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The barebones differential evolution (BBDE) is a new, almost parameter-free optimization algorithm that
is a hybrid of the barebones particle swarm optimizer and differential evolution. Differential evolution is
used to mutate, for each particle, the attractor associated with that particle, defined as a weighted aver-
age of its personal and neighborhood best positions. The performance of the proposed approach is inves-
tigated and compared with differential evolution, a Von Neumann particle swarm optimizer and a
barebones particle swarm optimizer. The experiments conducted show that the BBDE provides excellent
results with the added advantage of little, almost no parameter tuning. Moreover, the performance of the
barebones differential evolution using the ring and Von Neumann neighborhood topologies is investi-
gated. Finally, the application of the BBDE to the real-world problem of unsupervised image classification
is investigated. Experimental results show that the proposed approach performs very well compared to
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other state-of-the-art clustering algorithms in all measured criteria.
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1. Introduction

Particle swarm optimization (PSO) (Eberhart and Kennedy,
1995; Kennedy and Eberhart, 1995) and differential evolution
(DE) (Storn and Price, 1995) are two stochastic, population-based
optimization methods, which have been applied successfully to a
wide range of problems as summarized in Engelbrecht (2005), Ken-
nedy et al. (2001) and Price et al. (2005). It is, however, the case
that the performance of these methods are greatly influenced by
their control parameters. Empirical and theoretical studies have
shown that the convergence behavior of PSO is strongly dependent
on the values of the inertia weight and the acceleration coefficients
(Clerc and Kennedy, 2002; van den Bergh, 2002; van den Bergh and
Engelbrecht, 2006). Wrong choices of values for these parameters
may result in divergent or cyclic particle trajectories. The perfor-
mance of DE, on the other hand, is influenced mainly by the scale
parameter and the probability of recombination. Although recom-
mendations for values of these parameters have been made in the
literature (based on empirical studies) (Storn and Price, 1997),
these values are not universally applicable. The best values for
DE control parameters remain problem dependent, and need to
be fine tuned for each problem.

A number of variations of both PSO and DE have been developed
in the past decade to improve the performance of these algorithms
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(Engelbrecht, 2005; Kennedy et al., 2001; Price et al., 2005). One
class of variations includes hybrids between PSO and DE, where
the advantages of the two approaches are combined. This paper
empirically analyzes another PSO-DE hybrid algorithm proposed
by the authors (Omran et al., 2007), which combines concepts from
the barebones PSO (Kennedy, 2003) and the recombination opera-
tor of DE. The resulting algorithm, referred to as the barebones DE
(BBDE) eliminates the control parameters of PSO and replaces the
static DE control parameters with dynamically changing parame-
ters to produce an almost parameter-free, self-adaptive, optimiza-
tion algorithm. Furthermore, the performance of the BBDE using
the ring and Von Neumann neighborhood topologies is investi-
gated. Finally, a BBDE-based clustering algorithm is proposed and
applied to the real-world problem of unsupervised image classifi-
cation with promising results.

The remainder of the paper is organized as follows: differential
evolution is summarized in Section 2. Section 3 provides an over-
view of PSO and variants used in this paper. Several PSO and DE hy-
brids are discussed in Section 4. The barebones DE (BBDE) is
presented in Section 5. Section 6 presents and discusses the results
of the experiments. The problem of unsupervised image classifica-
tion is investigated in Section 7. Finally, Section 8 concludes the

paper.

2. Differential evolution

Differential evolution (DE) is an evolutionary algorithm pro-
posed by Storn and Price (1995). While DE shares similarities with
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Nomenclature

F DE scalar factor

Dr DE probability of reproduction

Ny number of parameters of a single individual
v; current velocity of particle i

yi personal best position of particle i

Vi neighborhood best position of particle i

position of the global best particle

PSO inertia weight

c; and ¢, are the PSO acceleration coefficients
population size

denotes the function being optimized
denotes time or time steps

<

[ e Y

other evolutionary algorithms (EA), it differs significantly in the
sense that distance and direction information from the current
population is used to guide the search process. DE uses the differ-
ences between randomly selected vectors (individuals) as the
source of random variations for a third vector (individual), referred
to as the target vector. Trial solutions are generated by adding
weighted difference vectors to the target vector. This process is re-
ferred to as the mutation operator where the target vector is mu-
tated. A recombination, or crossover step is then applied to
produce an offspring which is only accepted if it improves on the
fitness of the parent individual.

The basic DE algorithm is described in more detail below with
reference to the three evolution operators: mutation, crossover,
and selection.

Mutation: For each parent, x,(t), of generation ¢, a trial vector,
vi(t), is created by mutating a target vector. The target vector,
X, (t), is randomly selected, with i+#i3. Then, two individuals
x;, (t), and x;,(t) are randomly selected with i # i, # i3 #1, and
the difference vector, x;, — X;,, is calculated. The trial vector is then
calculated as

vi(l) = Xi, (€) + F(x;, () — %;,(0)), M

where the last term represents the mutation step size. In the above,
Fis a scale factor used to control the amplification of the differential
variation. Note that F € (0, o).

Crossover: DE follows a discrete recombination approach where
elements from the parent vector, xt), are combined with elements
from the trial vector, v{(t), to produce the offspring, g; (t). Using the
binomial crossover,

vy (t)
w®={ oo
where j=1,...,Ny refers to a specific dimension, Ny is the number of
genes (parameters) of a single chromosome, and r ~ U(1,...,Ny). In
the above, p, is the probability of reproduction (with p,.€ [0,1]).

Thus, each offspring is a stochastic linear combination of three
randomly chosen individuals when U(0,1) < p,; otherwise the off-
spring inherits directly from the parent. Even when p, = 0, at least
one of the parameters of the offspring will differ from the parent
(forced by the condition j=r).

Selection: DE evolution implements a very simple selection pro-
cedure. The generated offspring, ui(t), replaces the parent, x;(t),
only if the fitness of the offspring is better than that of the parent.

