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Abstract. In recent years there has been an advent of quanto options in energy markets.
The structure of the payoff is rather a different type from other markets since it is written
as a product of an underlying energy index and a measure of temperature. In the Heath-
Jarrow-Morton (HJM) framework, by adopting the futures energy dynamics and model with
stochastic volatility, we use the Malliavin calculus to derive the energy delta, temperature
delta and cross-gamma formulae. The results reveal that these quantities are expressed in
terms of expectations of the payoff and a random variable only depending on the underlying
dynamics. This work can be viewed as a generalization of the work done, for example, by
Benth et al. (2015).

1. Introduction

The paper investigates hedging of the energy quanto options using the Malliavin Calculus
approach by Nualart (2006). This method has shown that it outperforms the finite difference
approach when it comes to discontinuous payoffs, see Benth et al. (2010). Quanto options
in the equity market differ from those designed for energy markets by the structure of their
payoffs. The energy quanto option has a product payoff which is structured in such a way that
it takes advantage of the high correlation between energy consumption and certain weather
conditions thereby enabling price and weather risk to be controlled simultaneously, refer
Caporin et al. (2012). On the other hand, the equity quanto has a normal structure. Ho et al.
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2 HEDGING QUANTO OPTIONS

(1995) noted that quanto options, in general, are better hedgers than a simple combination
of plain vanilla options. In energy markets, they give exposure to the volumetric risk input
of weather conditions on energy prices, see Zhang (2001).

Heath et al. (1992) introduced the so-called HJM approach in fixed income markets where
the dynamics of the forward rates are directly specified, see Benth et al. (2008). The fact
that most contracts in energy markets are settled in futures and forward, the framework was
later on in 2000 adopted in this market by Clewlow & Strickland (2000). There have been
few papers in literature analysing the hedging of this quanto option product. Benth et al.
(2015) recently studied the pricing and hedging of quanto energy options in this framework
basing on both the spot and the futures products as the underlying processes. The authors
derived analytic expressions for the energy delta, temperature delta, and cross-gamma hedging
formulae using direct differentiation of the price of quanto options. If the payoff functions are
discontinuous then their approach method fails.

The Malliavin calculus technique has been used by several authors to obtain Greeks (par-
tial derivatives of option prices with respect to underlying parameters) in equity derivative
products, see for example, Benth et al. (2008), Benth et al. (2003), Di Nunno et al. (2009),
Fournié et al. (1999, 2001), Ocone & Karatzas (1991), Mhlanga (2011), Mhlanga & Becker
(2013). In all these references the methods were not applied in a product payoff structure
such as ours and with an interval delivering period. Our results can be viewed as a general-
ization of Benth et al. (2015) in the sense that our approach allows for discontinuous payoff
functionals.

Besides Malliavin calculus, finite difference, pathwise differentiation and likelihood ratio
approaches are used to derive the derivative free formulae. The finite difference approach
involves simulating the derivative prices at two or more values of the underlying parameter
and then estimate the derivative free formulae by taking difference quotients between these
values. Finite difference approach is easy to implement, however it is prone to large bias and
large variance especially when dealing with discontinuous payoff functions, as in the case of a
digital type and a barrier type quanto option (Jackel (2003)). The pathwise method computes
the derivative of the payoff function with respect to the parameter of interest. This method
only works for specific payoff functions, hence we cannot generalize the implementation of
this approach. When it is applicable, the method gives unbiased results (Glasserman (2004),
page 386). However, the pathwise approach cannot be applied to non-differentiable payoff
functions as in the case of barrier type and digital type quanto options. The likelihood ratio
method assumes that the probability density function of the price is explicitly known and
depends on the parameter of interest. The derivative free formulae is then computed by
computing the derivative of the probability density of the underlying variable rather than the
derivative of the payoff function (Broadie & Glaserman (1996)). The likelihood ratio method
is restricted by requiring an explicit knowledge of the density of the underlying model, for
example the probability density function for Asian type quanto options is not known.

Comparing with the mentioned approaches, Malliavin calculus approach has several ad-
vantages as it avoids the need to differentiate payoff functions and does not require explicit
knowledge of the density of the underlying asset. However, the Malliavin calculus method is
not reported to be better than the finite difference method when dealing with smoother pay-
off functionals such as the vanilla options (Benth et al. (2010)). The mathematical challenge
arises from payoff functions which tend to be discontinuous, non-differentiable or even more
complicated. Typical energy quanto options have payoff functions that are determined by
the level of both the energy price and an index related to weather (temprature) (Benth et al.
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(2015)). Typically, the energy quanto options have a general payoff, factorising in functionals
of the two underlying, that is,

(1.1) f(x, y) = g(x)h(y)

for some measurable functions g and h. The energy quanto options considered so far in
literature have a continuous payoff of European call type

(1.2) g(x)h(y) = max{x−KE , 0} ×max{y −KI , 0}

where KE ,KI > 0 are strike prices (Benth et al., 2015). However, one or both of the two
payoff functions (either g, h or both) could be discontinuous. A typical example is the so-
called digital type (or binary options) energy quanto option, that is,

(1.3) g(x) = 1{x≥KE} and/or h(y) = 1{y≥KI}.

Since the energy quanto options should hedge the joint price and volume risk, this paper
considers, for example, a discontinuous payoff structure of the form

(1.4) max{x−KE , 0} × 1{y≥KI}

which hedges the price risk, if and only if the average temperature during a certain period
is too high. For such type of options one cannot use the pathwise or the likelihood ratio
methods. This is where Malliavin calculus approach is most suited.

The purpose of the current paper is to derive the so-called derivative free hedging formulae
using a much more powerful tool: the Malliavin calculus. In particular, we derive the energy
delta, temperature delta and the cross-gamma hedging expectation formulae. Other hedging
formulae are derived by using a similar approach. The energy delta is defined as the partial
derivative of the price of quanto option with respect to the energy future price. The temper-
ature delta is defined as the partial derivative of the price of quanto option with respect to
the temperature index futures. The cross-gamma is defined as the second partial derivative of
the price of quanto option with respect to both the energy future price and the temperature
index futures. The contribution of this study is to derive applicable formulae in the context
of Malliavin calculus. In passing, we generalize the calculations of Greeks in Benth et al.
(2015). The use of Malliavin calculus allows us to obtain Greeks which are suitable for Monte
Carlo simulation. Information about Greeks is useful for constructing replicating portfolios
to protect the portfolio against possible changes related to certain risk factors.

The paper is organised as follows. Section 2, present the structure of the quanto option
and formulate the pricing problem as in Benth et al. (2015). In addition, we present the
futures asset dynamics general diffusion models under the HJM framework. In Section 3, we
review the necessary tools from Malliavin calculus to be applied in our proofs. In Section
4, we derive formulae for the energy delta, temperature delta and cross-gamma when the
energy and temperature are independent while in Section 5, we derive the same when there is
correlation between energy and temperature. Examples for both the independence case and
correlation case are provided in Section 6. Section 7 is devoted quanto options with stochastic
volatility. In Section 8, we discuss the residual risk. Finally, in Section 9, we conclude.

