Improving the identification of influenza A virus from wild bird faecal samples in South Africa

By

Thandeka Precious Phiri

Supervisor : Professor Celia Abolnik

Submitted in partial fulfilment of the requirements for the degree

MSc Veterinary Science

In the Department of Production Animal Studies

University of Pretoria

October 2021

DECLARATION

I, Thandeka Precious Phiri declare that the dissertation submitted to the University of Pretoria for an MSc degree in Veterinary Science at the Department of Production Animal Studies and the content is my original work and has not previously been submitted for a degree at any tertiary institution.

Signature:

Date:

ACKNOWLEDGEMENTS

Research Funding

The research study was funded by the Exotic leather cluster "healthy flocks-quality leather" grant.

• Fieldwork

I would like to thank Mr Francois van der Merwe for allowing me to collect samples at the African Pride Irene Country Lodge and using the location for my focal study area on wild waterfowl.

• Supervisor

I would like to express my gratitude to Professor Celia Abolnik for giving me an opportunity to further my studies and for the support she has given me through the years of working closely with her.

• Family

My deepest gratitude goes to my mother (Nomvula Phiri) for constantly being my pillar, helping me with my children and giving me strength when I needed it the most. To my cousin Edith Maphisa and her husband Ezekiel Maphisa, I am forever grateful for giving me a chance to better myself in life and seeing great potential in me.

SUMMARY

Influenza A virus (IAV) is a single-stranded negative-sense RNA virus that is a member of the Orthomyxoviridae group. IAV has been detected in over 100 bird species from 26 different families, although Anseriformes and Charadriiformes are considered the natural host of the virus. Surveillance of wild birds for IAV is important as it plays a role in the early detection system for the introduction of potentially dangerous IAV strains with the ability to cause damage in the poultry industry, or even affect human health. Fresh wild bird faecal samples at a wild ducks' roosts may contain a high concentration of IAV. A method developed by Zhou et al. in 2009 described the amplification of full IAV genome in a single tube, and this method has been successfully employed at the University of Pretoria (UP) in the subtyping of IAV in clinical samples (organs and tracheal swabs). However, when applied to environmental faecal samples the technique was unsuccessful, presumably due to PCR inhibitors and a high level of contaminating nucleic acids from bacteria. Therefore, the first objective of this study was to optimize the IAV pan-genome RT-PCR for environmental faecal samples. PCR parameters such as MgSO₄ concentration, annealing temperatures, and different PCR reagents were optimized on spiked faecal samples. The second objective was to screen fresh environmental faecal samples from wild duck at a site in Pretoria to identify positive field samples for testing. A total of 2,144 faecal swabs were collected from January through-February 2021 and screened with IAV-specific real-time RT-PCR assay. Two samples with positive results were submitted to the Central Analytical Facility in Stellenbosch University for Ion Torrent Next-Generation Sequencing. After assembling the results in the CLC Genomics Workbench software and verifying the results by BLAST analysis, TP2118 was conclusively identified as an H9N2 strain, but whereas the presence of IAV-specific internal genes could be identified for TP2067, the sequence data was insufficient to identify the subtype. TP2118 represents the first H9N2 virus ever detected in wild ducks in Gauteng Province.

TABLE OF CONTENTS

Declaration	i
Acknowledgements	ii
Summary	. iii
Table of Contents	. iv
List of figures	. vi
List of Tables	. vi
List of Abbreviations	.vii
CHAPTER 1: LITERATURE REVIEW	1
1.1. Classification	1
1.2. Influenza A virus genome structure	1
1.3. Functions of influenza A gene segments	2
1.4. Ecology and Epidemiology	5
1.5. Threat to poultry	7
1.6. AIV threat in South Africa	8
1.7. Surveillance for AIV	9
1.8. Problem Statements	11
1.9. Research questions	11
1.10.Research Aims and Objectives	11
CHAPTER 2: Optimization of a full genome RT-PCR for Influenza A virus	.13
2.1. Introduction	13
2.2. Materials and Methods	15
2.2.1. Nucleic acid extraction	15
2.2.2. Optimized primer set	15
2.2.4. Optimization of M-RTPCR using an increased nucleic acid volume and different annealing reverse transcription temperature	16
2.2.5. Optimization of M-RTPCR using Phusion flash high fidelity kit	
2.2.6. Preparation of a duck faecal sample spiked with IAV	19
2.2.7. Sensitivity of rRT-PCR assay on serially diluted spiked faeces	
2.3. Results	20
2.3.1 Comparison of standard and optimized primer set	20
2.3.2. Effects of different MgSO ₄ concentration	21
2.3.3. Effects of RNA template volume and annealing temperature	
2.3.4. Comparison of the efficiency of Superscript III kit and Phusion flash mix	23
2.3.5. Sensitivity of rRT-PCR assay on serially diluted spiked duck faeces	24
2.4. Discussion	27

CHAPTER 3: Field sample screening and IAV genome application	28
3.1. Introduction	28
3.2. Materials and Method	30
3.2.1. Environmental sampling	30
3.2.2. Screening of IAV (M) gene by rRT-PCR	30
3.2.3: Testing of positive faecal swab samples using optimized M-RTPCR	30
3.2.4. Pre-treatment methods of spiked duck faecal samples and comparison of extraction methods	31
3.2.5. Post-treatment of nucleic acid	32
3.3. Results	33
3.3.1. Screening of IAV (M) gene using rRT-PCR results	33
3.3.2: Optimization and comparison of nucleic acid extraction of spiked faecal swabs	35
3.3.3: Optimization of spiked faecal duck sample by pre-treating using filtration	38
3.3.4: Optimization of Trizol extraction method using Phenol-Chloroform Isoamyl in serially diluted spiked duck faecal samples	41
3.3.4. Post treatment of nucleic acid template	43
3.4. Discussion	47
CHAPTER 4: Identification of positive influenza A virus samples using Next Generation	ו
Sequencing	49
4.1. Introduction	
4.2. Materials and Methods	51
4.2.1. Construction of an IAV reference sequence database	51
4.2.4. Verification of sequence identities through BLAST analysis	53
4.3. Results	54
4.3.1. Assemble to reference results for TP2118	54
4.3.2. Verification of sequence identity using BLAST analyses for TP2118	57
4.3.3. Assemble to reference results for TP2067	60
4.3.4. Verification of sequence identity using BLAST analyses for TP2067	63
4.5. Discussion	65
CHAPTER 5: Conclusion	67
References	68
Appendices	72
Appendix A : rRT-PCR screening results for wild duck environmental samples	72
Appendix B : Research Ethics Approval1	166
Appendix C: Section 20 Ethical Approval	117

LIST OF FIGURES

Figure 1.1: Structure of influenza A virus and genome segments	2
Figure 1.2: Influenza A virus genome segments and brief description	5
Figure 1.3: Avian influenza virus spread from the natural host	6
Figure 2.3.1 Comparison of M-RTPCR	20
Figure 2.3.2. : Effects of different MgSO ₄ concentrations gel image	21
Figure 2.3.3: Effects of RNA template gel image	22
Figure 2.3.4: Comparison of the efficiency of Superscript III kit and Phusion flash	23
Figure 2.3.5: rRT-PCR amplification of serial dilution of spiked faecal samples	24
Figure 2.3.6: Phusion flash M-RTPCR	26
Figure 3.1:: Representation of faecal swabs collected	33
Figure 3.2.:M-RTPCR on IAV positive faecal samples	34
Figure 3.3.: M-RTPCR results for Trizol extracted viral nucleic acid	36
Figure 3.4: M-RTPCR results for IndiMag 48s extracted viral nucleic acid	37
Figure 3.5.: M-RTPCR results for filtered Trizol extracted nucleic acid	39
Figure 3.6.: M-RTPCR results filtered IndiMage 48s extracted nucleic acid	40
Figure 3.7.:M-RTPCR assay on serial dilutions od spiked faecal samples	42
Figure 3.8.: M-RTPCR pre-and post heating results	43
Figure 3.9.:M-RTPCR results for positive faecal samples	.45

LIST OF TABLES

Table 2.1: Standard and optimized primer set of M-RTPCR	.16
Table 2.2: Comparative costs for M-RTPCR reagents	. 18
Table 23:Sensitivity evaluation for the serial dilution factor	25
Table 3.1: Optimization of viral nucleic acid extraction	.35
Table 3.2: Optimization of nucleic acid extraction from filtered	.38
Table 3.3: Modified and standard Trizol extraction method and PCI	.41
Table 3.4.Comparison of positive samples extracted	.44
Table 3.5: Measuring of nucleic acid concentration	46:
Table 4.1: Reference sequence used for mapping	.52
Table 4.2.: Assemble to reference for TP2118	54
Table 4.3: BLAST analyses results for TP2118	57
Table 4.4: Assemble to reference results for TP2067	.60
Table 4.5: BLAST analyses results for TP2067	.63

LIST OF ABBREVIATIONS

	r			
%	Percentage			
μl	Microliters			
ABI	Applied Biosystem Instrument			
AIV	Avian influenza virus			
Вр	Base pair			
BLAST	Basic Local Alignment Search Tool			
Ct	Cycle threshold			
dNTPs	Deoxynucleoside triphosphate synthesis			
G	Grams			
НА	Hemagglutinin			
HPAI	High pathogenic avian influenza			
IAV	Influenza A virus			
Kb	Kilo base			
KZN	KwaZulu Natal			
LPAI	Low pathogenic avian influenza			
MgSO ₄	Magnesium Sulphate			
Min	Minutes			
MI	Millilitres			
mM	Millimolar			
M1+M 2	Matrix protein 1 and 2			

[
M	multisegmented real time PCR	
RTPCR		
NA	Neuraminidase	
Nm	Nanometers	
NGS	Next generation sequencing	
NP	Nucleoprotein	
NS	Non-structural protein	
Nt	Nucleotide	
NTC	Negative template control	
PA	Polymerase Acid	
PB1	Polymerase basic protein 1	
PB1-F2	Polymerase basic 1 F2	
PB2	Polymerase basic protein 2	
pmole	Picomole	
RCF	relative centrifugal force	
RNP	Ribonucleoprotein	
Rpm	Revolutions per minute	
rRT-	reverse Real Time Polymerase	
PCR	Chain Reaction	
RT	Room Temperature	
Sec	Seconds	
ssRNA	single stranded RNA	
vRNA	Viral RNA	
vRNP	Viral ribonucleoprotein	
VTM	Viral Transport Medium	

CHAPTER 1: LITERATURE REVIEW

1.1. Classification

The Orthomyxoviridae is a biological family of viruses that contain of enveloped negative sense single stranded RNA (ssRNA) segmented genomes. There are seven separate genera in the group; four of which are important influenza virus representatives namely : Alphainfluenzavirus (influenza A virus); Betainfluenzavirus (influenza B virus); Gammainfluenzavirus (influenza C virus) and the newly discovered Deltainfluenzavirus (influenza D virus). Each viral subtype is defined based on antigenic differences (Sangkakam et al., 2021, Nelson, 2022). Influenza virus type A (IAV) causes the disease Avian Influenza as it affects and infects the avian species but it has been found to infect humans and other mammals (swine and horses) causing significant morbidity and mortality (Suarez and Schultz-Cherry, 2000, McAuley et al., 2019). Influenza B and C virus are found in humans, however type B has also been found to infect seals and cause annual epidemics in people. Influenza C virus has also been detected in swine although reassortment has been detected in the virus; it does not cause serious disease and results in mild asymptomatic infections in both host species (humans and swine). The recently discovered influenza D virus was detected in cows and bats. Neither influenza B,C or D viruses have been detected in avian species thus far (Klenk et al., 2008, Sangkakam et al., 2021, Nelson, 2022).

1.2. Influenza A virus genome structure

Influenza A virus (IAV) is a spherical pleomorphic virus that ranges between 80 to 120 nm in diameter (Figure 1). The IAV is composed of eight different genome segments ranging from 2340 to 890 nucleotides totalling approximately 13.5 kb and encoding for at least eleven different genes (Suarez and Schultz-Cherry, 2000). Polymerase basic (PB1 and PB2), polymerase acid (PA), hemagglutinin (HA), neuraminidase (NA), matrix protein (M1), membrane ion channel (M2), nucleoprotein (NP) and nonstructural proteins (NS1 and NS2) are the encoded in the viral genome segments. There are three surface proteins in the viral structure (M2, HA and NA) and five internal proteins (NP, M1, PA, PB1 and PB2), the latter forming the components of the ribonucleoprotein (RNP). The

RNP, composed of viral RNA, an RNA segment dependent RNA polymerase complex, and multiple nucleoproteins form a helical rod-like shaped structure with a uniform diameter of approximately 12 nm ((Nakatsu et al., 2016). Nucleotides at both ends of the viral genome serve as promoters for replication and transcription. When the viral genome is reassorted it results in the spread of novel viruses among bird species (Abolnik et al., 2007, Nakatsu et al., 2016).

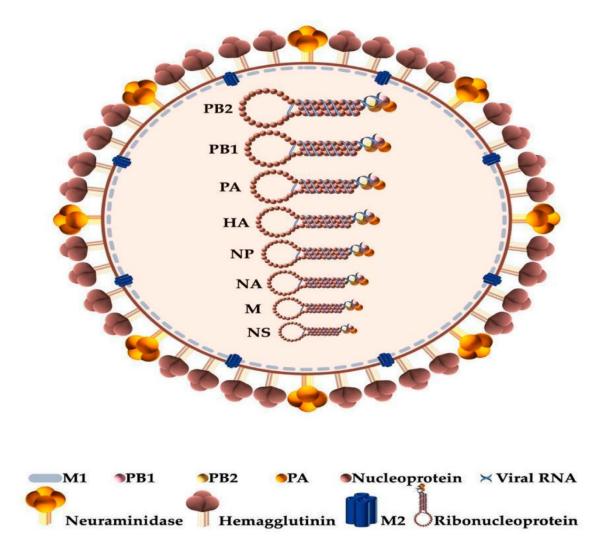


Figure 1.1: Structure of influenza A virus and genome segments https://www.mdpi.com/1422-0067/21/4/1511/htm

1.3. Functions of influenza A gene segments

IAV is a genetically diverse virus that is classified using surface glycoproteins, e.g. the HA and NA proteins. The HA protein is critical in determining viral pathogenicity. It is synthesized as a precursor protein (HAO) and cleaved post-translationally by cellular serine proteases into two functional protein subunits, HA1 and HA2. Proteolytic cleavage of the HA protein is required for virus infection, with the outcome dependent on the host


and viral strain. The presence or absence of multiple basic amino acids at the cleavage site of HA protein influences IAV pathogenicity in a host, e.g. the insertion of a basic amino acid at the cleavage site may result from mutations at the IAV cleavage site. In addition, existing proteases, like furin, can cleave such mutated HAs, allowing the virus to spread. It is through this mechanism that a low pathogenic influenza virus becomes a high pathogenic influenza virus (Munch et al., 2001, Arbeitskreis Blut, 2009, Yamauchi, 2018). The NA protein efficiently releases virus progeny and allows them to spread to other cell targets. This protein helps the virus enter host cells by accelerating the breakdown of sialic acids connected to decoy receptors like mucins. It does this by decreasing virion aggregation and impeding viral binding through the HA. The functions of NA, as well as HA, involve interaction with sialic acid, which is expressed by glycoproteins at the cell surface (McAuley et al., 2019).

The PB2 protein is encoded by the longest genome segment and contributes to the infection cycle by participating in viral transcription and replication in the infected cell's nucleus. The nuclear localization signal targets the gene for transportation into infected cells' nuclei for viral transcription and replication. The protein is also responsible for the formation of the cap structure for viral mRNA and it has endonuclease activity and generates cap primers for viral mRNA synthesis using host mRNA (Cheung and Poon, 2007, Hao et al., 2019). The PB1 gene and the PB1-F2 gene is encoded by the second genome segment. The PB1 protein induces apoptosis through the interaction with mitochondrial proteins and there is an interaction between PB1-F2 and PB1 protein to retain the ribonucleoprotein. Photochemical cross-linking assays revealed that both substrate elongated product and viral RNA template were cross-linked at PB1, thereby identifying these proteins as components of the RNA polymerase. The PB1 subunit is essential for the assembly of the three polymerase protein subunits, as well as the catalytic function of RNA polymerization. This protein segment also contains an independent binding site for PA and PB2 (Cheung and Poon, 2007, Yamauchi, 2018). The PA protein is encoded by the third genome segment and contains nuclear localization signals required for transport into the nucleus. The PA subunit of influenza virus A is known to be essential for viral transcription and replication, and mutations near the carboxyl terminus inhibit transcription.

NP is encoded by the fifth segment and an RNA binding domain is found at the amino acid terminus of the protein. As a result, it's been suggested that the NP encapsulates the viral RNA in an *ad hoc* manner. It is not assumed that separation of the NP from the RNA template is essential for viral transcription and replication because the NP only

binds to the viral RNA backbone. As a result, NP may be involved in RNA polymerase's "switching" from transcription to replication. The NP has also been linked to vRNA nuclear transport, as it is a shuttle protein with nuclear localization signals. NP is thought to mediate the transport of incoming vRNPs from the viral particle into the nucleus during the early stages of viral infection. In contrast, progeny viral RNA's associated with NP, M1, and NS2 are exported to the cytoplasm for viral packaging in the late stage of infection (Cheung and Poon, 2007). Segment 7 encodes the M1 and M2 proteins that play multiple roles in the IAV cycle. The M1 segment is a collinear virion structural component with multifunctional proteins and plays a role in the replication process. According to reports, the M1 protein serves several functions for the virus, such as binding to RNA in a nonspecific manner and inhibits viral transcription and carries a nuclear localization signal which is considered to control vRNP nuclear transport. In addition, this protein promotes vRNP nuclear export and inhibits vRNP nuclear import (Cheung and Poon, 2007, Chen et al., 2013, Hao et al., 2019). The amino acid residues histidine and tryptophan are found in the transmembrane domain of the M2 protein and are responsible for pH regulation via ion channel activity. Furthermore, M2 ion activity has been reported to maintain the pH in Golgi vesicles to stabilize the native conformation of newly synthesized HA during intracellular transport and virus assembly (Cheung and Poon, 2007).

Segment eight is the smallest and encodes two proteins, NS1 and NS2. The NS1 protein is encoded in a collinear transcription gene segment that hinders transcription factors and interferon-stimulated genes from being effectively increased during interferoninduced antiviral host cell responses. By promoting viral mRNA translation, the protein enhances viral expression even further. The NS1 protein has two alleles, A and B, with A being found in both avian and mammalian species and B found only in avian species. Furthermore, the potential of different IAVs' NS1 proteins to interfere with the host immune response differs (Abolnik et al., 2007, Abolnik et al., 2016, Yamauchi, 2018). Prior studies indicate that the NS2 protein contributes to the normal transcription and replication of genomic RNAs via an unknown mechanism (Cheung and Poon, 2007).

Figure 1.2: Influenza A virus genome segments and brief description of their function https://microbewiki.kenyon.edu/index.php/The_Threat_of_Airborne_Transmission_of_In fluenza_A:_H5N1.

1.4. Ecology and Epidemiology

Avian influenza virus (AIV) is highly contagious and has been identified and isolated in over 100 birds from 26 different families. The virus infects a wide diversity of wild and domestic birds, however, wild birds are the reservoir of the virus, primarily waterfowl. Waterfowl species such as the *Anseriformes* (duck, geese and swans) and *Charadriiformes* (shorebirds and gulls) harbour H1 to H16 and N1 to N9 subtypes except for H17 and H18 which were recently discovered in bats. Combined, it leads to 144 estimated HA and NA subtypes (Webster et al., 1992, Joseph et al., 2017, Torrontegi et al., 2019).

AIV is most frequently found in *Anseriformes* and *Charadriiformes* species. These birds are globally distributed and are considered long-distance migrators and transmitters of the virus (Klenk et al., 2008). Both the *Anseriformes* and *Charadriiformes* play a key role in the epidemiology of AIV, however, the incidence of infections is mostly associated with

Anseriformes (dabbling ducks, mallard, pintails and teal) whereas *Charadriiformes* have a lower infection rate. Infection with low pathogenic avian influenza (LPAI) in waterfowl causes minimal signs of disease and these birds maintain the diverse subtypes of LPAI viral strains (an Dijk et al., 2018, Wahlgren, 2011). Different subtypes of LPAI and HPAI infect a wide variety of host's species including animals (swine and horses) humans and a wide variety of avian species (chicken, turkey and ostriches) (Figure 1.3) (Perkins and Swayne, 2002, Wahlgren, 2011).

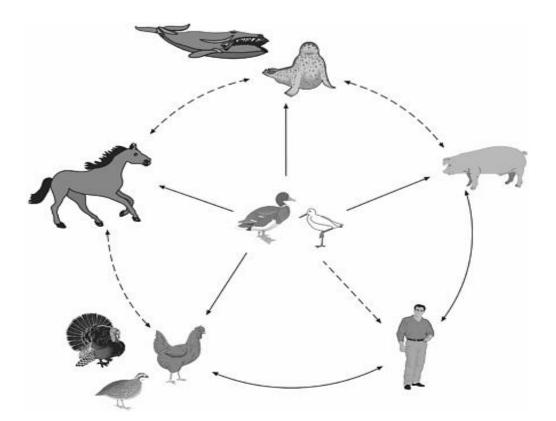


Figure 1.3: Avian influenza virus spread from the natural host to different host species https://journals.asm.org/doi/10.1128/JVI.00980-13

Interactions between Anseriformes, Charadriiformes, and Gallinaceous species frequently result in the direct and indirect introduction of AI viral strains into domesticated birds (Bergervoet et al., 2019). Waterfowl obtain AIV from the environment, such as contaminated food and shared water sources. The virus replicates in the cell lining of the gastrointestinal and respiratory tract of the host, thus AIV is asymptomatic in waterfowl and symptomatic in domestic birds (Webster et al., 1992). The prevalence of AIV in wild birds varies according to species, age, season, and geographic location. Because of the migration patterns of wild waterfowls, AIV can be carried over long distances. During their stopovers, these migrating waterfowl congregate to rest, breed, and forage with other species at a suitable wintering site, resulting in high local densities of the bird population and allowing virus transmission that can be distributed to susceptible host populations around the world (Klenk et al., 2008, Bergervoet et al., 2019). Waterfowl-to-poultry transmission can cause outbreaks of LPAI that trigger the development of the high pathogenic avian influenza virus (HPAI), or HPAI can be transmitted directly from wild birds to poultry (Webster et al., 1992, Arbeitskreis Blut, 2009).

1.5. Threat to poultry

A variety of Al viruses infect both wild and domestic birds and are commonly classified into two groups: LPAI and HPAI. Globally, influenza A viruses pose serious threats to poultry, especially the HPAI virus, which causes health problems such as lower egg production, mild respiratory disease and central nervous system impairment, which can ultimately result in death. There are only two subtypes of AIV that can acquire highly pathogenicity H5 and H7 (Webster et al., 1992, Kaoud et al., 2014, Venkatesh et al., 2018).

HPAI H5N1 is endemic in poultry in some countries, and this subtype has undergone a significant diversification over the past years. The H5 subtype has subsequently been isolated in many countries from different continents, such as Asia, Africa, and Europe causing outbreaks of infections in both poultry and wild birds and having a sporadic zoonotic transmission to humans thus raising a pandemic concern (Liu et al., 2016, Nagarajan et al., 2012).

AIV infections can have substantial effects on animal health and may cause significant financial losses to the poultry industry because of outbreaks. New influenza virus strains and subtype combinations may emerge as a result of AIV's rapid and unpredictable evolution. Changes in the virus genetic material can cause changes in the virus's features, such as enhanced virulence or a wider host range, as well as variants that are more likely to infect poultry. The recent outbreak of AIV in chicken emphasizes the necessity of global surveillance efforts for early detection and response (Bergervoet et al., 2019).

1.6. AIV threat in South Africa

In 1961, the first HPAI outbreak in South Africa was discovered in Common Terns (*Sterna hirundo*), with HPAI H5N3 being the virus strain. A total of 1300 birds died because of this virus. Waterfowl species (ducks and geese) were later discovered to be the principal hosts of LPAI presursors to HPAI viruses that emerge in poultry (Krauss and Webster, 2010, Verhagen et al., 2012).

HPAI H5N2 outbreaks occurred in South Africa in 2004 and 2006 on ostrich farms in the Eastern and Western Cape Provinces (van Helden et al., 2016). The LPAI precursor viruses originated in wild waterfowl populations, resulting in the loss of 30 000 ostriches through control measures, which represented 40% of all ostriches in the country at the time. Several other LPAI viruses have also been isolated in the same region over the past few decades, including H7N1 (1991), H5N9 (1994), H9N2 (1995), H6N8 (1998), and H10N1 (2001) (Banks et al., 2000, Abolnik et al., 2007). However, in a different region in South Africa, there was an outbreak of H6N2 in commercial poultry. The outbreak occurred in KwaZulu Natal (KZN) in June 2002 but the infection was traced back to ostriches as the source of the outbreak (Abolnik et al., 2007).

Ostriches (*Struthio camelus*) raised using an inclusive (free-range) environment are frequently exposed to waterfowl, including ducks and Egyptian geese (*Alopochen aegyticus*). There is evidence that epidemics of AIV strains originate from LPAI precursors in the wild duck reservoirs, resulting in substantial economic damage to the ostrich product industry (Abolnik et al., 2016).

1.7. Surveillance for AIV

Globally the surveillance of influenza A virus has been conducted since 1952, through the World Health Organization (WHO) surveillance and response system (Badar et al., 2013). Wild birds have been studied for the presence of AI viruses since the first identification of IAV in wild birds in 1961 (A/tern/South Africa/1961) (Verhagen et al., 2012). However, following the emergence of HPAI H5N1 viruses in Southeast Asia and the identification of the viral strain in migratory wild birds in 2005, wild bird sampling activities were increased. The growth in wild bird sampling initiatives around the world has increased the number of *Anseriformes* and *Charadriiformes* sampled (Verhagen et al., 2012).

Over the past 10 years, HPAI outbreaks have increased significantly. This spike is part of a long-term trend that shows five outbreaks for the 20 years 1959 to 1978, 13 outbreaks from 1979 to 1998, while nine outbreaks have occurred for the past 8 years (Pasick, 2008). A surveillance study conducted in the United States of America (USA) in 2006 revealed that certain HA gene sequences representing H4, H8, H10, H11, and H12 subtypes have no evidence of inter-continental exchange, whereas lower pathogenic AIV subtypes H1, H2, H6, H9, H13, and H16 have an inter-continental exchange between North America and Eurasian lineages (Deng et al., 2013).

Domestic ducks serve as a link between wild waterfowl and poultry, and they play an important role in viral ecology. Several AIV subtypes were detected in ducks, including the H5N1 and H9N2 virus strains, and are considered a public health threat. Although domesticated ducks can carry HPAI H5N1 variants and remain healthy, they can potentially succumb to the viruses in particular circumstances. In addition, in the 1970s and 1990s, the H9N2 subtype was detected in healthy ducks in Hong Kong, and it has subsequently expanded its host range to encompass poultry, becoming endemic in these birds. By transmitting genes to other influenza viruses, the H9N2 virus may pose a threat to human health (Krauss and Webster, 2010, Bergervoet et al., 2019, Tsai et al., 2020).

Venkatesh et al. (2018) discovered that other than *Anseriformes* ducks, Eurasian dabbling ducks were frequently infected with almost all IAV subtypes, but H13 and H16 was restricted to gulls. IA viruses in ducks are more prevalent during the autumn post-moult aggregation and migration stopover period with an average of 6.3 %, however, lower levels were observed in other post-moults in the northern Eurasian regions. A study conducted in Canada revealed that in wild ducks all 16 NA and 9 NA subtypes were

isolated except for H13, H14, H15 and H16, furthermore the IAV was isolated annually from both ducks and shorebirds (Krauss and Webster, 2010).

The IAV has a distinct seasonal pattern in temperate areas, with seasonal peaks during the winter. Tropical and subtropical regions experience seasonal variation in disease incidence due to mild winters, which are sometimes linked to the rainy season. In tropical and subtropical regions, the seasonal pattern is weaker (Badar et al., 2013). Eurasian waterfowls converge and mix with a varied range of Afro-tropical waterfowls in the Sub-Saharan region during the breeding season. AIV has been isolated in wild ducks during their wintering grounds in Europe, North America, and Africa, with LPAI discovered and isolated from many large wetlands holding diverse species in these regions. This revealed that the Afro tropical regions' environmental circumstances are favourable for AI persistence and spread of the virus (Gaidet et al., 2012). Environmental samples such as faeces, water, and wetland sediments, have become increasingly popular for AIV surveillance. Waterfowl can densely populate wetlands because they provide vital refuge locations during migration. Wetland areas contain a diversity of AIVs from numerous avian hosts since wild migratory ducks naturally harbour and excrete considerable volumes of AIV in their faeces for extended periods (6–28 days). As a result, wetlands are important places for AIV surveillance based on sediment and excreted faeces (Tindale et al., 2020).

Previously the surveillance of AIV was mainly focused on detecting and eliminating HPAI infections in poultry, but since LPAI H5 and H7 subtypes can undergo mutation and gain high pathogenicity the detection and control of these viruses have become mandatory (Comin et al., 2012, Moriguchi et al., 2021). Passive surveillance was used to identify HPAI early on because the virus causes obvious clinical symptoms and significant mortality in most poultry species. However, because there are no obvious symptoms of LPAI and mortality is low, active surveillance is used. The effectiveness of LPAI surveillance programs has primarily been assessed in terms of locating infected birds or assessing their risk of infection, rather than their suitability as an early warning system for new introductions (Comin et al., 2012).

1.8. Problem Statement

Studies have previously prioritized sampling waterfowl for IAVs directly rather than the wetland areas they inhabit, where a high concentration of IAVs are excreted (Hood et al., 2021, Ramey et al., 2022) The wetland habitat provides a social and ecological platform for waterfowl, migratory birds and wild birds (Kim et al., 2019). The majority of emerging epizootic and zoonotic diseases result from the interface of wetland habitat and human-dominated landscapes (such as farmlands) (Pérez-Ramírez et al., 2010, Wu et al., 2020). Researchers have shown that backyard farms near wetlands are vulnerable to IA viral transmission (Kaoud et al., 2014). The reservoir hosts (migratory birds and waterfowl) have multiple combinations of HA and NA proteins, thus these birds allow IAVs to spread over long distances resulting in the introduction of new viruses to naive bird populations (Venkatesh et al., 2018, Hopken et al., 2020, Ramey et al., 2022).

