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ABSTRACT: This is the first in a series of papers devoted to the study of spin chains cap-
turing the spectral problem of 4d N' = 2 SCFTs in the planar limit. At one loop and in the
quantum plane limit, we discover a quasi-Hopf symmetry algebra, defined by the R-matrix
read off from the superpotential. This implies that when orbifolding the N' = 4 symmetry
algebra down to the A/ = 2 one and then marginaly deforming, the broken generators are
not lost, but get upgraded to quantum generators. Importantly, we demonstrate that these
chains are dynamical, in the sense that their Hamiltonian depends on a parameter which
is dynamically determined along the chain. At one loop we map the holomorphic SU(3)
scalar sector to a dynamical 15-vertex model, which corresponds to an RSOS model, whose
adjacency graph can be read off from the gauge theory quiver/brane tiling. One scalar
SU(2) sub-sector is described by an alternating nearest-neighbour Hamiltonian, while an-
other choice of SU(2) sub-sector leads to a dynamical dilute Temperley-Lieb model. These
sectors have a common vacuum state, around which the magnon dispersion relations are
naturally uniformised by elliptic functions. Concretely, for the Zs quiver theory we study
these dynamical chains by solving the one- and two-magnon problems with the coordinate
Bethe ansatz approach. We confirm our analytic results by numerical comparison with the
explicit diagonalisation of the Hamiltonian for short closed chains.
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1 Introduction

The maximally supersymmetric gauge theory in four dimensions (4d), N/ = 4 super Yang-
Mills (SYM), is often, rightfully so, referred to as the harmonic oscillator of our century. It
is integrable in the planar limit and the prototype of an exactly solvable gauge theory [1].
Integrability allows the complete determination of the exact operator spectrum of N' = 4
SYM in the planar limit while it has also been used for the study of a number of observables
like correlation functions, Wilson loops and scattering amplitudes [2-4]. Impressively,
planar integrability can also be used to obtain non-planar results [5, 6].

This paper is devoted to the study of the next simplest (=most symmetric) gauge
theories in 4d after N' = 4 SYM, namely N = 2 superconformal field theories (SCFTs).
Moving away from the harmonic oscillator of our century, N'= 2 SCFTs are, for the time
being, believed to not be integrable at generic points of the conformal manifold [7—13]. This
is because their Scattering (S-) matrix does not obey the usual Yang-Baxter equation.! In
this paper we will argue that this conclusion deserves to be revisited.

Most known integrable models fall into one of three classes: rational, trigonometric
and elliptic.?2 These are based on Yangian symmetry, quantum affine algebra and elliptic
quantum groups, respectively [20-23]. For the first two classes the S-matrix obeys the
Yang-Baxter equation (YBE). The R-matrix of elliptic models, depending on the choice of
basis, may obey a modified, dynamical Yang-Baxter equation (dYBE) [23, 24]. The dYBE
itself arises as a special case of an even more general quasi-Hopf YBE [25-29)].

The spin chain emerging in the planar limit of N' = 4 SYM is a rational integrable
model based on the Yangian symmetry built on PSU(2,2[4). We believe, for reasons we
start unraveling with this paper, that the spectral problem of N' = 2 SCFTs can be mapped
to dynamical? elliptic models. What is more, we exhibit that A" = 2 SCFTs’ spin chains
enjoy a quantum group deformation of PSU(2,2|4), D SU(2,2|2) leading to a quasi-Hopf
YBE, providing an additional handle to their study.

Lagrangian N/ = 2 SCFTs are classified [31] and a good way to obtain most of them
is via orbifolding N' = 4 SYM [32, 33]. The quivers of N’ = 2 SCFTs with SU(N) color
factors follow an ADE classification using finite/affine Dynkin diagrams.* The orbifolding
procedure [34] gives theories with all the coupling constants equal to each other and to the
Yang-Mills (YM) coupling constant of the A/ = 4 mother theory. This is called the orbifold

'Even for N' = 4 SYM, away from the leading order in the YM coupling, the fact that the S-matrix
obeys the Yang-Baxter equation is guaranteed only after a non-local transformation of the basis states
which was constructed in [14].

2Integrable models exist even beyond these three classes. The hyperelliptic Chiral Potts model is a
famous example [15-19]. We will come back to it in the conclusions.

3In this paper, the term “dynamical spin chain” is not used in the same sense as in [30], but as in [23,
24]. Beisert in [30] uses the term “dynamic” for the spin chains of N/ = 4 SYM which arise at higher
loops (higher orders in gyas) and include length changing operations. The spin chains we will study in
this paper are at one-loop where length changing operations cannot take place. What changes is the
dynamical parameter, according to the gauge group indices which are being contracted between different
fields occupying neighbouring sites on the chain.

4For SO/Sp gauge groups we need to further use an orientifold plane. Exceptional gauge groups are
more complicated but are also possible to get.



point. Orbifold daughters of N'=4 SYM at the orbifold point are known to be integrable
in the planar limit [35], their Bethe equations were studied in [35-38], their Y-system in [39]
and TBA in [40, 41].> To move away from the orbifold point we marginally deform the
theory. The question of planar integrability of N’ = 2 theories marginally deformed away
from the orbifold point has been addressed in a number of papers [7-12]. See [13] for a
recent review.

N =1 marginal deformations of N'=4 SYM [44] and their spin chains in the planar
limit have been well studied and some of them have been shown to be integrable [45, 46].
For the most general marginal deformation, whose noncommutative structure was studied
in [47], the one-loop R-matrix for the holomorphic scalar sector in the quantum plane
limit was constructed in [48]. In [49], the RTT relations arising from this R-matrix were
shown to lead to quantum generators that deform the SU(3) algebra to a quantum group.
More recent work [50, 51] took a quasi-Hopf perspective by focusing on the Drinfeld twist
underlying the R-matrix, which allows to express the deformation in terms of a star product.
The work of [47-51] will be an inspiration and starting point for the present work.

Revisiting the study of marginally deformed (away from the orbifold point) N' = 2
orbifold daughters of ' = 4 SYM, we will mostly concentrate on the simplest example,
the Zg orbifold of N' = 4 SYM, with gauge group SU(N) x SU(N), the quiver of which
is depicted in figure 1. This is a theory with a well understood AdSs x S°/Zy gravity
dual [32, 33, 52]. For the Zs orbifold there is only one marginal deformation which allows
us to explore the real dimension-two conformal manifold of the g1 # g2 exactly marginal
YM couplings.® All the novel features of A” = 2 SCFT spin chains which we wish to bring
to light with this paper are nicely captured by this simple example.”

This will be the first in a series of papers with which we will revisit the one-loop
spectral problem of 4d A/ = 2 SCFTs in the planar limit. We approach the study of
the spin chains which describe it from several independent fronts. We begin this paper
with a review of the Zy quiver SCF'T, its field content and its symmetries as well as by
recalling the scalar Hamiltonian originally derived in [7], in section 2. In section 3, simply
by looking at the superpotential of the Zs quiver theory and its F-term equations, and
following [48-50] we will obtain the R-matrix of the one-loop spin chain in the quantum
plane limit as well as the Drinfeld twist with which it can be factored. The Drinfeld twist
does not obey the usual cocycle condition and the R-matrix does not satisfy the usual
YBE, but rather a generalisation known as the quasi-Hopf YBE [25]. Through the RTT
relations [53], the R-matrix defines a quantum algebra which captures the symmetry of our
spin chain. Most importantly, as we break the A/ = 4 superconformal algebra (SCA) down
to the N/ =2 SCA the broken generators are not lost, but they get upgraded to quantum

5An interesting recent approach to certain sub-sectors, with an emphasis on how they can be directly
seen from the 6D SCFTs of M5-branes probing an ADE singularity, can be found in [42, 43].

In supersymmetric gauge theories the YM couplings gy s together with the theta angle fy s combine

Oy m

to form holomorphic gauge coupling 7 = =2

+ ﬁ. In this paper we are not interested in the 6y s
parameters, and set them to zero. The YM couplings g1, g2 are simply real.

"The only big difference between Zs and Zg>2 is that the Zy quiver theory has an extra SU(2)1 global
symmetry, as we will introduce in section 2.1.



generators. The discussion in section 3 uses a basis which is natural from the point of view
of the N' = 2 daughter theories, however quite cumbersome as not all possible spin chains
(corresponding to single trace local operators) made out of N' = 2 letters are allowed color
contractions.

In section 4, looking for a better basis which is more natural from the point of view of
the V' = 4 mother theory, we discover that the spin chain capturing the spectral problem
of the Zo quiver SCF'T, is a dynamical spin chain. Its Hamiltonian depends on a parameter
which is dynamically determined along the chain, precisely keeping track of which gauge
indices are contracted between two neighbouring sites of the spin chain. Following this
logic, we discover that the holomorphic SU(3) scalar sector can be mapped to a dynamical
15-vertex model. This is despite the fact that naively the SU(3) scalar sector with single-site
vector space spanned by XY, Z gives a 19 vertex model: the U(1), R-symmetry of N' = 2
SCA sets to zero four of the vertices. What is more, this dynamical 15-vertex model can
be rewritten as an RSOS (Restricted Solid-on-Solid) model [54-57], the adjacency graph
of which we are able to determine and is depicted in figure 7. Amazingly, the adjacency
graph of the RSOS model is dual to the brane-tiling diagram of the corresponding quiver
theory [58-60] (see also [61] for a review).

In this holomorphic SU(3) scalar sector we identify one closed SU(2) sub-sector which

is naturally described by an alternating, nearest-neighbour spin chain.®

The eigenvalue
problem for spin chains of this type has been studied in the past in [65, 66]. We refer to
this sector as the XY sector and as we will see it enjoys an unbroken SU(2) symmetry,
precisely as its image in the A" =4 SYM mother theory. The study of this sector through
the coordinate Bethe Ansatz is presented in section 5.

What is more, within the holomorphic SU(3) sector a second closed sub-sector is
identified as a dynamical dilute Temperley-Lieb model. This second sub-sector we will
call the X Z sector and in this case the SU(2) is naively broken (but in reality upgraded
to a quantum group defined by the RTT relations). This sector was studied around the
Z vacuum in [7] with the conclusion that it is not integrable as it does not satisfy the
usual YBE. The study of this sector though the coordinate Bethe Ansatz is presented in
section 6. We will clearly see that the spin chain of the X Z sector is elliptic and this
implies that the conclusion of [7] might be too naive, and one needs to understand whether
a dynamical version of the YBE might be applicable instead.

Having identified these two distinct SU(2) sub-sectors we study them using the coordi-
nate Bethe ansatz. This part of our work is tedious but cannot be avoided as the spin chains
we are dealing with are not well known models as was the case of the Heisenberg XXX spin
chain for N' = 4 SYM. We need to discover their best possible description by studying
them in detail and the only straightforward method we have at our disposal is the coordi-
nate Bethe ansatz. The state space of both of them contains the X vacuum (made out of

8The readers of this paper are most probably familiar with the alternating ABJ(M) spin chains [62-64].
We wish to stress that our spin chains are different from the ABJ(M) ones in two ways: the spin chains of
the 3d ABJ(M) theories are of alternating representation while our spin chains of 4d A" = 2 SCFTs have
alternating bonds. What is more, we have at one-loop nearest neighbour spin chains while for ABJ(M)
they start necessarily at two-loops and they are next to nearest neighbour.



bifundamental hypermultiplet fields). Already for the one magnon problem around the X
vacuum we discover, in section 7, that the single magnon dispersion relations as well as the
wave functions are naturally uniformised by elliptic functions. Moving to two magnons, in
section 5 and 6 respectively, we discover that in the center-of-mass frame the eigenvalue
problem can be solved only after including contact terms. Away from the center-of-mass
frame the eigenvector has to contain a second set of momenta (not related by permutations
to the original set), similar to the method of [67]. This is due to the elliptic nature of the
problem.? For a fixed total energy and total momentum, more than one set of momenta
(beyond those obtained by permutations) are allowed, and indeed they are needed in order
to parametrise the eigenvectors for the two magnon problem. We further unveil the rich
set of symmetries of the one and most impressively of the two magnon eigensystems, which
we summarise in table 1. The Zg symmetry of the quiver (which exchanges the coupling
constants as well as the fields) commutes with the Hamiltonian and we can organise the
eigenvectors in a basis where they are also eigenvectors of the Zs with very specific and
interesting eigenvalues.

Obtaining from the most general 2-magnon solution with the second set of momenta,
the centre-of-mass solution involving contact terms (but only one set of momenta) is a
technical computation which we detail in appendices A and B for the interested reader.
In appendix C we demonstrate with an example how one reproduces an alternating-type
Hamiltonian from a dynamical R-matrix using the Algebraic Bethe ansatz framework. Al-
though this example (an alternating X X model) is of free-fermion type and thus too simple
to describe our Hamiltonians, we believe that it does provide a useful illustration of how
the features that we consider important for our models come together in a concrete setting.

2 The SU(3) scalar sector

The spin chain for the Zs quiver was first introduced and studied in [7]. Before we delve
into the description of the spin chain, a short review of the gauge theory and its symmetries
is in order.

2.1 The Z2 quiver theory

We will focus on the N/ = 2 SCFT which interpolates between the Zsy orbifold of NV = 4
SYM and N = 2 superconformal QCD (SCQCD). Starting from the Zs orbifold where the
couplings of the two gauge groups are equal, g1 = go, also known as the orbifold point,
in this paper we will be interested in the marginally deformed theory with g1 # g2. The
marginal deformation introduces an one parameter family of theories parametrised by the
ratio Kk = go/g1. Without loss of generality, we will take x < 1. For all allowed values
of k € [0,1] this one parameter family of theories enjoys the full N' = 2 superconformal
algebra (SCA) including the SU(2)g x U(1), R-symmetries but also an extra SU(2), global
symmetry which is special for the Zs quiver.

The edge of the conformal manifold where go — 0 or equivalently x — 0 is special.
In this limit, the second gauge group gets ungauged and becomes a global symmetry,

9The appearance of the second set of momenta is natural in staggered models [15].



Q12
ﬁ
Q21
o1 ! .Qy. ? P2
\_/
Q21

Figure 1. The Zy quiver. The color groups are denoted by blobs representing the field content of
the A = 1 vector multiplets inside the A" = 2 vector multiplets. We use N’ = 1 language for the
hypermultiplets. The arrow to the right is Q! while the arrow to the left is Q'.

which combines with the extra SU(2)., to give the U(Ny) = U(2N) flavour symmetry of
SCQCD [7].10

To describe the field content of the theory we consider the Zsy orbifold of N = 4 SYM,
see [7] or the recent review [13] for more details. We start with the 2N x 2N color matrices
in the mother NV = 4 theory, which, in /' = 1 language, contains three chiral superfields
X, Y, Z in the adjoint of the SU(2N) gauge group. The action of the Zs is chosen such as to
preserve N’ = 2 supersymmetry, which means that it only acts on a €? of the €2 transverse
space spanned by the three complex scalar fields. The orbifold procedure projects out some
N x N blocks of these fields [34], so that after the projection they look like

_ Q12 _ Q12 _(»
X_<Q21 ) ’ Y_<Q21 > ’ Z_< ¢2>’ 1)

where we indicate the surviving N x N blocks. After the orbifold the gauge group is now
SU(N) x SU(N). We see that while Z acts diagonally and thus keeps us on the same node
of the quiver, X takes us clockwise around the quiver while Y anticlockwise.!! From the
surviving N x N blocks, Q12 and ng have the same bi-fundamental color structure [y x Oa,
and the same is the case for Q21 and le but with the opposite orientation [Jy x (y. Thus,
we can put them together in a doublet of an extra SU(2);, with index I, as follows

Q= (Q127 @12>T and  Q; = (Qzl, Qzl)T . (2.2)

The superpotential is explicitly invariant under the extra SU(2)y rotating the doublets of
SU(2)r in (2.2) and can be written as

Wz, = igy tra <Q1¢1Qf) —iga try (Qj¢2@l) ; (2.3)
or more explicitly as

Wy, = ig1 tra(Qa161Q12 — Qa161Q12) — ig2 tr1(Qra¢2Qa1 — Q12¢2Qa21) - (2.4)

9Tn the limit & — 0 the spin chain states (single trace local operators) which are not in a SU(2)z, singlet

representation break. What is more, the bifundamental hypermultiplet fields stick together forming dimers
which are much more difficult to treat. In this work we will not consider this limit, but rather the spin
chain at generic values of k, which can be thought of as a regularisation of the SCQCD spin chain.

1This distinction is not very important here as there are only two nodes, but it becomes more relevant
for Zi quivers. The quiver for the A/ = 2 preserving Zs orbifold is displayed in figure 13.
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Figure 2. The vertices contributing to the Hamiltonian in the XY sector. A solid blue line denotes
the first and a dashed red line denotes the second gauge group. Time moves upwards. Here we have
already performed the Wick contractions of the conjugate fields with the second gauge invariant
operator to write the vertices directly as spin chain interactions.

This second more explicit form may be more intuitive for some readers as it is easy to
remember that the bifundamental fields @;; and Qij are labelled according to the direction
of the arrows. For instance, Q12 transforms in the fundamental of gauge group 1 and the
antifundamental of gauge group 2 (O x Oy).

We already wish to indicate that we have the choice of working in the daughter N' = 2
SCFT picture (with our single letter basis composed of the six fields ¢; and @, QU) or
in the mother ' = 4 SYM picture where the single site basis is made out of X,Y,Z . We
will mostly use the latter as it allows us to simplify the discussion. As we will see, the
information of whether we are working with the upper or lower component of a given field
in the V' = 4 picture will be provided by a dynamical parameter \.

2.2 The Hamiltonian

In this paper we will focus on the one-loop holomorphic SU(3) sector of the Zs quiver. In
the mother N' = 4 SYM this sector is made up of three complex scalar fields X,Y, Z in
the adjoint of the SU(2N) gauge group. The planar Hamiltonian of this theory has been
derived, for the full scalar sector, in [7]. We begin by visually rederiving the Hamiltonian
in two SU(2)-like sectors, the one formed by the fields X and Y and the one formed by X
and Z, so that we can highlight the difference between these sectors.

The XY sector. This is the sector which includes all the (holomorphic) bifundamental
fields. To derive the Hamiltonian, let us start by considering the ¢; F-terms:

Fy, = ig1(Q12Q21 — Q12Q21) Fy, = i92(Q21Q12 — Q21Q12) (2.5)

From the potential FF, following the treatment in e.g. [45], we can immediately draw the
vertices contributing to the one-loop Hamiltonian. These are shown in figure 2.



After taking out an overall factor of g1go and defining kK = go/g1, we find the

Hamiltonian:
0 0 0 00 0 0 0 Q120
0 ' =« 100 0 0 0 Q12Q21
0 —x! x1 00 0 0 0 Q12Q21
Hppoq = 0 0 0 00 0 00 . in the basis Q1262 . (2.6)
7 0 0 0 00 0 0 0 Q21Q12
0 0 0 00 kK —k O Q21012
0 0 0 00 —k Kk 0 Q21Q12
0 0 0O 00 0 0 O Q21Q12

where the indices £, ¢ 4+ 1 denote the nearest neighbour sites of the spin chain. Note that
the basis is 8-dimensional instead of 16-dimensional as one would expect given our four
fields. The remaining combinations of fields cannot occur, as they are not allowed by the
gauge structure (for e.g. a @12 cannot be followed by a Q12 or ng). We have chosen
this truncated basis such that the upper left block of the Hamiltonian corresponds to the
first gauge group to the left of the first site where the Hamiltonian acts. In other words,
the upper left block acts on two bifundamental squarks which are contracted or in the
singlet representation of the second gauge group and have their indices open which means
that they are in the bifundamental representation of the first color group (J; x ;). On
the other hand, the lower right block of the Hamiltonian acts on two squarks which have
open color indices from the second gauge group (s x (o) and are color contracted with
respect to the first color group. We emphasise that, although the Hamiltonian looks block-
diagonal, this is an artifact of the notation. The same fields appear in both blocks, and
thus the upper and lower blocks of the Hamiltonian will mix when acting on a spin chain
configuration.

For this and other reasons to become clear later, we will prefer to work in the mother
N = 4 picture, where we only deal with the 2N x 2N fields X, Y instead of their component
fields. A spin chain state such as |[ XY XYY X --- ) in the A' = 4 picture can be decomposed
into two states, in this case ’Q12Q21Q12Q21Q12Q21 -++) and ’Q21Q12Q21Q12Q21Q12 -o ) in
the N/ = 2 picture. These states can of course be mapped to each other by exchanging the
gauge groups. In the XY picture, which of the two chains we are considering is uniquely
defined by specifying the gauge group to the left of a given site of the chain (meaning the
first index of the bifundamental field at that site). Without loss of generality we can take
this reference site to be the first site of the chain.

Similarly, the above action of the Hamiltonian is decomposed into an action of two
Hamiltonians in the XY basis. Whether we are on the upper or lower block again depends
on which gauge group is to the left of the first site we are acting on. We call these
Hamiltonians H1 and Hs, with

0 0 0 0 00 00 XX
0 k! —k710 0k —k0| . | XY

Hi = 0 ——1 =1 0 and Ho = 0-r ko0l ™ the basis X (2.7)
0 O 0 O 00 00O YY 1o



where the notation is that H; acts on the basis labelled by ¢ = 1 in the representation
[J; x O; of the color group, while Ho acts on the basis with i = 2 in the representation
[y x Os. In other words, by H; we denote the Hamiltonian which is applicable when
the gauge group to the left of a site ¢ along the chain is the first one, while Hy is the
corresponding Hamiltonian when the gauge group to the left of a site £ is the second one.
Both Hamiltonians are of XXX type but with a different (ferromagnetic) coupling given
by £~ ! and k, respectively.

Given that the XY sector is only made up of bifundamentals, which means that the
gauge group alternates at consecutive sites (regardless of whether the field at that site is
an X or a Y), we conclude that the Hamiltonian of this sector is alternately H; and Hs.
If, for instance, we fix the gauge group to the left of the first site to be the first one, we
will have ‘H; acting on odd-even sites and Ho acting on even-odd sites.

We conclude that the XY sector of the interpolating theory is governed by an alter-
nating XXX-model Hamiltonian. In section 5 we will study this alternating spin chain in
more detail using the coordinate Bethe ansatz.

For the sake of the interested reader, in order to obtain the Hamiltonian in (2.7)
from [7], we can start with the form of the Hamiltonian given at the top of page 16 of [7].
Firstly, we note that K = Kgy(g), and is zero on our sector as we look only at the upper
components (IJ = ++) of the SU(2)r triplet QQ or QQ. Then the only contributions
that are left in our sector are

H1]QQ) = 2R|QQ), H2|QQ) = 2+’K|QQ) (2.8)

where K = Ksy(g),,- Rescaling the Hamiltonian by an overall 2k and choosing the basis (2.6)
we get (2.7).

XZ sector. In this sector we will consider operators composed of the bifundamental field
X and the adjoint field Z. To find the Hamiltonian we will need the Qij F-terms:

Fp,, = 1(9202Q21 — 1Q2191) , Fp,, = i(g101Q12 — 92Q12¢2) (2.9)

These lead to the interactions shown in figure 3.
We will again divide by an overall factor of g;go, resulting in the Hamiltonian:

Q12021
Q1202
$1Q12

, in the basis P101

Q21012

Q2191

P2Q21
bap2

As before, the upper left block contains the interactions with the first gauge group on

0 0 0

Hii1 = (2.10)

o O O o O

o O O O o o o o
S O O O o O o o
o O O O o o o o

S O O O o O O
o O O O O
o O O o O

the left, while the lower right block the opposite. The state space is again truncated as
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Figure 3. The vertices contributing to the Hamiltonian in the X Z sector. A solid blue line denotes
the first and a dashed red line denotes the second gauge group. Time moves upwards. Here we have
already performed the Wick contractions of the conjugate fields with the second gauge invariant
operator to write the vertices directly as spin chain interactions.

some combinations of fields (e.g. ¢1¢2) cannot occur due to the gauge index structure.
The Hamiltonian (2.10) can of course also be reproduced from the more general scalar
Hamiltonian in [7].

We will again prefer to look at the Hamiltonian for the N' =4 X and Z fields rather
than their /' = 2 component fields. So for instance a state like | XXZXZZ - - ) will corre-
spond to two states |Q12Q2101Q12¢2¢2 - - - ) and its Zy conjugate |Q21Q12¢02Q21¢01¢1 -+ )
depending on the gauge group at a given reference site. To act with the Hamiltonian on
the X, Z basis, we again need to specify whether the gauge group is 1 or 2 to the left of
the first site where the Hamiltonian acts. The major difference from the XY sector is that
the gauge group does not change on crossing a Z field. We write:

00 0 0 00 00 XX
0k —10 0k1-10 XZ
Hy = . Hy = . in the basi (211
"“lo-1kto 2T 1o -1 k0 e basis g (2.11)
00 0 0 00 00 2z ),

where the notation is that H; acts on the basis in the gauge group representation [J; x [J;
where j is not correlated to ¢ as above and can take both 1,2 values. More explicitly,
‘H1 is the Hamiltonian acting on two sites where the gauge group to the left of the first
site is the first one, while Hy acts when the gauge group to the left is the second one.
Unlike the XY sector, where each Hamiltonian was of Heisenberg type, in the X Z sector
the Hamiltonians are of Temperley-Lieb type. This immediately brings to mind the XXZ
model whose quantum-group invariant Hamiltonian (obtained by adding an appropriate
boundary term to the open chain) is of Temperley-Lieb type. However, unlike the XXZ
case, this Hamiltonian changes dynamically along the chain, since H; is exchanged with
Ho (and vice versa) every time one crosses an X field. We will see in section 6 that Z
excitations around the vacuum formed by the X fields behave very similarly to those of
the alternating XY sector. On the other hand, as the Hamiltonian does not change when
crossing a Z field, X excitations around the Z vacuum can be expected to behave similarly



to those of the XXZ model. This is precisely what was found in the study of this case
in [7], where the S-matrix for two-X magnon scattering in the Z vacuum was found to be
of XX Z type. More appropriately, using the language of the current paper, the S-matrix
for two-X magnon scattering in the Z vacuum was found to be a dynamical XXZ S-matrix.