Storn (1996) and Storn and Price (1997) proposed ten different
strategies for DE based on the individual being perturbed, the
number of individuals used in the mutation process and the type
of crossover used. The strategy described above is known as DE/
rand/1, meaning that the target vector is randomly selected, and
only one difference vector is used. This strategy is considered to
be the most widely used and it is the one used in this paper. Other
main strategies include DE/best/1, DE/best/2, DE/rand/2 and DE/
rand-to-best/1. The notation, DE/x/y, is used where x represents
the individual being perturbed and y is the number of difference
vectors used to perturb x. For a detailed discussion of these strate-
gies, the reader is referred to Storn (1996).

if U(0,1) <p,orj=r
otherwise

)

Although empirical studies have shown that DE convergence is
relatively insensitive to control parameter values, performance can
be greatly improved if parameter values are optimized. A number
of DE strategies have been developed where values for control
parameters adapt dynamically. Abbass et al. (2001) proposed an
approach where a new value is sampled for the scale factor for
each application of the mutation operator. The scale factor is sam-
pled from a Gaussian distribution, F ~ N(0,1). This approach is also
used in Ronkkdnen et al. (2005) and Qin and Suganthan (2005). In
Qin and Suganthan (2005), the mean of the distribution was chan-
ged to 0.5 and the deviation to 0.3 (i.e. F ~ N(0.5,0.3)), due to the
empirical results that suggest that F = 0.5 provides on average good
results. Liu and Lampinen (2002) proposed a fuzzy DE where the
values of the control parameters (i.e. F and p,) are adapted using
fuzzy logic. Human knowledge and previous experience are used
to establish the fuzzy rules and membership functions. A problem
with this approach is that it is not very objective, and depends on
how good the knowledge of the expert is.

Abbass (2002) proposed the Self-adaptive Pareto DE (SPDE), a
self-adaptive approach to DE for multi-objective optimization
problems. In SPDE, the parameter F is generated for each variable
from a normal distribution, N(0,1). Each individual, i, has its own
probability of reproduction, p;. The parameter p; is first initialized
for each individual in the population from a uniform distribution
between 0 and 1. Then, p; is adapted as

pi(t) = p;, (£) + N(0, 1) x (p;, (£) — py, (1)), 2)

where iy, iy, i3~ U(1,...5s), and i, # iy #i3. According to Abbass
(2002), the proposed approach performed well compared to other
evolutionary multi-objective optimization approaches.

Omran et al. (2005c) proposed a self-adaptive DE strategy
which makes use of the approach in Eq. (2) to dynamically adapt
the scale factor. The mutation operator changes as follows:

vi(t) = X, (t) + Fi(8) (%5, (£) — %5, (1)),
where
Fi(t) = F;,(t) + N(0,0.5) x (Fi; (t) — Fis (1))

with iy # is # ig and iy, is, ig ~ U(1,...,S).
The crossover probability can be sampled from a Gaussian dis-
tribution as discussed above, or adapted according to Eq. (2).

3. Particle swarm optimization

Particle swarm optimization (PSO) (Eberhart and Kennedy,
1995; Kennedy and Eberhart, 1995) is a stochastic, population-
based optimization algorithm modeled after the simulation of so-
cial behavior of bird flocks. In a PSO system, a swarm of individuals
(called particles) fly through the search space. Each particle repre-
sents a candidate solution to the optimization problem. The posi-
tion of a particle is influenced by the best position visited by
itself (i.e. its own experience) and the position of the best particle
in its neighborhood (i.e. the experience of neighboring particles).
Particle position, x;, are adjusted using
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X(t+1)=x(t) +wi(t+ 1), 3)

where the velocity component, v;, represents the step size. For the
basic PSO,

Vij(E+ 1) = wvi(t) + c1r15(0) (Vi () — Xij(8)) + Car2(£) ((8) — X15(F)),
4)

where w is the inertia weight (Shi and Eberhart, 1998), ¢; and ¢, are
the acceleration coefficients, ry, ro; ~ U(0,1), y; is the personal best
position of particle i, and y; is the neighborhood best position of par-
ticle i.

The neighborhood best position y;, of particle i depends on the
neighborhood topology used (Kennedy, 1999; Kennedy and Men-
des, 2002). If a fully connected topology is used, then y; refers to
the best position found by the entire swarm. That is

Yi(t) € {¥o(0), 31 (6), ... ¥s(6)} = min {f(¥o (1)), f 1 (1)), ... .FWs(0))},
(5)
where s is the swarm size.

The resulting algorithm is referred to as the global best (gbest)
PSO. For the ring topology, the swarm is divided into overlapping
neighborhoods of particles. In this case, y; is the best position
found by the neighborhood of particle i. The resulting algorithm
is referred to as the local best (lbest) PSO. The Von Neumann topol-
ogy defines neighborhoods by organizing particles in a lattice
structure. A number of empirical studies have shown that the
Von Neumann topology outperforms other neighborhood topolo-
gies (Kennedy and Mendes, 2002; Peer et al., 2003). It is important
to note that neighborhoods are determined using particle indices,
and are not based on any spatial information.

A large number of PSO variations have been developed, mainly
to improve the accuracy of solutions, diversity, and convergence
behavior (Engelbrecht, 2005; Kennedy et al., 2001). This section re-
views those variations used in this study, from which concepts
have been borrowed to develop a new, almost parameter-free
PSO algorithm.

van den Bergh and Engelbrecht (2006) and Clerc and Kennedy
(2002) proved that each particle converges to a weighted average
of its personal best and neighborhood best position, that is,

. C1Yij + C2Yij
tljrf}oxij(f) = ﬁ (6)
This theoretically derived behavior provides support for the bare-
bones PSO (BB) developed by Kennedy (2003). The BB replaces
Egs. (3) and (4) with
xa(e+ 1) =N - 0). @)
Particle positions are therefore randomly selected from a Gaussian
distribution with the mean given as the weighted average of the
personal best and global best positions, i.e. the swarm attractor.
Note that exploration is facilitated via the deviation, y;;(t) — y;(t),
which approaches zero as t increases. In the limit, all particles will
converge on the attractor point.

Kennedy (2003) also proposed an alternative version of the BB,
referred to as BBExp in this paper, where Eqs. (3) and (4) are re-
placed with

VijO+Yi(O) ey 5 i
M“+U_{N(127WJU o)) ifuen=0s o

yi(t) otherwise

Based on the above equation, there is a 50% chance that the j th
dimension of the particle dimension changes to the corresponding
personal best position. This version of PSO biases towards exploit-
ing personal best positions.

