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Abstract: The bottoms product of a debutaniser column in a Fischer-Tropsch refining catpoly
unit should be maximised to ensure optimal operation of the downstream units. An accurate
estimate of the C4 hydrocarbons in the bottoms product is required to ensure that the
specification is not violated. This work demonstrates a practical implementation of a soft sensor
to estimate the %C4 material in the bottoms product of the debutaniser using the General
Distillation Shortcut (GDS) method and a random forest (RF) machine learned model. The
paper highlights practical challenges when deploying a soft sensor to an industrial plant. It is
shown how the GDS method soft sensor had to be refitted after unit maintenance was carried
out. In comparison the RF model soft sensor uses more reliable measurements and did not
require refitting after unit commissioning. Both soft sensors performed well and the choice of
soft sensor depends on the available measurements and measurement reliability.
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1. INTRODUCTION

A catalytic polymerisation (catpoly) process uses an oligo-
marisation process to transform butene and propylene
into a petrol product (Leprince, 2001). The product has
a high research octane number (RON) and is predom-
inantly olefinic. The unhydrogenated petrol product is
hydrogenated to produce paraffins which cause a decrease
in RON (De Klerk, 2012).

In a Fischer-Tropsch refining catpoly unit the feed com-
position varies significantly and the feed frequently has
heavier components than butene and propylene. The debu-
taniser considered in this paper has two feed streams.
A lighter feed stream (C4 rich) and a heavier feed (C3

- C7) (De Klerk, 2012). To remove the C5 and heavier
material the two feed streams are routed to a debutaniser
column. The overheads product of the debutaniser flow to
the catpoly reactor feed tanks while the bottoms product
goes to an isomerisation unit as shown in Fig 1.

The optimal extraction of C5 material in the bottoms of
the debutaniser is crucial for two reasons. Firstly, in the
oligomarisation reaction the C5 material reacts with C4

and lighter material which produce hydrocarbon chains
that yield lower RON components when hydrogenated
(De Klerk et al., 2004). Secondly, the C5 material can be
routed to an isomerisation unit which produces a higher
value RON petrol blending component as discussed in
De Klerk (2012) and Olivier (2017).

1 Corresponding author. E-mail: ian.craig@up.ac.za
2 The author would like to thank Dries Wiid for his contribution to
the measurement estimates used as model inputs.

Due to the monetary benefit in maximising the bottoms
product flow, an industrial linear model predictive con-
troller (MPC) is used to optimise the debutaniser column.
A soft sensor is used for the bottoms %C4 material since
there is no on-line analyser available and lab samples are
only taken every 12 hours.

This paper describes the initial %C4 soft sensor which
is designed using a first principle model where the pa-
rameters are fit using historical process data. The soft
sensor is developed using the general distillation shortcut
(GDS) method. The first principle model requires specific
measurements (Friedman, 1995) of which some are either
unreliable or unavailable and have to be estimated.

One such measurement, infrequently used by production,
was calibrated during a unit shutdown. The measurement
is an important input for the GDS soft sensor and as
a result of a measurement bias the soft sensor accuracy
deteriorated and it could not be used in the MPC. Al-
though there are methods to automatically identify er-
roneous measurements (McCoy and Auret, 2019), in this
application the measurement was identified manually and
the model refitted.

First principle models have the advantage that they are
inherently directionally accurate (Friedman et al., 2002).
However, if they rely on measurements that are not ac-
tively maintained, the model might need to be frequently
refitted, or continuously biased with each lab sample.
Black box models have the advantage that they do not
require specific inputs and this particular process does
have alternative measurements which are more reliable
than the ones required in the first principle model.
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Fig. 1. Debutaniser with two feed streams

The process is described in Section 2. Section 3 details the
first principle model used to predict the bottoms %C4 in
the initial implementation. The measurement inaccuracies
that led to an inaccurate prediction are highlighted in Sec-
tion 4. Section 5 then discusses the random forest model
used as a soft sensor. The two methods are compared in
Section 6. The paper is concluded in Section 7.

