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Abstract

This paper originates from a statistic defined as the ratio of independent gener-
alized gamma random variables and shows that it can be represented as the product
of independent generalized gamma random variables with some re-parametrization.
By decomposing the characteristic function of the negative natural logarithm of the
statistic and by using the distribution of the difference of two independent generalized
integer gamma random variables as a basis, accurate and computationally appealing
near-exact distributions are derived for the statistic. In the process, a new param-
eter is introduced in the near-exact distributions which allows to control the degree
of precision of these approximations. Furthermore, the performance of the near-exact
distributions is assessed using a measure of proximity between cumulative distribu-
tion functions and also by comparison with the exact and empirical distributions. We
illustrate the use of the proposed approximations on the distribution of the ratio of
generalized variances in a multivariate multiple regression setting and with an example
of application related with SISO Networks.
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1 Introduction

The generalized gamma distribution was introduced by Stacy [1]. It is a generalization of
well-known distributions such as gamma, chi-squared, exponential, Rayleigh, Weibull and
Nakagami-m. Due to its adaptability, either in this generalized form or one of its special
cases, the generalized gamma distribution has received much interest and wide applications
in areas such as hydrological processes [2], wireless communication [3], reliability analysis,
economics and life testing. In [4], the author unknowingly reintroduced the generalized
gamma distribution as a general fading distribution, the so-called α− µ distribution.

In many of the applications of the generalized gamma distribution, the product or ratio
of independent generalized gamma random variables appears naturally. For instance, [2]
considered both the product and ratio of independent generalized gamma random variables
to model the magnitude of a drought and relative duration of a drought events respectively.
In multi-hop wireless relaying systems, the end-to-end signal-to-noise ratio (SNR) and the
rate offset can be modeled as a function of the product of independent generalized gamma,
Rayleigh or Nakagami-m random variables (see [3]). Signal-to-interference ratio (SIR) can
be modelled as the ratio of either independent generalized gamma, independent Rayleigh or
independent Nakagami-m random variables (see [5]). In [6] the authors modeled the intensity
of the Poisson process in the Poisson-gamma hierarchical generalized linear model as product
of independent gamma random variables. The product and ratio of independent generalized
gamma distributed random variables also appear fundamental in statistical theory, see [7]
for further details.

The exact distribution and approximate distribution of the product of independent gen-
eralized gamma distributed random variables has been studied by a number of authors. In [8]
the exact distribution was derived in terms of Fox’s H -function which are still not computable
even with today’s powerful computer softwares. By considering special cases of generalized
gamma distributed random variables, [9], [10] and [11] expressed the exact distribution in
terms of the Meijer’s G-function which is be computable using most computer software.
However, even with today’s powerful computers, the computation of Meijer’s G still takes
considerably long computational time (see Section 4 for an example of this feature). In [12],
an approximation to the product of independent Rayleigh distributed random variables is
proposed. Authors in [13] and [14] derived the exact distribution in terms of infinite series
from which an approximate distribution can be obtained. However, to get the required ac-
curacy a large number of terms need to be evaluated. In [6] the exact distributions, when all
power parameters are of the same sign, is approximated. Another approximate distribution
was introduced in [3], however, this approximate distribution was derived under restrictive
conditions i.e. when the shape and the power parameters are fixed.

Few authors have attempted to study the distribution of the ratio of independent gener-
alized gamma random variables. Many of those have limited their study to only two or three
random variables with some restrictions of parameters (see [1], [2], [15] and [16]). Other
authors (e.g. [10]) have derived the distribution in terms of Meijer’s−G function. As noted
above, this approach has a computational time disadvantage. In [8], it is recognized that
the generalized gamma distribution is a special case of the H-function distribution. Thus
by studying the ratio of H-function distributed random variables, [8] implicitly studied the
exact distribution of the ratio of generalized gamma distributed random variables. However,
the results are in terms of the Fox’s H-functions and therefore had no practical value.
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In this article, it is shown that the ratio of independent generalized gamma random
variables can also be represented as the product of independent generalized gamma random
variables some with negative parameters and others with positive parameters. By decom-
posing the characteristic function of the negative natural logarithm of the product of these
random variables, a different representation of the exact distribution is obtained. From this
new presentation, two near-exact distributions are derived. In the process of decompos-
ing the characteristic function, a new parameter which control the degree of precision for
near-exact distribution is obtained.

