of products and services for end users. The double EWMA

(DEWMA) scheme was introduced by [4] to increase the sensitivity of the EWMA scheme in

monitoring small to moderate shifts; see also, [22, 23]. Furthermore, the hybrid EWMA

(HEWMA) scheme was first introduced by [24, 25] to also increase the sensitivity of EWMA

scheme and it was shown that the DEWMA scheme is a special case of the HEWMA scheme.

Similarly, the double HWMA (DHWMA) and hybrid HWMA (HHWMA) schemes were dis-

cussed in [26–29].

Firstly, it is important to mention that a monitoring scheme is defined as distribution-free

if the IC run-length distribution is the same for every continuous distribution. Next, the above-

mentioned HWMA-type monitoring schemes are based on normally distributed data. How-

ever, there are some distribution-free HWMA-type schemes that have been discussed in the

SPM literature. That is, [30] proposed the HWMA schemes based on the sign and signed rank

statistics and more recently, [31] and [32] provided different designs of the DHWMA scheme

based on the sign statistic. The sign and signed-rank monitoring schemes are applicable in sit-

uations where the true process location value is known. Note though, in most practical situa-

tions, the true process location value may not be known; which means that the use of simple

sign and signed-rank statistics are invalid; hence, more complex nonparametric methods are

applicable. These can be nonparametric methods based on the precedence, exceedance, Wil-

coxon rank-sum, Mann-Whitney, etc.; see [33] for more details. The focus of this paper is on

the Wilcoxon-rank-sum (W) test by [34]. In essence, the W test statistic compares the out-

comes between two independently and identically distributed (i.i.d.) samples (or groups) and

tests whether the two samples are likely derived from the same population distribution, i.e., the

two samples are collected from a population with the same shape. For some discussions on

monitoring schemes based on the W statistic, see [5, 35–40]. The limitations of the existing

research works that motivated this paper are that the SPM literature publications are mostly

populated with parametric monitoring schemes. However, in most real-life applications, data

are not always normally distributed. Therefore, there is a need of robust monitoring schemes

that do not rely on the parametric settings or assumption. Moreover, there is a need of more

efficient memory-type monitoring schemes that will perform better regardless of the size of

the shift and/or the smoothing parameter.

Note that there is a limited number of HWMA-type monitoring schemes in the literature.

Table 1 present the summary and gaps of the HWMA-type schemes in the SPM literature. As

it can be noticed, there are only two dozen of articles related to the HWMA scheme. These

include parametric and nonparametric variable and attribute HWMA-related schemes. For
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attribute schemes, there is only one article by [41] and only four nonparametric HWMA

schemes based on the sign, signed-rank and Lepage statistics (see [31, 32] and [42]). Thus,

there is an increasing need in the design of attribute and parametric monitoring schemes to

cater for processes that are based on discrete and non-normal distribution, respectively. For

more recent articles on HWMA scheme, readers are referred to the articles by [41–48]. A sum-

mary and more details of the existing HWMA-related articles are presented in Table 1.

Therefore, the objective of this paper is to propose three new distribution-free HWMA-type

monitoring schemes based on the two-sample W statistic. These are the basic HWMA W
scheme, DHWMA W scheme and the HHWMA W scheme. Moreover, the run-length proper-

ties of the latter schemes are derived and evaluated using Monte Carlo simulations. The run-

length performance of the HWMA, DHWMA and HHWMA W schemes are compared to

each other and thereafter, the corresponding existing competitors (i.e., EWMA and CUSUM

W schemes by [5]; DEWMA W scheme by [49]) are also compared to the newly proposed

monitoring schemes. Thus, the contribution of this paper can be summarised as follows:

• The design of robust and efficient monitoring schemes under the violation of the normality

assumption.

• The introduction of new HWMA, DHWMA and HHWMA schemes based on the WRS

statistic.

• The investigation of both specific and overall performances of the proposed HWMA-type

monitoring scheme since most of the existing ones are investigated using specific measures

of performance.

The rest of this paper is organised as follows: Section 2 introduces theW statistic and the fun-

damental concepts of the proposed HWMA, DHWMA and HHWMA W schemes. The opera-

tion and implementation steps of the proposed schemes are presented in Section 3. Section 4

presents the performance analysis of the proposed schemes. Moreover, the HWMA, DHWMA

and HHWMA W schemes are further compared to the existing CUSUM, EWMA and DEWMA

W schemes. An illustrative example using real-life data is provided in Section 5, and finally, Sec-

tion 6 presents the concluding remarks, recommendations and future research works.

2. The proposed HWMA W monitoring scheme and its extended

versions

2.1 The Wilcoxon rank sum W statistic

Assuming that X = {xi: i = 1,2, . . ., m} is IC reference sample (i.e., phase I) of size m and Y =

{ytj: t = 1,2, . . .; j = 1,2,. . .,n} a test sample (i.e., phase II) of size n. The samples X and Y are

independent from one another and from the samples’ observations with unknown cumulative

distribution function (c.d.f.), denoted as F(x) and G(y), respectively. The test and reference

samples use the same distribution, but they differ in the location shift (δ). Thus, when δ = 0,

the two distributions are the same (i.e., F = G) and the process is considered to be IC. Other-

wise, the process is considered to be out-of-control (OOC).

The W statistic was proposed by [34] to compare two independent samples in order to

check whether their populations mean ranks differ. The W statistic for a phase I sample of size

m and a phase II sample of size n is given by

WSRSt
¼

XN

z¼1

z � ðIzÞ; t ¼ 1; 2; 3; . . . ; ð1Þ
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where the indicator IZ = 1 when the zth observation of the ordered N (with N = m + n) observa-

tions obtained after combining the phase I and phase II samples is from the phase I sample

and IZ = 0 when the zth observation is from the phase II sample.

Assuming that no ties are observed, then the mean and the variance of the W statistic are

given by (see [5])

mW ¼
n ðmþ nþ 1Þ

2

and

s2
W ¼

mnðmþ nþ 1Þ

12
;

ð2Þ

respectively.

2.2 The HWMA W scheme

The proposed HWMA Wmonitoring scheme is designed following [14]’s idea. Thus, the

HWMA W statistic is defined by

Ht ¼ lWt þ ð1 � lÞ
�Wt� 1; ð3Þ

where λ 2 (0,1] is the smoothing parameter and �Wt� 1 is the mean of the lagged Wt statistics

(i.e., �Wt� 1 ¼
Xt� 1

S¼1
Ws=ðt � 1Þ) and �W 0 is set to be equal to μW.

Thus, the mean and variance of Ht statistic are defined as follows:

EðHtÞ ¼ mHt ¼ mW ð4Þ

and

VarðHtÞ ¼

l
2
s2
W for t ¼ 1

l
2
þ
ð1 � lÞ

2

t � 1

� �

s2
W ; for t > 1

ð5Þ

8
><

>:

where s2
W is defined in Eq (2). For more details on the derivation of the mean and variance of

the Ht statistic, readers are referred to S1 Appendix of this paper. Using the above properties,

the time-varying upper and lower control limits (UCL and LCL) of the HWMA W scheme are

then given as

UCLt=LCLt ¼

mW � LH lsW for t ¼ 1

mW � LHsW

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l
2
þ
ð1 � lÞ

2

t � 1

� �s

; for t > 1
ð6Þ

8
>><

>>:

where LH(LH> 0) is the control limit constant of the HWMA W scheme which is determined

such that the attained IC average run-length (ARL) is much closer or equal to the prespecified

nominal IC ARL (ARL0) value. The center line is equal to μW (i.e., CL = μW). Hence, the

HWMA W scheme gives an OOC signal if the Ht statistic plots beyond the control limits

defined in Eq (6).

