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Abstract

Images are particular and well–known instances of spatial big data. Typically spatial data are

scale specific and in this paper, we propose mechanisms to effectively address issues of scale in the

analysis of images. We focus on spatial data extracted from images using the Discrete Pulse Transform

(DPT). The DPT extracts discrete pulses from images at multiple scales that are recognisable as

connected components. Traditionally, fractals are used for this purpose, but they fall short as the

process underlying fractality is usually either absent or poorly understood. This paper investigates the

Ht-index (head/tail break) as an alternative, merging ideas from image analysis and spatial statistics.

More specifically, we use the Ht-index for the analysis of anisotropic point patterns that are obtained

from applying the DPT. We propose a multi-level Ht-index decomposition in this regard. This is

the first mechanism for the DPT enabling an informed partition of the scale-space. The results show

that the Ht-index is well suited to identify the anisotropic structure location within specific scales

and thereby substantially reduces computational costs. We conclude that the use of the Ht-index is

promising and is well-suited for the further analysis of spatial big data.

Keywords: Discrete Pulse Transform, fractal, Ht-index, anisotropy, spatial point pattern, texture

image

1. Introduction

Big spatial data show computational complications, as they are more intense than non-spatial big

data. The analysis in such a case still requires attention. Here we focus on spatial data extracted

from images by using the Discrete Pulse Transform (DPT) [1]. The DPT extracts discrete pulses,

recognisable as connected components, from images at multiple scales. The scale is measured as the

number of pixels. Scaling is referred to in a geographical sense as a universal form or pattern occurring

across scales [2]. These DPT pulses at various scales characterise the texture of an image and can be

effectively spatially modelled as point patterns, as shown in [1]. The size of the resulting point pattern

presents big spatial data having in the 100 000’s points for a single band image. Texture knowledge is

useful for remote sensing classification applications, for example, but further adds complexity to big

Preprint submitted to Spatial Statistics: Towards Spatial Data Science April 26, 2020



spatial data due to the presence of multiple scales, resolution and multivariate data. We are specifically

interested here in determining the anisotropy of such a point process with the view of picking up

directionality in an image for texture analysis. Al-Saidi and Abdul-Wahed [3] define a image texture

as “a structure that preserves some statistical properties in the color or brightness distribution and

repeatedly makes patterns”. Fazel-Rezai and Kinsner [4] state that texture provides essential structure

information of an image and Roux et al [5] comment that self-similar processes with anisotropy model

image texture processes well. In the past, the fractal dimension has been investigated in image analysis,

specifically texture analysis. The theoretical development has increased as computing grows [6, 7, 8,

9, 10, 11, 12, 13, 14, 15]. It has been used in remote sensing [3, 16, 17, 18, 19, 20, 21, 22], image

inpainting [23, 24], image matching with texture [25], denoising [26, 27], restoration [28], segmentation

[7], compression [29, 30], shape classification and segmentation [8, 31], interpolation [32], classification

[33], superresolution [34], medical imaging [35, 36, 37, 38] and specifically in texture analysis [39, 40, 4].

Wavelet based techniques are also widely used and are powerful in image processing techniques. They

have been used in directional texture analysis in [41, 42, 43, 44, 45, 5]. The DPT provides an alternative

multiscale method, which has a number of advantages. It provides an already discrete approach to

extracting multiscale information from images. Further, it has strong mathematical properties such

as the use of non-linear idempotent operators with a semi-group structure, edge-preservation (non-

blurring) and structure consistency with a perfect reconstruction obtained via a simple sum. The

novelty of this paper is that we merge the idea of directional image analysis with spatial analysis of

point patterns, providing also the first method to extract important scales of the scale-space built by

the DPT.

