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Abstract
A novel procedure is presented for the objective comparison and evaluation of a bank’s decision rules in optimising
the timing of loan recovery. This procedure is based on finding a delinquency threshold at which the financial loss
of a loan portfolio (or segment therein) is minimised. Our procedure is an expert system that incorporates the time
value of money, costs, and the fundamental trade-off between accumulating arrears versus forsaking future interest
revenue. Moreover, the procedure can be used with different delinquency measures (other than payments in arrears),
thereby allowing an indirect comparison of these measures. We demonstrate the system across a range of credit risk
scenarios and portfolio compositions. The computational results show that threshold optima can exist across all
reasonable values of both the payment probability (default risk) and the loss rate (loan collateral). In addition,
the procedure reacts positively to portfolios afflicted by either systematic defaults (such as during an economic
downturn) or episodic delinquency (i.e., cycles of curing and re-defaulting). In optimising a portfolio’s recovery
decision, our procedure can better inform the quantitative aspects of a bank’s collection policy than relying on
arbitrary discretion alone.
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Simulation-based optimisation of the timing of loan recovery across different portfolios

1 Introduction

Consumer credit has exponentially grown over the last few decades, largely spurred by the introduction of the credit
card during the 1950s. Its current estimate of approximately $11 trillion from the US market consists largely of
mortgages, credit cards, personal loans, vehicle financing, overdrafts and other revolving loans for the individual, as
reported in Board of Governors of the Federal Reserve System (2020). This credit growth, as argued in Thomas
(2009, pp. 1–6) and Thomas (2010), could not have been possible without a degree of automation, historically
facilitated by statistical decision-making models otherwise known as credit scorecards. These models rendered
consistent approve/decline credit decisions that enabled greater application volumes whilst keeping default risk
under control, i.e., the risk of the borrower reneging on repayments. This control is mainly achieved by only
approving those applications with a predicted probability of default within a desired limit, which is usually aligned
with a bank’s risk appetite. Constructing these scorecards involves finding a statistical relationship between a set of
borrower-specific characteristics and the successful (or failed) repayment outcome over time, using historical data.
Naturally, the credit scoring literature on optimising this relationship is considerable, including various machine
learning approaches; see Hand and Henley (1997), Hand (2001), Thomas et al. (2002), Siddiqi (2005), Crook et al.
(2007), Thomas (2009), Thomas (2010), Hao et al. (2010), and Louzada et al. (2016). However, the vast majority
hereof assumes a preset outcome definition, with little effort spent on improving the definition itself.

The advent of these automated models did, however, call for a more methodical manner of "measuring default"
before trying to predict the risk thereof. In most cases, the development of loan delinquency over time is captured
using the number of payments in arrears from accountancy practices, which is constructed from days past due
(DPD). Whilst practical and intuitive, this calculation (or the 60 delinquency measure as we shall call it) has a few
flaws upon which alternative measures may improve, as discussed in the appendix. Nonetheless, banks commonly
specified three payments (or 90 DPD) in arrears as a pragmatic point of ‘default’, long before the introduction of the
Basel II Capital Accords. That said, this threshold can generally range between 30–180 days based on managerial
discretion and some analysis, as discussed in Thomas et al. (2002, pp. 123–124) and later in section 2. However,
the direct financial implications of any chosen definition are not readily known nor accounted for when deciding
the point of default during typical analyses, especially when developing credit scoring models. Therefore, and
as originally argued in Hand (2001), pursuing modelling excellence becomes questionable when the constructed
outcome variable, itself determined by the default definition, is inherently quite arbitrary.

Fundamentally, as an account continues to accrue arrears, the lender will respond by proportionately ramping
up its collection efforts. Every unpaid instalment (or portion thereof) erodes the trust between bank and borrower,
which is only tolerable up to a point. This ambiguous point may itself differ across portfolios and even banks,
likely based on differences in risk appetites and market conditions. Regardless, having reached this point, the bank
effectively assumes that the troubled loan will helplessly fall into ever greater arrears if kept. Therefore, the lender
shifts its focus to the immediate and maximal recovery of debt, including selling any collateral, as based on the
five-phase credit management model of Finlay (2010, pp. 11–13, 147–153). Presumably, this idea of reaching
a so-called "point of no return" is the historical basis for a default definition, although most modern definitions
also contain more qualitative criteria. In addition, a loan may ‘cure’ from default whenever a borrower repays the
arrears (regardless of reason), which further casts doubt on a chosen default threshold as the supposed "point of
no return". For Basel-compliant or IFRS 9-compliant types of credit risk modelling, another factor to consider
is that of competing regulatory requirements when defining ‘default’ across different jurisdictions. Furthermore,
some lenders use multiple definitions for different purposes or across different portfolios – all of which impedes the
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Fig. 1. Illustrating the trade-off associated with two extreme arrears-based thresholds for two fictional loans of the
same size. Threshold 1 is overly strict for loan 1 given that it cures later; but suitable for loan 2 since it never cures.
Conversely, threshold 2 is overly naive for loan 2, though suitable for loan 1.

interpretation of ‘default’ in trying to cater for so many different contexts.

Owing to the difficulties of defining ‘default’ precisely, we explore a more fundamental meaning of ‘default’ as
the portfolio-dependent, probabilistic, and risk-based "point of no return" beyond which loan collection becomes
sub-optimal if pursued. Our ‘default’ state is simply based on breaching a certain delinquency threshold, so that
the "net cost" of each candidate threshold can be assessed. The best time is sought at which the lender should
forsake a loan and instead try to collect all it can. Furthermore, it is convenient to try and find this point from a
loan delinquency-basis since the resulting measurements are scale-invariant and already incorporate behavioural
information on the borrower. Too strict a delinquency threshold will surely marginalise accounts that would have
resumed repayment (or cured from ‘default’), had the bank been more patient before initiating strict recovery.
A loan may also experience multiple episodes of ‘redefaulting’ and curing, which is further exacerbated by a
threshold that is too strict. Conversely, too lenient a threshold may naively tolerate increasing arrears at the cost of
greater liquidity risk and bigger capital buffers, which may introduce capital-inefficiencies. The goal now becomes
to devise an expert system in which these two extremes can be reasonably offset against each other. Doing so
can theoretically form a proverbial ‘Goldilocks-zone’ in space that contains the ideal delinquency threshold for a
portfolio, which translates to the ‘best’ time for loan recovery. This concept is illustrated in Fig. 1 using the arrears
amount (proportional) as a high-level threshold, including two extreme choices thereof.

In this study, we develop such a system, called the Loss-based Recovery Optimisation across Delinquency
(LROD) procedure, as our main contribution. This procedure is summarised in three steps, shown in Fig. 2 and
formally presented in subsection 3.1. Relevant literature is explored in section 2, including current practices on
selecting default definitions as well as previous optimisation work on loan collection. Since different portfolios will
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Fig. 2. High-level steps of the contributed LROD-procedure.

likely have different ‘ideal’ recovery thresholds, a simple simulation-based setup is described in subsection 3.2 as our
testbed. This allows for examining recovery optimisation from "first principles" by randomly generating amortising
loan portfolios with specifiable risk profiles, guided by expert judgement and industry experience. Moreover, by
tweaking this testbed’s simulation parameters appropriately, one can obtain quick managerial insight on the viability
of recovery optimisation before embarking on any deep data work; a useful secondary contribution. We demonstrate
the LROD-procedure in section 4 by conducting a broad computational study using the aforementioned testbed.
Threshold optima are found across most levels of default and loss risk, as measured by the probability of payment
and loss rate respectively. Furthermore, portfolios suffering from systematic pattern-like defaults are tested, as
well as portfolios with episodic delinquency (cycles of curing and re-defaulting). Overall, our procedure delivers
dynamic yet intuitive optimisation results for the timing of loan recovery. It may therefore be used to improve a
bank’s existing collection policies, with the accompanying source code published in Botha (2020). Finally, we
conclude the study in section 5 and outline areas of future research.

