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Abstract: Model predictive control performance rests heavily on the accuracy of the available
plant model. To address (possibly) time-variant model uncertainty, a nominal nonlinear state-
space model is combined with an additive residual model that takes the form of a Gaussian
process. With sufficient operational data the Gaussian process model is able to effectively
describe the residual model error and reduce the overall prediction error for effective model
predictive control. The efficacy of the method is illustrated using a milling circuit simulator.

Keywords: Gaussian process, milling, model predictive control, model uncertainty, run-of-mine
ore.

1. INTRODUCTION

Model predictive control (MPC) is the most successful
form of advanced control used in the process industries
(Samad, 2016; Bauer and Craig, 2008). MPC performance
is however largely dependent on the accuracy of the plant
model that is available (Camacho and Bordons, 2012), but
plant models are often uncertain and may change over
time.

Poor process modelling is one of the three difficulties that
Hodouin (2011) lists for controlling minerals processing
plants. In fact, Hodouin (2011) goes on to note that periph-
eral control tools are as important as the controller itself in
minerals processing applications, where peripheral control
tools are all the elements in the control loop (apart from
the controller itself) that contribute to improving con-
troller performance. Peripheral control tools that mitigate
the effects of model-plant mismatch (MPM) is therefore
topical.

Detecting MPM has been illustrated by e.g. Badwe et al.
(2009) and in the minerals processing industry by e.g.
Olivier and Craig (2013). MPM detection however only
indicates a problem, but does not directly alleviate the
problem. Further analysis can be performed to compensate
directly for MPM that may be present.

It is not straightforward to obtain accurate nonlinear
dynamic models for process control (Henson, 1998). It
may be easier to derive a simplified process model and
exploit available measurement data to enhance the sys-
tem model and hence the controller performance (Hewing
et al., 2019). Non-parametric methods, that are widely
applied in machine learning, have some potential appeal
for application in this area (Pillonetto et al., 2014).

Kocijan et al. (2004) shows and early application of a GP
model to MPC. The particular appeal of GP models is that

they provide information about prediction uncertainties,
that are difficult to obtain directly from some other non-
linear parametric models. Hewing et al. (2019) shows how
a nominal system model can be combined with an additive
nonlinear component, which is modelled as a Gaussian
process (GP), to improve overall control performance.
Ostafew et al. (2016) shows how the control response time
can be reduced when the error is large and increased as
the error decreases. Yang and Maciejowski (2015) shows
GP-based MPC to achieve fault-tolerant control.

Run-of-mine (ROM) ore milling is generally the first, and
most expensive, unit operation in the metallurgical ex-
traction process (Craig and MacLeod, 1995). Apart from
the aforementioned modelling difficulties in minerals pro-
cessing, mill discharge specifications (chiefly the particle
size distribution) needs to remain under tight control to
aid downstream extraction (Wei and Craig, 2009). Even
though MPC can in general provide such tight control,
MPM may be severe enough to inhibit the controller from
achieving this goal.

This paper presents a GP-based MPC implementation,
applied to a milling circuit simulator, to illustrate how
overall control performance may be improved when the
GP regression model improves the MPC predictions.

The GP-based MPC formulation, along with the compu-
tational considerations for its evaluation, are presented in
Section 2. The milling circuit model is described in Sec-
tion 3, with the simulation setup and results in Section 5,
and finally the conclusion in Section 6.

2. GP-BASED MPC

This section describes the composition of the GP-based
MPC formulation. The standard MPC formulation is
presented first, followed by the GP model for the residual.
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Lastly the two are combined, with some computational
consideration, into the final GP-based MPC.

2.1 System model

Consider the general discrete time state-space representa-
tion of a dynamic system

xk+1 = f (xk, uk, θk, vk) (1)

yk = g (xk, uk, θk, dk, nk) (2)

where x ∈ Rn is the state vector and y ∈ Rm is
the output vector, f(·) and g(·) are possibly nonlinear
functions describing the state transitions and the outputs
respectively, k the current time step, uk contains the
exogenous inputs, θk represents the system parameters,
dk ∈ D represents the modelled disturbances, vk is the
state noise, and nk is the measurement noise.