2. PROCESS DESCRIPTION

Fig. 1 shows a process flow diagram of the debutaniser
column. The lighter feed flow (F2) and heavier feed flow
(F1) come from separate operating units. The feed streams
are then combined, preheated and provided as a feed
stream to the column. Temperature T27 is controlled using
the steam flow rate through a high pressure steam (HPS)
reboiler, and a hot vapour bypass is used to control the
overheads pressure (P2).

The distillate flow (F5) does not have any composition
specifications, and is routed to the catpoly feed drum.
The bottoms flow (F6) has a maximum %C4 material
specification as set by the downstream isomerisation unit.

The two feed flows, F1 and F2, are both wild flows that
can vary by 30% from nominal over a 24 hour period. The
upstream units have limited buffering capacity. Therefore,
the feed flow rates change with upstream load changes. If
the feed debutaniser is decommissioned or hydraulically
limited the feed can be bypassed directly to the distillate
run-off. However, this is unwanted due to the monetary
benefit of increasing the %C5 and heavier material in the
bottoms flow.

The implemented debutaniser MPC has 2 manipulated
variables (MVs), 4 controlled variables (CVs), and 2 dis-
turbance variables (DVs) as summarised in Table 1. All
MPC variables are measured, except for the bottoms %C4

material which has no measurement. In Huang and Riggs
(2002) a debutaniser column is controlled with an MPC,
however in that study almost all of the column variables
are controlled by the MPC, some in a band and some at
target values. In this case the column PID controls remain
intact, and the MPC maintains all of the CVs in a band

Table 1. Debutaniser MPC variables

Label Process tag Description Units

Manipulated variables
MV1 F4

SP Reflux flow setpoint m3/h
MV2 T27

SP Tray temperature setpoint ◦C
Controlled variables
CV1 AY1

PV Bottoms mass %C4 process value %
CV2 F3

OP Steam flow controller output %
CV3 L2

OP Overheads level PID output %
CV4 L1

OP Bottoms level PID output %
Disturbance variables
DV1 F1

PV Heavier feed flow process value m3/h
DV2 F2

PV Light feed flow process value m3/h

Table 2. Debutaniser MPC operation

Label Justification/Summary of operation

Manipulated variables
MV1 Maximised to improve the overheads product purity.

Therefore C5 material in the overheads is minimised and
C4 material in the bottoms is maximised.

MV2 Key variable to boil up less heavy material.
Maximising the bottoms C5 material.

Controlled variables
CV1 Needs to remain below the maximum specification limit
CV2 Ensure the reboiler slave loop does not saturate

If the PID output goes to 0%, MV2 should decrease
If the PID output goes to 100%, MV2 should increase

CV3 Ensure the overheads level controller does not saturate
If the PID output goes to 0%, MV1 should increase
If the PID output goes to 100%, MV1 should decrease

CV4 Ensure the bottoms level controller does not saturate
If the PID output goes to 0%, MV2 should decrease
If the PID output goes to 100%, MV2 should increase

Disturbance variables
DV1 Feed-forward model for the flow of heavier material
DV2 Feed-forward model for the flow of lighter material

with a linear programming (LP) objective to maximise
the %C4 material in the bottoms flow. As a result the
MPC is implemented with a negative LP, as a negative LP
coefficient will maximise a CV (Qin and Badgwell, 2003).
The operation of the MPC as well as a description of the
variables are given in Table 2.

The importance of the bottoms C4 soft sensor is evident
from the MPC operation as it is the primary money-
making CV. Degrading soft sensor accuracy may lead to
a decrease in MPC monetary benefit. Poor MPC perfor-
mance may cause operators to constrain the MVs through
clamping as described by Olivier (2017). In extreme cases
the MPC may even be switched-off.

3. FIRST PRINCIPLE SOFT SENSOR

A first principle soft sensor model using the General Dis-
tillation Shortcut (GDS) method as described in Friedman
(1995) is used to predict the bottoms mass %C4.