There have been few studies that have reported the isolation of IAV from environmental faecal samples collected directly from the wetland habitat and the recovery and isolation of viable IAVs from faeces deposited in the environment. The identification of IAVs from environmental faeces may provide necessary information for the circulating IAVs in waterfowl communities in a wetland habitat within a human-dominated area. In addition, the research study will improve the IAV genome sequence identification from environmental faecal samples.

1.9. Research questions

- Are faecal samples sufficient to detect the presence of IAV in wild birds and also identify the genome segments of the virus?
- Do local habitats preserve IAV excreted by wildbirds and various bird species?
- Can pre-treatment methods remove inhibitors from faecal samples and improve recovery of the virus?

1.10. Research Aims and Objectives

The aim of the research study was to improve the detection of influenza A virus from wild bird faecal samples obtained from a site in Pretoria, South Africa. The objectives of the research study were as follows:

Optimize the full genome RT-PCR for influenza A virus (Chapter 2)

The objectives of this part of the study were:

- To use prepare a spiked duck faecal sample with which to optimize the full genome M-RTPCR
- To optimize theprimer set used in the M-RTPCR
- To optimize the MgSO₄ concentration
- To optimize the nucleic acid volume and annealing temperature of the M-RTPCR
- To optimize the M-RTPCR using Phusion flash high fidelity kit (Life Technologies)

Field samples screening and IAV genome application (Chapter 3)

The objectives of this part of the study were to perform:

- Screening of faecal samples collected from wild birds at the study site
- Pre-treatment methods to improve recovery of viral nucleic acid and reduce inhibitors from faecal samples

Identification of positive IAV samples using Next Generation Sequencing (Chapter 4)

The objectives of this part of the study were to:

- Construct an IAV reference subtype sequence database
- Identify the subtype through an assembly-to-reference approach
- Perform verification of sequence identities through BLAST analysis

Approvals for this study were obtained from the UP Animal and Research Ethics Committee under project no. REC032-19 and from the Department of Agriculture, Land Reform and Rural Development under Section 20 permit no. 12/11/1/1/8 (1217) (Addendum).

CHAPTER 2: OPTIMIZATION OF A FULL GENOME RT-PCR FOR INFLUENZA A VIRUS

2.1. Introduction

Previously virus isolation in embryonated specific-pathogen-free (SPF) eggs were considered a standard technique for the detection and characterization of IAV. However, this method is time-consuming, costly, and has a high risk of contamination from biological matter (Dhumpa et al., 2011, Elizalde et al., 2014). Since the establishment of molecular methods, characterization and identification of IAV has been revolutionized and become significantly more efficient, thus the most frequently used methods include real-time RT-PCR (rRT-PCR) and multisegmented reverse transcription-PCR (M-RT-PCR). rRT-PCR has increased sensitivity, specificity, and speed when compared to traditional methods. This technique is frequently employed for targeting the matrix (M) gene with a detection limit of 0.1 EID₅₀ to 10⁻³ copies to confirm the presence of IAV, and HA and NA gene based on PCR. It can further be used to characterize the different IAV subtypes (Lee and Suarez, 2004).

rRT-PCR assays can be used to detect viral RNA, resulting in high specificity and sensitivity when compared to conventional virus isolation (Lee and Suarez, 2004). Furthermore, this method was determined to have a high correlation with virus isolation but unlike virus isolation, it can test a large number of samples in a fast-paced and sensitive manner, thus increasing productivity and reducing the risk of cross-contamination. This technique is considered the dominant method because it is widely used as a tool for virus isolates in most diagnostic reference laboratories and is also used for screening IAV in field samples (Lee and Suarez, 2004).

Zhou et al., 2009 initially reported a set of universal primers for full amplification of the IAV genome, which utilized numerous segment-specific primers to generate full complementary DNA lengths, and additionally applied a single reaction to amplify all eight segments of IAV (Zou et al., 2016). The approach of full genome amplification is to reverse transcribe and amplify the RNA genome, using primers corresponding to the conserved 12 nucleotides at the 3' terminal and 13 nucleotides at the 5' terminal of the viral RNA, thus permitting detection of all eight genome segments in a single reaction (Fouchier et al., 2000, Ellis and Zambon, 2002, Zou et al., 2016).

The amplification of influenza genome segments is a vital step to enrich the entire genome of IAV preceding Next-generation Sequencing (NGS) (Zhou et al., 2009, Zou et al., 2016). The method of Zhou et al, (2009) for IAV has been used for genome PCR with significant success to amplify a full genome from clinical samples such as tracheal swabs and tissues at the University of Pretoria but less successfully with faecal and cloacal swabs (Abolnik et al., 2019). The presence of IAV excreted into the environment contains PCR inhibitors and bacterial contamination, therefore using environment sampling instead of catching live birds also reduces the disturbance of wildlife (Borrelli et al., 2020).

The objective of this chapter was to use spiked faecal duck samples to optimise the efficiency of M-RTPCR full genome assay for the faecal samples by optimising different components such as primers, annealing temperature, the input of template, MgSO₄, and comparing kits to identify the most cost effective method.

2.2. Materials and Methods

2.2.1. Nucleic acid extraction

The total RNA of an isolated H6N2 virus (H44954/2016) in allantoic fluid from the University of Pretoria repository was extracted using Trizol® reagent (Invitrogen-Life Technologies). Trizol® reagent (750 μ I) was added to a 1.5 ml Eppendorf tube with 250 μ I of the allantoic and incubated for five minutes. Two hundred microliters of chloroform was added and the tube was vigorously shaken then incubated for 10 minutes. The mixture was centrifuged for 15 minutes at 13000 rpm (Sigma 1-14 microcentrifuge) the upper aqueous phase was transferred into a new Eppendorf tube. Six hundred microliters of Isopropyl alcohol was added to the tube briefly vortexed and incubated at room temperature for 10 minutes. The tube was centrifuged for 10 minutes discarded the supernatant subsequently the RNA pellet was washed with 700 μ I of 70 % ethanol and centrifuged for 5 minutes. Ethanol was removed and the RNA pellet was allowed to air dry for 10 minutes, and then reconstituted with 50 μ I of elution buffer (Whitehead Scientific).

2.2.2. Optimized primer set

Primers originally described by Zhou et al, (2009) were compared with a set of modified primers by Lee et al., 2013 (IDT-Whitehead scientific) (Table 2.1). The superscript [™] III One-Step PCR system with Platinum Taq High Fidelity DNA polymerase kit was used to carry out the reaction. The reverse-transcription reaction was carried out on an Applied Biosystems (ABI) Veriti Thermal cycler PCR instrument (Life Technologies), and the temperature parameters were as follows: 42°C for 60 min (Reverse transcription (RT), 94°C for 2 min (inactivation of RT enzyme and activation of Taq enzyme), then 5 cycles 94°C for 30 s (denaturation), 45°C for 30 s (annealing), and 68°C for 3 min (extension), followed by 31 cycles 94°C for 30 s respective second annealing temperature (T_a), 57°C for 30 s, and 68°C for 3 min (final extension). M-RTPCR products were subjected to electrophoresis on a 1% agarose gel (molecular grade-Celtic Molecular Diagnostic) stained with ethidium bromide (Life technologies) and visualized on an E-gel imager [™] System with UV Light Base (Thermo-Fischer Scientific-Life Technologies).

Table 2.1: Standard and optimized primer set of M-RTPCR

Primer names	Primer pair sequence	Primers designed by
Reverse MBTuni 12	5'-ACGCGTGATCAGCAAAAGCAGG-'3	Zhou et al.,(2009)
Reverse MBTuni 12 DEG	5'GCGTGATCAGCRAAAGCAGG-'3	Lee at al.,(2013)
Forward MBTuni13	5'-ACGCGTGATCAGTAGAAACAAGG-'3	Zhou et al.,(2009)
Forward MBTuni13 DEG	5'-ACGCGTGATCAGTCGAAACAAGG-3'	Lee et al.,(2013)

* R = A or G nucleotide in the primer sequence

2.2.3. Optimization of MgSO₄ concentration

Different concentrations of MgSO₄ were added with volumes ranging from 2 mM to 5 mM and included RNase inhibitor (Invitrogen-Life Technologies). Nuclease activity is controlled by RNase inhibitors, which prevent DNA replication (Wilson, 1997). The reaction mixture consisted of the following components: Superscript TM III One-step system with high fidelity kit (10 µl); primers (1 µl) each; MgSO₄ (2 µl; 4 µl; 6 µl; 8 µl; 10 µl; 12 µl and 14 µl) and RNase inhibitor (0.2 µl). The PCR products were subjected to 1 % agarose gel electrophoresis and visualized the amplicons on the E-gel imager (Life Technologies).

2.2.4. Optimization of M-RTPCR using an increased nucleic acid volume and different

annealing reverse transcription temperature

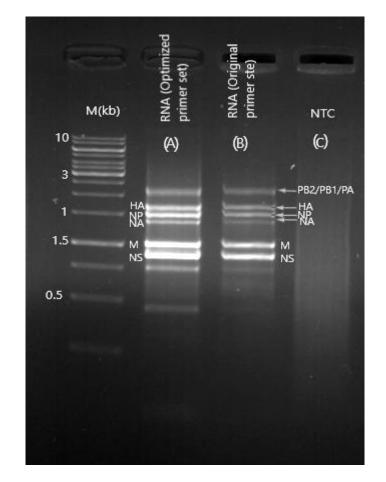
To investigate whether increasing the RNA template will improve M-RTPCR results, the assays were performed using two sets of volumes and two pre-mixes. The first mixture contained RNA and primers and the second contained master mix reagents. On the first mixture, one tube had 5 μ l of RNA while the other had 14 μ l and added 1 μ l each of primers then denatured at 95°C for 2 min (snap cool method). The second mixture prepared contained 2X reaction buffer (25 μ l), Superscript RT-Platinum high fidelity Taq (1 μ l), and MgSO₄ (8 μ l). Mixture 1 was added to mixture 2 and put on the thermal cycler (Applied Biosystem Veriti-Life Technologies) following these condition parameters: 55° for 60 min (RT); 94° for 2 min followed by 5 cycles of extension of 94° for 30 sec; 45° for 30 s and 68° for 4 min, 31 cycles of 94° for 30 s; 57° for 30 sec; 68° for 4 min and the final stage of 68° for 5 min and a final hold at 4°. The thermal amplification profile

was the same as previously described, except for the change in the reverse transcription and snap cool method before the run.

2.2.5. Optimization of M-RTPCR using Phusion flash high fidelity kit

The original method described by Zhou et al., (2009) using a Superscript III PCR system with Platinum Taq high fidelity DNA pol kit was altered by employing a lower-cost kit (Table 2.2), namely Phusion flash high fidelity (Life Technologies). The reaction mixture consisted of Phusion flash high fidelity PCR master mix (10 µl); modified primers (1 µl) of 10 pmols each; M-MLV reverse transcriptase (200U/µl) (0.5 µl) (Life Technologies); RNase inhibitor (0.2 µl); and nuclease-free water (2.3 µl). The temperature cycling conditions were modified from the initially described conditions by Zhou et al., (2009) and in 2.2.4. Thermal cycle conditions were as follows: denaturation at 37° for 20 min; 98° for 10 s; 35 cycles of annealing temperature at 98° for 5 s 58° for 15 s; 72° for 2 min and extension at 72° for 4 min.

Reagents	Reagents	Unit size	Total vol p∕ k (µl)	Cost (R) Vat Incl	Number of test reactions per kit	Vol per run (µl)
SuperScript III RT/	Superscript III RT/PCR platinum Taq Mix		100		50	2
Platinum High fidelity mix	Magnesium Sulfate(MgSO4) (5mM)	100	500	11 010.0	50	10
	2X Reaction Mix (X3)		1000		40	25
Total per reaction	R751.65	<u> </u>				
Phusion	Phusion flash high fidelity master mix(2X)	500	1000	4010.00	100	10
Flash high fidelity PCR	M-MLV reverse transcriptase Taq	40 000	200	4510.00	400	0.5
	RNase inhibitor	2000	100	1480.00	500	0.2
Total per reaction	R54.34					


2.2.6. Preparation of a duck faecal sample spiked with IAV

A fresh faecal duck sample was collected from the dam embankment at the African Pride Irene Country Lodge. The faecal duck sample was screened for presence of IAV and the negative sample was proceeded to be weighed and diluted. Five grams were weighed off and then added to 20 ml of distilled water and vortexed to create a slurry. Two millimetres of the slurry was transferred to a 5 ml Eppendorf tube and 2 ml of LPAI H6N2 allantoic (EID₅₀10^{6.8}) fluid was added and thoroughly mixed. In separate tubes, 2 ml of viral transport media (VTM) was pipetted to each tube labelled 1:2 to 1:1024 for a twofold dilution factor. The VTM consisted of brain-heart infusion broth (BHI) (Sigma Aldrich) 10% glycerol and antibiotics (penicillin-streptomycin (1ml) (Sigma Aldrich) enrofloxacin ((1ml) Bayer Corporation) and doxycycline (100 mg/ml) (Pfizer). The spiked faecal solution was then subjected to a two-fold serial dilution from 1:2 to 1:1024. RNA was extracted as described above.

2.2.7. Sensitivity of rRT-PCR assay on serially diluted spiked faeces

To determine the detection limit of the serially diluted viral RNA, the RNA extracted from spiked duck faeces was screened for the Matrix (M) gene of IAV. The Vetmax[™] Plus One-Step RT-PCR Kit (Life Technologies) was used on an automated Applied Biosystems Step OnePlus instrument (Life Technologies). The primers and probes for the M gene are those described by Spackman et al., (2003). The thermal cycling parameters were as follows: 48°C for 10 min; 1 cycle of 95°C for 10 min; 40 cycles of 95°C for 15 s and 53°C for 45 s. The same RNA was then tested using the optimized M-RTPCR as described in 2.2.5.

2.3. Results

2.3.1 Comparison of standard and optimized primer set

Figure 2.3.1 Comparison of M-RTPCR using different primer sets. Lane A consisted of optimized primers described by Lee et. al., (2013) and Lane B consisted of original primers described by Zhou et.al.,(2009) and the last lane C contained no template control (NTC). The 1kb ready to use GeneRuler (Life technologies) was used to measure the amplified genome segments.

Figure 2.3.1 shows 5 µl of the amplified PCR products, which were loaded into the gel. Both primers produced bands for all eight genome segments, but the optimized primers by Lee et al., (2013) were able retrieve more genetic material of the IAV, thus producing well defined visible bright genome DNA bands.

2.3.2. Effects of different MgSO₄ concentration

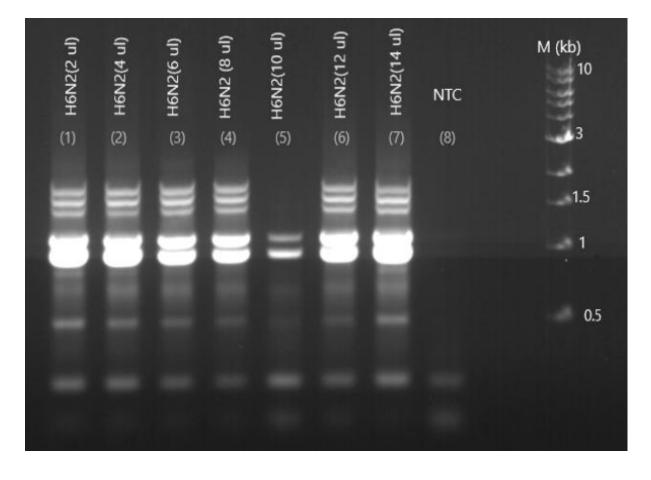


Figure 2.3.2: Amplification of the viral genome segments using different concentrations of MgSO₄. The volumes added were as follows from lane 1 to 8 respectively: 2 μ l, 4 μ l; 6 μ l; 8 ul; 10 μ l; 12 μ l and 14 μ l, the last lane contained the no template control (NTC).

Figure 2.3.2 shows that MgSO₄ had little effect on PCR efficiency. Only six of the reactions were able to produce amplification of the genome segments, for lane 5 only two gene segments were amplified. This could have resulted from incorrect volume pipetted in the reaction tube or possible evaporation due to the tube not being sealed properly.

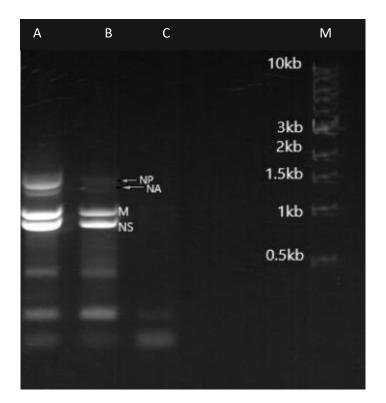


Figure 2.3.3: Comparison of different template volumes and annealing temperatures. Lane A consists of an RNA template with 5 μ l volume, lane B consists of an RNA template with 14 μ l volume.

Fig 2.3.3 shows amplification of the genome segments on both lanes from the snap cool method, but Lane A had bands that were more visible than and defined than Lane B. An RNA template of 5 μ l volume extracted from faecal material was more suitable to use for full genome amplification.

2.3.4. Comparison of the efficiency of Superscript III kit and Phusion flash mix

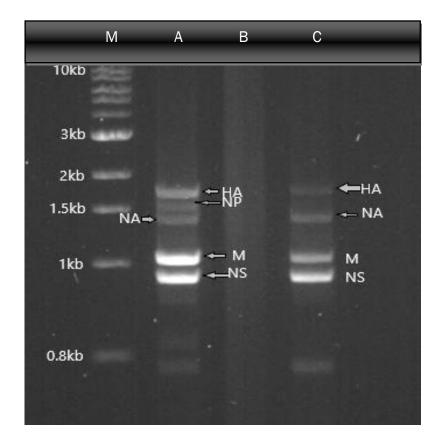


Figure 2.3.4: Agarose gel electrophoresis results obtained from comparison of the Phusion flash mix in Lane A and Superscript III kit in lane C. Lanes A and C had an RNA template volume of 5 μ I and lane B contained the NTC template.

Figure 2.3.4 shows the genome segments amplified by both Superscript III kit and Phusion flash mix. However, the Phusion flash method was able to amplify more genome segments and was more visible. Whilst the superscript method amplified fewer genome segments with the HA and NA obtained faint bands.

Based on the overall results obtained, the RNA template from the faecal sample was amplified using different methods with each different optimization approach the template amplified the higher and lower molecular weight genome segment especially the HA and NA which are often used to determine the subtype of IAV. The last approach shows that the Phusion flash mix which is of a lower cost is capable of amplifying the full genome segment from the RNA template.'

2.3.5. Sensitivity of rRT-PCR assay on serially diluted spiked duck faeces

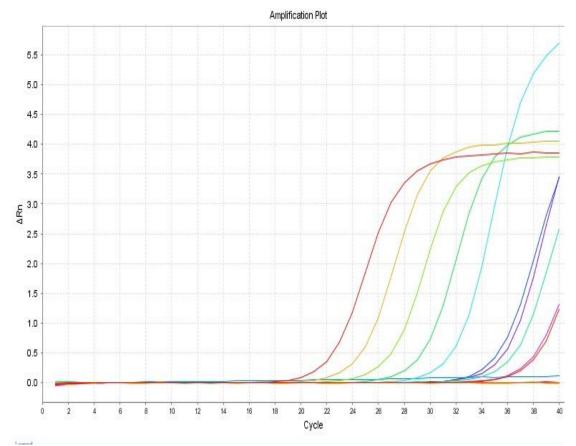


Figure 2.3.5: rRT-PCR amplification of an RNA extracted from a serial dilution of a spiked duck faecal sample.

Figure 2.3.5 shows the amplification and sensitivity of the serial dilution factor obtained from a spiked duck faecal sample spiked with viral RNA. The rRT-PCR assay was conducted to detect the presence of the IA viral RNA copies and determine the cut off cycle threshold (Ct) value of the serial dilution factor from the spiked faecal samples. The Ct values of the serial dilutions were obtained and tabulated.

Dilution Factor	Ct Value
1:2	21.17
1:4	23.24
1:8	25.65
1:16	28
1:32	30.35
1:64	33.87
1:128	34.42
1:256	36.79
1:512	37.05
1:1024	Undetermined

Table 2.-3 : Sensitivity evaluation for the serial dilution factor

Table 2.3 shows the cycle threshold (Ct) value of the dilution factor, and the first five dilutions (1:2-1:32) yielded a Ct value that was less than 31 indicating a higher presence of viral RNA copies. Four of the dilution factors had Ct's ranging from 33 to 37, which indicated low numbers of viral RNA copies. The final dilution factor was undetermined therefore indicating it was negative for the presence of viral RNA copies. Furthermore, the spiked serial dilution samples were subjected to the M-RTPCR assay to determine whether the genome segments could be amplified.

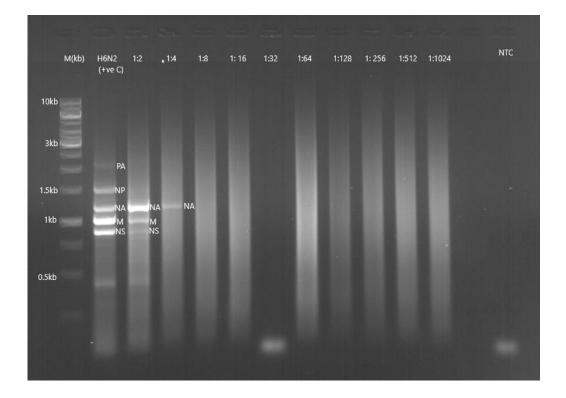


Figure 2.3.6: Results of the use of the Phusion flash kit for the M-RTPCR on duck faecal samples spiked with viral RNA in serial dilution. Lane 1 is a 1kb ladder, Lane 2 is the undiluted spiked faecal sample and Lanes 3 to 12 are the dilutions, and Lane 14 is NTC.

Serial dilutions of spiked faecal samples from section 2.3.1 to 2.3.4 were subjected to M-RTPCR using the optimized method. The results in Figure 2.3.6 above show the IAV genome-specific bands which are only visible in the undiluted spiked sample and the 1:2 dilution amplified three genome segments, whereas the 1:4 dilution had one genome segment NA that amplified. Dilution factors 1:8, 1:16, 1:128, 1:256, 1:512 and 1: 1024 had smears in their lanes, with no visible amplification of the genome segments, indicating possible non-specific amplification, but could mask IAV genome segments. Dilution 1:32 had no amplification which could have resulted possibly from handling errors during preparation.

2.4. Discussion

For this chapter, five parameters were optimized to maximise full genome amplification from faecal samples for M-RTPCR. Modified primers by Lee et al., (2013) were compared with the original primers by Zhou et al., (2009). Modified primers were confirmed to be more sensitive under different conditions. The MgSO₄ concentration proved to be unimportant as different concentrations produced similar results. Furthermore, an increased RNA template of 14 µl showed poor amplification of the gene segments, especially the internal genome segments, producing faint and less visible bands. However in other clinical samples such as tracheal swabs and pooled organs the 14 µl volume worked well and amplified genome segments (Abolnik et al., 2019). The optimized M-RTPCR method using Phusion flash high fidelity master mix demonstrated the ability to amplify genome segments through the application of optimized thermal cycling conditions. The annealing temperature of 37°C for 20 min proved to be suitable for genome amplification when compared to the higher annealing temperature in the Superscript protocol of 57°C for 60 min. Based on overall findings for optimization, the Phusion flash kit was established to be cost-effective with a short test turnaround time than the Superscript III kit which makes it useful when handling large number of samples.

A serial dilution of a spiked faecal duck sample was tested using both rRT-PCR assay and optimized M-RTPCR. According to Dovas et al., (2010) concentrations of IAV in environmental faecal samples are often below the threshold of detection of most common diagnostic methods, but rRT-PCR assay is a reliable approach for detection and quantification of the virus. Firstly, RNA of the spiked duck faecal dilutions was tested by rRT-PCR; this assay amplifies small conserved regions usually M1/M2. The results obtained demonstrated IAV RNA could be detected in a 1:512 dilution with a Ct of 37.05. Clinical samples with a Ct of 33.7 and a virus titre of 25 copies /µl were able to achieve full genome through the M-RTPCR method. In addition, to the reduction of the virus to 5 copies/ µl the genome segments could be determined due to the complete coverage of the HA and NA genes (Zou et al., 2016). The results obtained from this chapter demonstrate the visible genome segments up to 1:4 dilution with a Ct of 23.24, therefore indicating that faecal swabs with Ct's ≤24 are best for full genome amplification. Lower Cts may only yield partial genome segments.

CHAPTER 3: FIELD SAMPLE SCREENING AND IAV GENOME APPLICATION

3.1. Introduction

Influenza A virus (IAV) causes minimal to severe disease in domestic and wild birds which may result in high levels of mortality depending on the viral strain and host. Waterfowl such as ducks, geese, swans and shorebirds are considered the natural host of the virus and are a constant source of infection for domestic birds. Waterfowl are important hosts in the epidemiology of IAV, as indicated by prior studies of their predictable temporal and spatial patterns of infection (Dovas et al., 2010). According to Nazir et al. (2011), there is growing evidence that IAV transmission within waterfowl populations is heavily reliant on environmental persistence.

IAV spreads from wild birds to domestic birds through faecal (cloacal) and oral (oropharyngeal or tracheal) secretions. Because IAV viral infections are mucosal and replicate in the respiratory or digestive tract, oral and tracheal samples are frequently used to screen for the presence of IAV (Das et al., 2009; Pannwitz et al., 2009). Tracheal and cloacal swabs and tissues are considered to be optimal for the detection of IAV, however, obtaining these samples require capturing and handling wild birds. Field sampling such as the collection of fresh faeces is a convenient, non-invasive and cost-effective approach (Ramírez-Martínez et al., 2018).

One of the most common routes of spread of IAV in waterfowl is through faeces. In a previous study, infected birds were found to excrete more IAV in their faeces than in their nasal secretions (Torrontegi et al., 2019). Several factors affect the persistence of IAV in the environment, including local environmental conditions, for example, temperature, salinity and organic matter (Kurmi et al., 2013). Faecal samples excreted by wild waterfowl can survive and be preserved in the wetland environment at a low temperature of 28°C for five days and 4°C for eight weeks (Nazir et al., 2011, Ofula et al., 2013). Environmental persistence, according to Lickfett et al. (2018), may allow for short and long-term IAV maintenance by providing a mechanism for transmission between spatially or temporally separated bird populations, and environmental transmission is essential for infection maintenance. The collection of faecal samples allows the detection of IAV in live domestic birds, wild birds, and waterfowl, particularly migrating birds, which carry various strains of the virus and can be used to identify the undetected IAV strains

(Nourouzian and Vasfi Marandi, 2007). In addition to being an active surveillance effort for wild waterfowl, environmental faecal sample analysis could be useful in identifying IAV circulating in these birds (Pannwitz et al., 2009). Faecal samples, however contain a significant amount of contaminants such as , bacteria and other biological matter. According to Pawar et al., (2019) the background nucleic acid consisting of DNA from faecal swab samples could negatively affect IAV genome amplification.

The purpose of this chapter was to take swabs from fresh faecal samples from a mixed population of ducks and wild birds in a wetland habitat and and to screen them for thepresence of IAV using rRT-PCR. The complete genome segments were then amplified using the optimized M-RTPCR approach described in Chapter Two. In addition, pretreatment methods were compared to remove inhibitors from the faecal swab samples in order to improve genome amplification.

3.2.1. Environmental sampling

A total of 2144 of fresh faecal swab samples were collected at African Pride Irene Country Lodge from a diverse population of wild birds and waterfowl that included mostly Egyptian geese (*Alopochen aegyptiacus*), Yellow-billed duck (*Anas undulata*), Black swan (*Cygnus atratus*), Red Knobbed coot (*Fulica cristata*), African Sacred Ibis (*Threskiornis aethiopicus*) and Hadeda Ibis (*Bostrychia hagedash*). Samples were collected weekly for two months from January to February 2021. Samples were collected by inserting a sterile swab (Carlo Roth sterile applicator-Separations) into fresh faeces before placing each swab into 2 ml viral transport media (VTM) consisting of brain-heart infusion broth (BHI) (Sigma Aldrich), 10% glycerol, antibiotics (penicillin-streptomycin (1ml) (Sigma Aldrich) enrofloxacin (1ml) (Bayer Corporation) and doxycycline (100 mg/ml) (Pfizer). A styrofoam box with an ice pack was used to transport samples to the laboratory at the University of Pretoria and they were processed immediately.

3.2.2. Screening of IAV (M) gene by rRT-PCR

The IndiMag 48s automatic extraction equipment (Whitehead Scientific) and the IdiMag pathogen kit (Whitehead Scientific) were used to extract nucleic acid from faecal swabs according to the manufacturer's instructions. The extracted RNA was vortexed vigorously tested for the presence of IAV, using the Vetmax[™] Plus One-Step RT-PCR kit (Life Technologies) with primers and probes described by Spackman et al. (2003). The rRT-PCR assay was performed on the Step One plus instrument (Life Technologies) using the optimal thermal temperature parameters described in Chapter 2.

3.2.3: Testing of positive faecal swab samples using optimized M-RTPCR

Positive faecal swabs with a Ct value less than 34 were subjected to optimized M-RTPCR. The reactions contained a Phusion flash high fidelity PCR master mix (10 μ l); modified primers (1 μ l) each; M-MLV reverse transcriptase (200U/ μ l) (0.5 μ l) (Life Technologies); RNase inhibitor (0.2 μ l); nuclease-free water (2.3 μ l) and 5 μ l RNA template. Thermal temperature parameters are those described in Chapter 2.

3.2.4. Pre-treatment methods of spiked duck faecal samples and comparison of extraction methods

3.2.4.1. Addition of RNA later ™

The spiked faecal serial dilution with a volume of 2 ml was treated by adding the same volume of RNA later ™ (Invitrogen-Life technologies) and vortexed vigorously for 10 sec and refrigerated overnight at 4°C. The RNA was extracted using the standard Trizol method described in Chapter 2 and IndiMag 48s (Whitehead Scientific), then screened for the matrix gene using rRT-PCR assay.

3.2.4.2. Filtration of samples before extraction

The serial dilution of the spiked faecal sample was treated by filtering each sample with a 0.45 µm filter (Lasec) into a new sterile 5 ml Eppendorf tube. The filtered samples were further extracted manually using Trizol method and automatically using the IndiMag 48s instrument (Whitehead Scientific).