4. PSO and DE hybrids

Hendtlass (2001) used the DE perturbation approach to adapt
particle positions. Particle positions are updated only if their off-
spring have better fitnesses. That is (assuming a minimization
problem),

x(t+1) if f@&(t+1)) < fx(t)
x;(t) otherwise

X(t+1)= { .
The DE reproduction process is applied to the particles in a PSO
swarm at specified intervals. At the specified intervals, the PSO
swarm serves as the population for a DE algorithm, and the DE is
executed for a number of generations. After execution of the DE,
the evolved population is then further optimized using PSO. Kannan
et al. (2004) applied DE to each particle for a number of iterations,
and replaces the particle with the best individual obtained from the
DE process.

Zhang and Xie (2003) and Talbi and Batouche (2004) used the
DE operator to provide mutations. A trait point y;(t) is calculated
as follows:

S 1 (6)=y2;(t))
. ii(t) + e
mw—{%“ 2
Yii(£)
where j=1,... Ny, r~ U (1,...,Ng) and y;(t) and y,(t) are randomly
chosen personal best positions. Then, y;(t) = §i(t) only if f{y(t))<-
flyi(t)) (assuming a minimization problem).

if U(0,1) <p,orj=r
otherwise ’

5. Barebones differential evolution

Both PSO and DE have their strengths and weaknesses. One of
the problems which both algorithms share is that control parame-
ters need to be optimized for each new problem, as best parameter
values are problem dependent. PSO has the advantage that formal
proofs exist to show that particles will converge to a single attrac-
tor. The barebones PSO utilizes this information by sampling can-
didate solutions, normally distributed around the formally
derived attractor point. Additionally, the barebones PSO has no
parameters to be tuned. DE has the advantage of not being biased
towards any prior defined distribution for sampling mutational
step sizes and its selection operator follows a hill-climbing process.
Mutational step sizes are determined as differences between indi-
viduals in the current population. Furthermore, very efficient self-
adaptive DE strategies have been developed that eliminate the
need for optimizing control parameters.

The barebones DE strategy proposed in this section capitalizes
on these strengths of both the barebones PSO and self-adaptive
DE strategies, to form a new, efficient hybrid optimization algo-
rithm. For the barebones DE, position updates are done as follows:

if U0,1) > p,
otherwise

9)

&Ao-{ifgfm”x<&”“>—&ﬂa»

where from Eq. (6),

Pij(t) = 11(0)y;(6) + (1 = 11(0))yi(t) (10)

with iy, iy, i3~ U(1,...,5), i1 £y #1, 1, 12~ U(0,1) and p; is the
probability of recombination.

Referring to Eq. (10), pi(t) represents the particle attractor as a
stochastic weighted average of personal best and global best posi-
tions, borrowing from the barebones PSO. Referring to Eq. (9), the
mutation operator of DE is used to explore around the current
attractor, py(t), by adding a difference vector to the attractor. Cross-
over is done with a randomly selected personal best, y; , as these
personal bests represent a memory of best solutions found by indi-
viduals since the start of the search process. Also note that the
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scale factor is a random variable. Using the position update in Eq.
(10), for a proportion of (1 — p,) of the updates, information from
a randomly selected personal best, y;,, is used (facilitating exploi-
tation), while for a proportion of p, of the updates step sizes are
mutations of the attractor point, p;(facilitating exploration). Muta-
tion step sizes are based on the difference vector between ran-
domly selected particles, x;, and x;,. Using the above, the BBDE
achieves a good balance between exploration and exploitation. It
should also be noted that the exploitation of personal best posi-
tions does not focus on a specific position. The personal best posi-
tion, y;,, is randomly selected for each application of the position
update.

6. Experimental results

This section compares the performance of the barebones DE
(BBDE) with that of the two barebones PSO algorithms discussed
in Section 3, a PSO using the Von Neumann neighborhood topol-
ogy, and the DE/rand/1/bin strategy. For the DE, F=0.5 and
pr=0.9, as suggested in Storn and Price (1997). For the PSO algo-
rithms, w=0.72 and c; = ¢c; = 1.49. These values have been shown
to provide very good results (Clerc and Kennedy, 2002; van den
Bergh, 2002; van den Bergh and Engelbrecht, 2006).

For all the algorithms used in this section, s = 50. All functions
were implemented in 30 dimensions except for the two-dimen-
sional Camel-back function. Unless otherwise specified, these val-
ues were used as defaults for all experiments which use static
control parameters. The initial population was generated from a
uniform distribution in the ranges specified below.

The following functions have been used to compare the perfor-
mance of the BBDE with that of other methods. These benchmark
functions provide a balance of unimodal and multimodal functions.

For each of these functions, the goal is to find the global mini-
mizer, formally defined as

Givenf: ®M — %

find ¥ € %" such that f(x*) < f(x), vx € R
The following functions were used:

A. Sphere function, defined as

Ng
) =Y %

where " =0 and f{x") = 0 for —100 < x; < 100.
B. Schwefel's Problem 2.22 (Yao et al., 1999), defined as

Ny Ny
f@) =[x+ ]l
i=1 i=1

where ¥ =0 and f{x") =0 for —10 < x; < 10.
C. Step function, defined as

Na

fx) =3 (1% +05]),

i=1
where ¥ =0 and f{x") = 0 for —100 < x; < 100.
D. Rosenbrock function, defined as

Ng—1

) =3 (100(x —x2,)" + (xi1 = 1)?),

i=1

where ¥ =(1,1,...,1) and f{x") =0 for —30 < x; < 30.
E. Rotated hyper-ellipsoid function, defined as

Ny i 2
fx) - z( ) |
=

i=1

where ¥ =0 and f{x") = 0 for —100 < x; < 100.