3.1 General Distillation Shortcut soft sensor

The GDS method uses a short cut simulation of the
bottom half of the stripping section of the debutaniser
(Friedman et al., 2002). It is derived from the distillation
column equations for section performance as given by
Colburn (1941). More specifically (1), (4), and (7) are used
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Fig. 1. Debutaniser with two feed streams

The process is described in Section 2. Section 3 details the
first principle model used to predict the bottoms %C4 in
the initial implementation. The measurement inaccuracies
that led to an inaccurate prediction are highlighted in Sec-
tion 4. Section 5 then discusses the random forest model
used as a soft sensor. The two methods are compared in
Section 6. The paper is concluded in Section 7.

2. PROCESS DESCRIPTION

Fig. 1 shows a process flow diagram of the debutaniser
column. The lighter feed flow (F2) and heavier feed flow
(F1) come from separate operating units. The feed streams
are then combined, preheated and provided as a feed
stream to the column. Temperature T27 is controlled using
the steam flow rate through a high pressure steam (HPS)
reboiler, and a hot vapour bypass is used to control the
overheads pressure (P2).

The distillate flow (F5) does not have any composition
specifications, and is routed to the catpoly feed drum.
The bottoms flow (F6) has a maximum %C4 material
specification as set by the downstream isomerisation unit.

The two feed flows, F1 and F2, are both wild flows that
can vary by 30% from nominal over a 24 hour period. The
upstream units have limited buffering capacity. Therefore,
the feed flow rates change with upstream load changes. If
the feed debutaniser is decommissioned or hydraulically
limited the feed can be bypassed directly to the distillate
run-off. However, this is unwanted due to the monetary
benefit of increasing the %C5 and heavier material in the
bottoms flow.

The implemented debutaniser MPC has 2 manipulated
variables (MVs), 4 controlled variables (CVs), and 2 dis-
turbance variables (DVs) as summarised in Table 1. All
MPC variables are measured, except for the bottoms %C4

material which has no measurement. In Huang and Riggs
(2002) a debutaniser column is controlled with an MPC,
however in that study almost all of the column variables
are controlled by the MPC, some in a band and some at
target values. In this case the column PID controls remain
intact, and the MPC maintains all of the CVs in a band

Table 1. Debutaniser MPC variables

Label Process tag Description Units

Manipulated variables
MV1 F4

SP Reflux flow setpoint m3/h
MV2 T27

SP Tray temperature setpoint ◦C
Controlled variables
CV1 AY1

PV Bottoms mass %C4 process value %
CV2 F3

OP Steam flow controller output %
CV3 L2

OP Overheads level PID output %
CV4 L1

OP Bottoms level PID output %
Disturbance variables
DV1 F1

PV Heavier feed flow process value m3/h
DV2 F2

PV Light feed flow process value m3/h

Table 2. Debutaniser MPC operation

Label Justification/Summary of operation

Manipulated variables
MV1 Maximised to improve the overheads product purity.

Therefore C5 material in the overheads is minimised and
C4 material in the bottoms is maximised.

MV2 Key variable to boil up less heavy material.
Maximising the bottoms C5 material.

Controlled variables
CV1 Needs to remain below the maximum specification limit
CV2 Ensure the reboiler slave loop does not saturate

If the PID output goes to 0%, MV2 should decrease
If the PID output goes to 100%, MV2 should increase

CV3 Ensure the overheads level controller does not saturate
If the PID output goes to 0%, MV1 should increase
If the PID output goes to 100%, MV1 should decrease

CV4 Ensure the bottoms level controller does not saturate
If the PID output goes to 0%, MV2 should decrease
If the PID output goes to 100%, MV2 should increase

Disturbance variables
DV1 Feed-forward model for the flow of heavier material
DV2 Feed-forward model for the flow of lighter material

with a linear programming (LP) objective to maximise
the %C4 material in the bottoms flow. As a result the
MPC is implemented with a negative LP, as a negative LP
coefficient will maximise a CV (Qin and Badgwell, 2003).
The operation of the MPC as well as a description of the
variables are given in Table 2.

The importance of the bottoms C4 soft sensor is evident
from the MPC operation as it is the primary money-
making CV. Degrading soft sensor accuracy may lead to
a decrease in MPC monetary benefit. Poor MPC perfor-
mance may cause operators to constrain the MVs through
clamping as described by Olivier (2017). In extreme cases
the MPC may even be switched-off.

