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Modern and future radio surveys performed with increasingly powerful instru-
ments, such as the 64-antenna MeerKAT interfereometer and eventually the Square
Kilometre Array (SKA), will catalogue upwards of hundreds of thousands to mil-
lions of radio sources. This can make classification of source morphology and search-
ing for specific source classes extremely challenging. MeerKAT excels at imaging
large-scale and faint emission features due to its high sensitivity and excellent imag-
ing quality, allowing for many exotic, scientifically-rich radio objects to be identi-
fied for the first time. However, finding them is a problem, especially using manual
classification. Moreover, MeerKAT’s moderate angular resolution (~ 5 arcsec) means
that a typical field is crowded with many sources, including many point-like sources.

An automated approach to classification is therefore required. The aim of this
project is to isolate the most morphologically unusual or exotic sources. The ap-
proach explored in this project is the use of autoencoders, neural networks that en-
code an input into some latent space and then attempt to reconstruct the input from
the code form.

We test this on the MeerKAT Galaxy Cluster Legacy Survey, comprising of 115
galaxy clusters at 1.28 GHz with µJy/beam sensitivity. A subset of these are manu-
ally classified and used to train numerous configurations of autoencoder algorithms,
including ensembles of autoencoders, and test the algorithms’ performance in iso-
lating potentially interesting sources. It is found that the autoencoders significantly
reduce the work required to locate potentially interesting sources.
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Chapter 1

Objectives and Layout

1.1 Thesis Objectives

The aim of this project is to identify unusual radio sources in a subset of the MeerKAT
Galaxy Cluster Legacy Survey (MGCLS, Knowles et al. 2022) using autoencoders, an
automated unsupervised machine learning approach. MeerKAT, originally named
the Karoo Array Telescope (KAT) before being renamed to MeerKAT (Afrikaans for
"More of KAT"), is the 64 antenna radio telescope that is a precursor to the Square
Kilometre Array (SKA) telescope and which will eventually form part of the mid-
frequency component of the SKA. For this task, various ensembles of autoencoders
are tried and compared. An automated approach for finding interesting objects in
surveys is desirable due to the large number of sources that can be observed by
modern surveys, which can typically exceed several hundreds of thousands, cou-
pled with the dramatic increase in recovered source complexity with advanced in-
terferometry. As new telescopes such as MeerKAT, and eventually the SKA, have
high sensitivity and moderate resolution (~ 5 arcsec in the case of MeerKAT), diffuse
sources may be observed but the fields are often crowded and complex. The use
of machine learning is promising here as it may learn to deal with the unique and
unusual features and non-uniform background noise of various sources that belong
to the same category.

The objective is to explore if autoencoders show potential in finding exotic radio
sources by morphology in survey data. The goal is to have practical software that
may be used to reduce the time and effort required to search for individual sources
that may be of interest to a researcher in the large surveys produced by modern
and upcoming telescopes. By reducing the number of sources that the researcher
needs to manually inspect while at the same time retaining a majority of the inter-
esting sources, it may take less time or fewer experts to search the data for interesting
sources for future study. The scope does not extend to the application of automati-
cally classifying large numbers of typical sources in a reliable manner or collecting
reliable statistical data about the morphologies of the sources in such surveys.

1.2 Thesis Layout

In the first part of the thesis we discuss the various types of sources that we seek to
identify as well as the particular survey that they come from. The machine learning
approach used is then discussed, as well as the data pre-processing of the survey
images. The performance evaluation methods used to determine the effectiveness
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of the various machine learning approaches is also discussed. Finally, the results of
the various machine learning approaches are presented.

The thesis is divided into the following parts:

• Chapter 1: Objectives and Layout

• Chapter 2: Introduction In the introduction many of the important ideas are
introduced including the survey data used to search for sources in this project,
the software components used in the design of the autoencoders and how the
performance of the autoencoders may be evaluated and understood.

• Chapter 3: Methods This chapter goes over the specific methods and software
used for pre-processing the data, constructing and training the autoencoders
as well as the evaluation of the performance of the autoencoders.

• Chapter 4: Results This chapter contains the results of the various configura-
tions of autoencoder ensembles implemented as discussed in Chapter 2.

