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Abstract. Matrix-variate beta distributions are applied in different fields of hypothesis
testing, multivariate correlation analysis, zero regression, canonical correlation analysis
and etc. A methodology is proposed to generate matrix-variate beta generator distribut-
ions by combining the matrix-variate beta kernel with an unknown function of the
trace operator. Several statistical characteristics, extensions and developments are
presented. Special members are then used in a univariate and multivariate Bayesian
analysis setting. These models are fitted to simulated and real datasets, and their fitting
and performance are compared to well-established competitors.

Keywords. Bayesian Analysis, Binomial, Eigenvalues, Gaussian Sample, Gibbs Sampl-
ing, Matrix-Variate Beta

MSC: 62H10, 62H15.

Janet van Niekerk (janet.vanniekerk@up.ac.za)
Corresponding Author: Andriétte Bekker (Andriette.Bekker@up.ac.za)
Mohammad Arashi (arashi@um.ac.ir)



290 J. van Niekerk et al.

1 Introduction

The well-known matrix-variate beta distributions, that are used in different fields
of hypothesis testing, multivariate correlation analysis, zero regression, have been
extended by several authors. The matrix-variate beta type III distribution has been
defined, and some of its properties have been studied by Gupta and Nagar (2000),
Gupta and Nagar (2009). Nagar et al. (2013) generalized the well-known matrix-
variate beta type I distribution, by using an extended matrix-variate beta function.
Gupta and Nagar (2006) extended the work of Nadarajah and Kotz (2006) by defining
a matrix-variate hypergeometric beta distribution, and a matrix-variate Kummer-beta
distribution was defined by Nagar and Gupta (2002). Ehlers (2011) proposed the
matrix-variate beta type V distribution, motivated from generalized hypothesis testing
in a multivariate setup (see also Bekker et al. (2012), Zine (2012)). Pham-Gia et
al. (2020) established expressions for distributions of integral powers of matrix beta
variates. To address the need for complex models to solve modeling challenges in
real data, Tounsi (2019) defined different versions of extended matrix-variate beta
distributions. In terms of bimatrix-variate distributions, Nagar et al. (2017) developed
the bimatrix-variate gamma-beta distribution with a matrix-variate beta marginal
distribution. These generalizations justify the study of new models within the matrix-
variate beta ensemble.

In this paper the matrix-variate beta type I distribution with density function,
F(X) o det(X)* 20D det(I — X)P2"D X € I,,;
the matrix-variate beta type II distribution with density function,
F(X) & det(X)*" 2D det(I + X)~@*) X € S,
and matrix-variate beta type III distribution with density function,
F(X) o det(X)* 2D det(I — X)P~20mD det(T + X)), X €1,

form the platform for the development of the matrix-variate beta generator distribution
in Section 2. The space I, is defined as the space of all square matrices of order m such
that for all Y € I,,, we have Y — X € S, if and only if X € S,,, where S, is the space
of all positive definite matrices of order m. Some characteristics of this new generator
distribution are derived and visually illustrated in Section 3.

The hypergeometric Wishart generator distribution was studied by Bekker et al.
(2017), who emphasized the contribution of this development within the Bayesian
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paradigm. Therefore, the footprint of the advances in the matrix-variate beta generator
ensemble, in the Bayesian field is illustrated in Section 4.

2 Matrix-Variate Beta Generator Distributions

Definition 2.1. The random symmetric matrix X € I, is said to have the matrix-variate
beta generator distribution with parameters 2,b and @ and shape generator h(.), if it
has the following density function,

F(X) =, det(X)* 20D det(T, — X)P" 2D det(I,, + X)~ @D h(tr(DX)), (2.1)

denoted by X ~ MBG,,(a, b, h, @), for Re(a) > (m —1)/2 and Re(b) > (m — 1)/2, where ®
is a symmetric complex matrix, /(.) is a Borel measurable function that admits a Taylor
series expansion. Note that

Colln)
o) = Y e BAO IO o057 c@, @2

= tlk! Iu(@a+b,9) Ce(Im)
where C.(.) is the zonal polynomial of the ordered partition 7 of t (Muirhead , 2005).