3. FIRST PRINCIPLE SOFT SENSOR

A first principle soft sensor model using the General Dis-
tillation Shortcut (GDS) method as described in Friedman
(1995) is used to predict the bottoms mass %C4.

3.1 General Distillation Shortcut soft sensor

The GDS method uses a short cut simulation of the
bottom half of the stripping section of the debutaniser
(Friedman et al., 2002). It is derived from the distillation
column equations for section performance as given by
Colburn (1941). More specifically (1), (4), and (7) are used
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to describe the ratio between the tray composition and
the bottoms composition as a function of the materials
volatility, internal reflux, and the number of trays in the
column section (Smets et al., 2007). The equations used
to implement the bottoms light key inferential are given
below:

The bubble point equation is described as,∑
i

Kixi = 1, (1)

where xi is the liquid fraction of the ith component and
Ki is the equilibrium constant defined by,

Ki =
P vap
i

Pi
. (2)

P vap
i is the vapour pressure which is approximated by the

Antoine relation (Green and Perry, 2008),

P vap
i = e

Ai−
Bi

Ti+Ci (3)

Pi is the absolute pressure, Ti is the temperature, and Ai,
Bi and Ci are coefficients for each component i used as
fitting parameters in this work.

The Colburn equation is defined as,

∑
i

xiRi = 1, (4)

with the Ri-factor in the Colburn relation for the bottoms
section provided in Friedman (1995) as,

Rbottoms,i =
UN+1
i − 1

Ui − 1
(Ki − 1) + 1, (5)

where N is the theoretical number of trays from the top
to the sensitive tray and Ui is defined by,

Ui =
KiFV

FL
, (6)

where FV is the internal vapour stream and FL is the
internal liquid stream for the stripping section. The sum
of the fractions of each component is equal to 1 as shown
by (7).

∑
i

xi = 1. (7)

3.2 Prediction implementation

This section describes the process variables used in the
development of the GDS soft sensor. Equations (1) to (6)
are used to obtain a practically implementable model.

A binary distillation column is assumed, and a light key
and a heavy key are defined as i ∈ {L,H}.

Vapour liquid traffic calculation The measurements
and design parameters required to calculate the internal
vapour flow (FV ) and the internal liquid flow (FL) as
specified in Smets et al. (2007) are not available for the
process in this study. However, FV and FL can still be
estimated using energy and mass balances. FV in the
bottoms of the column is approximated using an energy
balance as,

FV ≈ F3(
λs

λhc
), (8)

where F3 is the mass flow of steam, λs is the enthalpy
of vaporisation of steam, and λhc is the enthalpy of
vaporisation of the bottoms hydrocarbon product. λs and
λhc are used as fitting parameters.

FL is approximated using a mass balance at the bottoms
of the column,

FL ≈ FV + F6ρ, (9)

where F6 and ρ is the volumetric flow and density of
the bottoms product respectively. ρ is used as a fitting
parameter.

Light key calculation To calculate the light key i is
substituted with L in (3), which becomes,

P vap
L = e

AL− BL
TL+CL . (10)

AL, BL, and CL are used as fitting parameters, and TL is
the sensitive tray temperature for the light key component.
TL is not measured. However, the temperature measure-
ment directly above the stripping section (T27) and the
bottoms temperature (T1) can be used to approximate TL

as,

TL = 0.6T27 + (1− 0.6)T1. (11)

The light key equilibrium constant is then calculated as,

KL =
P vap
L

PL
, (12)

where PL is the column pressure at the light key sensitive
tray. Similar to TL, PL does not have a direct measure-
ment, and is estimated using the expected pressure drop
per tray from the bottoms pressure measurement (P1), the
sensitive tray location (as a fraction of total trays), and the
column differential pressure. Therefore,

PL ≈ P1 − 0.27(P1 − P2), (13)

where P2 is the overheads pressure measurement.