We now turn to identifying the fractal structure of the DPT. A set or pattern is said to be fractal

if there are far more small pattern elements than larger or, similarly, the scaling pattern of this

abundant small pattern elements compared to large occurs numerous times [46]. Fractal geometry

[47, 48] provides a geometry for rough and irregular forms, including a quantitative value known as the

fractal dimension. The fractal dimension, however, requires strict self-similarity through a power law

that is seldom present in data with heavier tails. To overcome this problem, in this paper we investigate

the Ht-index as an alternative fractal measure in images, merging ideas from image analysis and spatial

statistics. The Ht-index (head/tails break) [49] provides an effective method to visualise the hierarchy

of a complex system. It measures the fractal nature of geographical data, as an alternative to the

global natural breaks classification [50], which minimizes intraclass variance but is unable to capture

scaling structure. The Ht-index allows for any functional form and captures geostatistical data more

appropriately [51]. It is defined as the number of repetitions for which the following is observed: the

mean scale thresholds the data so that the majority (> 50%) of data values fall to the left of the mean

scale. The subsequent repetition is conducting on only the data in the smaller tail. Larger complexity
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is visible with more repetitions measured. The Ht-index captures the idea of having many more small

elements than large elements. It has been applied to city sizes, streets, population densities on lattice

data, night light imagery pixel values, terrain surface DEM values and the evaluation of natural cities

[2, 52, 53], to name a few areas.

A DPT pattern can be seen as a collection of points, where the points all have a fractal shape. We

note for instance that small point patterns are more naturally isotropic and stationary [54]. Hence,

stationarity and isotropy of the DPT should be checked carefully. This can be complicated in the

light of the the big data nature of the DPT. Simply sampling the point pattern to reduce size is not

effective. Ratcliffe [55] shows that a 85% sample is needed to maintain the structure of a point pattern.

This size sample does not alleviate the big data aspect. We thus make use of the Ht-index as a fractal

measure for spatial data from images to extract the true texture structure in a knowledgeable way.

Li et al [46] state that the next step using the Ht-index is to develop an understanding of the fractal

structure. We do so here for point patterns extracted from texture images using the DPT. Jiang [2]

states that “scaling, if visualised properly using head/tail breaks can evoke a sense of beauty”. We

decompose an image to demonstrate this visualisation.

The objective of this paper is to use the Ht-index for the analysis of point patterns that are obtained

from applying the DPT on anisotropic images. The paper is structured as follows. Section 2 considers

images in the context of big spatial data. Section 3 describes the extraction of a texture point pattern

using the DPT, the employment of the Ht-index to this point pattern and then anisotropic analysis.

Section 4 applies the ideas to a texture image from the Brodatz texture database1. Section 5 discusses

the results and Section 6 concludes and suggests further avenues.

2. Images as big spatial data

Big spatial data (BSD) have an even larger impact computationally than traditional big data. In

particular, spatial autocorrelation [56], non-stationarity and anisotropy have to be considered. These

properties are defined in terms of distances between pairs of points, hence BSD are more computa-

tionally intensive than non-spatial big data [57] and have further challenges as discussed in [58]. There

have been a number of books on BSD recently published [59, 60, 61]. A number of discussions on

BSD and avenues to investigate can be found in [46, 62, 63, 56]. A shift to data-driven research and

non-iterative algorithms, the need for improved spatial indexing, improved visualisation informed by

human cognition and quality assurance are highlighted.

Remote sensing image analysis has emerged in the past decades and big data for this analysis has

been explosive due to location-aware software. With the volume of data increasing with varying format

1http://www.ux.uis.no/ tranden/brodatz.html
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the big data aspect frequently starts discussion. Big spatial data provide valuable information for more

informative decision making. It has a huge potential in society such as water management, agriculture,

transportation and public health [64, 46]. Smarter computing has been investigated to deal with BSD

such as cluster computing [65], Hadoop-GIS for spatial querying [66], Hadoop and MapReduce [67, 68],

development of a spatial cumulative sum algorithm [69], GPU usage [70], cloud computing [71] and

Java and Apache Spark [72].