3.2.4.3. Optimizing of Trizol extraction method using Phenol-Chloroform Isoamyl

The Trizol standard method was optimized by substituting the conventional chloroform with the PCI (25:24:1v/v-Invitrogen-Life technologies). The optimized protocol steps are as follows:

- i. $200 \ \mu$ l of faecal solution and 750 μ l of Trizol reagent were added to an Eppendorf tube and incubated at room temperature (RT) for 5 min.
- Phenol: chloroform: isoamyl (PCI) alcohol (200 μl) was added into the solution and vortexed for ten seconds then kept at RT for 10 min before centrifugation at 13 000 rpm 4°C for 15 min.
- iii. Separation of the upper clear aqueous phase was followed by transfer into a new tube, where step II was repeated.
- iv. The clear aqueous phase was transferred to a new tube, and an equal volume of isopropanol was added to the mixture, which was then briefly inverted for 5 seconds and incubated at room temperature for 10 min before being centrifuged for 10 min.
- v. The supernatant was removed from the tube and 700 μ l of 70% ethanol was added before centrifuging for 5 min (step was repeated three times
- vi. After the supernatant was removed from the tube, the pellet was air-dried for 5-

10 min and placed on a heating block at 65° C for an additional 2-5 min. It was then re-suspended with 50 µl of an elution buffer (10 mM Tris-Cl, 1 mM EDTA, pH 8.0) (Qiagen-The Scientific Group).

3.2.5. Post-treatment of nucleic acid

Extracted nucleic acid was divided into three parts, of which the first group consisted of the standard PCR template, the second template was pre-heated at 55°C for 2 min and the last template was heated post-M-RTPCR assay.

3.3.1. Screening of IAV (M) gene using rRT-PCR results

A total of 2144 faecal swab samples were collected for this study between January and February 2021 and then screened for the AIV M gene using the rRT-PCR assay. A total of 51 % (1083) of the samples tested positive for AIV RNA, while 49 % (1061) tested negative for virus particles. (See Figure 3.1.) Positive samples with a Ct value \leq 31 were 30%, while those with a higher Ct \geq 32 were 70%.

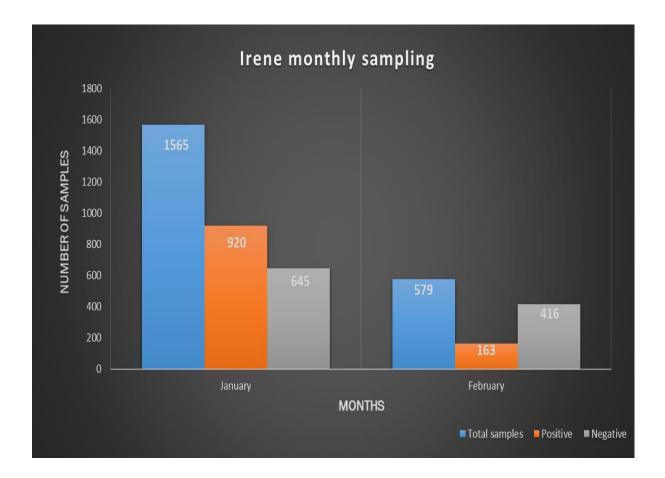


Figure 3.1: Total umbersof aecal swab samples collected and screened for IAV using rRT-PCR from January to February 2021. The blue block represents the total number of samples collected, the orange block represents samples that tested positive and the grey block represents samples that tested negative.

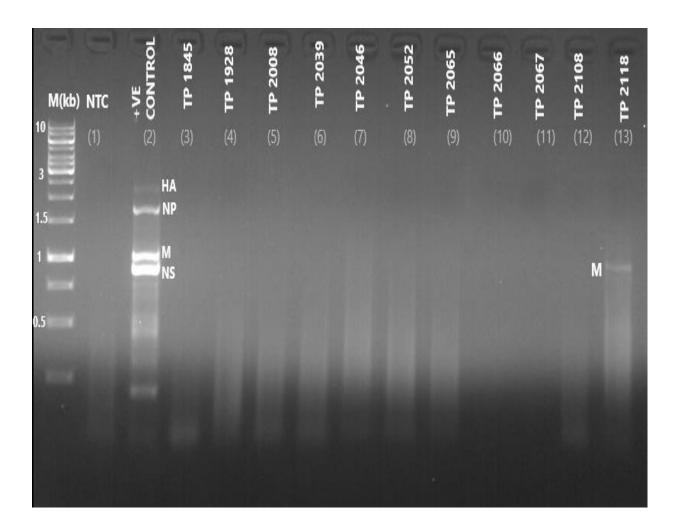


Figure 3.2: M-RTPCR on IAV positive faecal samples

Figure 3.2 shows the positive faecal swab samples by M-RTPCR. The Ct value of the samples are as follows according to the lane number: lane 3: TP 1845 (31.89); lane 4: TP 1928 (33.78); lane 5: TP 2008 (31.23); lane 6 TP 2039 (32.87); lane 7: TP 2046 (33.71); lane 8: TP 2052 (32.71); lane 9: TP 2065 (32.71); lane 10: TP 2066 (33.41); lane: 11 TP 2067 (24.19); lane 12: TP 2108 (32.55) and lane 13: TP 2118 (30.62). Lanes 3 to 12 showed no genome amplification, only faded smears were visible, and lanes 10 and 11 had no signs of amplification or smears present. Lane 13, which was TP 2118 shows a faint amplification of a genome segment although there was smear in the background.

Table 3.1: Optimization of viral nucleic acid extraction adding RNA later ™ determined by rRT-PCR Ct value

Dilution Factor	Trizol extraction method pre-M-RTPCR	Trizol extraction post M-RTPCR	IndiMag 48s pre-M-RTPCR	IndiMag 48s post-M-RTPCR
1:2	Undetermined	Undetermined	19.54	21.36
1:4	26.52	29.25	20.33	22.45
1:8	26.9	25.39	Undetermined	Undetermined
1:16	27.39	33.57	21.93	23.92
1:32	27.57	32.2	23.63	25.99
1:64	27.33	31.58	25.8	28.77
1:128	27.3	33.43	26.48	29
1:256	26.76	33	27.48	31.23
1:512	28.24	Undetermined	27.78	32.07
1:1024	28.15	33.21	29.35	27.56
Positive	20.51	19.12	26.46	22.16

Table 3.1 shows the nucleic results of the IAV rRT-PCR analysis. The addition of RNA later^M increased viral nucleic acid recovery because both extraction methods had Ct values \leq 30 before performing M-RTPCR. However, no results were obtained for serial dilution 1:2 before and after the M-RTPCR assay using manual extraction, and no results were obtained using the IndiMag 48s automated extraction for serial dilution 1:8. Extractions performed automatically with IndiMag 48s produced consistent and low Ct values.

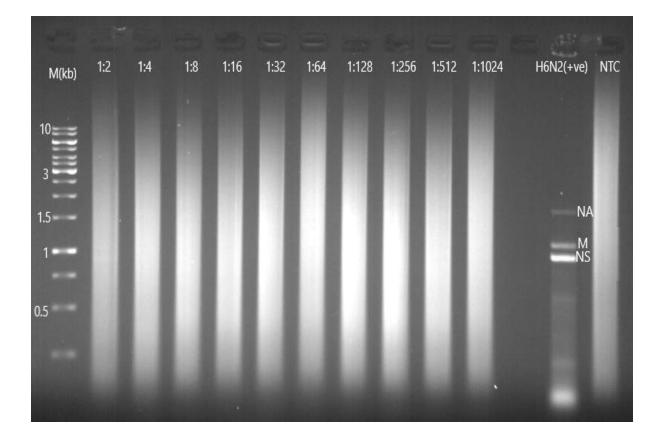
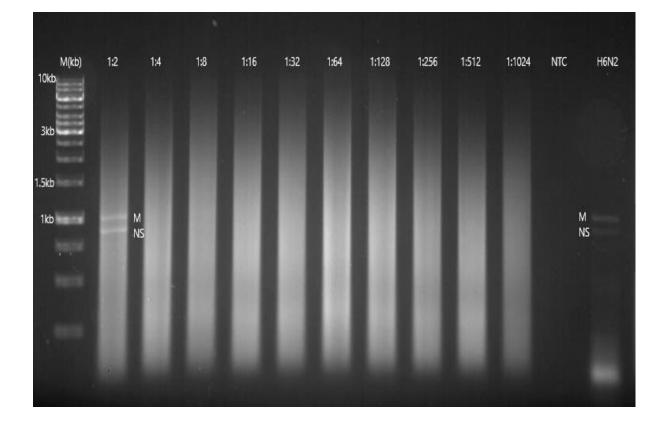



Figure 3.3: M-RTPCR results for Trizol extracted viral nucleic acid of the spiked faecal sample serial dilutions treated with RNA later™.

Figure 3.4: M-RTPCR results for indiMag 48s automated extracted viral nucleic acid of a spiked faecal sample serial dilutions treated with RNA later.

The M-RTPCR results for serial dilutions treated with RNA later[™] are shown in Figures 3.3 and 3.4. Background inhibition due to faecal contamination was observed in both gels, resulting in smear formation and indicating the possibility of non-specific amplification, which could disguise IAV genome segments. Figure 3.4 shows faded genome segments and smears on the first lane which consists of 1:2 serial dilution gel despite the presence of contamination in the well.

Dilution Factor	Trizol extraction method pre-M- RTPCR	Trizol extraction method value post M-RTPCR		IndiMag 48s post M-RTPCR
1:2	18.04	19.40	17.29	19.62
1:4	undetermined	undetermined	19.26	21.21
1:8	22.37	22.16	21.25	23.51
1:16	23.46	24.98	23.93	25.71
1:32	22.86	24.68	25.26	27.42
1:64	28.02	undetermined	26.26	27.45
1:128	26.24	27.93	26.86	28.12
1:256	25.23	27.94	27.58	28.10
1:512	27.5	undetermined	27.19	27.95
1:1024	22.75	28.09	27.45	29.64
Positive	19.10	undetermined	25.86	21.69

Table 3.2: Optimization of nucleic acid extraction from filtered serial dilution samples

Based on the results obtained in Table 3.2 the pre-treatment method of filtering the samples proved to recover a high concentration of the viral nucleic acid. Both methods of extraction yielded Ct values \leq 29 before the M-RTPCR assay, although the manual extraction method had more undetermined (negative) results in the dilution factor 1:4 before and after performing the M-RTPCR assay and in the dilution factors 1:64, 1:512 and the positive. Post M-RTPCR, the IndiMag 48s automated extraction recovered more IAV specific nucleic acid from the filtered faecal samples and the Ct values were consistently low and error-free.

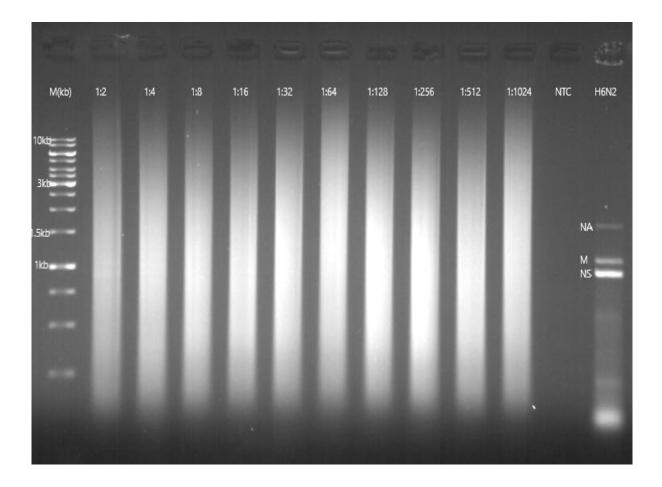
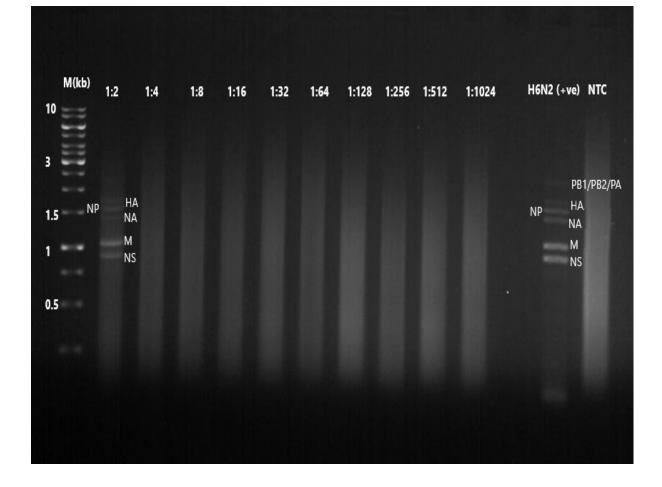
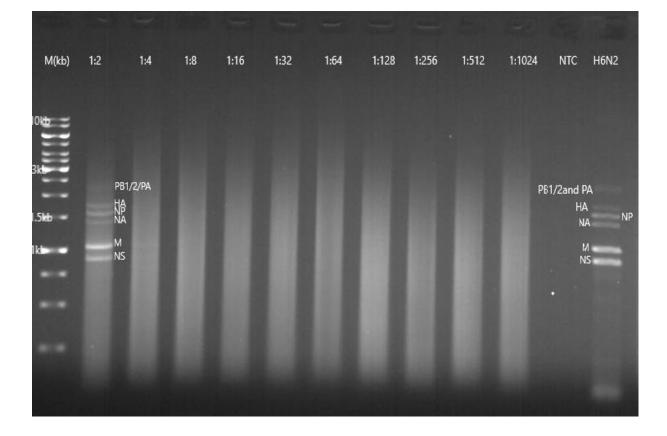



Figure 3.5: M-RTPCR results for filtered Trizol extracted nucleic acid from serial dilution of a spiked faecal duck sample

Figure 3.6: M-RTPCR results for filtered indiMag 48s extracted nucleic acid from serial dilution of a spiked faecal duck sample


A comparison of results obtained from manual and automated extraction of filtered treated faecal dilutions is presented in Figures 3.5 and 3.6 respectively. Both gels had smears in all the lanes, but only Figure 3.6 shows full genome amplification of the sample serially diluted 1:2 (lane 1). The gel in Figure 3.5 produced brighter smears with no indication of genome amplification except in the positive control.

3.3.4: Optimization of Trizol extraction method using Phenol-Chloroform Isoamyl in serially diluted spiked duck faecal samples

Dilution Factor	Modified TRizol method	Modified TRizol post protocol
1:2	11.9	19.35
1:4	24.43	24.60
1:8	25.99	30.06
1:16	27.78	30.38
1:32	29.51	30.69
1:64	27.32	Undetermined
1:128	30.36	34.03
1:256	30.23	34.72
1:512	undetermined	Undetermined
1:1024	undetermined	Undetermined
Positive	23.79	11.7

Table 3.3: Modified and standard Trizol extraction method and PCI

The results for serial dilutions of spiked faecal samples extracted using the modified Trizol method are shown in Table 3.3. The extraction method improved nucleic acid recovery and sensitivity, with Ct values of 31 obtained before the M-RTPCR assay. Both before and after the M-RTPCR, the serial dilutions 1:512 and 1:1024 were undetermined (negative), and the post-assay dilution factor 1:64 was also undetermined. Furthermore, after the M-RTPCR assay, the templates were amplified with serial dilutions ranging from 1:2 to 1:32, yielding Ct values less than 31, but 1:128 and 1:256 yielded lower values of less than 35.

Figure 3.7. M-RTPCR assay on serial dilutions of spiked faecal samples extracted using the modified Trizol extraction method.

The results of the serial dilutions extracted with the modified Trizol method are shown in Figure 3.7. Faint smears were present on the gel from 1:4 to 1:1024 with no enhancement of genome amplification, howeve;, the 1:2 serial dilution demonstrated amplification of the full genome segments despite the presence of smears in the background. Furthermore, the 1:2 serial dilution had Ct value of 11.9, indicating a high recovery of viral nucleic acid from the sample; thus, after amplification, the sample still had a low Ct of 19.35, indicating a high presence of IAV viral RNA.

3.3.4. Post treatment of nucleic acid template

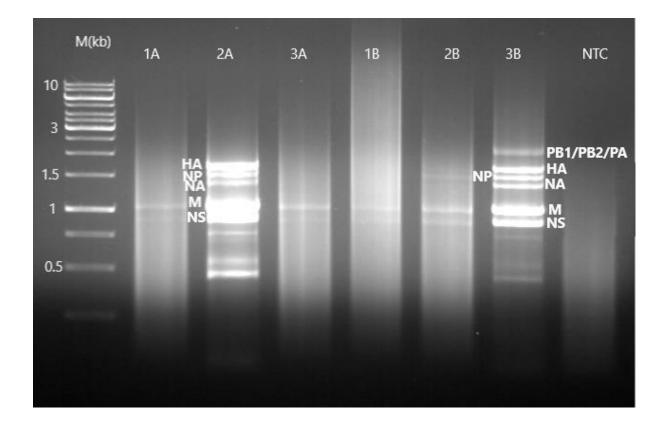


Figure 3.8: M-RTPCR pre and post-heating results of nucleic acid extracted using modified Trizol method and IndiMag 48s. Nucleic acid labelled A were manually extracted while nucleic acid labelled B were extracted automatically.

Figure 3.7 shows the results of the pre- and post-heating of the nucleic acid extracted from both the modified Trizol method and IndiMag 48s instrument. The first set of lanes are as follows: lane 1A: pre-heated samples, 2A: modified Trizol template and lane 3A is post-heating of the Trizol nucleic acid. While lane 1B is the pre-heated nucleic acid, 2B standard template and 3B consist of the post-heating of the nucleic acid. The nucleic acid extracted using both manual and automated instrument amplified genome segments in all wells, however, lane 3B contained full genome segments with the nucleic acid extracted using the automated instrument containing full genome segments of all eight IAV genes. In addition, the automated nucleic acid in well 1B and 2B amplified lower genome segments genes, which were still amplified and fairly visible when compared to the manually extracted nucleic acid.

Based on the overall results obtained from pre-treatment of the serial dilution of the spiked duck faecal sample, the addition of RNAlaterTM and filtration of the samples yielded similar results with partial removal of contamination and inhibitors from samples. However, using the filtration process resulted in a higher yield of viral nucleic acid which was amplified for genome segments in both manual and automated extraction methods. In addition, when comparing the extraction process, the automated IndiMag 48s recovered higher viral nucleic acid from the samples with Ct values less \leq 30 both before and after performing the M-RTPCR assay. Additionally, we show the amplification of genetic segments from the 1:2 serial dilution factor when the nucleic acid extracted from the automated process. Modified Trizol proved to be more reliable at recovering viral nucleic acids than standard Trizol since the wash step was repeated to remove any remaining inhibitors. This method demonstrated the ability to amplify full genome segments with a low Ct (\leq 20), thus possibly removing inhibitors.

Sample ID	IndiMag 48s Sample Ct value	Modified Trizol Samples Ct value
TP 1845	31.89	34.37
TP 2008	31.23	Undetermined
TP 2067	24.19	Undetermined
TP 2108	32.55	36.96
TP 2118	24.83	30.62

Table 3.4: Comparison of positive samples extracted using indiMag 48s and modified Trizol method

The above table shows the comparison between the IndiMag 48 s and modified Trizol extracted viral nucleic acid. The viral RNA extracted from the IndiMAg 48s when used in the Rt-PCR had higher Ct values than those extracted manually. In addition, there were no irregularities with the nucleic acid extracted through the automated instrument. The samples with a Ct value less than 30 were subjected to M-RTPCR assay and heated post -reaction.

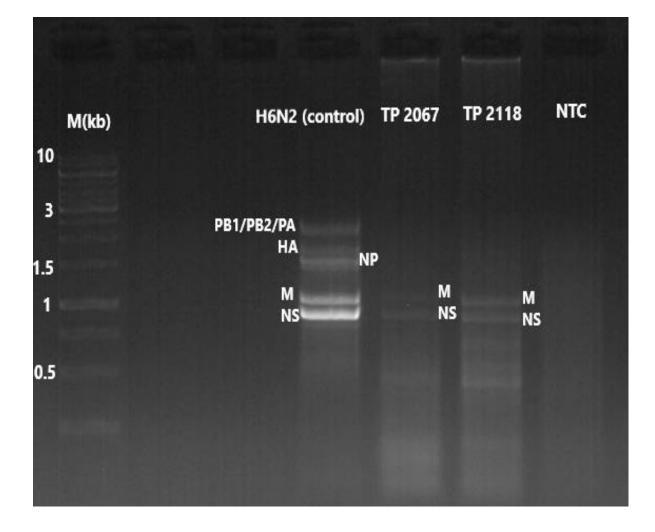


Figure 3.9: M-RTPCR results for positive faecal swab samples extracted using the IndiMag 48s.

Figure 3.8 shows the two positive faecal swab samples namely TP 2067 and TP 2118 which were tested on the MRT-PCR assay. Low molecular weight genome segments were obtained. Both samples had weak bands, TP 2067 had faded genome segments while TP 2118 produced faint slightly visible genome segments.

Table 3.5 Measuring of nucleic acid concentration using the Nanodrop instrument

Sample ID	PCR template Ct	Nanodrop reading (ng/ul)	A260/280
TP 2067	21.61	453.9	1.82
TP 2118	14.61	444.4	1.84

After the amplification of TP 2067 and TP 2118, the M-RTPCR products were further tested using the RT-PCR to determine whether the genome enrichment had indeed occurred during the M-RTPCR reaction. The results obtained from the RT-PCR were presented in Table 3.5 and demonstrated that the PCR products generated a low Ct value below 22 indicating a higher viral load of the nucleic acid. Further analysis using the Nanodrop (Thermofischer) indicated that the nucleic acid measured had a 1.8 purity reading for both samples confirming the absence of inhibitors in the nucleic acid.

3.4. Discussion

A previous study indicated that a greater percentage of duck faecal samples tested positive for IAV than oropharyngeal swabs (Lickfett et al., 2018). In this part of the project, IAV was detected in 920 (85%) fresh faecal swabs in January, while 163 (28%) samples were positive in February .. Furthermore, 21 % (191), and as 1,8% (3) of the positive samples, had Ct values below 30 in January and February, respectively. Considering the results obtained, there was a significant drop in the number of positive samples obtained in February, which could have been caused by the ducks shedding less virus or the infection peak had passed. According to Kurmi et al.,(2013), the survivability of IAV depends on the environmental conditions and temperatures. Therefore, it could be possible that the exposure to wet weather could have resulted in the virus infected faecal samples acceleration in the inactivation process which then resulted in the negative effect by diluting the samples and washing away viral particles in the faeces.

Positive samples with a high viral load and generated low Ct values (≤ 25) were further subjected to M-RTPCR. Contamination and inhibitors that are naturally occurring in faecal samples, such as bile salts, host genomic DNA, bacteria and polysaccharides reduce the detectability and amplification of full genome segments (Das et al., 2009). To eliminate contamination in faecal swab samples, pre-treatment methods were compared. The first pre-treatment method involved adding RNA later™ to serially diluted samples, which were then briefly vortexed and incubated overnight at 4°C. Following the incubation period, the samples were divided into two groups, one of which was extracted with Trizol reagent using the standardized method, and the other was isolated using the IndiMag 48s automated instrument. The second pre-treatment method involved filtration of the samples using a 45 µm filter and syringe, with each sample filtered separately, before dividing the samples into two groups for the material and automated extraction process. The addition of RNA later[™] and filtration were carried out separately, the results showed that the use of RNA later™ did recover a significant amount of viral RNA but was unsuccessful in removing inhibitors from the faecal swabs, even when using different extraction methods since smears were still present when the samples were assessed on agarose gel. The filtration recovered a higher yield of viral RNA from the serial dilutions with minimal contamination present, particularly the viral RNA extracted automatically. The manual method had more inconsistencies with the Ct values indicating that some of these samples had a higher presence of contamination which were not removed, thus preventing the virus from being detected. The automated extraction of viral RNA showed a greater yield of the viral RNA was obtained, indicating that inhibitors or contamination were not present at a high concentration, and hence were able to be removed partially. Despite the smears that were produced on the filtration approach, the automated method was able to amplify full genome segments from samples with a low Ct value.

The results obtained from these methods showed that a significant amount of viral RNA was recovered, but were unsuccessful in removing the inhibitors because smears were constantly present, preventing the amplification of the full genome segments. Furthermore, the viral nucleic acid which was extracted using the automated instrument succeeded in amplifying genome segments despite the high presence of contamination and inhibitors in the background. The modified Trizol method was also successful in amplifying a full genome with at a very high Ct value, although when the method was applied in field faecal swab samples it displayed discrepancies and irregularities with the Ct, thus showing that the automated extraction method performs better than the manual extraction as it avoids cross-contamination that can arise due to handling of the samples throughout the extraction process. According to Das et al.,(2009) cloacal swabs and tissue samples contain organic materials and have complex chemical compositions, which makes it more difficult to extract RNA from.

From the initial positive IAV samples, only five (TP 1845; TP 2008; TP 2067;TP 2108; and TP 2118) had a Ct below 33 were re-extracted using the IndiMag 48s and modified Trizol method, I then compared the recovered viral RNA using the rRT-PCR assay. The viral RNA recovered using automated extraction was consistent with no discrepancies and had Ct ranging from 24.19 to 31.89, unlike the modified Trizol method. The viral RNA (namely TP 2067 and TP 2118) had lower Ct values were further subjected to M-RTPCR assay, of which the results showed both samples were successful in obtaining amplification of genome segments despite the faint smears that were still present in the background. The quality of the DNA from the M-RTPCR template was evaluated by measuring the absorbance ratio A260/A280, of which the DNA was considered to be sufficiently pure when the absorbance was 1.8. The DNA obtained from TP 2067 and TP 2118 were indicated to be adequate for sequencing and to determine the IAV subtypes.

CHAPTER 4: IDENTIFICATION OF POSITIVE INFLUENZA A VIRUS SAMPLES USING NEXT GENERATION SEQUENCING

4.1. Introduction

Genome sequencing is a process that determines the order of nucleotides (A, U, C or G) in a single DNA sequence. Full-length genome sequencing can present comprehensive information for virus discovery, characterization, and genotyping (Lee, 2020). Previously, genome sequencing was for small RNA viruses, including influenza A, accomplished by "traditional" chain termination sequencing techniques such as Sanger sequencing (Lee, 2020).

Subsequent developments in next-generation sequencing (NGS) have transformed and improved the facilitation of complete viral genome sequencing from heterogeneous genetic material (Lee, 2020). NGS is a faster method for determining sequencing IAV genome than conventional sequencing since multiple fragments of nucleic acids can be analysed simultaneously.

Influenza A virus has a full-length genome that compromises approximately 13500 ribonucleotide sequences, with eight negative polarity segments (Lee, 2020). Because of the low fidelity of RNA polymerase and reassortment among different strains of influenza A, the genome is to have significant variability (Barzon et al., 2011, Bidzhieva et al., 2014, Van den Hoecke et al., 2015, Lahens et al., 2017, Huang et al., 2019). The genome nucleotides are sequenced at high coverage; however, a segmented genome prompts a technical challenge in obtaining full genome coverage (Van den Hoecke et al., 2015).

NGS methods are more sensitive, and they can identify the full diversity of viruses, including unidentified viruses (Barzon et al., 2011). The most frequently used NGS techniques are Illumina and Ion torrent platforms. Illumina sequencing uses a fluorescence-based paradigm for reading bases in a nucleotide sequence, this technique depends on the cyclic reversible termination which is less sensitive to homopolymer errors. The Illumina platform provides data that is suitable for *de novo* assembly and has long reads which allow deep sequencing, thus generating data sequences of the same length in a single run. However, this technique results in the reduction of the AT and GC rich regions, which causes an increase in sequencing errors (Lahens et al., 2017). The

Ion Torrent method employs pH measurements to read sequence nucleotide. It detects the hydrogen ions that are discharged as the dNTPs which combine and use a pH change sensor to detect a change in pH. This platform depends on a single nucleotide addition instead of using enzymatic approaches. Data sequence reads generated from Ion Torrent vary in size and length, in addition, the Ion Torrent platform has improved numerous types of chips and tools to change the performance for its investigative prerequisites (Lahens et al., 2017, Huang et al., 2019). These techniques continuously release updates as improved sequencing chemistry, nucleotide detection and high sensitivity throughput (Lahens et al., 2017). These technologies are frequently being used in many research studies because of the accuracy of the data generated by these platforms.

For this study, Ion torrent technology was applied for influenza A full genome sequencing. Positive field samples TP2118 and TP2067 obtained from Chapter 3 were subjected to full genome sequencing with sequence analysis to determine influenza A viral subtype.

4.2. Materials and Methods

4.2.1. Construction of an IAV reference sequence database

The reference gene segments (Table 1) for each of the 16xH and 9xN subtypes along with six internal protein-encoding gene segments were retrieved from the National Center for Biotechnology (NCBI) nucleotide database (https://www.ncbi.nhi.gov/nucleotide). The downloaded FASTA files were imported into the CLC workbench software v7.5.1, using the "import selection" and "standard import" options to a designated file.

4.2.2. Importation of NGS data to the CLC workbench software

The .bam files were downloaded from the FTP server at Stellenbosch University Central Analytical Facility thereafter imported into the CLC Genomics workbench software v7.5.1. The .bam read files were imported to the CLC Genomics workbench software using the "import" option and selecting the "standard import" subsequently saving the read files in the software.

4.2.3. Mapping of .bam reads against reference sequences

The. bam read file labelled TP2118 or TP2067 was highlighted, and the "toolbox" option was launched of which the "NGS core tools" was selected. The next selection was "map reads to references", of which all 32 reference sequences in Table 1 were selected. In the next selection panel, the option to retain default settings was chosen, but in the following panel was changed under the sub-heading "output options" thereby selecting "create stand-alone read mapping" in addition to "create report" options followed by "select and save files. The consensus sequence for each genome segment obtained for TP2118 and TP2067 was exported in FASTA format to a new folder.

Gene segmentnumber	Gene/protein(¹ abbr)	Subtype	Accession number
1	PB2		KY621531
2	PB1, PB1-F2		KY621532
3	PA, PA-X		KY621533
		H1	MH637353
		H2	MH637361
		H3	KM054845
		H4	MH637350
		H5	KY621534
		H6	GU122032
		H7	KT777901
Л	НА	H8	MH412114
4	ПА	H9	KF313565
		H10	KP287772
	-	H11	MH637340
		H12	KX101133
		H13	HE802715
		H14	JN696316
		H15	KP087869
		H16	HE802739
5	NP		KY621535
		N1	KJ484622
		N2	KM244048
		N3	MH411954
		N4	CY080155
6	NA	N5	KM244094
		N6	MH637406
		N7	KM244102
		N8	KM244070
		N9	MH637420
7	M1 +M2		KY621537
8	² NS allele_ A		DQ376795
	³ NS allele_ B		CY005780

able 4.1: Reference sequences used for mapping read of samples sequences
--

¹Abbr -Abbreviation of the genome segment. There are two genetic alleles of the NS protein: ²allele A– represents avian and mammalian origin viruses; ³allele B– represents only the avian viruses.