The rest of the paper is organized as follows; in Section 2, it is shown that the ratio
of independent generalized gamma distributed random variables may be represented as the
product of independent generalized gamma random variables with some re-parametrization.
The statistic of interest, Y , is then defined. Starting from the characteristic function of
Z = − lnY , another representation of the exact distribution of Z is obtained and used
to derive novel approximations i.e. near-exact distributions for Z and hence for Y . In
Section 3, the performance of near-exact distributions is studied and contrasted against the
performance of an empirical distribution. In Section 4, two examples of application are of
proposed near-exact distributions are provide in the multivariate multiple linear regression
setting and in a problem related with SISO Networks. Computational modules are presented
in 5. The conclusion is included in Section 6.

2 The exact distribution and near-exact distributions

2.1 The exact distribution

Let X be a random variable with probability density function (pdf) given by

fX (x; r, λ, δ) = |δ| λ
δrxδr−1

Γ (r)
exp

(
− (λx)δ

)
(1)

where x ≥ 0, r > 0, λ > 0 and δ 6= 0. Then X is said to follow a generalized gamma
distribution and is denoted by X ∼ GΓ (r, λ, δ). The sth moment of X is given by

E [Xs] =
Γ
(
r + s

δ

)
Γ (r)

λs. (2)

where E [·] denotes mathematical expectation.

Remark 1 If V = 1
X

then V ∼ GΓ (r, λ−1,−δ) .

Let X1i ∼ GΓ (r1i, λ1i, δ1i) for i = 1, 2, . . . , n1 and δ1i > 0. Furthermore, let X2k ∼
GΓ (r2k, λ2k, δ2k) for k = 1, 2, . . . , n2 and δ2k > 0. Define the ratio of independent generalized
gamma random variables, for n1, n2 > 0, as

G =

(
n1∏
i=1

X1i

)(
n2∏
k=1

X2k

)−1

. (3)

Following Remark 1, (3) can be conveniently rewritten as
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G =

n1∏
i=1

X1i

n2∏
k=1

V2k, (4)

where V2k ∼ GΓ
(
r2k, λ

−1
2k ,−δ2k

)
. Therefore, G can be represented as a product of indepen-

dent generalized gamma random variables some with negative power parameters and others
with positive power parameters (see (4)). The statistic of interest generalizing G, is now
defined. For Xi ∼ GΓ (ri, λi, δi), i = 1, 2, . . . , n, such that δi < 0 and δk > 0 for some
i, k ∈ {1, 2, 3, . . . , n}, we define

Y =
n∏
i=1

Xi. (5)

By considering special cases, [10] expressed the exact density probability function of Y
in terms of the Meijer’s−G function. Evidence of the computational disadvantage of this
approach will be provided in Section 4 through an example in multivariate linear regression
models. In its most general form, the exact distribution of Y can be derived in terms of
the Fox’s H-function (see [10]). Although mathematically elegant, Fox’s H-function are not
numerically tractable even with the modern software packages. The exact distribution is
therefore not practically appealing. To circumvent this difficulty a novel approximation for
the distribution of Y is derived. We focus on the transformed variable Z = − lnY because
its characteristic function is known and since this way we transform the initial problem into
a problem of sums or differences of independent random variables which can be addressed
using characteristic functions. Following (2), the characteristic function of Z can be written
as

φZ(t) = E[exp(jtZ)] =
n∏
i=1

Γ

(
ri −

jt

δi

)
Γ (ri)

λjti , (6)

where j =
√
−1. Further manipulation of φZ(t) in its current form seems an arduous task.

To this end, we decompose φZ(t) as shown in the following theorem.