3. Methodology

The DPT is a nonlinear multiscale decomposition of an image obtained through recursive appli-

cation of the operators Ln and Un [73]. The Discrete Pulse Transform (DPT) is obtained via the

sequential application of the LULU operators Ln and Un, n = 1, 2, .., N where N is the total number

of pixels in the image. They are defined for f ∈ A(Z2), a vector lattice, and n ∈ N, as

Ln(f)(x) = max
V ∈Nn(x)

min
y∈V

f(y), x ∈ Z2 ,

Un(f)(x) = min
V ∈Nn(x)

max
y∈V

f(y), x ∈ Z2 ,

where Nn(x) = {V ∈ C : x ∈ V, card(V ) = n + 1} and C is a connection (see [1] for details not

repeated here). The well-known concepts of 4- and 8-connectivity within pixel lattices are examples

of mathematical connections. We make use of 4-connectivity for the DPT here, however the LULU

operators are defined on any chosen connection satisfying the required connectivity properties.

The DPT is obtained via iterative application of the operators Ln, Un with n increasing from 1 to

N , decomposing the image into a number of pulses φns, s = 1, ..., γ(n), where n is the scale (number

of pixels in the connected component) and s = 1, ..., γ(n) the number of pulses at scale n, using the

operations Pn = Ln ◦Un or Pn = Un ◦Ln and then Qn = Pn ◦Pn−1 ◦ ... ◦P1. The number of pulses at

each scale n varies and is represented as γ(n) to clarify this. A pulse φns is defined on a connected set

V ⊂ Z2 if it has value c (some constant) for x ∈ V and value 0 otherwise. At each iteration the portions

of the image which are filtered out by the application of Pn, n = 1, 2, ..., N i.e. (I − Pn)(f) = Dn(f),

are retained until we obtain QN (f), a constant function, where I is the identity operator. The function

f is then decomposed as the DPT of f :

f =

N∑
n=1

Dn(f) =

N∑
n=1

γ(n)∑
s=1

φns

into pulses φns [1]. The maximum scale is N which is the total number of pixels in the image being

considered. Further details are shown in [1] and [73]. This image decomposition provides us with

information about the structure content of the image at all scales from n = 1 up to N .
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We provide a short example to illustrate. Consider a tiny image

f =

 2 1 3

5 4 3

 .
The DPT proceeds as follows, sequentially removing local maximum and minimum sets,

L1(f) =

 2 1 3

4 4 3


U1L1(f) =

 2 2 3

4 4 3


L2U1L1(f) =

 2 2 3

3 3 3


U2L2U1L1(f) =

 3 3 3

3 3 3


so that f is decomposed as the connected portions removed at each filtering

f =

 0 0 0

1 0 0

 +

 0 −1 0

0 0 0

 +

 0 0 0

1 1 0

 +

 −1 −1 0

0 0 0

 +

 3 3 3

3 3 3

 .
As is seen in the example, due to the multiscale nature each pixel can belong to multiple pulses at

different scales.

We focus on the pulses as spatial units and apply the Ht-index to them. The number of pulses is

huge presenting BSD. The use of the Ht-index on this type of data provides informative fractal levels.

The Ht-index is defined as one plus the recurring times for which there are more small structures than

large, that is, it equals h if this recurs h− 1 times [52]. The procedure for calculation of the Ht-index

is as a first step to determine the mean scale of all the structures. The number of structures smaller

than this mean, nless, and the number of structures larger than this mean, nmore, are calculated. If

nless > nmore, the second step is to repeat this process. The mean of the tail (the scales to the right of

the first mean) is calculated and again the number of structures less and more than this mean in the

tail are counted. This is repeated until the nless ≤ nmore. The Ht-index is the number of recursions

plus one, representing the number of scale interval divisions.