UL is calculated from (8), (9) and (12) as,

UL =
KLFV

FL
, (14)

and correspondingly the Colburn light key R-factor is,

Rbottoms,L =
UN+1
L − 1

UL − 1
(KL − 1) + 1. (15)

Heavy key calculation The heavy key calculation is sim-
ilar to the light key calculation, however most measure-
ments are directly available. To calculate the heavy key
vapour pressure, i is substituted with H in (3),

P vap
H = e

AH− BH
T1+CH . (16)

AH , BH and CH are coefficients used as fitting parameters,
and T1 is the bottoms temperature.

The heavy key equilibrium constant is calculated as,

KH =
P vap
H

P1
, (17)

where P1 is the column bottoms pressure.

UH is calculated from (8), (9) and (17) as,

UH =
KHFV

FL
, (18)

subsequently the Colburn heavy key R-factor is,

Rbottoms,H =
UN+1
H − 1

UH − 1
(KH − 1) + 1. (19)

Bottoms fraction calculation From (5), (7), (15) and (19)
the bottoms mass fraction of C4 material is solved as,

xL =
1−Rbottoms,H

Rbottoms,L −Rbottoms,H

∴ AY1 = %C4 = 100xL

(20)

Although many of the parameters used in the GDS soft
sensor can be calculated, or found in literature (Green and
Perry, 2008; Reid et al., 1977), it was not possible for this
implementation due to a restricted number of available
measurements and widely varying operating conditions. To
overcome this limitation various estimates were used and
all of the fitting parameters were fit from historical data.
The model parameters were fit using 6 months of data
with lab samples taken every 12 hours. Table 3 shows the
fitting constants for the bottoms %C4 GDS soft sensor.

Table 3. GDS model parameters

Coefficient Value Coefficient Value

λs 1424 ρ 668
λhc 291 N 8.69
AL 15.76 AH 15.76
BL 2131.42 BH 2405.96
CL -33.15 CH -39.63

4. PROCESS CHALLENGES

4.1 Bottoms pressure inaccuracy

As shown in Section 6 the initial GDS soft sensor per-
formed well in predicting the bottoms %C4 material. How-
ever, upon the initial data cleaning and model validation
it was found that P1 and P2 would often overlap, resulting
in large prediction errors.

P1 and P2 are not suitable for the GDS soft sensor be-
cause the measurement error for the pressure transmit-
ters exceeds the difference in pressure between them. The
measurement inaccuracy was overcome by inferring the
bottoms pressure.

The overheads pressure is controlled with a hot vapour
bypass controller and is considered more reliable than the
bottoms pressure. This is because the top pressure is used
for control and is monitored by process engineers to ensure
the column operates within accepted parameters, whereas

the bottoms pressure is merely an indication shown on
the human machine interface (HMI) graphic. The bottoms
pressure input into the soft sensor was changed from the
true process value to P1 ≈ P2 + 0.35F4, where F4 is the
reflux flow and 0.35 is a fitting constant that was used to
estimate the pressure drop in the column as the reflux flow
rate changes.

4.2 Unit maintenance

After the GDS soft sensor was implemented with the aug-
mented bottoms pressure it was monitored for one month
to test the prediction accuracy. Shortly thereafter the
debutaniser was decommissioned for routine maintenance.

After the maintenance the GDS soft sensor had a constant
large prediction error. The model inaccuracy was traced
to a faulty reading on the steam flow transmitter which
gave a consistently lower reading compared to the period
before the maintenance took place. The lower steam flow
measurement did not raise any concerns since it is used in a
cascade PID configuration and the T27 master temperature
loop still maintained setpoint.

The model could not be refitted immediately after com-
missioning because the process changed and was not in
operation long enough to provide sufficient training data.
This resulted in the MPC being switched off until the GDS
soft sensor could be refitted. After gathering enough pro-
cess data with the new operating conditions the original
GDS parameters were refitted in order to use the %C4

soft sensor again. Section 6 compares the GDS soft sensor
prior to (GDSinitial) and after the maintenance period
(GDSrefit), and shows how it performed after the refit.