2 An overview of loan default and collections optimisation

The estimation of the frequency of any event in a given sample fundamentally depends on the definition of the
event. While loan ‘default’ lies intrinsic to credit risk (and its estimation), the phenomenon thereof certainly has
many definitions, both historically and in modern times. These definitions typically vary by product, customer type,
and bank, as discussed in Van Gestel and Baesens (2009, pp. 203–212) and Baesens et al. (2016, pp. 137–138).
Examples hereof include filing for bankruptcy, unfulfilled claims, negative net present values, overdrawing beyond
an agreed credit limit, as well as becoming three instalments in arrears. Basel II standardised default definitions to
some extent upon its introduction, while still leaving room for the lender’s discretion, subject to regulatory approval.
Specifically, paragraph 452 of the Basel Committee on Banking Supervision (2006) defines ‘default’ as one of the
following two conditions. Firstly, the obligor has reached 90 DPD on a material loan balance, or has been in excess
of an advised credit limit for 90 days. Alternatively, the bank considers, in its opinion, that the obligor is unlikely
to repay its obligations in full, without the necessary intervention of the bank, e.g., liquidating any collateral. To
help inform this opinion, Basel II includes a few reasonable (but qualitative) indicators of "unlikeliness to pay" in
paragraph 453. Examples include when debt restructuring leads to an overall reduced obligation, or partially selling
off a debt at a loss.

The requirements of Basel II are often promulgated verbatim by some regulators, e.g., Regulation 67 of the
Banks Act of South Africa (2012, pp. 1201–1202). However, Basel II (and how it relates to ‘default’) is only truly
relevant to estimating the amount of capital required for offsetting unexpected losses (UL). In turn, this requires
modelling the expected losses (EL) for which a bank also holds provisions. EL is generally defined as the product
of three specific risk parameters: 1) the Probability of Default (PD); 2) the Loss Given Default (LGD); and 3)
the Exposure-At-Default (EAD). A comprehensive review of this topic is given in Thomas (2009, pp. 289–293),
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Van Gestel and Baesens (2009, chap. 4, 6), and Baesens et al. (2016, chap. 5–11). Relatedly, the new accounting
standard IFRS 9 (2014) firmly lodged the management of loss provisions as a deeply statistical exercise similar to
that of capital estimation, which is discussed in Novotny-Farkas (2016), Skoglund (2017) and Cohen, Edwards Jr
et al. (2017). However, even IFRS 9 does not impose a fixed default definition, instead requiring in paragraph
B.5.5.37 that a particular definition simply be used consistently in a portfolio’s risk management. In addition, IFRS
9 presumes 90 DPD as a default definition that may be superseded by alternatives if they are demonstrated as
"reasonable".

Basel II and IFRS 9 regulate certain aspects of a default definition as it pertains to specific exercises, i.e.,
modelling the UL and EL. However, the notion of ‘default’ extends to other areas in retail banking as well, most
notably that of credit scoring, pricing, and collections. Selecting appropriate default definitions within these areas
are often based on managerial discretion though supported by some analysis. In particular, the observed transitions
amongst increasingly severe arrears categories (30 days, 60 days, etc.) are cross-tabulated across a chosen length of
time in what is called a roll rate analysis. From Siddiqi (2005, pp. 33–42), the principle is to select a particular
category as the default definition that is sufficiently stable in that accounts identified as ‘lost’ ought to remain lost at
the end of the outcome period. The chosen category should yield a minimum of accounts recovering from ‘default’
on average. However, the direct loss implications associated with any definition may be a better criterion than
stability since the latter ignores any competing financial/opportunity costs that may actually exist when varying
the default threshold. Furthermore, the ‘true’ transition rates can be obscured by the epoch of time from which
loan performance is sampled, which can certainly influence the chosen threshold. Perhaps the greatest source of
variation underlying these roll rates is the length of the outcome period, which can vary between 6–24 months in
practice, as discussed in Thomas et al. (2002, pp. 99) and Van Gestel and Baesens (2009, pp. 101–102).

The work of Kennedy et al. (2013) and Mushava and Murray (2018) investigated the role of the outcome
period using Irish and South African data respectively. The authors used different time spans in predicting default
risk and found that too short a window becomes insufficient in capturing the transition rates due to seasonal effects
and/or risk immaturity. Conversely, overly long windows may no longer represent the portfolio’s current risk
composition, strategies, or even the current market conditions, in addition to yielding models with degrading
accuracy. Furthermore, longer windows can ignore rapid transitions amongst delinquency states, e.g., oscillating
between defaulting and curing, as discussed in Kelly and O’Malley (2016), which is especially relevant for the
accuracy of monthly EL estimates. The outcome length and the sample window are clearly significant factors
that complicate the choice of a default definition. As an example, a particularly low curing rate given a chosen
definition cannot truly justify the latter (without conducting additional analysis) due to these other confounding
factors. Put differently, low curing rates may instead be attributed to an overly short outcome period or shifting
market conditions – both of which are reasons why a roll rate-based approach is deemed unfit for dynamically
finding the "point of no return" in this study.

Varying the default threshold within a definition was first studied in Harris (2013b) and Harris (2013a) from
a credit scoring perspective. The authors built default-classifiers using Support Vector Machines across various
thresholds and found that the model accuracy is affected by the chosen threshold. However, while optimising
accuracy is certainly worthwhile, these results say little about the direct impact on profitability when varying the
default threshold. As originally argued in Hand and Henley (1997) and Hand (2001), a lender is primarily interested
in the underlying profitability of a credit decision, with credit risk being but a facet thereof. Surely, borrowers with
no arrears are likely to be profitable ventures for the bank, while accruing arrears up to a point can certainly lead to
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eventual losses. However, there is little objective evidence in literature for justifying the presumption of profitability
underlying 90 DPD as the ideal default threshold. Moreover, not all ‘defaults’ (or default thresholds) are equal, as
demonstrated in Kelly and McCann (2016) using Irish mortgage data. A legal peculiarity during 2009–2013 made
it extremely difficult for Irish lenders to liquidate troubled mortgages, which led to disproportionately deep levels of
arrears. The authors modelled so-called ‘deep defaults’ (e.g., 360+ DPD) across different arrears severities that were
then used as default thresholds, which yielded markedly different curing experiences. Amongst other things, these
results cast doubt on the supposed finality of the classical 90 DPD threshold serving as the "point of no return".

Selecting any DPD-based threshold will affect the associated probability of curing from the supposed ‘default’
state. However, the chosen threshold’s suitability as a "point of no return" becomes questionable whenever this
probability is nonzero. Furthermore, multi-period "episodes of delinquency" are more widespread in practice than
one would otherwise believe, based on anecdotal experience. The work of Thomas et al. (2016) demonstrated these
patterns of periodic repayments using a four-state homogeneous Markov chain, in modelling the collections process
of defaulted UK loans. The authors noted that these models may be used to evaluate write-off policies, even though
this is not truly recommended. Instead, pursuing loan collection for an optimal length of time was investigated in
Mitchner and Peterson (1957), based on maximising net profit using US loans. The authors found that loan recovery
should cease whenever the one-period expected repayment equals the collection cost itself. However, they assumed
that a defaulted borrower is permanently absorbed into a paying regime once cured, which contrasts Thomas et al.
(2016). Regardless, Markov chains have long been used in modelling credit risk (or aspects thereof), thereby
motivating its use in this study. See Cyert et al. (1962) for a Markovian approach in estimating the allowance for bad
debts, later extended in Corcoran (1978) and Jarrow et al. (1997), and reviewed more recently in Hao et al. (2010).