Theorem 2.1 The characteristic function of Z can be written as

φZ(t) = φZ1(t)φZ2(t) (7)

where

φZ1(t) =
n∏
i=1

Γ

(
ri + γ − jt

δi

)
Γ (ri + γ)

, (8)

and

φZ2(t) =
n∏
i=1

γ−1∏
k=0

δi (ri + k)

(δi (ri + k)− jt)
λjti , (9)

with γ ∈ N.
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Proof:
The following algebraic manipulation of the characteristic function of Z given in (6), com-
pletes the proof of Theorem 2.1

φZ(t) =
n∏
i=1

Γ

(
ri −

jt

δi

)
Γ (ri)

λjti

=
n∏
i=1


Γ

(
ri + γ − jt

δi

)
Γ (ri + γ)


Γ (ri + γ)

Γ

(
ri + γ − jt

δi

) × Γ

(
ri −

jt

δi

)
Γ (ri)

λjti

=


n∏
j=1

Γ

(
ri + γ − jt

δi

)
Γ (ri + γ)

×


n∏
i=1

γ−1∏
k=0

(ri + k)(
ri + k − jt

δi

)λiti
 .

The decomposition of φZ(t) above introduces a new parameter γ which will be used to
control the degree of accuracy of the near-exact distributions. In Subsection 2.2, the effect
of γ will be evaluated. In expression (7), φZ1(t) and φZ2(t) are the characteristic functions
of Z1 and Z2 respectively. Then Z may be represented as

Z = Z1 + Z2 (10)

where Z1 and Z2 are independent random variables. We conveniently deduce that Z1 is a
sum of n independent log-gamma random variables with parameters ri +γ and 1, multiplied
by 1/δi respectively. However, further decomposition of (9) is necessary to identify the
distribution of Z2.

Before proceeding, let us define some notations. Let β+
i = δi (ri + k) if δi > 0, m+

i

a multiplicity of β+
i and `+ be the number of distinct values of β+

i . Analogously, β−i =
δi (ri + k) if δi < 0, m−i a multiplicity of β−i and `− be the number of distinct values of β−i .
Let ϕ =

∑n
i=1 log (λi).

Using the above notations, (9) can be further decomposed as

φZ2(t) =

{
`+∏
i=1

(β+
i )m

+
i
(
β+
i − jt

)−m+
i

}
exp (jtϕ)

×

{
`−∏
i=1

(
β−i
)m−

i
(
β−i − jt

)−m−
i

}
. (11)
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By letting β∗i = −β−i (so that β∗i > 0) and τ = −t, (11) can be written as

φZ2(t) =

{
`+∏
i=1

(β+
i )m

+
i
(
β+
i − jt

)−m+
i

}
exp (jtϕ)

×

{
`−∏
i=1

(β∗i )
m−

i (β∗i − jτ)−m
−
i

}
= φZ21(t)φZ22(τ) exp (jtϕ) , (12)

where

φZ21(t) =

{
`+∏
i=1

(β+
i )m

+
i
(
β+
i − jt

)−m+
i

}
, (13)

and

φZ22(τ) =

{
`−∏
i=1

(β∗i )
m−

i (β∗i − jτ)−m
−
i

}
. (14)

Note that (13) is the characteristic function of Z21 which is a sum of `+ independent
Erlang distributed random variables, where m+

i and β+
i are shape and rate parameters,

respectively. Similarly (from (14)) Z22 is a sum of `− independent Erlang distributed random
variables where m−i and β∗i are shape and rate parameters respectively. Both m+

i and m−i
are integer valued parameters, therefore we conclude that

Z21 ∼ GIG
(
`+,m+, β+

)
,

and
Z22 ∼ GIG

(
`−,m−, β−

)
,

where GIG denote the generalized integer gamma distribution [17] and

m+ =
(
m+

1 ,m
+
2 , . . . ,m

+
`+

)′
,

β+ =
(
β+

1 , β
+
2 , . . . , β

+
`+

)′
,

m− =
(
m−1 ,m

−
2 , . . . ,m

−
`−

)′
, and

β∗ = (β∗1 , β
∗
2 , . . . , β

∗
`−)′ . (15)

Since τ = −t, (12) is a characteristic function of a random variable Z2 such that Z2 =
Z21 − Z22 with a location parameter ϕ, and with Z21 and Z22 independent. Therefore

Z2 ∼ SDGIG
(
m+,m−, β+, β∗, `+, `−, ϕ

)
.

where SDGIG denote the shifted difference of generalized integer gamma distribution [18].
Having armed with the above results, now we are in a position to obtain approximations

of the distribution of Z (and in turn, approximations of the distribution of Y ).