2.3 The DHWMA W scheme

The DHWMA scheme for monitoring the process mean was proposed by [28]. In this paper,

the DHWMA scheme is designed using the W statistic, and it is denoted as DHWMA W
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scheme. The charting statistic of the DHWMA W statistic is defined by

DHt ¼ lHt þ ð1 � lÞ
�Ht� 1; ð7Þ

where Ht is defined in Eq (3), �H0 ¼ mW and �Ht� 1 is defined as

�Ht� 1 ¼

Xt� 1

s¼1
Hs

t � 1
: ð8Þ

Thus, at a sampling time t, the mean and variance of the DHt statistic are given by

EðDHtÞ ¼ mW ð9Þ

and

VarðDHtÞ ¼

l
4
s2
W for t ¼ 1

l
2
ðl

2
þ 4ð1 � lÞ

2
Þ s2

W for t ¼ 2

l
4
þ

4l
2
ð1 � lÞ

2

ðt � 1Þ
2
þ
ð1 � lÞ

2

ðt � 1Þ
2

Xt� 2

u¼1
2lþ ð1 � lÞ

Xt� 2

k¼u

1

k

� �2
" #

s2
W ; for t > 2

ð10Þ

8
>>>>><

>>>>>:

respectively. The expressions of the mean and variance of the DHWMA W statistic are derived

in S2 Appendix.

Thus, the control limits of the DHWMA W scheme are defined by

DUCLt=DLCLt ¼ mW � LDH
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðDHtÞ

p
ð11Þ

where LDH (LDH> 0) is the is the control limit constant of the DHWMA W scheme. The cen-

ter line is equal to μW (i.e., CL = μW). Hence, the DHWMA W scheme gives an OOC signal if

the DHt statistic plots beyond the control limits defined in Eq (11).

2.4 The HHWMA W scheme

This paper also proposes the HHWMA monitoring scheme using the W statistic and it is

denoted as HHWMA W scheme. The charting statistic of the HHWMA W statistic is defined

by

HHt ¼ l1Ht þ ð1 � l1Þ
�Ht� 1; ð12Þ

where Ht ¼ l2Wt þ ð1 � l2Þ
�Wt� 1 and �Ht� 1 is defined in Eq (8) and �H0 ¼ μW as explained

earlier. Note that this scheme has two different smoothing parameters, i.e., λ1 and λ2, which

are defined in the interval (0,1]. When λ1 = λ2, then the HHWMA W scheme reduces to the

DHWMA W scheme.

Thus, at sampling time t, the mean and variance of HHt statistic are defined by

EðHHtÞ ¼ mW ð13Þ
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and

VarðHHtÞ ¼

l
2

1
l

2

2
s2
W for t ¼ 1

ðl
2

1
l

2

2
þ ðl1 þ l2 � 2l1l2Þ

2
Þs2

W for t ¼ 2

l
2

1
l

2

2
þ
ðl1 þ l2 � 2l1l2Þ

2

ðt � 1Þ
2

þ
1

ðt � 1Þ
2

Xt� 2

u¼1
l1 þ l2 � 2l1l2 þ ð1 � l1Þð1 � l2Þ

Xt� 2

k¼u

1

k

� �2
" #

s2
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respectively. The expressions of the mean and variance of HHt statistic are derived in S3

Appendix of this paper.

Using the above properties, the control limits for HHWMA W scheme are defined by

HUCLt =HLCLt ¼ mW � LHH
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðHHtÞ

p
; ð15Þ

where LHH (LHH> 0) is the control limits constant of the HHWMA W scheme. The center

line is equal to μW (i.e., CL = μW). Thus, the HHWMA W scheme gives an OOC signal if the

HHt statistic plots beyond the control limits defined in Eq (15).

3. The operational procedure of the proposed HWMA, DHWMA and

HHWMA W schemes

Most of the nonparametric monitoring schemes do not have specific or exact expressions of

the run-length distribution. Hence, exact formulas as well as the Markov chain approach can-

not be used in such a scenario. Therefore, Monte Carlo simulation approach is recommended

since it can solve any complex problem through organised computer programs coding. In this

paper, the proposed HWMA, DHWMA and HHWMA W schemes are constructed using the

following steps:

Step 1: Generate a reference sample, X, of size m from an IC process, say N(0,1) distribution.

Step 2: Generate a test sample, Y, of size n independently from the reference sample. For the

IC case, the distributions of the reference and test samples are identical (we say that δ = 0,

thus Y ~ N (0,1)). For the OOC case, the distribution for the test sample is taken to be the

same form as that for the reference sample, but with a shift in the location parameter in

units of the population standard deviation (δ 6¼ 0), in our example, Y ~ N(δ,1).

Step 3: The W statistic is calculated using Eq (1) as explained in Section 2.

Step 4: Calculate the mean and variance of the W statistic when the process is IC using Eq (2).

These characteristics are used in Steps 5 and 6.

Step 5: (a) To construct the HWMA W scheme, we use the statistic defined in Eq (3).

(b) To construct the DHWMA W scheme, we use the statistic defined in Eq (7).

(c) To construct the HHWMA W scheme, we use the statistic defined in Eq (12).

Step 6: The control limits constants and the process design parameters are chosen such that

the attained ARL0 is equal (or closer) to the nominal value of 500.

(a) The time varying control limits of the HWMA W scheme are computed using Eq (6).

The HWMA W scheme gives a signal if the charting statistic computed in Step 5(a) plots

beyond the control limits calculated using Eq (6).
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(b) The control limits of the DHWMA W sheme are computed using Eq (11). The

DHWMA W scheme gives a signal if the charting statistic computed in Step 5(b) plots

beyond the control limits calculated using Eq (11).

(c) The control limits of the HHWMA W sheme are computed using Eq (15). The

HHWMA W scheme gives a signal if the charting statistic computed in Step 5(c) plots

beyond the control limits calculated using Eq (15).

Note that other memory-type schemes based on the W statistic can also be constructed in a

similar way.

4. IC and OOC performance analyses

4.1 Performance metrics

The characteristics of the run-length (RL) such as the average RL (ARL), the standard deviation

of the RL (SDRL) as well as the expected ARL (EARL) and the expected SDRL (ESDRL) are the

most popular metrics used to evaluate the performance of a monitoring scheme. The RL is the

number of rational subgroups to be plotted on a scheme before it signals an OOC situation for

the first time. Since the RL distribution is highly skewed, researchers advocate that the percen-

tiles of the RL distribution provide more and meaningful information than the ARL value; see

for example, [50]. It is very important to know that the ARL values measure the performance

of a scheme for specific shifts. However, in practice, it is more crucial to investigate the perfor-

mance of a monitoring scheme for a range of shifts, i.e., the overall performance for certain

range of shifts. In this case, the SPM literature recommends the use of EARL or other expected

characteristics of the RL to assess the overall performance of a scheme; see [51].

This paper uses Monte Carlo simulations in SAS19.4/IML15.4 with 20000 replications to

assess the HWMA W, DHWMA W and HHWMA W schemes in terms of the above-men-

tioned metrics using different distributions. The distribution considered in this paper are the

standard normal distribution (denoted as N(0,1)), Student t distribution with degrees of free-

dom 5 (denoted as t(5)) and gamma distribution with a shape parameter of 3 and a scale

parameter of 1 (denoted as GAM(3,1)).

The EARL and ESDRL are mathematically defined as follows

EARLðdmin;dmax� ¼
1

D

Xdmax

d¼dmin

ARLðdÞ ð16Þ

and

ESDRLðdmin;dmax� ¼
1

D

Xdmax

d¼dmin

SDRLðdÞ ð17Þ

where ARL(δ) and SDRL(δ) are the values of the ARL and SDRL for a specific shift δ in stan-

dard deviation unit and Δ is the number of increments between the lower and upper bound

shifts (i.e., δmin and δmax). In this paper, we use increments equal to 0.1.

4.2 Performance analysis

In this section, we study the sensitivity (or performance) of the proposed HWMA, DHWMA

and HHWMA W schemes under the N(0,1), t(5) and GAM(3,1) distributions.