2. The Contract Structure and Pricing of Quanto Options

In this section, we review the commodity quanto pricing, see, for example, Benth et al.
(2015) and in particular, we follow their notations therein. Benth et al. (2015) have considered
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the quanto option with a payoff function S given by:

S = (Tvar − Tfix)+ × (Evar − Efix)+,

with x+ = max(x, 0) where Tvar represents some variable temperature measure, Tfix repre-
sents some fixed temperature measure, and Evar, Efix are the variable and fixed energy price,
respectively. To avoid the downside risk on this quanto contract it has been reported in Benth
et al. (2015) that for hedging purposes, it is reasonable to buy a contract with optionality. In
the temperature market of Chicago Mercantile Exchange (CME), the contracts are written
on the aggregated amount of heating-degree days (HDD) and cooling-degree days (CDD).
The temperature index is used as the underlying. The HDD (similarly the CDD) over a
measurement period [τ1, τ2] is defined by:

(2.1) HDD(t) := max{c− T (t), 0},

where T (t) is the mean temperature on day t, and c is the pre-specified temperature threshold
(eg., 650F or 180C). If the contract is specified as the accumulated HDD over [τ1, τ2] we have

(2.2)

τ2∑
t=τ1

HDD(t) =

τ2∑
t=τ1

max{c− T (t), 0},

analogously for CDD.
We note that quanto options have a payoff function that is a function of two underlying assets,
temperature and price. We focus on quanto options with payoff function f(E, I) where E is
an index of the energy price and I is an index of temperature. The energy index E over a
period [τ1, τ2] with τ1 < τ2 is defined to be the average spot price namely:

(2.3) E =
1

τ2 − τ1

τ2∑
u=τ1

Su,

where Su is the energy spot price. In addition, we assume that the temperature index is
defined by

(2.4) I =

τ2∑
u=τ1

g(Tu),

where Tu denotes the temperature at time u and g some function. For example, for a quanto
option involving the HDD index, we choose g(x) = max{x − 18, 0}. To price the quanto
option exercised at the time τ2, its arbitrage-free price at time t ≤ τ2 becomes

(2.5) Ct = e−r(τ2−t)EQ
t

[
f

(
1

τ2 − τ1

τ2∑
u=τ1

Su,

τ2∑
u=τ1

g(Tu)

)]
,

where r > 0 represents a constant risk-free interest rate and EQ
t is the expectation operator

with respect to Q, conditioned on the market information at time t given by the filtration Ft.
Following Benth et al. (2015)’s argument on the relationship between the quanto option and
the futures contract on the energy and temperature indexes E and I, we note that the price
at time t ≤ τ2 of a futures contract written on some energy price with delivery period [τ1, τ2]
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is given by

(2.6) FE(t; τ1, τ2) = EQ
t

[
1

τ2 − τ1

τ2∑
u=τ1

Su

]
.

At t = τ2 we have:

(2.7) FE(τ2; τ1, τ2) =
1

τ2 − τ1

τ2∑
u=τ1

Su .

This means that the future price is exactly equal to what is being delivered. Applying the
same argument to the temperature index, with price dynamics denoted by F I(t, τ1, τ2), the
quanto option price Ct can be written as:

Ct = e−r(τ2−t)EQ
t

[
f

(
1

τ2 − τ1

τ2∑
u=τ1

Su,

τ2∑
u=τ1

g(Tu)

)]
(2.8)

= e−r(τ2−t)EQ
t

[
f
(
FE(τ2; τ1, τ2), F I(τ2; τ1, τ2)

)]
.

The advantage of writing the quanto option price as in Eq.(2.8) is that futures are traded
financial assets. Let K̄E , K̄I denote the high strikes for the energy and temperature indexes,
respectively and KE ,KI denote the low strikes for the energy and temperature indexes,
respectively. Now we can define the payoff function

p(FE(τ2; τ1, τ2), F I(τ2; τ1, τ2), K̄E , K̄I ,KE ,KI) := p

so that

p = α× [max{FE(τ2; τ1, τ2)− K̄E , 0} × 1{F I(τ2;τ1,τ2)≥K̄I}

+ max{KE − FE(τ2; τ1, τ2), 0} × 1{F I(τ2;τ1,τ2)≥K̄I}] ,

where α is the contractual volume adjustment factor. As an example as in Benth et al. (2015),
we consider the product call structure with the volume adjuster α normalized to 1, that is,
we consider the price of an option with the following payoff function:

(2.9) p̂ = max{FE(τ2; τ1, τ2)− K̄E , 0} × 1{F I(τ2;τ1,τ2)≥K̄I} ,

and the quanto option at time t is given by:

Ct = e−r(τ2−t)EQ
t

[
p̂(FE(τ2; τ1, τ2), F I(τ2; τ1, τ2), K̄E , K̄I)

]
.

2.1. The Asset Dynamics. We use the HJM risk-neutral dynamics of the forward contract
at time t. Consider the general diffusion futures model under the risk-neutral measure Q be
given as :

dFE(t; τ1, τ2) = σE(t, FE(t; τ1, τ2))dWE(t),(2.10)

dF I(t; τ1, τ2) = σI(t, F
I(τ ; τ1, τ2))dW I(t) .(2.11)

with FE(0; τ1, τ2) > 0 and F I(0; τ1, τ2) > 0 where σE , σI are deterministic volatilities and
WE , W I are correlated Brownian motions with a correlation parameter ρ ∈ (−1, 1). The
process FE is the option price of a future contact written on some energy price and F I is the
option price of a future contact written on some temperature price.
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Given an arbitrary WE , there exists W̃ I which is independent of WE and W I . Then, we
can express W I as follows

(2.12) W I = ρWE +
√

1− ρ2W̃ I .

Thus we have

dFE(t; τ1, τ2) = σE(t, FE(t; τ1, τ2))dWE(t),(2.13)

dF I(t; τ1, τ2) = ρσI(t, F
I(t; τ1, τ2))dWE(t) + σI(t, F

I(t; τ1, τ2))
√

1− ρ2dW̃ I(t) .(2.14)

The above equations can be written in matrix form as follows:(
dFE

dF I

)
=

(
σE(t, FE) 0

ρσI(t, F
I) σI(t, F

I)
√

1− ρ2

)(
dWE

dW̃ I

)
.

We can write this as:

(2.15) dF̄ = a(t, F I , FE)dW̄ ,

where the matrix a : ([0, τ2]× R2) →M2, satisfies the growth and Lipschitz conditions. We
can write (2.15) as:

(2.16) F̄ = F̄0 +

∫ t

0
a(t, F I , FE)dW̄ , F̄0 > 0 .