Remark 1. To find the normalizing constant in Definition 2.1, apply Theorem 7.2.10 of
Muirhead (2005), Egs (2.2) and (2.8) of Davis (1979), Eq. (3.28) of Chikuse (1980) and
a Taylor series expansion of h(tr[.]). Hence,

h(tr ®X) = Zh ©) tr(DX) Zh (O)Zc (DX). (2.3)

t=0

Remark 2. Similarly beta generator distributions based on the matrix-variate beta type
I and type II can be formulated:

(i) Matrix-variate beta type I generator distribution (MBGg)(a, b, h, @)) with density
function,

F(X) o det(X)* 20D det(I,, — X)P 2" Dp(tr(DX)), (2.4)

(ii) Matrix-variate beta type II generator distribution (MBG,(ﬂ)(a, b, h, @)) with density
function,

F(X) o det(X)* 2D det(I,, + X)~ @D n(tr(DX)). (2.5)
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3 Characteristics

In this section, we provide some important statistical properties for the matrix-variate
beta generator distribution (2.1). The results for type I and type II follows trivially.

Theorem 3.1. Let X ~ MBGy,(a, b, h, ®). Then it follows that

E(XI) = =2,
Cu+r,b
Proof. From Definition 2.1, the result is easily obtained. O

Theorem 3.2. Denote the moment generating function (MGF) of X ~ MBG,(a, b, h, ®@), by
M. Then we have

h(0) (=1)'(a + b)x gt T(a, ¢)T'm(b) crh
k! I ¢ Tu@a+b,¢) ¢

MT) = Cy Y

T,%,A,Q

(T, ®,1),

where X1, = L% e Lito L Lo £ Lot a1d 057 = CFh, T 1)/ Col).

Proof. For the MGF of MBG, using (2.3) and Eq. (3.10) of Chikuse (1980), follows that

MO = C”’bf det(X)" 20" det(,, — X)?~20"+D det(T,, + X) "+
I
h(tr(PX)) etr(TX)dX

S = v 1D(0) v ~1l@a+b
WL LYY LS

t=0 T k=0 X

f det(X)* 20" D) det(T,, — X)! 20D C(DX)Co(TX)Cp(X)dX
I

& = o 19(0) v ~1l@a+b o
WYY YT SRy Y I 7 g

t=0 T k=0 K pex-T-A

f det(X)*20m*D) det(I,, — X)h‘%(erl)Cg'T”\(TX, ®X, X)dX.
]-Wl

Finally applying Eq. (3.28) of Chikuse (1980), yields the result. m]

As the final important characteristic, the joint distribution of the eigenvalues for
the MBG distributions are given in the next theorem.
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Theorem 3.3. Let g(A) denote the joint density function of the eigenvalues of X, A =
diag(A1,...,Aw), 1 > Ay > ... > Ay, > 0 where X ~ MBGy(a,b, ®,h). Then it follows
that

oy = 2 Cab Z y Lo h""(O) C (<I>)

k 0 x
~(m+1 _1 -
« H(/\i - 1) H (A? 3 (m+ )(1 — ) ;(m+1)(1 + 1) (”+b))CK(A).
i<j i=1
Proof. From Theorem 3.2.17 of Muirhead (2005), the density function of A is given by

1,2 m

A = TN = Ay det(A) 207D det(t,, — AY- 2D
T (3m) icj
x det(I + X)~ ") h (tr DHAH') dH.

O(m)
Using (2.3) and Eq. (36) of Muirhead (2005), the result follows by noting that
det(A) 20D =
_1
T2, ALY, det(T,— A)P30D = [T (1= AP 20"+D and det(T, +A) @+ = [T, (1-
A;)~@+b), O

Remark 3. For ® = I, the result in Theorem 3.3 simplifies to

gA) = Cabh(t (A))H(/\ — A )H( Fia 2(m+1)(1 A)b—z(m+l)(1+/\) (a+b))

L (2 ) i<j i=1
Figure 1illustrates the joint density function of the eigenvalues of X ~ MBG»(a, b, h, 1),

for different choices of h(.). The flexibility provided by these generator distributions
are clear from Figure 1.

Figure 1: Joint density function of the largest (x-axis) and smallest (y-axis) eigenvalues
for a = 3,b = 2 and h(x) = exp(~x), In(x), x%, Vx (left to right)
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4 Bayesian Application

4.1 Univariate Application

In this section, special univariate cases (m = 1) of (2.1) and (2.4) are applied as priors
for the probablity of a success in a binomial experiment. Consider a random sample,
X1, ..., Xy of size n from a binomial experiment with s independent trials and unknown
probability of success p, i.e. X; ~ Binomial(s,p),i = 1,...,n, with likelihood function

L(p) « pEm Xi(1 — pys~Lim Xi, (4.1)
Let h(x) = exp(—x) in (2.4) and (2.1), producing the two priors for p as

m(p) « p (1 = p)lexp(=ip), (4.2)

and
3(p) o p* (1= p)" N (L + p) " exp(—dp), (4.3)

known as the Kummer-beta type I and III distributions and denoted as KBI(a1, b1, 1)
and KBIII(a, b, ), respectively (Ng and Kotz , 1995) . The posterior density functions
are obtained from (4.1), (4.2) and (4.3), respectively as

g1(p) o pHEL XitL(] - L Xi-loyp(— ), (4.4)

and
q(p) o p*rEm Ximl (1 = )L Xt L (1 4 ) bexp(—gp). (4.5)

From (4.4) and (4.2), and (4.5) and (4.3) it is clear that both priors are conjugate. The
Bayes estimators under the squared error loss can then be easily derived.