2.2 Near-exact distributions for Z

It has already been shown in (10) that Z can be decomposed into a sum of two independent
random variables. To obtain near-exact distributions of Z, only one part of the decomposition
will be replaced by its approximation while the other one is left unchanged. In this respect,
the exact distribution of Z2 is known. However, the exact distribution of Z1 is unknown.
Therefore, Z1 will be replaced by its approximation.
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2.2.1 First near-exact distribution

To derived the first near-exact distribution, Z1 is replaced by its expected value i.e., E [Z1].
As a result, the first near-exact approximate of Z can be obtained as

Za = E [Z1] + Z2,

with

E [Z1] =
1

j

∂φZ1(t)

∂t

∣∣∣∣
t=0

.

where φZ1(t) is given by (8). Therefore, we conclude that

Za ∼ SDGIG
(
m+,m−, β+, β∗, `+, `−, ϕ+ E [Z1]

)
,

Now the first near-exact distribution of Y can be obtained by a trivial transformation and
thus omitted.

2.2.2 Second near-exact distribution

Instead of approximating Z1 by its mean value, here it is approximated by a random variable.
A single log-gamma random variable can be represented by a sum of infinite independent
shifted exponential random variables (see [18]). Therefore, Z1 which is a sum of indepen-
dent log-gamma random variables can represented by an infinite sum of independent shifted
Erlang distributed random variables. Erlang distributed random variables are special cases
of the gamma distributed random variables. We propose as an approximation for the distri-
bution of Z1 a single shifted gamma random variable, say W , independent of Z2 and such
that the following system of equations is satisfied

∂iφZ1(t)

∂ti

∣∣∣∣
t=0

=
∂iφW (t)

∂ti

∣∣∣∣
t=0

i = 1, 2, 3, (16)

where φZ1 is given by (8) and the characteristic function of an approximate random variable
W of Z1 is denoted by φW (t) with its form given by

φW (t) =

(
1− jt

ψ

)−ρ
ejtθ. (17)

The values of ψ, ρ and θ are obtained by numerically solving (16).
The solution of the system of equations in (16) may give a positive or a negative value

for ψ, therefore the second near-exact approximation for the distribution of Z is, given by

Zb = Z2 + sign(ψ)W,

where

sign(x) =


1 if x > 0
0 if x = 0
−1 if x < 0.

Clearly, Zb is either a sum or difference of a shifted gamma random variable and an
independent SDGIG distributed random variable. The expressions for the distribution Zb

are available in Appendix 1 of [18]. Now the second near-exact distribution of Y can be
obtained by a trivial transformation and thus it is omitted.
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3 Computational studies

In this section, computations are performed on various distributions and results are con-
trasted against each other.

Table 1 summarizes cases which will be used for computations in this paper. In each
case, at least one power parameter will be negative in order to ensure that statistic Y (in
(5)) is studied.

Table 1: Sets of parameters of independent generalized gamma distribution

Case r λ δ

I

{
1
3
,
22

7

} {
1

2
,
1

4

}
{4,−2}

II {2, 3, 5} {3, 2, 10}
{

1
2
, 2,−1

4

}
III

{
2, 3, 5,

1

2

} {
3, 2, 10,

2

7

} {
1

2
, 2,−1

4
,−1

3

}

The performance of near-exact distributions will be analyzed using the proximity mea-
sure, ∆ defined as

∆ =
1

2π

∞∫
−∞

∣∣∣∣φZ(t)− φ∗(t)
t

∣∣∣∣ dt, (18)

where φZ(t) and φ∗(t) are respectively the exact and the approximate characteristic functions
of the random variable Z. See [19] for more details on the proximity measure, ∆. Since

sup
z∈R
|FZ (z)− F ∗ (z)| ≤ ∆,

then ∆ provides an upper bound on the proximity between FZ (z) and F ∗ (z). FZ (z) and
F ∗ (z) are the exact and approximate cummulative distribution function of the random
variable Z respectively.

Tables 2 and 3 provide proximity measures for first and second near-exact distributions
respectively. It is evident, from these tables and from low values of ∆, that both near-exact
distributions provide good approximations for the exact distribution of Z. Furthermore,
the accuracy of the approximation increases with an increase on the value of the precision
parameter and hence this parameter can be use to control the degree of accuracy. Between
the first and second near-exact distribution, the latter provides better accuracy for a given
precision parameter value.