A dynamic programming model was formulated in De Almeida Filho et al. (2010) in optimising the collections
process using unsecured European loans. The idea is to find the ideal recovery action and its optimal pursuit
duration, which maximises the net recovery rate for an "average" debtor. These actions include telephonic calls,
demand letters, house visits, threats, legal steps, and write-off. However, cash flows from previous or future periods
were excluded from the state space formulation, which limits the approach’s tractability. This work was extended
in So et al. (2019) by following a Bayesian approach on the individual debtor-level to give similarly optimised
outputs. Within the same problem context, a Markov decision process was developed in Liu et al. (2019) as an
alternative approach using designed data. Similarly, an optimal collection action is sought across both delinquency
states and time. The authors calculated a schedule of optimised actions based on maximising expected net present
value, which superseded a static collection policy as an alternative. However, strong assumptions were made when
designing both the data and elements within the authors’ method, which may not be suitable in practice. Moreover,
write-off was not structured as a candidate collection action, instead being exogenously imposed within the Markov
chain’s state space.

In form, our study is closest to that of De Almeida Filho et al. (2010) and Liu et al. (2019), though a different
and arguably more general approach is followed. Specifically, we use delinquency measures instead of time and
leverage the entire portfolio instead of using only ‘defaulted’ loans, which already imposes a particular "point of no
return". We focus more fundamentally on if and when to abandon a loan based on accrued delinquency, instead of
pursuing various collection actions. From a literature perspective, our work attempts to bridge the branches of
credit risk modelling and collection optimisation. This is achieved by framing the recovery decision’s timing as a
loss-based optimisation problem wherein the ideal "point of no return" is sought.
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3 An approach for optimising and testing the recovery decision

Delinquency is defined as a time-dependent, varying, and measurable quantity that represents the extent of eroded
trust between bank and borrower. Relatedly, a delinquency measure 6 reflects the degree of non-payment based
on the fundamental idea of a borrower owing an amount �C > 0 (instalment) though only repaying an amount
'C ≥ 0 (receipt) at a particular time C. When 'C < �C , the function 6 quantifies the extent �C − 'C by which the
bank incrementally loses confidence in the borrower honouring the original credit agreement. Three different
delinquency measures 61, 62, and 63 are used in this study, with their construction detailed in the appendix. We
develop the so-called Loss-based Recovery Optimisation across Delinquency (LROD) procedure in subsection 3.1.
This procedure attempts to find the ‘best’ delinquency-based threshold for a chosen measure 6 ∈

{
61, 62, 63

}
at

which the portfolio’s recovery decision is loss-optimised, as illustrated in Fig. 3. In addition, a simulation-based
setup is described in subsection 3.2 by which portfolios can be systematically generated across various credit risk
scenarios, in testing the LROD-procedure.

Fig. 3. Illustrating the loss optimisation of the recovery decision across several delinquency measures. As a result,
Measure 3 is chosen as the best measure with its minimum loss attained at threshold 2.

3.1. Optimising loan recovery times: the LROD-procedure

Consider a portfolio of # loans, indexed by 8 = 1, . . . , # , and let 6(8, C) denote the value of a particular measure
6 ∈

{
61, 62, 63

}
at periods C = 0, . . . , C28 with C28 representing the contractual term of the 8th account. Let E (0)C

and E (1)C be standard discounting functions that use an alternative risk-free interest rate and the loan interest rate
respectively in discounting back C periods, both expressed as annual effective rates and parametrised later. Let
'8C and � 8C be the respective receipt and expected instalment at time C for the 8th account. Then, let '(8, C) be the
summed historical receipts up to C, expressed as

'(8, C) =
C∑
;=0

'8;E
(0)
;

. (1)
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For the remaining future instalments, let $ (8, C) denote the expected outstanding balance at C, defined as

$ (8, C) = E (0)C
C28∑
;=C+1

� 8; E
(1)
;−C , $ (8, C) = 0 for C = C28 . (2)

To cater for arrears, let �(8, C) be the historical and cumulative shortfall up to C between instalments and receipts,
given by

�(8, C) =
C∑
;=0

(
� 8; − '

8
;

)
E
(0)
;

. (3)

Financial loss can only be realised when the lender disposes of the impaired asset, regardless of the extent
of impairment. In this study, ‘default’ is interpreted as a variable state, which will become useful for optimising
the eventual recovery decision. Having breached some threshold (signifying broken trust), the lender’s objective
changes to collecting the maximum in the shortest time possible. As a simplifying assumption, a fixed portion of the
loan is immediately written-off upon entering ‘default’. In reality, this portion will likely depend on many factors,
including the workout period itself. This assumption can certainly be relaxed in future research when refining this
optimisation procedure and what is essentially its LGD-component. Accordingly, let A� ∈ [0, 1] be a loss rate
applied on $ (8, C) to help reflect any underlying opportunity costs of forsaking future revenue. Moreover, assume
that �(8, C) is partly written-off at a different loss rate A� ∈ [0, 1] to account for impairment. Using two different
rates recognises that the recovery success may differ between these two components (expected balance and arrears).
Secondly, this setup accounts for implicit trade-offs between forsaking future revenue versus accruing arrears for a
given C respective to Eq. 2 and Eq. 3. These unconditional loss rates serve as placeholders for more sophisticated
loss models (or expert knowledge of the loss experience), presumably including all other costs. Finally, let ; (8, C) be
the discounted "blended loss" assessed at C and expressed as

; (8, C) = $ (8, C)A� + �(8, C)A� . (4)

For optimising loan recovery, let 3 ≥ 0 be a delinquency threshold such that the 8th account is considered
as (6, 3)-defaulting if and only if 6(8, C) ≥ 3 at any particular time C = 1, . . . , C28 . Let S� be the subset of all
(6, 3)-defaulting accounts such that

S� =
{
8
�� ∃ C ∈ [0, C28 ] : 6(8, C) ≥ 3

}
. (5)

Since an account may enter and leave the (6, 3)-default state multiple times in reality, let C (6,3)
8

be the earliest
moment of ‘default’ for a qualifying account, defined as

C
(6,3)
8

= min
(
C : 6(8, C) ≥ 3

)
, ∀ 8 ∈ S� . (6)

Similarly, let S% be the subset of all accounts considered as (6, 3)-performing such that

S% =
{
8 : 6(8, C) < 3 ∀ C ∈ [0, C28 ]

}
. (7)

The difference in assessing losses between a (6, 3)-defaulting and a (6, 3)-performing account is simply the time
of assessment C, which is set at either C = C (6,3)

8
or C = C28 respectively within ; (8, C) from Eq. 4. At each time C,
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the lender effectively decides an account’s membership between S� or S%, based on accrued delinquency 6(8, C)
and a particular (6, 3)-configuration. The latter is to be adopted as a portfolio-wide delinquency-based collection
policy at the outset C = 0, as is common South African collection practice. In a sense, accrued delinquency forms
the time-invariant action space of a Markov decision process (MDP) in choosing 3, whereas accrued delinquency
formed the state space in Liu et al. (2019). Accordingly, our state space is set membership itself, i.e., either S% or
S� . However, we do not employ a classical MDP framework, instead opting for a simpler approach that facilitates
choosing a static (6, 3)-policy. Both ‘payoff’ and the element of time is already accounted for in Eq. 4 by having
discounted the associated loss to C = 0 for a given (6, 3)-policy. As such, the objective function is simply the total
portfolio loss !6 (3) for a particular (6, 3)-configuration, defined as