4.2 Multivariate Application

In this section we develop a Bayesian analysis framework for a m-variate Gaussian
sample {X1, ..., X;;} of size n, i.e. X; ~ Np(tx1, Zmxim)-

The sample covariance matrix is the frequentist maximum likelihood estimator
(MLE) of X, hence EMLE =S5,5= ﬁ Y X -X)(X;—X)'. Now we propose a Bayesian
framework to estimate X, using a special case of the proposed matrix variate beta type
II generator (2.5).
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Consider an improper objective prior for g, m(u) = 1, and the MBG;zl)(a, b,exp(.), @)
distribution as the prior for . Then the joint posterior density function is

m+

G EX) o L 2 et [—%):—1 [V +n® - W)X - p)’” etr (D), (4.6)
withV =YY" ,(X; - )_()(Xi - )_()’ and X is the sample mean.

4.2.1 Gibbs Sampling Algorithm

We use a Metropolis-Hastings algorithm inside our Gibbs sampling algorithm to sample
from the posteriors of y and X.

Algorithm
1. Initialize po and Xo.

2. Repeat the following steps for t = 1, ..., 10000 times:

(a) Generate p; ~ Np()_(, %Zt_l).
(b) Calculate A; = V + n(X — p)(X — ).
(c) Metropolis-Hastings algorithm:

i. Proposals: Generate the random matrices L] ~ Wy, (@1, 1) (Wishart
distribution) and £3 ~ W, Iy + @2, o) (inverted Wishart distribution)
such that E[X]] = cE[X}] (E stands for expected value).

ii. Calculate £* = wX] + (1 — w)X} for some 0 <w < 1.

ii. If min( {*[Z*Im ] , 1) > u where u is a random uniform(0, 1) variate, then
f [Zt—llﬂt]

Yy=Xelsel; = Zt_lll with

FIEI] o (B35, + 2P etr (327 [V 4+ n(X - m)(X - py])
etr (DX).

3. Burn-in: Discard the first couple of observations, i.e. the posterior observations
are {41000, ---» #100000 and Xiooo, ---» £100000-

The matrix variate samples of X should then be checked for convergence and we
use the methods proposed in Bekker et al. (2017), namely the determinant, trace and
largest eigenvalue of each simulation.
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5 Numerical Studies

5.1 Univariate Application

In this section, priors (4.2) and (4.3) are applied and their performance is evaluated
against the maximum likelihood estimator (MLE) and the Bayes estimator when
assuming the well-known beta prior.

Therefore, the three priors considered in the subsequent Bayesian analysis are:
e Beta prior, i.e. p ~ Beta(ag, by), with f(p) o p~1(1 — p)~1.

e Kummer beta type I prior, i.e. p ~ KBI(a1, b1, ¢1) as in (4.2).

e Kummer beta type III prior, i.e. p ~ KBIII(a, b, ¢) as in (4.3).

The hyperparameters are chosen according to a prior belief p = pg. Due to
the conjugacy of the prior, the posterior density functions and Bayes estimates can
be calculated analytically using (4.4) and (4.5), without the need for approximation
algorithms like Gibbs sampling or INLA.

5.1.1 Simulation Study

For the purpose of this study, a sample of size 10 was simulated from a binomial
distribution with 10 trials and 0.3 probability of success, i.e. X ~ Binomial(s = 10,p =
0.3). The aim is to estimate p as accurately as possible. To achieve this, we employ the
Beta, KBI and KBIII priors and compare the resulting estimates with the MLE.

Three combinations of hyperparameter values are used as summarized in Table 1.

The coverage probability for each prior is calculated based on 10000 repetitions and
given in Table 2, together with the median credible interval widths.

In Figure 2, the MSE and bias for the different estimates are given based on 50
repetitions with combination 3.