For example, given this dynamics the quanto option becomes :

(2.17) Ct = EQ
[
g̃

(∫ τ2

0
σE(t, FE)dWE

)
h̃

(∫ τ2

0
σI(t, F

I)dWE ,

∫ τ2

0
σI(t, F

I)dW̃ I

)]
,

where g̃(x) = max{x −KE , 0} and h̃(x, y) = ρmax{x −KE , 0} ×
√

1− ρ21{y≥KI} are mea-
surable functions.

3. A Primer on the Malliavin Derivative Properties

In this section, we review the necessary Malliavin derivative properties. These properties
were also highlighted in Fournié et al. (1999) and Mhlanga (2011) and the proofs can be found
in Nualart (2006). Let {W (t), 0 ≤ t ≤ τ2} be an n-dimensional Brownian motion defined on
a complete probability space (Ω,F ,F,Q). Let S denote the class of random variables of the
form

F = f

(∫ τ2

0
h1(t)dW (t), · · · ,

∫ τ2

0
hn(t)dW (t)

)
, f ∈ C∞(Rn) ,

where h1, · · · , hn ∈ L2([0, τ2]).
For F ∈ S, the Malliavin derivative DF of F is defined as the process {DtF, t ∈ [0, τ2]} in

L2([0, τ2]) by :

DtF =
n∑
i=1

∂f

∂xi

(∫ τ2

0
h1(t)dW (t), · · · ,

∫ τ2

0
hn(t)dW (t)

)
hi(t) , t ≥ 0 a.s.

On L2([0, τ2]) define the norm as :

||F ||1,2 :=

(
EQ|F |2 + EQ[

∫ τ2

0
|DtF |2dt]

) 1
2

.

The chain rule holds for the Malliavin derivative in the following form.
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Property P1. Let F = (F1, . . . , Fn) ∈ D1,2 and let ϕ : Rn → R be a continuously differentiable
function with bounded partial derivatives. Then ϕ(F ) ∈ D1,2 and

(3.1) Dtϕ(F ) =

n∑
i=1

∂ϕ

∂xi
(F )DtFi, t ≥ 0 a.s.

Property P2. Let {Xt, t ≥ 0} be an Rn valued Itô process whose dynamics are governed by
the stochastic differential equation

(3.2) dXt = b(Xt)dt+ σ(Xt)dWt,

where b and σ are supposed to be continuously differentiable functionals with bounded deriva-
tives and σ(x) 6= 0 for all x ∈ Rn. Let {Yt, t ≥ 0} be the associated first variation process
given by the stochastic differential equation

(3.3) dYt = b′(Xt)Ytdt+
n∑
i=1

σ′i(Xt)YtdW
i
t , Y0 = In,

where In is the identity matrix of Rn, primes denote derivatives and σi is the i-th column
vector of σ. The the process {Xt, t ≥ 0} belongs to D1,2 and its Malliavin derivative is given
by

(3.4) DrXt = YtY
−1
r σ(Xr)1{r≤t}, r ≥ 0 a.s.,

which is equivalent to

(3.5) Yt = DrXtσ
−1(Xr)Yr1{r≤t} a.s.

The Malliavin derivative has an adjoint operator called Skorohod integral (also known as the
divergence operator δ). We shall denote the domain of the adjoint operator δ by Dom(δ).

Property P3. Let u ∈ L2(Ω × [0, τ2]). Then u belongs to the domain Dom(δ) of δ if for all
F ∈ D1,2 we have

(3.6) | E
[
〈DF, u〉L2(Ω)

]
|=| E

[∫ τ2

0
DtFu(t)dt

]
|≤ c ‖ F ‖L2(Ω)

where c is some constant depending on u. If u belongs to Dom(δ), then

(3.7) δ(u) =

∫ τ2

0
utδWt

is the element of L2(Ω) such that the integration by parts formula holds:

(3.8) E
[(∫ τ2

0
DtFutdt

)]
= E[Fδ(u)] for all F ∈ D1,2.

An important property of the Skorohod integral δ is that its domain Dom(δ) contains all
adapted stochastic processes which belong to L2(Ω× [0, τ2]). For such processes the Skorohod
integral δ coincides with the Itô stochastic integral.

Property P4. If u is an adapted process belonging to L2(Ω× [0, τ2]), then

(3.9) δ(u) =

∫ τ2

0
u(t)dWt.

Further, if the random variable F is Fτ2-adapted and belongs to D1,2 then, for any u in
Dom(δ), the random variable Fu will be Skorohod integrable.
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Property P5. Let F belongs to D1,2 and u ∈ Dom(δ) such that E[
∫ τ2

0 F 2u2
tdt] < ∞. Then

Fu ∈ Dom(δ) and

(3.10) δ(Fu) = Fδ(u)−
∫ τ2

0
DtFutdt,

whenever the right hand side belongs to L2(Ω). In particular, if u is moreover adapted, we
have

(3.11) δ(Fu) = F

∫ τ2

0
utdWt −

∫ τ2

0
DtFutdt.

4. Computation of Greeks: The Independent Case

From the diffusion stochastic differential equation (2.13) with ρ = 0, consider the following
HJM risk-neutral dynamics of the forward contract at time t. We call this the ‘independent
case’. Let the future price processes under the risk-neutral measure Q be given as

(4.1) dF i(t; τ1, τ2) = σi(t; τ1, τ2)F i(t; τ1, τ2)dW i(τ), F i(0; τ1, τ2) > 0,

for E, I = i. The function F i(0; τ1, τ2) represents today’s forward price. We call this, the
independent case since ρ = 0. Explicitly this can be written as:

FE(τ2; τ1, τ2) = FE(0; τ1, τ2) exp

(
−1

2

∫ τ2

0
σ2
E(u; τ1, τ2)du+

∫ τ2

0
σE(u; τ1, τ2)dWE(u)

)
F I(τ2; τ1, τ2) = F I(0; τ1, τ2) exp

(
−1

2

∫ τ2

0
σ2
I (u; τ1, τ2)du+

∫ τ2

0
σI(u; τ1, τ2)dW I(u)

)
,

where WE and W I are Brownian motions. Here,
∫ τ2

0 σ2
i (τ ; τ1, τ2)dτ < ∞ meaning τ 7→

F i(τ ; τ1, τ2) is a martingale. Introduce g : R 7→ R and h : R 7→ R measurable functions. The
payoff structure of a quanto option on the forwards with maturity at time τ2 given by

(4.2) C = EQ[g(FE(τ2; τ1, τ2))h(F I(τ2; τ1, τ2))] ,

where g(x) = max{x−KE , 0} and h(y) = 1{y≥KI} and the risk-free interest rate r = 0. We
assume the following integrability conditions:

(4.3) E[g2(FE(τ2; τ1, τ2))] <∞, E[h2(F I(τ2; τ1, τ2))] <∞ .