2.2 Standard MPC formulation

Considering the system presented in equations (1) and
(2), the objective of a model predictive controller at each
sampling instant is to minimise the scalar performance
index

min
uk...uk+Nc−1

J(uk, . . . , uk+Nc−1, xk, r)

s.t. xk+1 = f (xk, uk, θk, vk)
yk = g (xk, uk, θk, dk, nk)
θc(yk . . . yk+Np , uk . . . uk+Nc−1) ≤ 0

(3)

where x : R → Rnx is the state trajectory, u : R → Rnu

is the control trajectory, xk is the state at time step k,
r is the reference signal (which may in general specify
manipulated variable or controlled variable targets), and
θc(·) is a possibly nonlinear constraint function.

The performance index (or objective function) to be min-
imised penalises output values different from the reference
values, as well as excessive control moves. The flexibility
with which control objectives can be incorporated into the
objective function is partly why MPC is such a popular
technology. The objective function used in this work is:

J(·) =

Np∑
i=1

[
‖yr,i − ŷi +D‖2Qr

+Qlyi
]

+

Nc−1∑
i=0

‖∆ui‖2R

(4)

where Np and Nc are the prediction and control horizons
respectively; ‖ · ‖2Q is the Q-weighted 2-norm; Qr, Ql, and
R are weighting matrices corresponding to the reference
tracking, linear optimization objectives (LP weights), and
control movements; yr is the output reference and ŷ is the
output prediction.

If any plant output variable does not have a specific
reference value, but should rather be minimized, the cor-
responding entry in the Qr matrix could be made zero
while the corresponding entry in the Ql matrix is given a
positive weighting value (or negative if the value should be
maximized).

The term, D = yk − ŷk (which is constant over the
prediction horizon), is included to add integral action (i.e.
zero off-set tracking) to the MPC, where yk is the plant

output and ŷk is the model output at time step k. This
conventional feedback procedure assumes the difference
between the process and model outputs is because of
additive output disturbances, which persist throughout
the prediction horizon (Meadows and Rawlings, 1997).
Although this method can be sensitive to fluctuations
in the output, it is a simple yet effective method for
compensating the effects of output disturbances.

2.3 Gaussian process regression

The Gaussian process for modelling the residual dynam-
ics is accomplished first by adapting the process model
formulation of (1) to be

xk+1 = f (xk, uk, θk) +Bd (h (xk, uk) + vk) (5)

where h (·) describes the initially unknown dynamics of the
system, that are to be learned from data, and are assumed
to lie in the subspace spanned by Bd.

Gaussian process regression is then used to infer the
function h (·) from previously collected operating data
(including states and inputs). The GP model outputs are
obtained from the residual of the measurements and the
nominal system model

zk = h (xk, uk) + vk (6)

= B+
d (xk+1 − f (xk, uk, θk)) (7)

where B+
d is the Moore-Penrose pseudo-inverse. Using

a GP prior for h (·) in each output dimension (as each
dimension is modelled separately) gives

ha | z ∼ GP (ma(z), ka(z, z
′)) (8)

where a ∈ [1, . . . , nd] with nd the number of GP outputs,
ma(z) and ka(z, z

′) are any valid functions that evaluate
the mean and covariance of ha. Here the zero mean
(m(z) = 0) and square exponential kernel (SE)

k(z, z′) = σ2
f exp

(
−1

2
(z − z′)

T
M−1 (z − z′)

)
(9)

are used, with σ2
f ∈ R1×nz and M ∈ Rnz×nz the squared

output variance and length-scale covariance matrix respec-
tively.