There is of course a third SU(2)-like sector formed by the Y and Z fields but it is
equivalent to the X Z sector by exchanging the ;; fields with the Qij ones. So we will not
consider this sector separately.

3 Quasi-Hopf algebra and the quantum plane limit

In the previous section we described how marginally deforming the Zs orbifold theory by
allowing k = g2/¢1 to be different from 1 led to a deformation of the integrable model
that arises at the orbifold point. The A/ = 1 marginal deformations of N' = 4 SYM are
known to be related to quantum group deformations of the global symmetry group of
the A/ = 4 theory. The best known example is the S-deformation, which is related to a
g-deformation of the SU(4) ~ SO(6) symmetry group, where ¢ = ¥ [45, 46]. For real
B the deformation has a quasitriangular Hopf algebra structure and in this case one can
go beyond just the symmetries and show that all the integrable structures of the N' = 4
theory are preserved (see e.g. [68] for a review and further references). The complex-f3
case, as well as the more general Leigh-Strassler deformations [44], go beyond the class of
quasitriangular Hopf algebras, and it was recently shown that they are instead described
by a quasitriangular quasi-Hopf algebra [50] which deforms the SU(3) part of the global
symmetry group.

Quasi-Hopf algebras were introduced by Drinfeld [25] as the most general class of
algebras which are closed under arbitrary invertible twists. In the quasitriangular Hopf
algebra setting (meaning that there exists an R-matrix which relates the coproduct to
the permuted coproduct of the theory, and which satisfies the Yang-Baxter equation), a
Drinfeld twist is an element of A ® A which takes an original R-matrix to a new one
according to

sz = F21R12F1_21 (3.1)

If the twist satisfies a certain cocycle condition, then the twisted R-matrix R also sat-
isfies the YBE and the resulting algebra (arising from the RTT relations [53]) is also a
quasitriangular Hopf algebra. Dropping the cocycle condition on the twist, one obtains
an R-matrix which does not satisfy the YBE, but rather a generalisation known as the
quasi-Hopf YBE [25]. This involves an object known as a coassociator which lives on three
copies of the algebra and is defined by the twist through the relation

d = Fz(id ® A)(F)(A ®id)(F)FR', (3.2)
with the quasi-Hopf version of the YBE being [25]
Ri9®319R13P 55 Ros®123 = 301 Ra3®oyy R13Po13Ria - (3.3)

In the Hopf setting ® = I ® I ® I and the quasi-Hopf YBE reduces to the standard YBE.
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3.1 R-matrix and Drinfeld twist in the quantum plane limit

A practical way to search for a quantum-group deformation of the symmetries of our
theory is through considering the corresponding quantum plane limit. We refer to e.g. [69]
for mathematical background on quantum planes. In the gauge theory the quantum plane
arises through the F-term relations [47, 49, 50]. As discussed in [49], what is relevant here
is an SU(3)-type quantum plane, of the type studied in [70], and we will follow a similar
approach below. For N' = 4 SYM, setting the Fz term to zero one simply obtains the
relation XY = Y X, i.e. the classical, commutative plane, while for the S-deformation this
is modified to XY = qY X and can be attributed to the transverse coordinates X° seen by
open strings ending on the D3-branes becoming noncommutative.'? The quadratic relations
on the coordinates of the quantum plane can be derived via an appropriate R-matrix as

RY,XFX! = XIX° (3.4)

In [50] the R-matrix leading to the full quantum plane geometry of the Leigh-Strassler
theories was studied and shown to arise from a Drinfeld twist which does not satisfy the
cocycle equation. Therefore the quasi-Hopf setting is the appropriate one to understand
the symmetries of the Leigh-Strassler marginal deformation of the N' = 4 theory.

It is thus natural to ask whether one can find a similar quantum-group structure for
the AN/ = 2 theories we are considering in the present work. To answer this, let us start by
writing the superpotential (2.4) in a way that will make it easier to read off the quantum
plane structure. As in [50], to see this structure one first needs to write out the cyclically
related terms in the gauge theory traces (i.e. open up the gauge indices temporarily). Then
we will collect the terms which have the first gauge group to the left:

ig1 <¢1Q12@21 + Q12Q2101 — $1Q12Q21 — @12@21(}51) + 192 (@12¢2Q21 - Q12¢2@21) :
(3.5)
Working in an SU(3) basis X! = X, X2 =Y, X3 = Z, this allows us to define the deforma-
tion of the SU(3)-invariant symbol €;;;, as

1 1 1 1 1 1
E{22’) =91 aE§3)1 =92 7E§1)2 =0 ,E£3)2 =02 7E?(,2)1 =01 ,Eéﬁa =91, (3.6)
Here the subscript (1) indicates that the first gauge index in the corresponding terms is
that of the first gauge group. Similarly one can define for the second gauge group:

2 2 2 2 2 2
E£227, = g2 aE§3)1 =401 7E§1)2 = 092 7E£3)2 =—01 7E§2)1 = =02 7E§12’, = —92, (37)

Using these symbols, we can write the superpotential as

W =ig%

UATey (XX XR) BTy (X XTXR) (3.8)

ijk

In this expression, the gauge index on the left is denoted by the subscript n = 1,2,'® and
this uniquely fixes the indices of the remaining terms (i.e. whether X! is Q12 or Q21). We

12This is a statement about the transverse coordinates themselves and is independent of the fact that
they also become N x N matrices when one has multiple branes.
3The index n = 1,2 can also be understood as counting the images of quantum plane due to the orbifold.

- 11 -



see that as far as the quantum plane is concerned the superpotential has split into two
terms, which is of course related to the block structure of our Hamiltonians in each sector.
To complete the picture, one needs to also define the conjugates F*/* which are related
to the conjugate superpotential W = —iX; X ; X F' ik Since all couplings are taken to be
real, we simply take F/ (” ;ﬂ = Ez(;k)
From these tensors we can now reconstruct the Hamiltonian of each sector (2.7)
and (2.11) using the relation
(Ha)j) = B (3.9)
The reason that the Hamiltonian can be directly read off from the superpotential is that at
one loop there is a non-renormalisation theorem at work and only the F-terms contribute.

For instance, for the XY sector (free indices 1,2), we obtain

(%1) 12 = E{% (112)3 = % ) (Hl) 12 = Eg% (211)3 = —9% )

(3.10)
1
(Hl) 21 = E§1§F<11%3 = —91 ) (7‘[1) 21 = Eél?% (211)3 = 9% )
while for the X Z sector (free indices 1, 3):
(Hl) 13 = E£3)2F(113)2 = % ) (Hl) 13 = Efs)ﬂ:‘(‘gll)2 =992, (3.11)

1
(H1) 5, = E:)()l)zF(lfs)2 =—gig2, (M1)%, = ]5:,()1)2]7(311)2 =42,

and similarly for the Y'Z sector. These reproduce the upper blocks of our Hamiltonians (2.6)
and (2.10), respectively. Clearly the lower blocks #Hs arise in the same way using (3.9) for
the second gauge index.

Let us now consider the quantum plane structure of the theory which arises from the
F-term relations. For the XY sector these are

91Q12Q01 = g1Q12Q21 ,  32Q21Q12 = 92Q21Q12 , (3.12)

while for the X Z sector we have

$2Q21 = %Qm% , o 01Q12 = KQ1202 , (3.13)

and similarly for the Y Z sector:

$2Qa1 = %@21051 . 01Q12 = KQ1a¢ - (3.14)

We see that the SU(2) symmetry'? is undeformed in the XY sector (as the factors of g; or
g2 can be factored out), so the R-matrix in this sector is equivalent to the identity matrix
I (its classical value) in the quantum plane limit. However in the other two XY and Y7
sectors the SU(2) symmetry of the N' = 4 theory (and of the orbifold point) becomes
deformed as x moves away from its classical value of 1.

Note that this undeformed and unbroken SU(2) symmetry acting on the XY sector is precisely the
extra SU(2) 1 global symmetry of the Zs quiver we described in section 2.1.

- 12 —



To find the R-matrices corresponding to these quantum planes we will use the rela-
tion [49, 70]

R = 6107 — ¢ Eppn F9™ | (3.15)
where ¢ is a constant which in principle is arbitrary, as any choice will lead to the appro-
priate quantum plane relations. In this way we will obtain two 9 x 9 R-matrices (one for
each gauge group) which reproduce the full set of quantum plane relations above. However
in the following, we will focus on each SU(2) subsector separately, to highlight the differ-
ent features that they exhibit. It will also be convenient to rescale Ej;; and F% in the
following way, which leaves the Hamiltonians invariant:

1 1 1 1 1 1
E%Q?& =1, Eéd)l =K, E?El)Q =1, E£3)2 =k, E§2)1 =-1, Eéﬁg =1,
123 _  —1 231 _ 312, —1 132 _ 321 —1 213 _  —1
F(l) =K y F(l) —1, F(l) =K s F(].) = 1, F(].) =K y F(].) =K s
(3.16)
while those for the second gauge group are obtained as k — 1/k.

XY sector. We already stated that the R-matrix in this sector is the identity matrix
I in the quantum plane limit, however, let us explain how to see this. Applying the
definition (3.15) with ¢ = 1, we obtain an R-matrix for this sector which, through the
relation (3.4) leads to the quantum deformations

QIZQQI — C5126221

K

, and Q21@12 - C?21@12 - K(Qm@w - C5216212) .
(3.17)
as required. Note that this R-matrix is not the identity matrix, and it is not triangular,

leém - @12@21 —

i.e. it does not satisfy the condition Ro; = Ryy. To obtain a triangular matrix, we need
to choose ¢ = k for the upper block, and ¢ = 1/k for the lower block, which reduces
the R-matrix in each block to just the identity, and the quantum plane symmetry in this
sector is simply the Lie algebra of SU(2).!5 This is not surprising, as the orbifold treats
the X and Y fields symmetrically. In order to obtain precisely the deformation of the
superpotential above, one needs to rescale the €;; tensor of SU(2) by 1/k or x depending
on the gauge group.

XZ sector. The R-matrix in this sector can be obtained via (3.15) with triangularity
requiring the choice ¢ = —2%;. Explicitly, the R-matrix R = PR reads

2,
L0 0o 00 0 0 0 1 0 0000 0 O
2
¥ SRR B RS S I
K24+1  Kk2+1 B
R_|0 0 0 10 0 0 0f_|0 0 0100 0 0
o0 0 01 0 0 0 00 0010 0 0
00 0 00 F5 520 0 0 000k —k 0
0 0 0 00 —52 250 00 000K k 0
0 0 0 00 0o 1 0O 0 0 00 O0 0 1
(3.18)

5Note that, as also discussed in [49], the choice of ¢ does not affect the RTT relations defining the
quantum algebra.
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written in the same basis as (2.10), which we identify with the two-site basis X* X7/ in (3.4).
This R-matrix does not satisfy the usual YBE, apart from the special cases k = +1,0. The
R-matrix (3.18) reduces to the identity in each block in the x — 1 limit, as expected.

It is very intriguing to observe that (3.18) is the direct sum of two Felder SU(2)
dynamical R-matrices, as presented in (4.8), for the special parameter values A = (1+7)/2,
n = £+7/4 and with the rapidity fixed to u = % The choices n = 4+7/4 are for the upper and
lower block respectively. For these values, the coefficients of the R-matrix (4.8), normalised
by dividing out by 7(u), reduce to the elliptic modulus k& and its complement k' = /1 — k
related to the modular parameter m = 4x2/(1 + x2)? which, as we will see in section 7,
can be read off from the 1-magnon dispersion relation. Note that, although this needs a
more careful treatment, the value u = % makes sense as the location of the quantum plane
limit on the rapidity torus, being equal to one of the half-periods of the elliptic functions
describing it. For the careful reader we note that for rational models, the quantum plane
limit is w — oo (also referred to as the braiding limit [71]), however that is because the
torus has been decompactified by sending the periods to infinity.'©

Being triangular, the R-matrix can also be factorised as

R=FyFy' = (Fi2) 2, (3.19)
with the twist being given by
1 0000 0 O
00 a B0O000 0 0
0 -Ba000 0 0 :\[’”12,
2V1+k
1
po |0 0 010000 with: (3.20)
00 0010 0 0 .1
00 000a —B0 527\@@
00 0008 a 0
00 0000 0 1

We note that the twist is triangular, i.e. F5; = F1_21, is orthogonal as an 8 x 8 matrix and
has unit determinant. From this twist, taking appropriate care when working with our
truncated tensor product on the three-site basis, one can obtain a coassociator with which
the R-matrix (3.18) satisfies the quasi-Hopf YBE (3.3).

Let us now consider the symmetries of the X Z quantum plane, which in the undeformed
theory are just an SU(2) rotating X with Z. This SU(2) is broken after the orbifold and the
marginal deformation. However, from the above discussion we see that it will get uplifted
to an SU(2), quantum group defined by the RTT relations [53] with the R-matrix (3.18):

R Tk, T, =T, T, RFL . (3.21)

Of course, given an arbitrary matrix R, the RTT relations by themselves are not suffi-
cient to define a consistent quantum group. In particular, the consistency of the higher

16See [72, 73] for a discussion of the various limiting cases one can obtain starting from Felder’s R-matrix.
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order relations in the generators requires the YBE relation for R. Otherwise, requiring
associativity can trivialise the relations. However, since our R-matrix is triangular and
can be factorised via a Drinfeld twist, one can abandon associativity in a consistent way
by working in a quasi-Hopf setting, as was done in [50]. In such a setting, the action of
the deformed generators on the quantum plane can be related to that of the undeformed
ones using the twist, and the quantum algebra can be consistently defined (at the price of
introducing a coassociator as in (3.2) which complicates the formalism somewhat.)

We thus see that, even though the orbifold and the marginal deformation superficially
break part of the PSU(2, 2|4) global symmetry group of N' = 4 SYM, the broken generators
are not really broken when one is willing to work in a quasi-Hopf setting. They are rather
r-deformed and should still be able to provide useful constraints on the theory. We will
leave a more detailed study of the quantum group underlying the X Z sector, as well as its
generalisation to SU(3), and the full scalar sector, for future work.

The main complication in our setting, compared to the A/ = 1 theories studied in [50],
is the non-direct product nature of our state space, i.e. the fact that some combinations
of the fields are not allowed due to the incompatibility of the gauge indices. One would
thus need to work in a truncated state space which makes the construction less immediate.
Work towards elucidating this structure is in progress. For the present work, we desire
to avoid this issue and that is one of our motivations for introducing what we call the
dynamical notation in the next section.

Concluding this section we wish to emphasise the following points. Firstly our results
in this section hold purely in the quantum plane limit. We only obtained the R-matrix
R(u*; k) in a special limit for the spectral parameter u — u*.!” To completely describe our
model and attempt to solve it with the Algebraic Bethe ansatz approach we need to first
obtain the R-matrix as a function of the spectral parameter R(u; k). In the conclusions we
will comment on how one could go about doing that. To fully understand the quasi-Hopf
structure, it is also imperative to compute the coassociator, which will enable us to write
down and check the quasi-Hopf YBE (3.3). Secondly, in order for a quantum system with
quasi-Hopf symmetry to be integrable, the Drinfeld twist F' needs to obey a specific cocycle
condition. In particular, as reviewed in the next section, if F' satisfies a shifted cocycle
condition [27-29] the corresponding R-matrix would satisfy the dynamical YBE. This is
something we have not attempted to check in this current work. We hope to be able to
report progress in this direction in a forthcoming paper.

4 The dynamical spin chain

Even though we do not (yet) have a spectral-parameter-dependent matrix R(u; k), we can
still try to identify the main features it would need to have in order to reproduce our

"In rational or trigonometric integrable systems, starting from the R-matrix as a function of the spectral
parameter, one can obtain the quantum plane limit by taking the spectral parameter to infinity. In elliptic
models the dependence on the spectral parameter is doubly periodic, so it cannot be taken to infinity.
As discussed, the statement above follows if one takes the spectral parameter proportional to one of the
half-periods of the elliptic functions, since the trigonometric and rational cases are reached by taking one
or both (respectively) periods of the elliptic functions to infinity, thus decompactifying the rapidity torus
in one or both directions.
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Hamiltonian. For this we find it useful to introduce the notion of a dynamical parameter,
which we will denote by A. Apart from the fact that a dynamical description of our model
will be much more elegant, it also plays an important role in the theory of elliptic quantum
groups as introduced by Felder [23, 74]. To understand the origins of this parameter, let
us briefly review an important class of statistical mechanical models, the Solid-On-Solid
(SOS) models [75]. For more details, we refer the reader to e.g. the review [76] or the
book [16].
A SOS model is a statistical model defined by a set of Boltzmann face weights, depicted
graphically as:
d c
v W ( dc
a b ab

The parameter u is the rapidity or spectral parameter, and a,b,c,d are known as the

u) . (4.1)

heights. Here we are thinking of a square lattice with the weights associated to each unit
face of the lattice, and their value determined by the heights associated with the four lattice
points surrounding each face. Each model comes with a set of rules as to which heights
are allowed to be adjacent. For instance, in the original Andrews-Baxter-Forrester (ABF)
model [75] neighbouring heights can only differ by 1, i.e. we impose |a—b| = 1 and similarly
for |b — ¢| etc. .. To give a concrete example, let us write down the weights for this case, in
symmetrised form

W( a a—i—l‘u):W( a a—l’u)
at+la+2 a—1a—2

_ 61(2n—w)
01(2n)
W( a a-+1 u)zW( a a-—1 u)
a—1 a a+1l a
(4.2)
_ V0i(2n(a — 1) + wo)61(2n(a + 1) + wo) 61 (w)
01(2na + wo) 01(2n)
( a a—l—l‘ )_91(277a—|—w0—|—u)
a+1 a - 01(2na + wo)
W( a a—l‘ )_91(2na+w0—u)
a—1 a - 01(2na + wy)

We use the theta-function conventions of [77] which are also compatible e.g. with [71].
The parameter 7 is the deformation (or “crossing”) parameter which appears in Baxter’s
elliptic R-matrix for the XYZ model, and wy is a tunable constant. Note that neighbouring
heights indeed only differ by +1. (The weights for all other possibilities are set to zero).

)
(s

The above weights satisfy the star-triangle relation
ZW<fg zw)W(gd Z)V[/(f6
7 a b b c g d
(2o
p bc ag

z— w) , (4.3)
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which can be graphically represented as follows:

The height g is summed over all the values allowed by the 1 restriction and of course
the equation is only non-trivial if the adjacent external heights also only differ by +1.

The dynamical R-matrix. For many applications, including to quantum groups, it is
useful to have a description of the model as a vertex model with an R-matrix. For the
ABF model, such a map was introduced by Felder [23, 74]. As we are in an SU(2) setting
we can define a 2-dimensional basis as

e[l] = <(1)> Cel-1] = <(1’> , (4.5)

and construct an R-matrix Rfi on the product space V @ V as [24]

R(u; —2’!’/d — ZUQ)B[C - d] ® 6[b - C] = ZW<Z lc)

a

u)e[b _d@efa—d. (4.6)

Graphically, we can represent this relation as

c J ‘
U
@ k l
Note that the R-matrix depends on the height d, which is not fixed at a given site but
dynamically determined by the configuration. We will call the combination —2nd —wg = A,

where A is known as the dynamical parameter. Performing this vertex-face map, we find
the R-matrix

40 00
|0 a B0
R =g 4 Tl (4.8)
00 0~
where
_ 0i(2n—w)
01(2n)
VOLA+20)01 (X — 2n) 61(u)
“= BN i) (49)
_ 91()\ :I:u)
SO
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This is Felder’s dynamical R-matrix [23, 74], which has found extensive applications in the
study of elliptic quantum groups.'® It should be clear from the construction that this R-
matrix cannot satisfy the usual Yang-Baxter equation, since the weights in the star-triangle
relation depended on the value of the heights, and in particular two adjacent weights will
have different heights. Instead, as shown in [23, 74], this R-matrix satisfies the dynamical
Yang-Baxter equation:

Ro3(ug — ug; \)Riz(ur — uz; A+ 2nh @) Ria(ug — ug; A)

, ) (4.10)
= ng(ul — U9; A + 2T]h( ))ng(ul — Uus; /\)RQg(UQ — Uus; A + 2?’]h( )) .

We see that the dynamical parameter is shifted in consecutive R-matrices. The shift is
proportional to 27, which is known as the step and h() indicates the Cartan weight of
each index line being crossed. In our SU(2) example these weights are £1, depending on
whether one crosses e[1] or €[2], so the shifts will be by £27. The dYBE can be represented
graphically as follows:

A2nh® T T2 30 A
A2n S0 D =23
\ i=2,3 /
A A-21 Zl R = A2n Zl (D)
(4.11)
4 M2n 3 hO) \ 3
n i=1,2 )
1 3 1 M2 Y A

i=1,2

[\
[\

where X = A+ 2ph® and ' = A+ 2 3. h{). Here we use the convention that (a) an
i=1,3

R-matrix takes the value of the A parameter to its left (as determined by the arrows) and

(b) the dynamical parameter is shifted with positive step as one crosses an index line from

left to right (again as determined by the arrow). In pictures:

J 1
(a) R (us ) =X (b) i —) (4.12)
A+ 2nhi
k l

So in the dynamical YBE, on the left Ri12 and Rs3 “see” the dynamical parameter A while
Ry3 sees )\+2nh(2), while on the right Ri3 sees A while Ro3,R12 see )\+277h(1) and )\+2nh(3),
respectively. This explains the shifts appearing in (4.10).

8However, as mentioned, compared to the standard form of Felder’s matrix we have performed a gauge
transformation which has brought the o coefficients into symmetrised form [78].
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A very similar notation was also used recently in [79] following earlier work [80, 81].
In these works, features of elliptic models, such as the transfer matrices, are mapped to
surface defects in AV = 1 quiver theories, which, conversely, provide a construction of elliptic
integrable models via branes. The setting of [79-81] is very different from ours. They study
supersymmetric indices (which are partition functions on S* x S' and count BPS objects)
in the presence of surface defects. Our study aims to compute anomalous dimensions of
non-BPS single-trace local operators in the planar limit. Nonetheless, these works add
to the conclusion that elliptic models have an important role to play in supersymmetric
gauge theory.

Although clearly the dYBE does not define a completely new structure, as it is implied
by the star-triangle relations of the corresponding SOS models, it brings with it several
advantages, in particular if one is interested in more algebraic aspects. As mentioned, it
allows for the definition of elliptic quantum groups. Also, and importantly for our purposes,
it has been shown to be a special case of the quasi-Hopf YBE (3.3), which arises when the
twist from an initial Hopf algebra satisfies a so-called shifted cocycle relation [27, 29]. In
this case the coassociator simplifies considerably as compared to the general case. As
already discussed in section 3.1, our system has a quasi-Hopf symmetry in the quantum
plane limit, and it will be important to establish (possibly by a quasi-Hopf version of
Baxterisation [82]) whether this quasi-Hopf symmetry also holds away from that limit, i.e.
in the presence of a spectral parameter. Although that would be important by itself, for
practical applications it would be very desirable to bring the model into the dynamical
framework above.

Another motivation for Felder’s R-matrix (4.8) is that it is equivalent to Baxter’s
elliptic R-matrix for the 8-vertex model/XYZ model [15], however it is of 6-vertex form,
a feature typically associated with trigonometric models such as XXZ. Unlike the 8-vertex
form, this allows for the definition of highest-weight states, which is a prerequisite for
the application of the Algebraic Bethe Ansatz. Recall that Baxter, in his solution of the
8-vertex model, tackled this problem via a famous site-dependent change of basis, which
locally brought the R-matrix into 6-vertex form. In the ABA context, this was used in [83]
for the diagonalisation of the XYZ Heisenberg chain. One can think of Felder’s matrix as
already being in the 6-vertex basis, making the application of the ABA straightforward [24,
78], with the main difference to the usual case being the need to keep track of the dynamical
parameter in the transfer matrix.

Let us now turn to generalisations of the ABF model. In the unrestricted case, the
heights are allowed to span all integer values. However, it is interesting to also consider
restricted situations (RSOS models), where the heights take values in a specific range. This
can be achieved starting from (4.2) by tuning n and wg so that the Boltzmann weights
which connect heights inside the chosen interval to heights outside it vanish. It is useful
to picture such a situation in term of an adjacency/incidence graph, where one draws the
allowed heights along with bonds indicating which heights can be adjacent to each other (in
the ABF case, the |a — b| = 1 rule requires them to be consecutive integers). Furthermore,
one can also have cyclic (CSOS) models [84-86] where, instead of vanishing for heights
outside the interval, the weights are periodic, so that we can make an identification such
as Amax + 1 = amin. In this case the heights live on a circle rather than an interval. See
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1 2

Figure 4. Adjacency graphs of the As (left) and Aél) models (right). The heights are labelled by
1, 2, 3. The graph of A3 leads to the Ising model, as the |a — b| = 1 rule means that the lattice
contains a fixed (“frozen”) sublattice consisting of only the height 2, leaving only heights 1 and
3 as dynamical variables (the “up” and “down” spins). The Aél) diagram forms the basis for the
adjacency graphs which are relevant to the dilute vertex models we are interested in.

figure 4 for examples of RSOS and CSOS adjacency graphs for the simple case where there
are only three heights.