F. Generalized Swefel's Problem 2.26 (Yao et al., 1999), defined as

Na

&) ==Y (xisin(v/xD).

i=1

where x"=(420.9687,---,420.9687) and f(x')=-12569.5 for
—500 < x; < 500.
G. Rastrigin function, defined as
N4
f@®) =>"(x} - 10cos(2mx;) + 10),
i=1
where ¥ =0 and fx") =0 for —5.12 <x; < 5.12.
H. Ackley’s function, defined as

Ny Ny
f(x) = —20exp (—0.2, 31—0 ;xf) —exp (;0 ; cos(2nx1—)>

+20+e,

where ¥ =0 and fx") =0 for —32 < x; < 32.
I. Griewank function, defined as

1 Ng 5 Na Xi
X)=—r X5 — cos|— ) +1,
)= 005 2% ~ 1T eos (%)
where x" =0 and f{x") = 0 for —600 < x; < 600.
]J. Six-hump Camel-back function, defined as
1
Fx) =4x2 —2.1x% + §x‘§ + X1Xp — 4X3 + 4X3,

where x"=(—0.08983,0.7126), (~0.08983,0.7126) and fix")=
~1.0316285 for —5 < x; < 5.

Sphere, Schwefel’s Problem 2.22, Rosenbrock and rotated hy-
per-ellipsoid are unimodal, while the Step function is a discontin-
uous unimodal function. Schwefel’s Problem 2.26, Rastrigin, Ackley
and Griewank are difficult multimodal functions where the num-
ber of local optima increases exponentially with the problem
dimension. The Camel-back function is a low-dimensional function
with only a few local optima.

The results reported in this section are averages and standard
deviations over 30 simulations. Each simulation was allowed to
run for 50,000 evaluations of the objective function. The statisti-
cally significant best solutions have been shown in bold (using
the z-test with « = 0.05).

Table 1 summarizes the results obtained by applying the differ-
ent approaches to the unimodal benchmark functions. The results
show that the DE is the best performer followed by the BBDE. Thus,
the BBDE performed better than (or at least equal to) the other PSO
strategies in all the unimodal functions. Fig. 1 illustrates results for
selected functions. For the Sphere function, Fig. 1a shows that the
BBDE achieved a faster reduction in fitness than the other algo-
rithms. For the Rotated hyper-ellipsoid function, Fig. 1b shows that
the DE reached a good solution faster than the other approaches.
The BBDE was slower than the DE but better than the remaining
approaches. The barebones PSO algorithms had problems with
the Rotated hyper-ellipsoid function, with results significantly
worse than that of the other approaches. Fig. 2 illustrates diversity
for selected functions. Diversity has been calculated using

s Ng

diversity = % DD (ki) - x(0),

i-1 \ j=1

where X;(t) is the average of the jth dimension over all individuals,
i.e.

%) =1 3 x(0)
i=1
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Table 1
Mean and standard deviation (+SD) of the unimodal function optimization results

Sphere Schwefel Problem 2.22 Rosenbrock Step Rotated hyper-ellipsoid
DE 0(0) 0(0) 32.28566 (19.876539) 0(0) 11.659804 (7.749608)
VN 0(0) 0(0) 45.188135 (28.289829) 0 (0) 91.092175 (41.162374)
BB 0(0) 4.333333 (8.976342) 15560.221552 (33898.184895) 0(0) 7228.468118 (5581.910757)
BBExp 0(0) 0(0) 77.131243 (55.570480) 0 (0) 6881.687373 (3242.314613)
BBDE 0(0) 0(0) 47.857080 (31.835408) 0 (0) 56.467487 (38.975253)

Sphere Rotated hyper-ellipsoid
100000
90000 2
80000 §
——DE 70000 4 ——DE
—=— VN 60000 —=—VN
- BB v 50000 BB
BBExp 40000 BBExp
—x— BBDE ggggg —x— BBDE
10000
o 3 0
0 50 100 150 200 0 200 400 600 800 1000
t t
(a) Sphere (zoomed) (b) Rotated hyper-ellipsoid
Fig. 1. Performance Comparison of the different methods when applied to selected unimodal functions.
Sphere Rotated hyper-ellipsoid
350 ‘
300 %
——DE 250 —e—DE
2 —a—VN ‘? —a—VN
= ® 200
o BB Q BB
> 2 1501
3 BBExp 5 BBExp
—x—BBDE 1001 —%— BBDE
50 4
0 T T T T
0 100 200 300 400 0 200 400 600 800 1000

t
(a) Sphere (zoomed)

t
(b) Rotated hyper-ellipsoid

Fig. 2. Comparison between the different approaches for selected unimodal functions. The vertical axis represents the diversity and the horizontal axis represents the number

of generations.

For the Sphere function, the BBDE exhibited the fastest reduction in
diversity enabling it to converge faster than the other approaches.
For the Rotated hyper-ellipsoid function, both the BBDE and DE
exhibited the fastest reduction in diversity. The BBExp was the
slowest in diversity reduction which might cause its slow
convergence.

Table 2 summarizes the results obtained by applying the differ-
ent approaches to the multimodal functions. The results show that
the BBDE performed better than (or at least equal to) the other
methods in all the test functions except the Rastrigin function
where the BBExp found a better solution. Fig. 3a shows that the

VN achieved the fastest reduction in fitness when applied to the
Rastrigin function, nevertheless, the BBExp reached a better solu-
tion. The DE had problems with the Rastrigin function, with results
significantly worse than that of the other methods. Fig. 4a depicts
the diversity for the Rastrigin function. The figure shows that the
BB has the lowest diversity which explains its premature conver-
gence behavior. On the other hand, the DE has the highest diver-
sity, hence, it needs more time to converge to a good solution.
For the Griewank function, Figs. 3b and 4b show that the BBDE
exhibited the fastest reduction in fitness and diversity but does
not prematurely converge as in the case for the BB.

Table 2
Mean and standard deviation (+SD) of the multimodal function optimization results
Schwefel problem 2.26 Rastrigin Ackley Griewank Camel-back

DE —11052.61419 (1178.89586) 140.59464 (27.27772) 0(0) 0.005007 (0.00676) —1.031628 (0)
VN —8629.400262 (588.165184) 37.470096 (9.435686) 0(0) 0.004360 (0.006910) —1.031628 (0)
BB —9091.017809 (561.296234) 87.572345 (23.790764) 2.264577 (5.959689) 0.011234 (0.012018) —1.031628 (0)
BBEXP —10471.819885 (405.232815) 13.465041 (3.908130) 0(0) 0.000878 (0.002531) —1.031628 (0)
BBDE —11649.008729 (272.707782) 37.551246 (15.254959) 0(0) 0.000657 (0.002583) —1.031628 (0)
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Rastrigin Griewank
100 4
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Fig. 3. Performance Comparison of the different methods when applied to selected multimodal functions.
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Fig. 4. Comparison between the different approaches for selected multimodal functions. The vertical axis represents the diversity and the horizontal axis represents the

number of generations.