Consider for example, a DPT decomposition consisting of 8 pulses with sizes 1, 1, 1, 1, 2, 2, 6, 7

respectively. The size of the pulse is the number of non-zero entries in the array, referred to as the

scale. The mean of these scales is 2.625, with the values 1, 1, 1, 1, 2, 2 being less than this mean and

the values 6 and 7 being larger than this mean, so that 75% are less than the mean and 25% larger

than the mean. This shows that there is a majority (more than 50%) of smaller scales. The values
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smaller than the mean are then discarded and this process repeated for the scale values 6 and 7. The

mean is then 6.5 for which exactly 50% of the values are smaller and 50% are larger. The process thus

stops and Ht-index is determined as 2.

We propose here to further calculate the Ht-index of the pulses at each majority smaller scale

interval until no further majority smaller scale intervals are present, thereby constructing a multi-level

Ht-index for BSD that is specifically applicable to textures in images. For the example above this

means we calculate the Ht-index for the values 1, 1, 1, 1, 2, 2 obtaining the mean 1.3̇. Then 66.6̇% of

the values are less than this mean (the values 1, 1, 1, 1) and 33.3̇% are larger (the values 2, 2). The

process is repeated for the tail values 2, 2. The mean is 2 so there is no majority percentage and the

process stops with h obtained as 2. The multiscale Ht-index is then represented as h = 2 at level 1

and h = 2 at level 2.

We now turn to point patterns, denoted by x = {x1, ..., xn} and position the DPT decomposition

as such. Point patterns are well described elsewhere [74]. An important property of point patterns,

which is relevant in our study, is their invariance under rotations. If the distribution of a point

pattern is invariant under rotations about the origin, then it is called isotropic, otherwise it is called

anisotropic. Anisotropy in point processes may occur as either geometric, which is equivalent to a

linear transformation of a stationary and isotropic process, or zonal if it shows increased intensity

along directed lines [54]. Anisotropy has been studied in some detail. Directional distributions are

derived in [75], wavelet analysis has been presented in [76, 77], tests on the angular directions have

been developed in [78, 79, 74], ellipsoids are fitted to Fry plots to test for geometric isotropy in [80] and

the second-order intensity function has been used in [81], to list some. Here we focus on multi-level

fractal visualisation of rose diagrams for BSD, extracted from multiscale image decompositions.

The point pattern extracted from the DPT is determined as follows, as in [1]. Consider a point

process Z(x) on Z2. The spatial window is extent of the image, for example, an N ×M image will

be modelled on a continuous rectangular widow of size [0, N ] × [0,M ]. The process Z(x) takes on 1

if there is a pixel belonging to a pulse at position x and 0 otherwise, where position x is the center

of the pixel on the continuous domain. This is illustrated in Figure 1. The approach of a regular

lattice is also to be considered but adds no additional modelling advantages2.

4. Application

Figure 2 shows image D15 of the Brodatz texture database, a linear texture. It is used here

due to its obvious upward directionality of texture. In addition, it is has a stationary structure in

2 Spatial lattice data typically consists of polygonal areas. When these polygons represent the pixel areas the lattice

is referred to as regular.
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(a) (b)

(c) (d)

Figure 1: (a) Sample of pixels at scale 1 (black indicates background, white indicates foreground); (b) Extracted point

pattern for (a); (c) Sample of pixels at scale 2; (d) Extracted point pattern for (c).

that the intensity does not drastically vary over the domain. Non-stationarity would detract from the

investigation here on anisotropy. In Figure 3 the number of pulses φns of the DPT f =
∑N
n=1

∑γ(n)
s=1 φns

is plotted. The total number of pulses equals 139131 for this texture. The number of pulses γ(n) for

small n is large and when plotted for all n the plotted values are so close to the x-axis, not discernible

as the values decrease from very large to very small at a large pace. In Figure 3 only scales 1 to

100 are thus shown. The number of pulses γ(n) for n = 1 to 100 is shown in Figure 3(a), whereas

Figure 3(b) shows the logarithm of both axes, the Richardson plot of Mandelbrot [47, 48]. This plot is

indicative of self-similarity: a perfect straight line shows strict self-similarity and the slope of the line

is the fractal dimension. Spatial data are known to not show strict self-similarity, but rather statistical

self-similarity with the points around the line rather than on it [51]. This requires a functional form

other than a power function, for example the use of the Ht-index.