Next, the performance of near-exact, empirical and exact distributions will be contrasted
against each other using cdf plots. In Figure 1, we have, for Case I, a normal and a magnified
representation of the empirical cdf, obtained using a simulated random sample of size n =
106, of the cdf of the near-exact distribution obtained setting γ = 20 and the exact cdf
derived using the inversion formulas in [19]. From the normal representation in Figure 1 it is
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Table 2: Proximity measures for the first near-exact distribution

Precision Case
parameter γ I II III

4 1.6×10−2 5.2×10−2 1.7×10−2

5 1.3×10−2 4.4×10−2 1.4×10−2

10 6.9×10−3 2.5×10−2 7.8×10−3

15 4.8×10−3 1.7×10−2 5.4×10−3

20 3.6×10−3 1.3×10−2 4.1×10−3

50 1.5×10−3 5.5×10−3 1.7×10−3

100 7.5×10−4 2.8×10−3 8.7×10−4

200 3.8×10−4 1.4×10−3 4.4×10−4

Table 3: Proximity measures for the first near-exact distribution

Precision Case
parameter γ I II III

4 9.4×10−5 3.4×10−4 5.3×10−5

5 5.6×10−5 2.3×10−4 3.1×10−5

10 1.0×10−5 5.8×10−5 5.4×10−6

15 3.4×10−6 2.3×10−5 1.9×10−6

20 1.6×10−6 1.1×10−5 8.9×10−7

50 1.2×10−7 9.4×10−7 7.1×10−8

100 1.5×10−8 1.3×10−7 9.6×10−9

200 2.0×10−9 1.7×10−8 1.4×10−9

difficult to distinguish the cdfs however, the magnified version, over a subset of the domain,
provides insights into the difference between the approximate and the exact distributions.
The second near-exact distribution lies almost exactly over the exact distribution in Figure
1, this illustrates its high degree of accuracy. We may draw similar conclusions for Cases II
and III from Figures 2 and 3.

Lastly, near-exact distributions are evaluated in terms of their computational time re-
quirements relative to each other. By their very nature, exact and empirical distributions are
time consuming and will not be feasible for regular use. Tables 4, 5 and 6 show, respectively
for Cases I, II and III, the computer run-time for the first and second near-exact distribu-
tions, for various precision parameter value. For both near-exact distributions, computer
run-time increase with an increase in precision parameter. The second near-exact distri-
bution, the more accurate, takes relatively longer time. It can be concluded that with the
near-exact distributions, the accuracy is at a cost of computer run-time.
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Figure 1: Case I - (i) normal representation and (ii) magnified version, over a subset of the
domain, of the first near-exact, second near-exact, empirical and exact cdf plots

(i) (ii)
Insert figure NORMAL Insert figure MAGNIFIED version

Figure 2: Case II - (i) normal representation and (ii) magnified version, over a subset of the
domain, of the first near-exact, second near-exact, empirical and exact cdf plots

4 Applications

4.1 The distribution of the ratio of generalized variances

The generalized variance was first introduced in [20]. It is a very important concept in
multivariate analysis since a number of statistics are in terms of the generalized variance
e.g. Wilks lambda. It is a univariate measure of spread for multivariate data. In this
section, a ratio of two independent generalized variance is studied. This particular statis-
tic was first studied in its introductory paper [20]. It can be viewed as being analogous
with the F− test statistic in univariate analysis of variance ([21], p.292). From this point
of view, the statistic should receive wide application in multivariate analysis of variance
(MANOVA). However, the Wilks’ lambda (denoted Λ) has instead been applied widely to
“Its mathematical tractability, and further it is related to the likelihood ratio criterion” ([21],
p.292). Below we show that the ratio of generalized variances is distributed as a ratio of
independent χ2 distributed random variables. Therefore, near-exact distribution of the ratio
of independent generalized gamma random variables can be useful in modeling the ratio
of independent generalized variances and therefore circumventing the issue of mathematical
tractability. Whereas Wilks’ lambda bears some resemblance with Pillai’s trace which is
also used in multivariate analysis of variance (MANOVA), the ratio of generalized gamma
bears a similar resembles with Hotelling−Lawley trace also used in MANOVA. This provides
more rationale to its candidacy as another test statistic in MANOVA. Suppose that A and
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(i) (ii)
Insert figure NORMAL Insert figure MAGNIFIED version