• Chapter 5: Conclusions
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Chapter 2

Introduction

2.1 Radio Sources

First we must consider the types of sources that will be found in the data. The major-
ity of the spatially resolved sources found in this survey and of interest to this project
are radio galaxies. This is as radio galaxies are among the brightest radio sources
(>∼ 1 mJy) (where Jy is a unit of spectral flux density, equal to 10−26 Wm−2Hz−1),
dominating the high end of the radio luminosity function. For example, Figure 2.1,
reproduced from Condon et al. (2012), shows the flux-density of various published
1.4 GHz source counts and shows the difference between the Active Galactic Nuclei
(AGN) and star formation powered sources. Radio galaxies have an AGN at their
centre of the galaxy which is the central engine of their radio emission. AGN consist
of a central supermassive black hole (SMBH), with masses typically in the range of
millions to billions of solar masses. The SMBH is actively accreting matter forming a
thin disk about the SMBH. At the edge of this accretion disk a thick torus of gas and
dust accumulates. Not all of the matter from the disk eventually falls into the black
hole, however. Much of the matter is flung out by the AGN in large jets at relativistic
velocities typically perpendicular to the disk of matter being accreted. This is likely
due to the twisted magnetic fields threading through the accretion disk and possi-
bly the SMBH itself (Blandford, Meier, and Readhead 2019, and references therin).
These jets typically extend well beyond the host galaxy for hundreds of kpc (kilopar-
sec where a parsec is 3.0857 × 1016 m). Figure 2.2 shows an illustration of the AGN
with its accretion disk, torus and jets. Not all supermassive black holes at the centre
of galaxies accrete matter at a rate sufficient for a detectable disk (Fraknoi et al. 2016).

Within the accretion disk the plasma orbits the black hole at relativistic veloci-
ties. Viscosity-driven angular momentum loss, the result of viscous friction forces
between gas orbiting at different speeds throughout the disk, converts gravitational
potential energy to kinetic energy, driving high temperatures, typically on the order
of 106−8 K (Fraknoi et al. 2016). As a result, they emit strong blackbody radiation
(thermal electromagnetic radiation emitted by matter with a temperature above ab-
solute zero and with wavelength spectrum dependent only on temperature) with a
peak that can lie in the ultraviolet or X-ray part of the spectrum.

Within the jets of matter ejected by the AGN, the charged particles, such as
electrons, will spiral around the strong magnetic fields they propagate, produc-
ing synchrotron radiation (electromagnetic radiation emitted by radially accelerated
charged particles) (Eilek 2014). These jets are bright in the radio part of the spectrum,
and extend far beyond the borders of their host galaxies for the most radio-luminous
systems (Fraknoi et al. 2016). They are the most prominent feature of radio galaxies
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FIGURE 2.1: Reproduced from Condon et al. (2012). For published
1.4 GHz source counts the log of the brightness-weighted count, S2n,
is plotted as a function of log(S). The brightness-weighted source
count is proportional to the flux density contribution per decade to
the sky background temperature, Tb. The left ordinate is the log of
the 1.4 GHz source count, S2n, and right ordinate is the log of the
source contribution per decade of flux density to the 1.4 GHz back-
ground, dTb/d[log(S)]. The solid curve shows the Condon (1984a)
model count composed primarily of star formation, indicated with
the dotted curve, and AGN driven sources, indicated with the dashed
curve. Filled data points at log[S(Jy)] > -3 are from Condon (1984b)
and Mitchell and Condon (1985). Open data points are from Owen

and Morrison (2008), source count with their power law fit.

when observed using a radio telescope due to both their projected size and bright-
ness.

2.2 Radio Galaxy Morphologies

Now we consider the way in which these sources differ from each other and how
they may be classified according to their morphology. For this project we aim to
divide the sources into the most typical and most exotic morphologies with the goal
of semi-automated location of those with exotic morphologies.