4.2.1 Performance of the proposed HWMA W scheme. Table 2 presents the IC and

OOC ARL profiles of the proposed HWMAW scheme under N(0,1), t(5) and GAM(3,1) distri-

butions when n = 5,m = 100, λ 2{0.05,0.25,0.5} for a nominal IC ARL (ARL0) of 500. From
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Table 2, it can be seen that when λ = 0.05, the proposed HWMA W scheme yields the attained

ARL0 values of 502.47, 499.37 and 504.89 under the N(0,1), t(5) and GAM(3,1) distributions,

respectively. It can be observed that these attained ARL0 values are much closer to the nominal

ARL0 value of 500, i.e. within the 10% of the desired nominal ARL0 value as suggested by the

SPM literature; see for example [33]. Other values of the attained ARL0 values are also much

closer to the nominal ARL0 value of 500. Therefore, it can be concluded that the HWMA W
scheme is IC robust which means that the characteristics of the IC RL are much closer to 500

across all continuous probability distributions.

In terms of the OOC ARL profile, as the value of λ increases, the width of the control limits

decreases; however, the sensitivity of the HWMA W decreases. For small shifts in the process

mean, the sensitivity of the HWMA W scheme decreases as λ increases. However, the converse

is true for moderate shifts. For instance, under the N(0,1) distribution, when λ = 0.05, 0.25 and

0.5, the EARL(0.7,1.5] is found to be equal to 3.26, 2.79 and 2.62, respectively. This shows that

for moderate shifts in the process mean, there is an increase in the sensitivity of the HWMA W
scheme as λ increases. For small-to-moderate as well as from small-to-large shifts, the smaller

the value of λ, the higher the sensitivity of the proposed HWMA W scheme. From Table 2, it

can also be seen that for small values of λ, i.e., 0< λ< 0.25, and small shifts in the process

mean, the proposed HWMA W scheme performs better under heavy-tailed distributions fol-

lowed by skewed distributions. For instance, when λ = 0.05, the HWMA W scheme yields

EARL(0,0.7] values of 76.2, 58.49 and 72.07 under the N(0,1), t(5) and GAM(3,1) distributions,

respectively. However, when 0.25� λ< 1, the proposed HWMA W scheme performs better

under heavy-tailed distributions followed by symmetric distributions. For instance, when λ =

0.5, the HWMA scheme yields EARL(0,0.7] values of 93.31, 79.26 and 104.84 under the N(0,1), t
(5) and GAM(3,1) distributions, respectively. This conclusion is also true in terms of the

Table 2. The ARL profile of the HWMA W scheme when (m,n) = (100,5) and λ 2 {0.05, 0.25, 0.5} for a nominal

ARL0 = 500 under N(0,1), t(5) and GAM(3,1) distributions.

N(0,1) t(5) GAM(3,1)

Shift (δ) λ = 0.05 λ = 0.25 λ = 0.5 λ = 0.05 λ = 0.25 λ = 0.5 λ = 0.05 λ = 0.25 λ = 0.5

0.0 502.47 498.21 502.04 499.37 504.68 503.48 504.89 501.14 506.14

0.1 338.73 373.93 380.88 261.15 310.07 372.76 336.74 437.58 421.30

0.2 119.08 137.51 174.03 86.45 97.00 96.07 105.27 160.44 203.76

0.3 37.46 37.80 43.29 27.67 27.45 47.17 29.82 40.58 56.90

0.4 16.02 15.68 26.83 13.71 12.11 18.27 13.04 13.73 26.54

0.5 10.30 9.78 13.77 8.26 7.58 9.78 8.42 8.17 12.58

0.6 7.53 6.77 8.44 6.81 6.47 6.32 6.26 5.75 7.63

0.7 5.84 5.28 5.90 5.40 4.32 4.46 4.97 4.49 5.16

0.8 4.86 4.26 4.40 4.16 3.60 3.51 4.22 3.66 3.80

0.9 4.13 3.56 3.48 3.61 3.08 2.84 3.69 3.16 3.04

1.0 3.62 3.09 2.92 3.16 2.71 2.44 3.29 2.78 2.56

1.1 3.23 2.75 2.50 2.86 2.41 2.16 3.01 2.51 2.22

1.2 2.94 2.46 2.21 2.58 2.16 1.91 2.78 2.28 1.99

1.3 2.67 2.25 1.97 2.35 1.97 1.74 2.54 2.07 1.81

1.4 2.43 2.04 1.81 2.14 1.81 1.61 2.33 1.88 1.68

1.5 2.23 1.87 1.66 1.94 1.67 1.49 2.12 1.71 1.41

EARL(0,0.7] 76.42 83.82 93.31 58.49 66.43 79.26 72.07 95.82 104.84

EARL(0.7,1.5] 3.26 2.79 2.62 2.85 2.43 2.21 3.00 2.51 2.31

EARL(0,1.5] 37.40 40.60 44.94 28.82 32.29 38.17 35.23 46.05 50.16

LH 2.9567 2.9559 2.8699 2.9567 2.9559 2.8699 2.9567 2.9559 2.8699

https://doi.org/10.1371/journal.pone.0261217.t002
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overall performance when δ 2 (0,1.5]; see Table 2 performance in terms of the EARL(0,1.5]. For

moderate shifts in the process mean, regardless of the magnitude of λ, the proposed HWMA

W scheme performs better under heavy-tailed distributions followed by skewed distributions.

For instance, when λ = (0.05, 0.25, 0.5), the HWMA W scheme yields EARL(0.7,1.5] values of

(3.26, 2.79, 2.62), (2.85, 2.43, 2.21) and (3.00, 2.51, 2.31) under the N(0,1), t(5) and GAM(3,1)

distributions, respectively.

Fig 1 investigates the effect of the test sample (i.e. phase II) on the overall performance of

the HWMA W scheme in terms of the EARL(0,1.5] and ESDRL(0,1.5] when m = 100, n 2{3,5,10}

and λ 2{0.05, 0.25} for a nominal ARL0 value of 500. Thus, it can be observed that the larger

the test sample, the more sensitive the proposed scheme is. For instance, when λ = 0.05, under

the N(0,1) distribution, the HWMA W scheme yields EARL values of 43.22, 37.41 and 25.67

when n = 3, 5 and 10, respectively (see Fig 1A). The findings remain the same for other values

of λ across all continuous probability distributions; see also Fig 1B). The same conclusion is

also deduced in terms of the ESDRL profile (see Fig 1C and 1D).

Fig 2 investigates the effect of the reference sample (i.e. phase I) on the overall performance of

the HWMAW scheme in terms of the EARL(0,1.5] and ESDRL(0,1.5] whenm 2 {50,100,500}, n = 5

and λ2{0.05, 0.25} for a nominal ARL0 value of 500. Thus, it can be observed that the larger the

phase I sample size, the more sensitive the HWMAW scheme is. The smaller the phase I sample

size, the higher the variability in the RL distribution. For instance, when λ = 0.25, under the t(5)

distribution, the HWMAW scheme yields ESDRL values of 129.99, 83.43 and 56.11 whenm = 50,

100 and 500, respectively (see Fig 2B. The findings remain the same for other values of λ.

Fig 1. Effect of the phase II sample size on the overall performance of the HWMA W scheme when m = 100, λ 2 {0.05, 0.25} and n 2
{3, 5, 10} under N(0,1), t(5) and GAM(3,1) distributions.

https://doi.org/10.1371/journal.pone.0261217.g001
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4.2.2 Performance of the proposed DHWMA W scheme. Table 3 displays the IC and

OOC ARL profiles of the proposed DHWMA W scheme under N(0,1), t(5) and GAM(3,1) dis-

tributions when n = 5,m = 100, λ 2{0.05,0.25,0.5} for a nominal ARL0 value of 500. From

Table 3, it can be seen that when λ = 0.05, 0.25 and 0.5, the proposed DHWMA W scheme

yields attained ARL0 values of (499.39, 502.63, 503.37), (495.43, 512.80, 512.27) and (508.70,

499.08, 501.13) under the N(0,1), t(5) and GAM(3,1) distributions, respectively. It can be

observed these attained ARL0 values are much closer to the nominal ARL0 value of 500. There-

fore, it can be concluded that the DHWMA W scheme is IC robust.