5. RANDOM FORREST SOFT SENSOR

Random forest (RF) regression models are models that
combine the outputs of various regression trees through the
use of bagging, and they are becoming popular in process
control due to their accuracy over conventional regression
models (Kneale and Brown, 2018). A random forest model
with the initial data set used to fit the GDS parameters
was trained to fit the bottoms mass %C4. The reasons for
using a RF model are,

(1) A dataset was already available with features and
labels, i.e. the process variables used to predict %C4

with the actual lab %C4 values.
(2) Unreliable measurements do not have to be included.
(3) Model training is simple with toolboxes such as

Scikit-learn in Python (Pedregosa et al., 2011).
(4) Auret and Aldrich (2011) state that expert process

knowledge should be applied for data preprocessing
and feature selection for tree ensembles. Such knowl-
edge and sufficient data were available from the initial
GDS model fitting.

5.1 Feature list for the RF model

As discussed in Section 4, the bottoms pressure (P1) and
the steam flow (F3) are prone to inaccuracies and are not
used as model inputs. All other inputs are used as features,
i.e. P2, F4,F6, T1, and T27.
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The heavy key equilibrium constant is calculated as,

KH =
P vap
H

P1
, (17)

where P1 is the column bottoms pressure.

UH is calculated from (8), (9) and (17) as,

UH =
KHFV

FL
, (18)

subsequently the Colburn heavy key R-factor is,

Rbottoms,H =
UN+1
H − 1

UH − 1
(KH − 1) + 1. (19)

Bottoms fraction calculation From (5), (7), (15) and (19)
the bottoms mass fraction of C4 material is solved as,

xL =
1−Rbottoms,H

Rbottoms,L −Rbottoms,H

∴ AY1 = %C4 = 100xL

(20)

Although many of the parameters used in the GDS soft
sensor can be calculated, or found in literature (Green and
Perry, 2008; Reid et al., 1977), it was not possible for this
implementation due to a restricted number of available
measurements and widely varying operating conditions. To
overcome this limitation various estimates were used and
all of the fitting parameters were fit from historical data.
The model parameters were fit using 6 months of data
with lab samples taken every 12 hours. Table 3 shows the
fitting constants for the bottoms %C4 GDS soft sensor.

Table 3. GDS model parameters

Coefficient Value Coefficient Value

λs 1424 ρ 668
λhc 291 N 8.69
AL 15.76 AH 15.76
BL 2131.42 BH 2405.96
CL -33.15 CH -39.63

4. PROCESS CHALLENGES

4.1 Bottoms pressure inaccuracy

As shown in Section 6 the initial GDS soft sensor per-
formed well in predicting the bottoms %C4 material. How-
ever, upon the initial data cleaning and model validation
it was found that P1 and P2 would often overlap, resulting
in large prediction errors.

P1 and P2 are not suitable for the GDS soft sensor be-
cause the measurement error for the pressure transmit-
ters exceeds the difference in pressure between them. The
measurement inaccuracy was overcome by inferring the
bottoms pressure.

The overheads pressure is controlled with a hot vapour
bypass controller and is considered more reliable than the
bottoms pressure. This is because the top pressure is used
for control and is monitored by process engineers to ensure
the column operates within accepted parameters, whereas

the bottoms pressure is merely an indication shown on
the human machine interface (HMI) graphic. The bottoms
pressure input into the soft sensor was changed from the
true process value to P1 ≈ P2 + 0.35F4, where F4 is the
reflux flow and 0.35 is a fitting constant that was used to
estimate the pressure drop in the column as the reflux flow
rate changes.

4.2 Unit maintenance

After the GDS soft sensor was implemented with the aug-
mented bottoms pressure it was monitored for one month
to test the prediction accuracy. Shortly thereafter the
debutaniser was decommissioned for routine maintenance.

After the maintenance the GDS soft sensor had a constant
large prediction error. The model inaccuracy was traced
to a faulty reading on the steam flow transmitter which
gave a consistently lower reading compared to the period
before the maintenance took place. The lower steam flow
measurement did not raise any concerns since it is used in a
cascade PID configuration and the T27 master temperature
loop still maintained setpoint.