6.1. Effect of noise on performance

This section investigates the effect of noise on the performance
of BBDE. The noisy versions of the benchmark functions are defined
as

Soisy(X) = f(x) + N(0, 1),

where N(0,1) represents the normal distribution with zero mean
and standard deviation of one.

Tables 3 and 4 summarize the results obtained for the noisy
problems for the unimodal and multimodal functions, respectively.
Table 3 shows that for the Sphere, Schwefel Problem 2.22 and Step
functions, the BBDE was less prone to noise than the other ap-
proaches. Table 4 shows that the BBDE retained its position as
the best performer when applied to multimodal functions even
in the presence of noise. The only exception is the noisy Rastrigin
function where BBExp outperformed the BBDE. Hence, compared
to the other tested approaches, the BBDE seems to be less badly af-
fected by noise. This is a significant improvement over the DE
which is known to be badly affected by the presence of noise (Krink
et al., 2004). There are two expected reasons for this improvement.
The first is that the BBDE does not use a deterministic selection
mechanism. Deterministic selection is expected to be a main factor

for the DE deficiency when applied to noisy problems (Krink et al.,
2004). The second reason is that the BBDE uses a random scaling
factor that enables it to be more stochastic and, thus, has a better
exploration capability than the conventional DE. Being less prone
to noise is an important advantage for the BBDE given that opti-
mizing noisy or imprecise functions occurs in many engineering
applications.

6.2. Scalability study

When the dimension of the functions increases from 30 to 100,
the performance of the DE degraded significantly as shown in Ta-
bles 5 and 6. The results show that the BBDE is the best performer
followed by the VN. Fig. 5 illustrates results for representative
functions. Figs. 5a and d show that the BBDE achieved a faster
reduction in fitness than the other algorithms when applied to
the Sphere and Griewank functions. For the Rotated hyper-ellip-
soid and Rastrigin functions, Figs. 5b and c show that the VN
reached better solutions faster than the other methods. In general,
Fig. 5 shows that the barebones PSO methods had difficulties with
the high-dimensional problems. Fig. 6 illustrates diversity for the
selected functions. For the Sphere and Griewank functions (Figs.
6a and d), the BBDE exhibited the fastest reduction in diversity

Step

Rotated hyper-ellipsoid

37.222951 (24.240263)

49.331559 (38.702919)
3394.157615 (16396.762517)

80.799413 (50.289245)

Table 3

Mean and standard deviation (+SD) of the noisy unimodal function optimization results
Sphere Schwefel problem 2.22 Rosenbrock

DE 0.000252 (0.000294) 0.004822 (0.004532)

VN 0.000131 (0.000112) 0.007422 (0.009574)

BB 0.003779 (0.005281) 4.525207 (6.629674)

BBExp 0.000938 (0.001128) 0.135526 (0.292442)

BBDE 0.000057 (0.000052) 0.000658 (0.000747)

71.812221 (58.263287)

0.000095 (0.000096)
0.000070 (0.000109)
0.000330 (0.000418)
0.000201 (0.000192)
0.000054 (0.000085)

14.700399 (16.041069)

100.543200 (37.625735)
7848.947152 (4530.047241)
7915.471099 (3410.026066)

81.771119 (40.879498)
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Mean and standard deviation (+SD) of the noisy multimodal function optimization results

Schwefel problem 2.26

Rastrigin

Ackley

Griewank

Camel-back

DE
VN

BBEXP
BBDE

—10925.046322 (1254.046813)

~8715.290151 (634.156051)

—9129.050539 (406.954831)
~10271.531191 (478.895628)
~11584.222894 (287.881147)

154.564926 (23.902508)
35.742326 (8.464964)
94.212615 (28.232227)
18.341674 (4.977051)
37.397204 (18.291796)

15.537647 (3.799861)
1.609258 (0.591330)

16.756511 (0.264990)

16.700183 v
2.417560 (4.705577)

0.001864 (0.002269)
0.001466 (0.001263)
0.069609 (0.161420)
0.007150 (0.010329)
0.000548 (0.001134)

~5.153808 (0.204848)
—5.458725 (0.218398)
~5.116395 (0.229806)
—5.468067 (0.144862)
~5.208338 (0.115516)

Table 5

Mean and standard deviation (+SD) of the unimodal function optimization results (N4 = 100)

Sphere Schwefel problem 2.22 Rosenbrock Step Rotated hyper-ellipsoid
DE 0.009534 1.960783 33984.386973 128.100000 68497.115587
(0.011473) (1.682477) (59798.047911) (166.231034) (15790.603308)
VN 0.000578 1.367757 1237.939115 6.133333 33775.945696
(0.000137) (1.835326) (446.834989) (8.186336) (7098.248666)
BB 4.764215 210.756552 10312425.024713 10700.500000 213527.892344
(4.733918) (209.083838) (24211050.245722) (8741.615395) (23035.788775)
BBExp 0.388195 2333333388.276991 2024138.254810 711.600000 316239.880949
(0.203691) (4301830640.691421) (1951057.144980) (414.566712) (51134.508287)
BBDE 0 (0) 0(0) 312.632070 2.700000 212418.632768
(195.546311) (5.018243) (24845.151018)
Table 6
Mean and standard deviation (+SD) of the multimodal function optimization results (Ng = 100)
Schwefel problem 2.26 Rastrigin Ackley Griewank
DE —19438.479681 (2294.731006) 716.837974 (100.264563) 3.183406 (0.945352) 1.401776 (0.850903)
VN —24706.562508 (1445.236154) 174.575750 (25.457402) 2.059572 (0.448335) 0.584462 (0.131999)
BB —26976.484336 (1227.159007) 736.013775 (65.466151) 19.496031 (0.930001) 114.318158 (92.74845)
BBEXP —29791.567120 (910.138084) 533.652677 (86.672692) 18.327547 (3.991001) 9.870790 (4.233975)
BBDE —34746.152554 (3750.927593) 616.194754 (38.115845) 0 (0.000001) 0.001640 (0.005296)
Sphere (Nd = 100) Rotated hyper-ellipsoid Nd = 100
30 — 1000000 2
3900000
DE 800000
4 700000 =+—=DE
—=— VN 600000 —=— VN
— BB v 500000 BB
BBExp 400000 BBExp
300000
H-EERE 200000 | *— BBDE
100000 -
0 : ) : T 1
200 400 600 800 1000 0 200 400 600 800 1000
t t
(a) Sphere (zoomed) (b) Rotated hyper-ellipsoid
Rastrigin Nd = 100 Griewank Nd = 100
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1400 5E 800 T
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“~ 800 Tl T m— BB w 500 — BB
600 BBExp 400 - ~ BBExp
210 —%—BBDE ggg 1 ~ —xBBDE
200 100 |
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t
(d) Griewank (zoomed)