Figure 3: Case III - (i) normal representation and (ii) magnified version, over a subset of the
domain, of the first near-exact, second near-exact, empirical and exact cdf plots

Table 4: Case I: Run-time for near-exact distributions

Distribution Precision parameter
type 4 10 15 20

First near-exact 0.016 0.062 0.109 0.172
Second near-exact 0.671 1.547 2.390 3.266

B are two independent p× p random matrices such that A ∼ W (nA,Σ) and B ∼ W (nB,Σ).

It follows that |A||Σ|
∼=

p∏
j=1

YnA−j+1 where YnA−j+1 ∼ χ2(nA − j + 1) (see [22], p.100 theorem

3.2.15). Similarly, |B||Σ|
∼=

p∏
j=1

YnB−j+1 where YnB−j+1 ∼ χ2(nB − j + 1).

Let

W =
|A|
|B|

. (19)

Another representation of (19) is

W =
|A|/|Σ|
|B|/|Σ|

∼=

p∏
j=1

YnA−j+1

p∏
j=1

YnB−j+1

.

Therefore (4.1) is distributed as a ratio of χ2 distributed random variables i.e. a special
case of (5). By application of results provided in [10], the pdf of W (see (4.1)) terms of the
Meijer’s−G function is

fW (w) =

p∏
j=1

1

Γ(nA−j+1
2

)Γ(nB−j+1
2

)
GnB nA
nA nB

[w|−
nB
2
,−nB−1

2
,...,−nB−p+1

2
nA
2
−1,

nA−1

2
−1,...,

nB−p+1

2
−1

] (20)

By first noting that W in (19) can be represented as a product of independent beta random
variables, [23] arrived the same pdf of W as (20).

Below, an application of the test statistic W in multivariate multiple regression is sug-
gested.

Consider the well-known a regression model

Y = Z
n×(r+1)

β
(r+1)×m

+ ε
n×m

(21)

Such that
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Table 5: Case II: Run-time for near-exact distributions

Distribution Precision parameter
type 4 10 15 20

First near-exact INSERT VALUES ? ? ?
Second near-exact INSERT VALUES ? ? ?

Table 6: Case III: Run-time for near-exact distributions

Distribution Precision parameter
type 4 10 15 20

First near-exact INSERT VALUES ? ? ?
Second near-exact INSERT VALUES ? ? ?

E(Y ) = Zβ (22)

Let Z = [ Z1
n×(q+1)

| Z2
n×(r−q)

] and β = [ β1
(q+1)×m

| β2
(r−q)×m

] is an (r + 1)×m matrix of unknown

parameters. Our interest is to test the hypothesis

H0 : β(2) = 0 against H1 : β(2) 6= 0 . (23)

Let

Σ̂ = n−1(Y − zβ̂)′(Y − zβ̂)

Σ̂1 = n−1(Y − zβ̂(1))
′(Y − zβ̂(1)) (24)

such that E = nΣ̂ ∼ W (n − r − 1,Σ) independently of H = n(Σ̂1 − Σ̂) ∼ W (r − q,Σ)
with n the number of observations, r the number of regressors in a full model and q + 1 the
number regressors in a model under the null hypothesis in (23). Z is assumed to be a full
rank matrix. However, if it is not full rank but has rank r1 + 1 then r is replaced above by
r1 and q + 1 is replaced by rank of Z1. See ([24], page 396) for details.

In ([24], p.397, Example 7.9) Wilks lambda was used to test H0. The distribution of
Wilks lambda was approximated using the so called χ2− approximation i.e. − 2lnΛ

.∼ χ2

with m(q + 1) degrees of freedom where ”
.∼” denotes ”approximately distributed as”. The

disadvantage of this approximation is that it performs very poorly when the sample size is
small. We propose the following test statistics for H0

W ∗ =
|H|
|E|

. (25)

Note that W ∗ is an application of the test statistic W (see (19)) in multivariate multiple
regression analysis. Therefore, near-exact distributions proposed in Subsection 2.2 can be
use to approximate the distribution of W ∗.
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In the example below, H0 will be tested at 5% level with near-exact distributions used to
approximate associated p−value. The efficiency of near-exact distributions in the calculation
of p− values will be contrasted against p− values calculation using 20.