As shown in [54], any classical or affine ADE Dynkin diagram provides a suitable adja-
cency/incidence graph for a critical RSOS model. See also e.g. [55-57] for generalisations,
including to adjacency graphs obtained by orbifolding of an initial graph. In the approach
to Afj}l RSOS models of [87, 88], the adjacency graph is given not by the Dynkin diagram
itself, but by the set of dominant weights at level k (the “Weyl alcove” at level k) of the
affine algebra. So for fixed rank of the affine algebra, one can construct arbitrarily large
adjacency graphs labelled by k. These can also be converted to CSOS-type models by suit-
ably tuning the wy parameter to make the weights periodic [89]. We refer to the original
literature, as well as to [90, 91] for the details of the construction.

In the dynamical R-matrix picture, A is not restricted to be integer, and neither is the
step 2n. If 27 is generic we have the analogue of the SOS case. However, one can take
the step to be an elliptic root of unity, 2Nn = ni + no7, where we recall that the theta
functions are antiperiodic under shifts of the argument by 1 and quasiperiodic under shifts
by 7. Depending on the original value of A, one can exploit the zeroes and periodicity of
the theta functions to ensure that shifting A\ a certain number of times will either give zero
weights (RSOS case) or give us back the same R-matrix (CSOS case).

It should be noted that choosing root-of-unity values for 27 leads to special features
in the Bethe ansatz, similar to those discussed in [92] for the eight-vertex model. In
the dynamical framework, these features, in particular degenerate eigenvectors and roots
forming complete N-strings, are discussed in [78].

Dilute RSOS models. Let us now turn to a special class of RSOS models, the dilute
RSOS models [93-99]. These are models where adjacent heights are allowed to also take
equal values, i.e. one modifies the adjacency condition to |a —b| < 1 (and similarly for (b, c¢)
etc). One can consider this as allowing paths from a given node that loop back to the same
node (although this is not often indicated in the notation). This means that on top of the

weights of ABF type (4.2) there will now exist Boltzmann weights of type

d d+1 d d dd+1 d d
W(dildil%&’w<dd11%0’w<d d 10’w<dild

4 d dd+1 dd
‘W(dildilko’W<ddilk0’w<ddTQ’

(4.13)
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The name “dilute” comes through the link to loop models: Following [96], one can represent
the ABF Boltzmann weights in terms of the following two tiles:

W(ZZ u): d@b = @ n @ (4.14)

The lines on the tiles indicate domain walls separating different heights. Thus for the first
tile we have a = ¢ and for the second b = d, and one can check that the ABF weights (4.2)
fall under one of the two cases.'® If one now considers a two-dimensional lattice model with

the two tiles above as building blocks, there will be regions of different height separated by
domain walls. Each edge of the dual lattice will be part of a domain wall. Thus the ABF
model is called dense. On the other hand, the dilute Boltzmann weights above include the
two ABF tiles but also tiles with one or no lines. The most general choice leads to the
following set of 9 tiles:

R D N N ANl

(4.15)
See [90, 101] for recent discussions of the dilute loop models based on the tiles above and
more details on their relations to the RSOS and vertex models.

After this rather lengthy review, let us now explain the relevance of RSOS models and
the dynamical framework to the SU(3) sector of the spin chains arising from our quiver
gauge theories, as discussed in section 2. More specifically, in the next section we will
argue that one can obtain important insights about our Hamiltonians by considering the
underlying vertex model as a dynamical vertex model (one where the couplings depend
on the value of a dynamical parameter, as is the case for Felder’s R-matrix), and that
this vertex model can be mapped, at the level of the adjacency graph, to a dilute RSOS
(or, more specifically, CSOS) model. We do not address the question of whether suitable
Boltzmann weights exist that realise this adjacency graph, but specifying the required
features will provide important input in the search for such weights.

4.1 The SU(3) sector as a dynamical 15-vertex model

Let us summarise the main features of the one-loop spin chains coming from the holomor-
phic scalar sector of the marginally deformed Zo quiver theory. We saw that the three
SU(2) sectors of the orbifold point look rather different after the deformation. In the XY
sector we obtain an alternating ferromagnetic Heisenberg spin chain, where the coupling is
either k or 1/k depending on whether the Hamiltonian is acting on even-odd or odd-even
sites. These types of spin chains have been studied in the literature (e.g. [65, 66], see also
section 5 for more references). However, the spin chain in the XZ (and equivalent Y Z2)

19The relation is not 1-1, as there are weights where both a = ¢ and b = d. A notation for the tiles which
makes them match the weights more precisely was used e.g. in [100].
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sector is of a rather different type. Since the Z field does not alter the node of the quiver,
Z insertions on the spin chain do not change the gauge coupling. In the language of the
spin chain, crossing a Z field does not change the Hamiltonian. We will now explain why
this makes this sector dilute, where we use the term by analogy with the dilute RSOS
models [97], which we briefly reviewed above.

Following the intuition we have gained from the above discussion of the relation be-
tween dynamical spin chains and RSOS models, we will now describe why our spin chains
coming from the Zs quiver theory should be understood as dynamical. Let us assume that
a vertex model exists, whose R-matrix R(u;x) = R(u; \) produces the Hamiltonian of our
spin chain in the SU(3) sector. This R-matrix should depend on the ratio of the gauge
couplings, which we have denoted x. When crossing one of the bifundamental fields, s
becomes exchanged with 1/k. In the dynamical spin chain language, crossing these bi-
fundamental fields should take A — X & 2n. Thus, if k(A £ 2n) = 1/k()), the model has
precisely the behaviour we require:

R(u;k) = R(u;\) < R(u;r™') = R(u; A £ 21) . (4.16)

What is more, our model is such that crossing two bifundamentals is equivalent to returning
to the original coupling constant (and thus dynamical parameter ). So one needs that
A £ 4n ~ A, implying that the R-matrix must have this periodicity

R(u; A) = R(u; A+ 4n) . (4.17)

If we now assume that there exists a vertex model with this R-matrix, we can map it to
an RSOS model which is necessarily cyclic (CSOS).

Furthermore, considering that crossing an adjoint Z field does not alter the gauge
group, the R-matrix should be such that A does not change when crossing a Z field. In
RSOS model language, this means that we should allow adjacent heights to be equal, and
this means that the model is dilute, as reviewed above. All in all, in figure 5 we summarise
what the properties of all the components of the yet unknown R-matrix R(u; A) should be
with respect to how A shifts across each field. In the language of vertex models we draw all
the vertices of the SU(3) sector of the Zs quiver theory vertex model and explicitly indicate
their A dependence.

Moreover, in figure 5 we show how our vertex model (which should produce our R-
matrix R(u;A)) can be put in correspondence with the Boltzmann weights of a dilute
RSOS model (and thus also a dilute loop model as discussed above). Working in the
X, Y, Z basis, this identification is the unique one which respects the above periodicity and
adjacency requirements as well as all the other symmetries of the problem.

Note that we have ordered the vertices so that they match the ordering in (4.15). In
particular, the first 6 vertices (and corresponding Boltzmann weights) match with the first
two “dense” model tiles (which can easily be seen to form a closed sector). In our model
these would be the R-matrix components leading to the Hamiltonian of the XY sector.
Therefore, in the following we will call the XY SU(2) sub-sector dense. The remaining
vertices (i.e. those of the X Z and Y Z sectors) can be seen to correspond to the dilute model
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Figure 5. The identification of the Boltzmann face weights of a dilute Agl) -type model with those
of a dynamical 15-vertex model. For the specific Zs quiver theory we are studying, the functional
dependence of the weights on d should be such that d4+2 ~ d, or in terms of the R-matrix A\+4n ~ A.

tiles. In particular, lines on the edges of tiles correspond to crossing an X or Y field, while
absence of a line corresponds to the Z field. What is more, in the RSOS language, edges
with equal adjacent heights correspond to crossing a Z field, while incrementing the height
by +1 along an edge of a weight corresponds to crossing an X or Y field, respectively. The
empty tile corresponds to the four-Z vertex. For this reason, we will call the XZ and Y Z
SU(2) sub-sectors dilute.

In addition, note that our model cannot contain the vertices XY — ZZ YX — ZZ
and their conjugates, which would correspond to the fourth and fifth tiles in (4.15), as they
are not allowed by the U(1),. symmetry of the V' = 2 superconformal algebra.?’ In the dilute
model language, these tiles can be obtained from the second and third ones by crossing
symmetry. We thus conclude that the corresponding loop/RSOS model is not crossing
symmetric. However, this does not mean that the vertex model is not crossing symmetric.

The complete set of tiles (or the additional Boltzmann weights in RSOS language)
in (4.15) would lead to a 19-vertex model, which is related to AgQ) and the Izergin-Korepin

20GSuch vertices do appear in A’ = 1 SCFT models. For instance, the ZZ(X )3 term appearing the general

Leigh-Strassler superpotential (which played an important role in the study of [50]) leads to vertices of
this kind.
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Figure 6. The adjacency graph of the N' = 4 theory seen as a (trivial) RSOS model. All vertices
are identified. Here all fields are in the adjoint of the (single) gauge group and the model is not
dynamical.

model [102]. That dilute model is known to have a solvable elliptic extension [95]. Our
actual set of tiles/weights makes our model more like the 15-vertex model, which is related
to the adjacency diagram of the Agl) algebra. For details of this model we refer to [90,
91, 101]. These references, however, are mostly concerned with the trigonometric case. An
elliptic extension should be obtainable using the relation to the Agl) RSOS models [89,
103, 104]. Whether such an extension has all the relevant features required to produce our
specific Hamiltonians is the subject of ongoing study.

Having identified the overall structure of our model with that of a dilute RSOS model,
the final step would be to choose the dynamical parameter and step 27 such that A ~ A\+4n
(which also implies A + 217 = XA F 27n). Then there are effectively only two values of the
dynamical parameter, A\ and X = A + 27. This means that there are two sets of vertices
in the diagram above, one for \ to the left and one for A to the left. If the parameter s is
taken to depend on A such that k(\') = 1/k()), we get exactly the needed structure, i.e.
that the couplings in the Hamiltonian alternate depending on the gauge group to the left

of each interaction vertex.2!

The next crucial step, before we are ready to write down the weights of our model,
is to prescribe the adjacency graph of our RSOS model. In particular, the specific set
of Boltzmann weights should be precisely such that they capture the symmetries of the
adjacency diagram of our Zs quiver. We will explain why this graph can be simply read
off from the quiver. In A/ = 2 language (where we have a 30-vertex model involving the
six fields ¢1, o, Q12, Q21, Q12, le) the adjacency diagram is precisely our quiver depicted
in figure 1. This is because we can only make single trace operators (which correspond
to the spin chain states) following the arrows of the quiver. In the dynamical N' = 4
language (where we have a 15-vertex model and the three fields X,Y, Z) we keep track of
the gauge groups by explicitly denoting a blob in the quiver by its corresponding dynamical
parameter \. In a picture more typical in the RSOS literature, the same quiver/adjacency
diagram can be drawn as in figure 7. For comparison, in figure 6 we show the corresponding
adjacency diagram for the N' = 4 SYM theory. For N' = 4 SYM the adjacency graph is
a single triangle with the dynamical parameter A being the same at all the nodes. It

2'Note that with this restriction the fields X and Y play exactly the same role. However, the formalism
can easily be generalised to e.g. Zi quivers, in which case there are k nodes, and X cycles through them in
a clockwise fashion, while Y goes anticlockwise. This corresponds to X shifting the dynamical parameter
upwards while Y downwards, and the need for k steps to return to the original node.
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Figure 7. The adjacency diagram of the dilute RSOS model associated to the Zs quiver theory, in
the dynamical N' = 4-like picture. Vertices of the same colour/height X are identified. This is the
dual graph to the brane-tiling diagram of the quiver theory.

is interesting to note that for both examples in the language of brane tiling [58-61] the
adjacency graph is the dual graph to the bipartite graph describing the quiver theory.

To help clarify how the dynamical parameter, together with an appropriate choice of
step, can lead to an alternating chain, in appendix C we show how to obtain an alternating
XX model from Felder’s dynamical R-matrix by choosing 2n = 7/2, with 7 the imaginary
period of the theta functions in the R-matrix. This is a dense-type model which is quite
similar to our XY sector, however, being a free-fermion-type model, it fails to capture the

contribution of the ¢, ® o, terms which are required for our XXX-type Hamiltonian.??

4.2 The dynamical Hamiltonian

Answering the question of whether there exists a suitable R-matrix which is relevant to the
models at hand is beyond the scope of this paper, but we hope to report on it in the near
future. Part of our motivation for discussing the dynamical parameter above is simply that
it provides us with a very natural language with which to describe the spin chains under
study, and, we expect, similar spin chains one might want to consider for larger sectors in
the Zs quiver, or for ADE quivers in general. For alternating chains such as the XY sector
one can of course assign different Hamiltonians on even-odd and odd-even sites and study
them without needing the dynamical parameter. But for dilute-type sectors where different
fields affect the Hamiltonian in different ways (e.g. as in the X Z sector where crossing a Z
field leaves x invariant while crossing an X field takes K — 1/k), the dynamical parameter
appears to be very helpful in organising the computation. There is always the alternative of
working in the N' = 2 picture, with the 8 x 8 Hamiltonians (2.6) and (2.10) but this carries
its own problems as the multiparticle basis is not a direct product of the single-particle
basis (e.g. combinations such as Q12Q12 are not allowed by the gauge indices). Working
in what we call the dynamical N = 4 picture, with the dynamical parameter tracking the
gauge group at each site of the chain, any combination one writes is automatically correct.

So we can now summarise the Hamiltonians in the two sectors of relevance as follows.

22We hope that no confusion will arise between our use of XY and X Z for the different SU(2) sectors of
the gauge theory, and specific spin-chain models like XXX or XX.
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XY sector:

0 0 0 0 00 00O
0 k! —k710 0 k —k 0
") 0-x1 k10 and - H(X) 0—-k k 0 (4.18)
0 0 0 0 00 00O
XZ sector:
00 0O 00 00
0k —10 0kt —-10
A) = d N 4.19
RN = 1o g g ad HXI=15 1 L o (4.19)
00 0O 00 00

It is worth noting here that a standard way to obtain alternating-type Hamiltonians
in an Algebraic Bethe Ansatz framework is to introduce inhomogeneities (reference values
of the spectral parameter at each site), and take their values to alternate as one moves
along the chain. However, this typically leads to longer-range Hamiltonians (see e.g. [105],
or the recent work [106] and references therein) while our model is nearest-neighbour (at
the one-loop level we are working with). This, combined with the fact that the X Z sector
Hamiltonian is not alternating, being determined by the number of X fields one has crossed
before reaching a given site, is what leads us to the dynamical picture described above.

In the next section we will study the 2-magnon problem for the XY -sector Hamiltonian,
and in section 6 that of the X Z-sector Hamiltonian above.

5 The “dense” XY sector

Let us now focus on the Heisenberg-like Hamiltonian (4.18) which describes the XY sector.
As discussed, we characterise this sector as “dense” since the dynamical parameter shifts
every time we cross a field. Since the shift is the same regardless of whether the field is an
X or a Y, the dynamical parameter will alternate between two values A and X\, and thus
the Hamiltonian will be alternately H(\) or H()\') given in (4.18).23 So the net effect is
that of an alternating bond Hamiltonian.

Choosing the convention that )\’ is on even sites and A on odd sites, H, will act on
even-odd sites while H, will act on odd-even sites (see figure 8). We can make this explicit
by writing the Hamiltonian as

00 00 00 0 0
0 k =k 0 0 1/k —1/Kk0
= - 5.1
Heo 0—n ko T 0-1/k 1/k 0 (5:1)
00 00 00 0 0

Alternating nearest-neighbour chains such as this have been studied in [65, 66]. In
fact the discussion there was more general, as they considered not only bond alternation

23This behaviour is specific for the Zy quiver case. For Zj, quivers, where we would expect k— 1 parameters
i, the X and Y field would shift them differently.
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Figure 8. A section of the alternating bond spin chain for the XY sector. We emphasise the
alternating nature by showing the bonds between lattice sites as a dashed line or a thick line.

but also spin alternation (e.g. spin 1/2 alternating with spin 1). The dispersion relations
and overall treatment of the chains are similar in both the bond and spin alternation case.
There are also known materials which exhibit such alternating ferromagnetic behaviour, see
e.g. [107] for an example with bond alternation and [108] for a case with spin alternation.?*

The works [65, 66] mostly studied the 2-magnon problem. The 3- and multi-magnon
problems were considered in [109, 110], without, however, making use of a Bethe-type
approach but rather the recursion method (e.g. [111]) which is applicable regardless of
integrability. A long-wavelength approximation to this chain, which might be relevant for
comparisons to the string sigma model side, is discussed in [112].

Explicit diagonalisation of the alternating Hamiltonian for short chains reveals that the
degeneracies of the eigenvalues are exactly the same as that for the XXX model at k = 1.
Since the Hamiltonian is invariant under x — 1/k, without loss of generality we can take
k < 1. As k is decreased from 1, the energies are modified but there is no splitting. This
implies that the deformation preserves the symmetries of the XXX model. Some energy
levels do cross, however crossing only happens between states of different magnon number,
thus they do not mix as the magnon number is a conserved quantity. An example of how
the spectrum behaves as a function of & is shown for the L = 6 periodic chain in figure 9.
As a check of our solution of the 2-magnon problem in the following, in section 5.3 we will
compare the explicit diagonalisation to the 2-magnon energies and find exact agreement.

We will now proceed to study the coordinate Bethe ansatz for this alternating chain.
We start by noting that there are two equivalent pseudovacua, |--- XXXXX---) and
|---YYYYY .- ) which have zero energy. We will choose the X vacuum as a reference
and consider Y magnon excitations on top of this reference state. Following in large part
the techniques outlined in [65, 66], we will study the diagonalisation of the 1- and 2-magnon
Hamiltonian for this alternating chain.

5.1 One magnon

Let us start by considering a single Y magnon in the X vacuum and proceed to solve the
one magnon problem H|p) = Ei(p)|p). Due to the alternating-bond nature of the spin
chain, there will be two equations to solve, namely, for Y on even sites and for Y on odd
sites. Denoting these states by |2r) and |2s + 1), the equations are

(m+n_1) 12r) — w1 2r —1) — K |2r + 1) = E1 |2r) and

(5.2)
(4 w7") |25+ 1) = k[2s) — k7125 4 5) = By |25+ 1) .

24Let us remark that the literature on antiferromagnetic alternating chains is much more extensive, as
well as that on chains with alternating antiferromagnetic/ferromagnetic bonds.
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L=6 alternating XXX chain

0.9 0.8 0.7 0.6 0.5 0.4

Figure 9. The spectrum of the periodic (untwisted sector) L = 6 alternating chain as a function of
k. k=1 is the standard XXX Heisenberg model. Green denotes 1-magnon states, blue 2-magnon
states and red 3-magnon states. The line starting at £ = 4 is a degenerate 1-magnon and 3-magnon
state. There is also a 1-magnon state at E=0. We have plotted down to x = 0.4 for clarity. As k
decreases further, the eigenvalues bunch into groups with limiting values of 6/k,4/k,2/x and 0.

We will therefore take for our ansatz a superposition of a single Y excitation on odd and
even sites

p) =D w0+ D> wo(O)l6). (5-3)

(€27 0e27+1

This leads to the following equations:

K (we(?’”) — o(2r — 1)) + H(¢e(2r) — Po(2r + 1)) = E1(p)ve(2r), (5.4)

and

H(¢o(25 + 1) - %(28)) + Kﬁl(wo(QS + 1) - %(25 + 2)) = El (p)i/)o(QS + 1) ) (55)
which can be solved easily by the Bethe-type ansatz
¢e(€) = Ae(p)eipﬁ’ ¢O(€) = Ao(p)eiM? (5'6)

where the ratio between the even and odd amplitudes is fixed to be

Ao(p) eP\/1 4 K2e—2p

rp;R) = =+ - 5.7
R =4 =T Vis e (5.7)
The eigenvalue of the eigenvector (5.3) is
1 1 -
El(p):El(p;H):E+/€:|:;\/<1+K2)2—4/€2SH1 p. (5.8)

~ 98 —



2(r+1/K) |
1]

Optical branch

2 (nl—n){

Acoustic branch

0 /2 m

Figure 10. A plot of the 1-magnon energy F; (blue line) for k < 1, as compared to the XXX
energy EXXX = 2(1 — cosp) at k = 1. The gap between the branches is 2(1/x — k), and the
maximum of the energy is 2(k + £~ 1).

Similarly to [65, 66], we will call the negative branch of the square root the acoustic branch
and the positive one the optical branch. The acoustic branch is the one which includes the
zero-energy state E1(0) = 0. As can be seen in figure 10, as & is tuned away from 1, a gap
of magnitude 2(1/k — k) develops between the branches at the boundary of the Brillouin
zone, which is at p = 7/2. Therefore, scattering states are confined either to the lower
(“acoustic”) or upper (“optical”) branch.

Note that by a choice of branch cut we can also bring the energy eigenvalue to the form

1 1 . .
Ei(p;r)=r+—=* f\/l + I€26_2Zp\/1 + K2e%ip . (5.9)
K K

In this section we will choose to use the dispersion relation in this form. Some motiva-
tion for this will be discussed in section 7. Without loss of generality we will work with
the acoustic branch, however when considering specific solutions (such as in section 5.3)
magnons belonging to both branches need to be considered (as well as solutions with com-
plex momenta which can lead to energies between the branches.)

We observe that the energy is even under reflection of the momentum, while the ratio
function is inverted:

Ei(=p; k) = Ex(p;k) , r(=p;k) = (5.10)

r(p; k)
Similarly, the energy is invariant under the Zo transformation x — 1/k, while the ratio is

again inverted:
1

o (5.11)

Ei(p;1/k) = Ex(p;k) 5 r(p;1/k) =

This behaviour of the ratio function is natural, since the Zs transformation exchanges the
gauge groups and thus the even and odd sites of the chain. Thus, the energy eigenfunction
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is also an eigenfunction of the Zy symmetry k — 1/k:

Zalp) =

T(pl; - (5.12)
In the following, we will work with a fixed value of x, so where no confusion can arise we
will simply write r(p) = r(p; k).

In the orbifold limit x — 1, the alternating-bond behaviour disappears, as both Hamil-
tonians reduce to the well-known ferromagnetic XXX Hamiltonian. This fact is also re-
flected in the dispersion relation reducing to the standard XXX form and the ratio between
even and odd sites becoming trivial:

E1(p;1) = 2(1 — cos(p)) = 4sin®(p/2) , r(p;1)=1. (5.13)

Note, however, that even though the Hamiltonian is that of the XXX model, the orbifold
limit is not equivalent to N/ =4 SYM as one also needs to include the twisted sector. The
orbifold limit and the corresponding Bethe ansatz have been discussed in detail in [35-38].

We will now proceed to the 2-magnon problem which, as we will see, exhibits several
novel features compared to the XXX case.

5.2 Two magnons

Following the treatment of [65, 66], we will organise the eigenvalue problem for two magnons
into non-interacting and interacting equations. The difference from the standard analysis
is that the equations depend on whether the magnons are at even-even, even-odd, odd-even
or odd-odd sites. The non-interacting equations for even-even and even-odd sites are

2(k+r7Y) |2r2s) — KT H(|2r—1,25) + |2r,25-1)) — K(|2r+1,25) + |2r,25+1)) = E |2r,2s) and
2k4K"1) |2r2s+1) — KT (|2r-12541) + [2r25+2)) — K(|2r+1,2541) + |2r25)) = Fy |2r2s41)
(5.14)

and the odd-even and odd-odd cases can be obtained from these by taking x — x~ .

There are two interacting equations, depending on whether the neighbouring magnons are
at even-odd or odd-even sites:

261 |2r 2r +1) — k120 —1,2r 1) — k7|27, 20 +2) = Eo|2r,2r4+1) and

5.15

26 12r—1,2r) — Kk |2r—2,2r) — k |2r—1,2r+1) = Ey |2r—1,2r) (5.15)

Since the non-interacting equations are simply sums of the 1-magnon equations, it is
easy to check that an ansatz of the type

|p1,D2) :Zd)@e(%, 2s) |2r,2s)+ Z Yeo(2r,25+1) |27, 25+1)
r<s r<stl

+ ) thoe(2r—1,25) [2r—1,25)+ Y thoo(2r+1,25+1) [2r+1,25+1) ,

r<stl r<s

(5.16)
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where (with ¢;, ¢ being even or odd as specified by the indices on 1)

Vee(l1,02) = Ace (pl,p2)eiplél+ip2[27
Yeo(l1,02) = Aeo(p17p2)ez‘plzl+ip252’ -
Yoe(l1,02) = Ave(py, pa)ePrirtipte, ‘
Yoo(l1,02) = Ago(pr, p2)ePriitipetz

and where the coefficients are fixed in terms of Ag.(p1,p2) as

Aco(p1,p2) = r(p2)Ace(p1,p2) ,
Aoe(p1,p2) = 7(p1) Ace (1, P2) (5.18)
Aoo(p1,p2) = T(pl)r(p2>Aee(p17p2) >

solves the non-interacting equations, with the additive eigenvalue Fs(p1,p2) = E1(p1) +
E1(p2). To solve the interacting equations, the usual Bethe approach would be to add to
the above terms also those with swapped momenta, i.e. with e®1P2+#2P1 in the exponent.
However, in this case this does not lead to a solution, and we will need to enhance the
Bethe ansatz (5.16) to obtain a solution.

5.2.1 Centre-of-mass solution

One way to improve on (5.16) is by adding, apart from swapped terms, also contact terms
to the wavefunction. As we will see, this will indeed provide a solution, however only in
the centre-of-mass frame where p; 4+ ps = 0. The origin of these contact terms will become
clearer in the next section, after we solve the more general case of p; + ps # 0.