It is clear from Table 2 and Figure 2 that the Kummer beta type 1 and type 3 priors
perform very well when compared to the beta prior and the MLE.
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Table 1: Hyperparameter values for the beta (...), KBI (- - -) and KBIII (-.-) priors

Combination 1 2 3

Beta pI‘iOI‘ apg = 3, bo =7 apg = 15, bo =35 apg = 2, bo =4

KBI pI‘iOI‘ a = 1,171 = 15, (1)1 =15 ay = 12, bl = 15, (Pl =3 a = 2, b1 = 1.5,d)1 =3
KBIII prior a=2b=12,¢=35 a=23,b=12,0=35 a=23b=2,0=3
The likelihood

function is e — (AP ——

given by the ; A ] T

— curve

Table 2: Coverage probabilities (median credible interval widths) for the three priors
and combinations

Prior Beta KBI KBIII
Combination 1 94.1(0.14) 94.6(0.145) | 95.2(0.14)
Combination 2 90.3(0.14) 92.4(0.14) 92.2(0.145)
Combination 3 90.7(0.145) | 90.8(0.145) | 91.7(0.145)

5.1.2 Space Shuttle Dataset

After the explosion of the USA Space Shuttle Challenger on 28 January 1986, an
investigation ensued into the reliability of the shuttle’s propulsion system. The explosi-
on was eventually traced to the failure of one of the three field joints on one of the two
solid booster rockets. Each of these six field joints includes two O-rings, designated as
primary and secondary, which fail when phenomena called erosion and blowby both
occur.

The night before the launch a decision had to be made regarding launch safety. The
discussion among engineers and managers leading to this decision included concern
that the probability of failure of the O-rings were too high. Based on the 17 previous
launches under the same conditions, the failure probability should be estimated.
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Figure 2: Bias (left) and MSE (right) of the Bayes estimates and the MLE for 50 repetitions

A Bayesian approach is now used to estimate the failure probability using the
following three priors:
e Beta prior, i.e. p ~ Beta(0.3,9).
e Kummer beta type I prior, i.e. p ~ KBI(0.3,5,5) as in (4.2).
o Kummer beta type III prior, i.e. p ~ KBIII(0.2,1.8,5) as in (4.3).

The prior belief was set as p = 0.03 from previous studies. The three priors under
consideration and the likelihood are visually illustrated in Figure 3, together with the

resulting posterior density functions.
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Figure 3: Likelihood, prior and posterior density functions

Figure 3 illustrates that the resulting posterior distributions are more concise than

the priors, confirming the applicability of these priors to the data. The Bayes estimates
and the MLE of the failure probability are given in Table 3.

Table 3: Bayes estimates and MLE of the failure probability

MLE Beta KBI KBIII
0.0527 0.0507 0.0491 0.0496

To investigate the plausibility of these estimates, a sample of size 17 is simulated
using the estimates of p in Table 3. The empirical cumulative distribution function
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(ecdf) of each sample as well as the original dataset, is obtained and visually displayed
in Figure 4. The ecdf which is closest to the ecdf of the original data indicates the most
plausible estimate of p.

1 15 2 25 3 35 4
Frobenius norm

Figure 4: The ecdf’s of the simulated samples based on the respective estimates and
the original dataset

It is clear from Figure 4 that the KBI and KBIII priors produces more plausible
estimates than the beta prior and the MLE.

5.2 Multivariate Application

The simulation algorithm 4.2.1 is quite complex and simulates p-variate vectors and
square matrices at each index. This can be quite computationally intensive. For this
study we used a Macbook Pro 2019 with a 2.3 GHz i5 processor and 16 GB LPDDR3 with
dedicated graphics as well as a Linux server with 64 cores with hyperthreading. The
computer code for the simulation study and data application is based on the algorithm
explained in Section 4.2.1.
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5.2.1 Simulation Study

For brevity, we only present the results of one scenario for X. Other hyperparameter
values were considered as well.

We simulate a sample of size n = 30 such that X ~ N3(03x1, X = I3). We propose
the prior (2.5) for X as follows, X ~ MBng)(% + % +2,1,exp(.),I3). Indeed, for rigorous
hyperparameters’ selection, an empirical or hierarchical Bayesian analysis can be used.

In Figure 5, these measures are illustrated for {Xy, ..., Xr},T = 100000 simulated
using Algorithm 4.2.1. It is clear from Figure 5, that the chain converged and the
proposed algorithm provides stable samples.