2.4 GP-based MPC formulation

Given the redefinition of the state equations in (5) the
MPC formulation can now be adapted as

min
uk...uk+Nc−1

J(uk, . . . , uk+Nc−1, xk, r)

s.t. xk+1 = f (xk, uk, θk) +Bdµ
d
k

yk = g (xk, uk, θk, dk, nk)
θc(yk . . . yk+Np , uk . . . uk+Nc−1) ≤ 0

(10)

where the state equation of (5) is used, but because of the
GP the predictions are now random variables.

2.5 Computational considerations

The evaluation of (5) is however intractable (Hewing et al.,
2019), and the workaround used here is to evaluate it using
an Extended Kalman Filter like approach to first linearize
(5) with respect to the random variables around the mean
as

f (xk, uk, θk) ≈ f (µx, µu)

+∇f (µx, µu)

([
x
u

]
−
[
µx

µu

])
(11)

Fig. 1. ROM ore milling circuit layout.

and use simple update equations for the state mean and
variance based on affine transformations of the Gaussian
distribution

µx
k+1 = f (µx, µu) +Bdµ

d
i (12)

Σx
k+1 = [∇f (µx, µu)Bd] Σk [∇f (µx, µu)Bd]

T
. (13)

This is a computationally cheap approach to evaluate this
intractable MPC formulation (Hewing et al., 2019).

The amount of operating data to include in the GP model
dictionary is a tuning parameter of the model. Keeping
more operational data may improve the prediction accu-
racy, but means that the model will be more sluggish to
react to changing dynamics. The number of data-points
to keep will therefore be a function of the rate at which
system dynamics are expected to change as well as the
computational load of evaluating the model with more
data. Here 100 data-points are used.

3. MILLING CIRCUIT MODEL

The milling circuit model used is fully described in Le
Roux et al. (2013), although a shortened description is
provided next for completeness. The milling circuit is
shown in Fig. 1.

The inputs into the milling circuit are the mill water feed
(MIW), mill feed ore (MFS), mill steel balls feed (MFB),
the sump water feed (SFW), the cyclone feed flow-rate
(CFF), and the speed of turning of the mill (αspeed) which
can be included if the mill motor is fitted with a variable
speed drive (as assumed here). The milling circuit outputs
are the mill load (LOAD), sump volume (SVOL), particle
size estimate (PSE), circuit throughput (THP), and the
mill power draw (Pmill).

The mill state transitions are given by:

Ẋmw = MIW − Vmwo

Ẋms = (1− αr)
MFS

Ds
− Vmso +RC

Ẋmf = αf
MFS

Ds
− Vmfo + FP

Ẋmr = αr
MFS

Ds
−RC

Ẋmb =
MFB

Db
−BC,

(14)

with

Vmwo = VV · ϕ ·Xmw

(
Xmw

Xmw +Xms

)

Vmso = VV · ϕ ·Xmw

(
Xms

Xmw +Xms

)

Vmfo = VV · ϕ ·Xmw

(
Xmf

Xmr +Xms

)
(15)

BC =
1

Dbφb
· Pmill · ϕ ·

(
Xmb

Xmb +Xmr +Xms

)
(16)

RC =
1

Dsφr
· Pmill · ϕ ·

(
Xmr

Xmr +Xms

)
(17)

FP =
Pmill

Dsφf

[
1 + αφf

(
LOAD
vmill

− vPmax

)] (18)

ϕ =


max

[
0,
(
Xmw −

(
1

εws
− 1

)
Xms

)]

Xmw




0.5

(19)

Pmill = Pmax · {1− δPv
Z2
x − δPs

Z2
r} · (αspeed)

αP (20)

Zx =
LOAD

vPmax
· vmill

− 1 (21)

Zr =
ϕ

ϕPmax

− 1. (22)

The sump state transition equations are:

Ẋsw = Vmwo + SFW − Vswo

Ẋss = Vmso − Vsso

Ẋsf = Vmfo − Vsfo

(23)

with

Vswo = CFF ·
(

Xsw

Xss +Xsw

)

Vsso = CFF ·
(

Xss

Xss +Xsw

)

Vsfo = CFF ·
(

Xsf

Xss +Xsw

)
.