So we will now write

p1,p2) =D tee(2r,25) |2r,25)+ Y theo(2r,25+1) |2r,25+1)
r<s r<s

(5.19)
D oe(2r—1,25) [2r—1,25)+ > hoo(2r+1,25+1) [2r+1,25+1) ,
r<s r<s
where ' ' 4
wee(elvg ) ee(pl p2) ipLlr+ipzle + Aee(p27p1)elp2€l+lp122
?ﬁoo(fl,f ) oo(pl p2) iprbrFipzts + Aoo(p27p1)eip2Z1+ip1€2
Yeo(l1,02) = Aco(p1, p2)eP P22 (1 + 64 11 4, Ap1,p2)) (5.20)

+ Aco(p2, p1)eP2 TP (14 64,41 0, A(p2, 1))
Yoe(£1,02) = Ape(p1, pa)eP T P22(1 4 6, 11 0 B(p1, p2))

+ Aoe(p2, p1)eP2 TP (1 4 6y 41 0, B(pa, p1)).
We have locally enhanced the wavefunctions for .., ¥, for nearest-neighbour terms by
adding general coefficients A, B which play the role of contact terms. Note that we are
not assuming that A(pa, p1), B(p2, p1) are related to A(p1, p2), B(p1,p2) by permuting the
momenta, so we have four independent contact terms. At this stage we have not imposed
the CoM frame yet (so we keep ps in the notation for now) but we will soon see that the
condition po = —p; is required for consistency of the ansatz.
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Factoring out the overall coefficient Ag.(p1,p2), we can write the wavefunctions as

Vee (01, l2) = ePrOFP2le 1 G(p) po)eiP2bitivits

Yoo(l1,2) = 1(p1)r(p2)e™ P22 4 v (py)r(p2) S(p1, pa)eP> P12

Veol(l1, ba) = r(p2)ePraTiP2t2(1 4 801 +1,00A(P1,2))
+7(p1)S(p1, p2) eI (14 Gy 1,0, A(p2, 1))

Yoe (U1, 42) = 1(p1)eP TP (14 65y 11 4, B(p1,p2))
+7(p2)S(p1, p2) eI (1 5, 11,0, B(p2, p1)).-

(5.21)

where we have defined S(p1,p2) = Aee(p2,p1)/Ace(p1,p2). We thus need to determine
S(p1,p2) and the four contact terms A(p1,p2), A(p2,p1), B(p1,p2), B(p2,p1) in order to
obtain a solution.

Next-to-nearest neighbour magnons. The first thing to consider when adding con-
tact terms that only arise at nearest-neighbour sites is that they will jump out to the
next-to-nearest neighbour terms and enter the even-even and odd-odd non-interacting equa-
tions (5.14) when s = r + 1. However, we have already computed the eigenvalue for the
non-interacting equations, which of course includes this case. To not spoil the eigenvalue
that we found, we will need to constrain the contact terms. Looking at the (2r,2r + 2)
equation, we find the constraint

A(p,p2) = —Hz@ei(pl+p2)8(p1,p2) : (5.22)
r(p2)
Similarly, from the (2r + 1,2r 4 3) equation, we have

A(p1,p2) = —RQMG’i(pl+p2)B(p1,p2) : (5.23)
7(p2)

These equations can only agree if K = p; 4+ ps = nw, n € Z. We will choose n = 0 to keep
K in the first Brillouin zone K € (—n/2,7/2]. This leads to a single constraint:

Ap,—p) = 2L gy ). (5.24)

We will thus restrict to the centre-of-mass case for the rest of this section.

Interacting equations. Substituting the ansatz (5.20) together with (5.24) in the in-
teracting equations (5.15), we can solve for Ac.(—p,p) in terms of A..(p, —p) in each case
to find an expression for the S-matrix S(p, —p). We find

2P (B(p, —p)K*(2 — Ear) — (B(p, —p) — e’ P(Ear — 2) +2)

(eo) ) —

from the even-odd equation, while the odd-even equation gives

e 2P (—(1+ B(p, —p))e*P(Ey — 2k) + k(=2 + B(p, —p) k(2K — E»)))
Ey (1+ B(—p,p)(1 + €?Pr2) — 2x(1 — 2P + B(—p,p)(1 + e2ip/£2)))( )
5.26

S (p, —p) =
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To keep the expressions compact we write Ey for the centre-of-mass energy Fa = 2(k +
1/K) — 21 + K2e2iP\/1 + K2e~ 2P,
Of course, the two expressions for the S-matrix need to agree. Setting them equal we

can solve for B(—p,p) to find
B(—p,p) = F(p)B(p,—p) + G(p) (5.27)

B (k% + €?P) (E3k + Eo (k? + 1) (=2 + €*P) — 4k (=1 + %))
) = 2y (B () 1 By (<2 4 1) (1 5 260) — an (1 4 cFyy (O28)

Ey (k% — 1) (=1 + e'iP)
(14 k2e2P) (E3ke?P — Fy (k2 + 1) (=1 4 2e%P) 4 45 (—1 + €2P))
Substituting this solution for B(—p,p) into either of the S-matrices above we find that

G(p) = (5.29)

the dependence on B(p, —p) cancels out and we obtain our final S-matrix in the centre-of-
mass frame:
e~ 2P (E2k (—e%P) 4+ By (k? + 1) (=1 + 2e%P) — 4k (=1 + 2P
Scon (p, —p) = ( 2E2( ) . ( ) 7 ) (2‘ ) (5.30)
5k + Eo (k2 + 1) (=2 + e?) — 4k (—1 + e?'P)

In section 5.3 we will show, for short closed chains, that the energies obtained by solving the

centre-of-mass Bethe ansatz with this S-matrix correctly reproduce the energies determined
by explicit diagonalisation.

Final form of the contact terms. At this stage, looking at our ansatz (5.21) evaluated
in the K = 0 frame, the only term left to determine is B(p, —p) which appears in the direct
even-odd (after using (5.24))and odd-even terms, as everything else is expressed in terms of
it (and G(p) which was fixed above). However, now that we have S(p, —p) we can check that

B(=p.p) = — 535 S0, —2) 7 Bp, —p) + G(p) (5.31)
Noting that the ratio between the swapped and direct terms, for o = ¢ + 1, is
r(p2)S(p1, )1t 1 4 R
p)entmE 7 T2 gpt B s p e (552)

we find that the B(p, —p) term coming from (5.31) precisely cancels the B(p, —p) term in
both the even-odd and odd-even wavefunctions.?> We are then left with only the G(p)
contact term. Recalling also that r(—p) = 1/r(p), we can write the final solution of the
XY-sector 2-magnon problem in the centre-of-mass frame:

Yee(l1,09) = eipli+i(—p)ta + S(p, _p)ei(—p)Z1+ip£2

Yoo(l1, 02) = etpliti(=p)la | S(p, _p)ei(fp)[1+ip@2)

(5.33)

Yoe(l1, ) = 7(p)ePaTi-Pl2 S(p, —p)e'TPOTPE(1 45, 1 4,G(p))

L
r(p)
1 . 4 . , 2
_ = iplit+i(—p)le o i(—p)l1+ipla 1
el ) = e D)8, -p)e (1= 81 5000 )

Z50f course, this cancellation means that the ansatz (5.21) was too permissive and we could have started

with a more restrictive ansatz, with a contact term only in the direct or only on the swapped wavefunctions.
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Note that we now have a contact term only in the swapped parts of 1,e and ,. However,
by their nature the placement of contact terms is ambiguous and we could for instance
move them to the direct terms. Noting the identity

S(p,—p)G(p)/r(p) = G(—p)e *"r(p) , (5.34)

an equivalent form of writing the solution is as follows:
Vee(l1,02) = ePli+i(—p)t2 + S(p, _p)ei(fp)€1+ip£2
¢00(51’€2) — 6ip€1+i(*?)€2 + S(p, _p)ei(fp)€1+ip£2)

o 1 . .
Voe(l1,La) = r(p)eP AP (1 — 6y, 11 4,G(—p)) + pangel V2 —p)e!PIFit:

()
Veo(l1,4) = L6"’341“(_’))62(1 + 00, 11,0, K7 (9)2G(—p)) + 7(p)S(p, —p)e TP TP

r(p)
(5.35)
This final form will be useful when recovering the contact terms from the general solution
in appendix A.

At this point, if we were only interested in 2-magnon excitations we would be done,
since in string theory we need to impose the zero momentum condition. However, we wish
to solve the chain for arbitrary 2-magnon centre-of-mass momentum K, as that would be
necessary if we were to feed the solution into the three-magnon problem at a later stage.
Therefore, starting from the next section we will study how to solve the 2-magnon problem
for K # 0. Apart from exhibiting several interesting features, our solution will also shed
light on the origin of the centre-of-mass contact terms, which were introduced by hand.

5.2.2 General solution

To solve the 2-magnon problem beyond the CoM frame we will follow the work of [65, 66]
on alternating chains. As usual for the coordinate Bethe ansatz, one starts by splitting
the eigenvalue equations into non-interacting and interacting ones. The non-interacting
ones are those involving states where no two magnons are next to each other. First one
finds all solutions of the non-interacting equations (all the values of the momenta p; and
p2 that solve all those equations with given energy E and total momentum K'). One then
combines them appropriately to solve the interacting equations. The new feature in [65, 66]
compared to more standard spin chains is that there is more than one set of momenta p1, ps
giving the same F and K. These additional momenta also need to be added in order to
obtain a solution of the interacting equations.

One can also think of the above in terms of the formalism of [67], where apart from
the usual Bethe swap of momenta one allows a discrete number of additional momenta.
(In that work the additional momenta were needed for the 3-magnon problem, but in our
case we see the need already at the 2-magnon level).

For the non-interacting equations (5.14) we make the same ansatz as (5.19), including
the relations (5.18). The difference is in treating the interacting equations (5.15). Following
the treatment in [65, 66|, instead of contact terms as in (5.20) we will add an extra set
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of momenta (kj, k2) which also correspond to the same total momentum K and energy
E,. By adding these terms (and their permutations) to our ansatz, we will show that the
interacting equations are satisfied without any constraints on the momenta.

The additional momenta. The main important feature of the type of dispersion re-
lation (5.8) is that one can achieve the same 2-magnon energy with more than one set of
momenta. To see this, let us consider the solutions of the equations

K =pi+p2 and Es(p1,p2) = Ei1(p1) + Ea(p2) » (5.36)

for given total momentum K and total energy F,. Rewriting (5.8) slightly, we have

Es(p1,p2) = 2(k+ 1/k) — \/1 + k% + 2K2 cos(2p1) — \/1 + K%+ 2k2cos(2p) . (5.37)

For concreteness we focus on the lower branch for both magnons, however the discussion
below applies to all choices of branch (as we will be removing the square roots by squaring
repeatedly). Following the discussion in [65, 66], in order to solve (5.36) we first switch
from pi, po to the total momentum K and relative momentum g,

p1 — P2
5 .

K=pi+p: , q= (5.38)
Writing p; 2 = K/2 % ¢, expanding cos(2p; 2) = cos K cos 2¢ F sin K sin 2¢, and removing
the square roots by squaring twice, we find that there are two solutions (beyond the usual
swapped solutions ¢ — —¢q) for cos(2¢q) given a fixed E2 and K. The sum of these two
solutions is:

(By —2(k+1/k))? cos K .

2sin? K (5.39)

cos(2q1) + cos(2qz) = —

Let us assume an initial set of momenta (pi,p2) with sum K = p; + pe and difference
2q1 = p1 — p2. Then there will be another solution which we will call (ki, k2), with the
same K = ki + ko but with difference 2¢s = k1 — ko, given by

K

T 1
42 _
k12 55 = 5 ATCCOS (cos(pl p2) +

(B2 —2(k + 1/K))? cos K) (5.40)

2sin? K

where we used that arccos(—x) = m — arccos(x). For real pi, pa, this new set of momenta
is generally complex-valued with equal but opposite imaginary parts (since we always take
K to be real valued). However, depending on the values of the initial p momenta and of
K, it is possible for the kK momenta to also be real. In the case where the £ momenta are
complex, their real parts differ by . This makes them different from a typical bound state
which has equal real parts given by K/2.

Let us remark that the possibility of additional momenta is not there for the XXX
dispersion relation Ey = 2(1 —cos(p1))+2(1 —cos(pz2)), where the only solutions (up to pe-
riodicity) are the original p1, p2 and their permutation py, p1. This feature is characteristic
of staggered-type chains such as the one under study (see e.g. a comment in [15], p.137).
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Of course, the swapped solutions ¢ — —¢; and g2 — —go are still there in (5.39), so we
find a total of four solutions of our 2-magnon dispersion relation:

Direct p | Swapped p | Direct k | Swapped k
(p1,p2) (p2,p1) (K1, k2) (o, k1)

As all these momenta have the same total energy and momentum, the most general wave-

function for fixed K and Ey will be a superposition of all of them. As expected from the
discussion in [65, 66], generalising the Bethe ansatz to include the £ momenta will indeed
lead to a solution of the interacting equations.

Generalised Bethe ansatz. Given the above discussion, we will now update the wave-
function (5.16) to include all the four sets of momenta. We have:

|p1, D2, k1, k2) :Z <wee(2r, 28) |21, 28) +1eo (21, 2541) |27, 2541)
r<s (5.41)

+1oe(2r—1,2s) [2r—1,2s) 4+ 1oo(2r+1,25+1) ]2r+1,28+1>) ,
with A ‘ ) A

wee(£17£2) = 14ee(plapZ)elplgl—Hpﬂ2 + Aee(p27p1)€zp2£1+zp1£2

+ Aee(klv kz)eik‘lﬁl+ik2€2 + Aee(k27 kl)eik251+ik1€27
weo(gh 62) = Aeo(pl,p2)eip1€1+ip2€2 + AAeo(prpl)(fip2él—~_iplﬁ2

+ Aeo(kla kz)eiklfl—i-ikgfg + Aeo(kQ’ kl)eiszl—i-iklfg’
woe(£17e2> = Aoe(p17p2)eiplé1+ip2g2 + Aoe(p27p1>eip2él+ip1£2

+ Aoe(kla k2)eik1£1+ik222 + Aoe(kQa kl)eiszl—i-iklfg’
¢00(£17£2> = Aoo(p17p2)eip1£1+ip2€2 + Aoo(p27p1)€ip2gl+ip1£2

+ Aoo(kla kz)eik1€1+ik2€2 + Aoo(kZa kl)eikgfl—l-ikﬂz’

Each of these extra terms are solutions of the non-interacting equations and therefore their

(5.42)

sum is also a solution of the non-interacting equations. From the non-interacting equations,
the coefficients for the direct and swapped p momenta are fixed in terms of A..(p1,p2)and
Ace(p2,p1) as in equation (5.18), of course with p; <> po in the swapped case. In exactly
the same manner, the coefficients for the direct & momenta and swapped k momenta are
fixed, through the appropriate replacements in equation (5.18), in terms of the coefficients
Aee(k1, ko) and Ace(ka, k1), respectively. Explicitly, we have (with ¢1, ¢ even or odd as
required by the labels):

Yee(l1,2) = Ace(pr, pa)ePrOTP2l2 1 A (py, py)elP2ir itz
+ Aee(klv k2)eik1[1+ik2€2 + Aee(kZa k‘l)eik2€l+ik1€2,
Yeo(l1,02) = 7(p2) Ace(p1,p2)eP P22 1 p(p1) Ace(pa, pr)eP2r Hirnt2
+ (k) Aece(ky, ko)etFratikalte (k) A, (Ko, ky)etk2brtikite, (5.43)
Yoe(l1,02) = 7(p1) Ace(p1,p2)eP P22 1 (py) Ace(pa, pr)eP2r Tipit2
+ ’l“(k’l) Aee(kb k2)eik1€1+ikgfg + ’l“(k’Q) Aee(k27 ]{1)6ik2£1+ik1€2,
Voo(l1,02) = 7(p1)7(D2) Ace(p1, p2)eP 1722 1 (p)r(p2) Ace(pa, pr)eP2ir TPtz
+ (k)7 (k2) Aee(ky, ko)eF1Ok2 L p (k) )r(ky) Age(ko, ky)etR2lrtikite
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Imposing the non-interacting equations has left us with four remaining coefficients:
Ace(P1,02)s Ace(D2, 1), Aece(k1, ko) and Aee(ka, k1). These coefficients will be fixed in terms
of Aee(p1,p2) through the interacting equations and will give us our final S-matrices.

Interacting equations. It is useful to simplify the interacting equations (5.15) by noting
the fact that the even-odd and odd-even non-interacting equations (5.14) also hold if we
set 7 = s (even though these equations are unphysical). So we can subtract the even-odd
equation interacting equation in (5.15) from the corresponding one in (5.14) and similarly
for the odd-even one, to obtain the two equations:

1 2 1
—ee(21,2r) — =10 (2r — 1,27) + —1bpo(2r — 1,2r — 1) =0, (5.44)
K K K

and
K Yee(25,28) — 2K e0(25,25 + 1) + K Yoo(25s +1,25 +1) =0 . (5.45)

Now we apply the following procedure to solve these equations:

o We take equation (5.44) and disregard the coefficients Aec(k1,k2) and Aee(ko, k1)
momentarily. We then solve equation (5.44) for Acc(p2,p1) in terms of Ace(p1,p2).
This gives us the S-matrix for (p1,p2) — (p2,p1) scattering.

o Next, we disregard the coefficients Ac.(p1,p2) and Aee(p2, p1) momentarily and solve
again equation (5.44) but this time for A (k2, k1) in terms of Ae(k1, k2). This gives
us the S-matrix for (ki, ko) — (ka, k1) scattering.

« Since each scattering sector is solved, their sum also solves equation (5.44). It does not
however solve equation (5.45), but we still have two coefficients remaining: A..(p1,p2)
and Aee(k1, k2) (after substituting the results from the previous point). We can
therefore solve for A..(ki,k2) in terms of Age(p1,p2) which gives us the S-matrix for
(p1,p2) — (k1, ko) scattering. Thus, equation (5.45) is also solved.

It should be noted that we could also start this procedure with equation (5.45) first and
then end with equation (5.44). The S-matrices will be different to the first procedure but
are related by inversion of x, except for the S-matrices where we go from p’s to k’s.

Following the above procedure, in the end we find two Zo-conjugate solutions for the
remaining coefficients. The first solution is given by

Ace(p1,p2) = (alks, k1)b(k1, k2) — b(ka, k1)a(k1, k2))a(p1, p2)

Ace(p2,p1) = —(alka, k1)b(k1, ko) — b(ka, k1)a(k1, k2))a(p2, p1) (5.46)
Ace(k1, k2) = —(a(p2, p1)b(p1, p2) — b(p2, p1)a(p1, p2))alki, k2)
Ace(k2, k1) = —(a(p1, p2)b(p2, p1) — b(p1, p2)a(p2, p1))a(ks, k1) ,
and the second solution (for which we will use the letter B) is given by
Bee(p1,p2) = (a(ke, k1)b(k1, k2) — b(ks, kr)a(ky, k2))b(p1, p2)
Bee(p2,p1) = —(a(ka, k1)b(k1, k2) — b(k2, k1)a(k1, k2))b(p2, p1) (5.47)
Bee(k1, k2) = —(a(p2, p1)b(p1, p2) — b(p2, p1)a(p1,p2))b(k1, k2)
Bee(ka, k1) = —(a(p1, p2)b(p2, p1) — b(p1, p2)a(p2, p1))b(k2, k1)
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where the coefficients a, b are

a(pl’pz’ ;Q) = ei(Pl+P2) — 261‘P1T(p2, I{,) + r(pl, K)T(pg, K) s (5 48)

b(p1,p2, k) = 1 — 2P r(py, ) + 7(p1, £)r(pa, K)e P TP2)

Clearly these coefficients are deformations of the terms appearing in the XXX S-matrix, to
which they reduce in the x = 1 limit. That is, a(p1, pa, 1) = b(p1, pa, 1) = 1—2eP1 4¢iP1+p2),

For the wavefunction t)ee(¢1,%2), we can therefore combine the two solutions with
general coefficients «, 8

Yee(l1, l2) = o P (U1, b2) + B B (01, o), (5.49)

where the notation is that ¥/ has the A-coefficients and ¥2 has the B-coefficients. Note
that A, B are not indices, just different labels for the different wavefunctions. The even-
odd, odd-even and odd-odd parts of the wavefunction are as above but with appropriate
placements of 7(p). As we will show later, combining 14 and ¢ in this way is necessary
in order to get an eigenstate of the Zy symmetry.

In summary, the total eigenstate that solves the two magnon problem is given by

[V ) tot = ¢ |p1,p2, k1, k2) A + B |p1,p2, k1, k2)B - (5.50)

Let us note that the structure of the solution bears a strong similarity to approach of [67].
In that work, an extra set of momenta was used to solve the three-magnon problem for
a spin-1 non-integrable system (for which there exists a scattering channel that exhibits
diffractive scattering) by introducing a finite number of extra discrete diffractive terms to
the usual Bethe ansatz. The main difference here is that the additional set of momenta
already appears at the 2-magnon level. Writing e.g. 12 (¢4, £5) as:

YA (01, 09) = U (ky, ko) (p1, p2; 1, ) — W (p1, p2) QA (K, ka; 01, L), (5.51)

where (here ¢; stands for either p; or k;)

V(q1,q2) = a(ge, ¢1)b(q1,92) — b(q2, ¢1)a(q1, g2), (5.52)

and

iq1l1+iqalo

QYq1, q2; 1, 42) = alq1, g2)e — a(qa, q1)e' i tiat (5.53)

the similarity to [67] is apparent.

Properties of the S-matrices. Factoring Ae.(p1, p2) out from the above wavefunctions,
we have

Yee(l1,l2) = etP1litipats | S(p17p2)eip2€1+ip1£2

+T(prsp2, ki, ko)™ 022 L T (py py ey, ko) S(ka, eg) 202
Veol(l1, ) = r(p2)eP P22 4 (1)) (py, po)eiP2ir Fiprt2

+ 7(k2) T (p1, 2, k1, ko) eFr 61 Fikate

+ T(kl)T(phPZ, klu k?)s(kl, k2)€ik2£1+ik1€2 ,
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Yoe(l1, l2) = r(p1)eP P22 4y (py) S(py, po)eP2hr TPt
+ (k1) T (p1, p2, k1, kg)etFrfrFikate
+ (ko) T (p1, p2, k1, ko) S (ky, ko)eihetitikatz
Yoo(l1, €2) = 7(p1)r(p2)ePOTP2L2 1 (p )1 (p2) S (p1, po)eP2li i1l
+ 7(k1)r(k2)T(p1, p2, k1, kg)eFri1ikte
+ (k)7 (ko) T (p1, p2, k1, ko) S(ky, ko )eih2ti kit (554

where we have defined three S-matrices:

Aee(kh k?)

Aee (p2a pl) Aee(k27 kl)
——==— S(k1, ko) = .
Aee(p17p2)

A (1. . T ) 7k 7k' =
Ace(p1,p2) Aee(k1, ko) (p1, P2, k1, k2)

S(p1,p2) = (5.55)
The S-matrix S(p1,p2) is the usual Bethe ansatz S-matrix, while S(ki, k2) plays the same
role for the k& momenta. However T'(p1,p2, k1, k2) is a new object, which describes the
scattering where an initial state with p1, po momenta becomes a final state with k1, ko mo-
menta.

For the A solution, these S-matrices take the form

ko, k1)
SA(prypoi k) = —2P2P) g gy — ARk 5.56
(p1 b2 ) G(P1,P2) ( b ) a(klakQ) ( )
while T is
b(p1,p2) — b(p2, p1)a(p1,p2) a(ky, k2)
T4 (pa, pai b, by, ) = — P2 PP ’ ka) 557
P12k b ) = 6, o) — bk, )k, k) a(pr. po) (5.57)
Similarly, for the solution with B coefficients we have,
b(p2,p1) B b(ka, k1)
SB(pr,poik) = -2 SB(ky,kos k) = — 22 5.58
Prpoin) = =50 Ty 5 ks = = (5.38)

and

a(pa, p1)b(p1,p2) — b(p2, p1)a(p1, p2) b(k1, k2)
TB(p1,po; k1, ko k) = — . 5.59
PP R ) = R bk ha) — blha,kr)a(ky, ko) b))

It is intriguing to note that we can write all the S-matrices above (5.56), (5.58), (5.57)
and (5.59) in a unified form by including the ratio of the Wronskian-type terms even for

the S4, SB where the Wronskian-type factor becomes trivial. Using generic momenta

q1,92 = 4}, ¢, for the scattering process, we obtain the unifying formula:

_alg2,q1)b(q1, g2) — blg2, q1)alq1, g2) (g1, 43)

(5.60)
a(qy, ¢1)b(dh, 45) — b(dh, d1)ald), 45) a1, g2)

S(q1,q2: 91, %) =
and we see that S(pi,p2;p2,p1) = —S(1,p2),S(k1, ko ko, k1) = —S(ki,k2) and

S(p1,p2; k1, k2) = T(p1, pa; k1, k2).
The S matrices for the p and k momenta satisfy the unitary condition

SAp1,p2)SA(p2,m) =1, SB(p1,p2)SE(p2,p1) =1 (5.61)
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as well as
S4(p,p) =-1, SB(p,p) =-1. (5.62)

They also smoothly reduce to the XXX S-matrix as kK — 1, e.g

e P1p2) _ 9621 () k) 4 1r(py, K)T(p2, K) w1 €P1HP2) — 92 4]

SA(p1.p) = — & A md G , .
(p1 p2) ci(p1ip2) 2€,p17,(p2, H) + 7,<p17 R)T(pg, n) et(P1+p2) — 9eip1 1 ]
(5.63)
Using that r(0,x) = 1, it can also be easily seen that
SAB(0,p) = S4B (p,0) =1, (5.64)

a property it shares with the XXX-model S-matrix.