We start by looking at scales n = 1 to 114. The reason for choosing 114 will become clear shortly.

The point pattern extracted when using pulses at scales n = 1 to 114 results in 243969 points over

a continuous spatial domain [0, 640] × [0, 640] (resulting from the image of 640 × 640 pixels). The
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Figure 2: Image D15 from the Brodatz texture database

associated image in shown in Figure 4(a)3. This is a partial reconstruction obtained as

frec =

n2∑
n=n1

γ(n)∑
s=1

φns (1)

for scale interval [n1, n2]. Simple sampling will not be effective for such a large pattern. Decomposition

of the point pattern into meaningful scale partitions for sub-analysis proves valuable. We propose the

use of the Ht-index in this endeavour.

Figure 5 graphically illustrates the partition of the large point pattern of image D15 using the Ht-

index. At first application the number of pulses at each scale n results in recursively calculated mean

scales 114, 940, 4886, 17836, 49140 and 107423 which have majority of pulses, shown in percentages to

the left of the mean in the figure, respectively. The majority percentages are 89%, 86%, 81%, 78%, 70%

and 55%. A high value for h implies a larger complexity. This gives a Ht-index of h = 7, indicating

a complex structure. The h = 7 implies that 6 means were calculated resulting in 7 scale intervals.

Note the choice of the value of 114 should now be clear as 114 is the first mean calculated. Figure 4

shows the reconstructed images for each of these scale intervals. We propose to further implement the

Ht-index within each of these majority intervals as the size of the point patterns in these 6 intervals is

still large, see Table 1. Implementing the Ht-index on the pulses over scales [1, 114] results in means 14,

3 Note: These grey levels are chosen by default for visual purposes when reconstructing the images with less of the

original information in order to maximally distinguish between the different areas (pulses) in the reconstruction. They

are simply visual grey levels scaled for maximum differentiation.
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(a) Number of pulses for n = 1

to 100

(b) Richardson plot: log(n) vs

log(γ(n))

Figure 3: Number of pulses extracted using the DPT for image D15 of Figure 2

(a) [1,114] (b) [115,940] (c) [941,4886]

(d) [4887, 17836] (e) [17836,49140] (f) [49141, 107423]

Figure 4: Partial DPT reconstructions for the scale intervals of level 1 of the multi-level Ht-index using equation (1)
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44, 71 and 90 with the majority of pulses to the left of the mean, resulting in h = 5. The percentages

are also shown, as before, in Figure 5. This is repeated for scales [115, 940] which results in means 265,

477, 657, 774 and 851, with h = 6. The remaining 4 intervals corresponding to means 4886, 17836,

49140 and 107423 show no self-similarity, that is, no majority to the left. This second application of

the Ht-index within the first scale intervals of h = 7 is labelled as level 2 in Figure 5. Level 3 is the

Ht-index applied to the level 2 intervals. Interval [1, 14] has means 3 and 6, with h = 3. Interval

[15, 44] has h = 2, as does interval [45, 71]. Interval [115, 265] has means 174, 213, 237 and 251, with

h = 5. Interval [266, 477] has means 351, 409, 442 and 459, also with h = 5. Interval [478, 657] has

h = 2. Level 4 is only present for intervals [1, 3] and [115, 174] both with h = 2. We only consider scale

intervals for h > 2 to extract maximum complexity. In Figure 5 those intervals without an Ht-index

show no fractal structure, that is there is no majority pulses to the left of the mean. A full fractal

decomposition of the DPT scale-space has been achieved. This is the first mechanism for the DPT

enabling an informed partition by scale of the scale-space.