!6 (3) =
∑
8∈ S�

;

(
8, C
(6,3)
8

)
+

∑
8∈ S%

;
(
8, C28

)
. (8)

Losses are iteratively calculated across a range of thresholds 3 ∈ D6 using !6 from Eq. 8 with a particular
measure 6 ∈

{
61, 62, 63

}
. In summary, three preparatory steps are necessary before conducting optimisation:

1. Delinquency must be measured for every account and across its history using 6 ∈
{
61, 62, 63

}
;

2. Select appropriate thresholds 3 ∈ D6 on the domain of a particular 6 for optimisation;

3. A portfolio loss model !6 must be applied for every chosen threshold 3 ∈ D6 of each 6.

The main recovery optimisation problem is effectively divided into smaller (6, 3)-based sub-problems. The
resulting !6 (3) for each (6, 3)-configuration is stored centrally, thereby forming a loss curve across 3 for each
6. The objective then becomes a search for a threshold 3 ′ ∈ D6 such that !6 (3 ′) ≤ !6 (3) for all chosen 3 ∈ D6.
More generally, if a global minimum < (6) exists on !6 for a particular measure 6, then !6 is said to be minimised
at 3 (6) . Minimising again across the set formed by < (6) effectively allows indirect comparison of delinquency
measures themselves at the portfolio-level. The optimal measure 6∗ is then the 6 that yielded the lowest loss at its
corresponding threshold, as illustrated in Fig. 3 and expressed as

6∗ = arg6 min
6∈{61,62,63 }

[
< (61) , < (62) , < (63)

]
. (9)

Alternatively, a single measure can be used, e.g., 61, which simplifies the optimisation to finding a threshold
3 (61) ∈ D61 that equals arg3 min !61 (3) if a minimum exists. Nonetheless, the optimisation’s feasibility relies
heavily on adequately populating the search space D6. Thresholds are trivially chosen as 3 = 0, . . . , 3# for
the integer-valued 61-measure since D61 is a countable set, where 3# is a reasonable (but admittedly arbitrary)
proportion of the maximum contractual term, e.g., 60%. However, this becomesmore complicated for the real-valued
measures 62 and 63 since their search spaces contain infinite possible thresholds. As such, two competing interests
are balanced against each other when assembling D6: 1) too few thresholds that are inadequately spaced can
obscure hidden optima and ruin the optimisation; 2) too many thresholds can become computationally burdensome.
As a practical expedient, the output of 62 and 63 are binned into a discretionary range of thresholds by which D6 is
populated, followed by manual tweaks.
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3.2. Portfolio generation: a testbed for the LROD-procedure

A real-world portfolio inherently suffers from censoring insofar that delinquent loans are only kept on the balance
sheet up to a certain point, as controlled by the bank’s write-off policies. Although eventually optimising the
recovery decision of a real-world portfolio would be ideal, it is arguably prudent first to demonstrate the efficacy
hereof from "first principles" on designed data. In this section, a broad but simple simulation-based setup is
described, guided by expert judgement and industry experience. Using this setup as a testbed, replicable loan
portfolios of varying risk levels are iteratively generated in testing the LROD-procedure. This testbed is subsequently
used to identify a certain range of credit risk profiles for which optima are found, simply by varying the simulation
parameters.

Some delinquent accounts will simply never recover in reality, which implies a continuous stream of zeros in
their receipts X =

[
'1, '2, . . . , 'C2

]
after some point. Given a measure 6 ∈

{
61, 62, 63

}
and a so-called truncation

parameter : ≥ 0, this effect is simulated from a certain starting point C ′ = min
(
9 : 6( 9) ≥ :

)
that only exists when

delinquency has accrued sufficiently, i.e., the earliest period 9 ∈ [0, C2] at which 6( 9) ≥ : is potentially triggered.
A process, called (:, 6)-truncation, then changes X to X′ by

X′ =


[
'1, '2, . . . , 'C′, 0, . . . , 0

]
if C ′ exists

X otherwise
. (10)

Consider # = 10, 000 standard amortising loan accounts that are indexed by 8 = 1, . . . , # , with a fixed
contractual term of C2 = 60 months, a fixed effective annual interest rate of 20%, and a fixed principal amount such
that the level instalment is �C = 100 at every period C = 1, . . . , C2. Admittedly, these quantities are oversimplified
and will typically vary in a real portfolio based on the level of credit risk and loan demand. However, sampling
them instead from stylised1 distributions did not have nearly the same effect as that of credit risk in the optimisation
itself. These simplifications are therefore justified for the time being. Furthermore, an effective annual risk-free
rate of 7% is used in discounting, which is realistic for the South African market. Let the maximum loan size be
!" = 5, 000 and let A� = 40% and A� = 70% with the rationale that losses on arrears ought to be penalised more
than losses on expected balances. The latter is a decreasing quantity while the former increases over time for a
persistently delinquent loan. All of these parameter values represent expert knowledge though can certainly be
varied in practice, which will be demonstrated later for some of these parameters.

In simulating the receipt vector X of each loan account, two probabilistic techniques are now described.
As a basic technique (called random defaults), let DC ∈ [0, 1] be a randomly generated number at every period
C = 1, . . . , C2 and let 1 be the probability of payment, i.e., P('C = �) = 1 with � denoting the level instalment. Note
that 1 = 80% is chosen as a default value, though this is later varied. Each element 'C within X is then populated
with either � or 0, expressed as

'C =


� if DC < 1

0 otherwise
. (11)

Despite its simplicity, random defaults do not feasibly generate periods of consecutive non-payments followed

1In particular, a beta distribution was first parametrised to resemble the typically right-skewed distributional shape of unsecured retail
loan rates in the South African market, thereby reflecting expert knowledge and risk-based pricing practises. Secondly, the loan amount was
also sampled from a similarly parametrised distribution, again based on the authors’ experience in the industry.
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by resumed payment, which frequently occurs in practice as "episodic delinquency". Therefore, and similar to
Thomas et al. (2016), theMarkovian defaults technique is defined where -C ∈ {P,D,W} denotes a random variable
that can assume one of three states at each period C; the paying state P : 'C = �, the delinquent state D : 'C = 0, and
the absorbing write-off state W : 'C≥C′ = 0 from a certain point C ′ onwards. Then, let -1, -2, . . . be a sequence of
random variables that form a discrete-time first-order Markov chain. One can reasonably assume that every account
starts off as non-delinquent, i.e., P(-1 = P) = 1 while P(-1 ∈ {D,W}) = 0. Subsequently, the one-period transition
probability from the current state 8 at C to the future state 9 at C + 1 is denoted as %8 9 . However, let the write-off
probabilities be sensibly set to 0.1% and 1% respective to the starting states P and D. These values agree with
general industry experience of an unsecured portfolio, though can certainly be tweaked to the individual portfolio in
practice. The remaining elements in the transition matrix can now be derived from but two probabilities, %PP and
%DD. In turn, both of these can be systematically varied to generate a portfolio’s cash flows according to a certain
level (or profile) of credit risk. The transition matrix is accordingly expressed in Table 1.

To
P D W

Fr
om

P %PP 1 − %PP − 0.1% 0.1%
D 1 − %DD − 1% %DD 1%
W 0% 0% 100%

Table 1: A conceptual transition matrix for the Markovian defaults technique, wherein the rates %PP and %DD are to
be systematically varied.