On the other hand, |T'| # 1 and therefore it is not a phase.?6 There is an interest-
ing identity that one can derive by thinking physically about scattering from {p;,p2} to
{ka,k1}: one can first send {p1,p2} — {ki1,ko} and then {ki1,k2} — {ko,k1} or one can
first send {p1,p2} — {p2,p1} and then {pa, p1} — {ko, k1}. This gives

SA(k1, k)T (1, p2, k1, ko) = T (pa, p1., k2, k1) S (p1, p2), (5.65)

and a similar identity for the B coefficient solutions.

Symmetries. The two solutions |p1,pe, k1, k2)a and |p1,p2, k1, ke )p are related by Zo
symmetry. Recalling that r(p,1/k) = 1/r(p, k), we can see that

1
Cl(pl,pQ,l/:‘Q) = )b(p17p27ﬁ)7 b(p17p271/’%) =

0 (a) )a(m,pz, k), (5.66)

r(p1)r(p2
from which we find for the S-matrices

r(ky)r(ka)

A = Bl’ K AUJ.’E z KR) =
S (l'ayal/"{)_s ( ' Y, )7 T ( y Ly Yy 71/) T(pl)r(pg)

TB(w,z,y,2,k). (5.67)

Using (5.66) one can check that the total action of Zy on say 124 is
Wie = —r(p1) " 2r(p2) " Pr(ky) "2r(ka) 20, (5.68)

The other wavefunctions work similarly, with even and odd sites being exchanged by the
Zs action. Therefore, if we want the general solution (5.50) to also be an eigenstate of Zs
we need to impose a(1/k) = £5(k) and we find

Zo [ tor = F(r(pr)r(pa)r(kr)r(ka)) ~ |0) 0. (5.69)

It is also useful to study the symmetries related to permutations between the p and k
momenta. Let us define the transformations:

op {1, p2} < {p2,p1} ok {k1, ko) < {ko, k1) oprr 2 {p1,p2} < {k1 ko) . (5.70)

26However we expect that a process where p1 + p2 — k1 + ko is compensated by the inverse process.
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Transformation Wavefunction
) (r) 1) (a) V) ()

i 2 ¥) ) —29)¥) ) —29)¥) )
Tp =¥} =[¥)a) —[¥)(B)

& —[¥)(a) —[¥)(m)
Opk,1 : —[¥)(a) —[¥) ()
Opk,2 —|¥)a) —[)(B)

Op © Ok : +) (a) +Y) (B)

Tp O Opk,1 +1¥) (a) +[)(B)

Op © Opk,2 +|¢>(A) +W>(B)

a” (=1)"[¥)a) (=1)"[¥)(m)

Table 1. A summary of the transformations of the wavefunctions considered in the text under the
discrete symmetries of the problem. Here |1 ), is the restricted solution (5.73) while the two general
solutions are as given in (5.41) with the coefficients in (5.46), (5.47) respectively. The respective
Zs eigenvalues are z,. = (r(p1)r(p2)) " 2(r(k1)r(ke)) ! and z, = (r(p1)r(p2)) ~2(r(k1)r(k2)) 2. The
momentum maps are as defined in (5.70). (¢™ means any n-composition of the sigma operators).

(with the map opk2 : {p1,p2} <> {k2, k1} being a composition, e.g. opr2 = 000k, 00p). We
can now consider how these maps act on different parts of the wavefunctions, for example:
optoe(l1,02) = —oe(l1, l2)

OkWoe (b1, l2) = —Voc(l1, l2)

pk1Voe(£1,42) = —oe(l1,42)

opk2Poe(£1,02) = —oe (L1, £2).

In table 1, we summarise the action of the Zo maps, as well as the momentum permutation

(5.71)

maps, on the A and B solutions.

To conclude this section, we have exhibited the solution of the 2-magnon problem for
the alternating Hamiltonian (5.1). The general solution includes scattering of the original
momenta to another set of momenta which are not related by permutations. This feature,
which is characteristic of staggered-type chains, can be thought of in terms of the discrete
diffractive framework discussed in [67] and, at least for the cases discussed there, is not
by itself an impediment to solvability. Therefore, even though our system does exhibit
diffractive scattering, and would appear to fail Sutherland’s criterion of quantum integra-
bility [113] (see also [114]), we believe that it is important to understand how far one can
extend the Bethe ansatz framework for the study of the three- and higher- magnon prob-
lem, and in particular whether a discrete-diffractive ansatz can play a role in its solution.?”
We comment further on the applicability of Sutherland’s criterion in the conclusions.

2TSutherland’s criterion, that a system is quantum integrable if all scattering processes are non-diffractive
(meaning that the set of initial momenta is the same as the set of final momenta), applies to the three-
and higher-magnon problem, while here we already see additional momenta at the 2-magnon level. We can
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5.2.3 Restricted solution

As mentioned in the previous section, the k-momenta are generally complex valued. This
can lead to divergences coming from the exponents exp(ik1¢1 +ikal2) and exp(ikely+ikil2)
in the wavefunctions. In fact, there are two ways this can happen: in the case of an infinite
length spin chain, one of these terms will exponentially increase as the relative distance
|l — £1| — oo; and, when considering the CoM case K = 0, the imaginary parts of ki, ko
diverge to complex infinity which again leads to exponentially increasing/decaying terms
even for finite length chains. Thus, in these cases, the four term solution that we found
in section 5.2.2 is not applicable. However, it is possible to take an appropriate linear
combination of the two Zs conjugate solutions which removes the unwanted term.
Let us write k1 = K/247/2—iv, ks = K/2—7/2+iv, v > 0. Since in the wavefunction
we have fo > {1, the term with swapped k£ -momenta is the one leading to the divergence
in the cases described above: |exp(ikofy + ikily)| ~ |e?@2=)| — co.
So let us try to solve the eigenvalue problem while imposing the boundary condition
that there are no divergences at infinite relative distance. This requires that the swapped
k coefficients be set to zero. The ansatz will still be of the form (5.41), however now each
term will consists of just three Bethe wavefunctions:?®
P (01, 02) = Ace(p1,p2)e P22 4 A (py, py)eP2rTiprte
+ Aee(k'h kg)eik1€1+ik2g2,

7/)((72)(61752) - Aoe(pl’pQ)eimfl-i-iszQ Jere(p%pl)eimfl—i-imb
+ Age(ky, kp)el1+ ez,

P (01, 02) = Aco(pr1,p2)ePOTP22 4 A (py, py)eP2tr Hiprte
+ Acolkr, kp)ettikats,

Y0 (U, 02) = Aoo(p1, pa)ePraTP22 L A (pg, py)eP2irtipits
+ Aoo(kl k2)eik‘1f1+ik2€2.

(5.72)

We will call this the restricted solution, and we will see that it is still possible to solve all
the equations with this restriction.?? The solution is as follows:

Ace(p1,p2) = a(ka, k1)b(p1, p2) — bk, k1)a(p1, p2)
Ace(p2,p1) = —(alkz, k1)b(p2, p1) — b(k2, k1)a(pa, p1)) , (5.73)
Ace(ky, k2) = —(a(p2, p1)b(p1, p2) — b(p2, p1)a(p1, p2)).

We observe that the A’s here are quadratic in the a,b-coefficients, unlike the gen-
eral (5.46), (5.47) which are cubic.

expect, of course, that the additional momenta will be a feature of the higher-magnon problems as well.
2To be clear, we could have chosen to remove any one of the four momentum pairs
(p1,p2), (p2,p1), (k1,k2), (k2, k1) from the ansatz. The specific choice of removing (k2, k1) is the one that is
relevant when we start with real pi,p2 and demand p; + p2 — 0.
29Gince we have established that, apart from the CoM case, there is no solution if we drop the & momenta
completely, this ansatz also contains the minimal number of terms needed to solve the interacting equations.
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Let us call [¢),y = |p1,p2;k1,k2)() the solution obtained by substituting (5.73)
n (5.41). In the above we found this solution by directly solving the interacting equa-
tions with the restriction of no swapped ¥ momenta. But of course we should be able
to recover this result from the four-term solution in equation (5.50) by tuning the a, [
coefficients in such a way that the swapped k-momenta terms vanish. To show how this
works, we set o« = o’ /a(ki, k2) and 8 = B'/b(k1, k) in (5.50). Then, for instance for e,

we can write
a YLl ) + Bl (6, 6)

= [a(kg, kl)b(lﬁ, kg) - b(kg, kl)a(lﬁ, kg)]

o e —
- _ 7 ip1€1+ipala
X < (klij)a(phPZ) + b(k]_,kQ) (plapZ) e

[ (k‘g,kl b kl,kg) b(kg,kl)a(kl,k‘g)]

!/

g ip2ly+ip: £
X a(p2,p1) + b(pszl))elm 1t
<a (k1,k2) b(k1, k2) (5.74)
— la(p2, p1)b(p1, p2) — b(P2, P1)a(p1, p2)]
B ) i1 01 +ikol
(1, ko) + ————b(ky, ko) | 161t katz
* (akhkz L) gy MR ) )€
+ [a(p2, p1)b(p1 P2)—b(1?27p1) (p1,p2)]
/
k k b(ko. k ikol1+ik142
8 <a ki, ko) N )+ b(k1, k2) (e, 1))6
The swapped k-momenta term vanishes if we take
! k1, ko) b(ko, k
« :_a( 1, k2) b(k2, 1)' (5.75)

B a(kz, k1) b(k1, k2)

The same is true for the eo, oe and oo wavefunctions. Substituting back and rearranging,
we can express the restricted solution as

1 c 1 1
|¢>(r) = mm [Y)a + mm [V) B, (5.76)
h
here _b(kz,kil) a(ky, ko) (5.77)

b(ky, ko) a(ke, k1)’

As mentioned, this is the solution that we expect to describe the 2-magnon problem

for infinite chains. Also, it will play an important role in appendix A as it will be the
starting point for taking the centre-of-mass frame limit K — 0.

Let us take a closer look at the S-matrices appearing in the restricted solution, which
we call S and T("). They are

Ace(p2,p1) a(ka, k1)b(p2, p1) — b(ke, k1)a(pz, p1)
ST (p1, pa; k1, ko k) = R ’ ’ L (5.78
(P, pas b b ) Aee(p1,p2) a(ka, k1)b(p1,p2) — b(ka, k1)a(p1, p2) (578)
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and

Ace(ki, k2) a(p2,p1)b(p1,p2) — b(p2, p1)a(pi,p2)
T (py1, po; ki, oy k) = =222 — . (579
(Pr p2i b, ki ) Ace(p1,p2) a(ka, k1)b(p1,p2) — b(ke, k1)a(p1, p2) (5:79)

Note in particular that the S-matrix S swapping p; <> p2 now also depends on the k
momenta. It still satisfies the unitary condition, S®) (p1,p2, k1, k2)5(3) (p2,p1, k1, k2) = 1,
as well as the condition S©) (p1,p1, k1, ke) = —1. (Note that ps = p; does not imply that
ko = ki1). It also smoothly reduces to the X X X S-matrix as k — 1. Importantly, it is Zo
invariant:

ST (p1, pa; b, ks 1/w) = ST (p1, pas k, ka; k) (5.80)

The importance of this is that, as we will see in appendix A, in the limit K — 0 S will
become the centre-of-mass S-matrix (5.30), which determines the CoM spectrum of our
system and thus needs to be Zs invariant.

Similarly to the analysis carried out for the general solution, it can be shown that the
full restricted solution 1), is a Zy eigenstate:

Zol) () = — (r(p1)7(p2)) "> (r (k)7 (k2)) ™ [90) - (5.81)

Of course, unlike the general solution, the restricted solution only has the o, momentum
exchange symmetry, as the boundary condition has broken the symmetry between the four
sets of momenta (p1,p2), (P2, p1), (k1, k2), (k2, k1).

5.3 Short closed chains

In this section we show how our 2-magnon solution above can be used to find the spectrum
for closed chains, and check the answer against the explicit diagonalisation of the system
for a specific example of a length-six chain. Note that in the XY sector only even-length
closed chains are allowed, as otherwise the gauge indices of the first and last sites cannot
be matched.?’

As explained, we are not only interested in solutions satisfying the zero-momentum
constraint, K = 0, but also in solutions with nonzero K. This is because we wish to
think of our solutions as part of an eventual multi-magnon solution, which does satisfy the
momentum constraint.

Starting with the 1-magnon momenta, in the untwisted sector they are simply obtained
by imposing periodicity, e/? = 1. Even though they are of course equal to their corre-
sponding values for the XXX limit at k = 1, the energies are different due to the dispersion
relation (5.8). Since the S-matrices of the general 2-magnon solution (5.56), (5.58) satisfy
S(p,0) = 1, we can always construct periodic 2-magnon wavefunctions by taking e.g. po = 0
and p; to be a 1-magnon momentum. Thus the 1-magnon energies are 2-magnon energies
as well.

Proceeding to “true” 2-magnon energies, we saw above that the solution of the 2-
magnon problem for our alternating chain requires the addition of a second set of momenta,

30 Also L needs to be larger than 2, as for L = 2 double-trace contributions which are otherwise subleading
in the planar limit become important [7].
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k1, ks, on top of the original set of momenta pi, ps. These momenta are uniquely defined
by the relations

p1+p2 = k1 + ko = K and E(pl) + E(pg) = E(kl) + E(kg) = Fsy (5.82)

with E(p) the 1-magnon dispersion relation (which can belong to either the upper or
lower branch).

We also saw that when going to the centre-of-mass frame where K = 0, the £ momenta
diverge and one needs to take a subtle limit to keep the wavefunction finite. However, once
the limit is taken (the details are in appendix A) one is left with the centre-of-mass S-
matrix (5.30) for the p momenta which allows us to write a standard 2-magnon Bethe
ansatz.?! For the untwisted sector, the periodicity equation coming from the Bethe ansatz
is much like the usual one and reads:

et =1/S(p,—p) , (5.83)

with S as in (5.30). Solving this equation numerically for fixed L, one can confirm that
the momenta and corresponding energies agree with an explicit diagonalisation of the
Hamiltonian. Since S — e~ in the limit x — 1, the momenta reduce to those of the
standard XXX model in this limit. In table 2 we tabulate the K = 0 momenta for L = 6,
with the corresponding XXX momenta for comparison.

Now recall that in the orbifold limit we also need to consider the twisted sector
states [35-38]. These are spin chains which include the twist matrix v somewhere on
the chain. Without loss of generality it can be taken to be the first or last site, and its
effect is to modify the periodicity condition by a phase. In the Zs case this phase is just
—1, which means that to get the full spectrum (still at the orbifold limit) one needs to
consider also antiperiodic chains. Precisely the same is true in the interpolating theory.

For 1-magnon states we simply impose e’ = —1, which gives the correct 1-magnon en-
ergies (and trivially some 2-magnon energies where one of the momenta is zero). For the

2-magnon twisted sector states we use the ansatz
e’ipL = _1/S(p7 _p) ) (584)

with S again as in (5.30), and find agreement with explicit diagonalisation of the Hamil-
tonian for an antiperiodic alternating chain. The K = 0 2-magnon momenta for an L = 6
twisted chain are tabulated in table 3.

However, to get the full set of 2-magnon energies we also need to consider the case
where K # 0. In this case our 2-magnon wavefunction is a linear combination of Bethe-like
states, some of which depend on the p and some on the k momenta. Imposing periodicity
on such a wavefunction requires additional steps which we outline below.

First of all, it is clear that one cannot impose periodicity on the A or B solu-
tions (5.46), (5.47) separately. As in the CoM case, one needs to combine them. We
will thus write

‘w>tot = A(plva) kla k?) + $B(plap27 k17 k2) 3 (585)

31'We emphasise that the p and k momenta appear symmetrically in the wavefunction so which ones we

call p and k is a matter of notation. We call p the solutions of (5.82) which stay finite in the CoM limit.
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with 2 a function which in principle depends on all the momenta. Now recall that in the
standard XXX case, where we just have

‘ll,l2> — Am(p)eihmﬂlzpz +A21(p)eil1p2+il2p1 ’ (5.86)

the periodicity requirement (|l; + L,l2) = |l1,12)) is imposed as

Apa(p)eaprHiers — Ay (p)eiapetitirim oy gitpr _ A12(0) (5.87)

leading to the usual S-matrix Si2 = Ag1/Aj2. It turns out that the only modification
required in this case is the introduction of the ratio z. In particular, we will impose
periodicity separately on the p and k£ momenta as

ee,p ee,p\ i(lipi+lap2) _ ( g€&P ee,p\ ,i(lep2+(l1+L)p1
(A5 + aBi57)elt ) = (AS}7 + B3y P)eipet (it py)

)

(A‘la‘;k + xB?g,k)ei(hkq—‘rlgk‘g) — ( gi,k + $B§i7k)€i(l2k2+(l1+1’)k1) ’ (588)
for the even-even parts. We also impose the same condition on the odd-odd parts, while

for the even-odd and odd-even ones we have

( Tg,p + xBfgm)ei(llmHzpz) _ (Ag%l’ + ngfvp)ei(lﬂ’ZJr(llJrL)Pl) 7 (5.59)

(A(igyk + :L_Big,k)ei(llk:l-i-lgkz) —_ (Ag(?k + mBgf,k)ei(lgk‘z-‘r(ll-‘rL)k‘l) .

Periodicity of the wavefunction hinges on the x factor in all of these relations being the
same. Focusing on the even-even sector for now,we can simplify (5.88) as
a(k:l, kg) +x b(kl, k‘g)

and etF1 = — (5.90)

il _a(p1,p2) + 2 b(p1,p2)
a(kg, kl) +x b(kg, kl) ’

a(p2,p1) + = b(p2,p1)

where we have used the explicit expressions of Aio, Ao, Bi2, Bo1 in terms of the a and b
functions defined in (5.48). We can now solve for x in terms of one set of momenta (the
k’s, for instance), to write

a(ky, ko) + a(ke, ky)etlk
b(k1, ko) + b(ka, k1)etlhkr

(ky, ka) = — (5.91)

Substituting this specific solution for x (which we call z) into the p periodicity condition
gives us the final form of the 2-magnon Bethe equation for the untwisted XY sector:

gitpn _ _ @(p1,p2) + Z(k1, k2)b(p1, pa) (5.92)
a(p2,p1) + Z(k1, k2)b(p2, p1)

The above was for the even-even part but similar considerations apply to the other parts
of the wavefunction and lead to the same equation. Now recall that the & momenta are
algebraically defined in terms of the p momenta by solving (5.82), which is a quartic relation
between z(p;) = €2Pi and z(k;) = €2 and can be straightforwardly solved. Equation (5.92)
can thus be expressed purely in terms of the p momenta, and its roots found numerically
for given L and k. For short chains, these energies can be seen to match the eigenvalues

found by explicit diagonalisation. As an example, in table 2 we show, for the untwisted
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K pr N EXXX D1 ky T Er—o.9
0 1.25664 2.76393 1.28911 /2 —ico 1.69144  2.83287
0 2.51327 7.23607 2.51285 /2 —ico 1.0834  7.28474
/3 2.38724 5 2.36719 0.032045 0.761787  4.95642
2m/3 5 +0.732858; 1.43845 7 —0.74314 0.22146 0.744253  1.42822
27/3 —2.76928 5.56155 | —2.76928+0.102878i  —2.76928—0.102878i  9.34587  5.68203
T /2 + 0o 2 /2 +ico 1.0386 0.545701  1.94906

Table 2. Length-6, k =0.9 untwisted XY -sector chain: the momenta and energies appearing in
the untwisted XY 2-magnon problem for the case L = 6,x = 0.9. K is the total momentum. On
the left we list the XX X (k = 1) momenta and energies for comparison. These can be found for
instance in [115] (however, note that the XXX limit of our Hamiltonian has an extra factor of 2
compared to the usual XXX normalisation, so our energies are also rescaled by 2 relative to [115]).
The ps, k2 momenta can be found as po = K — p1, ks = K — ky. For the deformed theory we have
chosen the p momenta to be the ones closest to the corresponding momenta for X X X. 7 is the
ratio between the A and B solutions, as discussed in the text. The energies included here are the
“true” 2-magnon energies, i.e. those where both p; and ps in the XXX limit are nonzero.

sector, the momenta and corresponding energies for L = 6 and x = 0.9, as compared to
those of the XXX model of the same length. The value x = 0.9 is chosen since most of the
p momenta are still close enough to those for XXX to directly compare them. As xk moves
farther from 1, the general pattern is that more k£ momenta which were real in the XXX
limit will acquire imaginary parts.

An intriguing feature of the Bethe solutions in table 2 is that the role of the p and k
momenta appears to be exchanged at total momentum K = 0 and K = w. In particular,
at K = 0 the k£ momenta diverge and, as shown in appendix A, they leave a relic in the
wavefunction in the form of contact terms. At K = m the p momenta diverge while the
k momenta remain finite, and in this case there will be contact terms arising from the p
momenta (note that equations (5.22) and (5.23) are compatible also at K = m). It would
be interesting to understand this duality better.

For the twisted sector everything works very similarly, apart from the fact that we need
to impose antiperiodicity. This leads to the ratio between the two wavefunctions being:

a(kl, /{2) — a(kQ, kl)ei[’kl

t(k1, ko) = — . , 5.93
CL'( 1 2) b(kl, k2) _ b(kQ, kl)elLkl ( )

and the corresponding 2-magnon Bethe ansatz is now written in terms of this z as
ilpn _ a(p1,p2) + @(k1, k2)b(p1, p2) (5.94)

a(p2,p1) + z(k1, k2)b(pa, p1)
This is again a function only of the p momenta which can be solved numerically to obtain the
required Bethe momenta. In table 3 we compare the twisted sector momenta and energies
of the L = 6 x = 0.9 chain to those of the antiperiodic XXX model. The energies given all
agree perfectly with the explicit diagonalisation. In this case there are some degeneracies
(e.g. for energies F = 2 and F = 4 in the twisted XXX limit) which we haven’t attempted
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K pyxx Exxx P k1 z B
0 1.88496 5.23607 1.83806 g — 100 5.97801 5.15985
0 0.628319 0.763932 0.627525 g — 100 0.711862 0.756877
/3 3.02739 6.78309 3.02448 2.0944 1.20546 6.83818
/3 1.73909 2.79493 1.73092 1.16646 1.19773 2.83988
/3 % + 0.2557617  0.421979 % + 0.2563621 %’T —1.19117;  0.82377  0.419343
27/3 2.82661 4.41421 2.8254 0.926182 0.930317  4.43087
27/3 % +0.632974:  1.58579 % + 0.654018: 1.81499 0.611008  1.56061

Table 3. Length-6, k=0.9 twisted XY -sector chain: some momenta appearing in the twisted XY
sector 2-magnon problem for the case L = 6,k = 0.9. K is the total momentum. For reference, on
the left we list the twisted (antiperiodic) XXX momenta and energies. The py, ko momenta can be
found as ps = K — p1, ko = K — k1. We have chosen the p momenta for the interpolating theory
to be the ones that are closest to the corresponding momenta for twisted X X X. z is the ratio
between the A and B solutions, as discussed in the text.

to resolve (as our interest is in the overall features of the Bethe ansatz) however it is clear
that they can be straightforwardly reproduced with a more careful treatment.

In the tables we also give the factor & defined in each case above. Note that & can be
defined through either the p or the £ momenta, so it has a specific value also when one of
the two sets (p1,p2) or (ki,ka) diverges. It should perhaps be emphasised that, in taking
the limit e.g. k12 — m/2Fico (as discussed in appendix A), one needs to use the functional
dependence of the k on the p momenta, which involves the energy Es. Therefore, the ratio
z can take different limiting values as kj 2 — /2 F ioo for different energies, as seen in
the tables.

It is worth noting that since the Zs operation k — 1/k exchanges the a and b factors,
it takes Z(ky,ka) — 1/Z(k1, k2). This is what is required for the full wavefunction [t )¢t to
be invariant under Zs, which should be the case since the Hamiltonian is also Zs invariant

in the periodic/antiperiodic case.’?

6 The “dilute” XZ sector

In this section we will study the “SU(2)-like” sector composed of the X and Z fields. Unlike
the XY sector discussed previously, in the X Z sector the two fields belong to different
representations of the gauge groups (X being bifundamental while Z in the adjoint of each
of the groups) so we expect the theory to be less symmetric than the XY sector.

Recall that in this sector the Hamiltonian is (4.19):

00 00 00 00 XX
0k —10 01/k —10 X7
A) = ) = in the basi 6.1
AN=10 S0 | HA) =g 2 5 o | Wthebasis o fo (6D
00 00 00 00 7z

32The k — 1/k operation can be undone by shifting the origin from an even to an odd site, which does
not have an effect for a closed chain.
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2s 2s+1 2542 2s5+3 2s+4 2545 2s+6 2s+7

Figure 11. A section of the dilute spin chain for the XZ sector, for a specific configuration of
states. We have chosen the gauge group to the left of site 2s to be the first one (depicted by a blue
solid line). To make it easier to read off the relevant gauge group for each Hamiltonian, we have
also coloured the first of each two sites on which the Hamiltonian acts the same as the region to the
left of that site. Unlike the alternating chain depicted in (8), here the choice of which Hamiltonian
acts on each pair of sites is not related to the even-odd nature of the site but rather to the number
of Z and X fields that have been crossed until that point.

where A, \' indicate whether the gauge group immediately to the left of the site where the
Hamiltonian acts is the first or second gauge group respectively. Since Z does not change
the gauge group, the Hamiltonian also does not change when crossing a Z field, however it
will switch from H(A) to H(\') and vice versa when crossing an X field (see figure 11 for
an illustration).