At several places, we will require the diffusion matrix σi, i = E, I to satisfy the following
condition:

(4.4) ∃η > 0 ξ∗σ∗i (t; τ1, τ2)σi(t; τ1, τ2)ξ > η | ξ |2 for all ξ ∈ Rn, t ∈ [τ1, τ2] with ξ 6= 0.

where i = E, I and ξ∗ denotes the transpose of ξ. This is called the uniform ellipticity
condition.

The weight function obtained when computing Greeks using the integration by parts for-
mula should not degenerate with probability one, otherwise the computation will not be valid.
To avoid this degeneracy we introduce the set Υn (see Mhlanga (2011)) defined by

(4.5) Υn = {a ∈ L2([0, τ2]) |
∫ ti

0
a(t)dt = 1 for all i = 1, . . . , n}.

We need the following lemma.

Lemma 4.1. Let an and bn be two convergent sequences such that limn→∞ an = a and
limn→∞ bn = b. Then the sequence anbn is convergent and limn→∞ anbn = ab.
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Finally, we state our results.

Proposition 4.2. Assume that the diffusion matrix σE is uniformly elliptic. Then for all
a ∈ Υn, the energy delta is given by :

(4.6) ∆E = EQ[g(FE(τ2; τ1, τ2))h(F I(τ2; τ, τ2))π∆E ],

where the Malliavin weight π∆E is

π∆E =

∫ τ2

0
a(t)

(
σ−1
E (t; τ1, τ2)YE(t; τ1, τ2)

)∗
dWE(t).

Proof. Let g be a continuously differentiable function with bounded derivatives. Introduce

YE(t; τ1, τ2) = exp

(
−1

2

∫ t

0
σ2
E(u; τ1, τ2)du+

∫ t

0
σE(u; τ1, τ2)dWE(u)

)
.

This implies that

FE(τ ; τ1, τ2) = FE(0; τ1, τ2)YE(t; τ1, τ2).

An application of Property P2 shows that FE(τ2; τ1, τ2) belongs to D1,2 and we have:

DtF
E(τ2; τ1, τ2) = YE(τ2; τ1, τ2)Y −1

E (t; τ1, τ2)σE(t; τ1, τ2)1t<τ2 .

This is equivalent to

YE(τ2; τ1, τ2)1t<τ2 = DtF
E(τ2; τ1, τ2)σ−1

E (t; τ1, τ2)YE(t; τ1, τ2).

Multiply both sides by a square function which integrates to 1 on [0, τ2]

YE(τ2; τ1, τ2) =

∫ τ2

0
DtF

E(τ2; τ1, τ2)a(t)σ−1
E (t; τ1, τ2)YE(t; τ1, τ2)dt.

Now

∆E :=
∂

∂FE(0; τ1, τ2)
EQ[g(FE(τ2; τ1, τ2))h(F I(τ2; τ1, τ2))]

= EQ[g′(FE(τ2; τ1, τ2))h(F I(τ2; τ1, τ2))
∂FE(τ2; τ1, τ2)

∂FE(0; τ1, τ2)
]

= EQ[g′(FE(τ2; τ1, τ2))h(F I(τ2; τ1, τ2))YE(τ2; τ1, τ2)]

= EQ
[∫ τ2

0
g′(FE(τ2; τ1, τ2))h(F I(τ2; τ1, τ2))

×DtF
E(τ2; τ1, τ2)a(t)σ−1

E (t; τ1, τ2)YE(t; τ1, τ2)dt
]

= EQ
[
h(F I(τ2; τ1, τ2))

∫ τ2

0
Dtg(FE(τ2; τ1, τ2))a(t)σ−1

E (t; τ1, τ2)YE(t; τ1, τ2)dt

]
= EQ

[
g(FE(τ2; τ1, τ2))h(F I(τ2; τ1, τ2))

∫ τ2

0
a(t)

(
σ−1
E (t; τ1, τ2)YE(t; τ1, τ2)

)∗
dWE(t)

]
where g′ denotes the derivative of g with respect to FE(0; τ1, τ2). Here, we have used the
chain rule property, (Property P1), the integration by parts formula (Property P3), and the
fact that the Skorohod integral coincides with the Itô stochastic integral (Property P4).
Now consider the general case g(FE(τ2; τ1, τ2))h(F I(τ2; τ, τ2)) ∈ L2(Ω). Since smooth func-
tions with compact support C∞K (R) is dense in L2(R), we can find sequences of functions
gn ∈ C∞K (R) and hn ∈ C∞K (R) such that gn → g and hn → h in L2(R). An application of
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Lemma 4.1 shows that (gnhn)n∈N converges uniformly on compact sets to gh as n→∞, that
is,
(4.7)

lim
n→∞

EQ
[(
gn(FE(τ2; τ1, τ2))hn(F I(τ2; τ, τ2))− g(FE(τ2; τ1, τ2))h(F I(τ2; τ, τ2))

)2]→ 0.

Denote by

f(x) = EQ
[
g(FE(τ2; τ1, τ2))h(F I(τ2; τ, τ2))

∫ τ2

0
a(t)

(
σ−1
E (t; τ1, τ2)YE(t; τ1, τ2)

)∗
dWE(t)

]
.

Using the obtained result for gn, together with the Cauchy-Schwartz inequality and the Itô
isometry, we obtain∣∣∣∣ ∂

∂FE(0; τ1, τ2)
EQ[gn(FE(τ2; τ1, τ2))hn(F I(τ2; τ, τ2))]− f(x)

∣∣∣∣
=

∣∣∣EQ [(gn(FE(τ2; τ1, τ2))hn(F I(τ2; τ, τ2))− g(FE(τ2; τ1, τ2))h(F I(τ2; τ, τ2))
)

×
∫ τ2

0
a(t)

(
σ−1
E (t; τ1, τ2)YE(t; τ1, τ2)

)∗
dWE(t)

]∣∣∣∣
≤ EQ

[(
gn(FE(τ2; τ1, τ2))hn(F I(τ2; τ, τ2))− g(FE(τ2; τ1, τ2))h(F I(τ2; τ, τ2))

)2] 1
2

× EQ
[∫ τ2

0

∣∣∣a(t)
(
σ−1
E (t; τ1, τ2)YE(t; τ1, τ2)

)∗∣∣∣2 dt] 1
2

It follows from (4.7) that the first expression on the right hand side of the above inequality
converges uniformly on compact sets to 0. The second expression is a continuous function,
hence it is bounded on any compact set. Therefore, we have

∂

∂FE(0; τ1, τ2)
EQ [gn(FE(τ2; τ1, τ2))hn(F I(τ2; τ, τ2))

]
→ f(x)

uniformly on compact sets. Hence, we conclude that EQ [gn(FE(τ2; τ1, τ2))hn(F I(τ2; τ, τ2))
]

is differentiable with respect to FE(0; τ1, τ2) and that the derivative is given by

∂

∂FE(0; τ1, τ2)
EQ[gn(FE(τ2; τ1, τ2))hn(F I(τ2; τ, τ2))]

= EQ
[
g(FE(τ2; τ1, τ2))h(F I(τ2; τ, τ2))

∫ τ2

0
a(t)

(
σ−1
E (t; τ1, τ2)YE(t; τ1, τ2)

)∗
dWE(t)

]
which completes the proof. �

Similarly, we obtain the following result.