1=

o -

T T T T T T T T T T T T T T T T T T
Oe+00 2e+04 d4de+04 6e+04 8e+04 1e+05 Oe+00 2e+04 de+04 6e+04 8e+04 1e+05 0e+00 2e+04 4e+04 6et+04 B8e+04 1e+05

Sample number, i Sample number, i Sample number, i

Figure 5: The proposed multivariate convergence measures for a sample of size 100000,
determinant, trace and largest eigenvalue (from left to right) with the true value
indicated by the solid line

As a method to assess the similarity to the true value ¥ = Iz we consider the
Frobenius norm between the estimator and the true value FNyg = IIEMLE — Iz||r and
FNp = ||Zp —I3||r, with Xpq1 g and Zp are the ML and Bayes estimators of X, respectively.
A smaller value of the Frobenius norm would then imply an estimate that is more
similar to the true value. The estimated results for this setup are

. 1.046 —-0.121 0.096
Yvre = |[-0.121 0.604 0.325|, FNpp=1.938,
0.096 0.325 2,517
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and

_ 1264 -0.016 0.007
Ly = [-0016 1229 0.024|, FNjp=0399.
0.007 0.024 1367

It is clear from the results that the Bayesian estimator of X is more accurate than the
MLE, as expected from a small sample size. We thus propose the consideration of the
MBG;Z) (a,b,exp(.), @) as the prior distribution for X, in the application of forthcoming
section.

5.2.2 Application

The Fisher iris dataset has been used extensively in multivariate analysis and we use
it here as an illustration of a proposed member of the beta generator (see (2.5)) as the
prior for the covariance matrix of a multivariate Gaussian distribution.

The data set contains the measurements (in centimeters) of the X; = sepal length,
X, = sepal width, X3 = petal length and X, = petal width, respectively, for 150 flowers
from three different species of iris (50 flowers from each species). The species are Iris
setosa, Iris versicolor, and Iris virginica.

We assume the following model with an improper prior for y:

X = {Xi Xo Xz Xy}~Nup X),
T ~ MBGY (g 16,1, exp(.),I4).

A Markov chain of length 100000 were produced for g and £ and thinning was applied
to these chains as to include every 9™ sample after a burn-in of 10% for a final sample
of size 10000 from Algorithm 4.2.1. The sample estimates and Bayesian estimates for &
are as follows:

068 —004 127 052 058 —0.03 078 034
5 _|-004 019 -033 0.2 4 F._|003 032 026 —0.09
MLE = | 197 033 312 129 | M9 =BTlo78 —026 213 079

052 -012 129 0.58 034 -0.09 079 0.63
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Figure 6: Original sample (right), and samples simulated form the model estimated by
MLE (middle) and Bayes (left)

Since we cannot compare the results using the Frobenius norm between the estimate
and the target as before (since we do not know the true values), we simulate a sample
from the estimated models (MLE and Bayes). We can then compare the original sample
with the simulated samples and inspect visually, through an image, the similarity in
the dependency structure between the original and simulated samples. From Figure
6 we can see that the Bayesian framework produces an estimated model that closely
matches the observed data.

6 Further developments

The distributions of quadratic forms can be of interest for inferential purposes, hence
the following theorem.

Theorem 6.1. Suppose thatY = (Q—‘P)%X(Q—‘P)% +WuwithX ~ MBGgZC)(a, bh,®)W,Q €
S are some known matrix parameters and under the meaning of partial l6wner ordering,
Q > W. Then we have

FY) = Copdet(Y — WY 20m+D) det(Q — Y)P 207D det(Q + ¥ — 2W) @)
det(Q — W)™ Dp(tr @(Y — W),

where W <Y < Qand © = (Q - W) :D(Q — W)z,

The derived density function is of a noncentral form, and can thus be viewed as
a noncentral generator distribution. It is of interest to find the distribution of the
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determinant where the matrix-variate has this distribution leading to generalized Wilks’
statistics.

Theorem 6.2. Let X ~ MBG;':C)(a, b,®,h). Then y = det(X) has the following density
function

2
(~1)HO(0) (6)
3 ¢ 2m,0 Cly---,Com
f(y) - Cu,brm(b) T;P t'k'CT(Im) GZm 2m ( | .. ,d2m )/

where
a+b—1+¢i+71—}1(i—1), i=1,3,5...,2m—1
C; =
/ a+b-1-1(i-2), i=2,6,10,...,2m,
; a+b—1+ki+71—i(i—1), i=1,3,5,...,2m—-1
I a—1+¢%—}1(i—2), i=2,6,10,...,2m,

where G(.) denotes the Meijer’s G function.

7 Conclusion

In this paper a matrix-variate beta generator distributions was constructed from the
well-known matrix-variate beta type III distributions by employing a Borel measurable
function. Similar generators based on the multivariate beta type I and type II can be
proposed. Some characteristics of this generator distribution were derived. The joint
density function of the eigenvalues of such a chase was visually illustrated for various
h(.). The applicabity of these generator distributions were shown through a Bayesian
analysis of the binomial model, and in the multivariate sense the Bayesian analysis of
a multivariate Gaussian sample.
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