A consequence of the XZ sector being less symmetric than the XY sector is that
there are two inequivalent vacua, one made up of X fields and the other of Z fields. The

33 was studied in [7]. The dispersion relation of X excitations is trigonometric

Z vacuum
and the S-matrices arising in the 2-magnon problem are similar to those of the XXZ
chain. However, the dynamical nature of the chain becomes evident when considering the
3-magnon problem, due to the fact that there are two 2-magnon S-matrices (mapped to
each other by Zs) and the two possible sequences of 2-body scatterings (particles 142 first,
or particles 243 first) lead to incompatible equations. This leads to the standard YBE not
being satisfied. We can thus think of excitations around the Z-vacuum as being described
by a dynamical XXZ model. We do not have anything to add to the analysis of [7], so we
will not consider the Z vacuum in this work.

Instead, we wish to consider Z excitations on a vacuum made up of X fields. In V' = 2
language they will be of the type |- - Q12Q2101Q12¢2Q21 - - - ) Even though the X Z-sector
Hamiltonian (6.1) is rather different to the XY-sector Hamiltonian (5.1), it will turn out
that the dispersion relation for the X vacuum of the X Z sector is identical to that of the
XY sector. So, even though the details of the wavefunction (such as the ratio functions)
will be different, the overall approach to solving the 1- and 2-magnon problem and the
final form of the solutions will be almost identical as well. In particular, for the 2-magnon
problem, both the contact-term approach in the centre-of-mass frame and the more general
additional-momenta approach will apply, as we will show in the following sections.

6.1 One magnon

We start with the one magnon problem H|p) = E1(p)|p), where |p) indicates a Z magnon.
Due to the dynamical nature of the spin chain, there will be two equations to solve, since
a Z excitation on an arbitrary site £ can see either the parameter X\ or \ to its left.

33Which is really two vacua, depending on A. That is, either |--- @111 --- ) or |- - - padaga - - - ).
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L=6 dynamical Temperley-Lieb chain

Figure 12. The 2-magnon spectrum of the dynamical dilute Temperley-Lieb chain of the X Z sector
for L = 6, as a function of the deformation parameter x. As discussed in the text, we can only
have even numbers of magnons for even-length chains in this sector. Blue denotes untwisted sector
energies while orange twisted sector energies. Note the degeneracies at E = 2,4 at the orbifold
point k = 1, which get resolved as k decreases from 1. We have plotted down to x = 0.4 for clarity.
As k decreases further, the eigenvalues bunch into groups with limiting values of 4/k,2/k and 0.

Specifically:

2/R‘£>)\— |€—1>>\/ — ’€+1>>\/ :E1 ‘E))\,

(6.2)
21005 = 6= 1)r— [+ 1) = E1|0)x -

Here we use the fact that, if a Z field at site £ sees A to its left, the states with a Z field
at site £ — 1 and £ + 1 necessarily see a X' to their left, as one needs to cross one less or
more X field to get to that site. (Similarly for a site with X at site £). Of course, for a
single Z magnon, and given a reference point with fixed A, the above equations can also be
written in term of even and odd sites. However this is not general so we will avoid using
this notation.

We therefore take for our ansatz a superposition of a single excitation on sites that see

Aor \:
) =D UAO)|OA+ D n (O], (6.3)
7 7

where
VA(0) = Ax(p)e™, Y (l) = Ay (p)e'. (6.4)

In (6.3) the summations are over the sites corresponding to each value of \.
Substituting this ansatz in the equations (6.2) we find

2/kAxeP — Ay e — Ay PG = B (p)Aye™ | (6.5)
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and
QRA/\/eipt — A)\eip(tfl) — A)\eip(t+1) = E1 (p)A)\/eipt . (66)

From these equations, we find that the ratio between X' and X sites is

_ Av(p)  1—r*F /r'+ 2r% cos(2p) + 1

rpin) = Ax(p) 2k cos(p)

; (6.7)

and the eigenvalue is

1 1
Ei(p; k) = =4 =\ /K4 + 262 cos(2 1. 6.8
1P k) = K =yt 4 202 cos(2p) + (6.8)

We see that the dispersion relation is precisely the same as for the XY sector, how-
ever the ratio function r(p) is different from the ratio between the odd and even sites
defined there.

As in the XY sector, the one magnon wavefunction has a Zo symmetry. First, note
that under k < 1/k,

E(1/k) = E(k) and r(p;1/k) =1/r(p;K), (6.9)

which again implies that the two coefficients Ay, Ay in our wavefunction are exchanged
and that

Zalp) = Ip) - (6.10)

~—

r(p; K
6.2 'Two magnons

Moving on to two magnons, we will again treat separately the non-interacting equations
(those where the Z magnons are separated by at least one X field) and the interacting

equations (those where the Z magnons are next to each other). There will again be four
non-interacting equations as each magnon can see either A or \.

A0, 0 ) =0 =1, 6o ) =01 + 1,62 v — €1, la—1) s — €1, o 4+ 1) xnr

= B |l1,02)
2(k+r"1) 01, 2 ) an — 01 =1, €a ) rx — €1 + 1,02 )y — €1, b2 —1)xx— |1, b2 + 1) an

= Ea b1, L2) 2\ »
2(k+r"1) 101, L2 ) va— 101 =1, €a)ax— 01 + 1, Lo )an— €1, o —1) yrar— |01, 2 + 1)

= B |[l1,02)xx
Ak [0, L) v — 01 —=1, Lo ) aw — €1 + 1,82 ) s — €1, ba—1) xa— €1, 2 4+ 1) ya

= Fo [l1,02)xx -

(6.11)

For the interacting equations, note that two consecutive Z magnons necessarily have the
same value of A\. So we have

20+ 1)an — [0—= 1,04+ 1) yx — [, 0+ 2) v = Ex |[0,0 4+ 1)y,

(6.12)
26 16,0+ 1) = [0 =1L+ 1) = [6,€+2)yx = Ea |6, L+ 1)y .
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To solve these equations, we will proceed by direct analogy with section 5. The main
difference is that the eigenvalue equations are slightly different, and that we do not use
even-odd notation in the wavefunction, but A, \’ notation. We will start with the following

ansatz
’p17p2> = Z ¢)\)\(£17€2)wl€2> + Z ¢AA/(€1,€2)’€1€2>
€1<[2 €1<e2 (613)
+ 2 Yl G)lhle) + ) (b, b)),
‘€1<£2 £1<f2
where | |
wA)\(el,EQ) = A/\)\<p17p2)elp1£1+lp2€2’
¢AX (61752) = A)\)\/ (pl,pg)eiplfl"'ipZEQ, (6 14)
Uaa(l1,02) = Ayx(p1, pa)ePriitivztz

Uan (b, ba) = Ayy (p1, pa)e? Ot
Here the sites 41, /5 are assumed to be such that the A dependence is correct. For instance,
if /o = ¢1 + 3 then the only options are 1¥yy(¢1,¢1 + 3) or ¥y (¢1,¢1 + 3), since there
are two X fields between the Z’s. Fixing A at a given site (e.g. £ = 1) will resolve the
remaining ambiguity.
Substituting in the non-interacting equations (6.11), we find that the eigenvalue is
additive,
Es(p1,p2) = E1(p1) + E1(p2), (6.15)

with the coefficients having the ratios

A I\ A / A 12
N (1, p2) wA(PL,p2) ), AW (P1,p2) _ r(p).  (6.16)
Axx(p1,p2) Axx(p1,p2) Axx(p1,p2)
As in the XY sector, the usual Bethe approach of just adding the swapped momenta

=r(p)r(p2) ,

(p1,p2) <> (p2,p1) does not lead to a solution of the interacting equations (6.12). So
in the next section we will improve the Bethe ansatz by adding contact terms, which as
we will see gives a solution in the centre-of-mass frame K = 0. To obtain more general
solutions (for K # 0) we will need to add a second set of momenta, which we will do in
section 6.2.2. Since the steps are very similar to that of section 5, we will provide fewer
details in this section.

6.2.1 Centre-of-mass solution

We will start by improving the ansatz (6.13) by adding the swapped momenta as well as
contact terms:

U (01, 62) = Apn (pr, p2)ePrTP2l2 4 Ay (po, py)eP2rtipits,
Uaa(l1,02) = Ayn(pr, p2)ePrTP22 1 Ay (py, py )P TiPrEz (6.17)

(01, £2) = Axx(p1,p2) (1 + 64,0, +1A(p1, pa) ) PO T2
+ A (P2, p1) (1 + 605 0,41 A(p2, p1) ) P21 FP1E2
Uan (b1, 62) = Ayx (p1, p2) (1 + 06y 0,418 (p1, pa) ) P72
+ Ayx(p2, 1) (1 + 8y 0,418 (pa, pr)) eP2 TP, (6.18)
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Note that in this case two neighbouring Z fields have the same value of A, so the contact
terms enter in the 1y and ¥y parts of the wavefunction. This is unlike the XY sector,
where two neighbouring Y fields are necessarily at even-odd or odd-even sites, so in that
case we modified the ., and 1, terms.

Next-to-nearest neighbour magnons. The first step is to ensure that the contact
terms do not spoil the non-interacting equations. There are two non-interacting equations
where the contact terms enter, the A\ and X'\’ equations when ¢5 = /1 + 2. Cancelling the
contact terms in these equations requires

A(p1,p2) = —r(p1)r(p2)e' PP B(py, p)
A(p1,p2) = —r(p1)r(p2)e PP B(py, po).

and the same relations for the swapped terms. These are only consistent when K =

(6.19)

p1 + p2 = nm. We will focus on K = 0 since this is in the first Brillouin zone (—m/2,7/2].

So in the rest of this section we will be in the centre-of-mass frame. Our constraints are:
A(p1,p2) = —r(p1)r(p2) B(p1, p2) (6.20)
A(p2,p1) = —7(p1)r(p2) B(p2; p1)-

Interacting equations. Substituting (6.20) in the (A, A) and (X, ') interacting equa-

tions (6.12), we obtain two S-matrices, defined as S™ = Ax\(p2,p1)/Ax(p1,p2) and

SAN = Ay (pa, p1)/Axn(p1,p2). Equating these two S-matrices we obtain a relation

between B(pa,p1) and B(p1, p2). It is:

B(p2,p1) = F(p1,p2)B(p1,p2) + G(p1,p2), (6.21)
where
— ei(Pl—pz)M _ 1 9(p1, p2)

Fonre) T M N e N Ty

with
f(p1,p2) =k (—ei(p1+p2)) (Eq — 2k) r (p2) — (Eak — 2) (r (p2) + i1 (Eq — 2/1)) (6.23)

+ 1 (pr) (XP172) (2= Bor) — (B — 26) (5 + €7 (Bow = 2) v (1)) »
and
g(p1,p2) = — k7 (p1) 2 (_6ip2 (_1 + e2ip1) (Es — 2) 7 (pa) — e2ip1+p2) 1)

— e (—1 + eQip2> r(p1) (—ngz + K (B2 — 2K) 7 (p2) 24 2) (6.24)

—r (p2) (eipz (_1 I eQipl) (Eak — 2) + & (_1 n €2i(p1+p2)) r (p2)> _

Substituting these expressions back into one of the equations for the S-matrix we obtain

our final expression:

Scon(p) = — B2 =)~ Vr(p) &€ (B2 = 20) (Fari — 2 (rpV +1) o)

° ¥ (B — 26) (Egk — 2) (r(p)? + 1) + 4e* (5 (B — k) — 1) r(p)
This S-matrix obeys unitarity Scom(—p)Scom(p) = 1 and in the orbifold limit x — 1,
Scom(p) = e~ which matches the su(2)-sector S-matrix for ' = 4 super Yang-Mills in

the CoM case.
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Final form of the contact terms. The last step in finalising our wavefunction is to
substitute the solution for B(pa,p1) (6.21) into the ansatz (6.18).

The equation (6.21) for B(p2,p1) has an interesting effect on our ansatz. First, one
can show that

F(p) = —e*"Scom(p, —p) ", (6.26)
and that
G(p) = —F(p)G(p) = e *"Scom(p, —p) "' G(-p) . (6.27)
Therefore, we can write
B(—p,p) = —e *"Scom(p, —p) "' B(p, —p) + ¢ *"Scom(p, —p) "'G(~p). (6.28)

We see that the B(—p, p) term in the swapped part of the wavefunctions contains a B(p, —p)
term which cancels the one from the direct part, leaving only G(p) as a contact term. As
we saw in the XY sector, we have the option of keeping G(p) in the swapped part, bringing
it to the direct part using (6.28), or distributing it in any other way. Choosing to move the
contact term to the direct part, and factoring out an overall factor of Ay, we can write
our final centre-of-mass wavefunction as

o (£, £2) = 1(p)ePA TP 4 (p)Seon(p)elPIATPE,

) ; ; , 6.29
ya(ly,l2) = r(p)ezP1€1+l(—p)€2 + T(p)SCOM(p)ez(—p)zl+zp42, ( )
and | |
Pan(l1, b2) = (1 = 7(p)*6gy,0,41G(—p))ePr (P
+S ei(—p)li+iplz ’
con®) (6.30)

Ynw (01, €2) =7(p)2(1 + Gpyy 11G(—p)) PO HIEPIE
+ T(p)QSCOM (p)ei(_p)fl‘l'ipZZ’

where Scom(p) is given by equation (6.25) and G(—p) is given through equation (6.22).

6.2.2 (General solution

Having found the centre-of-mass solution for two Z excitations in the X vacuum, we now
proceed to study the case K # 0. As before, and still following the approach of [65, 66],
we will do this by introducing a second set of momenta (ki, k2):

¢AA(€1>€2) = A/\A(p17p2)eiplfl+ip2f2 + A)\)\(pQ’pl)eipzﬂl-i-imb

_|_A)\)\(k1 kQ)eikthrikzZz +A>\)\(k2 kl)eik2€1+ik1£2
U (01, 02) = Ay (pl’pZ)eipwﬁz‘szz T Ay (pQ’pl)eipzfl—i—iplEQ

+ Ay (b, ko)e®r Otk Ay (K, Ky )Rkt
(NGRS A)\/)\(pl’p2)eip1€1+ip2€2 + A/\/)\(pz’pl)eipzfl—i—iplzz

+ Ak, ko)™ OFH22 L Ay (y, by )20t
%w (61,£2) = A)\’X (pl,pQ)eiP1€1+ip2€2 4 AA’)\’ (pg,pl)eingl"_iple?

+ A}J}J(lﬁ, kQ)eiklh—&-ikzZz + A)\/)\/(kg, kl)eikgel—‘,—iklZQ.

(6.31)
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The k momenta are such that ki +kp = p1 +p2 and E(k) + E(k2) = E(p1) + E(p2). Since
the dispersion relation in the X Z sector is the same as that of the XY sector, they are
also given in terms of the energy and the p momenta by (5.40).

Each of the four terms (i.e. the direct p, swapped p, direct k and swapped k terms) are
solutions of the non-interacting equations if the appropriate version of (6.16) holds. Sub-
stituting those relations, there will be four remaining coefficients Axx(p1,p2), Axx(p2,p1),
Axx(k1, k) and Ayy(ke,k1). Through the interacting equations, we will fix these coeffi-
cients in terms of just Axy(p1,p2) and thus obtain a solution.

Interacting equations. As before, it is convenient to simplify the interacting equations
by combining them with the non-interacting equations which, although unphysical, are still
satisfied for fo = ¢1 + 1. In this way obtain the equations

2/"{‘ %\,\(87 s+ 1) - w)\’)\(s + 17 s+ 1) - w)\)\’(sv S) = 07 (632)
and
2K w)\/)\/(t,t + 1) — 1/})\)\/(15 +1,t+ 1) — w)\/)\(t,t) = 0. (6.33)
Solving these one obtains two Zso-conjugate solutions for the remaining coefficients. The
first one is
Axx(p1,p2) = (alke, k1)b(k1, ko) — b(ka, k1)a(k1, k2))a(p1, p2)
A (p2,p1) = —(a(ka, k1)b(k1, ko) — b(ka, k1)a(ki1, k2))a(p2, p1) (6.34)
A(k1, k2) = —(a(p2, p1)b(p1,p2) — b(p2, p1)a(p1, p2))alky, k2)
Ax(k2, k1) = —(a(p1, p2)b(p2, p1) — b(p1, p2)a(p2, p1))alks, k1) .
and the second solution is given by
Ba(p1,p2) = (alks, k1)b(k1, k2) — b(ka, k1)a(k1, k2))b(p1, p2)
B (p2,p1) = —(alks, k1)b(k1, k2) — b(ks, k1)a(k1, k2))b(p2, p1) (6.35)
Baa(k1, k2) = —(a(p2, p1)b(p1,p2) — b(p2, p1)a(pi, p2))b(k1, k2)
Ba(ka, k1) = —(a(p1, p2)b(p2, p1) — b(p1, p2)a(p2, p1))b(ka, k1)
where a, b are the coefficients
a(pr,pa, k) = P HPr(p)) — 2k PLr(py)r(p2) + r(pa) (6.36)

b(p1,p2, k) = K € PP p(py) — 2PL 4 ks 1 (py).

These coefficients clearly reduce to the standard XXX form 1 — 2™t + ¢iP11P2) a5  — 1.
Note, however, that they are different from the equivalent ones for the XY sector in (5.48).
To avoid cluttering the notation we use the same labels as in section 5, it being understood
that all instances of these coefficients in this section refer to (6.36). We will also drop the
explicit dependence on  unless required for clarity.

The most general solution will be a linear combination of these two solutions:

(01, £2) = o Y3 (01, L2) + B R\ (01, L2), (6.37)
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where wf)\ and wf)\ are of the form in (6.31) with the A and B coefficients respectively.
The same holds true for the other wavefunctions but with appropriate placements of r(p).
In summary, the total eigenstate that solves the two magnon problem is given by

V)0t = @ |p1, P2, k1, k2)a + B |p1,p2, k1, k2) B, (6.38)
where
1, p2s b ka)i = Y (Wha(l1, £2) 1 lo) + Wi (01, L2) |01 L)
01 <lo (639)

+ (1, 02) |01 2) + oy (1, €2)|01bs)) , i = A, B.

Properties of the S-matrices. Since each of the two general solutions contains four
Bethe-like terms, we can define three S-matrices. Two of them refer to scattering of the p
or k momenta among themselves:

A Axn(ka, k ko, k
S4(pr, pas k) = M(p2,p1) _a(p27P1)7 Sk, iy, ) = k2, k1) alke, k)
Axx(p1,p2) a(p1,p2) Axa(kr, k2) a(ky, k2)
(6.40)
There is also an S-matrix scattering the p momenta to the k¥ momenta, which we call T

_ Ak k) alp2, p1)b(p1, p2) —b(p2, p1)alpi, p2) a(k, k2)

~ A(prip2)  alka, k1)b(ki, k2) —b(ke, k1)a(k1, k) a(pr, p2)
(6.41)

T (py, pa, k1, ka, k)

Similarly, for the solution with B coefficients,

B : b(p2, B (ko, k b(ka, k
B (1, pa, ) = DAP2ip1) __ blp2,p1) SB(ky, ka, ) Balky, k) - blks, k1)

~ Byu(p1,p2) b(p1,p2)’ - Bo(k1, ko) b(k1, k)’
(6.42)

and

_ Bulki,k2) — alp2, p1)b(p1, p2) —b(p2, p1)a(pi, p2) b(k1, k2)
~ Bu(pip2)  alke, ki)b(ky, ko) —b(ka, k1)a(ky, k2) b(p1,p2)”
(6.43)
These two solutions are related by Zs symmetry. More precisely, recalling that r(p,1/k) =
1/r(p, k), one finds
1 1 1 1

;mb(m,pg,n), b(pl,pQ,l/F&):Ema(pl,p%n), (6.44)

T8 (p1, pa, k1, ka, k)

a(p17p27 1/’%) =

From this, we find that (I; standing for p; or k;)

7(k1)r(k2)

A 1 _ gB TA 1 _
S (llea /K‘) S (llal27"<’)7 (p17p27k17k27 /H) T(p1>7"(p2)

T8 (p1,pa2, k1, ka, K).

(6.45)
The S-matrices satisfy unitarity and reduce to —1 for equal momenta:

412, 11)S (11, 12) = 1, SB(l2,11)SP(l1,12) =1, S4(p,p) = 1,58 (p,p) = —1. (6.46)

They also smoothly reduce to the X X X S-matrix as k — 1. However, unlike the X X X
S-matrix and the corresponding XY-sector S-matrices, S4B (0,p) # 1. Note that the
T-matrix is again not a phase.
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Symmetries. Since Zo maps the A coefficient solutions to the B coefficient solutions and
vice versa, to obtain a Zs-invariant solution we need to combine them as

W))(gen) = |plap27kl7k2>z4 + B |p1ap27 kl’k2>B ) (647)

where we must have a(1/k) = £6(k). Then we have
1 -2
ZQ’¢>(gen) = :FE("”(pl)T(pz)?"(kl)r(kz)) |¢>(gen)' (648)
Note that the eigenvalue is slightly different from the one of the XY sector (see table 1).

One can also apply the momentum permutation maps (5.70) to the A and B solutions.
The eigenvalues are exactly the same as those in table 1.

6.2.3 Restricted solution

Also for the X Z case, the presence of additional “k” momenta which can take complex
values (for real values of the original p momenta) is problematic when considering large
distances #9 — f1 > 1 on the spin chain, as one of the two k& Bethe wavefunctions will
diverge. Also, even for short chains the k£ momenta diverge as we take the centre-of-mass
limit K = 0. For these reasons we would like to restrict the general solution to remove one
of the two k wavefunctions. Expressing k1 = K/2+ 7/2 — iv, ko = K/2 — w/2 + iv, with
v > 0 the term we need to remove is the one with the swapped k-momenta. We make an
ansatz simply consisting of three terms:

1/1,(\&) (01, 02) = Axx(py, p2)ePrat®2le L Ay (py, py)eP2lrtivite
+ A)\)\(]fl, k2)eik1f1+’ik’2£2’

w/(\r)\)/ (61762) = Ay (p17p2)€iplf1+ip252 + Ay (p27p1)€ip2€1+ip1€2
+ A)\)\’(kla kg)@iklel+ik2€2,

1/)&7;2\(817@) = A/\,A(plij)eimh—iringz +A)\/)\(p2’p1)eip2f1+ip1€2
+A}\,>\(k1 kQ)eik1£1+ik‘2£2

wgf,‘g\, (61’ 62) = A>\,>\, (plapQ)eipthripﬂz + A)\Q\l (p2’p1)e’ip2£1+’ip162
+ A)\/)\/ (kla k2)€iklﬁl+ik2€2'

(6.49)

This is the minimal number of terms needed to solve the interacting equations. We find
the following solution

Ax(p1,p2) = alke, k1)b(p1, p2) — b(ka, k1)a(p1, p2) ,
A(p2, 1) = —(a(k2, k1)b(p2, p1) — b(k2, k1)a(p2,p1)) (6.50)
Ax(F1, k2) = —(a(p2, p1)b(p1, p2) — b(p2, p1)a(p1, p2)) -
with the other coefficients related to these three via (6.16). We observe that the A’s here
are quadratic in the a, b-coefficients unlike the general solution which is cubic. On the other

hand, the a and b terms with p and k dependence are mixed in the restricted solution, while
they appear in a more factorised form in the general one.
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One can of course also recover this result by suitably combining the A and B solutions.
The details are precisely the same as for the XY case (section 5.2.3) so we do not repeat
them here. The correct linear combination is the same as the one given (5.76), with of
course the a and b coefficients given by (6.36) and not (5.48).

The restricted solution (6.50) will be our starting point in appendix B, where we will
show how carefully taking the po — —p; limit leads to the centre-of-mass solution (6.30).

Symmetries. Factoring out the Ay, coefficient, we can define two S-matrices:

Axx(p2,p1) a(ka, k1)b(p2, p1) — b(ke, k1)a(pz, p1)
ST (p1, pa, kn, ko) = SN2 - AT ’ ’ S (6,51
(Pr. P2, k1, o) Axx(p1,p2) a(kz, k1)b(p1,p2) — b(k2, k1)a(p1, p2) (6:51)

and
Axx(k1, k2) a(p2, p1)b(p1, p2) — b(p2, p1)a(p1, p2)
T (py, po, k1, ko) = A S ’ ! ’ ’ ) 6.52
(1.2 ki, k2) Axx(p1,p2) a(ka, k1)b(p1, p2) — b(k2, k1)a(p1, p2) (6.52)
The S(") matrix satisfies the unitarity and fermionic property
S (p1, pa, k1, k2) S (po, 1, ki, ko) =1, ST (p1,p1, ki, ko) = —1, (6.53)

and smoothly reduces to the XXX S-matrix in the k — 1 limit. It is also Zs invariant:
S (p1, pa, k1, ko, 1/k) = ST (p1, p2, k1, ko, ) - (6.54)

As before, the T(") matrix is not a phase.
It can also be shown that W)(r) is a Zo eigenstate, with a slightly different eigenvalue

to the XY sector restricted solution.
1
|

Lol)(ry = —é(T(p1)r(pz))_Q(T(lﬁ)?‘(kz))_ V) (r)- (6.55)

Apart from this difference, all the transformations tabulated in table 1 apply to the X Z
restricted solution.

6.3 Short closed chains

In this section we will consider closed chains in the X Z sector and compare their explicit
diagonalisation to the two-Z magnon solution around the X vacuum constructed above.
It should be noted that due to the dilute nature of these chains, not all configurations of
magnons are possible. For instance, odd-Z-magnon states on an even-length closed chain
are not allowed, as there is no way to match the gauge indices, or alternatively guarantee
that the value of A to the left of the first site is the same as that to the right of the last
site. Let us e.g. consider the state | X XZ X ). If the value of the dynamical parameter is \
to the left of the first site, making that X a Qi2, then its value is \’ to the right of the last
site, making that X a Q12 again. The gauge indices of these fields cannot be contracted
to create a closed chain. However if we consider a state with two Z magnons, such as
| XZZX), the last field is a Q21 and we now can contract the gauge indices. Therefore,
the two-Z magnon problem is restricted to closed chains of even length.
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Another difference to the X Z sector is that the length- L Hamiltonian is not just a direct
product of the (alternately) H., and H,. Hamiltonians acting on each pair of sites, and it is
not possible to choose a reference site (e.g. the first one) with a fixed A, as the action of the
Hamiltonian on sites (L, 1) can change that value. Therefore, to reproduce the length-L
Hamiltonian we work on the full basis of two-Z excitations, with both possibilities for A
on the first site. (E.g. for the length-6 examples we exhibit, this basis is 30-dimensional).