Fig. 5. Performance Comparison of the different methods when applied to representative functions (N4 = 100).
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Fig. 6. Performance Comparison of the different methods when applied to representative functions (Ny = 100). The vertical axis represents the diversity and the horizontal

axis represents the number of generations.

enabling it to converge faster than the other approaches. For the
Rotated hyper-ellipsoid and Rastrigin functions (Figs. 6b and c),
the BB exhibited the fastest reduction in diversity resulting in its
premature convergence. In general, the BBExp was the slowest in
diversity reduction which might cause its slow covergence.

6.3. Influence of p,on the performance of BBDE

The performance of the barebones DE has been evaluated for
pr€{0.1,0.3,0.5,0.7,0.9}. Table 7 summarizes the results. The re-
sults suggest that smaller values of p; (i.e. p,=0.1) are preferable
for unimodal functions while p,=0.7 yields the best results for
multimodal functions. In general, p,=0.7 seems to generate the
best results when applied to the benchmark problems. On the
other hand, p,=0.9 degraded the performance of the BBDE
significantly.

The effect of using different strategies to calculate p, is summa-
rized in Table 8. The two strategies investigated were as follows:

A. Parameter-free BBDE (PFBBDE): The same strategy as the
BBDE, except that p, ~ N (0.5,0.15). The rationale behind using a
normal distribution N(0.5,0.15) for p, is that N(0.5,0.15) will
generate values in the range of [0.5 -3 x 0.15,0.5+3 x 0.15]
which covers the p, boundary giving more probability to values
surrounding 0.5. The reason for preferring values surrounding
0.5 is that p, = 0.5 represents a uniform crossover (i.e. there is an
equal probability that the new offspring will be chosen from either
the mutated attractor point or from a randomly chosen personal
best).

B. Dynamically adjustable BBDE (DBBDE): The same strategy as
the BBDE, except that p, = t/tmax, Where t is the current iteration
and t,qx is the maximum number of iterations. Thus, p, is dynam-
ically adjusted by increasing it linearly over time. Hence, the initial
small value of p, favors exploration in the early stages, and exploi-
tation in the later stages.

Table 8 shows that BBDE and PFBBDE performed comparably for
all the benchmark functions. In addition, they generally performed

Table 7
Influence of p, on the performance of BBDE
pr=0.1 pr=03 pr=0.5 pr=0.7 pr=09
Sphere 0 (0) 0 (0) 0(0) 0(0) 0.030934 (0.034928)
Schwefel problem 0 (0) 0 (0) 0(0) 0(0) 0.415136 (0.362744)
2.22
Rosenbrock 32.262004 (24.894417) 42934501 (32.734171) 47.857080 (31.835408) 82.042890 (59.119772) 17527.428158
(35073.731685)
Step 0 (0) 0 (0) 0(0) 0 (0) 28.133333 (64.607426)
Rotated hyper- 20.020990 (16.114680) 31.737502 (15.151355) 56.467487 (38.975253) 323.816583 (233.859497) 2139.329671 (648.025177)
ellipsoid
Schwefel problem —10682.8391 -11291.0108 —11649.008729 -11792.802318 —11688.001932
2.26 (510.011006) (325.921626) (272.707782) (224.658980) (239.308673)
Rastrigin 155.779164 (16.391473) 106.833299 (12.946721) 37.551246 (15.254959) 6.473762 (2.990750) 15.245124 (4.110377)
Ackley 0 (0) 0 (0) 0(0) 0(0) 2.651095 (1.404765)
Griewank 0.004763 (0.006335) 0.002545 (0.006012) 0.000657 (0.002583) 0.000985 (0.003208) 1.682496 (1.273646)
Camel-back —1.031628 (0.000000) —1.031628 (0.000000) —1.031628 (0.000000) —1.031628 (0.000000) —1.031380 (0.000564)
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Table 8
Comparison of different variants of BBDE
BBDE PFBBDE DBBDE
Sphere 0(0) 0 (0) 0(0)
Schwefel problem 2.22 0(0) 0 (0) 0(0)
Rosenbrock 47.857080 (31.835408) 55.552183 (59.870164) 76.371490 (90.076614)
Step 0(0) 0(0) 0.066667 (0.253708)

Rotated hyper-ellipsoid
Schwefel problem 2.26

56.467487 (38.975253)
—11649.00873 (272.707782)

Rastrigin 37.551246 (15.254959)
Ackley 0(0)

Griewank 0.000657 (0.002583)
Camel-back —1.031628 (0.000000)

72.755559 (51.147255) 185.222391 (112.377535)
—11601.481689 (290.840666) —11098.220557 (367.719656)
34132272 (17.814442) 10.785169 (5.924399)

0(0) 0 (0)

0.001479 (0.003461) 0.004517 (0.006755)
~1.031628 (0.000000) ~1.031628 (0.000000)

better than the DBBDE for all the functions except for the Rastrigin
function. Fig. 7 illustrates the results for selected functions. For the
Rotated hyper-ellipsoid function, Figs. 7a and b show that the BBDE
and the PFBBDE have very similar convergence and diversity char-
acteristics. The DBBDE has a lower diversity and converged to a
worse solution. For the Rastrigin function, Figs. 7c and d show that
the BBDE and the PFBBDE have very similar (almost identical) con-
vergence and diversity characteristics. On the other hand, the
DBBDE exhibited a fast reduction in diversity after 500 iterations
and reached a better solution.