The model could not be refitted immediately after com-
missioning because the process changed and was not in
operation long enough to provide sufficient training data.
This resulted in the MPC being switched off until the GDS
soft sensor could be refitted. After gathering enough pro-
cess data with the new operating conditions the original
GDS parameters were refitted in order to use the %C4

soft sensor again. Section 6 compares the GDS soft sensor
prior to (GDSinitial) and after the maintenance period
(GDSrefit), and shows how it performed after the refit.

5. RANDOM FORREST SOFT SENSOR

Random forest (RF) regression models are models that
combine the outputs of various regression trees through the
use of bagging, and they are becoming popular in process
control due to their accuracy over conventional regression
models (Kneale and Brown, 2018). A random forest model
with the initial data set used to fit the GDS parameters
was trained to fit the bottoms mass %C4. The reasons for
using a RF model are,

(1) A dataset was already available with features and
labels, i.e. the process variables used to predict %C4

with the actual lab %C4 values.
(2) Unreliable measurements do not have to be included.
(3) Model training is simple with toolboxes such as

Scikit-learn in Python (Pedregosa et al., 2011).
(4) Auret and Aldrich (2011) state that expert process

knowledge should be applied for data preprocessing
and feature selection for tree ensembles. Such knowl-
edge and sufficient data were available from the initial
GDS model fitting.

5.1 Feature list for the RF model

As discussed in Section 4, the bottoms pressure (P1) and
the steam flow (F3) are prone to inaccuracies and are not
used as model inputs. All other inputs are used as features,
i.e. P2, F4,F6, T1, and T27.
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In processes with sufficient upstream buffering capacity
the distillation column feed flows will vary less in relation
to the other column measurements to maintain stability.
This usually make them bad inputs to use in black box
models because it provides little variation with which to
train the models. In this work the feed flows, F1 and F2, are
ideal additional input variables because they vary over a
large range in a short span. Additionally, they are reliable
as they are used for custody transfer. The ratio of the two
feed flows are also a direct indication of the change in feed
composition.

Overfitting of the decision tree was prevented by adding F2

and the ratio of F2 to F1 as inputs. F2 was added since it is
the biggest flow, and the input FeedRatio = F2

F1
improved

the robustness of the model since the range of operation
of F1 and F2 is no longer a concern, but only their relative
movement. By still using F2 as an independent input the
reboiler duty dynamics can inherently be captured.

5.2 Hyperparameters used in the Scikit-learn training

A RF model is fitted using the RandomForestClassifier
function from Scikit-learn. The RF regressor has a large
set of hyperparameters that can be set when training a RF
model. To prevent overfitting the depth of each decision
tree was limited to 8. Additionally, the number of decision
trees in the ensemble was increased to 100. By boot-
strapping 100 decisions trees, the different operating range
dynamics could be captured by the model. Practically it
was observed that with 10 decision trees the outlier values
were not predicted, i.e. sudden jumps in %C4 material
could not predicted.

6. RESULTS AND DISCUSSION

In this section the accuracy of the GDSInitial, GDSRefit and
the RF soft sensors are compared. There are three time
periods used for soft sensor development and comparison,

(1) Training data - the data used to fit the GDSInitial
parameters and then also to train the RF model.

(2) Deployment testing data - the period where the
GDSInitial soft sensor was used and tested. The RF
model is tested with the same process values.

(3) Post-maintenance - the process variables after the
unit was recommissioned with the new steam flow
operating region.

6.1 Metrics to calculate the soft sensor performance

The first metric is the model accuracy calculated from the
mean absolute percentage error (MAPE),

MAPE =
100

n

n∑
t=1

|yt − ȳt
yt

|

∴ %Accuracy = 100(1−MAPE),

(21)

where n is the total number of sample points, yt is the
actual value at sample point t, and ȳt the predicted value.

The mean absolute error (MAE) was used to calculate the
absolute error that can be expected,

MAE =

∑n
t=1 |yt − ȳt|

n
. (22)

A mean direction accuracy (MDA) metric gives a per-
centage of how often the sign change for the prediction
and true measurement are the same (Blaskowitz and Her-
wartz, 2011). MDA indicates the qualitative accuracy of
the model and is calculated as,

MDA =
1

n

n∑
t=2

1sign(yt−yt−1) == sign(ȳt−yt−1), (23)

6.2 Soft sensor results

The GDS soft sensor and the RF soft sensor results are
shown in Figs. 2 to 4. The performance metrics for the
soft sensors are summarised in Table 4.