In terms of the OOC ARL profile, as the value of λ increases, the width of the control limits

increases as well; however, the sensitivity of the DHWMA W decreases. For small shifts in the

process mean, the sensitivity of the DHWMA W scheme decreases as λ increases. However,

the converse is true for moderate shifts under symmetric and heavy-tailed distribution. For

instance, under the t(5) distribution, when λ = 0.05, 0.25 and 0.5, the EARL(0.7,1.5] is found to

be equal to 2.41, 2.65 and 2.46, respectively. For small-to-moderate as well as from small-to-

large shifts, the smaller the value of λ, the higher the sensitivity of the proposed DHWMA W
scheme. From Table 3, it can also be seen that for small shifts in the process mean, the pro-

posed DHWMA W scheme performs better under heavy-tailed distributions followed by sym-

metric distributions. For instance, when λ = 0.05, the DHWMA scheme yields EARL(0,0.7]

values of 57.57, 51.16 and 74.58 under the N(0,1), t(5) and GAM(3,1) distributions, respec-

tively. However, for moderate shifts in the process mean, regardless of the magnitude of λ, the

proposed DHWMA W scheme performs better under heavy-tailed distributions followed by

Fig 2. Effect of the phase I sample size on the performance of HWMA W scheme when n = 5, λ 2 {0.05, 0.25} and m 2 {50, 100,500} under

N(0,1), t(5) and GAM(3,1) distributions.

https://doi.org/10.1371/journal.pone.0261217.g002
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skewed distributions. For instance, when λ = 0.25, the DHWMA scheme yields EARL(0.7,1.5]

values of 3.08, 2.65 and 2.51 under the N(0,1), t(5) and GAM(3,1) distributions, respectively.

This conclusion is also true in terms of the overall performance when δ 2 (0,1.5]; see Table 3

in terms of the EARL(0,1.5] values.

Fig 3 shows that as the phase II sample size n increases, the better the proposed DHWMA

W scheme becomes in detecting shifts in the process mean. Note that as the value of λ
increases, the proposed scheme becomes less sensitive. This is revealed by larger EARL and

ESDRL values for large values of λ and small EARL and ESDRL values for small values of λ. Fig

4 shows that the larger the phase I sample size m, the more sensitive the DHWMA W scheme

becomes–except for cases where λ is small under skewed distributions, see Fig 4A. As λ
increases, Fig 4 also reveals that the DHWMA W scheme becomes less sensitive since the

EARL and ESDRL values get larger. Note that while increasing m and/or n helps to increase the

sensitivity of the proposed scheme, it also increases the costs of inspection and implementa-

tion; moreover, large samples are not easy to find. Therefore, a more reasonable sample size

must be chosen in order to strike a balance between the sensitivity of the proposed scheme and

the cost related to its implementation.

4.2.3 Performance of the proposed HHWMA W scheme. Table 4 displays the IC and

OOC ARL profiles of the proposed HHWMA W scheme under N(0,1), t(5) and GAM(3,1) dis-

tributions when n = 5,m = 100, λ1 2{0.1, 0.2} and λ2 2{0.05,0.25,0.5} for a nominal ARL0 =

500. From Table 4, it can be seen that when λ1 = 0.1 and λ2 = 0.05, 0.25 and 0.5, the proposed

HHWMA W scheme yields attained ARL0 values of (498.09, 502.89, 498.16), (494.78, 497.08,

508.29) and (509.48, 498.9, 496.86) under the N(0,1), t(5) and GAM(3,1) distributions, respec-

tively. Also, it can be seen that when λ1 = 0.2 and λ2 = 0.05, 0.25 and 0.5, the proposed

HHWMA W scheme yields attained ARL0 values of (503.16, 506.08, 499.80), (502.44, 493.90,

Table 3. The ARL profile of the DHWMA W scheme when (m,n) = (100,5) and λ 2 {0.05, 0.25, 0.5} for a nominal

ARL0 = 500 under N(0,1), t(5) and GAM(3,1) distributions.

N(0,1) t(5) GAM(3,1)

Shift (δ) λ = 0.05 λ = 0.25 λ = 0.5 λ = 0.05 λ = 0.25 λ = 0.5 λ = 0.05 λ = 0.25 λ = 0.5

0.0 499.39 502.63 503.37 495.43 512.80 512.27 508.70 499.08 501.13

0.1 254.17 262.48 367.40 200.09 236.70 333.39 333.84 410.44 539.19

0.2 73.12 78.22 166.25 103.53 156.47 122.50 107.62 163.98 148.82

0.3 30.38 44.26 30.79 21.89 21.97 26.01 42.26 26.49 21.82

0.4 19.06 17.05 19.39 14.51 15.80 11.69 15.60 12.20 14.25

0.5 11.45 11.58 11.74 7.28 8.60 7.47 10.81 8.79 9.24

0.6 8.78 8.36 7.89 6.36 7.29 5.92 6.59 5.93 6.08

0.7 6.00 6.55 4.98 4.43 4.98 4.55 5.36 4.57 4.95

0.8 5.03 5.19 4.39 3.33 3.76 3.69 4.19 3.95 3.82

0.9 4.43 4.16 3.56 2.93 3.73 3.09 3.41 3.11 3.39

1.0 3.75 3.42 3.38 2.88 2.95 2.94 3.04 2.77 2.78

1.1 2.89 3.19 2.59 2.78 2.76 2.45 2.42 2.43 2.56

1.2 2.29 2.50 2.43 2.51 2.45 2.11 1.94 2.25 2.21

1.3 2.00 2.20 2.32 2.24 2.01 1.95 1.85 2.04 2.05

1.4 1.85 2.00 2.04 1.56 1.91 1.89 1.41 1.79 1.99

1.5 1.51 1.94 1.85 1.03 1.62 1.55 1.29 1.76 1.70

EARL(0,0.7] 57.57 61.21 86.92 51.16 64.54 73.08 74.58 90.34 106.34

EARL(0.7,1.5] 2.97 3.08 2.82 2.41 2.65 2.46 2.44 2.51 2.56

EARL(0,1.5] 28.45 30.21 42.07 25.16 31.53 35.41 36.11 43.5 50.99

LDH 1.2959 2.7999 2.9995 1.2959 2.7999 2.9995 1.2959 2.7999 2.9995

https://doi.org/10.1371/journal.pone.0261217.t003
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499.70) and (502.86, 502.90, 505.40) under theN(0,1), t(5) and GAM(3,1) distributions, respec-

tively. Thus, it can be observed that in both cases the attained ARL0 values are much closer to

the nominal ARL0 value of 500 across different continuous probability distributions. There-

fore, it can be concluded that the HHWMA W scheme is IC robust.

Since the proposed HHWMAW scheme is confirmed to be IC robust, it is now fair enough to

evaluate its performance under different distributions. When λ1 is kept constant, as λ2 increases,

the width of the control limits get wider; however, the sensitivity of the HHWMAW scheme in

terms of the ARL values decreases. For small shifts in the process mean, the sensitivity of the

HHWMAW scheme decreases as λ2 increases. However, the converse is true for moderate shifts.