4.2.4. Verification of sequence identities through BLAST analysis

The FASTA files for each genome segment obtained for TP2118 and TP2067 were copied and pasted into the search box of the nucleotide sequence BLAST function. The settings on the BLAST nucleotide page were all left on default. The highest score with a matching description to the target strain was captured and tabulated for each genome segment.

4.3.1. Assemble to reference results for TP2118

The Ion Torrent. bam read results for TP2118 generated a high-quality data analysis with a total of 425,317,942 bases, a Q score filter \geq Q of 342,879,380, total reads of approximately 4,255,729 and lastly a mean read length of 99 bp.

The .bam reads were analysed by mapping read sequences against the 32 reference genome sequences in Table 4.1. The results generated for each .bam reads (TP2118) consisted of a consensus sequence for each genome segment.

Reference gene sequences number	Genome segment	Consensus length (nt)	Total read count	Average coverage	Percentage of Consensus sequence length	Reference length (nt)
KY621531.1	PB2	1250	1722	133,60	54	2308
KY621532.1	PB1-F2	786	182	14,64	34	2309
KY621533.1	PA-X	2117	643	51,72	96	2200
MH637353.1	H1	66	3	0,06	3.7	1767
MH637361.2	H2	40	1	0,02	2	1689
KM054845.1	H3	0	0	0,00	0	1576
MH637350.1	H4	0	0	0,00	0	1713
KY621534.1	H5	0	0	0,00	0	1742
GU122032.1	H6	0	0	0,00	0	1635
KT777901.1	H7	47	12	0,23	2.8	1684
MH412114.1	H8	206	28	0,75	11.9	1735
KF313565.1	H9	1737	159	18,45	103	1683
KP287772.1	H10	64	10	0,23	3.8	1686
MH637340	H11	114	31	0,62	6.5	1748
KX101133.1	H12	60	1	0,03	3.5	1695
HE802715.1	H13	0	0	0,00	0	1736
JN696316.2	H14	111	289	4,42	6	1748
KP087869.1	H15	58	11	0,26	3	1713
HE802739.1	H16	183	53	1,14	10	1776

Table 4.2: Assemble to reference results for TP2118

KY621535.1	NP	1426	31	3,73	93	1529
KJ484622.1	N1	0	0	0,00	0	1350
KM244048.1	N2	969	147	18,28	67	1410
MH411954.1	N3	0	0	0,00	0	1428
CY080155.1	N4	0	0	0,00	0	1413
KM244094.1	N5	0	0	0,00	0	1422
MH637406.1	N6	0	0	0,00	0	1439
KM244102.1	N7	0	0	0,00	0	1413
KM244070.1	N8	0	0	0,00	0	1413
MH637420.1	N9	25	1	0,02	1.8	1374
KY621537.1	M1+M2	991	97	17,45	100	991
DQ376795.1	NS2 allele A	900	1160	245,17	101	890
CY005780.1	NS2 allele B	40	79	2,23	4	890

Sequence reads for TP2118 were mapped against each of the 16 HA types and 9 NA types to determine the subtype. The results showed eleven of the HA generated a consensus sequence, however, six of the HA types (H1; H2; H7; H10; H12; and H15) obtained low consensus length with low total read count and less coverage. Amongst the five remaining HA types, four generated partial sequences with low coverage and similarity percentage to the genome reference lengths (H8; H11; H14 and H16). The identified HA with an approximate similarity to the genome reference length was the H9, which generated a full genome of 1737 nt and a similarity percentage of 103 % to the reference length. In addition, the H9 had a high total read count of 159 and generated a high depth coverage of 18,45 amongst all generated HA types. Two of the NA types generated a consensus sequence however, only one was identified to have obtained a partial sequence consensus length, total read count and depth average coverage, whilst the other NA obtained low consensus length when compared to the reference length. The N2 has been identified as the NA type with a partial sequence of 969 nt and a similarity of 67 % when compared to the reference length, in addition, it generated a total read count of 147 and a depth average coverage of 18.28. Further analysis was conducted for the internal genome segments of which four consisted of partial sequences and two consisted of the full genome sequence. Firstly, PB2 generated a partial consensus sequence length of 1250 nt with a similarity of 54 % when compared against the reference length and obtained a total read count of 1722 with depth average coverage of 133.60. PB1-F2 which is the second internal gene segment generated a consensus length of 786 nt which contained a partial gene sequence of the reference length with a similarity of 34 %, and a total read count of 182 with depth coverage of 14,64. The PA-X gene segment generated a consensus length of 2117 nt which contained a partial sequence of the reference length with a high similarity of 96 %, and a total read count of 643 in addition to a depth average coverage of 51.72. The NP genome segment generated a partial consensus sequence of 9696 nt with high similarity of 93 % to the reference length and a total read count of 31 with a depth average coverage of 3.73. The remaining two genome segments M and NS both generated a full genome consensus sequence length of 991 nt and 900 nt respectively. Each genome segment obtained a similarity of 100% and 101%, with a total read count of 97 and 1160. Furthermore, a depth average coverage of 17,45 and 245,17 respectively.

Table 4.3: BLAST analyses result for TP2118

Description	Max Score	Total score	Query cover	Identity percentage	Accession length (nt)	Accessions number
Influenza A virus (A/pintail/Egypt/M BD- 384C/2015(H3N 6)) segment 1 PB2(PB2) Query length: 1250	846	1823	95%	94.69%	2341	MN208007
Influenza A virus (A/ duck /Mongolia/667/ 2019(H3N8)) segment 9 PB1 (PB1) and PB1-F2 protein (PB1-F2) Query length: 786	652	1295	97%	98.13%	2326	MT020228
Influenza A virus (A/chicken/Czech Republic/20617_ 2/2017 (H5N8) segment 3 polymerase (PA) and PA-X Query Length :2200	4063	4063	100%	100%	2200	KY621533

Influenza A virus (A/duck/ Bangladesh/ 4493/2020(H9N 9) segment 4 (HA) length :1737	2752	2752	96%	96.36%	1717	MW749817
Influenza A virus (A/duck/Moscow/ 5037/2014(H3N 8)) segment 5 (NP) Query length: 1426	1857	2216	100%	93.76%	1527	MT773424
Influenza A virus (A/ Muscovy duck/Pennsylvani a/4484- 2/2013(N2)) segment 6 (NA) Query length:1410	2604	2604	100%	100%	1410	KM244048
Influenza A virus (A/chicken/Czech Republic/206- 17_17_2/2017(H 5N8)) segment 7 (M2) gene and (M1) Query Length:991	1831	1831	100%	100%	991	HY621537
Influenza A virus (A/mallard duck/ Netherlands/41/2 015(H5N1)) segment 8 (NS1) Query Length: 900	1589	1589	98%	98.88%	890	MF694125

In addition to analysing the generated data for each of the TP2118 genome segments described in Table 4.2, BLAST was used to identify the genetic origin for each gene. Six of the genome segments, including PB2, PB1-F2, H9, NP, N2, and NS1, were found to be from different waterfowl, while the PA-X and M genome segments were found to be from chicken. The genome segments come from all over the world, including Northeast Africa (PB2), East Asia (PB1-F2), South Asia (H9), and three from Europe (NP, N2, and M), with the chicken isolates coming from the Czech Republic (PA-X and M). Genome segments N2, M, and PA -X achieved 100% similarity compared to accession length, while PB1-F2, H9, and NS1 achieved greater than 95% similarity, and PB2 and NP had less than 95% similarity compared to accession length. Interestingly, genome segments identified in the Czech Republic were isolated from the H5N8 chicken subtype in 2017.

Ion Torrent. bam read results obtained for TP2067 generated a high-quality data analysis with a total of 495,056,995 bases, Q scores filter \geq Q of 397,958,229, total read of approximately 4,717,432 and lastly mean read length of 104 bp.

The .bam reads were analysed by mapping read sequences against the 32 reference genome sequences in Table 4.4. The results generated for each .bam reads (TP2067) consisted of a consensus sequence for each genome segment.

Reference gene segment	Consensus length (nt)	Total read count	Average coverage	Percentage of Consensus sequence length	Reference Length (nt)
KY621531.1 PB2	2046	4339	328,85	89	2308
KY621532.1 PB1-F2	2327	4360	321,75	101	2309
KY621533.1 PA_X	503	31	2,28	23	2200
MH637353.1 H1	90	3	0,08	5	1767
MH637361.2 H2	0	0	0,00	0	1689
KM054845.1 H3	0	0	0,00	0	1576
MH637350.1 H4	0	0	0,00	0	1713
KY621534 H5	147	81	4,29	8	1742
GU122032.1 H6	0	0	0,00		1635
KT777901.1 H7	38	4	0,007	2.3	1684
MH412114.1 H8	129	22	0,64	7	1735
KF313565.1 H9	0	0	0,00	0	1683
KP287772.1 H10	52	1	0,03	3	1686
MH637340 H11	65	23	0,48	3.7	1748
KX101133.1 H12	0	0	0,00	0	1695
HE802715.1 H13	77	2	0,04	4	1736
JN696316.2 H14	48	114	1,67	2.7	1748
KP087869.1 H15	62	12	0,28	3.6	1713
HE802739.1 H16	181	39	0,76	10	1776
KY621535.1 NP	167	2	0,22	11	1529

KJ484622.1 N1	194	15	1,72	14	1350
KM244048.1 N2	0	0	0,00	0	1410
MH411954.1 N3	0	0	0,00	0	1428
CY080155.1 N4	0	0	0,00	0	1413
KM244094.1 N5	0	0	0,00	0	1422
MH637406.1 N6	0	0	0,00	0	1439
KM244102.1 N7	29	1	0,02	2	1413
KM244070.1 N8	0	0	0,00	0	1413
MH637420.1 N9	0	0	0,00	0	1374
KY621537.1 M2_M1	560	127	22,10	57	991
DQ376795.1 NS2 allele A	900	545	107,52	101	890
CY005780.1 NS Allele B	36	40	1,06	4	890

Sequence data for TP2067 were mapped against each of the 16 HA and 9 NA types to determine the subtypes. The results showed an overall of nine HA and two NA were obtained. Amongst the HA types generated seven produced a low consensus length with low total read count and depth average coverage. The three remaining HA types namely H5, H8 and H16 obtained average consensus sequence length with partial sequence to the reference length, and a similarity percentage of 8 %, 7 % and 10 %. Amongst these genome segments, the H5 generated a total read count of 81 and a depth average coverage of 4.29 which are slightly higher than H8 and H16. The NA types generated two consensus lengths of which the N1 obtained a partial sequence of 194 nt when compared to the reference length with a low total read count and depth coverage average of 0.22. However, due to the partial sequences and limited depths average coverage, obtained for HA and NA, we could not determine the full genome segment subtype. Further analysis was conducted for the internal genome segments, such as PB2 generated a consensus length of 2046 nt with partial sequences of the reference length and a similarity of 89%. In addition, the genome segment obtained a total read count of 4339 and depth coverage of 323,85. The genome segment PB1-F2 generated a consensus length of 2327 which included a full genome sequence with a total read of 4360 depths average coverage of 321,75 and similarity of 101 % to the reference length. Genome segment PA-X obtained a partial consensus sequence length of 503 with a similarity of 23 % to the reference length, a total read count of 31 and depth average coverage of 2.28. Further analysis was conducted for the NP genome segment which

generated a partial consensus sequence length of 167 nt with a low similarity of 11 % to the reference length, a total read count of 2 and depths coverage of 0.22. The M genome segment generated a partial consensus sequence length of 560 nt with a similarity of 57 % to the reference length, a total read count of 127 and depth average coverage of 22.10. Lastly, the NS genome segment generated a consensus length of approximately 900 nt with a similarity length of 101% to the reference length, furthermore, it obtained a total read count of 545 and depth average coverage of 107,52. Table.4.5: BLAST analyses result for TP2067

Description	Max Score	Total score	Query cover	ldentity percentage	Accession length (nt)	Accessions number
Influenza A virus (A/duck/Mongolia /30/2015(H3N8)) viral cRNA segment 1 (PB2) Query Length:2046	1253	2820	99%	91.99%	2341	LC121233
Influenza A virus (A/duck/Cambodi a/10T-24-1- D14/2018(mixed)) segment PB1 and PB1-F2 protein. Query Length: 2321	3301	3666	100%	92.44%	2341	MN703035
Influenza A virus (A/duck/ Mongolia /820/2019(H4N2)) segment 3 PA protein PA-X genes. Query Length: 503	394	691	83%	97.41%	2216	MT02053
Influenza A virus (A/duck/Guangxi/ 112D4/2012(H3 N2)) segment 5 NP gene. Query Length: 167	292	292	98%	98.79%	1565	KT022271

Influenza A virus (A/chicken/Kenya /A70- 1403/2017(H9N 2)) segment 7 M2 gene. Query Length:581	612	973	92%	98.83%	991	MN242738
Influenza A virus (A/quail/Dubai/3 03/2000(H9N2)) segment 8 NS2 protein and NS1 gene. Query length: 900	1467	1467	98%	96.4%	895	EF063540

BLAST analysis was performed on the data obtained for the identified genome segments in Table 4.4. For each genome segment, results were generated that included a detailed des cription of the sequence identity. Detailed analysis revealed that four of the genome seg ments (PB2; PB1-F2; PA-X; and NP) are from waterfowl, specifically duck, while the M genome segment is from chicken and the NS genome segment is from quail. These segments originated from different parts of the world, such as East Asia (PB2; PA -X and NP); Southeast Asia (PB1-F2); East Africa (M); and Western Asia (N2). In addition, two of the genome segments had less than 95% similarity and four had greater than 95% similarity compared to the accession length. Both genome segments M and NS were from the H9N2 subtype. The nucleotide sequence of influenza A strains was determined by sequencing, enabling precise identification and categorization of the various strains. NGS can be used to identify an identical strain of influenza A using a representative sequence, in addition to subtyping all influenza A viruses and detecting recurrent strains. By using NGS, it is possible to identify and obtain a complete sequence of the seasonal influenza A virus

Based on the results obtained from this chapter, TP2118 obtained full consensus sequences for HA (H9) and a partial consensus sequence for NA (N2) type. Furthermore, partial consensus sequences were obtained for four high molecular weight genome segments and two low molecular weight genome segments. For TP2067 there was no identification of the HA and NA types due to the partial consensus sequence obtained and limited total read and depth average coverage for the subtypes. TP2118 sample was identified to be H9N2 and named A/environment/South Africa/TP2118?2021 (H9N2).

H9N2 viruses are most commonly isolated from poultry but are also sporadically encountered by wild birds (Bergervoet et al., 2019, Suttie et al., 2019, Barberis et al., 2020). The H9 strain is referred to as a moderately pathogenic strain in chickens. There are three commonly detected NA strains in wild birds, namely N8 (26%), N6 (19%) and N3 (17%), while in poultry there are N2 (26 5), N7 (16%) and N4 (16%). The H8 and H9 with N4 and N2 are also the most frequently detected subtype pair of HA and NA (Bergervoet et al., 2019).

The H9N2 subtype is widespread throughout the world, especially in poultry and wild birds (Bhatta et al., 2020); nevertheless, since early 2000 it has been frequently detected in North Africa, where it has been discovered in Libya, Tunisia, Egypt and recently reported in Morocco (Awuni et al., 2019, Barberis et al., 2020). The first identification and isolation of H9N2 in South Africa occurred in farmed ostriches in the Cape region in 1995, although it was discovered that the virus was most likely a spillover from migrating birds (Abolnik et al., 2007). This subtype can affect poultry health and cause severe economic losses to the poultry industry, most commonly in cases of co-infection with other pathogens, irrespective of the pathogenic phenotype.

The spread of the H9N2 subtype in poultry has also caused documented infections in avian species and mammals such as pigs, horses, dogs, and humans. Consequently, this virus in different hosts in combination with another influenza A virus could provide several opportunities to become more virulent through the insidious spread, mutation and reassortment (Kaoud et al., 2014, Sun et al., 2020).

The H9N2 virus derived from TP2118 should be studied further because it is critical to track the strain's progress and gain a better understanding of ongoing zoonotic public health, which can help to reduce the danger of virus transmission to humans and other animals.

CHAPTER 5: CONCLUSION

Surveillance for IAV is essential particularly in the study of wild waterfowl in wetland habitats since they are the primary reservoir. The surveillance of these birds is considered an early warning system to identify locations of higher risk and potentially discover new viral strains from the natural hosts. The waterfowl in the wetland study area congregate in high densities and often interact with various other bird species, thus resulting in the transmission of IAV strains. In addition, the wetland habitat has a high level of faecal samples that contain a high concentration of IAV. Screening of environmental faecal samples from a wetland study area is important because it can yield important data on IAV viral strains and infections in waterfowl and various other birds.

The study demonstrates that although faecal swab samples are ideal for the detection of IAV, these samples contain a high level of contaminants which could obstruct the full genome identification. Pre-treatment using filtration followed by the post-heating of the RNA template was successful in the partial removal of inhibitors and improved the amplification of the genome segments. In addition, the study showed that the modified M-RTPCR method is simple and cost-effective and can be widely used for faecal samples where virus isolation attempts have failed.

The identified positive faecal swab sample TP2118 was characterized as the H9N2 subtype, and the presence of this virus indicates the presence of a potentially zoonotic strain in a local community of waterfowl, in Gauteng Province. Surveillance at this study site should be continued using the methods optimized here.

REFERENCES

- ABOLNIK, C., BISSCHOP, S., GERDES, T., OLIVIER, A. & HORNER, R. 2007. Outbreaks of avian influenza H6N2 viruses in chickens arose by a reassortment of H6N8 and H9N2 ostrich viruses. *Virus Genes*, 34, 37-45.
- ABOLNIK, C., OLIVIER, A., REYNOLDS, C., HENRY, D., CUMMING, G., RAUFF, D., ROMITO, M., PETTY, D. & FALCH, C. 2016. Susceptibility and Status of Avian Influenza in Ostriches. *Avian Diseases*, 60, 286-295.
- ABOLNIK, C., STRYDOM, C., RAUFF, D. L., WANDRAG, D. B. R. & PETTY, D. 2019. Continuing evolution of H6N2 influenza a virus in South African chickens and the implications for diagnosis and control. *BMC Veterinary Research*, 15, 455.
- AN DIJK, J. G. B., VERHAGEN, J. H., WILLE, M. & WALDENSTRÖM, J. 2018. Host and virus ecology as determinants of influenza A virus transmission in wild birds. *Current Opinion in Virology*, 28, 26-36.
- ARBEITSKREIS BLUT, U. B. B. K. 2009. Influenza Virus. *Transfusion medicine and hemotherapy : offizielles Organ der Deutschen Gesellschaft fur Transfusionsmedizin und Immunhamatologie*, 36, 32-39.
- AWUNI, J. A., BIANCO, A., DOGBEY, O. J., FUSARO, A., YINGAR, D. T., SALVIATO, A., ABABIO, P. T., MILANI, A., BONFANTE, F. & MONNE, I. 2019. Avian influenza H9N2 subtype in Ghana: virus characterization and evidence of co-infection. Avian Pathology, 48, 470-476.
- BADAR, N., BASHIR AAMIR, U., MEHMOOD, M. R., NISAR, N., ALAM, M. M., KAZI, B. M. & ZAIDI, S. S. Z. 2013. Influenza Virus Surveillance in Pakistan during 2008-2011. PLOS ONE, 8, e79959.
- BANKS, J., SPEIDEL, E. C., MCCAULEY, J. W. & ALEXANDER, D. J. 2000. Phylogenetic analysis of H7 haemagglutinin subtype influenza A viruses. *Archives of Virology*, 145, 1047-1058.
- BARBERIS, A., BOUDAOUD, A., GORRILL, A., LOUPIAS, J., GHRAM, A., LACHHEB, J., ALLOUI, N. & DUCATEZ, M. F. 2020. Full-length genome sequences of the first H9N2 avian influenza viruses isolated in the Northeast of Algeria. *Virology Journal*, **17**, **108**.
- BARZON, L., LAVEZZO, E., MILITELLO, V., TOPPO, S. & PALÙ, G. 2011. Applications of Next-Generation Sequencing Technologies to Diagnostic Virology. *International Journal of Molecular Sciences*, 12, 7861-7884.
- BERGERVOET, S. A., PRITZ-VERSCHUREN, S. B. E., GONZALES, J. L., BOSSERS, A., POEN, M. J., DUTTA, J., KHAN, Z., KRITI, D., VAN BAKEL, H., BOUWSTRA, R., FOUCHIER, R. A. M. & BEERENS, N. 2019. Circulation of low pathogenic avian influenza (LPAI) viruses in wild birds and poultry in the Netherlands, 2006–2016. Scientific Reports, 9, 13681.
- BHATTA, T. R., CHAMINGS, A., VIBIN, J., KLAASSEN, M. & ALEXANDERSEN, S. 2020. Detection of a Reassortant H9N2 Avian Influenza Virus with Intercontinental Gene Segments in a Resident Australian Chestnut Teal. *Viruses*, **12**, **88**.
- BIDZHIEVA, B., ZAGORODNYAYA, T., KARAGIANNIS, K., SIMONYAN, V., LAASSRI, M. & CHUMAKOV, K. 2014. Deep sequencing approach for genetic stability evaluation of influenza A viruses. *Journal of Virological Methods*, 199, 68-75.
- BORRELLI, L., MINICHINO, A., PACE, A., DIPINETO, L. & FIORETTI, A. 2020. Fecal Sample Collection Method for Wild Birds-Associated Microbiome Research: Perspectives for Wildlife Studies. *Animals*, 10, 1349.
- CHEN, G.-Q., ZHUANG, Q.-Y., WANG, K.-C., LIU, S., SHAO, J.-Z., JIANG, W.-M., HOU, G.-Y., LI, J.-P., YU, J.-M., LI, Y.-P. & CHEN, J.-M. 2013. Identification and Survey of a Novel Avian Coronavirus in Ducks. *PLOS ONE*, 8, e72918.
- CHEUNG, T. K. & POON, L. L. 2007. Biology of influenza a virus. Annals of the New York Academy of Sciences, 1102, 1-25.
- COMIN, A., STEGEMAN, A., MARANGON, S. & KLINKENBERG, D. 2012. Evaluating Surveillance Strategies for the Early Detection of Low Pathogenicity Avian Influenza Infections. *PLOS ONE*, 7, e35956.
- DENG, G., TAN, D., SHI, J., CUI, P., JIANG, Y., LIU, L., TIAN, G., KAWAOKA, Y., LI, C. & CHEN, H. 2013. Complex Reassortment of Multiple Subtypes of Avian Influenza Viruses in Domestic Ducks at the Dongting Lake Region of China. *Journal of Virology*, 87, 9452.

- DHUMPA, R., HANDBERG, K. J., JØRGENSEN, P. H., YI, S., WOLFF, A. & BANG, D. D. 2011. Rapid detection of avian influenza virus in chicken fecal samples by immunomagnetic capture reverse transcriptase-polymerase chain reaction assay. *Diagnostic Microbiology and Infectious Disease*, 69, 258-265.
- DOVAS, C. I., PAPANASTASSOPOULOU, M., GEORGIADIS, M. P., CHATZINASIOU, E., MALIOGKA, V. I. & GEORGIADES, G. K. 2010. Detection and Quantification of Infectious Avian Influenza A (H5N1) Virus in Environmental Water by Using Real-Time Reverse Transcription-PCR. Applied and Environmental Microbiology, 76, 2165.
- ELIZALDE, M., AGÜERO, M., BUITRAGO, D., YUSTE, M., ARIAS, M. L., MUÑOZ, M. J., LELLI, D., PÉREZ-RAMÍREZ, E., MORENO-MARTIN, A. M. & FERNÁNDEZ-PINERO, J. 2014. Rapid molecular haemagglutinin subtyping of avian influenza isolates by specific real-time RT-PCR tests. *Journal of Virological Methods*, 196, 71-81.
- ELLIS, J. S. & ZAMBON, M. C. 2002. Molecular diagnosis of influenza. *Rev Med Virol*, 12, 375-89.
- FOUCHIER, R. A. M., BESTEBROER, T. M., HERFST, S., VAN DER KEMP, L., RIMMELZWAAN, G. F. & OSTERHAUS, A. D. M. E. 2000. Detection of Influenza A Viruses from Different Species by PCR Amplification of Conserved Sequences in the Matrix Gene. *Journal of Clinical Microbiology*, 38, 4096.
- GAIDET, N., OULD EL MAMY, A. B., CAPPELLE, J., CARON, A., CUMMING, G. S., GROSBOIS, V., GIL, P., HAMMOUMI, S., DE ALMEIDA, R. S., FEREIDOUNI, S. R., CATTOLI, G., ABOLNIK, C., MUNDAVA, J., FOFANA, B., NDLOVU, M., DIAWARA, Y., HURTADO, R., NEWMAN, S. H., DODMAN, T. & BALANCA, G. 2012. Investigating avian influenza infection hotspots in oldworld shorebirds. *PLoS One*, *7*, e46049.
- HAO, X., WANG, X., HU, J., GU, M., WANG, J., DENG, Y., JIANG, D., HE, D., XU, H., YANG, Y., HU, Z., CHEN, S., HU, S., LIU, X., SHANG, S., PENG, D., JIAO, X. & LIU, X. 2019. The PB2 and M genes of genotype S H9N2 virus contribute to the enhanced fitness of H5Nx and H7N9 avian influenza viruses in chickens. *Virology*, 535, 218-226.
- HOOD, G., ROCHE, X., BRIOUDES, A., VON DOBSCHUETZ, S., FASINA, F. O., KALPRAVIDH, W., MAKONNEN, Y., LUBROTH, J. & SIMS, L. 2021. A literature review of the use of environmental sampling in the surveillance of avian influenza viruses. *Transboundary and Emerging Diseases*, 68, 110-126.
- HOPKEN, M. W., PIAGGIO, A. J., PABILONIA, K. L., PIERCE, J., ANDERSON, T., PIERCE, C. & ABDO,
 Z. 2020. Population genomic transformations induced by isolation of wild bird avian influenza viruses (Orthomyxoviridae) in embryonated chicken eggs. *Infection, Genetics and Evolution*, 104505.
- HUANG, S.-W., HUNG, S.-J. & WANG, J.-R. 2019. Application of deep sequencing methods for inferring viral population diversity. *Journal of Virological Methods*, 266, 95-102.
- JOSEPH, U., SU, Y. C., VIJAYKRISHNA, D. & SMITH, G. J. 2017. The ecology and adaptive evolution of influenza A interspecies transmission. *Influenza Other Respir Viruses*, 11, 74-84.
- KAOUD, H. A., HUSSEIN, H. A., EL-DAHSHAN, A. R., KALIEFA, H. S. & ROHAIM, M. A. 2014. Cocirculation of avian influenza viruses in commercial farms, backyards and live market birds in Egypt. *International Journal of Veterinary Science and Medicine*, 2, 114-121.
- KIM, G. S., KIM, T. S., SON, J. S., LAI, V. D., PARK, J. E., WANG, S. J., JHEONG, W. H. & MO, I. P. 2019. The difference of detection rate of avian influenza virus in the wild bird surveillance using various methods. *Journal of veterinary science*, 20, e56-e56.
- KLENK, H. D., MATROSOVICH, M. N. & STECH, J. 2008. Avian influenza, Basel ; New York, Karger.
- KRAUSS, S. & WEBSTER, R. G. 2010. Avian Influenza Virus Surveillance and Wild Birds: Past and Present. *Avian Diseases*, 54, 394-398, 5.
- KURMI, B., MURUGKAR, H. V., NAGARAJAN, S., TOSH, C., DUBEY, S. C. & KUMAR, M. 2013. Survivability of Highly Pathogenic Avian Influenza H5N1 Virus in Poultry Faeces at Different Temperatures. *Indian journal of virology : an official organ of Indian Virological Society*, 24, 272-277.
- LAHENS, N. F., RICCIOTTI, E., SMIRNOVA, O., TOORENS, E., KIM, E. J., BARUZZO, G., HAYER, K. E., GANGULY, T., SCHUG, J. & GRANT, G. R. 2017. A comparison of Illumina and Ion Torrent sequencing platforms in the context of differential gene expression. *BMC Genomics*, 18, 602.
- LEE, C.-W. & SUAREZ, D. L. 2004. Application of real-time RT-PCR for the quantitation and competitive replication study of H5 and H7 subtype avian influenza virus. *Journal of Virological Methods*, 119, 151-158.