4 Computational results of recovery optimisation

In this section, the LROD-procedure is demonstrated and tested across a wide array of credit risk scenarios generated
using the testbed described in subsection 3.2. The computational results are grouped below by technique, followed
by suggestions for applying the LROD-procedure on real-world data.

4.1. Random defaults

This technique leverages (:, 6)-truncation to control the portfolio generation itself, thereby serving as a sanity check
when testing the optimisation results and its underlying logic. Intuitively, the lowest loss should be at threshold
3 = : , since receipts are zeroed after having breached : by design. As an illustration, (4, 61)-truncation is applied
in Fig. 4a, which shows the lowest loss occurs at 3 = 4 for 61 as expected. However, the choice of 6 ∈

{
61, 62, 63

}
when truncating introduces bias in the timing of cash flows, such that this 6 will likely contain the lowest loss as
well. This is demonstrated in Fig. 4b when using (6, 63)-truncation instead, where the minimum loss now occurs
approximately at 3 = : = 6 for 63. Whilst seemingly artificial, truncation is merely used as an intuitive testing tool.
However, the notion of truncation is plausibly similar to default contagion during a real-world economic downturn,
during which borrowers may default systematically at some level of accrued delinquency : on average.

Minimum losses ought to occur wherever 3 = : when (:, 6)-truncating receipts. This intuition is largely
confirmed in Fig. 5 wherein truncation parameters : = 1, . . . , 10 are applied during portfolio generation. As a result,
loss minima occur consistently at the truncation point 3 = : as expected, while holding other factors constant. Each
increasing value of : also yielded a smaller minimum loss as a result of the overall lessening truncation effect. Since
receipts are truncated less frequently as : increases, generated portfolios exhibit overall less delinquency (or credit
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risk), which explains both lower loss curves and lower loss minima. Although not shown, this result holds similarly
for 62 and 63 when used in truncation. Therefore, the optimisation is deemed sensitive to systematic defaults and
can react accordingly should the defaulting behaviour of borrowers converge, as simulated by truncation.

(a) Using (4, 61)-truncation (b) Using (6, 63)-truncation

Fig. 4. Losses (as a proportion of summed principals) across thresholds 3 by measure 6 ∈
{
61, 62, 63

}
using the

random defaults technique. In (a), loans are (4, 61)-truncated, while they are (6, 63)-truncated in (b). In both cases,
the zoomed plots show that global minima occur at or near the truncation point, 3 = : .

Fig. 5. Losses across thresholds 3 for the 61-measure with (:, 61)-truncation, using the random defaults technique.
Several truncation points : = 1, . . . , 10 are used, with the zoomed plot confirming that global minima in losses
occur at each truncation point 3 = : .
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Fig. 6. Losses across thresholds 3 for the 61-measure with (6, 61)-truncation, using the random defaults technique
and several probabilities of payment 1 ∈ [0, 1]. The zoomed plot shows a smaller range of 0.65 ≤ 1 ≤ 0.91 where
loss minima occur at the chosen truncation point.

Besides truncation, this technique has another parameter that is arguably more relevant: that of the one-period
repayment probability 1. Each value of 1 corresponds to a particular level of credit risk during portfolio generation.
By varying 1, the effect of credit risk can be broadly tested when optimising loan recovery, as shown in Fig. 6.
Applying (6, 61)-truncation as a benchmark, loss minima still occur at 3 = : = 6 as expected, though only for a
certain range of 0.5 < 1 < 0.94. This suggests that optimising loan recovery in practice is infeasible for either very
risky loan portfolios or near riskless portfolios. In particular, the two boundary cases of 1 = 0 and 1 = 1 in Fig. 6
support this idea in that loans should be forsaken at the outset when 1 = 0, as evidenced by the loss minimum at
3 = 0, since all receipts will be zero-valued by design. Conversely, if there is no credit risk, i.e., 1 = 1, then no
loss is made at any 3 > 0 and loan recovery itself becomes a moot point. These computational results can directly
translate into practical value when estimating the parameter 1 from a real-world portfolio, as well as estimating the
extent of any underlying truncation effect.

Intuitively, the loss experience (or LGD) of a particular portfolio ought to affect the results of recovery
optimisation as well, especially when considering loan security in the event of default. This is testable by varying
the loss rate A� during portfolio generation while holding other factors constant, as illustrated in Fig. 7 using 61
(though similar results hold for 62 and 63). As a proxy for more secure portfolios, smaller values of A� lead to flatter
loss curves, until reaching a point where recovery optimisation becomes infeasible. Conversely, larger values of A�
yield loss curves with a greater ‘bend’ at the chosen truncation point, which signifies the greater risk involved with
more unsecured portfolios. Since 1 is held constant, one can conclude that once default does occur, the viability of
recovery optimisation only increases with the risk of loss, which is intuitively sensible. This is to say that unsecured
portfolios will likely benefit even more from recovery optimisation than secured portfolios.
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Fig. 7. Losses across thresholds 3 for the 61-measure with (6, 61)-truncation, using the random defaults technique
and several arrears loss rates A� ∈ [0, 1]. The zoomed plot shows a smaller range of loss rates 0.62 ≤ A� ≤ 1 where
loss minima occur at the chosen truncation point.

4.2. Markovian defaults

This technique affords greater flexibility in generating portfolioswithmore sporadic repayment histories. Accordingly,
the LROD-procedure is demonstrated in Fig. 8 using some of the parametrisations of the underlying Markov chain
that yield optima across all delinquency measures. Evidently, the 61-measure appears to outperform the other
measures since it yields the lowest loss within each of these settings, including a number of other parametrisations
not shown. However, summarily concluding the supremacy of 61 across all portfolios would be disingenuous.
It is still possible that some real-world portfolios may be better served using measures other than 61 within the
LROD-procedure (or more broadly in risk management). In addition, the current objective is not to determine the
best measure conclusively. Indeed, conducting such an empirical study would require expansive real-world data
on all types of portfolios across the risk spectrum, which is prohibitively impractical at this stage. That said, the
61-measure is henceforth used in this section given its supremacy in this instance.

Using this technique, we devise a broad iterative scheme to generate portfolios systematically across the
entire credit risk spectrum, as measured with 61. In particular, %DD is held constant at a certain value while
varying %PP, followed by fixing %DD to a different value and varying %PP again, and so on. This scheme allows for
suitably varying the transition matrix in Table 1 using fixed intervals, with some of the resulting loss curves and
associated loss minima presented in Fig. 9. The subplots in both panels (A) and (I) represent boundary cases that
confirm intuition. Specifically, panel (A) demonstrates recovery optimisation for portfolios with highly transitive
delinquency states such that accounts immediately exit this state in the next period, once entered. Accordingly,
the loss curves increasingly resemble a near risk-less case as the value of %PP tends towards 1, which is similar to
setting 1 = 1 in Fig. 6 when using random defaults. In turn, recovery optimisation itself becomes progressively
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Fig. 8. Losses across thresholds 3 by measure 6 ∈
{
61, 62, 63

}
using the Markovian defaults technique to generate

different loan portfolios. Each panel explores a specific setting of the transition matrix, using the titular probabilities
within the matrix defined in Table 1. Encircled points indicate loss minima at associated thresholds 3 (6) .

infeasible in tandem with %PP approaching 1. Conversely, panel (I) showcases the loss curves of extremely risky
portfolios, which are again similar to setting 1 = 0 in Fig. 6 as %PP approaches 0. More importantly, the fact that
loss minima occur at very small thresholds agrees intuitively with cutting losses sooner rather than later, especially
for extreme default risk.