Proposition 4.3. Assume that the diffusion matrix σI is uniformly elliptic. Then for all
a ∈ Υn, the temperature delta is given by:

∆I = EQ[g(FE(τ2; τ1, τ2))h(F I(τ2; τ, τ2))π∆I ],

where the Malliavin weight π∆I is

π∆I =

∫ τ2

0
a(t)

(
σ−1
I (t; τ1, τ2)YI(t; τ1, τ2)

)∗
dW I(t).

Proof. Follows along the lines of the proof of Proposition of 4.2. �
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The following result gives the cross-gamma hedge in the independent case:

Proposition 4.4. Assume that the diffusion matrices σi, i = E, I are uniformly elliptic.
Then for all a ∈ Υn, the cross-gamma is given by:

∆EI = EQ[g(FE(τ2; τ1, τ2))h(F I(τ2; τ, τ2))π∆EI ],

where the Malliavin weight π∆EI is
(4.8)

π∆EI =

∫ τ2

0
a(t)

(
σ−1
E (t; τ1, τ2)YE(t; τ1, τ2)

)∗
dWE(t)

∫ τ2

0
a(t)

(
σ−1
I (t; τ1, τ2)YI(t; τ1, τ2)

)∗
dW I(t).

Proof. We first assume that g and h are continuously differentiable with bounded derivatives.
From Proposition 4.2 we have

∆E = EQ[g(FE(τ2; τ1, τ2))h(F I(τ2; τ, τ2))π∆E ].

As in Proposition 4.2, we introduce

YI(t; τ1, τ2) = exp

(
−1

2

∫ t

0
σ2
I (u; τ1, τ2)du+

∫ t

0
σI(u; τ1, τ2)dW I(u)

)
.

This implies that

F I(τ ; τ1, τ2) = F I(0; τ1, τ2)YI(t; τ1, τ2).

An application of Property P2 shows that F I(τ2; τ1, τ2) belongs to D1,2 and we have:

DtF
I(τ2; τ1, τ2) = YI(τ2; τ1, τ2)Y −1

I (t; τ1, τ2)σI(t; τ1, τ2)1t<τ2 .

This is equivalent to

YI(τ2; τ1, τ2)1t<τ2 = DtF
I(τ2; τ1, τ2)σ−1

I (t; τ1, τ2)YI(t; τ1, τ2).

Multiply both sides by a square function which integrates to 1 on [0, τ2]

YI(τ2; τ1, τ2) =

∫ τ2

0
DtF

I(τ2; τ1, τ2)a(t)σ−1
I (t; τ1, τ2)YI(t; τ1, τ2)dt.

Now

∆EI :=
∂2

∂FE(0; τ1, τ2)∂F I(0; τ1, τ2)
EQ [g(FE(τ2; τ1, τ2))h(F I(τ2; τ, τ2))

]
=

∂

∂F I(0; τ1, τ2)
∆E

=
∂

∂F I(0; τ1, τ2)

[
EQ [g(FE(τ2; τ1, τ2))h(F I(τ2; τ, τ2))π∆E

]]
= EQ

[
g(FE(τ2; τ1, τ2))π∆Eh′(F I(τ2; τ, τ2))

∂F I(τ2; τ1, τ2)

∂F I(0; τ1, τ2)

]
= EQ [g(FE(τ2; τ1, τ2))π∆Eh′(F I(τ2; τ, τ2))YI(τ2; τ1, τ2)

]
= EQ

[∫ τ2

0
g(FE(τ2; τ1, τ2))h′(F I(τ2; τ1, τ2))π∆E

×DtF
I(τ2; τ1, τ2)a(t)σ−1

I (t; τ1, τ2)YI(t; τ1, τ2)dt
]

= EQ [g(FE(τ2; τ1, τ2))π∆E
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×
∫ τ2

0
Dt(h(F I(τ2; τ1, τ2)))a(t)σ−1

I (t; τ1, τ2)YI(t; τ1, τ2)dt

]
= EQ [g(FE(τ2; τ1, τ2))h(F I(τ2; τ1, τ2))π∆E

×
∫ τ2

0
a(t)

(
σ−1
I (t; τ1, τ2)YI(t; τ1, τ2)

)∗
dW I(t)

]
.

Here, we have used the chain rule property, (Property P1), the integration by parts formula
(Property P3), and the fact that the Skorohod integral coincides with the Itô stochastic inte-
gral (Property P4).
Now consider the general case g(FE(τ2; τ1, τ2))h(F I(τ2; τ, τ2)) ∈ L2(Ω). Since the set C∞K (R)
of infinitely differentiable functions with compact support is dense in L2(R), there exist se-
quences of functions gn ∈ C∞K (R) and hn ∈ C∞K (R) such that gn → g and hn → h in L2(R).
By Lemma 4.1, (gnhn)n∈N converges uniformly on compact sets to gh as n→∞, that is,
(4.9)

lim
n→∞

EQ
[(
gn(FE(τ2; τ1, τ2))hn(F I(τ2; τ, τ2))− g(FE(τ2; τ1, τ2))h(F I(τ2; τ, τ2))

)2]→ 0.