Despite these differences, it is clear that the solution of the 2-magnon problem in the
X vacuum of the X Z sector is very similar to that of the alternating XY sector. It also
requires two sets of momenta, p; and k;, giving the same total momentum K and energy
E,. The main diffferences stem from the fact that the a and b coefficients (6.36) entering
the S matrices are different from (5.48). Also, as we will focus on even-length chains there
is no 1-magnon problem, and thus also no “trivial” 2-magnon energies just obtained by
periodicity.?*

In the CoM frame, we will again have, for the untwisted and twisted sectors
respectively:

el =1/8(p,—p) and ePE=—-1/5(p,—p), (6.56)
with S now as in (6.25). Solving these for fixed L, one can confirm that the momenta and
corresponding energies agree with an explicit diagonalisation of the Hamiltonian. Since
S — €7 in the limit x — 1, the momenta reduce to those of the standard XXX model
as they should. As an example, the momenta and energies for L. = 6 and x = 0.9 are
tabulated in table 4 for the untwisted, and table 5 for the twisted case.

Periodicity for the general (non-CoM) solution is also easy to impose by suitably com-
bining the two wavefunctions related by Zs:

[ )tot = A(p1,p2, k1, k2) + xB(p1, p2, k1, k2) (6.57)

where now

(Ai\gwp + xBi\;\,P)ez‘(hm—&-lzpz) _ (Agl)\m + ng\f\,P)ez‘(lsz-i-(h-i-L)m) ’

(Ai\;Jg + xBi\QA,k)ei(llk1+lgk2) — ( é\f\,k + ngf‘vk)ei(ZQk2+(ll+L)kl) ’ (658)
and similarly for the X'\ parts, while for the A\ ones we have
(Ai\g\'d” + .%'Bi\é\/’p>€i(llp1+12p2) — (Ag\?\’p + ng\{Avp)ei(l2p2+(ll+L)p1) ,
(ANF 4 g BN Ry gillibatiaka) _ (g XN | o pXK) illoka (k) (6.59)
which all lead to ( ) ( ) -
_ a(ky, ko) + a(ks, ki)e™™
k1,ko) = — , 6.60
(k1. k2) b(k1, ka) + b(ka, ky)eilkr (6.60)
in terms of which the Bethe ansatz is
. T(k1, ko)b
ilp _ a(p1,p2) + (1, k2)b(p1, p2) ' (6.61)

a(p2,p1) + Z(k1, k2)b(p2, p1)

34 Accordingly, the S-matrices of the X Z sector general solution (6.40), (6.42) do not reduce to 1 as one

of the momenta becomes zero.

— 59 —



K pit XX TR D1 k1 z Es

0 1.25664 2.76393 1.26769 w/2—io00 —1.40161  2.75581

0 2.51327 7.23607 2.51088 w/2 —ioo —0.877401 7.28012
/3 2.38724 5 2.39814 3.1335 1.37095 5.02498
2m/3  § +0.732858i 1.43845 | T +0.742053i  1.87214 0.983762 1.43
27/3 —2.76928 5.56155 —2.6909 —2.65293 2.39 5.57835

0 /2 4 ioco 2 /24 ioco 2.07826 1.36864 2.03304

Table 4. Length-6, k = 0.9 untwisted XZ chain: the momenta appearing in the untwisted X-
vacuum X Z-sector 2-magnon wavefunction for the case L = 6, k = 0.9. The corresponding momenta
and energies for the XXX model at x = 1 are given for comparison. The ps momenta can be found
as po = K — p; and similarly for k;. We have chosen the p momenta to be the ones that are closest
to the corresponding momenta for X X X. As explained in the main text, x is the proportionality
constant between the A and B solutions.

This is the same expression as for the XY sector, however now the a, b functions are those
in (6.36).

As an example, in table 4 we show the momenta and corresponding energies for L = 6
and k = 0.9. All the energies coming from the Bethe ansatz solution have been verified to
match with the explicit diagonalisation of the Hamiltonian. We note that their values are
different from the corresponding ones for the XY sector at x = 0.9, illustrating that these
models are different, even though their dispersion relation is the same.

Analogously we can study the twisted sector by imposing antiperiodicity on (6.57).
The Bethe ansatz is now

gitpr _ 9p1,p2) + T(ky, k2)b(p1, p2) (6.62)
a(p2,p1) + (k1. k2)b(p2, p1) ’
with Z defined by
k1, k) — a(k, ky)eihs
(01, hy) = — o) — ok, b Je (6.63)

b(k‘l, ]{32) — b(k‘g, ]{fl)eiLkl '
Table 5 contains the data for the twisted sector of the L = 6, k = 0.9 chain, where again
the energies have been matched to the explicit diagonalisation of the Hamiltonian. In this
case there are degeneracies (e.g. for the energies F = 2 and E = 4 in the twisted XXX
limit) which we have not attempted to fully resolve as our interest is in checking the overall
features of the Bethe ansatz. However it is clear that those energies can also be reproduced
with a slightly more careful treatment. It would of course be interesting to compare the
above energies (and the 2-magnon energies we can compute for any length L) to one-loop
anomalous dimensions of specific operators in the N' = 2 gauge theory. We leave such
checks for future work.

7 Elliptic parametrisation

The motivation of this section is to understand the most appropriate elliptic parametrisa-
tion for each of our sectors. Having this understanding would allow us to, following [116],
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K pit XX EXXX p1 k1 z Ey

0 0.628319 0.763932 0.62559 5 — 100 0.79193  0.752397

0 1.88496 5.23607 1.86567 5 — 100 1.2656 5.25901
/3 3.02739 6.78309 3.02508 %’T —0.86918:  1.09069  6.83937
/3 1.73909 2.79493 2.97503 2.48291 3.17803  2.76882
/3 & +0.255761i 0.421979 | T + 0.258222; %’T —1.19173¢ 0.837968 0.417685
27/3 2.82661 4.41421 2.82675 0.925401 1.01882  4.43349
2r/3  §+0.632974i  1.58579 | % + 0.591745i 1.78061 1.8021 1.6412

Table 5. Length-6, kK = 0.9 twisted XZ chain: some of the momenta appearing in the twisted
X Z-sector 2-magnon wavefunction for the case L = 6, x = 0.9, with the corresponding ones for the
twisted XXX model for comparison. The p; momenta can be found as po = K — p; and similarly for
ko. As explained in the main text, T is the proportionality constant between the first and second
solutions.

boost the quantum plane (non-spectral parameter dependent) R-matrix of section 3.1, in
order to introduce the spectral parameter dependence.

As emphasised, the dispersion relation appearing in the XY sector and the X-vacuum
of the X Z sector is naturally uniformised by elliptic functions. In this section we provide
more details of this parametrisation and show how it allows us to uncover an interesting
relation between these two sectors.

XY sector. Let us start with the dispersion relation (5.9) in the upper branch:

1 1 - -
Elp)=rk+—+ 21+ k2e2ip\/1 + K220 | (7.1)
kK

Recall that the rapidity variable v which uniformises the dispersion relation should be

such that
Ip(v) dp
v E(p)
The solutions of this equation are not very easy to work with, so we shift the energy
— % — k. It should be pointed out that, although this shift is by
a constant, it is not completely harmless since it brings the dispersion relation to XY-

=E(p) = v(p) = (7.2)

temporarily to £/ = E

model/free-fermion form, effectively dropping the contribution from the ¢* ® o* terms in
the Hamiltonian which are responsible for the 1/k + & term.>® We can now follow the
treatment in [116], which is in the context of the XY model, to express this relation using

Jacobi elliptic functions with modular parameter m = x*. We find

e? = irsn(v/klmxy) , (7.3)
in terms of which the energy is expressed as
E(v) = dp zcn(v//ﬁ]m)dn(v/ﬂm) . (7.4)

S dv K sn(v/k|m)

35See [117] for a discussion of the free-fermionic condition in the context of AdS/CFT integrability.
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We note that in the above parametrisation p = 0 corresponds to vy = —ikK (1 —m)/2,
with K (m) the elliptic integral of the first kind with modular parameter m. One could
thus have shifted the rapidity as v — v + vg so that v = 0 corresponds to p = 0 [116].
Another important quantity entering our wavefunctions in section 5 is the ratio function,
which for this sector is

Y s A rs
rxy(p) = N = rxy (V) = dn(v/k,m) (7.5)

X Z sector. The dispersion relation of the XZ sector is the same as the XY sector.

However, for reasons to be clear momentarily, for this sector we will choose not to split the
square root and write the dispersion relation as (5.8)

1 1
E(p) = E—{—/{+;\/(1—|—/{2)2—4/{251n2p. (7.6)
Then the natural modular parameter that presents itself is m = %, and we will

parametrise (7.6) using elliptic functions depending on this parameter.®® Subtracting the
constant and using (7.2) we find

sin(p) = sn((k + & Ho|m) , (7.7)
and the energy is now
E'(v) = (k + r Hdn((k + £~ Ho|m) . (7.8)
The ratio function for the X Z sector is expressed as

(k—#~1) — (5 + £~ )dn(=(k + £~ H)v|m)
2en(—(k + k= 1)v|m)

rxz(v) = (7.9)

An interesting relation between the ratio functions arises if we use the Gauss transfor-
mation (or descending Landen transformation) (e.g. [120])37

4/m ) _ cn(v|m)dn(v|im)
(14 /m)? 1+ /msn(vlm)?’

cn ((1 +v/m)v

(7.10)
4/m 1 — /msn(v|m)?
d 14+ +/ = .
. <( +vm (1+\/m)2> 1+ /msn(v|m)?
It can then be straightforwardly shown that
1
rxz((k+rx o) = ————— . (7.11)

rxy (v/K|lm)
So, despite being quite different functions of the momentum, the ratio functions of the two
sectors can be mapped to each other by a modular identity, for the same value of the rapid-
ity.3® This mapping hints that there exists a unifying form of the Bethe ansatz equations
in the two sectors, which should become evident with the correct elliptic uniformisation.

36This approach is closer to the standard elliptic function parametrisation of the higher-loop N = 4 disper-
sion relation, where the elliptic parameter is m = —4g® with g the Yang-Mills coupling (see e.g. [118, 119]).

37In the N = 4 higher-loop context, Landen transformations were used in [121].

380ne could of course have redefined the ratio in one of the sectors to be the opposite ratio, so as to get
precise matching.
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Theta function parametrisation. It is also instructive to switch to a theta function
parametrisation. We will only show this explicitly for the choice of modular parameter

m = k% as in the XY sector. Using standard relations (e.g. [71]) we can write

e = ivksn(v/k) = z\f\lelE 3 Zig ; (7.12)

where the arguments of the Jacobi and theta functions are related as v/x = 2K (m)u, . For

the XY -sector ratio function we have:

 VEken(v/k) \/ﬁag(u) 1 04(w)\ _ 0a(u)
" ) ‘@( k94<u>) (Tnw) a9

Here we use the nome

qg=2¢€"", where 7 =1

(7.14)

with m = x* K’(m) = K(1 —m) and our theta function conventions as in [71, 77]. In
partlcular we have

Or(u+1) = —01(u), O (u+71)=—"CHg (u) . (7.15)

and the zeroes of 01(u) are at u = m + nt with m,n integer. As above, it is usually
convenient to shift the rapidity u by 7/4 in order to get that u = 0 gives p = 0, and that
real rapidities correspond to real momenta.

It is intriguing that e? and the ratio function r(p), (which both appear in the a(p1, p2)
and b(p1, p2) terms entering the S-matrices) can be exchanged by the simple shift u — u—i—%,
given that 01 34(u+ 5) = 02.43(u) and Oo(u+ 3) = —01(u).

. u—ut1/2 u—u+1/2 L u—u+1/2 u—ut+1/2
e’ — ir(pyr) — —e? — —ir(p;r) — e’ (7.16)
Also, under shifts u — u-+7/2, given the transformations 0y 4(u+7/2) = ie"™®+7/90, | (u)
and 0y 3(u + 7/2) = e "W/ 05 5 (u), we have

i u—u+T1/2 i i(ﬂ'— ) u—u+7/2 1
e? — —e?P=¢""P and r(p;r) — .
r(p; k)

We can put the above components together to write the 1-magnon wavefunction as

V4 14
- e 5 - 5 (38 0 5 (8

0e27 0e27+1 Le2Z 0e27+1
(7.18)

(7.17)

The reduced energy is also rather simple to express in terms of theta functions:

) = i 010 O5(u)bs(u)
) = =i 10)05(0) 61 (w)a(u) (7.19)

and given also the relation

2
K2=Fk=+m= (Z;Eg;) , (7.20)
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the energy shift E(0) — E'(0) = k + 1/k of the total energy E(u) can also be expressed in
terms of theta functions. Finally, the Zy eigenvalue of the 1-magnon solution is (5.12)

Zs |p) = p)- (7.21)
Similarly, for the 2-magnon eigenproblem we can express the wavefunctions (for the CoM,
general and restricted solutions) and their energy and Zy eigenvalues (summarised in ta-
ble 1) in terms of theta functions. Even though we derived these solutions by explicitly
solving the coordinate Bethe ansatz, we could have attempted to guess the wavefunctions
simply by knowing their eigenvalues and modular properties. We believe that point of view
will be helpful in the solution of the multi-magnon problem and also in the study of more
general ADE orbifold eigenproblems.

In appendix C we provide a simple example of a dynamical alternating chain starting
from Felder’s elliptic R-matrix and using the algebraic Bethe ansatz formalism. The ex-
pressions for the momenta, ratio function and one-magnon energy above are exactly what
one obtains from the ABA approach, apart from the x + 1/k prefactor (i.e. our E'(u) is
the total energy there). This is natural, as the model we consider in appendix C is at a
free-fermion point. Although this is a minor difference for one magnon, it leads to the
two-magnon problem we treated in section 5 being very different (and considerably more
involved) than the two-magnon problem of the model in the appendix, whose S-matrix is
just S = —1. This hints that we need to look for a different uniformisation which is better
adapted to the full energy E(u) rather than the reduced one E’(u).

8 Conclusions and outlook

In this work we took a fresh look at the spin chains related to the one-loop spectral problem
of the Zs marginally deformed orbifold of ' = 4 SYM. We focused on the holomorphic
SU(3) scalar sector and in particular two different SU(2) subsectors. One of these, the XY-
sector, can be described by a relatively standard alternating Heisenberg chain, while the
other, the X Z sector, can be understood as a slightly more exotic dynamical Temperley-
Lieb model. Both cases are examples of dynamical spin chains, where the Hamiltonian
depends on an additional parameter whose value is dynamically determined at each site of
the chain.

Following [48-50] and pursuing the quantum plane limit approach we discovered that
novel quantum groups govern the dynamics of our spin chains. An in-depth study of the
RTT relations as well as the higher order relations is needed in order to fully characterise
these quantum groups. However, the R-matrix in each SU(2) sector is triangular (or is
related to a triangular R-matrix with the same RTT relations), which implies that it can
be factorised by a Drinfeld twist (3.20). In this way the quantum plane can be seen to arise
by twisting the trivial quantum plane of the original N' = 4 theory. The presence of a twist
also guarantees that the quantum deformed generators can be made to act in a consistent
way on the quantum plane coordinates, as long as one works in a quasi-Hopf setting [50].
We will leave the study of the SU(2), quantum group as well as its generalisation to the
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full scalar sector for future work. Omne important aspect will be to clarify whether the
Drinfeld twist of the XZ sectors is generic or whether it obeys any cocycle conditions.
If in particular it satisfies a shifted cocycle condition [27-29] the corresponding R-matrix
would satisfy the dynamical YBE (without spectral parameter) and that would provide
additional support for our claim that the dynamical formalism is relevant for our type of
spin chains.

With the quantum plane limit approach we were able to obtain the R-matrix at one
specific value of the rapidity. With Baxterisation [82]3 we should be able to write down
the R-matrix at any value of the rapidity. This is equivalent to boosting the rapidity to
a generic value after using the correct elliptic parametrisation [116]. More traditionally,
starting from the finite limit of the quantum plane we can affinise and obtain the R-matrix
as a function of the rapidity via the adjoint action (as in [71] and [29])

R(u; k) = Adj(u® @ 1)R(k), (8.1)

where d is the derivation of the affine algebra. Obtaining a rapidity-dependent R(u;k) is
work in progress.

Generalising the quantum plane approach to include fermions will help us upgrade the
quantum group of the full scalar sector to ultimately an PSU(2,2|4), which we conjecture
exists and is the correct quantum group which (i) leaves the complete Lagrangian invari-
ant’® and (ii) will uniquely fix the scattering of this model to all loops. This can be done
by combining our approach with Beisert’s [122] to construct the all loop scattering matrix
of the quantum SU(2|2), C PSU(2,2[4),.

In fact we conjecture that there should be a very general theorem at work. When
breaking the A/ = 4 SCA down to some NV > 1 SCA, the naively broken generators are not
lost, but they get upgraded to quantum generators! All theories obtained from the N =4
SYM mother theory by explicitly breaking the SU(4) g symmetry, like orbifolds, orientifolds
and marginal deformations, enjoy both at the level of the Lagrangian but also at the level of
the spin chains a quantum version of PSU(2, 2|4), the precise form of which depends on the
R-symmetry breaking pattern and can be reconstructed looking at the quantum planes as
we did in section 3 following [49, 50], and then their super extensions. On the string theory
(AdS) side, all these daughter theories are obtained by breaking the SU(4)r ~ SO(6)
of the transverse to the D3 branes directions. This quantum symmetry can always be
understood as the symmetry of the non-commutative R® plane (seen by open strings) due
to the B-field [123]. This noncommutativity has been related to marginal deformations
in [51, 124, 125].

Another important realisation in this paper is that on the one hand, the XZ sector
is a dilute model but also that the full holomorphic SU(3) sector is a dynamical 15-vertex
model. An urgent next step for our program, which is work in progress, is to work out the

39Baxterisation refers to starting from one point in the R-matrix parameter space (one Yang-Baxter
integrable R-matrix) and building from it the algebraic variety where the spectral parameter lives.

40The SU(3),. symmetry leaves the superpotential invariant. To obtain the quantum supercharges we
need to consider the Lagrangian in components and check the supersymmetry variations for the broken @
generators looking for a quantum deformation of the usual supersymmetry algebra.
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RSOS description of this 15-vertex model, which is expected to be similar to the elliptic
(off-critical) models described in [91, 101].#! The symmetries and the periodicity of the
problem allowed us to determine the adjacency graph of the dilute RSOS model associated
to the Zy quiver theory depicted in figure 7. The adjacency graph of the corresponding
RSOS model is dual to the brane-tiling diagram of the quiver theory.

Having the adjacency graph together with figure 5 should be enough to fix the Boltz-
mann face weights W(fjg | u) of our model and finally check whether they obey the star
triangle relation. A positive answer would immediately mean integrability a la Felder. A
worst case scenario, as we know that our system is of quasi-Hopf type in the quantum plane
limit, would be to obtain a dressed star triangle relation leading to a more complicated
and exotic quasi-Hopf dYBE. For this part of our project the known literature is not ready
to accommodate our needs. As far as we know, for RSOS models, the dYBE is not known
or derived unless they are dense like the ABF model. In this dense case, starting from
the star-triangle relation and applying the vertex-face map (4.6) Felder’s dYBE can be
obtained. As explained, however, we are interested in dilute models for which (as far as we
are aware) the equivalent of Felder’s dYBE has not been derived. We remind the reader
that our focus on Felder’s approach is motivated by the fact that it clarifies the connection
with elliptic quantum groups.

An important feature of our theories is the appearance of elliptic-type dispersion rela-
tions. This fits with known examples of (integrable) elliptic chains, which can be usefully
described by a dynamical R-matrix [23]. In sections 5 and 6 we showed how the coordinate
Bethe ansatz approach can be adapted to these types of spin chains to obtain a solution
of the 1- and 2-magnon problems. These explicit solutions are essential as we do not know
the R-matrix description (as a function of the rapidity) and we are trying to discover it.
Any guess for such an R-matrix (based on the quantum symmetries that we have outlined
or the 15-vertex RSOS model) must, through the Algebraic Bethe ansatz, lead to the same
eigenvectors and eigenvalues that we derived here using the coordinate Bethe ansatz.

In addition, it is interesting that for the general solution of the 2-magnon problem, we
need to introduce additional kK momenta on top of the p momenta. This is a known property
of staggered-type models [15]. These k& momenta can be understood as resonances, which
means that already at the 2-magnon level, the system seems to fail Sutherland’s criterion
of quantum integrability [113], i.e. the absence of diffractive scattering. For a discussion
of different known criteria of integrability and their validity see [126]. For Sutherland’s
criterion to be applicable, diffractive scattering should be detectable as asymptotic states
at infinity. In the centre-of-mass solution, for which the introduction of nearest-neighbour
contact terms is enough, the k resonances decouple (see appendices A and B for the detailed
computation), however, for generic momenta the k¥ momenta resonances are unavoidably
present. It is important to mention that through our study of closed chains we found
examples of eigenvalues where both the p and the £ momenta are real (see tables 2, 3, 4
and 5). We hope that the correct elliptic uniformisation of the two magnon eigenvector

U Typically, elliptic RSOS models are off-critical and one expects to recover criticality by a suitable limit
of the elliptic nome.

— 66 —



Quag/  Qu
in Q32

o1 ¢3

Figure 13. The Z3 quiver. The @ bifundamental fields (components of X in /' = 4 language)
connect the nodes in a clockwise direction while the @ bifundamental fields (components of Y in
N = 4 language) connect the nodes in an anticlockwise direction. The ¢ adjoint fields (components
of Z in N = 4 language) return to the same node.

will combine both the p and the k momenta in one rapidity, however at this stage it is
not clear how and if it is at all possible to achieve this. What is more, it is still possible
that the three-magnon problem can be tackled using a variant of the discrete-diffractive
scattering approach of [67]. Work on establishing (or disproving) this possibility is in
progress. Yet another important question we leave open here is whether the three- and
higher- magnon problems can be approached in a similar way. It certainly appears to require
new elements, which a better understanding of the underlying quantum symmetries might
help to eventually uncover.

We wish to emphasise, that, regardless of any integrable features, several important
features of the types of spin chains considered here can be studied. For instance, in [110] the
multi-magnon excitations have been studied using the recursion method [111]. Translating
the multi-magnon excitations of our chain to the language of gauge theory single trace local
operators, we can immediately acquire their anomalous dimensions, and then compare them
to explicit one-loop computations.

Yet an other interesting direction is to study this model from the string theory side.
The AdS string sigma-model was never considered nor constructed for marginally deformed
orbifold theories. We would need to start with type IIB string theory on AdSs x S°/Zs,
adding the appropriate constant NS-NS B-fields in either Green-Schwarz, hybrid or pure-
spinor formalism. This AdS sigma model, and its AdS5 x S%/I" generalisation (with I' €
ADE), would also be relevant, independently of integrability, for many other currently
popular directions of research [127-134]. Intriguingly (at least for AdS/CFT practitioners),
RSOS lattice models are associated to (often non-unitary) minimal model CFTs in the
continuum limit [91, 135-137]. Their elliptic uplifts which are relevant for us are off-
critical, however, and one could then speculate about whether those off-critical models
could capture a specific closed subsector of the full string theory sigma model.

We finally wish to conclude with some remarks on orbifolds of higher rank. The elliptic
nature of the spin chains appears to be a somewhat special feature of the Zo orbifold. Let
us consider, for instance, a Zg orbifold of N' =4 SYM (see figure 13), marginally deformed
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Figure 14. The adjacency diagram of the dilute RSOS model associated to the Zs quiver theory,
in the dynamical A/ = 4-like picture. Vertices of the same colour/height A are identified. This is
the dual graph to the brane-tiling diagram of the quiver theory.

so that all three gauge couplings g1, g2, g3 are different. By a straightforward generalisation
of the discussion in section 6, the dispersion relation of one Z excitation in the X vacuum
is obtained as a solution of the cubic equation:

E®—2B? (g} + g3 + g3) + 3E (9103 + 9163 + 9393) + 2010397 (cos(3p) — 1) = 0. (8.2)
The SU(3) sector of the Zs quiver will still be described by a dynamical 15-vertex model,
but in this case with three dynamical parameters A1, A2, A3. The corresponding adjacency
graph is depicted in figure 14. Note that, as discussed in section 4 for the Z, case, the
adjacency graph in figure 14 is the dual graph of the bipartite graph of the Zs quiver
theory [58-61]. What is more, the 15 vertices of the Zg vertex model, will be the same as
the ones in figure 5 for the Zsy case with the only essential difference that the periodicities
will change as A ~ \ 4 6n.

More generally, for any NV = 2 ADE quiver the corresponding 1-magnon dispersion
relation is obtained as a solution of a higher order equation (enjoying the symmetry of the
quiver). These dispersion relations appear to be more naturally described by hyperelliptic
functions. This brings to mind the Chiral Potts model [15-19]. The study of these ADE
N = 2 spin chains is work in progress and we believe that due to their dilute nature, they
will have similar features to the off-critical ADE models of [97]. From the point of view
of the dynamical 15-vertex model, the most general ADE quiver has adjacency graph the
dual graph of its brane tiling. We finally wish to conjecture that a large class of N' =1
superconformal quiver theories can also be described by a dynamical vertex model coming
from an RSOS model with adjacency graph the dual graph of its brane tiling.