Table 4. Summary of model results

Training data period
Soft sensor model %Accuracy MAE MDA

GDSinitial 66% 0.1 60%
GDSrefit 2% 0.54 32%
RF 86% 0.036 73%

Deployment testing period
Soft sensor model %Accuracy MAE MDA

GDSinitial 72% 0.085 51%
GDSrefit 1.9% 0.52 31%
RF 80% 0.06 62%

Post-maintenance period
Soft sensor model %Accuracy MAE MDA

GDSinitial 55% 0.18 50%
GDSrefit 73% 0.09 52%
RF 81% 0.06 61%

Fig. 2 shows that the GDSinitial was accurate when com-
pared to the lab samples, with a %Accuracy of 72%. After
the maintenance period the %Accuracy dropped to 55%
with the normalised MAE increasing from 0.085 to 0.18.
Fig. 3 shows that the GDSrefit model is accurate for
the post-maintenance period (%Accuracy is 73%). The
MDA for the initial model remained similar in all periods,
illustrating the advantage of using a first principle model.
Fig. 4 shows that the RF model fits both the deployment
and post-maintenance period well with %Accuracy values
of 80% and 81% respectively. This shows that with the
more reliable measurements the RF model was not im-
pacted by the sudden change in steam flow after the unit
shutdown.

Fig. 2. GDSinitial results showing the %C4 predictions
compared to the true lab samples (normalised).

Fig. 3. GDSrefit results showing the %C4 predictions
compared to the true lab samples (normalised).

Fig. 4. RF results showing the %C4 compared to the lab
samples (normalised).

7. CONCLUSION

Two different methods were proposed to develop a bottoms
mass %C4 material soft sensor for a debutaniser column.
Both methods proved to provide accurate results and
the performance metrics indicated both soft sensors are
quantitatively and qualitatively accurate making either
suitable to implement in an industrial MPC.

A first principle GDS model for predicting the bottoms
mass %C4 material was detailed along with practical ex-
amples of how it could be used. This model had to be
refitted after a measurement error occurred, and subse-
quently performed just as well as before. This soft sensor
has the advantage that it remains directionally accurate
in the presence of such a measurement error.

For a RF machine learned soft sensor it was shown
how a proper feature set should be selected. This set
contained reliable measurements that directly influence
the quality specification, and only a few hyperparameters
were required to fit the RF model. The RF model had
the advantage that it does not have to conform to a strict
input vector and as a result more accurate and reliable
measurements can be considered. This was illustrated by
the RF soft sensor remaining accurate before and after the
unit maintenance period. The RF model was not tested
with artificial measurement error on any of its inputs and
is recommended for future study.
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Fig. 3. GDSrefit results showing the %C4 predictions
compared to the true lab samples (normalised).

Fig. 4. RF results showing the %C4 compared to the lab
samples (normalised).

7. CONCLUSION

Two different methods were proposed to develop a bottoms
mass %C4 material soft sensor for a debutaniser column.
Both methods proved to provide accurate results and
the performance metrics indicated both soft sensors are
quantitatively and qualitatively accurate making either
suitable to implement in an industrial MPC.

A first principle GDS model for predicting the bottoms
mass %C4 material was detailed along with practical ex-
amples of how it could be used. This model had to be
refitted after a measurement error occurred, and subse-
quently performed just as well as before. This soft sensor
has the advantage that it remains directionally accurate
in the presence of such a measurement error.

For a RF machine learned soft sensor it was shown
how a proper feature set should be selected. This set
contained reliable measurements that directly influence
the quality specification, and only a few hyperparameters
were required to fit the RF model. The RF model had
the advantage that it does not have to conform to a strict
input vector and as a result more accurate and reliable
measurements can be considered. This was illustrated by
the RF soft sensor remaining accurate before and after the
unit maintenance period. The RF model was not tested
with artificial measurement error on any of its inputs and
is recommended for future study.
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