Denote by

f(x) = EQ [g(FE(τ2; τ1, τ2))h(F I(τ2; τ, τ2))π∆EI
]

with π∆EI given by (4.8). Using the first step

∂2

∂FE(0; τ1, τ2)∂F I(0; τ1, τ2)
EQ [g(FE(τ2; τ1, τ2))h(F I(τ2; τ, τ2))

]
exists and∣∣∣∣ ∂2

∂FE(0; τ1, τ2)∂F I(0; τ1, τ2)
EQ [g(FE(τ2; τ1, τ2))h(F I(τ2; τ, τ2))

]
− f(x)

∣∣∣∣
=

∣∣∣EQ [(gn(FE(τ2; τ1, τ2))hn(F I(τ2; τ, τ2))− g(FE(τ2; τ1, τ2))h(F I(τ2; τ, τ2))
)
π∆EI

]∣∣∣
≤ EQ

[(
gn(FE(τ2; τ1, τ2))hn(F I(τ2; τ, τ2))− g(FE(τ2; τ1, τ2))h(F I(τ2; τ, τ2))

)2] 1
2

× EQ
[∣∣π∆EI

∣∣2] 1
2

where we have used the Cauchy-Schwartz inequality. It follows from (4.9) that the first
expression on the right hand side of the above inequality converges uniformly on compact
sets to 0. Using the Cauchy-Schwartz inequality and Itô isometry one can show that the
second expression is finite. Therefore, we have

∂2

∂FE(0; τ1, τ2)∂F I(0; τ1, τ2)
EQ [g(FE(τ2; τ1, τ2))h(F I(τ2; τ, τ2))

]
→ f(x)

uniformly on compact sets. Hence, we conclude that EQ [gn(FE(τ2; τ1, τ2))hn(F I(τ2; τ, τ2))
]

is twice differentiable with respect to FE(0; τ1, τ2) and F I(0; τ1, τ2), and that the desired
formula holds. The proof is complete. �
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5. Computation of Greeks: The Correlation Case

We consider the following HJM

dFE(t; τ1, τ2) = σE(t, FE(t; τ1, τ2))dWE(t),(5.1)

dF I(t; τ1, τ2) = ρσI(t, F
I(t; τ1, τ2))dWE(t) + σI(t, F

I(t; τ1, τ2))
√

1− ρ2dW̃ I(t) .(5.2)

That is, we consider the case when there is correlation between FE and F I . Suppose the

Brownian motions B1 and B2 are independent. Let W1 = B1 and W2 = ρB1 +
√

1− ρ2B2.
This implies that

g(W1)h(W2) = g(B1)h(ρB1 +
√

1− ρ2B2).

In this setting, we have the following quanto option structure:

C = EQ[g(FE(τ2; τ1, τ2))h(ρFE(τ2; τ1, τ2) +
√

1− ρ2F I(τ2; τ1, τ2))] .

Now we derive the energy delta.

Proposition 5.1. Assume that the diffusion matrix σE uniformly elliptic. Then for all
a ∈ Υn, the energy delta is given by:

∆E = EQ[g(FE(τ2; τ1, τ2))h(ρFE(τ2; τ1, τ2) +
√

1− ρ2F I(τ2; τ1, τ2))π∆E (1 + ρ)] ,(5.3)

where the Malliavin weight π∆E is

π∆E =

∫ τ2

0
a(t)

(
σ−1
E (t; τ1, τ2)YE(t; τ1, τ2)

)∗
dWE(t).

Proof. Let g be a continuously differentiable function with bounded derivatives. As in Propo-
sition 4.2, introduce

YE(t; τ1, τ2) = exp(−1

2

∫ t

0
σ2
E(u; τ1, τ2)du+

∫ t

0
σE(u; τ1, τ2)dWE(u)).

This implies that

FE(t; τ1, τ2) = FE(0; τ1, τ2)YE(t; τ1, τ2).

An application of Property P2 shows that FE(τ2; τ1, τ2) belongs to D1,2 and we have:

DtF
E(τ2; τ1, τ2) = YE(τ2; τ1, τ2)Y −1

E (t; τ1, τ2)σE(t; τ1, τ2)1t<τ2 .

This is equivalent to

YE(τ2; τ1, τ2)1t<τ2 = DtF
E(τ2; τ1, τ2)σ−1

E (t; τ1, τ2)YE(t; τ1, τ2).

Multiply both sides by a square function which integrates to 1 on [0, τ2]

YE(τ2; τ1, τ2) =

∫ τ2

0
DtF

E(τ2; τ1, τ2)a(t)σ−1
E (t; τ1, τ2)YE(t; τ1, τ2)dt.

Now

∆E = EQ
[
g′(FE(τ2; τ1, τ2))h(ρFE(τ2; τ1, τ2) +

√
1− ρ2F I(τ2; τ1, τ2))YE(τ2; τ1, τ2)

+g(FE(τ2; τ1, τ2))h′(ρFE(τ2; τ1, τ2) +
√

1− ρ2F I(τ2; τ1, τ2))ρYE(τ2; τ1, τ2)
]

= EQ
[∫ τ2

0
g′(FE(τ2; τ1, τ2))h(ρFE(τ2; τ1, τ2) +

√
1− ρ2F I(τ2; τ1, τ2))

×DtF
E(τ2; τ1, τ2)a(t)σ−1

E (t; τ1, τ2)YE(t; τ1, τ2)dt
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+

∫ τ2

0
g(FE(τ2; τ1, τ2))h′(ρFE(τ2; τ1, τ2) +

√
1− ρ2F I(τ2; τ1, τ2))

×DtF
E(τ2; τ1, τ2)a(t)σ−1

E (t; τ1, τ2)YE(t; τ1, τ2)dt
]

= EQ
[
h(ρFE(τ2; τ1, τ2) +

√
1− ρ2F I(τ2; τ1, τ2))

×
∫ τ2

0
Dtg(FE(τ2; τ1, τ2))a(t)σ−1

E (t; τ1, τ2)YE(t; τ1, τ2)dt+ ρg(FE(τ2; τ1, τ2))

×
∫ τ2

0
Dth(ρFE(τ2; τ1, τ2) +

√
1− ρ2F I(τ2; τ1, τ2))a(t)σ−1

E (t; τ1, τ2)YE(t; τ1, τ2)dt

]
= EQ

[
h(ρFE(τ2; τ1, τ2) +

√
1− ρ2F I(τ2; τ1, τ2))

×g(FE(τ2; τ1, τ2))

∫ τ2

0
a(t)

(
σ−1
E (t; τ1, τ2)YE(t; τ1, τ2)

)∗
dWE(t)

+ρg(FE(τ2; τ1, τ2))h(ρFE(τ2; τ1, τ2) +
√

1− ρ2F I(τ2; τ1, τ2))

×
∫ τ2

0
a(t)

(
σ−1
E (t; τ1, τ2)YE(t; τ1, τ2)

)∗
dWE(t)

]
.

As in the proof of Proposition 4.2, we have used the chain rule property, (Property P1), the
integration by parts formula (Property P3), and the fact that the Skorohod integral coincides
with the Itô stochastic integral (Property P4).
The proof for the general case follow similar arguments as in the proof of Proposition 4.2 with
minor modifications. We omit the details. �

Now we derive the temperature delta in the correlation case.

Proposition 5.2. Assume that the diffusion matrix σI uniformly elliptic. Then for all a ∈
Υn, the temperature delta is given by:

∆I =
√

1− ρ2EQ[g(FE(τ2; τ1, τ2))h(ρFE(τ2; τ1, τ2) +
√

1− ρ2F I(τ2; τ1, τ2))π∆I ].

where the Malliavin weight π∆I is

π∆I =

∫ τ2

0
a(t)

(
σ−1
I (t; τ1, τ2)YI(t; τ1, τ2)

)∗
dW I(t).