Figures 8 and 9 show the kernel density fitted intensities of each scale interval for levels 1 to 3.

The intensities for scale [1,114] on level 1, [1,14] on level 2 and [1,3] on level 3, the smallest scales at

each level, show a strong trend and they capture the complexity of the texture. The associated rose

diagrams are shown in the same figure4. The vertical anisotropy is captured in the scales [1,114], [1,14]

and [1,3] and more so at level 3 than at level 1. The image under consideration has mostly vertical

directionality but the left of the image can be seen to have some directionality to the North-West. The

rose diagrams pick this up in the point pattern extracted from the DPT. This indicates the ability of

a multi-level Ht-index decomposition for capturing the scales contributing most significantly to the

texture structure. These three scale intervals also have the largest point pattern size as seen in Table

1. The sizes are 243969, 133470 and 74251 respectively. This Ht-index decomposition thus provides an

informative way to reduce the data size to the 74251 of scales [1, 3], which captures the anisotropy in a

clear manner. The DPT is computationally heavy due to not being parallelisable when implemented

[82]. It however provides useful information for the scale information in an image enabling many image

processing improved results, see [83] for example. The size of the point pattern extracted from the

pulses as described earlier is very large resulting in many spatial point pattern analysis tools not being

viable for example a Fry plot and model fitting as well as diagnostics [1]. Having a method to thus

reduce the number of pulses of the DPT and the extracted point pattern means that extracting the

4The rose diagram implemented here does not use the point pair distribution. The implementation used is that of

Spatstat in R and uses the nearest neighbour angles only. It does not thus repeat in the opposite direction producing

symmetry. Of course one could take the nth nearest neighbours as an alternative, say up to n = 10 (with n chosen

wisely). This was investigated and only adds more smoothing to the rose diagram.
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anisotropy information is at a more manageable data size. Thus the big data and computational issues

have been alleviated by analysing the appropriate scales of the DPT. This approach also provides

avenues for future techniques employing the DPT pulses when appropriate scale choices should be

made. It allows for data specific scale choice instead of ad hoc decisions.

Level 1 Level 2 Level 3

[1, 114] 243969 [1, 14] 133470 [1, 3] 74251

[115, 940] 100 [15, 44] 15 [4, 6] 4

[45, 71] 44 [115, 174] 100

[72, 90] 73 [175, 213] 100

[115, 265] 100 [214, 237] 195

[266, 477] 213 [238, 351] 231

[478, 657] 477 [352, 409] 353

[658, 774] 610 [410, 442] 413

[775, 851] 759 [443, 459] 376

Table 1: Point pattern sizes for each scale interval at levels 1 - 3

The method of using the DPT to extract pulses from an image and then representing the pulses

in a spatial point pattern means that the anisotropy detected is that of the original image process.

The origin of the image content is of course continuous from the underlying process, captured into

a discretised image. With higher resolution the captured image more accurately represents the true

scene. This should always be considered in image analysis as an accuracy level and what results are

referred back to the true scene. The image process is presented in an alternative form through a point

pattern but the same information is captured. The idea of using the Ht-index is to determine the scales

from the multiscale DPT decomposition in which the anisotropy is present. Most of the scale levels

are details (at fine scales) or background shading (at coarse scales). We thus harness this multiscale

representation using the Ht-index and determine the scales which carry the anisotropy information of

the process.