- LICKFETT, T. M., CLARK, E., GEHRING, T. M. & ALM, E. W. 2018. Detection of Influenza A viruses at migratory bird stopover sites in Michigan, USA. *Infection Ecology & Epidemiology*, 8, 1474709.
- LIU, L., ZENG, X., CHEN, P., DENG, G., LI, Y., SHI, J., GU, C., KONG, H., SUZUKI, Y., JIANG, Y., TIAN, G. & CHEN, H. 2016. Characterization of Clade 7.2 H5 Avian Influenza Viruses That Continue To Circulate in Chickens in China. *Journal of Virology*, 90, 9797-9805.
- MCAULEY, J. L., GILBERTSON, B. P., TRIFKOVIC, S., BROWN, L. E. & MCKIMM-BRESCHKIN, J. L. 2019. Influenza Virus Neuraminidase Structure and Functions. *Frontiers in microbiology*, 10, 39-39.
- MORIGUCHI, S., HOSODA, R., USHINE, N., KATO, T. & HAYAMA, S.-I. 2021. Surveillance system for avian influenza in wild birds and implications of its improvement with insights into the highly pathogenic avian influenza outbreaks in Japan. *Preventive Veterinary Medicine*, 187, 105234.
- MUNCH, M., NIELSEN, L. P., HANDBERG, K. J. & JØRGENSEN, P. H. 2001. Detection and subtyping (H5 and H7) of avian type A influenza virus by reverse transcription-PCR and PCR-ELISA. *Archives of Virology*, 146, 87-97.
- NAGARAJAN, S., TOSH, C., SMITH, D. K., PEIRIS, J. S. M., MURUGKAR, H. V., SRIDEVI, R., KUMAR, M., KATARE, M., JAIN, R., SYED, Z., BEHERA, P., CHEUNG, C. L., KHANDIA, R., TRIPATHI, S., GUAN, Y. & DUBEY, S. C. 2012. Avian Influenza (H5N1) Virus of Clade 2.3.2 in Domestic Poultry in India. *PLOS ONE*, 7, e31844.
- NAKATSU, S., SAGARA, H., SAKAI-TAGAWA, Y., SUGAYA, N., NODA, T. & KAWAOKA, Y. 2016. Complete and Incomplete Genome Packaging of Influenza A and B Viruses. *mBio*, 7, e01248-16.
- NAZIR, J., HAUMACHER, R., IKE, A. C. & MARSCHANG, R. E. 2011. Persistence of Avian Influenza Viruses in Lake Sediment, Duck Feces, and Duck Meat. *Applied and Environmental Microbiology*, 77, 4981-4985.
- NELSON, P. 2022. Respiratory Viral Pathogens. Encyclopedia of Respiratory Medicine, 129-137.
- NOUROUZIAN, H. & VASFI MARANDI, M. 2007. DETECTION OF AVIAN INFLUENZA VIRUS OF H9 SUBTYPE IN THE FECES OF EXPERIMENTALLY INFECTED CHICKENS BY RT-PCR. ARCHIVES OF RAZI INSTITUTE, 62, 181-189.
- OFULA, V. O., FRANKLIN, A. B., ROOT, J. J., SULLIVAN, H. J., GICHUKI, P., MAKIO, A., BULIMO, W., ABONG'O, B. O., MUCHAI, M. & SCHNABEL, D. 2013. Detection of Avian Influenza Viruses in Wild Waterbirds in the Rift Valley of Kenya Using Fecal Sampling. *Vector-Borne and Zoonotic Diseases*, 13, 394-400.
- PANNWITZ, G., WOLF, C. & HARDER, T. 2009. Active Surveillance for Avian Influenza Virus Infection in Wild Birds by Analysis of Avian Fecal Samples from the Environment. *Journal of Wildlife Diseases*, 45, 512-518.
- PASICK, J. 2008. Advances in the Molecular Based Techniques for the Diagnosis and Characterization of Avian Influenza Virus Infections. *Transboundary and Emerging Diseases*, 55, 329-338.
- PÉREZ-RAMÍREZ, E., GERRIKAGOITIA, X., BARRAL, M. & HÖFLE, U. 2010. Detection of low pathogenic avian influenza viruses in wild birds in Castilla-La Mancha (south central Spain). *Veterinary Microbiology*, 146, 200-208.
- PERKINS, L. E. L. & SWAYNE, D. E. 2002. Pathogenicity of a Hong Kong–Origin H5N1 Highly Pathogenic Avian Influenza Virus for Emus, Geese, Ducks, and Pigeons. *Avian Diseases*, 46, 53-63.
- RAMEY, A. M., REEVES, A. B., LAGASSÉ, B. J., PATIL, V., HUBBARD, L. E., KOLPIN, D. W., MCCLESKEY, R. B., REPERT, D. A., STALLKNECHT, D. E. & POULSON, R. L. 2022. Evidence for interannual persistence of infectious influenza A viruses in Alaska wetlands. Science of The Total Environment, 803, 150078.
- RAMÍREZ-MARTÍNEZ, L. A., LOZA-RUBIO, E., MOSQUEDA, J., GONZÁLEZ-GARAY, M. L. & GARCÍA-ESPINOSA, G. 2018. Fecal virome composition of migratory wild duck species. *PLOS ONE*, 13, e0206970.
- SANGKAKAM, A., HEMACHUDHA, P., SARAYA, A. W., THAWEETHEE-SUKJAI, B., CHEUN-AROM, T., LATINNE, A., OLIVAL, K. J. & WACHARAPLUESADEE, S. 2021. Detection of influenza virus in rectal swabs of patients admitted in hospital for febrile illnesses in Thailand. SAGE Open Medicine, 9, 2050312121989631.

- SUAREZ, D. L. & SCHULTZ-CHERRY, S. 2000. Immunology of avian influenza virus: a review. Developmental & Comparative Immunology, 24, 269-283.
- SUN, X., BELSER, J. A. & MAINES, T. R. 2020. Adaptation of H9N2 Influenza Viruses to Mammalian Hosts: A Review of Molecular Markers. *Viruses*, 12, 541.
- SUTTIE, A., TOK, S., YANN, S., KEO, P., HORM, S. V., ROE, M., KAYE, M., SORN, S., HOLL, D., TUM,
 S., BARR, I. G., HURT, A. C., GREENHILL, A. R., KARLSSON, E. A., VIJAYKRISHNA, D., DENG,
 Y.-M., DUSSART, P. & HORWOOD, P. F. 2019. The evolution and genetic diversity of avian influenza A(H9N2) viruses in Cambodia, 2015 2016. *PLOS ONE*, 14, e0225428.
- TINDALE, L. C., BATICADOS, W., DUAN, J., COOMBE, M., JASSEM, A., TANG, P., UYAGUARI-DIAZ, M., MOORE, R., HIMSWORTH, C., HSIAO, W. & PRYSTAJECKY, N. 2020. Extraction and Detection of Avian Influenza Virus From Wetland Sediment Using Enrichment-Based Targeted Resequencing. *Frontiers in Veterinary Science*, 7.
- TORRONTEGI, O., ALVAREZ, V., ACEVEDO, P., GERRIKAGOITIA, X., HÖFLE, U. & BARRAL, M. 2019. Long-term avian influenza virus epidemiology in a small Spanish wetland ecosystem is driven by the breeding Anseriformes community. *Veterinary Research*, 50, 4.
- TSAI, S.-K., CHEN, C.-C., LIN, H.-J., LIN, H.-Y., CHEN, T.-T. & WANG, L.-C. 2020. Combination of multiplex reverse transcription recombinase polymerase amplification assay and capillary electrophoresis provides high sensitive and high-throughput simultaneous detection of avian influenza virus subtypes. *J Vet Sci*, 21.
- VAN DEN HOECKE, S., VERHELST, J., VUYLSTEKE, M. & SAELENS, X. 2015. Analysis of the genetic diversity of influenza A viruses using next-generation DNA sequencing. *BMC Genomics*, 16, 79.
- VAN HELDEN, L. S., SINCLAIR, M., KOEN, P. & GREWAR, J. D. 2016. Description of an outbreak of highly pathogenic avian influenza in domestic ostriches (Struthio camelus) in South Africa in 2011. *Preventive Veterinary Medicine*, 128, 6-11.
- VENKATESH, D., POEN, M. J., BESTEBROER, T. M., SCHEUER, R. D., VUONG, O., CHKHAIDZE, M., MACHABLISHVILI, A., MAMUCHADZE, J., NINUA, L., FEDOROVA, N. B., HALPIN, R. A., LIN, X., RANSIER, A., STOCKWELL, T. B., WENTWORTH, D. E., KRITI, D., DUTTA, J., VAN BAKEL, H., PURANIK, A., SLOMKA, M. J., ESSEN, S., BROWN, I. H., FOUCHIER, R. A. M. & LEWIS, N. S. 2018. Avian Influenza Viruses in Wild Birds: Virus Evolution in a Multihost Ecosystem. *Journal of Virology*, 92, e00433-18.
- VERHAGEN, J. H., MUNSTER, V. J., MAJOOR, F., LEXMOND, P., VUONG, O., STUMPEL, J. B. G., RIMMELZWAAN, G. F., OSTERHAUS, A. D. M. E., SCHUTTEN, M., SLATERUS, R. & FOUCHIER, R. A. M. 2012. Avian Influenza A Virus in Wild Birds in Highly Urbanized Areas. *PLOS ONE,* 7, e38256.
- WAHLGREN, J. 2011. Influenza A viruses: an ecology review. *Infection Ecology & Epidemiology*, 1, 6004.
- WEBSTER, R. G., BEAN, W. J., GORMAN, O. T., CHAMBERS, T. M. & KAWAOKA, Y. 1992. Evolution and ecology of influenza A viruses. *Microbiological Reviews*, 56, 152.
- WILSON, I. G. 1997. Inhibition and facilitation of nucleic acid amplification. *Applied and Environmental Microbiology*, 63, 3741-3751.
- WU, T., PERRINGS, C., SHANG, C., COLLINS, J. P., DASZAK, P., KINZIG, A. & MINTEER, B. A. 2020. Protection of wetlands as a strategy for reducing the spread of avian influenza from migratory waterfowl. *Ambio*, 49, 939-949.
- YAMAUCHI, Y. 2018. Influenza Virus: Methods & Protocols (Methods in Molecular Biology).
- ZHOU, B., E DONNELLY, M., T SCHOLES, D., ST GEORGE, K., HATTA, M., KAWAOKA, Y. & WENTWORTH, D. 2009. Single-Reaction Genomic Amplification Accelerates Sequencing and Vaccine Production for Classical and Swine Origin Human Influenza A Viruses.
- ZOU, X. H., CHEN, W. B., ZHAO, X., ZHU, W. F., YANG, L., WANG, D. Y. & SHU, Y. L. 2016. Evaluation of A Single-reaction Method for Whole Genome Sequencing of Influenza A Virus using Next Generation Sequencing. *Biomedical and Environmental Sciences*, 29, 41-46.

APPENDICES

Appendix A : rRT-PCR screening results for wild duck environmental samples

Sample ID	Results	Ct Value
TP IRN_001	Positive	33.83
TP IRN_002	Negative	
TP IRN_003	Positive	30.56
TP IRN_004	Negative	
TP IRN_005	Positive	34.97
TP IRN_006	Positive	35.85
TP IRN_007	Positive	35.00
TP IRN_008	Positive	36.21
TP IRN_009	Positive	36.22
TP IRN_010	Positive	26.81
TP IRN_011	Positive	35.35
TP IRN_012	Positive	34.72
TP IRN_013	Negative	
TP IRN_014	Positive	35.36
TP IRN_015	Negative	
TP IRN_016	Positive	31.54
TP IRN_017	Positive	33.65
TP IRN_018	Negative	
TP IRN_019	Negative	
TP IRN_020	Positive	36.52
TP IRN_021	Positive	36.39
TP IRN_022	Positive	34.14
TP IRN_023	Positive	35.40
TP IRN_024	Positive	35.20
TP IRN_025	Positive	35.26
TP IRN_026	Negative	
TP IRN_027	Negative	
TP IRN_028	Positive	32.70
TP IRN_029	Negative	
TP IRN_030	Negative	
TP IRN_031	Negative	
TP IRN_032	Positive	35.66
TP IRN_033	Positive	36.37
TP IRN_034	Positive	34.80
TP IRN_035	Negative	
TP IRN_036	Positive	34.10
TP IRN_037	Negative	
TP IRN_038	Positive	36.38
TP IRN_039	Positive	35.37
TP IRN_040	Negative	
TP IRN_041	Positive	32.87
TP IRN_042	Positive	34.59

TP IRN_043	Positive	35.91
TP IRN_044	Positive	34.1
TP IRN_045	Negative	
TP IRN_046	Positive	30.80
TP IRN_047	Positive	36.08
TP IRN_048	Negative	
TP IRN_049	Negative	
TP IRN_050	Positive	34.47
TP IRN_051	Negative	
TP IRN_052	Negative	
_ TP IRN_053	Positive	36.19
	Negative	
 TP IRN_055	Negative	
TP IRN_056	Positive	35.30
TP IRN_057	Negative	
TP IRN 058	Negative	
TP IRN 059	Positive	35.51
TP IRN_060	Negative	00.01
TP IRN_061	Positive	34.64
TP IRN_062	Positive	36.27
TP IRN_063	Negative	00.21
TP IRN_064	Positive	34.50
TP IRN_065	Negative	54.50
TP IRN_066	Positive	36.00
TP IRN_067	Negative	30.00
TP IRN_068	Negative	
TP IRN_069	Positive	34.96
TP IRN_070	Negative	54.90
TP IRN_071	Positive	35.22
TP IRN_072	Positive	36.15
TP IRN 073		
—	Positive	35.35
TP IRN_074	Positive	36.35
TP IRN_075	Positive	31.33
TP IRN_076	Negative	
TP IRN_077	Negative	
TP IRN_078	Negative	
TP IRN_079	Negative	
TP IRN_080	Negative	
TP IRN 081	Negative	
TP IRN 082	Negative	
TP IRN 083	Negative	
TP IRN 084	Negative	
TP IRN 085	Negative	
TP IRN 086	Negative	
TP IRN 087	Negative	
TP IRN 088	Negative	
TP IRN 089	Positive	33.27
TP IRN 090	Positive	35.77
TP IRN 091	Positive	34.71

TP IRN 092	Negative	
TP IRN 093	Negative	
TP IRN 094	Positive	31.11
TP IRN 095	Negative	
TP IRN 096	Positive	33.50
TP IRN 097	Positive	31.53
TP IRN 098	Negative	
TP IRN 099	Negative	
TP IRN 100	Negative	
TP IRN 101	Negative	
TP IRN 102	Positive	37.04
TP IRN 103	Positive	33.63
TP IRN 104	Positive	35.73
TP IRN 105	Positive	28.98
TP IRN 106	Positive	34.80
TP IRN 107	Positive	32.09
TP IRN 108	Positive	31.18
TP IRN 109	Positive	33.99
TP IRN 110	Negative	
TP IRN 111	Positive	35.77
TP IRN 112	Positive	34.50
TP IRN 113	Negative	
TP IRN 114	Positive	34.28
TP IRN 115	Negative	
TP IRN 116	Negative	
TP IRN 117	Positive	35.93
TP IRN 118	Positive	31.99
TP IRN 119	Negative	
TP IRN 120	Positive	36.72
TP IRN 121	Negative	
TP IRN 122	Negative	
TP IRN 123	Positive	33.74
TP IRN 124	Positive	27.55
TP IRN 125	Negative	
TP IRN 126	Positive	34.09
TP IRN 127	Positive	35.36
TP IRN 128	Positive	30.20
TP IRN 129	Negative	
TP IRN 130	Negative	
TP IRN 131	Negative	
TP IRN 132	Negative	
TP IRN 133	Positive	31.44
TP IRN 134	Positive	32.35
TP IRN 135	Positive	35.81
TP IRN 136	Negative	
TP IRN 137	Negative	
TP IRN 138	Positive	33.84
TP IRN 139	Positive	35.35
TP IRN 140	Positive	36.98

TP IRN 141	Negative	
TP IRN 142	Positive	35.90
TP IRN 143	Positive	35.77
TP IRN 144	Negative	
TP IRN_145	Negative	
TP IRN_146	Positive	34.80
TP IRN_147	Negative	
TP IRN_148	Negative	
TP IRN_149	Positive	36.27
_ TP IRN_150	Negative	
TP IRN_151	Positive	36.17
TP IRN_152	Negative	
TP IRN_153	Positive	36.55
TP IRN_154	Negative	00.00
TP IRN_155	Negative	
TP IRN_156	Positive	35.63
TP IRN_157	Positive	36.62
—		
TP IRN_158	Positive	36.62
TP IRN_159	Positive	35.62
TP IRN_160	Negative	
TP IRN_161	Negative	
TP IRN_162	Negative	
TP IRN_163	Negative	
TP IRN_164	Negative	
TP IRN_165	Negative	
TP IRN_166	Negative	
TP IRN_167	Negative	
TP IRN_168	Negative	
TP IRN_169	Positive	36.51
TP IRN_170	Negative	
TP IRN_171	Negative	
TP IRN_172	Negative	
TP IRN_173	Positive	36.37
TP IRN_174	Negative	
_ TP IRN_175	Positive	36.47
 TP IRN_176	Negative	
TP IRN_177	Positive	35.39
TP IRN_178	Positive	35.67
TP IRN_179	Negative	00.01
TP IRN_180	Negative	
TP IRN_181	Negative	
TP IRN_182	Positive	36.47
TP IRN_183	Positive	35.21
TP IRN_183	Negative	JJ.ZI
—	_	36.30
TP IRN_185	Negative	36.38
TP IRN_186	Negative	
TP IRN_187	Negative	
TP IRN_188	Negative	
TP IRN_189	Negative	

TRURN 400		
TP IRN_190	Negative	
TP IRN_191	Negative	
TP IRN_192	Negative	
TP IRN_193	Negative	
TP IRN_194	Negative	
TP IRN_195	Positive	36.65
TP IRN_196	Positive	36.55
TP IRN_197	Positive	36.55
TP IRN_198	Negative	
TP IRN_199	Positive	35.58
TP IRN_200	Negative	
TP IRN_201	Positive	36.77
TP IRN_202	Negative	
_ TP IRN_203	Negative	
TP IRN 204	Negative	
TP IRN_205	Positive	35.66
TP IRN_206	Positive	35.75
TP IRN_207	Negative	00.10
TP IRN_208	Positive	31.73
TP IRN_209	Positive	35.40
—		55.40
TP IRN_210	Negative	
TP IRN_211	Negative	24.07
TP IRN_212	Positive	34.97
TP IRN_213	Positive	35.46
TP IRN_214	Positive	36.42
TP IRN_215	Negative	
TP IRN_216	Negative	
TP IRN_217	Negative	
TP IRN_218	Negative	
TP IRN_219	Positive	33.80
TP IRN_220	Negative	
TP IRN_221	Negative	
TP IRN_222	Positive	36.91
TP IRN_223	Positive	36.34
TP IRN_224	Negative	
TP IRN_225	Negative	
TP IRN_226	Negative	
_ TP IRN_227	Negative	
_ TP IRN_228	Negative	
TP IRN_229	Negative	
TP IRN_230	Negative	
TP IRN_231	Negative	
TP IRN_232	Negative	
TP IRN_233	Negative	
TP IRN_234	Positive	36.59
—	Positive	
TP IRN_235		35.64
TP IRN_236	Negative	20.07
TP IRN_237	Positive	32.27
TP IRN_238	Negative	

TP IRN_239 TP IRN_240 TP IRN_241 TP IRN_242 TP IRN_243 TP IRN_244 TP IRN_245	Positive Positive Positive Positive Negative Negative Negative	36.64 33.22 34.40 31.38
TP IRN_246 TP IRN_247 TP IRN_248 TP IRN_249 TP IRN_250	Negative Negative Negative Negative Negative	
TP IRN_251 TP IRN_252 TP IRN_253	Positive Positive Negative	35.70 36.96
TP IRN_254 TP IRN_255 TP IRN_256 TP IRN_257	Positive Negative Negative Negative	32.63
TP IRN_258 TP IRN_259 TP IRN_260 TP IRN_261 TP IRN_262 TP IRN_263	Positive Negative Negative Negative Negative	36.39
TP IRN_265 TP IRN_265 TP IRN_266	Negative Positive Negative Negative	34.39
TP IRN_267	Positive	33.95
TP IRN_268	Positive	35.53
TP IRN 269	Positive	36.57
TP IRN_270	Positive	35.02
 TP IRN_271	Positive	36.69
TP IRN_272	Positive	35.46
TP IRN_273	Positive	31.78
TP IRN_274	Negative	
TP IRN_275	Positive	35.29
TP IRN_276	Positive	35.22
TP IRN_277	Negative	
TP IRN_278	Positive	33.27
TP IRN_279	Positive	36.50
TP IRN_280	Positive	36.50
TP IRN_281	Negative	
TP IRN_282	Negative	
TP IRN_283	Positive	34.35
TP IRN_284	Negative	
TP IRN_285	Positive	34.65
TP IRN_286	Negative	
TP IRN_287	Negative	

	Nogotivo	
TP IRN_288	Negative Positive	25 20
TP IRN_289 TP IRN_290		35.38
	Negative	24 40
TP IRN_291	Positive	34.49
TP IRN_292	Negative	
TP IRN_293	Negative	22 54
TP IRN_294	Positive	33.54
TP IRN_295	Negative	
TP IRN_296	Positive	35.49
TP IRN_297	Positive	36.57
TP IRN_298	Positive	35.49
TP IRN_299	Positive	30.77
TP IRN_300	Positive	36.41
TP IRN_301	Negative	
TP IRN_302	Positive	36.65
TP IRN_303	Positive	35.63
TP IRN_304	Negative	
TP IRN_305	Positive	36.58
TP IRN_306	Negative	
TP IRN_307	Negative	
TP IRN_308	Negative	
TP IRN_309	Positive	36.02
TP IRN_310	Negative	
TP IRN_311	Negative	
TP IRN_312	Positive	19.98
TP IRN_313	Positive	31.44
TP IRN_314	Negative	
TP IRN_315	Positive	34.87
TP IRN_316	Negative	
TP IRN_317	Negative	
TP IRN_318	Negative	
TP IRN_319	Positive	36.32
 TP IRN_320	Negative	
_ TP IRN_321	Negative	
TP IRN 322	Positive	31.40
_ TP IRN_323	Negative	
TP IRN_324	Negative	
TP IRN_325	Positive	35.39
TP IRN_326	Negative	00100
TP IRN_327	Negative	
TP IRN_328	Negative	
TP IRN_329	Negative	
TP IRN_330	Negative	
TP IRN_331	Negative	
TP IRN_332	Positive	34.35
TP IRN_333	Positive	34.35 31.29
TP IRN_334		31.23
—	Negative	
TP IRN_335	Negative	0E 77
TP IRN_336	Positive	25.77

TP IRN_337	Positive	36.94
TP IRN_338	Positive	36.45
TP IRN_339	Negative	
TP IRN_340	Negative	
TP IRN_341	Negative	
TP IRN_342	Negative	
TP IRN_343	Negative	
TP IRN_344	Negative	
TP IRN_345	Negative	
TP IRN_346	Positive	30.17
TP IRN_347	Negative	
TP IRN_348	Positive	29.73
TP IRN_349	Positive	35.13
TP IRN_350	Negative	
TP IRN_351	Negative	
TP IRN_352	Positive	32.27
TP IRN_353	Positive	32.26
TP IRN_354	Negative	
TP IRN_355	Positive	35.39
TP IRN_356	Positive	34.91
TP IRN_357	Positive	36.89
TP IRN_358	Positive	30.49
TP IRN_359	Negative	
TP IRN_360	Negative	
TP IRN_361	Negative	
TP IRN_362	Negative	
TP IRN_363	Negative	
TP IRN_364	Negative	
TP IRN_365	Positive	34.23
TP IRN_366	Negative	
TP IRN_367	Negative	
TP IRN_368	Negative	
TP IRN_369	Negative	
TP IRN_370	Negative	
TP IRN_371	Negative	
TP IRN_372	Negative	
TP IRN_373	Negative	
TP IRN_374	Positive	32.54
TP IRN_375	Negative	
TP IRN_376	Negative	
TP IRN_377	Negative	
TP IRN_378	Negative	
TP IRN_379	Negative	
TP IRN_380	Negative	
TP IRN_381	Negative	
TP IRN_382	Negative	
TP IRN_383	Negative	
TP IRN_384	Negative	
TP IRN_385	Negative	

TP IRN_386	Positive	31.68
TP IRN_387	Negative	01.00
TP IRN_388	Negative	
TP IRN_389	Negative	
TP IRN_390	Negative	
TP IRN_391	Negative	
TP IRN_392	Negative	
TP IRN 393	Negative	
TP IRN 394	Negative	
TP IRN_395	Negative	
TP IRN_396	Positive	32.39
TP IRN_397	Negative	•==••
TP IRN_398	Negative	
TP IRN_399	Positive	29.15
TP IRN 400	Positive	37.39
TP IRN_401	Negative	01.00
TP IRN_402	Negative	
TP IRN_403	Positive	36.21
TP IRN_404	Positive	32.93
TP IRN_405	Positive	30.65
TP IRN_406	Negative	00.00
TP IRN_407	Positive	28.14
TP IRN_408	Positive	32.19
TP IRN_409	Negative	02.10
TP IRN_410	Negative	
TP IRN_411	Positive	32.98
TP IRN_412	Negative	02.00
TP IRN_413	Negative	
TP IRN_414	Positive	32.66
TP IRN_415	Positive	33.52
TP IRN_416	Positive	33.91
TP IRN_417	Positive	31.23
TP IRN_418	Positive	34.48
TP IRN_419	Negative	0 11 10
TP IRN_420	Negative	
TP IRN_421	Positive	28.27
TP IRN_422	Positive	29.60
TP IRN 423	Positive	34.90
TP IRN_424	Positive	33.82
TP IRN_425	Positive	31.22
TP IRN_426	Negative	01.111
TP IRN_427	Negative	
TP IRN_428	Positive	10.00
TP IRN_429	Positive	36.44
TP IRN_430	Positive	00.17
TP IRN_431	Positive	31.48
TP IRN_432	Positive	01.10
TP IRN_433	Positive	29.84
TP IRN_434	Positive	33.46
		00.10

TP IRN_435	Positive	32.72
TP IRN_436	Positive	
TP IRN_437	Positive	
TP IRN_438	Positive	
TP IRN_439	Positive	27.72
TP IRN_440	Positive	32.79
TP IRN_441	Positive	30.75
TP IRN_442	Positive	
TP IRN_443	Positive	
TP IRN_444	Positive	29.89
TP IRN_445	Positive	34.27
TP IRN_446	Positive	
TP IRN_447	Positive	34.40
TP IRN_448	Positive	30.44
TP IRN_449	Positive	27.56
TP IRN_450	Positive	33.55
TP IRN 451	Positive	32.63
 TP IRN_452	Positive	32.88
TP IRN_453	Positive	33.99
TP IRN_454	Positive	33.19
TP IRN_455	Positive	30.11
TP IRN_456	Positive	34.02
TP IRN_457	Positive	30.85
TP IRN_458	Positive	33.52
TP IRN_459	Positive	32.28
TP IRN_460	Positive	34.31
TP IRN_461	Positive	33.99
TP IRN_462	Negative	00.00
TP IRN_463	Positive	33.65
TP IRN_464	Positive	31.57
TP IRN_465	Positive	31.36
TP IRN_466	Negative	51.50
TP IRN_467	Positive	29.85
TP IRN_468	Positive	29.85 32.29
—	Positive	32.29 31.59
TP IRN_469		
TP IRN_470	Positive	29.88
TP IRN_471	Positive	28.79
TP IRN_472	Positive	31.82
TP IRN_473	Positive	28.89
TP IRN 474	Negative	
TP IRN 475	Negative	
TP IRN 476	Negative	
TP IRN 477	Positive	31.99
TP IRN 478	Negative	
TP IRN 479	Positive	33.27
TP IRN 480	Positive	33.82
TP IRN 481	Positive	32.55
TP IRN 482	Negative	
TP IRN 483	Negative	

TP IRN 484	Positive	35.63
TP IRN 485	Positive	36.52
TP IRN 486	Positive	36.53
TP IRN 487	Positive	32.19
TP IRN 488	Positive	33.27
TP IRN 489	Positive	32.73
TP IRN 490	Positive	32.97
TP IRN 491	Positive	35.68
TP IRN 492	Positive	34.08
TP IRN 493	Negative	
TP IRN 494	Positive	36.90
TP IRN 495	Positive	28.51
TP IRN 496	Positive	35.26
TP IRN 497	Positive	36.54
TP IRN 498	Positive	31.95
TP IRN 499	Positive	32.41
TP IRN 500	Positive	33.51
TP IRN 501	Positive	29.97
TP IRN 502	Negative	
TP IRN 503	Positive	34.85
TP IRN 504	Positive	28.71
TP IRN 505	Positive	31.19
TP IRN 506	Negative	
TP IRN 507	Positive	32.79
TP IRN 508	Positive	32.26
TP IRN 509	Negative	
TP IRN 510	Positive	31.67
TP IRN 511	Positive	33.24
TP IRN 512	Positive	28.28
TP IRN 513	Positive	28.73
TP IRN 514	Positive	32.25
TP IRN 515	Positive	32.52
TP IRN 516	Positive	32.38
TP IRN 517	Positive	36.22
TP IRN 518	Positive	33.84
TP IRN 519	Positive	30.48
TP IRN 520	Negative	
TP IRN 521	Positive	27.71
TP IRN 522	Negative	
TP IRN 523	Positive	32.85
TP IRN 524	Positive	32.83
TP IRN 525	Positive	31.42
TP IRN 526	Positive	32.84
TP IRN 527	Positive	36.96
TP IRN 528	Positive	37.83
TP IRN 529	Positive	33.96
TP IRN 530	Negative	55.50
TP IRN 530	Positive	32.50
TP IRN 531 TP IRN 532	Positive	
	FUSILIVE	33.80

TP IRN 533	Positive	32.47
TP IRN 534	Positive	29.76
TP IRN 535	Positive	32.82
TP IRN 536	Negative	
TP IRN 537	Positive	32.54
TP IRN 538	Negative	
TP IRN 539	Negative	
TP IRN 540	Negative	
TP IRN 541	Positive	34.81
TP IRN 542	Positive	32.24
TP IRN 543	Positive	31.71
TP IRN 544	Positive	36.09
TP IRN 545	Positive	31.63
TP IRN_546	Positive	28.86
 TP IRN 547	Positive	32.60
_ TP IRN_548	Positive	33.53
_ TP IRN_549	Positive	33.76
TP IRN_550	Positive	33.72
TP IRN_551	Positive	31.28
TP IRN_552	Positive	32.47
TP IRN_553	Positive	32.70
TP IRN_554	Positive	33.44
TP IRN_555	Positive	32.83
TP IRN_556	Positive	33.36
TP IRN_557	Positive	32.40
TP IRN_558	Positive	32.21
TP IRN_559	Positive	35.60
TP IRN_560	Positive	30.48
TP IRN_561	Positive	32.83
TP IRN_562	Positive	27.33
TP IRN_563	Positive	32.30
TP IRN_564	Positive	34.89
TP IRN_565	Negative	01.00
TP IRN_566	Positive	32.42
TP IRN 567	Positive	34.11
TP IRN_568	Positive	32.10
TP IRN_569	Positive	30.15
TP IRN_570	Positive	32.01
TP IRN_571	Positive	32.45
TP IRN_572	Positive	33.95
TP IRN 573	Positive	34.93
TP IRN 574	Positive	34.93 36.06
TP IRN_575	Positive	35.87
TP IRN_576	Positive	36.49
TP IRN_577	Positive	30.49 32.20
TP IRN_578	Positive	32.20 33.27
—	Positive	
TP IRN_579		32.79 34.60
TP IRN_580	Positive	34.60 25.27
TP IRN_581	Positive	35.37