The remaining panels in Fig. 9 are perhaps the most instructive. As the delinquency state becomes more
absorbing (or less transient), i.e., moving from panel (B) to (F), the loss-optimal thresholds 3 (61) become increasingly
staggered across both axes. This is to say that 3 (61) becomes progressively more sensitive to both the threshold 3
and the value of %PP. Moreover, it is sensible that ever greater losses (at 3 (61) ) are associated with lower values of
%PP since the latter implies less time being spent in the paying state, even as the delinquency state becomes less
transient. Furthermore, consider that 3 (61) increases in threshold-value when %PP decreases and %DD increases,
i.e., moving from curve (i) down to curve (a) whilst moving across panels (B) to (F). This suggests that gradually
postponing loan recovery is the better strategy even as delinquency becomes more likely, at least up until a certain
point, in this case, panel (G). However, this suggestion is counter-intuitive since one would rather cut losses sooner
than later when risk supposedly increases, which implies selecting lower thresholds instead. Two factors help
explain this phenomenon. Firstly, the relevant portfolios are increasingly turbulent by design when %PP changes
from higher to lower values in each successive panel. The effect hereof is that loans start to oscillate quite rapidly
between the paying and delinquent states as %PP decreases. The slightly increased rate of absorption into the
delinquent state (when moving across panels) is not sufficient to support earlier loan recovery as intuition would
otherwise suggest, especially so when an account still frequently exits the delinquent state. This has the side-effect
of muting the severity of ‘default’, which is plausible when curing from ‘default’ itself becomes increasingly likely
due to the same turbulence. Therefore, the associated opportunity cost of forsaking the loan earlier is too high when
future repayments are still likely to be received over the longer run, albeit sporadic. Accordingly, greater turbulence
in a portfolio requires greater patience to collect upon these repayments, which is why postponing loan recovery (by
virtue of 3 (61) increasing) would be loss-optimal. Secondly, even if 3 (61) increases in value, the associated loss
minimum reassuringly increases alongside %DD, as expected from more turbulent and riskier portfolios.
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Fig. 9. Losses across thresholds 3 for the 61-measure using the Markovian defaults technique with several transition
rates %PP ∈ [0, 1] and %DD ∈ [0, 1]. Encircled points indicate loss minima at associated thresholds 3 (61) .

There is little need for applying (:, 6)-truncation on these results since the Markovian technique already has a
realistically-set write-off state that achieves the same effect. While additional truncation will surely confound the
results, (12, 61)-truncation is experimentally applied in the interest of completeness. The results (not shown) are
largely similar to that of random defaults in that loss minima still occur at or near : = 12 across most portfolios. The
exceptions are the two boundary cases, i.e., at or close to panels (A) and (I). Furthermore, the Markovian technique
is especially geared towards generating "regime-switching" portfolios where accounts suffer from episodes of
delinquency that vary in length, as controlled by the state probabilities. In this regard, episodic delinquency is more
common a phenomenon in practice than one would think, which is why investigating recovery optimisation for
these cases is more valuable than exploring explicit truncation/write-off any further in this section.

16



Simulation-based optimisation of the timing of loan recovery across different portfolios

4.3. Applying the LROD-procedure on real-world data

The steps in subsection 3.1 require data to be in a longitudinal-format, having measured delinquency in retrospect
across all accounts and time (usually monthly), based on expected instalments and actual receipts. Letting the
contractual term, loan and risk-free rates, and even the loss rates vary across the portfolio ought not to impede the
practical use of the LROD-procedure. However, the portfolio is assumed to be fully observed (or ’completed’) in
this study, with little consideration given to any right-censoring and its effect on the receipt history of an account.
This particular avenue is further explored in Botha et al. (2020), thereby demonstrating the empirical use of the
procedure on real-world data. That said, simply excluding incomplete accounts from the dataset can sidestep this
possible issue, though at the cost of a reduced sample size. The effect hereof will likely vary based on the typical
tenure of the loan product.

The results, particularly those from subsection 4.2, can easily translate into practical value with relatively little
analytical effort. For example, one can fit the same three-state Markov chain on a real portfolio’s delinquency
progressions, just to obtain the associated transition rate estimates. In turn, these estimates can be used as a rough
guide in finding a corresponding loss curve amongst all those presented in Fig. 9, i.e., a look-up exercise. The
associated optimised threshold can provide a high-level idea of recovery optimisation, provided the assumptions
are reasonably met. That said, applying the LROD-procedure remains the imperative in order to capture all
idiosyncrasies of a particular portfolio and the prevailing market conditions.

5 Conclusion

We explore a more fundamental meaning of loan ‘default’ by only using 3 as a variable threshold upon the domain
of a delinquency measure 6. Though different from current practices, this reinterpretation of ‘default’ better aligns
with the rather probabilistic idea of breaching a certain "point of no return", having exceeded 3 on 6. In principle,
keeping the loan any longer beyond this point becomes sub-optimal to abandoning it and recovering the maximum
instead. To this end, we contribute a novel optimisation procedure as an expert system to help find the ideal time
for debt recovery during loan life, based on accrued delinquency. This so-called LROD-procedure weighs two
competing interests against each other: the prospect of reaping future revenue from troubled loans versus the cost
of retaining these loans any further. In principle, each (6, 3)-configuration serves as a candidate collection policy
that has a "net cost" if applied to a portfolio. The overall portfolio loss is then iteratively calculated across all such
policies using the procedure’s inner loss model (!6). Doing so forms a loss curve for each 6 that can be inspected
for an optimal threshold at which the lowest loss occurs, thereby concluding the optimisation. In addition, the
LROD-procedure is formulated in such a way that it can be used with multiple loan delinquency measures. This
facilitates the objective testing of alternative measures, e.g., those provided in the appendix, that may better suit the
recovery optimisation (or even broader risk management) of a portfolio. That said, the study objective is not to
establish the best measure conclusively, which would likely be a data-intensive and costly endeavour.

Regarding results, a simple simulation-based setup is first described in which the LROD-procedure (and its
goal of recovery optimisation) is closely examined from "first principles". Using this setup as a testbed, a broad
computational study is conducted wherein basic amortising loan portfolios are systematically generated by varying
the simulation parameters, though still constrained by expert judgement. Having spanned the entire credit risk
spectrum, the computational results show that optimising the recovery decision’s timing is viable across most risk
levels, except at the extremes. We further demonstrate that optimised recovery times are sensitive to systematic
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defaults that may structurally affect a portfolio during an economic downturn. Another factor is that of collateral
and the portfolio’s loss experience (or LGD), insofar that optima were successfully found across most of the loss
spectrum. Moreover, recovery optimisation seems to become an increasingly viable practice as the risk of loss
increases.

In addition, recovery optimisation is tested on more turbulent portfolios wherein borrowers repay intermittently,
thereby causing episodic delinquency. Once accounts oscillate rapidly between paying and nonpayment, ‘default’
itself diminishes in severity, especially when curing also becomes more likely as a result of the very same turbulence.
Accordingly, we found that optimised thresholds increased in value as turbulence develops, though only up to a point.
Postponing loan recovery in tandem with greater turbulence is therefore strategically optimal since it allows greater
scope to collect upon these repayments, albeit sporadic. As a secondary contribution, the testbed itself can serve as
a valuable tool in exploring the strategic viability of the LROD-procedure. Once appropriately parametrised, the
testbed can generate a wide variety of portfolios, which allows a bank to investigate (at least preliminarily) the
prospects of recovery optimisation for a certain type of portfolio. Ultimately, the LROD-procedure can be used to
tweak existing collection policies and, perhaps in time, default definitions themselves.