Proof. The proof is similar to that of Proposition 5.1 with minor modifications. �

The following result gives the cross-gamma hedge in the correlation case.

Proposition 5.3. Assume that the diffusion matrices σi, i = E, I are uniformly elliptic.
Then for all a ∈ Υn, the cross-gamma is given by:

∆EI =
√

1− ρ2EQ[g(FE(τ2; τ1, τ2))h(ρFE(τ2; τ1, τ2) +
√

1− ρ2F I(τ2; τ1, τ2))π∆EI

+ρ
√

1− ρ2g(FE(τ2; τ1, τ2))h(ρFE(τ2; τ1, τ2) +
√

1− ρ2F I(τ2; τ1, τ2))π∆EI ]

where the Malliavin weight π∆EI is:

π∆EI =

∫ τ2

0
a(t)

(
σ−1
E (t; τ1, τ2)YE(t; τ1, τ2)

)∗
dWE(t)

∫ τ2

0
a(t)

(
σ−1
I (t; τ1, τ2)YI(t; τ1, τ2)

)∗
dW I(t).
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Proof. The proof follows the same line of argument as in the proof of Proposition 4.4 with
minor modifications. The details are omitted. �

6. Examples

We will provide Malliavin weights in the case where the quanto option payoff functions
depend on the terminal value, that is, τ2 = T

6.1. The independent case. We consider the following stochastic differential equations to
describe the energy price FE and the temperature price F I dynamics

dFE

FE
= σEdW

E
t , F

E(0) > 0(6.1)

dF I

F I
= σIdW

I
t , F

I(0) > 0,(6.2)

where σE , σI are deterministic volatilities and WE , W I are independent Brownian motions.
The quanto option pricing formula is then expressed as

(6.3) Ct = EQ[g(FE)h(F I)],

with g(x) = max{x −KE , 0} and h(y) = 1{y≥KI}. By using the general formulae developed
in the previous sections, we are able to compute analytically the values of different Malliavin
weights. Here we set a(t) = 1

T . We have

π∆E =
1

FE(0)T

∫ T

0

1

σE
dWE(t).

π∆I =
1

F I(0)T

∫ T

0

1

σI
dW I(t).

π∆EI =
1

FE(0)F I(0)T 2

(∫ T

0

1

σE
dWE(t)

)(∫ T

0

1

σI
dW I(t)

)
.

6.2. The correlation case. Again, we consider the following stochastic differential equations
to describe the energy price FE and the temperature price F I dynamics

dFE

FE
= σEdW

E
t , F

E(0) > 0(6.4)

dF I

F I
= ρσIdW

I
t + σI

√
1− ρ2dW̃ I , F I(0) > 0,(6.5)

where WE
t , W I

t are correlated Brownian motions with correlation parameter ρ ∈ (−1, 1).
The system of stochastic differential equations can be written in a matrix form(

dFE

FE

dF I

F I

)
=

(
σE 0

ρσI σI
√

1− ρ2

)(
dWE

dW̃ I

)
.

The inverse matrix of (
σE 0

ρσI σI
√

1− ρ2

)
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is calculated as

1

σEσI
√

1− ρ2

(
σI
√

1− ρ2 0
−ρσI σE

)
=

(
1
σE

0

− ρ

σE
√

1−ρ2
1

σI
√

1−ρ2

)
.

The quanto option pricing formula, in this setting, is given by

(6.6) Ct = EQ[g(FE)h(ρFE +
√

1− ρ2F I)],

with g(x) = max{x −KE , 0} and h(x, y) = ρmax{x −KE , 0} ×
√

1− ρ21{y≥KI}. By using
the general formulae developed in the previous sections, we are able to compute analytically
the values of different Malliavin weights. Here we set a(t) = 1

T . We have

π∆E =
1

FE(0)T

∫ T

0

1

σE
dWE(t)− 1

FE(0)T

∫ T

0

ρ

σE
√

1− ρ2
dW̃ I(t).

π∆I =
1

F I(0)T

∫ T

0

1

σI
√

1− ρ2
dW̃ I(t).

π∆EI =
1

FE(0)F I(0)T 2

{(∫ T

0

1

σE
dWE(t)

)(∫ T

0

1

σI
√

1− ρ2
dW̃ I(t)

)

−
∫ T

0

ρ

σEσI(1− ρ2)
dt

}
.

7. Application to stochastic volatility models

Stochastic volatility models describe the joint evolution of the futures prices (i.e. the energy
futures price FEt and the temperature future price F It ) and their corresponding variances.

7.1. The independent case. We consider the following dynamics

dFE

FE
=
√
σEdW

E
t , dσE = −k1σEdt+ η1

√
σEdB

E
t ,(7.1)

dF I

F I
=
√
σIdW

I
t , dσI = −k2σIdt+ η2

√
σIdB

I
t .(7.2)

Here, WE
t , BE

t , W I
t and BI

t are independent standard Brownian motions and κ1, κ2, η1 and
η2 are constants. σE(t) and σI(t) are the volatility processes.

dFE

FE

dσE
dFI

F I

dσI

 =


0

−κ1σE
0

−κ2σI

 dt+


√
σE 0 0 0
0 η1

√
σE 0 0

0 0
√
σI 0

0 0 0 η2
√
σI




dWE

dσE
dW I

dBI

 .

The inverse of the diffusion matrix is
1√
σE

0 0 0

0 1
η1
√
σE

0 0

0 0 1√
σI

0

0 0 0 1
η2
√
σI

 .
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The quanto option pricing formula is then expressed as

(7.3) Ct = EQ[g(FE)h(F I)],

with g(x) = max{x −KE , 0} and h(y) = 1{y≥KI}. By using the general formulae developed
in the previous sections, we are able to compute analytically the values of different Malliavin
weights. Here we set a(t) = 1

T . We have

π∆E =
1

FE(0)T

∫ T

0

1√
σE(t)

dWE(t).

π∆I =
1

F I(0)T

∫ T

0

1√
σI(t)

dW I(t).

π∆EI =
1

FE(0)F I(0)T 2

(∫ T

0

1√
σE(t)

dWE(t)

)(∫ T

0

1√
σI(t)

dW I(t)

)
.