6.4. Using neighborhood topologies with BBDE

The effect of neighborhoods on DE has been investigated by
Omran et al. (2005c). The results in Omran et al. (2005c) showed
that using the ring neighborhood topology (Fig. 8a) with DE
(known as DE/Ibest/1) generally improves the performance of DE.
On the other hand, as already stated, using the Von Neumann
topology (Fig. 8b) with PSO generally improves the performance
of PSO. The purpose of this subsection is to investigate the perfor-
mance of the BBDE using the ring and Von Neumann neighborhood
topologies.

Rotated hyper-ellipsoid

500
450
400
350

300 —e— BBDE

—=— PFBBDE
200 AN
150 | DBBDE

100
50

0 200 400 600 800 1000
t

(a) Rotated hyper-ellipsoid (zoomed)

Rastrigin

500
450
400
350

- 3 e H—

300 —e— BBDE
1 —s— PFBBDE

200 1 DBBDE

150 1
100 ¢

50 ‘
0 200 400 600 800 1000
t

(c) Rastrigin

O O

(a) Ring Topology (b) Von Neumann Topology

Fig. 8. A diagrammatic representation of neighborhood topologies.

The two proposed variants are as follows:

A. VNBBDE: For the VNBBDE, y;(t) in Eq. (10) is the best position
found so far in the ring neighborhood of the ith individual (i.e. the
two adjacent left and right neighbors of i).

B. RBBDE: For the RBBDE, y;(t) in Eq. (10) is the best position
found so far in the Von Neumann neighborhood of the ith individ-
ual (i.e. the four immediately adjacent left, right, up and down
neighbors of i).
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(b) Rotated hyper-ellipsoid (diversity - zoomed)

Rastrigin

16
14}‘
12 X

10 3

\ —e—BBDE
2 TN —=— PFBBDE

DBBDE
4 .x
2 !
0 T T T . i
0 200 400 600 800 1000

t
(d) Rastrigin (diversity)

diversity

Fig. 7. Performance Comparison of the BBDE, PFBBDE and DBBDE when applied to representative functions.
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Table 9
Comparison of different neighborhood topologies
BBDE VNBBDE RBBDE
Sphere 0(0) 0 (0) 0(0)
Schwefel problem 2.22 0(0) 0(0) 0(0)
Rosenbrock 47.857080 (31.835408) 33.835765 (20.302641) 53.911486 (29.917795)
Step 0(0) 0 (0) 0(0)

Rotated hyper-ellipsoid
Schwefel problem 2.26

56.467487 (38.975253)
—11649.00873 (272.707782)

Rastrigin 37.551246 (15.254959)
Ackley 0(0)

Griewank 0.000657 (0.002583)
Camel-back —1.031628 (0)

3737.803843 (1290.674863) 11799.276804 (3129.255101)
~12131.922676 (184.745498) ~12307.231539 (274.314345)
77.757479 (8.314326) 85.331301 (10.549080)

0 (0) 0 (0)

0 (0) 0(0)

~1.031628 (0) ~1.031628 (0)

Table 9 summarizes the results obtained by applying the differ-
ent methods to the benchmark problems. The results show that the
BBDE outperformed the other strategies when applied to the Ro-
tated hyper-ellipsoid and Rastrigin functions. On the other hand,
for the Rosenbrock function, the VNBBDE was the best performer.
For the Schwefel Problem 2.26, the RBBDE outperformed the other
approaches. The three approaches performed comparably when
applied to the remaining functions.

7. Unsupervised image classification

Unsupervised image classification is the process of identifying
groups of similar image primitives. These image primitives can
be pixels, regions, line elements and so on, depending on the prob-
lem encountered. Many basic image processing techniques such as
quantization, segmentation and coarsening can be viewed as dif-
ferent instances of the clustering problem (Puzicha et al., 2000).

Herein the terminology used throughout the rest of the paper is
defined. A measure is given to quantify the quality of a clustering
algorithm, after which the BBDE-based clustering algorithm is
introduced.

Define the following symbols:

e N, denotes the number of spectral bands of the image set.

e N, denotes the number of image pixels.

e N, denotes the number of spectral classes (as provided by the
user).

e z, denotes the N, components of pixel p.

e m; denotes the centroid (mean) of cluster j.

7.1. Measure of quality

Different measures can be used to express the quality of a clus-
tering algorithm. The most general measure of performance is the
quantization error, defined as

B i [sz,,eck d(zpsml<)] /M
.]e - I( )

where C; is the kth cluster, and ny is the number of pixels in C;.
7.2. The BBDE-based clustering algorithm

In the context of data clustering, a single individual represents
the K cluster centroids. That is, each individual x; is constructed
asx;=(m;q,...,myy,...,m;x) where m; refers to the kth cluster cen-
troid vector of the ith individual. Therefore, a population repre-
sents a number of candidate data clusterings. The quality of each
individual is measured using

_ amax (Zi7 xi) +]e.i

fxi,Zi) = Amin (Zi, X;) "

where Z; is a matrix representing the assignment of patterns to the
clusters of individual i. Each element z;, indicates if pattern z, be-
longs to cluster C; of individual i (in which case z; ). Also,

dinax(Zi, %) = Max,_;_ 1<{ Z d(zmmi,k)/ni,k}

Vzip=1

is the maximum average Euclidean distance of individuals to their
associated clusters, and

Armin (Xi) = MUk e ik { (G, My i) }

is the minimum Euclidean distance between any pair of clusters. In
the above, n; is the number of patterns that belong to cluster C;y of
individual i.

The fitness function in Eq. (11) has as objective to simulta-
neously minimize the intra-cluster distance between patterns
and their cluster centroids, as quantified by Eimax(Zi,x,-) and the
quantization error, as quantified by J., and to maximize the inter-
cluster distance between any pair of clusters, as quantified by,
dmin(xl’)-

According to the definition of the fitness function, a small value
of flx;,Z;) suggests compact and well-separated clusters (i.e. good
clustering).

The BBDE clustering algorithm is summarized in Fig. 9.

1. Initialize each individual to contain K randomly selected
cluster centroids

2. Fort=1to tmax

(a) For each individual i

i. For each pattern z,
- Calculate d(z,,m,; ) forall clusters C,
- Assign zp to Cl.,k where
d(z,my)= min {d(z,m,))
V=LK

ii. Calculate the fitness, f(x,,Z;)

(b) Find the global best solution j’(t )

(c) Apply the BBDE as described in Section 5 and update the

cluster centroids using Eq. 9.