For instance, under the t(5) distribution, when λ1 = 0.1 and λ2 = 0.05, 0.25 and 0.5, for small

shifts, the EARL(0,0.7] is equal to 52.51, 54.65 and 64.24, respectively; whereas, for moderate shifts,

the EARL(0.7,1.5] is equal to 2.63, 2.11 and 1.39, respectively. This shows that for moderate shifts in

the process mean, there is an increase in the sensitivity of the HHWMAW scheme as λ2

increases. For small-to-moderate as well as from small-to-large shifts, the smaller the value of λ2,

the higher the sensitivity of the proposed HHWMAW scheme. From Table 4, it can also be seen

that for small shifts in the process mean, the proposed HHWMAW scheme performs better

under heavy-tailed distributions followed by skewed distributions. For instance, when λ1 = 0.1

and λ2 = 0.05, the HHWMA scheme yields EARL(0,0.7] values of 69.68, 52.51 and 58.86 under the

N(0,1), t(5) and GAM(3,1) distributions, respectively. However, for moderate shifts in the process

mean, regardless of the magnitude of λ2, the proposed HHWMAW scheme performs better

Fig 3. Effect of the phase II sample size on the performance of DHWMA W scheme when m = 100, λ 2 {0.05, 0.25} and n 2 {3, 5, 10}

under N(0,1), t(5) and GAM(3,1) distributions.

https://doi.org/10.1371/journal.pone.0261217.g003
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under skewed distributions followed by heavy-tailed distributions when λ1 is kept small. For

instance, when λ1 = 0.1 and λ2 = 0.25, the HHWMAW scheme yields EARL(0.7,1.5] values of 2.56,

2.11 and 1.73 under theN(0,1), t(5) and GAM(3,1) distributions, respectively. However, as λ1

increases, the HHWMAW scheme performs better under heavy-tailed distributions followed by

symmetric ones. This conclusion is also true in terms of the overall performance when δ 2 (0,1.5]

regardless of the values of λ1 and λ2; see Table 4 performance in terms of the EARL(0,1.5] values.

Fig 5 shows that as the phase II sample size increases, the more sensitive the proposed

HHWMA W scheme becomes in detecting shifts in the process mean. For a given value of λ1,

as the value of λ2 increases, the proposed scheme becomes less sensitive. This is revealed by

larger EARL and ESDRL values for large values of λ2 and smaller EARL and ESDRL values for

small values of λ2. Fig 6 shows that the larger the phase I sample size m, the more sensitive the

HHWMA W scheme becomes. Fig 6 also reveals that the HHWMA W scheme becomes less

sensitive as λ2 increases. For instance, under the N(0,1) distribution, when m = 500, λ1 = 0.1,

λ2 = 0.05 and 0.25, the EARL(0,1.5] = 57.42 and 63.37, respectively. A similar pattern is observed

in terms of the ESDRL values.

4.3 Performance comparison study

In this section, the proposed HWMA, DHWMA and HHWMA W schemes are compared to

some existing memory-type monitoring schemes competitors, that is, the CUSUM and

Fig 4. Effect of the phase I sample size on the performance of DHWMA W scheme when n = 5, λ 2 {0.05, 0.25} and m 2 {50, 100,500}

under N(0,1), t(5) and GAM(3,1) distributions.

https://doi.org/10.1371/journal.pone.0261217.g004
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EWMA W schemes of [5] and the DEWMA W scheme of [49]. The comparison is made when

m = 100, n = 5 and λ = 0.5 and for HHWMA W (λ1,2) = (0.1, 0.5) with shifts increasing by 0.1

from 0.1 to 1.5 under N(0,1), t(5) and GAM(3,1) distributions. Tables 5 to 7 present the OOC

ARL performances of the competing schemes for specific shifts and overall performances

along with their corresponding control limits constants. To study the overall performance of

the competing charts for small, moderate and large shifts, the EARL values were calculated

using Eq (16) where EARL(0,0.7], EARL(0.7,1.5] and EARL(0,1.5] values correspond to small, mod-

erate and small-to-moderate shifts, respectively. In Tables 5–7, the EARL results of the most

effective scheme are boldfaced.

Table 5 shows that under the N(0,1) distribution, the EARL(0,0.7] = 100.89, 96.98, 94.90,

93.31, 86.92 and 80.19 for the CUSUM, EWMA, DEWMA, HWMA, DHWMA and HHWMA

W schemes, respectively. This reveals that the HHWMA W scheme performs better compared

to other competing schemes for small shifts. For the moderate shifts, it can be seen that the

HHWMA W scheme outperforms the competing schemes and it is followed by the HWMA W
scheme. For instance, the EARL(0.7,1.5] are 1.64 and 2.62 for the HHWMA and HWMA W
schemes, respectively, while the ones for other competing schemes are greater than 2.70. For

small-to-moderate shifts, the EARL(0,1.5] = 48.54, 46.90, 45.80, 44.94, 42.07 and 38.30 for the

CUSUM, EWMA, DEWMA, HWMA, DHWMA and HHWMA W schemes, respectively,

which reveals that the HHWMA W scheme is superior over all competing schemes and it is

followed by the DHWMA and HWMA W schemes in that order. Table 6 presents the OOC

performance comparison of the competing schemes under the t(5) distribution. Similar find-

ings to the ones found for the comparison under the N(0,1) distribution is also observed under

Table 4. The ARL profile of the HHWMA W scheme when (m,n) = (100,5), λ1 2 {0.1,0.2} and λ2 2 {0.05,0.25,0.5} for a nominal ARL0 = 500 under N(0,1), t(5) and

GAM(3,1) distributions.

λ1 = 0.1 λ1 = 0.2

N(0,1) t(5) GAM(3,1) N(0,1) t(5) GAM(3,1)

Shift (δ) λ2 =

0.05

λ2 =

0.25

λ2 =

0.5

λ2 =

0.05

λ2 =

0.25

λ2 =

0.5

λ2 =

0.05

λ2 =

0.25

λ2 =

0.5

λ2 =

0.05

λ2 =

0.25

λ2 =

0.5

λ2 =

0.05

λ2 =

0.25

λ2 =

0.5

λ2 =

0.05

λ2 =

0.25

λ2 =

0.5

0.0 498.09 502.89 498.16 494.78 497.08 508.29 509.48 498.90 496.86 503.16 506.08 499.81 502.44 493.90 499.77 502.86 502.90 505.49

0.1 337.45 346.02 344.17 260.97 203.87 275.89 297.91 323.90 314.94 340.05 365.33 352.23 235.70 308.97 301.67 249.25 331.29 374.65

0.2 100.53 154.18 167.13 66.69 129.32 142.48 75.54 95.19 109.49 55.40 156.15 155.45 91.31 86.87 105.26 122.10 113.51 73.10

0.3 18.65 26.83 23.78 15.05 20.73 13.91 15.12 22.10 13.12 29.65 19.67 41.91 23.29 12.62 27.31 19.71 22.15 26.31

0.4 14.99 15.42 12.85 10.6 11.68 7.22 9.28 9.20 7.48 11.59 8.79 16.10 8.97 8.80 16.61 8.81 9.60 12.39

0.5 6.50 7.47 6.09 5.92 7.75 4.44 5.82 5.70 4.32 5.98 5.86 12.36 6.39 5.20 9.48 6.17 4.76 9.05

0.6 5.52 6.84 4.54 4.40 5.18 3.42 4.40 4.16 2.80 4.56 4.53 7.80 5.03 4.07 7.14 4.56 3.10 6.52

0.7 4.15 5.09 2.79 3.93 4.05 2.32 3.92 3.30 2.07 3.15 3.79 5.99 3.80 2.99 5.62 3.70 2.76 5.48

0.8 3.54 4.16 2.35 3.35 3.42 2.04 3.44 2.70 1.99 2.37 3.38 4.73 3.42 1.95 4.54 3.32 2.29 4.19

0.9 3.48 3.41 2.18 3.12 2.59 1.74 3.28 2.30 1.31 1.98 3.08 4.23 3.07 1.67 3.45 3.17 1.87 3.70

1.0 2.98 2.77 1.85 2.94 2.23 1.36 3.00 2.00 1.30 1.64 2.92 3.67 2.65 1.61 2.79 2.97 1.56 3.06

1.1 2.86 2.54 1.58 2.58 2.11 1.31 2.76 1.70 1.20 1.60 2.65 2.96 2.47 1.51 2.67 2.81 1.23 2.64

1.2 2.80 2.26 1.53 2.46 1.96 1.29 2.71 1.50 1.06 1.33 2.48 2.78 2.39 1.45 2.28 2.68 1.11 2.41