Future studies can focus on refining the LROD-procedure using real-world portfolio data. So-called ‘incomplete’
portfolios, i.e., those wherein many loans have not yet reached contractual maturity, may prove a challenge for
recovery optimisation at this stage. The simplest solution would be to exclude the incomplete accounts, though
unfortunately reducing the sample size as well. Alternatively, one can perhaps explore an appropriate forecasting
approach in future work. Furthermore, homogeneity is currently assumed in that the optimised threshold is a
portfolio-wide criterion. However, exploring segmentation schemes may be worthwhile such that the LROD-
procedure yields an ideal threshold for each identified segment within the portfolio. Lastly, the current loss
model !6 can be refined by incorporating historical loss experiences and transforming it into a more dynamic
component. As an example, calculating the realised LGD generally requires a specific point of entering ‘default’.
From this point, cash flows are observed during its workout up to the applicable write-off point. By introducing 3
as the (6, 3)-default state, the starting points of cash flows will naturally vary with 3, thereby impacting the LGD
calculation itself for each (6, 3)-policy. Intuitively, longer or shorter workout periods will affect the loss experience,
which will influence recovery optimisation based on the study results. This particular refinement will likely intersect
with the existing literature on credit loss modelling and IFRS 9, which as a field is currently quite in vogue.
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6 Appendix

Three mathematical quantities are presented as delinquency measures in this appendix. Firstly, a variant of the
widely-used number of payments/months in arrears, called the 61-measure (or CD-measure), is refined into a more
robust measure in subsection 6.1 using a weighting scheme. Secondly, a more concise algorithm is contributed in
subsection 6.2 that creates the Macaulay Duration Index from Sah (2015), called the 62-measure (or MD-measure),
which is an index of the weighted average time to recover the capital portion of a loan. Lastly, a modified version
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of 62 of our own invention is introduced in subsection 6.3, called the 63-measure (or DoD-measure), which
incorporates the sizes of disrupted cash flows into delinquency assessment.

6.1. Contractual Delinquency (CD): the 61-measure

Days past due (DPD) from accountancy practices is commonly used in constructing a delinquency measure 6,
whereby the unpaid portion of a loan’s instalment is binned into increasingly severe groups as each 30-day calendar
month lapses: 30 days, 60 days, 90 days, and so forth, as discussed in Cyert et al. (1962). More formally, 6 is
defined as the function 60(C) = 5 (�C/�) where �C denotes the accumulated arrears amount at discrete time C, � is
the fixed instalment, and 5 is a chosen rounding function that maps the given input to the number of payments in
arrears as the output. A common choice of 5 is the ceiling function, whereby the input is simply rounded upwards
to the nearest integer.

However, this rounding scheme is quite stringent in that even a small difference �C − 'C = n < ZAR 1.00 will
increase the delinquency measurement, purely due to rounding. Depending on the volatility in 'C over time, it is
punitive to penalise a borrower when n is but a few cents. That said, a sensible boundary on n must be applied,
otherwise the idea of delinquency becomes meaningless. Should �C/� simply be rounded to the nearest integer
instead, then a change in 60(C) over time [C1, C2] depends entirely on whether �C/� is above or below 50%. This
implied ‘threshold’ seems arbitrary, inflexible, and certainly at odds with the risk-based practices of a bank. Lastly,
constructing 60 in practice quickly becomes cumbersome when the instalment is linked to an interest rate that varies
over time, which is common for secured lending.

There are two additional pitfalls to the 60-measure. Firstly, overall measurement can become lagged by one (or
more) periods when a significant overpayment is immediately followed by a severe underpayment the following
month, purely due to the chosen 5 . Secondly, if �C accumulates interest on itself or attracts any fees, then 60 can
become ‘corrupted’ due to its inherent reliance on �C . The potential exists for 60 to change in value, not due to a
fundamental breakdown in trust, but as a result of the lender’s own pricing structure or system constraints, which
may artificially inflate the 60-value. Moreover, the rounding scheme itself may exacerbate this effect. In both of
these cases, the apparent "measurement error" in 60 can adversely affect the true accuracy of models predicting
default risk.

Therefore, a more comprehensive variant, called the CD-measure, is presented here that circumvents these
challenges. Let the receipt vector be X = ['0, '1, . . . , ') ] with its elements (or receipts) 'C ≥ 0, and let the
instalment vector be O = [�0, �1, . . . , �) ] with its elements �C > 0. Both vectors are defined for a specific loan
account across its discrete time periods C = 0, . . . , ) , with C = 0 representing the origination point and ) denoting
the tenure (or current loan age). Note that ) may exceed the contractual term C2, especially in cases of extreme
delinquency. The repayment ratio ℎC ∈ [0,∞) is then defined as

ℎC =
'C

�C
∀ C = 1, . . . , ) and ℎ0 = 0 . (12)

One can specify a certain threshold I ∈ [0, 1] for ℎC , above which an account at time C is considered current and
beneath which it is considered delinquent. Note that I = 90% is assumed in this study purely as an illustration,
though the lender should certainly adjust this I accordingly. Next, a Boolean-valued decision function d1(C) ∈ {0, 1}
is defined for C = 1, . . . , ) , using Iverson brackets [0] that outputs 1 if the enclosed statement 0 is true, and 0 if
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false, as
d1(C) =

[
ℎC < I

]
. (13)

Memory of past delinquency is introduced by defining another integer-valued function <(C) ∈ {−1, 0, 1, . . . }
for C = 1, . . . , ) , which outputs the reduction in accrued delinquency (if any), as

<(C) =
(⌊
ℎC

I

⌋
− 1

) (
1 − d1(C)

)
− d1(C)

=

⌊
ℎC

I

⌋ (
1 − d1(C)

)
− 1 . (14)

This function <(C) gives the magnitude by which the measured delinquency at time C should be reduced (if at all) in
catering for past delinquency. When overpaying, i.e., 'C > �C , the ratio between ℎC and I in Eq. 14 signifies the total
number of ‘payments’ by which accrued delinquency should be decreased, as weighed by I. The rounding problem
from 60 is resolved in this measure when dividing by I since its specified value reflects the lender’s tolerance
towards underpayment by design. Accordingly, taking the floor of ℎC/I does not detract and merely enforces an
integer-valued scale in the eventual measure. Furthermore, the currently-owed instalment should be recognised
first before reducing any accrued delinquency, which is achieved by subtracting one instalment. For sufficient
underpayment, i.e., 'C < I�C , the delinquency is sensibly increased by one payment, which resolves to <(C) = −1
when d1(C) = 1.

To indicate previous cases of delinquency using 61 at time C − 1, let d2(C) ∈ {0, 1} be another Boolean-valued
decision function for C = 1, . . . , ) , which is defined using Iverson brackets again, as

d2(C) =
[
61(C − 1) = 0

]
. (15)

The reduction in delinquency <(C) at time C is subtracted from delinquency as measured at the previous period
C − 1, thereby giving net delinquency. The integer-valued CD-measure 61(C) ≥ 0 for C = 1, . . . , ) is then recursively
expressed as

61(C) = max

[
0, d1(C)d2(C) +

(
1 − d2(C)

) (
61(C − 1) − <(C)

)]
. (16)

Note the necessary starting condition of 61(0) = 0, since a newly-disbursed loan cannot yet be delinquent. The
output for 61 is best interpreted as the I-weighted number of payments in arrears, weighed by the lender’s tolerance
(or appetite) towards accrued arrears. Since delinquency only increases if ℎC < I by definition, a higher value of I
effectively translates to greater risk-aversion, and vice versa for lower I-values.