The results on the anisotropic image show that the Ht-index provides useful breaks for placing

different scale intervals into hierarchical levels for optimised spatial analysis of BSD. The anisotropy

is captured at other scale intervals as well (see Figures 8 and 9) but is not as strong. This provides a

novel data-driven technique to model using the correct scales of the DPT that has not been applied to

images decomposed in a multiscale manner before. Further investigation could delve deeper into the

philosophical components of texture such as investigated in [84].
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(a) [15,43] (b) [44,71] (c) [72,90]

(d) [115,265] (e) [266,477] (f) [478,657]

(g) [658,774] (h) [775,851]

Figure 6: Partial DPT reconstructions for the scale intervals of level 2 of the multi-level Ht-index
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(a) [1,3] (b) [4,6] (c) [115,174]

(d) [175,213] (e) [214,237] (f) [238,351]

(g) [266,351] (h) [352,409] (i) [410,442]

(j) [443, 459]

Figure 7: Partial DPT reconstructions for the scale intervals of level 3 of the multi-level Ht-index
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Figure 10: Image D110 from the Brodatz texture database

The intensities shown in Figures 8 and 9 also pick up the heterogeneity of the texture. The three

intervals [1,114], [1,14] and [1,3] are those scale intervals containing the heterogeneity. The other

intervals show only isolated intensities, not indicative of a pattern. This multi-level Ht-index thus also

provides a mechanism for characterising heterogeneity.

To provide a counter example, what we deemed the most isotropic image from the Brodatz texture

database was also investigated, image D110, seen in Figure 10. The Ht-index multiscale method

proposed nonetheless still picks up the anisotropy in this image as well. This is due to the natural

anisotropic nature of all images. In [85, Section 5.7] the anisotropy of natural images is confirmed

through measurement of image statistics. This is obvious once one thinks about it. A natural image

must have rotational variation to express its content, even with repetition present. Thus, a true

isotropic image can only be simulated.

5. Discussion

This paper focused on anisotropy, whereas, more complex spatial modelling can also be investigated,

for example fitting cluster models at each level enabling parallelisation of spatial data. In addition,

multiple bands and spatio-temporal data should also be investigated for a fractal decomposition.

There have been two suggested extensions to Jiang’s Ht-index: the CRG-index [86] and the ratio

of areas (RA) [87]. The CRG index is said to be a more sensitive Ht-index using adaptive breaks, and

the RA captures more heterogeneity. The implications of these to the DPT may yield further insights
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in future research.

Image D15 of the Brodatz texture database was chosen as it does not exhibit any obvious non-

stationarity. Future analysis should determine if the multi-level Ht-index proposed can pick up non-

stationarity. The Second Law of Geography states that geographic events are more likely to occur in

some locations than at other locations, that is, spatial non-stationarity. There is also not something

like an average location [88, 89]. Non-stationarity should be determined for data being considered.

Interestingly, the Ht-index has been used to capture non-stationarity in spatial data as well as [90] and

was able to formulate non-stationarity as a scaling law [91]. Modelling of this specific texture using a

line process should also provide interesting results and we plan to do this in a future study.

The presence of noise in an image should not be disregarded. Noise (if additive and not multiplica-

tive) will simply add more small structures, thus increasing the Ht-index. Any anisotropy identification

in images should involve a noise removal step, as do most image processing tasks. An interesting phe-

nomenon may occur in the presence of multiplicative noise, where the noise may be part of the signal

as in radar images. But here again, this more structural form of noise should be dealt with before

testing for anisotropy. A simulation study on various noise types added will yield interesting results

in the future.

6. Conclusion

This study showed that the Ht-index is an efficient and effective visualisation tool to analyse

anisotropic point patterns obtained from images as a specific form of spatial big data. We have shown

this for a point pattern extracted from a texture image process, using the extracted fractal levels for

anisotropy analysis. Applying the Ht-index at multiple levels provides useful breaks for optimised

spatial analysis. We found that the multi-level Ht-index is an important method for anisotropy

analysis. It allowed us to deal with spatial big data in a knowledgeable, data-driven way, and it

captures the inherent hierarchy of spatial features. We foresee that this will be significant as well for

use in statistical mapping and cognitive mapping. In future the simulation of directional self-similar

images, such as in [5], will provide an extension to this study. In addition, a study of simulated isotropic

and anisotropic images, similar to the approach in [92], will reveal further insight to this proposed new

multiscale Ht-index.
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