1.3 2.48 2.17 1.32 2.36 1.61 1.19 2.55 1.30 1.03 1.20 2.32 2.44 2.12 1.25 2.01 2.53 1.02 2.04

1.4 2.36 1.67 1.22 2.17 1.50 1.13 2.34 1.20 1.01 1.14 2.23 2.28 2.06 1.05 1.83 2.41 1.01 1.94

1.5 2.03 1.50 1.08 2.03 1.42 1.06 2.15 1.10 1.00 1.03 1.95 1.93 1.81 1.04 1.73 2.19 1.00 1.72

EARL(0,0.7] 69.68 80.26 80.19 52.51 54.65 64.24 58.86 66.22 64.89 64.34 80.59 84.55 53.50 61.36 67.58 59.19 69.60 72.50

EARL(0.7,1.5] 2.82 2.56 1.64 2.63 2.11 1.39 2.78 1.73 1.24 1.54 2.63 3.13 2.50 1.44 2.66 2.76 1.39 2.71

EARL(0,1.5] 34.02 38.82 38.30 25.90 26.63 30.72 28.95 31.82 30.94 30.84 39.01 41.12 26.30 29.40 32.96 29.09 33.22 35.28

LHH 1.3280 2.5010 3.1100 1.3280 2.5010 3.1100 1.3280 2.5010 3.1100 1.4695 2.7999 3.0795 1.4695 2.7999 3.0795 1.4695 2.7999 3.0795

https://doi.org/10.1371/journal.pone.0261217.t004
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the t(5) distribution. In a nutshell, the HHWMA W scheme outperforms all competing

schemes considered in this paper regardless of the magnitude (or size) of shifts, i.e. small, mod-

erate, large (not shown here to conserve space) and small-to-moderate. For small shifts as well

as for small-to-moderate shifts, the HHWMA W scheme performs better followed by the

DHWMA W scheme. For moderate shifts, the HHWMA W scheme is superior over the com-

peting schemes followed by the HWMA W scheme. Table 7 displays the OOC performance

comparison of the competing schemes under the GAM(3,1) distribution. From Table 7, it can

be observed that the HHWMA W scheme outperforms all competing schemes considered in

this paper regardless of the magnitude of the shift in the process mean followed by the HWMA

W scheme.

5. Illustrative example

In this section, the application of the proposed HWMA, DHWMA and HHWMA Wmonitor-

ing schemes is illustrated using mining data to monitor the percentage of the silicon dioxide in

iron ore used by [37]. High concentration of silica is a sign of contamination or impurity and as

a result, it is undesirable. Consequently, it is crucial to incessantly monitor the silica concentra-

tion in iron ore on the flotation process in order to manage and resolve any peculiarities that

may occur. On that note, this paper uses the proposed monitoring schemes to control the level

of the percentage of silica in iron ore. The iron ore mining data used in this section consists of

Fig 5. Effect of the phase II sample size on the performance of HHWMA W scheme when m = 100, λ1 = 0.1, λ2 2 {0.05, 0.25} and n 2 {3,

5, 10} under N(0,1), t(5) and GAM(3,1) distributions.

https://doi.org/10.1371/journal.pone.0261217.g005
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two subsets considered as phase I and phase II samples. In this example, it is assumed that a

sample of size 5 is drawn every hour. The chi-square test of normality show that the iron ore

data is not normally distributed at 5% level of significance (p-value = 0.00). Thus, nonparamet-

ric schemes are good choice to monitor these data. The phase I data consist of 104 samples of

size 5 (m = 520) collected when the process was assumed to be IC. In phase II, 78 samples of

size 5 each (i.e., n = 5) are monitored. The proposed HWMA and DHWMAW schemes are

implemented using λ = 0.5 and it was found that LH = 2.9069 and LDH = 2.0095, respectively,

for a nominal ARL0 = 500. The HHWMAW scheme is implemented using λ1 = 0.75 and λ2 =

0.5 and it was found that LHH = 2.1171 so that the attained ARL0 is much closer to the nominal

ARL0 = 500. The plots of the proposed HWMA, DHWMA and HHWMA Wmonitoring

schemes are shown in Fig 7A–7C. Table 8 presents the charting statistics and control limits as

well as the signalling and non-signalling events of the proposed monitoring schemes when (m,

n) = (520,5) for a nominal ARL0 = 500. The control limits of the proposed HWMA, DHWMA

and HHWMA W schemes are denoted as (LCLt, LCLt), (DLCLt, DLCLt) and (HLCLt,HLCLt),
respectively, and the OOC signals are boldfaced in Table 8. The findings in both Fig 7 and

Table 8 show that the HHWMA W scheme gives a signal for the first time on the 8th subgroup

in the prospective phase, while the DHWMA and HWMA W schemes give a signal for the first

time on the 14th subgroup in the prospective phase. This example confirms the superiority of

the proposed HHWMA W scheme over the HWMA and DHWMAW schemes (see Fig 7 and

Table 8).

Fig 6. Effect of the phase I sample size on the performance of HHWMA W scheme when n = 5, λ1 = 0.1, λ2 2 {0.05, 0.25} and m 2 {50,

100,500} under N(0,1), t(5) and GAM(3,1) distributions.

https://doi.org/10.1371/journal.pone.0261217.g006
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Table 5. The OOC ARL profiles of the proposed HWMA, DHWMA and HHWMA W schemes against the

CUSUM, EWMA and DEWMA W schemes when (m,n,λ) = (100,5,0.5) for a nominal ARL0 = 500 under N(0,1)

distribution.

Shift (δ) CUSUM W EWMA W DEWMA W HWMA W DHWMA W HHWMA W
0.1 400.24 381.13 372.74 380.88 367.40 324.17

0.2 184.22 177.30 174.88 174.03 166.25 187.13

0.3 69.29 66.60 63.22 43.29 30.79 23.78

0.4 27.71 26.44 26.49 26.83 19.39 12.85

0.5 15.33 13.91 13.82 13.77 11.74 6.09

0.6 5.09 7.45 7.27 8.44 7.89 4.54

0.7 4.34 6.03 5.90 5.90 4.98 2.79

0.8 4.00 5.52 4.66 4.40 4.39 2.35

0.9 3.11 3.68 3.41 3.48 3.56 2.18

1.0 3.64 3.42 3.13 2.92 3.38 1.85

1.1 3.18 2.80 2.80 2.50 2.59 1.58

1.2 3.07 2.67 2.54 2.21 2.43 1.53

1.3 2.46 2.42 2.18 1.97 2.32 1.32

1.4 1.34 2.19 2.00 1.81 2.04 1.22

1.5 1.10 2.00 1.92 1.66 1.85 1.08

EARL(0,0.7] 100.89 96.98 94.90 93.31 86.92 80.19

EARL(0.7,1.5] 2.74 3.09 2.83 2.62 2.82 1.64

EARL(0,1.5] 48.54 46.90 45.80 44.94 42.07 38.30

L 3.3890 3.3800 3.1999 2.8699 2.9995 3.1100

https://doi.org/10.1371/journal.pone.0261217.t005

Table 6. The OOC ARL profiles of the proposed HWMA, DHWMA and HHWMA W schemes against the

CUSUM, EWMA and DEWMA W schemes when (m,n,λ) = (100,5,0.5) for a nominal ARL0 = 500 under t(5)

distribution.