Apart from the intrinsic morphological differences between observed AGN, dif-
ferences may also often be partly due to the observation angle (Bianchi, Maiolino,
and Risaliti 2012). Viewing the accretion disk from edge-on the jets will be most
clearly visible, while the shorter wavelength emission of the core may be obscured
by the torus. Face-on the core and accretion disk will be more visible but the jets will
be more distorted and the morphology more difficult to determine due to the geom-
etry and Doppler effects. At these angles the fact that one jet is at relativistic velocity
toward the telescope while the other away from it may result in Doppler boosting
and the near jet blueshifted due to the relativistic velocities while the far-side jet
is redshifted. For particles moving at relativistic velocities the emitted wavelengths
appear shorter or longer as the particle moves towards or away from a wave emitted
in the direction of the observer before emitting the next, adding its velocity relative
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FIGURE 2.2: Unified AGN model showing the supermassive black
hole, accretion disk, torus and jets as well as showing how the view-
ing angle changes the way the source may be observed. A quasar,
or quasi-stellar object, are extremely luminous AGN. Seyfert galax-
ies are similar to quasars but with clearly detectable host galaxies.
Blazars appear brighter due to their orientation with the jet directed

nearly towards the observer. Image credit: Fermi and NASA.

to the telescope, per period of the emitted frequency, to the wavelength. The rela-
tivistic velocities of these particles may result in relativistic beaming at high angles
to the disk, where two jets of near equal intrinsic brightness have observed lumi-
nosities that vary greatly due to their different viewing angles. These factors mean
that the viewing angle is very important to the appearance of the observed galaxy,
as is shown in Figure 2.2.

Radio galaxies are typically classified into a number of categories based on their
morphology with the most typical being into two classifications, proposed by Fa-
naroff and Riley (1974). Sources that are brightest at their core, with brightness de-
creasing along the length of the jets, are classified as type FRI. Those with large,
bright lobes appearing instead towards the ends of the jets where they collide with
the intergalactic medium (the low density, hot plasma between galaxies) are classi-
fied as FRII. To do this the ratio of the distance between the brightest point in each
jet to the overall length of the source is taken. If it is below 0.5 the radio galaxy is
classified as FRI. If it is above 0.5 it is classified as FRII (Fanaroff and Riley 1974).
Examples of each are reproduced in Figure 2.3 where the difference between the FRI
and FRII type jets may be clearly seen. Figure 2.4 shows examples from the data
used in this project.
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,

FIGURE 2.3: (Left) A typical FR I type radio galaxy. (Right) A typical
FR II type radio galaxy. Image credit: AUI/NRAO, Bridle (2006)

FIGURE 2.4: (Left) A typical Fanaroff and Riley type I radio galaxy
where the brightness of the jets clearly decreasing along their length
away from the core. (Right) Fanaroff and Riley type II radio galaxy
showing the two large, bright lobes where the jets collide with the

intergalactic medium. (Images found in MGCLS)

Although a morphological classification, intrinsic differences between the classes
have been found. Fanaroff and Riley (1974), noted a sharp division in luminosity be-
tween the two classes with FRIIs having a higher luminosity than FRIs. Figure 2.5,
reproduced from Owen and Ledlow (1994), shows how the relationship between
the absolute isophotal magnitude (integral of light within a given brightness con-
tour) and the radio luminosity differs for FRIs and FRIIs. Zirbel and Baum (1994),
analysed the relationship between emission line luminosity and radio power and
found correlations for FRI and FRII type galaxies independently but with the corre-
lations offset with FRII galaxies showing about ten times the emission line activity.
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Radio galaxies also interact with their environment. Morganti et al. (1988), looked at
the effects of gaseous environments and, for radio lobes, found an inverse relation-
ship between the radio structure size and cluster gas central densities. Croston et al.
(2005), compared later X-ray Multi-Mirror Mission (XMM-Newton) observations of
the X-Ray emitting hot gas of several FRI and FRII radio galaxies. For FRI galaxies
they found that the distribution of the hot gas determines the radio-lobe morphol-
ogy and evidence that subsonic expansion of the lobes heats the surrounding gas.
For FRII galaxies the lobes are in equipartition and in pressure-balance with the sur-
rounding gas. Mingo et al. (2022) analysed the relationship between the morphology
and the accretion mode of the AGN, which can be either Radiatively Efficient (RE)
or Radiatively Inefficient (RI). Although two thirds of FRIIs were RI they found that
the relationship between the accretion mode and morphology is very indirect, the
host galaxy environment controlling both in different ways.

FIGURE 2.5: Reproduced from Owen and Ledlow (1994). The lumi-
nosity at 1400 MHz is compared to the optical absolute magnitude
for a selection of FRI ("1" markers) and FRII ("2" markers) galaxies.
The R-Band isophotal magnitude system, as described in Owen and

Laing (1989), is used.