(24)

The cyclone is described as:

Vccu = (Vsso − Vsfo) ·
(
1− C1 · e−

CFF
εc

)
· (25)

(
1−

[
Fi

C2

]C3
)

·
(
1− PC4

i

)

Vcwu = Vswo ·
Vccu − Fu · Vccu

Fu · Vswo + Fu · Vsfo − Vsfo
(26)

Vcfu = Vsfo ·
Vccu − Fu · Vccu

Fu · Vswo + Fu · Vsfo − Vsfo
(27)

Fu = 0.6− (0.6− Fi) · e−
Vccu
αsuεc , (28)
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Fig. 1. ROM ore milling circuit layout.
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Table 1. Parameters and constants contained
in the milling circuit equations.

Parameter Value Description

αf 0.055 Fraction of fines in the ore
αr 0.465 Fraction of rocks in the ore

φf 29.57 Power per ton of fines produced [ kW·h
t

]

φr 6.03 Rock abrasion factor [ kW·h
t

]

φb 90 Steel abrasion factor [ kW·h
t

]

εws 0.6 Maximum water-to-solids volumetric
flow at zero slurry flow

VV 84 Volumetric flow per “flowing volume”
driving force [h−1]

Pmax 1661 Maximum mill motor power [kW]
δPv 0.5 Power change parameter for volume of

mill filled
δPs 0.5 Power change parameter for fraction

solids in the mill
vPmax 0.34 Fraction of mill volume filled for maxi-

mum power
ϕPmax 0.57 Rheology factor for maximum mill

power
αP 1.0 Fractional power reduction per frac-

tional reduction from maximum mill
speed

vmill 59.1 Mill volume [m3]
αφf

0.01 Fractional change in kW/fines produced
per change in fractional filling of mill

εc 128.85 Coarse split parameter
αsu 0.87 Parameter related to solids in cyclone

underflow
C1 0.6 Constant
C2 0.7 Constant
C3 4 Constant
C4 4 Constant

Fi =
Vsso

Vswo + Vsso
(29)

Pi =
Vsfo

Vsso
. (30)

with Vcfo = Vsfo − Vcfu and Vcco = (Vsso − Vsfo)− Vccu.

The milling circuit outputs are then given by:

LOAD = Xmw +Xms +Xmr +Xmb

SV OL = Xsw +Xss

PSE =
Vcfo

Vcco + Vcfo

THP = Vcco + Vcfo

(31)

as well as Pmill given in (20). The parameter values con-
tained in the process equations are listed in Table 1 (units
are shown next to parameters that are not dimensionless).

In the simulations that follow, the system equations are
progressed using the Runge-Kutta 4th order method and
a sampling rate of 10 seconds.

4. CONTROLLER DESIGN

The output vector is given by

y =




LOAD
SV OL
PSE
THP
Pmill


 (32)

and the input vector is given by

u =




MIW
MFS
MFB
SFW
CFF
αspeed



. (33)

The design parameters required for the MPC are the Qr,
Ql, and R tuning weights. Qr is

Qr =




4 0 0 0 0
0 0 0 0 0
0 0 5e3 0 0
0 0 0 0 0
0 0 0 0 0


 (34)

which shows that PSE control is the most important refer-
ence tracking objective. The LOAD has a weak reference
tracking weight as there is some indication that an optimal
LOAD value for maximum breakage exists.

The Ql weighting matrix is given by

Ql =




0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 −1 0
0 0 0 0 1


 (35)

which indicates that the throughput should be maximized
while the mill power should be minimized.

These objectives are in contrast with each other as in-
creasing throughput generally requires increased breakage
which generally requires increased mill power draw. How-
ever, the objectives are traded off against each other by
the relative values of the tuning weights.

The manipulated variable move weights (R) are given by

R =




0.4 0 0 0 0 0
0 0.08 0 0 0 0
0 0 12.5 0 0 0
0 0 0 0.002 0 0
0 0 0 0 0 0
0 0 0 0 0 200




(36)

where (again) the relative values are important. E.g. SFW
is allowed to move much more than αspeed.