6.2. Macaulay Duration (MD): the 62-measure

The Macaulay Duration Index, recently introduced in Sah (2015), is based on bond duration, i.e., the weighted
average time to recover the capital portion of a loan. This measure incorporates the loan’s interest rate as well as the
arrears balance weighted by the time value of money. It is constructed as the ratio between the actual and expected
loan duration, reworked as the 62-measure in this study. However, the values of 62 are incomparable to those of 61
since both the domains and meanings differ.

Let Δ C = �C − 'C be the difference between the instalment �C and the receipt 'C at every time point C = 0, . . . , )

during the life of a loan, including at disbursement C = 0 to capture any applicable initiation fees. Considering
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the time value of money, let E 9 = (1 + A) − 9 be a discounting function that uses a nominal monthly interest rate A.
In addition, let X be the continuously compounded rate with its nominal variant X (?) = X/? and with an annual
compounding period ? = 12. Let !% denote the loan amount (or principal) that is to be amortised. Ordinarily, the
Macaulay Duration is calculated (perhaps once) at origination as the weighted average time to recover sunk capital
from future cash flows. However, here it is recursively calculated instead at each subsequent period C = 0, . . . , )

across the remaining < instalments as at each C. Naturally, this expected duration quantity, denoted as f�� , tends
towards zero over time as it nears the end of loan life, expressed as

f�� (C) =
)∑
<=C

[(
�<E<−C
!%

) (
< − C
?

)]
∀ C = 0, . . . , ) . (17)

However, Eq. 17 assumes that instalments O are free of uncertainty. When substituting these instalments with
the actual receipts X, a significant difference is intuitively expected. Moreover, it becomes necessary to track the
arrears balance as it develops (if it does) over the loan life. In line with Sah (2015), any arrears at any time are added
to the last expected (contractual) instalment at C = C2, since it represents the last contractual opportunity to repay
any such arrears, short of the lender intervening and restructuring the loan. This last instalment is then recursively
updated for each subsequent period C, denoted by the vector O′, which equals instalments O at first. Lastly, the actual
duration f �� (C) is also recursively calculated for each subsequent period C. This is illustrated using pseudo-code in
Algorithm 1.

Algorithm 1 Calculating 62
1: O′ := O, where O =

[
�0, . . . , �)

]
and ) ≤ C2

2: f �� (0) := f�� (0)
3: for C = 0, . . . , ) do ⊲ such that ) ≤ C2
4: � ′() ) := �

′
() ) + Δ C

(
1 + X (?)

?

)) −C
, ∀ C = 1, . . . , ) ⊲ Add any arrears to � ′() )

5: f �� (C) :=
∑) | ) ≤C2
<=C

[(
� ′<E(<−C )
!%

) (
<−C
?

)]
, ∀ C = 1, . . . , )

6: end for

Finally, the real-valued Macaulay Duration (MD) measure 62(C) ≥ 0 is then defined as the ratio between the
actual duration and the expected duration at time points C = 0, . . . , ) − 1, which is expressed as

62(C) =
f �� (C)
f�� (C)

. (18)

6.3. Degree of Delinquency (DoD): the 63-measure

From a cash flow perspective, an ideal delinquency measurement should penalise the non-payment of a larger loan’s
instalment to a greater degree than that of a smaller loan’s instalment, given the relatively larger impact on a bank’s
cash flow. Furthermore, the differences in risk concentration between a larger number of small loans versus a small
number of larger loans should also be incorporated by the ideal delinquency measure. As a possible solution, the
actual duration f �� (C) from Eq. 18 can be altered such that the eventual 62(C) is greater for larger loans than for
smaller loans by defining an appropriate multiplier.

Note that 62 is only defined up to the contractual term C2. However, delinquency can continue even past its
contractual term ) ≥ C2 , likely due to persisting underpayment. Ignoring loan write-off policies for the moment, let
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d3(C) ∈ {0, 1} be a Boolean-valued decision function that returns 1 if the given time point C precedes the contractual
term C2 , and 0 if otherwise. Using Iverson brackets, this is expressed as

d3(C) =
[
C ≤ C2

]
. (19)

When C > C2, any arrears can clearly no longer be added to the last contractual instalment (since it has lapsed),
as was added for � ′() ) at ) = C when calculating 62 in Algorithm 1. Instead, at least one more payment, albeit
out-of-contract, can reasonably be expected at every subsequent period C : C ≥ C2 as long as collection efforts are
actively pursued. Therefore, delinquency can now be computed up to time T instead of the previous ) , with T
either representing the contractual term C2 when C < C2 , or becoming a moving target T = C when C ≥ C2 . Note that
both O and X will incrementally expand with additional elements for as long as collection efforts continue past C2 .
A revised algorithm is given in Algorithm 2.

Algorithm 2 Calculating 63
1: O′ := O, where O =

[
�0, . . . , �)

]
and 0 < C2 ≤ )

2: T := C2
3: for C = 0, . . . , ) do
4: U := � ′(T ) ⊲ This refers to the element at the T th position of O′

5: T := C2d3(C) + C
(
1 − d3(C)

)
⊲ T is either equal to C2 or to C ≥ C2

6: � ′(T ) := �
′
(T )d3(C) + Δ C

(
1 + X (?)

?

)T −C
+ U

(
1 − d3(C)

) (
1 + X (?)

?

)
, ∀ C = 1, . . . , )

7: V(<) := < − C + 1 − d3(C), ∀ C = 1, . . . , ) ⊲ Discounting period, see next 3 lines
8: f�� (C) :=

∑T
<=C

[(
�<EV (<)
!%

) (
V (<)
?

)]
, ∀ C = 0, . . . , )

9: f �� (C) := f�� (C), for C = 0

10: f �� (C) :=
∑T
<=C

[(
� ′<EV (<)
!%

) (
V (<)
?

)]
, ∀ C = 1, . . . , )

11: end for

Afterwards, let _(!" , !%, B) denote a multiplier function that inflates f �� (C) at the period C. Let !" denote
the maximum loan size and let B ∈ [0, 1] be a real-valued sensitivity that represents the ‘strength’ at which to apply
this inflationary effect. Let d4(C) ∈ {0, 1} be another Boolean-valued decision function that returns 1 if there is
currently any accrued delinquency at C, and 0 otherwise, defined using Iverson brackets as

d4(C) =
[
f �� (C) > f�� (C)

]
. (20)

As a simple example, this multiplier is defined as

_(!" , !%, B) = B
(
1 − !" − !%

!"

)
. (21)

The inflated variant of f �� (C), denoted as f̃ �� (C), is given by

f̃ �� (C) = f �� (C)
(

d4(C)_(!" , !%, B) + 1
)
. (22)

By including d4(C) into f̃ �� (C) in Eq. 22, accrued delinquency will not be inflated when overpaying at some
period C. Finally, the real-valued Degree of Delinquency (DoD) measure 63(C) ≥ 0 is defined for C = 0, . . . , ) − 1
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and expressed as

63(C) =
f̃ �� (C)
f�� (C)

=

(
62(C)

f �� (C)

)
f̃ �� (C) = 62(C)

(
d4(C)_(!" , !%, B) + 1

)
. (23)

The sensitivity B, which is fixed in this study at B = 100% (though should ideally be optimised), represents a
universal and intuitive lever at the lender’s disposal. Its adjustment can align with the lender’s particular risk
appetite and tolerances. At B = 0, 63 collapses back into 62, though it purposefully resembles a more risk-adverse
form of 62 for B > 0. Delinquency values are more varied than those of 62 due to the inherent sensitivity to loan
principals by design.
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