Apart from the typical FRI and FRII sources found above a certain flux-density
luminosity, as discussed above, unusual morphologies of radio galaxies can be found.
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FIGURE 2.6: Reproduced from Zirbel and Baum (1994). The radio
core power is correlated with the emission line luminosities. Power
is measured as the power directly arising from the radio core, as dis-
tinct from the total power which includes that arising from energy
deposited into the lobes. Erg is a unit of energy equal to 10−7 J. It can
be seen that the a strong correlation exists for FRI and FRII type radio
galaxies independently with the FRII radio galaxies consistently pro-
ducing about ten times the emission line luminosity for a given core

power.

These unusual morphologies may result from interaction with the Inter-Stellar Medium
(ISM) or Inter-Galactic Medium (IGM). They may also arise due to episodic accre-
tion, previous mergers with other galaxies, the precession from the orbit of binary
black holes or spin-axis changes resulting from their merger which occurs when two
massive galaxies merge as every massive galaxy appears to host at least one black
hole at its centre (Kormendy and Richstone 1995). The merger of two supermas-
sive black holes may result in helical or spiral shaped sources as they precess about
each other (Begelman, Blandford, and Rees 1980). This can similarly result in Z- or
S-shaped sources as the jets change orientation due to the precessing black hole. X-
shaped sources, being radio galaxies that have what appear to be two pairs of offset
lobes, have been observed and these may possibly arise in a number of different
ways. These include merging AGN, when such a merger causes a drastic change in
the spin of AGN, called a spin-flip, as well as hydrodynamical interaction of the jets
with their surrounding medium (Leahy and Williams 1984; Rottmann 2001; Gopal-
Krishna et al. 2012). Leahy and Williams suggest three models in which interac-
tion with the medium may distort the source, shown in Figure 2.7, reproduced from
Leahy and Williams (1984). In (a) an imbalance in the gas leads to a backflow. In (b),
motion through the IGM creates a ram-pressure gradient that creates a bent source
(ran pressure being the pressure exerted on an object moving in a fluid due to the
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relative bulk motion of the fluid). Finally, in (c), if the source previously had jets
along an axis differing substantially from the new axis then the old cocoon provides
a channel for backflow where the jets are at lower pressure than the surrounding
gas. An example of an X-shaped source created by hydrodynamical backflow can be
seen in Figure 2.8, reproduced from Cotton et al. (2020), in which a recent 1.4 GHz
MeerKAT observation of PKS 2014-55 is presented. Here PKS refers to the position-
based naming of the source in the Parkes Southern Radio Source Catalog (Bolton,
Savage, and Wright 1979; Wright and Otrupcek 1990). The diffuse radio emission
in merging clusters creating halos and mini-halos around powerful radio galaxies in
cooling core clusters as well as radio relics from cluster emission and old radio lobes
is also observed (Ferrari et al. 2008). Figure 2.9 shows three of the more unusual
sources found in the MGCLS data.

2.3 The MeerKAT Galaxy Cluster Legacy Survey

The survey data used in this project was observed using the MeerKAT radio tele-
scope. MeerKAT is one of the most sensitive radio interferometer of its class. Due
to its high sensitivity of ~3-5 µJy/beam-1 the survey has many detailed and diffuse
images of interesting radio sources that we want to find. However, this also means
that the fields are crowded with many point-like sources and that many sources
may have some complex structure that the machine learning algorithms may strug-
gle with.

The MeerKAT radio telescope, an extension of the Karoo Array Telescope (KAT),
consists of 64 13.5 metre offset-Gregorian dishes, with a minimum and maximum
baseline of 26 m and 8 km respectively, making it sensitive to large-scale, low surface
brightness features at a few arcmin scales, while still achieving few arcsec maximum
angular resolution. A compact (~1 km) inner core containing 70% of the dishes is sur-
rounded by the remaining dishes that are spread out over the much wider distances
up to the maximum baseline of 8 km. The layout of the dishes is shown in 2.10. It
can observe in the UHF (580–1015 MHz), L (900–1670 MHz) and S (1.75–3.5 GHz)
radio bands.

Eventually, MeerKAT will form the compact core of the SKA in South Africa,
SKA-Mid, which will extend to a maximum baseline of 150 km. The first phase,
SKA1-Mid, will have 197 15 m antennas that will observe over five frequency bands
in the 0.35–15.4 GHz range (Swart, Dewdney, and Cremonini 2022).