Shift (δ) CUSUM W EWMA W DEWMA W HWMA W DHWMA W HHWMA W
0.1 384.19 381.40 362.72 372.76 333.39 275.89

0.2 187.41 139.74 137.85 96.07 122.50 142.48

0.3 55.33 51.18 45.10 47.17 26.01 13.91

0.4 19.37 18.52 18.42 18.27 11.69 7.22

0.5 9.65 9.20 8.88 9.78 7.47 4.44

0.6 7.82 7.64 7.37 6.32 5.92 3.42

0.7 5.45 5.55 5.50 4.46 4.55 2.32

0.8 4.34 3.90 3.76 3.51 3.69 2.04

0.9 3.91 3.61 3.42 2.84 3.09 1.74

1.0 3.36 3.14 2.91 2.44 2.94 1.36

1.1 3.11 2.77 2.60 2.16 2.45 1.31

1.2 2.88 2.52 2.33 1.91 2.11 1.29

1.3 2.52 2.20 2.00 1.74 1.95 1.19

1.4 2.30 1.89 1.75 1.61 1.89 1.13

1.5 1.65 1.73 1.64 1.49 1.55 1.06

EARL(0,0.7] 95.60 87.60 83.69 79.26 73.08 64.24

EARL(0.7,1.5] 3.01 2.72 2.55 2.21 2.46 1.39

EARL(0,1.5] 46.22 42.33 40.42 38.17 35.41 30.72

L 3.3890 3.3800 3.1999 2.8699 2.9995 3.1100

https://doi.org/10.1371/journal.pone.0261217.t006
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6. Conclusion

This paper introduced the HWMA, DHWMA and HHWMA monitoring schemes based

on the Wilcoxon rank sum W statistic. The DHWMA W (HHWMA W) scheme is the

extension of the HWMA W scheme where the same (different) smoothing parameter(s)

are applied twice. The performances of the proposed schemes in terms of the RL charac-

teristics were evaluated using the Monte Carlo simulations in SAS19.4/IML15.4 with

20000 simulations. It was found that the proposed schemes are IC robust and present

very interesting properties regardless of the nature of the underlying probability distri-

bution. The HHWMA W scheme is preferred over the HWMA and DHWMA W schemes

because of its flexibility and sensitivity in monitoring shifts of different sizes. In terms of

the EARL and ESDRL profile, regardless of the value of smoothing parameters, the larger

the phase I or/and sample size, the better the overall performance. Therefore, a balance

must be strike in order to choose rational sample sizes to avoid high implementation and

inspection costs. Compared to the existing CUSUM, EWMA and DEWMA W schemes in

zero-state, it is observed that the proposed HHWMA scheme outperforms the existing

schemes considered in this paper regardless of the magnitude of the shift in the process

mean parameter.

From the results of this study, we recommend that quality engineers should put the pro-

posed monitoring schemes into use when monitoring the location parameter regardless of

the nature of the probability distribution. For future research, researchers who are inter-

ested in the design of efficient and robust schemes can look at the design of the HWMA,

DHWMA and HHWMA W schemes with fast initial response features. Also, other com-

plex extended HWMA monitoring schemes based on nonparametric statistics can be stud-

ied, such as those in [42]. Researchers are also advised to study more advanced schemes

Table 7. The OOC ARL profiles of the proposed HWMA, DHWMA and HHWMA W schemes against the

CUSUM, EWMA and DEWMA W schemes when (m,n,λ) = (100,5,0.5) for a nominal ARL0 = 500 under GAM(3,1)

distribution.

Shift (δ) CUSUM W EWMA W DEWMA W HWMA W DHWMA W HHWMA W
0.1 462.44 459.92 457.33 421.30 539.19 314.94

0.2 236.67 221.27 215.71 203.76 148.82 109.49

0.3 73.00 69.08 66.50 56.90 21.82 13.12

0.4 28.93 26.63 24.44 26.54 14.25 7.48

0.5 11.91 11.41 11.00 12.58 9.24 4.32

0.6 8.14 7.88 7.73 7.63 6.08 2.80

0.7 5.77 5.52 5.30 5.16 4.95 2.07

0.8 5.19 4.94 4.60 3.80 3.82 1.99

0.9 4.44 4.11 3.74 3.04 3.39 1.31

1.0 4.00 3.77 3.11 2.56 2.78 1.30

1.1 3.51 3.34 2.60 2.22 2.56 1.20

1.2 3.00 2.79 2.22 1.99 2.21 1.06

1.3 2.72 2.44 2.00 1.81 2.05 1.03

1.4 2.09 2.00 1.77 1.68 1.99 1.01

1.5 1.68 1.58 1.66 1.41 1.70 1.00

EARL(0,0.7] 118.12 114.53 112.57 104.84 106.34 64.89

EARL(0.7,1.5] 3.33 3.12 2.71 2.31 2.56 1.24

EARL(0,1.5] 56.90 55.11 53.98 50.16 50.99 30.94

L 3.3890 3.3800 3.1999 2.8699 2.9995 3.1100

https://doi.org/10.1371/journal.pone.0261217.t007
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Fig 7. HWMA, DHWMA and HHWMA monitoring schemes of the iron ore date when m = 520, n = 5, λ = 0.5, λ1

= 0.75 and λ2 = 0.5 for and nominal ARL0 value of 500.

https://doi.org/10.1371/journal.pone.0261217.g007

Table 8. Illustration example of the proposed HWMA, DHWMA and HHWMA W charts using the mining iron

ores data with (m,n,λ,λ1,λ2) = (520, 5, 0.5, 0.75, 0.5) for a nominal ARL0 = 500.

Sample

number

HWMA W scheme DHWMA W scheme HHWMA W scheme

Ht LCLt UCLt OOC DHt DLCLt DUCLt OOC HHt HLCLt HUCLt OOC

1 1557.50 824.33 1805.67 No 1436.25 1145.40 1484.60 No 1496.88 1046.98 1583.02 No

2 1557.50 621.09 2008.91 No 1436.25 935.77 1694.23 No 1496.88 868.31 1761.69 No

3 1557.50 714.06 1915.94 No 1436.25 965.37 1664.63 No 1496.88 866.08 1763.92 No

4 1557.50 748.42 1881.58 No 1436.25 997.71 1632.29 No 1496.88 898.62 1731.38 No

5 1479.00 766.41 1863.59 No 1397.00 1020.74 1609.26 No 1438.00 922.92 1707.08 No

6 1495.75 777.50 1852.50 No 1405.38 1037.53 1592.47 No 1450.56 940.66 1689.34 No

7 1722.25 785.02 1844.98 No 1518.63 1050.27 1579.73 No 1620.44 954.03 1675.97 No

8 1784.50 790.45 1839.55 No 1549.75 1060.26 1569.74 No 1667.13 964.42 1665.58 Yes

9 1745.00 794.57 1835.43 No 1530.00 1068.31 1561.69 No 1637.50 972.72 1657.28 No

10 1534.75 797.79 1832.21 No 1424.88 1074.95 1555.05 No 1479.81 979.51 1650.49 No

11 1605.50 800.38 1829.62 No 1460.25 1080.51 1549.49 No 1532.88 985.15 1644.85 No

12 1605.50 802.51 1827.49 No 1460.25 1085.24 1544.76 No 1532.88 989.92 1640.08 No

13 917.75 804.30 1825.71 No 1116.38 1089.32 1540.68 No 1017.06 994.01 1635.99 No

14 778.25 805.81 1824.19 Yes 1046.63 1092.88 1537.12 Yes 912.44 997.54 1632.46 Yes

15 1349.00 807.11 1822.89 No 1332.00 1096.00 1534.00 No 1340.50 1000.64 1629.36 No

16 983.50 808.24 1821.76 No 1149.25 1098.77 1531.23 No 1066.38 1003.37 1626.63 No

17 1380.75 809.23 1820.77 No 1347.88 1101.24 1528.76 No 1364.31 1005.79 1624.21 No

18 1535.00 810.11 1819.89 No 1425.00 1103.46 1526.54 No 1480.00 1007.96 1622.04 No

19 1436.75 810.89 1819.11 No 1375.88 1105.47 1524.53 No 1406.31 1009.91 1620.09 No

20 1583.75 811.58 1818.42 No 1449.38 1107.29 1522.71 No 1516.56 1011.67 1618.33 No

21 1149.00 812.21 1817.79 No 1232.00 1108.95 1521.05 No 1190.50 1013.28 1616.72 No

22 1202.50 812.78 1817.22 No 1258.75 1110.47 1519.53 No 1230.63 1014.74 1615.26 No