TP IRN_582	Positive	31.90
TP IRN_583	Positive	27.73
TP IRN_584	Positive	35.19
TP IRN_585	Positive	32.90
_ TP IRN_586	Positive	33.89
TP IRN_587	Positive	36.14
TP IRN_588	Positive	39.28
TP IRN_589	Positive	35.08
TP IRN 590	Positive	29.84
TP IRN_591	Positive	34.03
TP IRN_592	Positive	34.20
TP IRN_593	Positive	32.49
TP IRN_594	Positive	28.85
TP IRN_595	Positive	28.85 30.94
—	Positive	30.94 37.06
TP IRN_596		
TP IRN_597	Positive	33.81
TP IRN_598	Positive	36.58
TP IRN_599	Negative	
TP IRN_600	Positive	30.49
TP IRN_601	Positive	34.25
TP IRN_602	Positive	30.70
TP IRN_603	Positive	34.98
TP IRN_604	Positive	33.56
TP IRN_605	Negative	
TP IRN_606	Negative	
TP IRN_607	Negative	
TP IRN_608	Negative	
TP IRN_609	Negative	
TP IRN_610	Positive	34.69
TP IRN_611	Negative	
TP IRN_612	Positive	30.36
TP IRN_613	Positive	32.20
TP IRN_614	Positive	33.58
TP IRN_615	Positive	32.28
TP IRN_616	Positive	34.02
TP IRN_617	Positive	35.29
TP IRN_618	Positive	32.73
TP IRN_619	Positive	35.27
 TP IRN_620	Positive	25.94
_ TP IRN_621	Positive	30.16
TP IRN_622	Positive	30.85
TP IRN_623	Positive	30.86
TP IRN_624	Positive	31.22
TP IRN_625	Positive	34.78
TP IRN_626	Positive	30.66
TP IRN_627	Positive	31.61
TP IRN_628	Positive	29.96
TP IRN_629	Positive	29.90 29.31
TP IRN_630	Positive	29.31 37.09
11 IIII_030		51.08

TP IRN_631	Negative	
TP IRN 632	Positive	30.73
TP IRN_633	Positive	25.77
TP IRN 634	Positive	28.26
TP IRN_635	Positive	32.13
TP IRN_636	Positive	29.94
TP IRN 637	Positive	32.91
TP IRN_638	Positive	29.81
TP IRN_639	Positive	32.44
TP IRN_640	Positive	32.67
TP IRN_641	Positive	29.24
TP IRN_642	Positive	30.71
 TP IRN_643	Positive	32.45
TP IRN_644	Positive	31.87
TP IRN_645	Positive	33.27
TP IRN_646	Positive	34.14
TP IRN_647	Positive	32.84
TP IRN_648	Positive	31.49
TP IRN_649	Positive	34.29
TP IRN_650	Positive	34.86
TP IRN_651	Positive	29.67
TP IRN_652	Positive	29.66
TP IRN_653	Positive	36.27
TP IRN_654	Positive	32.98
_ TP IRN_655	Negative	
_ TP IRN_656	Negative	
 TP IRN 657	Positive	38.99
_ TP IRN_658	Positive	33.50
 TP IRN 659	Negative	
TP IRN_660	Positive	32.85
TP IRN_661	Positive	35.39
TP IRN_662	Positive	31.91
TP IRN_663	Positive	34.95
TP IRN_664	Positive	33.21
TP IRN_665	Negative	
TP IRN_666	Negative	
TP IRN_667	Positive	31.48
TP IRN_668	Positive	32.37
TP IRN_669	Positive	34.81
TP IRN_670	Positive	27.62
TP IRN_671	Negative	
TP IRN_672	Negative	
TP IRN_673	Positive	33.28
TP IRN_674	Negative	
TP IRN_675	Positive	34.66
TP IRN_676	Positive	33.21
TP IRN_677	Negative	
TP IRN_678	Positive	30.82
TP IRN_679	Negative	

TP IRN_680	Negative	
TP IRN_681	Positive	32.97
TP IRN_682	Negative	
TP IRN_683	Negative	
TP IRN_684	Positive	35.50
TP IRN_685	Negative	
TP IRN_686	Positive	33.54
TP IRN_687	Positive	31.37
TP IRN_688	Negative	
TP IRN_689	Positive	26.77
TP IRN_690	Negative	
TP IRN_691	Positive	31.85
TP IRN_692	Positive	31.44
TP IRN_693	Negative	
TP IRN_694	Positive	30.59
TP IRN_695	Positive	32.00
TP IRN_696	Positive	31.51
TP IRN_697	Positive	28.78
TP IRN_698	Positive	29.71
TP IRN_699	Positive	32.45
TP IRN_700	Positive	30.91
TP IRN_701	Positive	30.41
TP IRN_702	Negative	
 TP IRN_703	Positive	33.73
_ TP IRN_704	Negative	
TP IRN_705	Positive	32.51
TP IRN_706	Positive	31.37
TP IRN_707	Positive	32.76
TP IRN_708	Negative	
TP IRN_709	Positive	31.82
TP IRN_710	Positive	31.22
TP IRN_711	Positive	29.96
TP IRN_712	Negative	20100
TP IRN_713	Negative	
TP IRN_714	Negative	
TP IRN 715	Positive	28.84
TP IRN_716	Positive	29.23
TP IRN_717	Positive	32.90
TP IRN_718	Positive	32.90 33.17
TP IRN_719	Positive	30.11
—		
TP IRN_720	Positive	30.19
TP IRN_721	Positive	29.80
TP IRN_722	Positive	35.73
TP IRN_723	Negative	24.04
TP IRN_724	Positive	31.21
TP IRN_725	Positive	33.94
TP IRN_726	Positive	32.33
TP IRN_727	Positive	31.11
TP IRN_728	Positive	32.71

TP IRN_729	Positive	30.47
TP IRN_730	Positive	33.82
 TP IRN_731	Negative	
TP IRN 732	Positive	33.33
TP IRN_733	Positive	32.76
—		
TP IRN_734	Positive	31.20
TP IRN_735	Positive	30.05
TP IRN_736	Positive	32.20
TP IRN_737	Positive	33.66
TP IRN_738	Positive	31.22
TP IRN_739	Positive	32.57
TP IRN_740	Positive	29.64
TP IRN_741	Positive	33.70
TP IRN_742	Positive	33.20
TP IRN_743	Negative	
TP IRN_744	Negative	
_ TP IRN_745	Positive	32.40
TP IRN_746	Positive	26.99
TP IRN_747	Positive	31.48
TP IRN_748	Positive	33.82
TP IRN_749	Positive	33.82 31.74
—		
TP IRN_750	Positive	33.76
TP IRN_751	Negative	
TP IRN_752	Negative	
TP IRN_753	Negative	
TP IRN_754	Negative	
TP IRN_755	Positive	32.65
TP IRN_756	Positive	29.15
TP IRN_757	Negative	
TP IRN_758	Positive	30.64
TP IRN_759	Positive	31.42
TP IRN_760	Positive	34.58
TP IRN_761	Negative	
TP IRN_762	Positive	33.77
TP IRN_763	Positive	31.89
_ TP IRN_764	Negative	
TP IRN_765	Negative	
TP IRN_766	Positive	32.85
TP IRN_767	Positive	31.76
TP IRN_768	Positive	31.73
	Positive	
TP IRN_769		36.65
TP IRN_770	Positive	31.60
TP IRN_771	Positive	30.60
TP IRN_772	Positive	31.61
TP IRN_773	Positive	34.15
TP IRN_774	Positive	32.22
TP IRN_775	Negative	
TP IRN_776	Positive	30.69
TP IRN_777	Negative	

TD IDN 779	Dooitiyo	20.96
TP IRN_778 TP IRN_779	Positive Negative	30.86
TP IRN_780	Positive	31.25
TP IRN 781	Positive	29.40
TP IRN_782	Positive	29.40 31.78
TP IRN_783	Positive	30.74
TP IRN_784	Positive	29.77
TP IRN_785	Negative	
TP IRN_786	Positive	30.50
TP IRN_787	Negative	20.72
TP IRN_788	Positive	30.73
TP IRN_789	Positive	31.47
TP IRN_790	Negative	
TP IRN_791	Negative	24.04
TP IRN_792	Positive	31.91
TP IRN_793	Positive	35.57
TP IRN_794	Positive	24.00
TP IRN_795	Negative	00.45
TP IRN_796	Positive	33.45
TP IRN_797	Negative	
TP IRN_798	Negative	
TP IRN_799	Positive	34.11
TP IRN_800	Negative	
TP IRN_801	Negative	
TP IRN_802	Negative	
TP IRN_803	Positive	30.06
TP IRN_804	Negative	
TP IRN_805	Positive	34.81
TP IRN_806	Negative	
TP IRN_807	Negative	
TP IRN_808	Positive	37.56
TP IRN_809	Negative	
TP IRN_810	Positive	31.72
TP IRN_811	Positive	33.52
TP IRN_812	Positive	35.18
TP IRN_813	Negative	
TP IRN_814	Negative	
TP IRN_815	Negative	
TP IRN_816	Positive	33.55
TP IRN_817	Positive	30.32
TP IRN_818	Negative	
TP IRN_819	Positive	32.81
TP IRN_820	Positive	33.17
TP IRN_821	Negative	
TP IRN_822	Negative	
TP IRN_823	Positive	35.59
TP IRN_824	Negative	
TP IRN_825	Positive	32.28
TP IRN_826	Negative	

TP IRN_827	Negative	
TP IRN_828	Negative	
TP IRN_829	Positive	33.03
TP IRN_830	Negative	
TP IRN_831	Positive	34.32
TP IRN_832	Positive	34.65
TP IRN_833	Negative	
 TP IRN_834	Negative	
 TP IRN_835	Negative	
TP IRN_836	Positive	33.11
TP IRN_837	Positive	31.59
TP IRN_838	Negative	•==••
TP IRN_839	Negative	
TP IRN_840	Positive	34.49
TP IRN_841	Positive	32.26
TP IRN_842	Positive	32.66
—		33.32
TP IRN_843	Positive	33.32
TP IRN_844	Negative	24.00
TP IRN_845	Positive	31.86
TP IRN_846	Positive	35.34
TP IRN_847	Positive	34.64
TP IRN_848	Positive	31.24
TP IRN_849	Positive	32.98
TP IRN_850	Negative	
TP IRN_851	Negative	
TP IRN_852	Positive	33.26
TP IRN_853	Negative	
TP IRN_854	Positive	33.59
TP IRN_855	Positive	34.26
TP IRN_856	Negative	
TP IRN_857	Positive	34.30
TP IRN_858	Positive	38.29
TP IRN_859	Positive	32.92
TP IRN 860	Positive	33.78
TP IRN 861	Positive	33.19
TP IRN 862	Positive	27.70
TP IRN_863	Positive	31.49
TP IRN_864	Positive	32.72
TP IRN_865	Positive	33.59
TP IRN_866	Positive	32.86
TP IRN_867	Positive	37.56
TP IRN_868	Positive	29.82
	Positive	
TP IRN_869		31.82
TP IRN_870	Negative	
TP IRN_871	Negative	
TP IRN_872	Positive	28.59
TP IRN_873	Negative	
TP IRN_874	Positive	32.84
TP IRN_875	Positive	31.81

TP IRN_876	Positive	31.33
TP IRN_877	Negative	
TP IRN_878	Negative	
TP IRN_879	Positive	31.25
TP IRN_880	Negative	
TP IRN_881	Positive	31.57
TP IRN_882	Positive	33.58
TP IRN_883	Negative	
	Positive	31.47
	Positive	31.94
TP IRN_886	Positive	30.66
TP IRN_887	Positive	28.71
TP IRN_888	Positive	32.86
TP IRN_889	Positive	32.60
TP IRN_890	Positive	32.51
—	Positive	
TP IRN_891		31.62
TP IRN_892	Positive	32.74
TP IRN_893	Positive	31.37
TP IRN_894	Positive	32.46
TP IRN_895	Positive	31.32
TP IRN_896	Positive	32.32
TP IRN_897	Positive	32.09
TP IRN_898	Positive	30.86
TP IRN_899	Positive	31.16
TP IRN_900	Negative	
TP IRN_901	Negative	
TP IRN_902	Positive	30.87
TP IRN_903	Positive	33.65
TP IRN_904	Positive	32.81
TP IRN_905	Negative	
TP IRN_906	Positive	33.16
 TP IRN_907	Positive	33.48
TP IRN_908	Positive	31.72
TP IRN_909	Negative	
TP IRN_910	Positive	33.61
TP IRN_911	Positive	33.97
TP IRN_912	Negative	00.01
TP IRN_913	Positive	33.16
TP IRN_914	Positive	33.01
—		
TP IRN_915	Positive	37.81
TP IRN_916	Positive	29.76
TP IRN_917	Positive	32.44
TP IRN_918	Negative	
TP IRN_919	Positive	32.69
TP IRN_920	Negative	
TP IRN_921	Positive	33.81
TP IRN_922	Positive	31.68
TP IRN_923	Positive	32.94
TP IRN_924	Positive	30.12

TP IRN_925	Positive	35.84
TP IRN_926	Positive	33.04
TP IRN_927	Positive	33.60
TP IRN_928	Positive	32.90
TP IRN_929	Negative	
_ TP IRN_930	Positive	31.80
_ TP IRN_931	Positive	31.53
TP IRN_932	Positive	33.30
TP IRN_933	Positive	37.10
TP IRN_934	Positive	30.75
TP IRN_935	Negative	00.10
TP IRN_936	Positive	31.40
TP IRN_937	Negative	51.40
TP IRN_938	Positive	31.59
TP IRN_939	Negative	31.59
—	0	24.45
TP IRN_940	Positive	31.15
TP IRN_941	Positive	33.72
TP IRN_942	Positive	32.34
TP IRN_943	Negative	
TP IRN_944	Negative	
TP IRN_945	Negative	
TP IRN_946	Negative	
TP IRN_947	Positive	32.86
TP IRN_948	Positive	32.55
TP IRN_949	Positive	32.74
TP IRN_950	Positive	33.24
TP IRN_951	Positive	31.70
TP IRN_952	Positive	31.84
TP IRN_953	Positive	31.13
TP IRN_954	Positive	34.08
TP IRN_955	Positive	32.91
TP IRN_956	Positive	31.51
TP IRN_957	Positive	33.72
TP IRN_958	Positive	34.68
TP IRN_959	Positive	34.78
TP IRN_960	Positive	33.16
TP IRN_961	Positive	32.41
TP IRN_962	Positive	33.70
TP IRN_963	Positive	33.37
_ TP IRN_964	Positive	31.96
_ TP IRN_965	Positive	34.28
TP IRN_966	Positive	32.87
TP IRN_967	Positive	31.46
TP IRN_968	Positive	28.96
TP IRN_969	Positive	31.88
TP IRN_970	Positive	32.37
TP IRN_971	Positive	33.99
TP IRN_972	Positive	35.66
TP IRN_973	Positive	33.00 32.70
II IIII_373		52.10

	Nesset	
TP IRN_974	Negative	20.04
TP IRN_975	Positive	32.94
TP IRN_976	Positive	32.54
TP IRN_977	Negative	20.40
TP IRN_978	Positive	32.19
TP IRN_979	Positive	33.99
TP IRN_980	Positive	32.94
TP IRN_981	Positive	30.21
TP IRN_982	Positive	31.09
TP IRN_983	Positive	30.49
TP IRN_984	Positive	33.53
TP IRN_985	Positive	31.37
TP IRN_986	Positive	38.22
TP IRN_987	Positive	31.90
TP IRN_988	Negative	
TP IRN_989	Negative	04.04
TP IRN_990	Positive	31.84
TP IRN_991	Positive	32.40
TP IRN_992	Positive	32.39
TP IRN_993	Positive	33.40
TP IRN_994	Positive	34.14
TP IRN_995	Positive	32.84
TP IRN_996	Positive	31.98
TP IRN_997	Positive	32.58
TP IRN_998	Positive	31.98
TP IRN_999	Positive	35.52
TP IRN_1000	Positive	32.83
TP IRN_1001	Positive	32.24
TP IRN_1002	Positive	32.23
TP IRN_1003	Negative	
TP IRN_1004	Positive	31.59
TP IRN_1005	Positive	30.44
TP IRN_1006	Positive	33.11
TP IRN_1007	Positive	28.84
TP IRN_1008	Positive	27.45
TP IRN_1009	Positive	35.52
TP IRN_1010	Positive	28.68
TP IRN_1011	Positive	34.53
TP IRN_1012	Positive	31.37
TP IRN_1013	Positive	28.60
TP IRN_1014	Positive	31.39
TP IRN_1015	Positive	28.99
TP IRN_1016	Positive	32.60
TP IRN_1017	Positive	27.43
TP IRN_1018	Positive	28.73
TP IRN_1019	Positive	30.89
TP IRN_1020	Positive	29.84
TP IRN_1021	Positive	32.21
TP IRN_1022	Positive	32.90

	Positive	34.61
TP IRN_1023 TP IRN_1024	Negative	34.01
TP IRN_1025	Positive	30.61
TP IRN_1026	Positive	29.60
TP IRN_1027	Positive	34.92
TP IRN_1028	Positive	27.52
TP IRN_1029	Positive	31.43
TP IRN_1029	Positive	26.98
TP IRN_1031	Positive	30.79
TP IRN_1031	Positive	33.41
TP IRN_1032	Positive	31.37
TP IRN_1034		51.57
—	Negative Positive	24 74
TP IRN_1035		34.74
TP IRN_1036	Positive	35.75
TP IRN_1037	Positive	32.01
TP IRN_1038	Positive	32.46
TP IRN_1039	Negative	20.00
TP IRN_1040	Positive	36.90
TP IRN_1041	Negative	
TP IRN_1042	Negative	
TP IRN_1043	Negative	04 5 4
TP IRN_1044	Positive	31.54
TP IRN_1045	Positive	32.73
TP IRN_1046	Positive	34.35
TP IRN_1047	Positive	30.47
TP IRN_1048	Positive	35.35
TP IRN_1049	Negative	
TP IRN_1050	Positive	33.08
TP IRN_1051	Positive	32.50
TP IRN_1052	Positive	32.26
TP IRN_1053	Positive	27.59
TP IRN_1054	Negative	
TP IRN_1055	Positive	29.50
TP IRN_1056	Negative	
TP IRN_1057	Positive	30.47
TP IRN_1058	Positive	31.23
TP IRN_1059	Positive	33.37
TP IRN_1060	Negative	
TP IRN_1061	Positive	33.18
TP IRN_1062	Positive	34.28
TP IRN_1063	Positive	33.21
TP IRN_1064	Positive	28.52
TP IRN_1065	Positive	30.88
TP IRN_1066	Positive	32.16
TP IRN_1067	Positive	34.15
TP IRN_1068	Positive	25.35
TP IRN_1069	Positive	28.67
TP IRN_1070	Positive	33.88
TP IRN_1071	Positive	28.18

TP IRN_1072	Nogativo	
TP IRN_1073	Negative Positive	29.84
TP IRN_1074	Negative	29.04
TP IRN_1075	Positive	30.22
TP IRN_1076	Positive	28.35
TP IRN_1077	Positive	29.02
TP IRN_1078	Negative	20.02
TP IRN_1079	Positive	36.23
TP IRN_1080	Negative	
TP IRN_1081	Positive	33.38
TP IRN_1082	Negative	
TP IRN_1083	Negative	
TP IRN_1084	Positive	34.12
TP IRN_1085	Positive	29.52
TP IRN_1086	Positive	29.87
TP IRN_1087	Positive	31.34
TP IRN_1088	Positive	33.97
TP IRN_1089	Negative	
TP IRN_1090	Negative	
TP IRN_1091	Positive	30.01
TP IRN_1092	Positive	35.00,
TP IRN_1093	Positive	29.44
TP IRN_1094	Negative	
TP IRN_1095	Negative	
TP IRN_1096	Positive	32.84
TP IRN_1097	Negative	
TP IRN_1098	Negative	
TP IRN_1099	Positive	31.92
TP IRN 1100	Positive	31.14
TP IRN_1101	Positive	30.10
 TP IRN_1102	Negative	
TP IRN_1103	Negative	
TP IRN 1104	Positive	33.76
TP IRN 1105	Positive	30.86
TP IRN_1106	Positive	32.25
TP IRN 1107	Negative	02.20
TP IRN_1108	Positive	35.69
TP IRN 1109	Positive	34.25
TP IRN_1110	Negative	04.20
TP IRN_1111	Positive	34.54
TP IRN_1112	Positive	34.93
—		
TP IRN_1113	Positive	31.38
TP IRN_1114	Positive	36.72
TP IRN_1115	Positive	34.48
TP IRN_1116	Positive	32.74
TP IRN_1117	Positive	35.39
TP IRN_1118	Positive	34.52
TP IRN_1119	Positive	34.39
TP IRN_1120	Negative	

TP IRN_1121	Negative	
TP IRN_1122	Negative	22.04
TP IRN_1123	Positive	33.81
TP IRN_1124	Negative	24 50
TP IRN_1125	Positive	34.59
TP IRN_1126	Positive	30.94
TP IRN_1127	Negative	
TP IRN_1128	Positive	30.50
TP IRN_1129	Positive	32.16
TP IRN_1130	Positive	31.05
TP IRN_1131	Negative	~~ ~~
TP IRN_1132	Positive	29.89
TP IRN_1133	Positive	28.97
TP IRN_1134	Positive	28.53
TP IRN_1135	Positive	27.86
TP IRN_1136	Positive	27.79
TP IRN_1137	Positive	31.25
TP IRN_1138	Positive	28.68
TP IRN_1139	Positive	28.15
TP IRN_1140	Positive	27.51
TP IRN_1141	Positive	28.29
TP IRN_1142	Positive	32.73
TP IRN_1143	Negative	
TP IRN_1144	Positive	31.74
TP IRN_1145	Positive	27.95
TP IRN_1146	Positive	30.16
TP IRN_1147	Positive	27.98
TP IRN_1148	Positive	27.06
TP IRN_1149	Positive	25.57
TP IRN_1150	Positive	28.19
TP IRN_1151	Positive	25.22
TP IRN 1152	Positive	25.59
_ TP IRN_1153	Positive	26.47
_ TP IRN_1154	Positive	25.00
_ TP IRN_1155	Positive	25.23
TP IRN_1156	Positive	25.35
TP IRN_1157	Positive	25.50
TP IRN_1158	Positive	25.50
TP IRN_1159	Positive	33.30
TP IRN_1160	Positive	24.95
TP IRN 1161	Positive	24.28
TP IRN_1162	Positive	25.63
TP IRN_1163	Positive	25.37 25.37
TP IRN_1164	Negative	20.01
TP IRN_1165	Positive	24.50
—	Positive	
TP IRN_1166		26.55
TP IRN_1167	Positive	30.73
TP IRN_1168	Positive	25.25
TP IRN_1169	Positive	26.26

TP IRN_1170	Positive	23.86
TP IRN_1171	Positive	25.58
TP IRN_1172	Negative	
TP IRN_1173	Positive	24.14
TP IRN_1174	Positive	25.71
TP IRN_1175	Negative	
TP IRN_1176	Positive	33.46
TP IRN_1177	Negative	
TP IRN_1178	Positive	32.42
TP IRN_1179	Positive	33.93
TP IRN_1180	Positive	36.33
TP IRN_1181	Positive	32.93
TP IRN_1182	Positive	32.57
TP IRN_1183	Negative	
_ TP IRN_1184	Positive	34.34
_ TP IRN_1185	Negative	
TP IRN 1186	Negative	
TP IRN_1187	Negative	
TP IRN_1188	Negative	
TP IRN_1189	Negative	
TP IRN_1190	Negative	
TP IRN_1191	Positive	32.95
TP IRN_1192	Negative	52.55
TP IRN_1193	Positive	32.27
TP IRN_1194	Positive	36.86
TP IRN_1195	Positive	33.92
TP IRN_1195		33.92
TP IRN_1197	Negative Positive	31.57
		51.57
TP IRN_1198	Negative	
TP IRN_1199	Negative	
TP IRN_1200	Negative	22.07
TP IRN_1201	Positive	32.97
TP IRN_1202	Negative	04.04
TP IRN_1203	Positive	31.94
TP IRN_1204	Positive	33.59
TP IRN_1205	Positive	33.35
TP IRN_1206	Positive	33.84
TP IRN_1207	Positive	33.08
TP IRN_1208	Positive	32.74
TP IRN_1209	Negative	
TP IRN_1210	Negative	
TP IRN_1211	Negative	
TP IRN_1212	Negative	
TP IRN_1213	Negative	
TP IRN_1214	Positive	37.45
TP IRN_1215	Negative	
TP IRN_1216	Positive	37.55
TP IRN_1217	Negative	
TP IRN_1218	Negative	

TP IRN_1219	Negative	
TP IRN_1220	Positive	30.53
TP IRN_1221	Positive	33.42
TP IRN_1222	Negative	
TP IRN_1223	Negative	
TP IRN_1224	Positive	33.75
TP IRN_1225	Positive	33.02
TP IRN_1226	Negative	
TP IRN_1227	Negative	
TP IRN_1228	Negative	
TP IRN_1229	Negative	
TP IRN_1230	Positive	33.09
TP IRN_1231	Negative	
TP IRN_1232	Positive	36.67
TP IRN_1233	Negative	
TP IRN_1234	Negative	
TP IRN_1235	Positive	31.23
_ TP IRN_1236	Positive	33.51
_ TP IRN_1237	Negative	
_ TP IRN_1238	Positive	31.41
TP IRN_1239	Positive	34.80
TP IRN_1240	Negative	
TP IRN_1241	Negative	
TP IRN_1242	Negative	
TP IRN_1243	Negative	
TP IRN_1244	Negative	
TP IRN_1245	Positive	37.07
TP IRN_1246	Negative	01.01
TP IRN_1247	Negative	
TP IRN_1248	Negative	
TP IRN_1249	Negative	
TP IRN 1250	Positive	32.13
TP IRN_1251	Negative	52.15
TP IRN_1252	Positive	33.55
TP IRN_1253	Positive	33.55 37.12
TP IRN_1255		57.12
TP IRN_1254 TP IRN_1255	Negative Positive	34.12
—		34.12
TP IRN_1256	Negative	
TP IRN_1257	Negative	
TP IRN_1258	Negative	
TP IRN_1259	Negative	25.00
TP IRN_1260	Positive	35.88
TP IRN_1261	Negative	
TP IRN_1262	Negative	
TP IRN_1263	Negative	
TP IRN_1264	Negative	
TP IRN_1265	Positive	33.39
TP IRN_1266	Negative	
TP IRN_1267	Negative	

TP IRN_1268 TP IRN_1269	Negative Negative	
_ TP IRN_1270	Positive	31.93
TP IRN_1271	Negative	
TP IRN_1272	Negative	
TP IRN_1273	Negative	
TP IRN_1274	Positive	31.94
TP IRN_1275	Positive	35.42
TP IRN_1276	Negative	
TP IRN_1277	Positive	32.04
TP IRN_1278	Negative	
TP IRN_1279	Positive	32.94
TP IRN_1280	Positive	26.67
TP IRN_1281	Negative	
TP IRN_1282	Negative	
TP IRN_1283	Positive	32.55
TP IRN_1284	Negative	
TP IRN_1285	Negative	
TP IRN_1286	Negative	
TP IRN_1287	Positive	33.88
TP IRN_1288	Negative	
TP IRN_1289	Negative	
TP IRN_1290	Positive	37.15
TP IRN_1291	Negative	
TP IRN_1292	Positive	36.03
TP IRN_1293	Positive	34.15
TP IRN_1294	Negative	
TP IRN_1295	Negative	
TP IRN_1296	Positive	33.63
TP IRN_1297	Positive	33.84
TP IRN_1298	Negative	
TP IRN_1299	Positive	33.58
TP IRN_1300	Negative	
TP IRN_1301	Negative	
TP IRN_1302	Positive	33.64
TP IRN_1303	Positive	32.77
TP IRN_1304	Positive	33.64
TP IRN_1305	Negative	
TP IRN_1306	Negative	
TP IRN_1307	Positive	34.67
TP IRN_1308	Negative	
TP IRN_1309	Positive	32.75
TP IRN_1310	Positive	31.16
TP IRN_1311	Negative	
TP IRN_1312	Positive	33.68
TP IRN_1313	Negative	
TP IRN_1314	Negative	
TP IRN_1315	Negative	
TP IRN_1316	Negative	

	B	
TP IRN_1317	Positive	34.31
TP IRN_1318	Positive	32.84
TP IRN_1319	Negative	
TP IRN_1320	Positive	34.56
TP IRN_1321	Negative	
TP IRN_1322	Positive	35.96
TP IRN_1323	Positive	31.50
TP IRN_1324	Negative	
TP IRN_1325	Positive	33.74
TP IRN_1326	Positive	33.19
TP IRN_1327	Negative	
TP IRN_1328	Positive	31.34
TP IRN_1329	Negative	
TP IRN_1330	Positive	33.56
TP IRN_1331	Negative	
TP IRN_1332	Negative	
TP IRN 1333	Negative	
	Negative	
TP IRN 1335	Positive	33.85
_ TP IRN_1336	Negative	
TP IRN_1337	Negative	
TP IRN_1338	Negative	
TP IRN_1339	Negative	
TP IRN_1340	Negative	
TP IRN_1341	Positive	35.03
TP IRN_1342	Negative	00100
TP IRN_1343	Positive	20.00
TP IRN_1344	Negative	20100
TP IRN_1345	Positive	31.57
TP IRN_1346	Positive	34.09
TP IRN_1347	Negative	04.00
TP IRN_1348	Positive	33.29
TP IRN_1349	Positive	32.33
TP IRN_1350	Negative	52.55
TP IRN_1351	-	
_	Negative Positive	
TP IRN_1352		35.68
TP IRN_1353	Negative	
TP IRN_1354	Negative	
TP IRN_1355	Negative	
TP IRN_1356	Negative	<u> </u>
TP IRN_1357	Positive	32.07
TP IRN_1358	Negative	
TP IRN_1359	Negative	
TP IRN_1360	Positive	33.96
TP IRN_1361	Negative	
TP IRN_1362	Negative	
TP IRN_1363	Negative	
TP IRN_1364	Negative	
TP IRN_1365	Negative	