The data for this project comes from the MeerKAT Galaxy Cluster Legacy Sur-
vey (MGCLS, Knowles et al. 2022) which used the MeerKAT telescope to survey
115 galaxy clusters in high fidelity long-track observations in the L-band (900-1670
MHz). Each cluster field was observed for about 6 to 10 hours in full polarisation
mode. The complete catalogue presented in Knowles et al. has over 600 000 sources,
representing a challenging task for manual classification. A central observing fre-
quency of 1.28 GHz with typical sensitivity ranging from about 3 to 5 µJy/beam.
The images are sensitive to structures up to about 10 arcmin scales. The basic full-
field spectral cubes span about 2 deg×2 deg while the enhanced products consist
of the inner 1.2 deg by 1.2 deg field of view corrected for the primary beam. A
wide field of view means there are hundreds to thousands of non-cluster sources
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FIGURE 2.7: Reproduced from Leahy and Williams (1984). Diagrams
of three distortion mechanisms. The thin lines represent x-ray con-
tours that indicate the surrounding gas. The thick lines represent the
radio jets. The arrows indicate flow. The "x" indicates the AGN. The

dashed outline in (c) represents the cocoon of the old jets.
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FIGURE 2.8: Reproduced from Cotton et al. (2020). A MeerKAT ob-
servation of PKS 2014-55 showing an example of an X-shaped radio

galaxy created by hydrodynamical backflow.

per image. All of the images used in this project are from this survey. However, the
approach could naturally be applied to other MeerKAT images.

Figure 2.11, which is reproduced from Figure 1 from Knowles et al. (2022), shows
the sensitivity of the MeerKAT telescope as it was used for this survey. It also shows
some of the other capabilities of the telescope and the data which are not used for
this particular project, but demonstrate the power of the telescope. Panel A shows
the sensitivity of MeerKAT by showing three cutouts, first the full resolution im-
age is dominated by compact sources. It is convolved to 25" to increase sensitivity
to larger scale structure, as shown in the second image. However the diffuse large
scale structure is hidden by the blended compact sources. To solve this problem the
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FIGURE 2.9: (Left) A bent tail radio galaxy. (Centre) An X-shaped
radio galaxy. (Right) Galaxy cluster emission also comes up relatively
often in this data. They have been labelled exotic for the purposes of

this project. (Images found in MGCLS)

FIGURE 2.10: Reproduced from Goedhart, Krishnan, and Camilo
(2022). The layout of the 64 MeerKAT antennas. Coloured rings are

about 1, 2, 4, 6 and 8 km in diameter.

authors filtered out the small scale structure using the technique described in Rud-
nick (2002), a simple multiresolution filtering technique, which produced the third
image in which the larger scale structure is clearly visible. Panel B shows an exam-
ple of how the wide 0.8 GHz bandwidth at L-band of MeerKAT allows for in-band
spectral analysis. Panel C shows an example of how a Rotation Measure (RM) (a
polarisation rotation due to a magnetic field) may be determined due to the full po-
larisation and sensitivity of the observations. And Panel D shows an example of
resolved HI detection.
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FIGURE 2.11: Reproduced from Knowles et al. (2022), showing ca-
pabilities of the MGCLS data. (Panel A) Brightness cutouts from field
MCXC J0027.3-5015 showing instantaneous sensitivity of MeerKAT at
a range of scales. Left to right, the full resolution image at 7.4×7.0 arc-
sec, then convolved at 25 arcsec, finally the filtered diffuse emission
at 25 arcsec resolution. (Panel B) Example of an in-band spectral map
of a bent tail source from field MCXC J0431.4-6126. (Panel C) Rota-
tion Measure (RM) map of a complex source from field Abell 3667.
(Panel D) An H1 velocity map of Minkowski’s object in Abell 194 at a

resolution of 19×15 arcsec.