Example 4.1 In [24], p.397, Example 7.9, the author considers 18 male and female cus-
tomers rated the service in three locations of a larger restaurant chain. The ratings were
converted into an index. The following are the sample estimated of the study. A statistical
test for the significance of interaction was conducted with the following sample statistics

E =

[
2977.39 1021.72
1021.72 2050.95

]
and

H =

[
441.76 246.16
246.16 366.12

]
Therefore W ∗ = 0.0205273. Table 7 presents the p−values from χ2 approximation (critical
value is 3.42 with 8 degrees of freedom [24]), near-exact distribution (precision parameter
is) and exact distribution. Despite the differences between the values in Table 7 , all the
p−values point to the non rejection of the null hypothesis.

Table 7: p−values provided by the different approximations and the exact p-values obtained
using the inversion formulas in [19]

Method p−value
χ2 approximation 0.51
First near-exact 0.22697
Second near-exact 0.23357
Exact 0.23357

4.2 Application to SISO Networks

In [25] the authors consider a 2-dimensional strip-shaped network with randomly distributed
finite number of nodes. They assume that number of nodes in given area is described by
stationary Poisson point process. It is considered that the message propagates in a single-
input single-output (SISO) fashion over multiple hops. This process is illustrated in Figures
1 and 2 of [25]. As mentioned by the authors, the received power (considering only two
channel distortions; fading and path loss) is given by

Pr =
PtX

dα
(26)

where

- Pt is the transmit power;
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- X characterizes the phenomenon of fading, and is assumed to have an exponential
distribution, with density

fX(x) = µ exp{−µx}

which may be obtained from expression (1) by making δ = 1, λ = µ, r = 1, thus, as
already referred, it is a particular case of the generalized gamma distribution;

- and finally dα = Y , where d represents the Euclidean distance between the transmitter
and the receiver and α is the path loss exponent is, modelled by a generalized gamma
distribution. Expression (6) in [25] may be obtain from expression (1) in this paper by
considering r = k, λ = 1/θ and δ = β.

Thus, the received power in (26) is the ratio o two random variables, one with an exponential
distribution-which is a particular case of the generalized gamma distribution-and the other
with a generalized gamma distribution. In [25] the authors give an exact representation for
the cdf of X/Y in terms of the Fox H-function which is not easy to use in practical terms.
Therefore, we propose the use of the first or second near-exact distribution developed in this
paper to approximate the distribution of X/Y . Clearly, our results may also be used to
approximate the distribution of products of ratios, that is to approximate

∏p
i=1Xi/Yi.

To illustrate the use of our approximations in this application we present Figure 4 with
the cdfs of X/Y for the cases k = 2, θ = 15β, µ = 1 and β = 0.8, 1, 2. These are the same
cases addressed in Figure 3 of [25].

INSERT FIGURE PLEASE

Figure 4: cdf of X/Y for k = 2, θ = 15β, µ = 1 and β = 0.8, 1, 2

In Table 8 it is possible to observe the computing times for the cdfs of both near-exact
distributions, computed at the same specific value (empirical 0.05 quantile evaluated from a
simulated sample of size 106) for the cases considered in Figure 4.

Table 8: Computing times for the first and second near-exact cdfs - for k = 2, θ = 15β and
µ = 1

Computing time in seconds
β = 0.8 β = 1 β = 2

First near-exact INSERT VALUES
Second near-exact INSERT VALUES

5 Computational modules

Still being formatted for a more user-friendly layout. Will be added later
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6 Conclusion

Two near-exact distributions were developed to approximate the distribution of the ratio of
independent generalized gamma random variables. Both distributions can be implemented
computationally and therefore used in practice. The second near-exact distribution is more
accurate than the first one, however requires a longer computer run-time. The precision
of both near-exact distributions may be adjusted using the parameter γ. Large values of
γ provide high precision but with natural costs in computing time. The second near-exact
distribution should be used in problems where a high level of precision is required and the
first one for simple and practical problems where speed of execution may be important. In
the examples provided it is clear the important role that the ratio of generalized gamma
variables may have in practical problems and applications.
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