7.2. The correlation case. We consider the following dynamics

dFE

FE
=
√
σEdW

E
t , dσE = −k1σEdt+ η1

√
σEdB

E
t ,(7.4)

dF I

F I
=
√
σIdW

I
t , dσI = −k2σIdt+ η2

√
σIdB

I
t .(7.5)

Here, WE
t , BE

t , W I
t and BI

t are correlated standard Brownian motions and κ1, κ2, η1 and η2

are constants. σE(t) and σI(t) are the volatility processes.
For constants ρ, ρ1, ρ2 the following hold:

WE
t = W

(1)
t , BE

t = ρW
(1)
t +

√
1− ρ2W

(2)
t ,

W I
t = ρ1W

(1)
t +

√
1− ρ2

1W
(3)
t , BI

t = ρ1ρ2W
(1)
t + ρ2

√
1− ρ2

1W
(3)
t +

√
1− ρ2

2W
(4)
t ,

where W
(1)
t , W

(2)
t , W

(3)
t and W

(4)
t are mutually independent standard Brownian motions.

The system of stochastic differential equations (7.4) - (7.5) can be written in a matrix form
dFE

FE

dσE
dFI

F I

dσI

 =


0

−κ1σE
0

−κ2σI

 dt

+


√
σE 0 0 0

ρη1
√
σE η1

√
σE
√

1− ρ2 0 0

ρ1
√
σI 0

√
σI
√

1− ρ2
1 0

ρ1ρ2η2
√
σI 0 ρ2η2

√
σI
√

1− ρ2
1 η2

√
σI
√

1− ρ2
2




dW
(1)
t

dW
(2)
t

dW
(3)
t

dW
(4)
t

 .

The inverse of the diffusion matrix is
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1√
σE

0 0 0

− ρ
√
σE
√

1−ρ2
1

η1
√
σE
√

1−ρ2
0 0

− ρ1√
σE
√

1−ρ21
0 1

√
σI
√

1−ρ21
0

0 0 − ρ2√
σI
√

1−ρ21
1

η2
√
σI
√

1−ρ22

 .

The quanto option pricing formula, in this setting, is given by

(7.6) Ct = EQ[g(FE)h(ρFE +
√

1− ρ2F I)],

with g(x) = max{x −KE , 0} and h(x, y) = ρmax{x −KE , 0} ×
√

1− ρ21{y≥KI}. By using
the general formulae developed in the previous sections, we are able to compute analytically
the values of different Malliavin weights. Choosing a(t) = 1

T and making use of the matrix
property (AB)∗ = B∗A∗, for A and B matrices, where ∗ denotes the transpose, we have

π∆E =
1

FE(0)T

(∫ T

0

1√
σE(t)

dW (1)(t)− ρ√
1− ρ2

∫ T

0

1√
σE(t)

dW (2)(t)

− ρ1√
1− ρ2

1

∫ T

0

1√
σE(t)

dW (3)(t)

)
.

π∆I =
1

F I(0)T

(
1√

1− ρ2
1

∫ T

0

1√
σI(t)

dW (3)(t)− ρ2√
1− ρ2

2

∫ T

0

1√
σI(t)

dW (4)(t)

)
.

π∆EI =
1

FE(0)F I(0)T 2

{(∫ T

0

1√
σE(t)

dW
(1)
t − ρ√

1− ρ2

∫ T

0

1√
σE(t)

dW
(2)
t

)
·(

1√
1− ρ2

1

∫ T

0

1√
σI(t)

dW
(3)
t

)
− ρ1

(1− ρ2
1)

∫ T

0

1√
σE(t)σI(t)

dt

}

− ρ2π
∆E

F I(0)T
√

1− ρ2
2

∫ T

0

1√
σE(t)

dW
(4)
t .

8. The residual risk

If we take the independent delta of energy ∆Ind, say, as the benchmark value and the
correlated case as ∆Corr. Then the residual risk is determined by the difference between the
independent energy delta and the correlated case as follows:

|∆Corr
E −∆Ind

E |,
for each ρ. The same analysis goes for the temperature delta and cross-gamma hedging for-
mulae.

We can state the following robust result.

Proposition 8.1. Let ∆Corr
E be given by (5.3) and ∆Ind

E be given by (4.6). Then

lim
ρ→0

∆Corr
E = ∆Ind

E .
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Proof. The application of Cauchy-Schwartz inequality isometry gives∣∣∣∆Corr
E −∆Ind

E

∣∣∣
≤

∣∣∣EQ
[
g(FE(τ2; τ1, τ2))h(ρFE(τ2; τ1, τ2) +

√
1− ρ2F I(τ2; τ1, τ2))π∆E (1 + ρ)

]
−EQ [g(FE(τ2; τ1, τ2))h(F I(τ2; τ, τ2))π∆E

]∣∣∣
≤ EQ

[∣∣∣g(FE(τ2; τ1, τ2))
{
h(ρFE(τ2; τ1, τ2) +

√
1− ρ2F I(τ2; τ1, τ2))(1 + ρ)

−h(F I(τ2; τ, τ2))
}
π∆E

∣∣]
≤ EQ

[∣∣g(FE(τ2; τ1, τ2))
∣∣2] 1

2 EQ
[∣∣π∆E

∣∣2] 1
2

×EQ
[∣∣∣{h(ρFE(τ2; τ1, τ2) +

√
1− ρ2F I(τ2; τ1, τ2))(1 + ρ)− h(F I(τ2; τ, τ2))

}∣∣∣2] 1
2

.

It follows from the integrability conditions (4.3) that the first expression on the right hand
side of the above inequality is finite. Using the Itô isometry it follows that

EQ
[∣∣π∆E

∣∣2] = EQ
[∫ τ2

0

∣∣∣a(t)
(
σ−1
E (t; τ1, τ2)YE(t; τ1, τ2)

)∗∣∣∣2 dt] <∞.
The last expression on the right hand side of the above inequality can be bounded uniformly
in ρ, and hence the result follows by the dominated convergence. �

Remark. Following similar arguments, we can obtain robust results for the temperature
delta and cross-gamma hedging formulae.

9. Concluding remarks

In this paper, we have derived the energy delta, the temperature delta and the cross-gamma
formulae of the quanto energy option written on a forward contract under the HJM framework.
Our results shows that the hedging formulae can be expressed as the expectation of payoff
functionals multiplied y the weight functions. The weight functions are independent of the
payoff functionals. The Malliavin calculus approach increases the efficiency when dealing with
discontinuous payoff functionals as compared to finite difference approximation. In addition,
no extra computation is required for other payoff functionals as long as the payoff functional
is a function of the same points of the Brownian motion trajectory. The weighting function
smoothen the function in the case of the energy delta and the temperature delta to simulate
as the payoff functional does not require to be numerically differentiated. In the case of the
cross-gamma it smoothen twice the payoff functional as it reduces a second order partial
differentiation to no partial differentiation. This leads to high efficiency for the simulation of
the cross-gamma.

We have considered the independent and the correlation cases to facilitate the residual
risk analysis. Our results generalise the work in Benth et al. (2015) in the sense that they
can be to discontinuous payoff functions. In addition, we have also considered application to
stochastic volatility models. In Benth et al. (2010), the authors analysed a volatility model
for a different payoff structure to the one considered in this paper.
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