TP IRN_1366 Negative TP IRN_1367 Negative TP IRN_1368 Negative TP IRN_1369 Negative TP IRN_1370 Negative TP IRN_1371 Negative TP IRN_1372 Negative TP IRN_1373 Negative TP IRN_1374 Negative TP IRN_1375 Negative TP IRN_1376 Negative TP IRN_1377 Negative TP IRN_1378 Negative TP IRN_1378 Negative TP IRN_1380 Negative TP IRN_1381 Negative TP IRN_1382 Negative TP IRN_1383 Negative TP IRN_1384 Negative TP IRN_1385 Negative TP IRN_1386 Negative TP IRN_1387 Negative TP IRN_1388 Negative TP IRN_1391 Negative TP IRN_1392 Negative TP IRN_1394 Negative TP IRN_1395 Negative TP IRN_1396 Negative TP IRN_1398 Negative		
TP IRN_1368 Negative TP IRN_1369 Negative TP IRN_1370 Negative TP IRN_1371 Negative TP IRN_1372 Negative TP IRN_1373 Negative TP IRN_1374 Negative TP IRN_1375 Negative TP IRN_1376 Negative TP IRN_1377 Negative TP IRN_1376 Negative TP IRN_1377 Negative TP IRN_1378 Negative TP IRN_1379 Negative TP IRN_1381 Negative TP IRN_1382 Negative TP IRN_1383 Negative TP IRN_1384 Negative TP IRN_1385 Negative TP IRN_1386 Negative TP IRN_1387 Negative TP IRN_1388 Negative TP IRN_1390 Negative TP IRN_1391 Negative TP IRN_1393 Negative TP IRN_1394 Negative TP IRN_1395 Negative TP IRN_1398 Negative TP IRN_1398 Negative	TP IRN_1366	Negative
TP IRN_1369 Negative TP IRN_1370 Negative TP IRN_1371 Negative TP IRN_1372 Negative TP IRN_1373 Negative TP IRN_1374 Negative TP IRN_1375 Negative TP IRN_1376 Negative TP IRN_1377 Negative TP IRN_1376 Negative TP IRN_1377 Negative TP IRN_1378 Negative TP IRN_1379 Negative TP IRN_1380 Negative TP IRN_1381 Negative TP IRN_1382 Negative TP IRN_1383 Negative TP IRN_1384 Negative TP IRN_1385 Negative TP IRN_1386 Negative TP IRN_1389 Negative TP IRN_1390 Negative TP IRN_1391 Negative TP IRN_1393 Negative TP IRN_1394 Negative TP IRN_1395 Negative TP IRN_1396 Negative TP IRN_1399 Negative TP IRN_1400 Negative	TP IRN_1367	Negative
TP IRN_1370 Negative TP IRN_1371 Negative TP IRN_1372 Negative TP IRN_1373 Negative TP IRN_1374 Negative TP IRN_1375 Negative TP IRN_1376 Negative TP IRN_1376 Negative TP IRN_1377 Negative TP IRN_1378 Negative TP IRN_1379 Negative TP IRN_1380 Negative TP IRN_1380 Negative TP IRN_1381 Negative TP IRN_1382 Negative TP IRN_1383 Negative TP IRN_1384 Negative TP IRN_1385 Negative TP IRN_1386 Negative TP IRN_1389 Negative TP IRN_1390 Negative TP IRN_1391 Negative TP IRN_1393 Negative TP IRN_1394 Negative TP IRN_1395 Negative TP IRN_1396 Negative TP IRN_1399 Negative TP IRN_1400	TP IRN_1368	Negative
TP IRN_1371 Negative TP IRN_1372 Negative TP IRN_1373 Negative TP IRN_1374 Negative TP IRN_1375 Negative TP IRN_1376 Negative TP IRN_1377 Negative TP IRN_1378 Negative TP IRN_1379 Negative TP IRN_1379 Negative TP IRN_1380 Negative TP IRN_1381 Negative TP IRN_1382 Negative TP IRN_1383 Negative TP IRN_1384 Negative TP IRN_1385 Negative TP IRN_1386 Negative TP IRN_1387 Negative TP IRN_1388 Negative TP IRN_1390 Negative TP IRN_1391 Negative TP IRN_1392 Negative TP IRN_1393 Negative TP IRN_1394 Negative TP IRN_1395 Negative TP IRN_1398 Negative TP IRN_1399 Negative TP IRN_1399 Negative TP IRN_1400 Negative	TP IRN_1369	Negative
TP IRN_1372 Negative TP IRN_1373 Negative TP IRN_1374 Negative TP IRN_1375 Negative TP IRN_1376 Negative TP IRN_1377 Negative TP IRN_1378 Negative TP IRN_1379 Negative TP IRN_1379 Negative TP IRN_1379 Negative TP IRN_1380 Negative TP IRN_1381 Negative TP IRN_1382 Negative TP IRN_1383 Negative TP IRN_1384 Negative TP IRN_1386 Negative TP IRN_1387 Negative TP IRN_1388 Negative TP IRN_1389 Negative TP IRN_1390 Negative TP IRN_1391 Negative TP IRN_1392 Negative TP IRN_1393 Negative TP IRN_1394 Negative TP IRN_1395 Negative TP IRN_1398 Negative TP IRN_1399 Negative TP IRN_1401 Negative TP IRN_1402 Negative	TP IRN_1370	Negative
TP IRN_1373 Negative TP IRN_1374 Negative TP IRN_1375 Negative TP IRN_1376 Negative TP IRN_1377 Negative TP IRN_1378 Negative TP IRN_1379 Negative TP IRN_1379 Negative TP IRN_1379 Negative TP IRN_1380 Negative TP IRN_1381 Negative TP IRN_1382 Negative TP IRN_1383 Negative TP IRN_1384 Negative TP IRN_1385 Negative TP IRN_1386 Negative TP IRN_1387 Negative TP IRN_1388 Negative TP IRN_1390 Negative TP IRN_1391 Negative TP IRN_1392 Negative TP IRN_1393 Negative TP IRN_1394 Negative TP IRN_1395 Negative TP IRN_1398 Negative TP IRN_1399 Negative TP IRN_1400 Negative TP IRN_1403	TP IRN_1371	Negative
TP IRN_1373 Negative TP IRN_1374 Negative TP IRN_1375 Negative TP IRN_1376 Negative TP IRN_1377 Negative TP IRN_1378 Negative TP IRN_1379 Negative TP IRN_1379 Negative TP IRN_1380 Negative TP IRN_1381 Negative TP IRN_1382 Negative TP IRN_1383 Negative TP IRN_1384 Negative TP IRN_1385 Negative TP IRN_1386 Negative TP IRN_1387 Negative TP IRN_1388 Negative TP IRN_1389 Negative TP IRN_1390 Negative TP IRN_1391 Negative TP IRN_1392 Negative TP IRN_1393 Negative TP IRN_1394 Negative TP IRN_1395 Negative TP IRN_1398 Negative TP IRN_1399 Negative TP IRN_1398 Negative TP IRN_1400 Negative TP IRN_1403 Negative	TP IRN 1372	-
TP IRN_1374 Negative TP IRN_1375 Negative TP IRN_1376 Negative TP IRN_1377 Negative TP IRN_1378 Negative TP IRN_1379 Negative TP IRN_1379 Negative TP IRN_1380 Negative TP IRN_1381 Negative TP IRN_1382 Negative TP IRN_1383 Negative TP IRN_1384 Negative TP IRN_1385 Negative TP IRN_1386 Negative TP IRN_1387 Negative TP IRN_1388 Negative TP IRN_1390 Negative TP IRN_1391 Negative TP IRN_1392 Negative TP IRN_1393 Negative TP IRN_1394 Negative TP IRN_1395 Negative TP IRN_1396 Negative TP IRN_1398 Negative TP IRN_1399 Negative TP IRN_1400 Negative TP IRN_1401 Negative TP IRN_1403 Negative TP IRN_1404 Negative	TP IRN 1373	-
TP IRN_1375 Negative TP IRN_1376 Negative TP IRN_1377 Negative TP IRN_1378 Negative TP IRN_1379 Negative TP IRN_1380 Negative TP IRN_1381 Negative TP IRN_1381 Negative TP IRN_1382 Negative TP IRN_1383 Negative TP IRN_1384 Negative TP IRN_1385 Negative TP IRN_1386 Negative TP IRN_1387 Negative TP IRN_1388 Negative TP IRN_1389 Negative TP IRN_1390 Negative TP IRN_1391 Negative TP IRN_1392 Negative TP IRN_1393 Negative TP IRN_1394 Negative TP IRN_1395 Negative TP IRN_1396 Negative TP IRN_1398 Negative TP IRN_1400 Negative TP IRN_1402 Negative TP IRN_1403 Negative TP IRN_1404	—	-
TP IRN_1376 Negative TP IRN_1377 Negative TP IRN_1378 Negative TP IRN_1379 Negative TP IRN_1380 Negative TP IRN_1381 Negative TP IRN_1381 Negative TP IRN_1381 Negative TP IRN_1382 Negative TP IRN_1383 Negative TP IRN_1384 Negative TP IRN_1385 Negative TP IRN_1386 Negative TP IRN_1387 Negative TP IRN_1388 Negative TP IRN_1390 Negative TP IRN_1391 Negative TP IRN_1392 Negative TP IRN_1393 Negative TP IRN_1394 Negative TP IRN_1395 Negative TP IRN_1396 Negative TP IRN_1398 Negative TP IRN_1399 Negative TP IRN_1400 Negative TP IRN_1403 Negative TP IRN_1403 Negative TP IRN_1403 Negative TP IRN_1406 Negative	—	-
TP IRN_1377 Negative TP IRN_1378 Negative TP IRN_1379 Negative TP IRN_1380 Negative TP IRN_1381 Negative TP IRN_1382 Negative TP IRN_1383 Negative TP IRN_1384 Negative TP IRN_1385 Negative TP IRN_1386 Negative TP IRN_1387 Negative TP IRN_1388 Negative TP IRN_1389 Negative TP IRN_1390 Negative TP IRN_1391 Negative TP IRN_1392 Negative TP IRN_1393 Negative TP IRN_1394 Negative TP IRN_1395 Negative TP IRN_1396 Negative TP IRN_1397 Negative TP IRN_1398 Negative TP IRN_1399 Negative TP IRN_1400 Negative TP IRN_1400 Negative TP IRN_1400 Negative TP IRN_1403 Negative TP IRN_1403 Negative TP IRN_1406 Negative	—	-
TP IRN_1378 Negative TP IRN_1379 Negative TP IRN_1380 Negative TP IRN_1381 Negative TP IRN_1382 Negative TP IRN_1383 Negative TP IRN_1384 Negative TP IRN_1385 Negative TP IRN_1386 Negative TP IRN_1386 Negative TP IRN_1387 Negative TP IRN_1388 Negative TP IRN_1389 Negative TP IRN_1390 Negative TP IRN_1391 Negative TP IRN_1392 Negative TP IRN_1393 Negative TP IRN_1394 Negative TP IRN_1395 Negative TP IRN_1396 Negative TP IRN_1397 Negative TP IRN_1398 Negative TP IRN_1400 Negative TP IRN_1400 Negative TP IRN_1400 Negative TP IRN_1403 Negative TP IRN_1403 Negative TP IRN_1403 Negative TP IRN_1406 Negative	—	-
TP IRN_1379 Negative TP IRN_1380 Negative TP IRN_1381 Negative TP IRN_1382 Negative TP IRN_1383 Negative TP IRN_1384 Negative TP IRN_1385 Negative TP IRN_1386 Negative TP IRN_1386 Negative TP IRN_1387 Negative TP IRN_1388 Negative TP IRN_1389 Negative TP IRN_1390 Negative TP IRN_1391 Negative TP IRN_1392 Negative TP IRN_1393 Negative TP IRN_1394 Negative TP IRN_1395 Negative TP IRN_1396 Negative TP IRN_1397 Negative TP IRN_1398 Negative TP IRN_1400 Negative TP IRN_1401 Negative TP IRN_1403 Negative TP IRN_1406 Negative	—	-
TP IRN_1380 Negative TP IRN_1381 Negative TP IRN_1382 Negative TP IRN_1383 Negative TP IRN_1384 Negative TP IRN_1385 Negative TP IRN_1386 Negative TP IRN_1387 Negative TP IRN_1386 Negative TP IRN_1387 Negative TP IRN_1388 Negative TP IRN_1389 Negative TP IRN_1390 Negative TP IRN_1391 Negative TP IRN_1392 Negative TP IRN_1393 Negative TP IRN_1394 Negative TP IRN_1395 Negative TP IRN_1396 Negative TP IRN_1397 Negative TP IRN_1398 Negative TP IRN_1400 Negative TP IRN_1401 Negative TP IRN_1402 Negative TP IRN_1403 Negative TP IRN_1404 Negative TP IRN_1405 Negative TP IRN_1406 Negative TP IRN_1408 Negative	—	-
TP IRN_1381 Negative TP IRN_1382 Negative TP IRN_1383 Negative TP IRN_1384 Negative TP IRN_1385 Negative TP IRN_1386 Negative TP IRN_1387 Negative TP IRN_1386 Negative TP IRN_1387 Negative TP IRN_1388 Negative TP IRN_1389 Negative TP IRN_1390 Negative TP IRN_1391 Negative TP IRN_1392 Negative TP IRN_1393 Negative TP IRN_1394 Negative TP IRN_1395 Negative TP IRN_1396 Negative TP IRN_1397 Negative TP IRN_1398 Negative TP IRN_1400 Negative TP IRN_1401 Negative TP IRN_1402 Negative TP IRN_1403 Negative TP IRN_1403 Negative TP IRN_1404 Negative TP IRN_1405 Negative TP IRN_1406 Negative TP IRN_1408 Negative	—	-
TP IRN_1382 Negative TP IRN_1383 Negative TP IRN_1384 Negative TP IRN_1385 Negative TP IRN_1386 Negative TP IRN_1387 Negative TP IRN_1389 Negative TP IRN_1390 Negative TP IRN_1391 Negative TP IRN_1392 Negative TP IRN_1393 Negative TP IRN_1394 Negative TP IRN_1395 Negative TP IRN_1396 Negative TP IRN_1397 Negative TP IRN_1398 Negative TP IRN_1400 Negative TP IRN_1401 Negative TP IRN_1402 Negative TP IRN_1403 Negative TP IRN_1404 Negative TP IRN_1405 Negative TP IRN_1406 Negative TP IRN_1408 Negative TP IRN_1409 Negative	—	-
TP IRN_1383 Negative TP IRN_1384 Negative TP IRN_1385 Negative TP IRN_1386 Negative TP IRN_1387 Negative TP IRN_1387 Negative TP IRN_1387 Negative TP IRN_1387 Negative TP IRN_1388 Negative TP IRN_1389 Negative TP IRN_1390 Negative TP IRN_1391 Negative TP IRN_1392 Negative TP IRN_1393 Negative TP IRN_1394 Negative TP IRN_1395 Negative TP IRN_1396 Negative TP IRN_1397 Negative TP IRN_1398 Negative TP IRN_1399 Negative TP IRN_1400 Negative TP IRN_1401 Negative TP IRN_1402 Negative TP IRN_1403 Negative TP IRN_1404 Negative TP IRN_1405 Negative TP IRN_1406 Negative TP IRN_1407 Negative TP IRN_1408 Negative	—	-
TP IRN_1384 Negative TP IRN_1385 Negative TP IRN_1386 Negative TP IRN_1387 Negative TP IRN_1387 Negative TP IRN_1387 Negative TP IRN_1387 Negative TP IRN_1388 Negative TP IRN_1390 Negative TP IRN_1391 Negative TP IRN_1392 Negative TP IRN_1393 Negative TP IRN_1394 Negative TP IRN_1395 Negative TP IRN_1396 Negative TP IRN_1397 Negative TP IRN_1398 Negative TP IRN_1399 Negative TP IRN_1400 Negative TP IRN_1401 Negative TP IRN_1403 Negative TP IRN_1404 Negative TP IRN_1405 Negative TP IRN_1406 Negative TP IRN_1408 Negative TP IRN_1409 Negative TP IRN_1410 Negative TP IRN_1411 Negative TP IRN_1413 Negative </td <td>—</td> <td>-</td>	—	-
TP IRN_1385 Negative TP IRN_1386 Negative TP IRN_1387 Negative TP IRN_1387 Negative TP IRN_1388 Negative TP IRN_1389 Negative TP IRN_1390 Negative TP IRN_1391 Negative TP IRN_1392 Negative TP IRN_1393 Negative TP IRN_1394 Negative TP IRN_1395 Negative TP IRN_1396 Negative TP IRN_1397 Negative TP IRN_1398 Negative TP IRN_1399 Negative TP IRN_1400 Negative TP IRN_1401 Negative TP IRN_1402 Negative TP IRN_1403 Negative TP IRN_1404 Negative TP IRN_1405 Negative TP IRN_1406 Negative TP IRN_1408 Negative TP IRN_1409 Negative TP IRN_1410 Negative TP IRN_1411 Negative TP IRN_1413 Negative	—	-
TP IRN_1386 Negative TP IRN_1387 Negative TP IRN_1388 Negative TP IRN_1389 Negative TP IRN_1390 Negative TP IRN_1391 Negative TP IRN_1392 Negative TP IRN_1393 Negative TP IRN_1393 Negative TP IRN_1393 Negative TP IRN_1394 Negative TP IRN_1395 Negative TP IRN_1396 Negative TP IRN_1397 Negative TP IRN_1398 Negative TP IRN_1399 Negative TP IRN_1400 Negative TP IRN_1401 Negative TP IRN_1402 Negative TP IRN_1403 Negative TP IRN_1404 Negative TP IRN_1405 Negative TP IRN_1406 Negative TP IRN_1408 Negative TP IRN_1409 Negative TP IRN_1410 Negative TP IRN_1411 Negative TP IRN_1413 Negative	—	-
TP IRN_1387NegativeTP IRN_1388NegativeTP IRN_1389NegativeTP IRN_1390NegativeTP IRN_1391NegativeTP IRN_1392NegativeTP IRN_1393NegativeTP IRN_1394NegativeTP IRN_1395NegativeTP IRN_1396NegativeTP IRN_1397NegativeTP IRN_1398NegativeTP IRN_1399NegativeTP IRN_1400NegativeTP IRN_1401NegativeTP IRN_1402NegativeTP IRN_1403NegativeTP IRN_1404NegativeTP IRN_1405NegativeTP IRN_1406NegativeTP IRN_1407NegativeTP IRN_1408NegativeTP IRN_1410NegativeTP IRN_1411NegativeTP IRN_1411NegativeTP IRN_1411NegativeTP IRN_1413Negative	—	-
TP IRN_1388NegativeTP IRN_1389NegativeTP IRN_1390NegativeTP IRN_1391NegativeTP IRN_1392NegativeTP IRN_1393NegativeTP IRN_1394NegativeTP IRN_1395NegativeTP IRN_1396NegativeTP IRN_1397NegativeTP IRN_1398NegativeTP IRN_1399NegativeTP IRN_1400NegativeTP IRN_1401NegativeTP IRN_1402NegativeTP IRN_1403NegativeTP IRN_1404NegativeTP IRN_1405NegativeTP IRN_1406NegativeTP IRN_1407NegativeTP IRN_1408NegativeTP IRN_1410NegativeTP IRN_1411NegativeTP IRN_1411NegativeTP IRN_1411NegativeTP IRN_1413Negative	—	-
TP IRN_1389NegativeTP IRN_1390NegativeTP IRN_1391NegativeTP IRN_1392NegativeTP IRN_1393NegativeTP IRN_1394NegativeTP IRN_1395NegativeTP IRN_1396NegativeTP IRN_1397NegativeTP IRN_1398NegativeTP IRN_1399NegativeTP IRN_1400NegativeTP IRN_1401NegativeTP IRN_1402NegativeTP IRN_1403NegativeTP IRN_1404NegativeTP IRN_1405NegativeTP IRN_1406NegativeTP IRN_1407NegativeTP IRN_1408NegativeTP IRN_1410NegativeTP IRN_1411NegativeTP IRN_1411NegativeTP IRN_1411NegativeTP IRN_1413Negative	—	-
TP IRN_1390NegativeTP IRN_1391NegativeTP IRN_1392NegativeTP IRN_1393NegativeTP IRN_1394NegativeTP IRN_1395NegativeTP IRN_1396NegativeTP IRN_1397NegativeTP IRN_1398NegativeTP IRN_1399NegativeTP IRN_1400NegativeTP IRN_1401NegativeTP IRN_1402NegativeTP IRN_1403NegativeTP IRN_1404NegativeTP IRN_1405NegativeTP IRN_1406NegativeTP IRN_1407NegativeTP IRN_1408NegativeTP IRN_1410NegativeTP IRN_1411NegativeTP IRN_1411NegativeTP IRN_1413Negative	—	-
TP IRN_1391NegativeTP IRN_1392NegativeTP IRN_1393NegativeTP IRN_1394NegativeTP IRN_1395NegativeTP IRN_1396NegativeTP IRN_1397NegativeTP IRN_1398NegativeTP IRN_1399NegativeTP IRN_1400NegativeTP IRN_1401NegativeTP IRN_1402NegativeTP IRN_1403NegativeTP IRN_1404NegativeTP IRN_1405NegativeTP IRN_1406NegativeTP IRN_1407NegativeTP IRN_1408NegativeTP IRN_1410NegativeTP IRN_1411NegativeTP IRN_1413Negative	—	-
TP IRN_1392NegativeTP IRN_1393NegativeTP IRN_1394NegativeTP IRN_1395NegativeTP IRN_1396NegativeTP IRN_1397NegativeTP IRN_1398NegativeTP IRN_1399NegativeTP IRN_1400NegativeTP IRN_1401NegativeTP IRN_1402NegativeTP IRN_1403NegativeTP IRN_1404NegativeTP IRN_1405NegativeTP IRN_1406NegativeTP IRN_1407NegativeTP IRN_1408NegativeTP IRN_1409NegativeTP IRN_1410NegativeTP IRN_1411NegativeTP IRN_1413Negative	—	-
TP IRN_1393NegativeTP IRN_1394NegativeTP IRN_1395NegativeTP IRN_1396NegativeTP IRN_1397NegativeTP IRN_1398NegativeTP IRN_1399NegativeTP IRN_1400NegativeTP IRN_1401NegativeTP IRN_1402NegativeTP IRN_1403NegativeTP IRN_1404NegativeTP IRN_1405NegativeTP IRN_1406NegativeTP IRN_1407NegativeTP IRN_1408NegativeTP IRN_1410NegativeTP IRN_1411NegativeTP IRN_1411NegativeTP IRN_1413Negative	—	-
TP IRN_1394NegativeTP IRN_1395NegativeTP IRN_1396NegativeTP IRN_1397NegativeTP IRN_1398NegativeTP IRN_1399NegativeTP IRN_1400NegativeTP IRN_1401NegativeTP IRN_1402NegativeTP IRN_1403NegativeTP IRN_1404NegativeTP IRN_1405NegativeTP IRN_1406NegativeTP IRN_1407NegativeTP IRN_1408NegativeTP IRN_1409NegativeTP IRN_1410NegativeTP IRN_1411NegativeTP IRN_1412NegativeTP IRN_1413Negative	TP IRN_1392	Negative
TP IRN_1395NegativeTP IRN_1396NegativeTP IRN_1397NegativeTP IRN_1398NegativeTP IRN_1399NegativeTP IRN_1400NegativeTP IRN_1401NegativeTP IRN_1402NegativeTP IRN_1403NegativeTP IRN_1404NegativeTP IRN_1405NegativeTP IRN_1406NegativeTP IRN_1407NegativeTP IRN_1408NegativeTP IRN_1410NegativeTP IRN_1411NegativeTP IRN_1411NegativeTP IRN_1413Negative	TP IRN_1393	Negative
TP IRN_1396NegativeTP IRN_1397NegativeTP IRN_1398NegativeTP IRN_1399NegativeTP IRN_1400NegativeTP IRN_1401NegativeTP IRN_1402NegativeTP IRN_1403NegativeTP IRN_1404NegativeTP IRN_1405NegativeTP IRN_1406NegativeTP IRN_1407NegativeTP IRN_1408NegativeTP IRN_1410NegativeTP IRN_1413Negative	TP IRN_1394	Negative
TP IRN_1397NegativeTP IRN_1398NegativeTP IRN_1399NegativeTP IRN_1400NegativeTP IRN_1401NegativeTP IRN_1402NegativeTP IRN_1403NegativeTP IRN_1404NegativeTP IRN_1405NegativeTP IRN_1406NegativeTP IRN_1407NegativeTP IRN_1408NegativeTP IRN_1410NegativeTP IRN_1411NegativeTP IRN_1411NegativeTP IRN_1412NegativeTP IRN_1413Negative	TP IRN_1395	Negative
TP IRN_1398NegativeTP IRN_1399NegativeTP IRN_1400NegativeTP IRN_1401NegativeTP IRN_1402NegativeTP IRN_1403NegativeTP IRN_1404NegativeTP IRN_1405NegativeTP IRN_1406NegativeTP IRN_1407NegativeTP IRN_1408NegativeTP IRN_1410NegativeTP IRN_1411NegativeTP IRN_1411NegativeTP IRN_1412NegativeTP IRN_1413Negative	TP IRN_1396	Negative
TP IRN_1399NegativeTP IRN_1400NegativeTP IRN_1401NegativeTP IRN_1402NegativeTP IRN_1403NegativeTP IRN_1404NegativeTP IRN_1405NegativeTP IRN_1406NegativeTP IRN_1407NegativeTP IRN_1408NegativeTP IRN_1410NegativeTP IRN_1411NegativeTP IRN_1411NegativeTP IRN_1412NegativeTP IRN_1413Negative	TP IRN_1397	Negative
TP IRN_1400NegativeTP IRN_1401NegativeTP IRN_1402NegativeTP IRN_1403NegativeTP IRN_1404NegativeTP IRN_1405NegativeTP IRN_1406NegativeTP IRN_1407NegativeTP IRN_1408NegativeTP IRN_1409NegativeTP IRN_1410NegativeTP IRN_1411NegativeTP IRN_1412NegativeTP IRN_1413Negative	TP IRN_1398	Negative
TP IRN_1401NegativeTP IRN_1402NegativeTP IRN_1403NegativeTP IRN_1404NegativeTP IRN_1405NegativeTP IRN_1406NegativeTP IRN_1407NegativeTP IRN_1408NegativeTP IRN_1409NegativeTP IRN_1410NegativeTP IRN_1411NegativeTP IRN_1412NegativeTP IRN_1413Negative	TP IRN_1399	Negative
TP IRN_1402NegativeTP IRN_1403NegativeTP IRN_1404NegativeTP IRN_1405NegativeTP IRN_1406NegativeTP IRN_1407NegativeTP IRN_1408NegativeTP IRN_1409NegativeTP IRN_1410NegativeTP IRN_1411NegativeTP IRN_1412NegativeTP IRN_1413Negative	TP IRN_1400	Negative
TP IRN_1403NegativeTP IRN_1404NegativeTP IRN_1405NegativeTP IRN_1406NegativeTP IRN_1407NegativeTP IRN_1408NegativeTP IRN_1409NegativeTP IRN_1410NegativeTP IRN_1411NegativeTP IRN_1412NegativeTP IRN_1413Negative	TP IRN_1401	Negative
TP IRN_1404NegativeTP IRN_1405NegativeTP IRN_1406NegativeTP IRN_1407NegativeTP IRN_1408NegativeTP IRN_1409NegativeTP IRN_1410NegativeTP IRN_1411NegativeTP IRN_1412NegativeTP IRN_1413Negative	TP IRN_1402	Negative
TP IRN_1404NegativeTP IRN_1405NegativeTP IRN_1406NegativeTP IRN_1407NegativeTP IRN_1408NegativeTP IRN_1409NegativeTP IRN_1410NegativeTP IRN_1411NegativeTP IRN_1412NegativeTP IRN_1413Negative	TP IRN_1403	Negative
TP IRN_1405NegativeTP IRN_1406NegativeTP IRN_1407NegativeTP IRN_1408NegativeTP IRN_1409NegativeTP IRN_1410NegativeTP IRN_1411NegativeTP IRN_1412NegativeTP IRN_1413Negative	TP IRN 1404	-
TP IRN_1406NegativeTP IRN_1407NegativeTP IRN_1408NegativeTP IRN_1409NegativeTP IRN_1410NegativeTP IRN_1411NegativeTP IRN_1412NegativeTP IRN_1413Negative	—	-
TP IRN_1407NegativeTP IRN_1408NegativeTP IRN_1409NegativeTP IRN_1410NegativeTP IRN_1411NegativeTP IRN_1412NegativeTP IRN_1413Negative	—	-
TP IRN_1408NegativeTP IRN_1409NegativeTP IRN_1410NegativeTP IRN_1411NegativeTP IRN_1412NegativeTP IRN_1413Negative	—	-
TP IRN_1409NegativeTP IRN_1410NegativeTP IRN_1411NegativeTP IRN_1412NegativeTP IRN_1413Negative	—	-
TP IRN_1410NegativeTP IRN_1411NegativeTP IRN_1412NegativeTP IRN_1413Negative	—	-
TP IRN_1411NegativeTP IRN_1412NegativeTP IRN_1413Negative	—	-
TP IRN_1412NegativeTP IRN_1413Negative	—	-
TP IRN_1413 Negative	—	-
	—	-
	—	-
		negative

TP IRN_1415	Negative	
TP IRN_1416	Negative	
TP IRN_1417	Negative	
TP IRN_1418	Negative	
TP IRN_1419	Negative	
TP IRN_1420	Negative	
TP IRN_1421	Negative	
_ TP IRN_1422	Negative	
TP IRN_1423	Positive	34.37
_ TP IRN_1424	Negative	
_ TP IRN_1425	Positive	34.31
_ TP IRN_1426	Negative	
_ TP IRN_1427	Positive	34.77
_ TP IRN_1428	Negative	
TP IRN 1429	Negative	
 TP IRN_1430	Positive	33.11
TP IRN 1431	Negative	
TP IRN_1432	Positive	34.08
TP IRN_1433	Positive	34.07
TP IRN_1434	Negative	0 110 1
TP IRN_1435	Positive	35.91
TP IRN_1436	Negative	00.01
TP IRN_1437	Positive	36.53
TP IRN_1438	Negative	00.00
TP IRN_1439	Negative	
TP IRN_1440	Negative	
TP IRN_1441	Positive	34.94
TP IRN_1442	Negative	54.54
TP IRN_1443	Negative	
TP IRN_1444	Negative	
TP IRN_1445	Negative	
TP IRN_1446	Negative	
TP IRN_1447	Negative	
TP IRN_1448	Negative	
TP IRN 1449	Positive	34.84
TP IRN_1450	Positive	34.84 37.86
TP IRN 1450	Positive	
—		35.42
TP IRN_1452	Positive	34.71
TP IRN_1453	Negative	26 52
TP IRN_1454	Positive	36.53
TP IRN_1455	Negative	
TP IRN_1456	Negative	00.44
TP IRN_1457	Positive	33.11
TP IRN_1458	Negative	
TP IRN_1459	Negative	
TP IRN_1460	Positive	33.87
TP IRN_1461	Negative	
TP IRN_1462	Negative	33.42
TP IRN_1463	Negative	