To conclude, we hope that we have convinced the reader that the spin chains arising in
the planar limit of AV = 2 4d SCFTs deserve further study. The interplay between different
structures in mathematics like elliptic quantum groups and quasi-Hopf algebras, statistical
mechanical models like dilute elliptic vertex and RSOS models, as well as alternating bond,
staggered models of interest to the condensed matter community (arising in known mate-
rials), with 4d gauge theory physics and string theory renders this research direction very
exciting. We plan to report on further progress in uncovering their underlying structures

in upcoming work.
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A Taking the centre-of-mass limit in the XY sector

In this appendix we show how the generalised Bethe ansatz (5.43) for the XY sector, which
involves a second set of momenta, reduces to the more standard Bethe ansatz (5.35) in the
centre-of-mass frame K = 0. Understanding this limit will also clarify the origin of the
contact terms that appear in the CoM frame.

To start, note (as can be seen from inspection of (5.40)) that as K — 0, the k¥ momenta
scale as k1 — m/2 —i0co and ka — m/2 4 i0c0. So the centre-of-mass limit needs to be taken
very carefully.

As discussed, the relevant wavefunction on which to take the limit is the restricted
solution (5.73), which contains only the direct £k momenta k1, k2 (and not the swapped ones
k2, k1). Let us write the S and T matrices arising in that solution as found in section 5.2.3

(for general p1,p2):

) __a(ky, k1)b(p2, p1) — blke, k1)a(p2, p1)
S (p1, p2, k1, ko) a(ka, k1)b(p1, p2) — b(ks, k1)a(py, p2) (A1)
_ [ bp2,p1) — alp2, p1) '
f b(plvp?) - a(ppr)

I

and
(p2,p1)b(p1,p2) — b(p2, P1)a(p1, p2)

(K2, k1)b(p1, p2) — b(k2, k1)a(p1, p2)

a
T(T)(plap% kla k2) = _a

A2
_ 1 a(p2,p1)b(p1, p2) — b(p2, p1)a(pr, p2) (4.2)
b(ka, k1) f b(p1,p2) — a(p1,p2) ’
where we have defined ( )
a kZ? kl
= =7 A3

Now, we choose ki, k2 to be of the form ky = K/2 + 7/2 —iv, ko = K/2 — /2 + iv,
where v > 0, since this leads to a decaying exponential in the wavefunctions. Noting the
1/sin?(K) term in (5.40), it is clear that for K sufficiently small the argument of the arccos
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will eventually exceed 1 and the arccos term will become (positive) imaginary. As K is
further decreased towards zero, v — cc.
What we will now show is that, in the limit where ps — —p1,
1) ST(p1,p2, k1, k2) — Scom(p, —p),
2) (k)T (p1,pa, b k2)e ™ — r(p)e PG(—p).

We will thus completely recover the centre-of-mass wavefunctions that were originally found

(A.4)

using contact term method in section 5.2.1. For point 2, which we show later in this sec-
tion, note that this comes from the fact that only nearest-neighbour terms for the (k1, k2)-
term survive the limit. Consequently, looking at the wavefunctions in equation (5.72), the
(k1, k2)-terms for even-even and odd-odd completely vanish (as they do not have nearest
neighbour terms); for the odd-even and even-odd terms, only (2¢—1,2¢) and (2¢,2¢+1) sur-
vives, thus generating the d¢, 14, which was entered by hand in the CoM wavefunctions.*?

To take the limits of the S matrix, it is clearly important to understand the limit of
the function f in (A.3) as po — —p1, as the other terms remain finite and non-zero in the
limit. An important result concerns the limits of the ratio functions appearing in the a

and b coefficients. They are:
1
r(ky) = - r(k) =k, as p2— —p1. (A.5)

We note the minus sign appearing in r(k;), which is important to get the right limit. Using
this result, and also recalling that r(—p) = 1/r(p), we find in the limit

— ki + 2¢tk2 4 gei(P1tp2)
k(2Ketk2 + eilPrtp2) — 1)

f=- (A.6)

Here we have taken the K — 0 limit only of the ratio functions, and still need to take it in
the exponents. The naive limit of this expression gives 0/0, so to obtain a definite limit, we
first express ko in terms of p1, po using (5.40) and then set po = —pj + €, so that the limit
becomes ¢ — 0. Since the equations for k1, ko contain an arccos, we are able to remove the
exponents using the formula

arccos(z) = —iln (z + V22 — 1) . (A.7)

After some analysis, we can extract the divergent terms csc(e) from both the numerator
and denominator of equation (A.6). To take the limit e — 0, we apply I’'Hopital’s rule to
finally obtain the complete limit for f:

-1+ V1 + k2e=2p1\/1 + K2e2iP1

L _ A8
f(p) p) K}Q _ \/1 + K/Qe—Qipl \/1 _|_ /{262ip1 ( )

Substituting this back into S(p1, pe, k1, k2) and setting po — —py for the other terms (which
are harmless), we find that

S(p1, p2, k1, k2) — Scom(p; —p) (A.9)

42We note that this behaviour resembles that of bound states for the spin-1 /2 XXX chain whose imaginary

part can diverge and lead to localised interactions (see e.g. the introduction to the Bethe ansatz [115]).
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where Scom(p, —p) is given in (5.30). We have thus confirmed that the CoM S-matrix
obtained using the contact-term approach is a limiting case of the S-matrix for the re-
stricted solution.

The final step to confirm that the full centre-of-mass solution arises as a limit of the
restricted solution is to check that the contact term G arises from one of the terms with
additional momenta. Let us focus on the following term for the odd-even part of the
wavefunction (5.73):

T(kl)T(pl,pg, ]ﬁ, kQ)eiklel—szﬁz . (A.l())

We set ¢y = 2¢ and ¢ = 2¢ — (2m + 1) where m > 0. Therefore, m = 0 corresponds to the
nearest-neighbour case. After using that k1 + k2 — 0 in the limit, we are left with

R o~k (2m+1)
r(k1)T(p1, p2, k1, ko)™ F1CmHD — _p(f)) b

a(p2, p1)b(p1, p2) —b(p2, p1)a(py, p2)

(K2, k1) f b(p1,p2) —a(p1,p2)
A1)

The factor f was determined above, and proceeding similarly we find that the term

o—ik1(2m+1) o—ik1(2m+1)

e—0

b(k% kl) - —9ketke — gilprtp2) 117

(A.12)

This factor vanishes in the ¢ — 0 limit when m > 0. However, m = 0 gives a non-zero
result, which is the nearest-neighbour term and produces the dy, ¢, 41 contact term that we
originally inserted by hand in the CoM method. More precisely, upon taking ¢ — 0 the
m = 0 term reduces to:

K
—2K2 + 2v/1 + K2e72P\/1 + K2e2iP

(A.13)

Putting everything together we conclude that out of all the (k1, k2)-dependent terms in the
odd-even part of (5.73) the only one that survives the centre-of-mass limit is

r(k1)T (1, p2, k1, kg)etF1tillitDhe 29 0y =ipG(_p). (A.14)

which is precisely the centre-of-mass contact term appearing in the odd-even part of (5.73).
A similar procedure applies to the even-odd part. We have thus shown how the general
method of [65-67] of adding additional momenta also applies in the centre-of-mass frame,
as long as the limit is taken carefully. All terms containing k£ momenta in the wavefunction
vanish, apart from the nearest-neighbour term which produces the centre-of-mass contact
term. This explains the physical origin of the contact terms. We end by noting that in
the standard XXX Bethe ansatz at kK = 1, the momenta diverge in the limit K — 7.
Moving slightly away from x = 1, we see that the k£ momenta are finite in the CoM limit
at K = m. So in a sense the role of the p and k momenta is exchanged at K = 7 and this
might allow us to think of the x # 1 theory and the additional-momenta Bethe ansatz as
a regularisation of the XXX Bethe ansatz at K = .43

“3Recall that one always obtains a better understanding of the Bethe roots by regularising the Bethe
ansatz. A more standard way of doing this is by introducing a phase that changes the periodicity properties
(see e.g. [138] for a discussion).

71—



B Taking the centre-of-mass limit in the XZ sector

In our study of the X vacuum of the X Z sector we also applied two, superficially very dif-
ferent, methods to solve the 2-magnon problem: a contact-term method which required the
centre-of-mass condition K = 0 (section 6.2.1) and the approach with additional momenta
(sections 6.2.2 and 6.2.3). In this section we show how the two methods are related, and
in particular that the CoM S-matrix (6.25) arises as a limit of the restricted X Z-sector
S-matrix (6.51). As most features are exactly parallel to the XY case of the previous
appendix, we will just show the main points.

Recovering the centre-of-mass S-matrix. Recall the restricted solution S-matrix in
this sector is

_a(ka, k1)b(p2, p1) — b(k2, k1)a(p2, p1)
a(ka, k1)b(p1, p2) — b(k2, k1)a(p1, p2)

S(ms)(l)l,p%khkz) =

— _f - blp2,p1) — a(p2,p1) (B.1)
f-b(p1,p2) — a(p1,p2)’
where | |
. all k) el PPy (ky) + 1 (ky) (1 _ opeikay (kz)) | o)

b(ka, k1) kel PPy (ky) 4 ki (kg) — 2eik2
Due to the divergence of the kK momenta as po — —p1, the limit needs to be taken carefully.
We start by simplifying the ratio functions r(k1), r(ke) by taking the limit in some of
their terms:

e—ik1 (_,{2 + VR F 262k 11 + 1)
T(kl) — )
H (B.3)
—k? + VRl /e PR £ 141)

K

T‘(k‘g) — 6ik2 (

We then substitute these expressions into f and set k1 = p1 + p2 — ko. Next, to remove
the divergent parts from ko, we set po = —p1 + €. After some manipulation, we find that
we can write

o2ik2 _ M _where limz — 4 (;{4 + 252 c205(2p) +1)
x e—0 K

. (B.4)

Substituting back into f and taking the limit ¢ — 0, and then substituting f into (6.51)
we find precisely Scons as in (6.25).

Recovering the contact term. To complete the matching of the solutions we need to
also recover the contact term G(p) in (6.22). We will focus on the (A, A) and (N, \') terms
in the restricted wavefunction, as there are no neighbouring Z magnons in the wg\i\),, wy&
wavefunctions. As in the previous appendix, we set o = ¢1 + 2m + 1, where m > 0 (in
Pax, Yy x, for a Z excitation at site /1, the excitation at £ is an odd number of sites
away). We will show that for m = 0 (in other words, the nearest-neighbour case), we have
a finite non-zero result in the K = 0 limit, while the terms with m > 0 vanish in the limit.
We will thus recover the required contact terms.
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Recalling the form of T" from (6.52), a generic term in w/(\? will be

r (k1 )r (k)T (p1, pa, by, ko) etFrfrtika(bit2m+l)

e®22mH1) 4 (py, p1)b(p1, p2) — b(p2, p1)a(p1, p2) il )ty (B.5)
b(ka, k1) f - b(p1,p2) — a(p1,p2)

where we used that k; + ko = 0 in the limit. We have already determined the limit for f,
and 7(k1)r(k2) — —1 in the limit, so it just remains to study the behaviour of the prefactor

= —’I”(]-Cl)?“(k'Q)

oik2(2m+1)

D o) (B.6)

Setting po = —p1 + € and using equation (B.4), it is straightforward to confirm that for
m > 0, the above expression vanishes as we send ¢ — 0. However, if m = 0 we find

etkz 1
— ) B.7
b(ka, k1)  2y/k%+ 2Kk2cos(2p) + 1 — 2K2 (B.7)
Substituting this (and f) back into (B.5), we find a precise match with the term
—r(p)’e”"G(~p), (B.8)

which arises in the solution (6.30). The case of wg\r&/ works similarly. We conclude that, also
for the X Z sector, the contact term wavefunction (6.30) is a limiting case of the restricted
wavefunction (6.49), (6.50) in the centre-of-mass limit.

C Example of a dynamical alternating chain

In section 4 we argued that the dynamical parameter provides a useful way to describe
Hamiltonians which are not fixed at each site but are dynamically determined based on
the spin chain configuration, and in particular on the number and type of states which
have been crossed before arriving at the sites on which the Hamiltonian acts. To make
this statement more concrete, in this appendix we show how one can obtain an alternating
Hamiltonian from Felder’s dynamical SU(2) R-matrix. The Hamiltonian will be that of an
alternating XX model, so not directly relevant to either the alternating XXX Hamiltonian
of the XY sector or the dynamical Temperley-Lieb Hamiltonian of the X Z sector (as we
do not know how to obtain those models from an R-matrix). However we hope that this
simple example will illustrate how the dynamical parameter might be used to construct
alternating-type models more generally.

The derivation below is essentially the same as that of [139], who used Baxter’s original
site-dependent transformation starting from the XYZ model. Here we just put it into a
more modern context to emphasise the link to elliptic quantum groups, which might even-
tually also play a role in our case. One can also equivalently perform the same computation
in loop model language, by suitably adapting the treatment of the ABF model in [100].

Let us start from Felder’s dynamical R-matrix [23] but in symmetrised form, where
(as in (4.8)) one makes use of the available gauge freedom to rescale the off-diagonal
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components so that they are equal (see e.g. the appendix of [78]). Let us actually write
the permuted R = PR:

v 0 00
A 0 ,84,_ a 0
R= C.1
0 a 0|’ (C.1)
00 0~
where
0(2n — O\ —2n)0(\+2n) @ G0N+
7(u):(ﬁu)joé(%)\):\/( 2O+ 2n) ) ﬁi(u7/\)zw~
0(2n) 0(=A) 01(2n) 0(N)
(C.2)
Our conventions for 6 functions are as in [71, 77]. In particular the elliptic nome will be

g = €™, The elliptic parameter is related to the deformation parameter as m = k? = x*

(see section 7), and the imaginary period of the torus is 7 = iK (1 —m)/K(m), with K the
complete elliptic integral of the first kind. The two-site basis will be taken to be the same
as the XY sector.

To obtain the alternating behaviour we need, will have to set the step 27 to be imagi-
nary, in particular we will take it to be proportional to the imaginary period 7. The usual
theta function #; is not periodic under such a shift, so, following [78, 140, 141], we have
redefined our theta functions as:

O(u) = ™/, () . (C.3)

This modified theta function is antiperiodic under a shift by 7, and periodic under a
shift by 27:
O(u+7)=—0(u), O(u+27)=0(u). (C.4)

We will choose 2n = 7/2, and also set A = % + 5. So the dynamical shift is
A= XN=A+2n=A+71/2. (C.5)

From the above periodicity we see that repeating the shift, A — X\ + 47, takes us back to
the original R-matrix as shifts by 7 just change an overall sign which cancels in the ratios.

A standard theta-function identity relates the elliptic modulus to the ratio of two of the

4

theta functions evaluated at the origin. Specifically, given our choice m = k*, we will have

o~ (6000
ﬁ_hw%_Q%Q. (C.6)

This relation will be important later on, when checking how the Hamiltonian is dynamically
modified between even and odd sites.

The R-matrix (C.1) satisfies the dynamical Yang-Baxter relation in Hecke form (which
is equivalent to (4.10) for R):

égg(u, A + 217h(1)) ng(u + v, )\) ﬁQ:}(U, A + th(l))

. i o (c.7)
= ng(’U, )\) Rgg(u + v, A+ 21’]h( )) R12(u, )\) ,

74—



where we recall that the notation is that A is shifted by 27 times the SU(2) weight of
the line that is crossed. Note that the SU(2) weights are £1 for X and Y respectively,
however the effect of crossing an X of a Y is the same, as A + 2n ~ XA — 2 by the above
periodicity (C.4). So, with our choices, A and X are the only two values of the dynamical
parameter that will appear.

The normalisation of the R-matrix implies that

R(u)R(—u) = v(u)y(~u) . (C.8)

At u = 0, we find R(0) = I, ie. R = P. So u = 0 is a good point to expand around
and give a Hamiltonian.** However, to find this Hamiltonian it is best to work with the
transfer matrix following the Algebraic Bethe Ansatz approach (which for the dynamical
YBE has been detailed in [24, 78]). We will assume that the reader has familiarity with
the main features of the ABA construction (see e.g. [71, 138, 142-144] for introductions)
and focus mostly on the differences arising due to the dynamical nature of the R-matrix.
Let us start by considering the transfer matrix for the X-vacuum with a single Y impurity.
We will focus on a small part of the chain around the impurity. The overall transfer matrix
will be a trace in the auxiliary space, which we draw by a horizontal line:

X Y
e R

XX XY XXX XX XY XXX
(C.9)
The Hamiltonian is the first-order in u term in 7', so we can write 7' = Q(1 — uH + - --).
We note that most of the terms in the left diagram will be R{% = ~(u), which expands as
v(u) =1—wu()+---. On the other hand, the diagram on the right will necessarily contain
lots of RY%X = a(u), which expands as a(u) = O(u) so will go beyond linear order in u. So
the term on the right will only be relevant for higher charges (or very short chains), so we
will only focus only the term on the left for the purpose of deriving the Hamiltonian.
Now note that at u = 0 the R-matrix (C.1) becomes the unit matrix, and the
corresponding R-matrix (4.8) becomes the permutation matrix P. In other words,
R¥¥ = RYY = RY¥Y = RYY = 1 while RXY = RYX = 0. It is easy to check that
this leaves only one nonzero term in the transfer matrix acting on the single-Y state. Fo-
cusing on a small region around Y, with all R-matrices not shown to the left and right
being R%%, we find that the transfer matrix at v = 0 will treat a Y impurity as follows:

X
Yy X
v X = RYX(V) REY () RF (V) REY (. (C10)

“Recall that in section 3 we saw that choosing u = 1/2 with the same parameters A and 7 gives us the
R-matrix in the quantum plane limit, however not for the XY sector (whose quantum plane is trivial) but
for the X Z sector.
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In writing out this expression we start from the left in the diagram, following the arrow
of the auxiliary space line, but, as we think of the transfer matrix as an operator acting
to the right, the order of R-matrices as they are written out is reverse of the order of the
corresponding vertices in the diagram. We have also indicated the dynamical parameter
to the left of the first R-matrix, which we have arbitrarily taken to be A (i.e. not \’). Each
time one crosses a line (including of course the auxiliary line) the parameter flips from A
to X' and back. At u = 0 the \ dependence disappears from the R-matrix, so A will not
play a role, but note that the shifted ¥ magnon sees the same value (\) as the initial one
before the action of the transfer matrix. So e.g. an initial ng field stays a ng field.

We see that Y has been pushed one site to the right. The same will be true for any
number of Y’s at u = 0 and we conclude that 7(0) = 2, the shift operator, as required. So
to obtain the Hamiltonian we will now look for the first-order in w terms in 7'(u), which
we will need to multiply by Q1. There will be three such terms, which we can represent
graphically as below:

X x=R¥x(N) Ryx (V) R (V) R¥x (M)
(C.11)

= 7(“)5* (u7 A)BJr(u’ )‘/)’7(”) :

. W x=RIXN) RXX(N) RXY(N) RXX(N) c12)
X = y(u)y(w)alu, N)y(u) .

y | x=EeXx(V) Byx(\) BA (V) Byx (V) (©13)
= B (u, X)au(u, ) B-(u, N)y(u)

The coefficients refer to (C.2) where we note that v(u) does not depend on the dynamical
parameter. We have named these contributions S, £ and R for “stay”, “left” and “right”
as, after the action of Q~!, they correspond to the Y field staying on the same site or
moving one site to the left or right. There are no terms with Y shifted more to the left,
while terms with Y shifted more to the right contain higher powers of a(u) and thus w,
and can be ignored to linear order in u. The Hamiltonian will thus be nearest-neighbour,
just like in the non-dynamical case (and unlike the situation when one adds alternating
inhomogeneities u; at each site (e.g. [105]), which shift e.g. a(u) to a(u — w;) and modify
the above argument).

Considering now the full chain of length L, the vacuum configuration will just con-
tribute a factor of y(u)” and we are interested in the difference due to presence of the
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magnon. We thus divide our 4-site block by ~(u)* to obtain the final terms that will con-
tribute to the Hamiltonian.*> We conclude that for a Y which initially has A to its left,
the contributions to the Hamiltonian are

6— (uv A)B-ﬁ- (u> )‘/) L= As (u7 )‘/)
¥(u)? ’ v(w)

p- (u7 )‘,)O‘S (uv /\)ﬁ-i- (u’ )‘/)

v(u)? '
Repeating the above derivation but with a A’ to the left of the first R-matrix (which also
implies a A’ to the left of the initial ¥ magnon), we find:

S= L R= (C.14)

/ /8—(7‘7)‘/)64-(“7)‘) / as(“? /\) / ﬁ_(u, A)as(uv)‘/)ﬁ-i-(uv)‘)
e T W 2w (e
Substituting the values of the coefficients from (C.2), we obtain:
o B0 + 3~ wlu+ X) _ 6:(0)6s(u)s(w) 10
O(u — 20)20(N\)0(2n + \) 04(1)262(0)05(0) ’ '

VIO b)) ) 6(0) a(w) (C.17)

ON+2n)  Ou—2n)  OA+2n)0u—2np)  02(0)0a(u)’

and

_ VOO A+ 20)0(X — 20) 6(—u + X+ 20)8(u + A + 2) 6(2n)26(u)

A\ O(\ + 2n)> 0(u — 2n)° (C.18)
_ ;%0 0(u)? 04(0)61 (u)
03(0) 02(0)2 04(u)?

where to obtain the final result we have first gone from the # notation back to standard
01 functions by simplifying the exponent in (C.3), and then used standard theta function
identities (e.g. [71, 77]) to express e.g. 01 (u + 7/2) in terms of 64(u) etc.

For the Hamiltonian we are interested in the O(u) terms in the series expansion of the
above coefficients. Given that #;(u) is odd while the other three functions are even, we
immediately find:

164(0)
"k 04(0)

u+O0?) , R= —mei(o)u +0(?) . (C.19)

S=1+0@? , [ =

where we have substituted x = 62(0)/65(0).
The computation for the primed operators is completely analogous, with the only
essential difference being the shifts of the dynamical parameters in £ and R. We find

A .1 67(0)
'—1 2 I 1 2 r_ ;71
S +0w*) , L iK u+O0w*) , R ZH94(0)

2
o) u+O(u*) . (C.20)

To compare with the field theory Hamiltonian, let us focus on the O(u) terms and divide by
the prefactor 707 (0)/64(0). Let us use the same convention as in section 5, that a magnon

“5We could have avoided this step by starting from a rescaled (C.1) where the y(u) terms are 1.
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on an even site sees a \' dynamical parameter, while a magnon on an odd site sees a A\. So
to act on a Y magnon on an even site 2r of the chain we need to use £’ and R':

1
LIXXXYXX)=——|XXYXXX), RIXXXYXX)=-r|XXXXYX) (C.21)
K

The action of the £’ operator can be identified with the action of Hor—1,2- and thus

with (Hoe)XYYX = —%, while the R’ operator with the action of Ha; 2,41, and so with
(Heo)ss ¥ = —r. Considering now a Y magnon on an odd site 27 + 1, the transfer matrix
acts as:

1
LIXXYXXX)=-r|XYXXXX) R|IXXYXXX)=-—|XXXYXX). (C.22)
K

This is interpreted as the action of Hay 2,41 With (%eo)% = —r, and of Hayq12,42 With
(Hoe)3 ¥ = —%. We thus conclude that the Hamiltonian acts differently on (even,odd) sites
and (odd,even) sites, which is the desired behaviour. Using the same basis as in section 5
we conclude that our alternating Hamiltonian is:

0 0 0 0 00 00O
0 0 —-1/k0 / 00 —k0
pry )\ = = )\ = . C-23
Hoe = H() 0-1/k 0 0] Heo =H) =g 0 0 0 (C.23)
0 O 0 O 00 00
Each of these Hamiltonians is that of the XX model, Hy 11 = —%(Um ® 0z + 0y @ 0y).

However the coefficient alternates between x and 1/k depending on the site. We have thus
found an alternating XX model (and not the alternating XXX model studied in section 5).

The 2-magnon problem proceeds analogously, defining the necessary terms such as
(S,L), (£, R) etc. and taking special care of the case where the two magnons are adjacent.
The Hamiltonian still agrees with that of a dynamical XX model.

This model is integrable by construction and can be studied by ABA using the tech-
niques of [24]. However, due to the elliptic-root-of-unity condition 4 = 7 the naive ABA
misses certain eigenvectors which need to be constructed via a limiting process, described
in [78]. Note also that it is not surprising that we have obtained an XX model as the con-
dition n = 7/4 is similar to the usual free-fermionic conditions on the XYZ model (often
expressed via the deformation parameter v = 27 as e.g. v = 1/2 [15]) which lead to an
XY model. Also in our case, this condition has led to the vanishing of the o, ® o, terms
which would need to be added to obtain the alternating XXX model which describes the
XY sector.

We will not reproduce the ABA solution here (it is given in [78], specialised to our
choice A = 7/2+41/2,n = 7/4), as our goal was just to show how to obtain an alternating
Hamiltonian. However, it is straightforward to check that the momentum of a single
magnon, the ratio functions between even and odd sites, and the 1-magnon energy coming
from the ABA fully agree with (7.12), (7.13) and (7.19), respectively (with the total energy
being just E’(u), i.e. F(u) minus the constant). This is natural, as for a single magnon the
difference between the alternating XX of this appendix and the XY -sector alternating XXX
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model is just an additive constant. However, for two magnons the interacting equations

differ between the two cases, and this leads to the alternating XX model just having an

S-matrix S = —1, while the solution of the alternating XXX model has all the new features

discussed in section 5, with nontrivial S-matrices such as (5.56) and (5.57).
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