23 974.75 813.30 1816.70 No 1144.88 1111.86 1518.14 No 1059.81 1016.08 1613.92 No

24 728.50 813.78 1816.22 Yes 1021.75 1113.15 1516.85 Yes 875.13 1017.32 1612.68 Yes

25 1470.00 814.21 1815.79 No 1392.50 1114.35 1515.65 No 1431.25 1018.46 1611.54 No

26 1371.50 814.61 1815.39 No 1343.25 1115.45 1514.55 No 1357.38 1019.51 1610.49 No

27 1342.75 814.98 1815.02 No 1328.88 1116.49 1513.51 No 1335.81 1020.49 1609.51 No

28 1138.00 815.33 1814.67 No 1226.50 1117.45 1512.55 No 1182.25 1021.40 1608.60 No

29 1416.00 815.65 1814.35 No 1365.50 1118.35 1511.65 No 1390.75 1022.26 1607.75 No

30 1473.75 815.94 1814.06 No 1394.38 1119.19 1510.81 No 1434.06 1023.05 1606.95 No

31 1207.75 816.22 1813.78 No 1261.38 1119.98 1510.02 No 1234.56 1023.80 1606.20 No

32 1131.00 816.48 1813.52 No 1223.00 1120.73 1509.27 No 1177.00 1024.50 1605.50 No

33 788.75 816.72 1813.28 Yes 1051.88 1121.43 1508.57 Yes 920.31 1025.16 1604.84 Yes

34 788.75 816.95 1813.05 Yes 1051.88 1122.09 1507.91 Yes 920.31 1025.78 1604.22 Yes

35 1277.00 817.17 1812.83 No 1296.00 1122.72 1507.28 No 1286.50 1026.37 1603.63 No

36 1607.75 817.37 1812.63 No 1461.38 1123.31 1506.69 No 1534.56 1026.93 1603.07 No

37 1721.50 817.56 1812.44 No 1518.25 1123.88 1506.12 Yes 1619.88 1027.45 1602.55 Yes

38 1716.75 817.74 1812.26 No 1515.88 1124.41 1505.59 Yes 1616.31 1027.95 1602.05 Yes

39 1377.50 817.92 1812.08 No 1346.25 1124.92 1505.08 No 1361.88 1028.43 1601.57 No

40 1574.75 818.08 1811.92 No 1444.88 1125.41 1504.59 No 1509.81 1028.88 1601.12 No

41 1418.25 818.24 1811.77 No 1366.63 1125.87 1504.13 No 1392.44 1029.31 1600.69 No

42 1035.75 818.38 1811.62 No 1175.38 1126.31 1503.69 No 1105.56 1029.72 1600.28 No

(Continued)
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based on multi-objective cluster head selection using fitness averaged rider optimization

algorithm for IoT networks in smart cities, see for instance [52]. Finally, given some con-

cerns raised in [53], a steady-state mode performances of the proposed schemes need to be

examined.
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Table 8. (Continued)

Sample

number

HWMA W scheme DHWMA W scheme HHWMA W scheme

Ht LCLt UCLt OOC DHt DLCLt DUCLt OOC HHt HLCLt HUCLt OOC

43 780.25 818.52 1811.48 Yes 1047.63 1126.74 1503.26 Yes 913.94 1030.11 1599.89 Yes

44 883.75 818.66 1811.34 No 1099.38 1127.14 1502.86 Yes 991.56 1030.49 1599.51 Yes

45 1226.75 818.79 1811.21 No 1270.88 1127.53 1502.47 No 1248.81 1030.84 1599.16 No

46 1446.75 818.91 1811.09 No 1380.88 1127.90 1502.10 No 1413.81 1031.19 1598.81 No

47 1332.75 819.03 1810.97 No 1323.88 1128.25 1501.75 No 1328.31 1031.52 1598.48 No

48 1307.75 819.14 1810.86 No 1311.38 1128.59 1501.41 No 1309.56 1031.83 1598.17 No

49 1179.75 819.25 1810.75 No 1247.38 1128.92 1501.08 No 1213.56 1032.13 1597.87 No

50 1011.00 819.35 1810.65 No 1163.00 1129.24 1500.76 No 1087.00 1032.42 1597.58 No

51 991.25 819.45 1810.55 No 1153.13 1129.54 1500.46 No 1072.19 1032.70 1597.30 No

52 1344.75 819.54 1810.46 No 1329.88 1129.83 1500.17 No 1337.31 1032.97 1597.03 No

53 1239.00 819.64 1810.37 No 1277.00 1130.12 1499.88 No 1258.00 1033.23 1596.77 No

54 1086.75 819.72 1810.28 No 1200.88 1130.39 1499.61 No 1143.81 1033.48 1596.52 No

55 1661.25 819.81 1810.19 No 1488.13 1130.65 1499.35 No 1574.69 1033.72 1596.28 No

56 1282.50 819.89 1810.11 No 1298.75 1130.90 1499.10 No 1290.63 1033.95 1596.05 No

57 1838.00 819.97 1810.03 Yes 1576.50 1131.15 1498.85 Yes 1707.25 1034.18 1595.82 Yes

58 1697.25 820.05 1809.95 No 1506.13 1131.38 1498.62 Yes 1601.69 1034.39 1595.61 Yes

59 1900.50 820.12 1809.88 Yes 1607.75 1131.61 1498.39 Yes 1754.13 1034.60 1595.40 Yes

60 1938.75 820.19 1809.81 Yes 1626.88 1131.83 1498.17 Yes 1782.81 1034.81 1595.19 Yes

61 1513.25 820.26 1809.74 No 1414.13 1132.05 1497.95 No 1463.69 1035.00 1595.00 No

62 1650.75 820.33 1809.68 No 1482.88 1132.26 1497.74 No 1566.81 1035.19 1594.81 No

63 1449.00 820.39 1809.61 No 1382.00 1132.46 1497.54 No 1415.50 1035.38 1594.62 No

64 1360.50 820.45 1809.55 No 1337.75 1132.65 1497.35 No 1349.13 1035.56 1594.44 No

65 1253.75 820.51 1809.49 No 1284.38 1132.84 1497.16 No 1269.06 1035.73 1594.27 No

66 1132.25 820.57 1809.43 No 1223.63 1133.03 1496.98 No 1177.94 1035.90 1594.10 No

67 1598.25 820.63 1809.37 No 1456.63 1133.20 1496.80 No 1527.44 1036.06 1593.94 No

68 1484.75 820.68 1809.32 No 1399.88 1133.38 1496.62 No 1442.31 1036.22 1593.78 No

69 1717.75 820.74 1809.26 No 1516.38 1133.55 1496.45 Yes 1617.06 1036.37 1593.63 Yes

70 1841.25 820.79 1809.21 Yes 1578.13 1133.71 1496.29 Yes 1709.69 1036.52 1593.48 Yes

71 1241.00 820.84 1809.16 No 1278.00 1133.87 1496.13 No 1259.50 1036.66 1593.34 No

72 1448.00 820.89 1809.11 No 1381.50 1134.02 1495.98 No 1414.75 1036.81 1593.19 No

73 1543.00 820.93 1809.07 No 1429.00 1134.18 1495.82 No 1486.00 1036.94 1593.06 No

74 1408.00 820.98 1809.02 No 1361.50 1134.32 1495.68 No 1384.75 1037.08 1592.92 No

75 1062.50 821.03 1808.97 No 1188.75 1134.47 1495.53 No 1125.63 1037.21 1592.79 No

76 1454.25 821.07 1808.93 No 1384.63 1134.61 1495.40 No 1419.44 1037.33 1592.67 No

77 1624.50 821.11 1808.89 No 1469.75 1134.74 1495.26 No 1547.13 1037.46 1592.54 No

78 1534.50 821.15 1808.85 No 1424.75 1134.87 1495.13 No 1479.63 1037.58 1592.42 No

https://doi.org/10.1371/journal.pone.0261217.t008
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