TP IRN_1464	Negative	
TP IRN_1465	Positive	33.21
	Positive	30.96
TP IRN_1467	Positive	32.47
TP IRN_1468	Positive	33.19
TP IRN_1469	Positive	28.66
 TP IRN_1470	Positive	33.18
TP IRN_1471	Positive	31.10
TP IRN_1472	Negative	
 TP IRN_1473	Positive	30.41
TP IRN_1474	Positive	32.11
 TP IRN_1475	Positive	31.87
 TP IRN_1476	Positive	31.76
 TP IRN_1477	Positive	32.46
 TP IRN_1478	Negative	34.33
 TP IRN_1479	Negative	
_ TP IRN_1480	Positive	36.57
_ TP IRN_1481	Positive	34.26
_ TP IRN_1482	Negative	
TP IRN_1483	Positive	33.67
TP IRN_1484	Positive	33.37
TP IRN_1485	Positive	33.75
TP IRN_1486	Negative	
TP IRN_1487	Positive	33.42
TP IRN_1488	Positive	32.70
TP IRN_1489	Positive	33.98
TP IRN_1490	Negative	
TP IRN_1491	Negative	
_ TP IRN_1492	Positive	34.76
_ TP IRN_1493	Negative	
_ TP IRN_1494	Negative	
_ TP IRN_1495	Positive	34.90
 TP IRN 1496	Positive	34.40
 TP IRN 1497	Negative	
_ TP IRN_1498	Positive	33.68
 TP IRN_1499	Negative	
 TP IRN_1500	Positive	32.53
 TP IRN_1501	Positive	31.95
 TP IRN_1502	Positive	33.27
 TP IRN_1503	Negative	
_ TP IRN_1504	Negative	
TP IRN 1505	Negative	
_ TP IRN_1506	Positive	32.50
TP IRN_1507	Positive	31.87
TP IRN_1508	Positive	31.94
TP IRN_1509	Positive	33.32
TP IRN_1510	Negative	
TP IRN_1511	Negative	
TP IRN_1512	Negative	
—	2	

TP IRN_1513	Positive	34.89
TP IRN_1514	Positive	32.63
TP IRN_1515	Negative	
TP IRN_1516	Positive	32.46
TP IRN_1517	Negative	
TP IRN_1518	Positive	34.79
TP IRN_1519	Positive	32.19
TP IRN_1520	Negative	
TP IRN_1521	Positive	31.70
TP IRN_1522	Positive	33.15
TP IRN_1523	Positive	33.84
	Positive	32.10
	Positive	32.81
	Positive	35.54
_ TP IRN_1527	Negative	
TP IRN 1528	Positive	32.96
TP IRN_1529	Negative	
TP IRN_1530	Positive	27.56
TP IRN 1531	Positive	30.91
TP IRN_1532	Positive	32.91
TP IRN_1533	Positive	34.17
TP IRN_1534	Positive	37.08
TP IRN_1535	Positive	33.68
TP IRN 1536	Positive	32.67
TP IRN 1537	Positive	32.15
TP IRN 1538	Positive	35.54
TP IRN 1539	Positive	33.54
TP IRN 1540	Positive	30.86
TP IRN 1541	Positive	32.23
TP IRN 1542	Positive	28.46
TP IRN 1543	Positive	32.71
TP IRN 1543 TP IRN 1544		32.71
	Negative	
TP IRN 1545	Negative	
TP IRN 1546	Negative	
TP IRN 1547	Negative	
TP IRN 1548	Negative	
TP IRN 1549	Negative	
TP IRN 1550	Negative	05.00
TP IRN 1551	Positive	35.92
TP IRN 1552	Negative	
TP IRN 1553	Negative	
TP IRN 1554	Negative	
TP IRN 1555	Negative	
TP IRN 1556	Negative	
TP IRN 1557	Negative	
TP IRN 1558	Negative	
TP IRN 1559	Negative	
TP IRN 1560	Negative	
TP IRN 1561	Negative	

TP IRN 1562 TP IRN 1563 TP IRN 1564 TP IRN 1565	Negative Negative Negative Negative	
TP IRN 1566	Positive	24.19
TP IRN 1567	Positive	30.05
TP IRN 1568	Positive	30.62
TP IRN 1569	Negative	
TP IRN 1570	Negative	
TP IRN 1571	Positive	32.55
TP IRN 1572	Positive	32.71
TP IRN 1573	Positive	32.77
TP IRN 1574	Positive	32.87
TP IRN 1575	Positive	32.94
TP IRN 1576	Positive	33.21
TP IRN 1577	Negative	
TP IRN 1578	Negative	33.41
TP IRN 1579	Positive	33.70
TP IRN 1580	Negative	33.73
TP IRN 1581	Positive	33.87
TP IRN 1582	Positive	33.89
TP IRN 1583	Negative	33.98
TP IRN 1584	Negative	34.13
TP IRN 1585	Positive	34.16
TP IRN 1586	Positive	34.22
TP IRN 1587	Positive	34.25
TP IRN 1588	Negative	
TP IRN 1589	Positive	34.27
TP IRN 1590	Positive	34.44
TP IRN 1591	Positive	34.52
TP IRN 1592	Positive	34.56
TP IRN 1593	Negative	
TP IRN 1594	Negative	
TP IRN 1595	Positive	34.65
TP IRN 1596	Negative	
TP IRN 1597	Negative	
TP IRN 1598	Positive	34.74
TP IRN 1599	Negative	
TP IRN 1600	Negative	
TP IRN 1601	Negative	
TP IRN 1602	Positive	34.83
TP IRN 1603	Negative	
TP IRN 1604	Negative	
TP IRN 1605	Positive	34.86
TP IRN 1606	Negative	
TP IRN 1607	Negative	
TP IRN 1608	Positive	34.89
TP IRN 1609	Positive	34.93
TP IRN 1610	Negative	
	5	

TP IRN 1611	Positive	35.09
TP IRN 1612	Positive	35.12
TP IRN 1613	Negative	
TP IRN 1614	Negative	
TP IRN 1615	Negative	
TP IRN 1616	Negative	
TP IRN 1617	Negative	
TP IRN 1618	Positive	35.21
TP IRN 1619	Negative	
TP IRN 1620	Negative	
TP IRN 1621	Positive	35.35
TP IRN 1622	Negative	
TP IRN 1623	Negative	
TP IRN 1624	Positive	35.37
TP IRN 1625	Negative	
TP IRN 1626	Negative	
TP IRN 1627	Negative	
TP IRN 1628	Negative	
TP IRN 1629	Negative	
TP IRN 1630	Negative	
TP IRN 1631	Negative	
TP IRN 1632	Negative	
TP IRN 1633	Negative	
TP IRN 1634	Positive	35.53
TP IRN 1635	Negative	
TP IRN 1636	Negative	
TP IRN 1637	Negative	
TP IRN 1638	Negative	
TP IRN 1639	Positive	35.69
TP IRN 1640	Positive	35.73
TP IRN 1641	Negative	
TP IRN 1642	Negative	
TP IRN 1643	Negative	
TP IRN 1644	Negative	
TP IRN 1645	Negative	
TP IRN 1646	Negative	
TP IRN 1647	Negative	
TP IRN 1648	Positive	35.79
TP IRN 1649	Negative	
TP IRN 1650	Negative	
TP IRN 1651	Negative	
TP IRN 1652	Negative	
TP IRN 1653	Negative	
TP IRN 1654	Negative	
TP IRN 1655	Negative	
TP IRN 1656	Positive	35.95
TP IRN 1657	Negative	
TP IRN 1658	Positive	35.99
TP IRN 1659	Negative	

TP IRN 1660	Positive	36.03
TP IRN 1661	Negative	
TP IRN 1662	Negative	
TP IRN 1663	Negative	
TP IRN 1664	Negative	
TP IRN 1665	Negative	
TP IRN 1666	Negative	
TP IRN 1667	Negative	
TP IRN 1668	Negative	
TP IRN 1669	Positive	36.23
TP IRN 1670	Negative	
TP IRN 1671	Positive	36.25
TP IRN 1672	Positive	36.27
TP IRN 1673	Negative	00.21
TP IRN 1674	Negative	
TP IRN 1675	Negative	
TP IRN 1676	Positive	36.38
		30.30
TP IRN 1677	Negative	
TP IRN 1678	Negative	20.40
TP IRN 1679	Positive	36.49
TP IRN 1680	Negative	
TP IRN 1681	Negative	
TP IRN 1682	Negative	
TP IRN 1683	Negative	
TP IRN 1684	Positive	36.64
TP IRN 1685	Negative	
TP IRN 1686	Negative	
TP IRN 1687	Negative	
TP IRN 1688	Negative	34.85
TP IRN 1689	Positive	36.84
TP IRN 1690	Negative	
TP IRN 1691	Positive	36.89
TP IRN 1692	Negative	
TP IRN 1693	Negative	
TP IRN 1694	Negative	
TP IRN 1695	Negative	
TP IRN 1696	Negative	
TP IRN 1697	Negative	
TP IRN 1698	Negative	
TP IRN 1699	Positive	37.02
TP IRN 1700		51.02
	Negative	27.06
TP IRN 1701	Positive	37.06
TP IRN 1702	Negative	
TP IRN 1703	Negative	07.07
TP IRN 1704	Positive	37.07
TP IRN 1705	Negative	37.09
TP IRN 1706	Positive	37.10
TP IRN 1707	Negative	
TP IRN 1708	Negative	

TP IRN 1709	Positive	37.19
TP IRN 1710	Positive	37.22
TP IRN 1711	Negative	
TP IRN 1712	Negative	
TP IRN 1713	Positive	37.28
TP IRN 1714	Negative	
TP IRN 1715	Positive	37.33
TP IRN 1716	Negative	
TP IRN 1717	Negative	
TP IRN 1718	Negative	
TP IRN 1719	Negative	
TP IRN 1720	Negative	
TP IRN 1721	Positive	37.73
TP IRN 1722	Positive	37.86
TP IRN 1723	Negative	
TP IRN 1724	Negative	
TP IRN 1725	Negative	
TP IRN 1726	Negative	
TP IRN 1727	Negative	
TP IRN 1728	Negative	
TP IRN 1729	Negative	
TP IRN 1730	Negative	
TP IRN 1731	Negative	
TP IRN 1732	Negative	
TP IRN 1733	Negative	
TP IRN 1734	Positive	31.89
TP IRN 1735	Negative	
TP IRN 1736	Negative	
TP IRN 1737	Positive	33.35
TP IRN 1738	Negative	
TP IRN 1739	Negative	
TP IRN 1740	Negative	
TP IRN 1741	Negative	
TP IRN 1742	Positive	35.15
TP IRN 1743	Negative	
TP IRN 1744	Positive	35.16
TP IRN 1745	Negative	••••
TP IRN 1746	Negative	
TP IRN 1747	Negative	
TP IRN 1748	Negative	
TP IRN 1749	Negative	
TP IRN 1750	Negative	
TP IRN 1751	Negative	
TP IRN 1752	Negative	
TP IRN 1752 TP IRN 1753	Positive	35.17
TP IRN 1754	Negative	55.17
TP IRN 1754 TP IRN 1755	Negative	
TP IRN 1755 TP IRN 1756	Positive	35.33
TP IRN 1756 TP IRN 1757	Negative	55.55
	ivegative	

TP IRN 1758	Nogativo	
TP IRN 1759	Negative Positive	35.34
TP IRN 1760	Negative	55.54
TP IRN 1761	Positive	25.26
TP IRN 1761 TP IRN 1762	Positive	35.36
-		35.37
TP IRN 1763	Negative	
TP IRN 1764	Negative	25.20
TP IRN 1765	Positive	35.38
TP IRN 1766	Positive	35.42
TP IRN 1767	Negative	DE 47
TP IRN 1768	Positive	35.47
TP IRN 1769	Positive	35.49
TP IRN 1770	Negative	
TP IRN 1771	Positive	35.50
TP IRN 1772	Positive	35.51
TP IRN 1773	Negative	
TP IRN 1774	Negative	
TP IRN 1775	Negative	
TP IRN 1776	Positive	35.52
TP IRN 1777	Negative	
TP IRN 1778	Positive	35.52
TP IRN 1779	Negative	
TP IRN 1780	Positive	35.52
TP IRN 1781	Negative	
TP IRN 1782	Negative	
TP IRN 1783	Negative	
TP IRN 1784	Negative	
TP IRN 1785	Negative	
TP IRN 1786	Negative	
TP IRN 1787	Negative	
TP IRN 1788	Negative	
TP IRN 1789	Negative	
TP IRN 1790	Negative	
TP IRN 1791	Negative	
TP IRN 1792	Positive	35.14
TP IRN 1793	Negative	
TP IRN 1794	Negative	
TP IRN_1795	Negative	
TP IRN_1796	Negative	
 TP IRN_1797	Positive	35.13
 TP IRN_1798	Negative	
_ TP IRN_1799	Negative	
 TP IRN_1800	Negative	
	Negative	
_ TP IRN_1802	Positive	34.97
TP IRN_1803	Negative	
TP IRN_1804	Negative	
TP IRN_1805	Negative	
TP IRN_1806	Negative	

TR IRN 4007		24.00
TP IRN_1807	Positive	34.89
TP IRN_1808	Negative	
TP IRN_1809	Negative	
TP IRN_1810	Negative	
TP IRN_1811	Negative	
TP IRN_1812	Positive	34.86
TP IRN_1813	Negative	
TP IRN_1814	Negative	
TP IRN_1815	Negative	
TP IRN_1816	Positive	34.85
TP IRN_1817	Negative	
TP IRN_1818	Negative	
TP IRN_1819	Negative	
TP IRN_1820	Negative	
TP IRN 1821	Negative	
	Negative	
TP IRN_1823	Positive	31.23
TP IRN 1824	Positive	34.26
TP IRN_1825	Negative	01.20
TP IRN_1826	Negative	
TP IRN_1827	Negative	
—	-	
TP IRN_1828	Negative	
TP IRN_1829	Negative	
TP IRN_1830	Negative	
TP IRN_1831	Negative	
TP IRN_1832	Negative	
TP IRN_1833	Negative	
TP IRN_1834	Negative	
TP IRN_1835	Negative	
TP IRN_1836	Negative	
TP IRN_1837	Negative	
TP IRN_1838	Negative	
TP IRN_1839	Negative	
TP IRN_1840	Negative	
TP IRN_1841	Positive	34.56
TP IRN_1842	Negative	
TP IRN_1843	Negative	
TP IRN_1844	Negative	
TP IRN_1845	Positive	34.59
_ TP IRN_1846	Negative	
TP IRN_1847	Negative	
TP IRN 1848	Negative	
TP IRN_1849	Negative	
TP IRN_1850	Positive	34.73
TP IRN_1851	Positive	34.74
TP IRN_1852	Negative	54.74
TP IRN_1853	Negative	
TP IRN_1854	-	
—	Negative	
TP IRN_1855	Negative	

TP IRN_1856	Negative	
TP IRN_1857	Negative	
TP IRN_1858	Negative	
TP IRN_1859	Negative	
TP IRN_1860	Positive	34.77
TP IRN_1861	Negative	
TP IRN_1862	Negative	
TP IRN_1863	Negative	
TP IRN_1864	Negative	
TP IRN_1865	Negative	
TP IRN_1866	Negative	
TP IRN_1867	Positive	34.79
_ TP IRN_1868	Negative	
TP IRN 1869	Positive	34.82
TP IRN_1870	Negative	•
TP IRN_1871	Negative	
TP IRN_1872	Negative	
TP IRN_1873	Negative	
TP IRN_1874	Negative	
—	_	
TP IRN_1875	Negative	
TP IRN_1876	Positive	
TP IRN_1877	Negative	35.55
TP IRN_1878	Negative	
TP IRN_1879	Negative	
TP IRN_1880	Negative	
TP IRN_1881	Negative	
TP IRN_1882	Positive	35.56
TP IRN_1883	Negative	
TP IRN_1884	Positive	35.59
TP IRN_1885	Negative	
TP IRN_1886	Negative	
TP IRN_1887	Negative	
TP IRN_1888	Negative	
TP IRN_1889	Negative	
TP IRN_1890	Negative	
	Negative	
_ TP IRN_1892	Negative	
TP IRN_1893	Negative	
TP IRN_1894	Negative	
TP IRN_1895	Negative	
TP IRN_1896	Negative	
TP IRN 1897	Negative	
TP IRN_1898	Negative	
—	-	
TP IRN_1899	Negative Positive	35 60
TP IRN_1900		35.68
TP IRN_1901	Negative	
TP IRN_1902	Negative	
TP IRN_1903	Negative	05 70
TP IRN_1904	Positive	35.73

TRIDN 1005	Negative	
TP IRN_1905	Negative	
TP IRN_1906	Negative	
TP IRN_1907	Negative	
TP IRN_1908	Negative	
TP IRN_1909	Negative	
TP IRN_1910	Negative	
TP IRN_1911	Positive	35.74
TP IRN_1912	Negative	
TP IRN_1913	Negative	
TP IRN_1914	Negative	
TP IRN_1915	Positive	35.74
TP IRN_1916	Negative	
TP IRN_1917	Positive	35.75
TP IRN_1918	Negative	
TP IRN_1919	Negative	
TP IRN_1920	Negative	
TP IRN_1921	Negative	
TP IRN_1922	Negative	
TP IRN_1923	Negative	
TP IRN_1924	Negative	
TP IRN_1925	Negative	
TP IRN_1926	Negative	
TP IRN_1927	Negative	
TP IRN_1928	Positive	35.77
TP IRN_1929	Negative	
TP IRN_1930	Negative	
TP IRN_1931	Negative	
TP IRN_1932	Negative	
_ TP IRN_1933	Negative	
 TP IRN_1934	Negative	
_ TP IRN_1935	Positive	35.78
TP IRN_1936	Negative	
TP IRN_1937	Negative	
TP IRN_1938	Negative	
TP IRN_1939	Negative	
TP IRN_1940	Negative	
TP IRN_1941	Negative	
TP IRN_1942	Positive	35.78
TP IRN_1943	Negative	00.10
TP IRN_1944	Negative	
TP IRN_1945	Negative	
TP IRN 1946	Negative	
TP IRN_1947	-	
—	Negative	
TP IRN_1948	Negative	25.00
TP IRN_1949	Positive	35.80
TP IRN_1950	Negative	
TP IRN_1951	Negative	
TP IRN_1952	Negative	
TP IRN_1953	Negative	

	Negotivo	
TP IRN_1954	Negative	
TP IRN_1955	Negative	
TP IRN_1956	Negative	
TP IRN_1957	Negative	
TP IRN_1958	Negative	05.00
TP IRN_1959	Positive	35.83
TP IRN_1960	Negative	
TP IRN_1961	Negative	
TP IRN_1962	Negative	
TP IRN_1963	Positive	35.86
TP IRN_1964	Positive	36.05
TP IRN_1965	Negative	
TP IRN_1966	Negative	
TP IRN_1967	Negative	
TP IRN_1968	Negative	
TP IRN_1969	Negative	
TP IRN_1970	Negative	
	Negative	
TP IRN_1972	Negative	
TP IRN_1973	Negative	
TP IRN_1974	Negative	
TP IRN_1975	Negative	
TP IRN_1976	Negative	
TP IRN_1977	Negative	
TP IRN_1978	Negative	
TP IRN_1979	Negative	
TP IRN_1980	-	
	Negative	
TP IRN_1981	Negative	
TP IRN_1982	Negative	
TP IRN_1983	Negative	
TP IRN_1984	Negative	
TP IRN_1985	Negative	
TP IRN_1986	Negative	
TP IRN_1987	Negative	
TP IRN_1988	Negative	
TP IRN_1989	Negative	
TP IRN_1990	Positive	35.87
TP IRN_1991	Negative	
TP IRN_1992	Negative	
TP IRN_1993	Negative	
TP IRN_1994	Negative	
TP IRN_1995	Negative	
TP IRN_1996	Positive	35.90
TP IRN_1997	Negative	
TP IRN_1998	Positive	35.89
TP IRN_1999	Negative	
TP IRN_2000	Negative	
TP IRN_2001	Negative	
TP IRN_2002	Negative	

TP IRN_2003 TP IRN_2004 TP IRN_2005 TP IRN_2006 TP IRN_2007 TP IRN_2009 TP IRN_2010 TP IRN_2010 TP IRN_2011 TP IRN_2012 TP IRN_2013 TP IRN_2014 TP IRN_2015	Negative Negative Positive Negative Positive Negative Negative Positive Negative Negative Negative Negative Negative	36.03 35.89
TP IRN_2016 TP IRN_2017 TP IRN_2018 TP IRN_2019 TP IRN_2020	Negative Negative Negative Negative Negative	
TP IRN_2021 TP IRN_2022 TP IRN_2023	Positive Negative Negative	35.95
TP IRN_2024 TP IRN_2025 TP IRN_2026 TP IRN_2027 TP IRN_2028	Positive Positive Negative Negative Negative	36.07 36.09
TP IRN_2029 TP IRN_2030 TP IRN_2031 TP IRN_2032	Negative Negative Positive Negative	36.12
TP IRN_2033 TP IRN_2034 TP IRN_2035 TP IRN_2036 TP IRN_2037	Negative Positive Negative Negative Negative	36.14
TP IRN_2038 TP IRN_2039 TP IRN_2040 TP IRN_2041 TP IRN_2042 TP IRN_2043 TP IRN_2044	Negative Positive Positive Negative Negative Negative Negative	36.19 36.20
TP IRN_2045 TP IRN_2046 TP IRN_2047 TP IRN_2048 TP IRN_2049 TP IRN_2050 TP IRN_2051	Negative Positive Negative Negative Negative Positive	36.21 36.22

TP IRN_2052	Positive	36.25
TP IRN_2053	Negative	
TP IRN_2054	Negative	
TP IRN_2055	Negative	
TP IRN_2056	Negative	
TP IRN_2057	Positive	36.31
TP IRN_2058	Negative	
TP IRN_2059	positive	36.32
TP IRN_2060	Negative	
TP IRN_2061	Negative	
TP IRN_2062	Positive	36.36
TP IRN_2063	Negative	
TP IRN_2064	Negative	
TP IRN_2065	Positive	36.40
TP IRN_2066	Positive	36.44
TP IRN_2067	Positive	36.49
	Negative	
	Positive	36.49
TP IRN_2070	Positive	36.53
TP IRN_2071	Negative	
TP IRN_2072	Positive	36.64
TP IRN_2073	Positive	36.71
TP IRN_2074	Negative	00112
TP IRN_2075	Positive	36.80
TP IRN_2076	Positive	36.81
TP IRN_2077	Positive	36.85
TP IRN_2078	Positive	36.90
TP IRN_2079	Negative	00.00
TP IRN 2080	Positive	36.91
TP IRN_2081	Negative	50.51
TP IRN_2082	Negative	
TP IRN_2083	Negative	
TP IRN 2084	Positive	36.95
TP IRN 2085	Positive	36.96
TP IRN_2086		30.90
TP IRN_2087	Negative Positive	36.96
		30.90
TP IRN_2088	Negative	26.06
TP IRN_2089	Positive	36.96
TP IRN_2090	Positive	37.01
TP IRN_2091	Positive	37.03
TP IRN_2092	Positive	37.06
TP IRN_2093	Negative	
TP IRN_2094	Negative	
TP IRN_2095	Positive	37.07
TP IRN_2096	Positive	37.12
TP IRN_2097	Positive	37.15
TP IRN_2098	Positive	37.24
TP IRN_2099	Negative	_
TP IRN_2100	Positive	37.25

TP IRN_2101	Positive	37.33
TP IRN_2102	Positive	37.39
TP IRN_2103	Positive	37.46
TP IRN_2104	Positive	37.59
TP IRN_2105	Positive	37.65
TP IRN_2106	Negative	
TP IRN_2107	Negative	
TP IRN_2108	Positive	37.69
TP IRN_2109	Negative	
TP IRN_2110	Positive	38.06
 TP IRN_2111	Negative	
 TP IRN_2112	Positive	39.55
 TP IRN_2113	Negative	
 TP IRN_2114	Negative	
 TP IRN_2115	Positive	37.90
TP IRN_2116	Negative	
TP IRN_2117	Negative	
TP IRN_2118	Positive	38.07
TP IRN 2119	Negative	
TP IRN_2120	Negative	
TP IRN_2121	Positive	
TP IRN_2122	Negative	
TP IRN_2123	Negative	
TP IRN_2124	Negative	
TP IRN_2125	Negative	
TP IRN_2126	Negative	
TP IRN_2127	Negative	
TP IRN_2128	Negative	
TP IRN_2129	Negative	
TP IRN_2130	Positive	38.00
TP IRN_2131	Negative	00.00
TP IRN_2132	Negative	
TP IRN_2133	Positive	37.80
TP IRN_2134	Positive	33.10
TP IRN_2135	Negative	55.10
TP IRN 2136	Positive	34.10
TP IRN_2137	Negative	54.10
TP IRN_2138	Negative	
TP IRN_2139	Negative	
TP IRN_2139	Positive	32.87
TP IRN_2140 TP IRN_2141		52.01
—	Negative	
TP IRN_2142	Negative	
TP IRN_2143	Negative	22.00
TP IRN_2144	Positive	33.80

Appendix B : Research Ethics

Approval

Project Title	Improving South Afr	g the identification of Influenza A viruses in ica
Project Number	REC032-1	9
Researcher / Principal Investigator	Ms TP Ph	iri
Dlissertation / Thesis submitted for	Masters	
	_	
Supervisor	Prof C Ab	oolnik
APPROVED		Date: 2019-10-11

Department:

agriculture, forestry & fisheries

Agriculture, Forestry and Fisheries REPUBLIC OF SOUTH AFRICA

Directorate Animal Health, Department of Agriculture, Forestry and Fisheries Private Bag X138, Pretoria 0001 Enquiries: Mr Herry Gololo • Tel: +27 12 319 7532 • Fax: +27 12 319 7470 • E-mail: <u>HerryG@daff.gov.za</u> Reference: 12/11/1/1/8 (1217)

Professor Celia Abolnik SARChI Chair in Poultry Health and Production University of Pretoria Tel: +27 (0)12 529 8258 E-mail: <u>Celia.abolnik@up.ac.za</u>

Dear Prof Abolnik

RE: PERMISSION TO DO RESEARCH IN TERMS OF SECTION 20 OF THE ANIMAL DISEASES ACT, 1984 (ACT NO 35 OF 1984)

Your application dated 2 July 2019 requesting permission under Section 20 of the Animal Disease Act, 1984 (Act No. 35 of 1984) to perform a research project or study, refers. I am pleased to inform you that permission is hereby granted to perform the following study, with the following conditions:

Conditions:

- 1. This permission does not relieve the researcher of any responsibility which may be placed on him by any other act of the Republic of South Africa;
- This permission is given upon finding the biosecurity of the research project as described to be acceptable to DAFF. This permission does not serve as any approval or endorsement by DAFF for the validation, commercial use or registration of any influenza test for any purpose in South Africa. Please apply to the Director: Animal Health for more information regarding validation of tests for controlled animal diseases;
- The research project is approved as per the application form dated 2 July 2019 and the correspondence thereafter. Written permission from the Director: Animal Health must be obtained prior to any deviation from the conditions approved for this research project under this Section 20 permit. Please apply in writing to HerryG@daff.gov.za;

-1-

- If required, an application for an extension must be made by the responsible researcher at least one month prior to the expiry of this Section 20 permit. Please apply in writing to HerryG@daff.gov.za;
- 5. No live animals may be used in this study under this Section 20 permit;
- All work with live influenza viruses must be performed in the DAFF approved Poultry Research Unit BSL 3 Facility (DAFF-C02) at the Faculty of Veterinary Science, Onderstepoort;
- All samples or material potentially containing live influenza virus must be inactivated with TRIzol® LS Reagent before they may be released from the Poultry Research Unit BSL 3 Laboratory (DAFF-C02);
- Only South African strains of avian influenza viruses may be used in this research project. South African strains of avian influenza virus required that are not stored at the Poultry Research Unit may be requested from ARC-OVR;
- All potentially infectious material utilised or generated during or by the research project is to be destroyed at completion of the research project. Only a registered waste disposal company may be used for the removal of all potentially infectious waste from the research project;
- 10. Records must be kept for five years for auditing purposes;
- 11. A dispensation for the storage of bacterial plasmids containing cloned HA and NA genes is attached;

Title of research/study: Improving the identification of Influenza A viruses detected in wild birds and ostriches

Researcher: Prof Celia Abolnik

Institution: The Poultry Research Unit BSL 3 facility (DAFF-C02), the Poultry Research Unit Broiler Room 3 and the Poultry Research Laboratory (BSL2) at the Faculty of Veterinary Science, Onderstepoort;

Permit Expiry date: 30 July 2021 Our ref Number: 12/11/1/1/8 (1217) Your ref: REC032-19

Kind regards,

Willaja.

DR. MPHO MADA DIRECTOR OF ANIMAL HEALTH Date: 2019 - 07- 1 0

SUBJECT:

PERMISSION TO DO RESEARCH IN TERMS OF SECTION 20 OF THE ANIMAL DISEASES ACT, 1984 (ACT NO. 35 OF 1984)

-2-

agriculture, forestry & fisheries

Department: Agriculture, Forestry and Fisheries REPUBLIC OF SOUTH AFRICA

Directorate Animal Health, Department of Agriculture, Forestry and Fisheries Private Bag X138, Pretoria 0001

Enquiries: Mr Herry Gololo • Tel: +27 12 319 7532 • Fax: +27 12 319 7470 • E-mail: <u>HerryG@daff.gov.za</u> Reference: 12/11/1/1/8 (1217)

Professor Celia Abolnik SARChI Chair in Poultry Health and Production University of Pretoria Tel: +27 (0)12 529 8258 E-mail: <u>Celia.abolnik@up.ac.za</u>

RE: DISPENSATION ON SECTION 20 APPROVAL IN TERMS OF THE ANIMAL DISEASES ACT, 1984 (ACT NO 35 OF 1984) FOR: "IMPROVING THE IDENTIFICATION OF INFLUENZA A VIRUSES DETECTED IN WILD BIRDS AND OSTRICHES"

A dispensation is hereby granted on Point 9 of the Section 20 approval that was issued for the above mentioned study (attached):

- Bacterial plasmids containing cloned HA and NA genes must be stored under access control at the DAFF approved Poultry Research Unit BSL 2 facility;
- Bacterial plasmids containing cloned HA and NA genes must not be outsourced or used for further research without prior written approval from the Director: Animal Health.

Kind regards,

DR. MPHO MAJA DIRECTOR: ANIMAL HEALTH Date: 2019 -07- 1 0

-1-