The controller manipulated variable low and high limits
are given by

U = [0, 0, 0, 0, 200, 0.4]
T

(37)

and
U = [50, 200, 10, 300, 450, 1]

T
. (38)

5. SIMULATION RESULTS

The simulation setup is described first, before the simula-
tion results are presented and discussed.

5.1 Simulation setup

The nominal parameter values used in the simulation are
as shown in Table 1. After 1 hour the PSE setpoint is
increased by 10%. Such a PSE setpoint change is not
very common apart from instances where the downstream
particle size distribution requirement for recovery has
changed. Here, the setpoint change is however used to

illustrate the reference tracking capability of the controller,
as the PSE reference is the most important controlled
variable.

Some model-plant mismatch is introduced to illustrate the
working of the GP model. The parameter αf in (14) is
adapted to be

α∗
f = α̃f · αf (39)

where αf is the nominal value as shown in Table 1 and α̃f

is defined as

α̃f = mid (−0.8, λ1 (MFS − λ2) , 0) (40)

where λ1 = 3 is a scaling constant and λ2 = 60 is close to
the steady-state solids feed; mid (·, ·, ·) is a middle of three
function that is used to clamp a value between a lower
and upper limit. This adaptation implies that as the feed
increases the fraction of fines in the feed ore increases. This
type of scenario can happen with feed from a stockpile with
multiple feeders, where the particle size distribution of the
separate sections of the stockpile where feed is taken from
are different.

As the feed increases the fraction of fines in the feed also
increases. This implies that the holdup of fines in the mill
will increase (state number 3 - Xmf ).

A decent amount of measurement noise is also added to
reinforce the fact that the method works with noisy op-
erating data. The measurement noise standard deviations
are

σy = diag

(
1

1000

1

5

1

180

1

5

1

0.1

)
, (41)

where diag(·) is the diagonal matrix. The standard de-
viations were chosen such that the noise would visually
appear significant.

At first, the nominal model as described in Section 3
is used in the MPC without the GP model active. The
simulation result illustrating the control performance with
the nominal model used for predictions is shown in Fig. 2.

Next, the GP model is included. As the fraction of fines
in the feed change exists in the plant, but not in the
process model used by the MPC, the GP should model this
uncertainty and help improve predictions. The simulation
result for this scenario is shown in Fig. 4.

5.2 Simulation results discussion

The key values (namely PSE, LOAD, and throughput) are
shown without the GP model active in Fig. 2. For the PSE
and LOAD the setpoint is indicated with the red dashed
line. For the throughput there is no setpoint, but the red
dashed line is included as a baseline value.

Some time is needed to attain steady-state from the initial
conditions. The PSE setpoint tracking is generally quite
good. The LOAD setpoint tracking is not as good, but still
fair (given the small weight given to this variable). The
throughput is initially relatively high although trending
down as Xmf is under predicted, but as the PSE setpoint
increases the throughput decreases and continues to de-
crease.

The prediction error (residual) for Xmf without the GP
model is shown in Fig. 3. As expected, the prediction is
generally negative as the solids feed is often below λ2.
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Fig. 2. Key variable results without the GP model active.
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Fig. 3. Prediction error without the GP model active.

When the GP model is active the PSE and LOAD settle
out relatively well at setpoint after the initial time required
to attain steady-state (see Fig. 4). The PSE setpoint
increase does mean that the throughput decreases, but
the throughput is maintained at a higher value for longer
because of the improved predictions.

The prediction error (residual) forXmf with the GP model
is shown in Fig. 5. Now the prediction error is quite closely
centred at about 0, implying the GP model is able to
improve the prediction accuracy.

The mean absolute error (MAE) from setpoint for the PSE
and LOAD along with the mean throughput are shown in
Table 2 for the scenarios where the GP is not used and
where the GP is used. The % change from not using the
GP to using the GP is also shown.

There is an improvement in setpoint tracking for PSE
and LOAD when using the GP model, although not that
significant. The mean throughput increase of more than
11% is however much more significant.