Fig. 9. The BBDE clustering algorithm.
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(a) Synthetic image

(b) MRI Image

(c) Band 4 of the Landsat
MSS test image of Lake
Tahoe

» e SR !

(d) The BBDE segmented (e) The BBDE segmented MRI (f) The BBDE segmented

synthetic image image

lake Tahoe image

Fig. 10. The original images and the segmented images resulting from the BBDE clustering algorithms.

7.3. Simulation results

The BBDE-based clustering algorithm has been applied to three
types of imagery data, namely synthetic, MRI and LANDSAT 5 MSS
(79 m GSD) images:

Synthetic image: Fig. 10a shows a 100 x 100 8-bit gray scale
image created to specifically show that the BBDE algorithm does
not get trapped in the local minimum. The image was created
using two types of brushes, one brighter than the other.

MRI image: Fig. 10b shows a 300 x 300 8-bit gray scale image of
a human brain, intentionally chosen for its importance in med-
ical image processing.

Remotely sensed imagery data: Fig. 10c shows band 4 of the four-
channel multispectral test image set of the Lake Tahoe region in

the US. Each channel is comprised of a 300 x 300, 8-bit per pixel
(remapped from the original 6 bit) image. The test data are one
of the North American Landscape Characterization (NALC) Land-
sat multispectral scanner data sets obtained from the U.S. Geo-
logical Survey (USGS).

The performance of the BBDE is compared to K-means (Forgy,
1965), FCM (Bezdek, 1980), a PSO clustering algorithm (Omran
et al., 2005b), a DE clustering algorithm (Omran et al., 2005a), BB
and BBExp. The fitness function for PSO, DE, BB, BBExp and BBDE
is defined in Eq. (11). For DE, PSO, BB, BBExp and BBDE, 50 individ-
uals were trained for 100 iterations; for the other algorithms 5000
iterations were used (i.e. all algorithms have performed 5000 func-
tion evaluations). For K-means, FCM and PSO, the parameters were
set as in Omran (2005). For DE, the parameters were set as in

Amax

dmin

Table 10

Comparison between K-means, FCM, PSO, DE, BB, BBEXP and BBDE

Image Je

Synthetic K-means 20.21225 (0.937836)
FCM 20.731920 (0.650023)
PSO 17.284 (0.09)
DE 17.349039 (0.024415)
BB 17.324602 (0.026192)
BBExp 17.337303 (0.024775)
BBDE 17.329013 (0.023745)

MRI K-means 7.3703 (0.042809)
FCM 7.205987 (0.166418)
PSO 7.839 (0.238)
DE 8.489362 (0.518571)
BB 7.722666 (0.091995)
BBExp 7.813303 (0.165253)
BBDE 8.149742 (0.386591)

Tahoe K-means 3.280730 (0.095188)
FCM 3.164670 (0.000004)
PSO 3.882 (0.274)
DE 4.190698 (0.302445)
BB 3.980572 (0.192029)
BBExp 4.051751 (0.120513)
BBDE 4.007243 (0.117684)

28.04049 (2.7779388)
28.559214 (2.221067)
22.457 (0.414)

22.208008 (0.045002)
22.229277 (0.036073)
22.211746 (0.035281)
22.224411 (0.034509)

(

13.214369 (0.761599)
10.851742 (0.960273)
9.197 (0.56)
11.193335 (0.620451)
8.940551 (0.563716)
9.283251 (0.489863)
10.311062 (1.399248)

5234911 (0.312988)
4.999294 (0.000009)
5.036 (0.368)
5216843 (0.321865)
5.131814 (0.266169)
5.210299 (0.18998)
5.130046 (0.155744)

78.4975 (7.0628718)
82.434116 (4.404686)
90.06 (0.712)

89.674503 (0.071472)
89.706956 (0.029875)
89.691711 (0.029087)
89.703907 (0.030338)

9.93435 (7.308529)
19.517755 (2.014138)
29.45 (1.481)
26.561583 (1.339439)
29.969806 (0.969355)
29.309536 (0.833855)
29.37867 (0.977154)

9.402616 (2.823284)
10.970607 (0.000015)
16.410 (1.231)
16.906206 (1.089620)
17.037257 (0.861458)
1731936 (0.579856)
17.102415 (0.514053)
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Omran et al. (2005a). The results are summarized in Table 10.
These results are averages and standard deviations over 20 simula-
tion runs.

Table 10 shows that BBDE generally outperformed K-means and
FCM in dpin and dpax, While performing comparably with respect to
Je. The DE, PSO, BB and BBExp and BBDE showed similar perfor-
mance, However, compared to DE and PSO, the BB, BBExp and
BBDE almost require no parameter tuning. Thus, these approaches
are the best choices to use. The segmented images resulting from
the BBDE-based clustering algorithms are shown in Fig. 10.

8. Conclusions

This paper investigated a new population-based algorithm, as a
hybrid of the barebones particle swarm optimizer (PSO) and differ-
ential evolution (DE). The particle position update is changed to
probabilistically base a new position on a randomly selected per-
sonal best position, or a mutation of the particle attractor (i.e.
weighted average of the personal best and neighborhood best).
The BBDE does not make use of the standard PSO parameters (i.e.
inertia weight, acceleration coefficients, and velocity clamping),
and also removes the DE scale parameter. The only parameter is
the probability of recombination. The approach was tested on ten
benchmark functions where it generally performed very well com-
pared to the other approaches. This paper investigated the effect of
noise on the performance of BBDE and found that the BBDE is less
prone to noise than the other approaches. Empirical results show
that, in general, the BBDE provided the best results when applied
to high-dimensional problems. Moreover, using different neigh-
borhood topologies with BBDE was investigated. Finally, a cluster-
ing approach using BBDE was proposed. The BBDE clustering
algorithm has as objective to simultaneously minimize the quanti-
zation error and intra-cluster distances, and to maximize the inter-
cluster distances. The BBDE clustering algorithm was compared
against K-means, FCM, DE, PSO, BB and BBDE with encouraging
results.
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