	 Laurentz E. Olivier  et al. / IFAC PapersOnLine 54-21 (2021) 1–6	 5

illustrate the reference tracking capability of the controller,
as the PSE reference is the most important controlled
variable.

Some model-plant mismatch is introduced to illustrate the
working of the GP model. The parameter αf in (14) is
adapted to be

α∗
f = α̃f · αf (39)

where αf is the nominal value as shown in Table 1 and α̃f

is defined as

α̃f = mid (−0.8, λ1 (MFS − λ2) , 0) (40)

where λ1 = 3 is a scaling constant and λ2 = 60 is close to
the steady-state solids feed; mid (·, ·, ·) is a middle of three
function that is used to clamp a value between a lower
and upper limit. This adaptation implies that as the feed
increases the fraction of fines in the feed ore increases. This
type of scenario can happen with feed from a stockpile with
multiple feeders, where the particle size distribution of the
separate sections of the stockpile where feed is taken from
are different.

As the feed increases the fraction of fines in the feed also
increases. This implies that the holdup of fines in the mill
will increase (state number 3 - Xmf ).

A decent amount of measurement noise is also added to
reinforce the fact that the method works with noisy op-
erating data. The measurement noise standard deviations
are

σy = diag

(
1

1000

1

5

1

180

1

5

1

0.1

)
, (41)

where diag(·) is the diagonal matrix. The standard de-
viations were chosen such that the noise would visually
appear significant.

At first, the nominal model as described in Section 3
is used in the MPC without the GP model active. The
simulation result illustrating the control performance with
the nominal model used for predictions is shown in Fig. 2.

Next, the GP model is included. As the fraction of fines
in the feed change exists in the plant, but not in the
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The key values (namely PSE, LOAD, and throughput) are
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and LOAD the setpoint is indicated with the red dashed
line. For the throughput there is no setpoint, but the red
dashed line is included as a baseline value.

Some time is needed to attain steady-state from the initial
conditions. The PSE setpoint tracking is generally quite
good. The LOAD setpoint tracking is not as good, but still
fair (given the small weight given to this variable). The
throughput is initially relatively high although trending
down as Xmf is under predicted, but as the PSE setpoint
increases the throughput decreases and continues to de-
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When the GP model is active the PSE and LOAD settle
out relatively well at setpoint after the initial time required
to attain steady-state (see Fig. 4). The PSE setpoint
increase does mean that the throughput decreases, but
the throughput is maintained at a higher value for longer
because of the improved predictions.

The prediction error (residual) forXmf with the GP model
is shown in Fig. 5. Now the prediction error is quite closely
centred at about 0, implying the GP model is able to
improve the prediction accuracy.

The mean absolute error (MAE) from setpoint for the PSE
and LOAD along with the mean throughput are shown in
Table 2 for the scenarios where the GP is not used and
where the GP is used. The % change from not using the
GP to using the GP is also shown.

There is an improvement in setpoint tracking for PSE
and LOAD when using the GP model, although not that
significant. The mean throughput increase of more than
11% is however much more significant.
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Fig. 4. Key variable results with the GP model active.
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Fig. 5. Prediction error with the GP model active.

Table 2. Evaluation parameters.

Parameter No GP With GP ∆ (%)

MAE (PSE) 4.86× 10−3 5.09× 10−3 4.73%
MAE (LOAD) 1.92× 10−3 1.98× 10−3 3.13%
Mean THP 14.68 16.40 11.72%

6. CONCLUSION

A GP-based MPC was presented in this work with ap-
plication to a milling circuit simulator. State value based
model-plant mismatch was introduced in the form of the
fraction of fines in the feed ore being a function of the
amount of fresh feed taken into the mill.

The GP was able to model the residual error resulting
from this mismatch, improving controller predictions, and
overall control performance. Control performance was im-
proved by mean throughput increasing by more than 11%
while still maintaining the PSE and LOAD setpoint track-
ing.
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