2.4 Neural Networks

Neural Networks (NN, McCulloch and Walter 1943; Rosenblatt 1961) form the basis
of the machine learning approaches used in this project. NNs consist of artificial
neurons which can take some input, such as an array of values, and produce some
output value based on their design. These neurons use two types of parameters to
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determine the output. First, the various inputs are considered to have varying sig-
nificance, called their weight. Second, the neuron itself has a bias value that will bias
it towards certain outputs. These neurons form a network of multiple layers. The
first layer, the input layer, does not consist of neurons in the typical sense and simply
contains the input data. The number of neurons in this layer is determined by the
dimensions of the input for which the network is being designed. Likewise, the last
layer, the output layer, must contain the number of neurons of the dimensionality
of the desired output. Between these there can be any number of layers of typical
neurons, called hidden layers. A neuron in a hidden layer will take as input any or
all of the outputs of the previous layer and will feed its own output as an input to
the subsequent layer. An example is shown in Figure 2.12, reproduced from Nielsen
(2015). This type of network is called a feedforward network as the input for any
layer only depends on previous layers and not subsequent layers.

FIGURE 2.12: Reproduced from Nielsen (2015), a basic example of a
Neural Network. Each circle represents a neuron. The input layer
is on the far left, and takes an array of six input values and provides
them to the first hidden layer. There are two hidden layers, of neurons
of four and three neurons each. Finally, the output layer takes three
values from the last hidden layer as input and provides a single value

as output.

The function that determines the output of the neuron from the input and param-
eters is called the activation function. The first neural networks, called Perceptrons
(Rosenblatt 1957), used a simple activation function that would produce either a 1
or a 0 (whereby the neuron could be said to have "fired" or "not fired") by compar-
ing the weighted sum of the inputs to some threshold value. More modern neural
networks, however, use other activation functions, such as sigmoid neurons, that
can produce any value between zero and one and move smoothly between these
outputs. These rely on the sigmoid function, defined by

σ(z) ≡ 1
1 + e−z , (2.1)
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for some value z, typically taken as the inputs multiplied by their weights and added
to the bias, where e is the natural exponent.

This allows for small changes in the bias and weights of a neuron to produce
small changes in the output for a given input rather than a sudden flip between 0
and 1. This is desirable when training the network, the process of gradually adjust-
ing weights and biases of the network so that it produces the desired outcomes, as
it allows small adjustments to make smaller changes to the output of the network
without drastically and unpredictably changing the behaviour.

2.5 Convolutional Neural Networks

The machine learning approach used in this project to search through the data are
convolutional autoencoders. To understand how these work we must first look at
a type of neural networks called Convolutional Neural Networks (CNN, LeCun et
al. 1989). CNNs will form the basis of the two parts of the eventual autoencoders.
CNNs are used as they are particularly good at working with images, or other data
that is arranged into multidimensional grids of values rather than arrays, as the
goal is to search for exotic sources by morphology. The autoencoders consist of two
multi-layered CNNs, the encoder and the decoder, which must encode images into
an encoded form and attempt to restore the original image from that encoded form
respectively.

Convolution is an operation on two functions. This can consist of some function
on interest, f , and some manner of weighting function that, at a specific point, allows
us to calculate a weighted average of the f about that point. Equation 2.2 defines a
convolution, S, of such a functions, f , with a weighting function, w, at a point x,

S(x) =
∫

f (a)w(x − a) da (2.2)

where a is some point such that w(x − a) provides a weighting based on the
distance from x. The convolution of these functions is often denoted ( f ∗ w). For
discrete arrays, such as pixels in an image, this becomes a summation.

( f ∗ w)(x) =
∞

∑
a=−∞

f (a)w(x − a) (2.3)

For a multidimensional array, such as a two dimensional array of m pixels, it
becomes a summation over both dimensions. If the value of the functions is taken as
zero everywhere outside the image then it may be calculated by summing over the
dimensions of the image. Here the two dimensional image is often called the Input,
I, the second function is called the kernel, K, and the resulting convolution over a
two dimensional discrete array of pixels is

(I ∗ K)(i, j) = ∑
m

∑
n

I(m, n)K(i − m, j − n) (2.4)

where i and j are the indices of the pixel being convolved. The kernel is usually
represented as a multidimensional array of parameters that is adjusted during the
training process. The output of this is often called a feature map. The kernel does not
need to be the same size as the input and indeed the use of small kernels may pro-
vide good computational performance and is the most common scenario in practice.
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The use of convolution also means that the same weights are applied throughout the
image, providing some translational equivariance.

The kernel should be selected so that its convolution with an input image pro-
duces some useful result. For instance it may be chosen to weight a certain pattern
of pixels more highly than others, which could potentially be useful in detecting
that pattern. However it is difficult to select such a kernel and so training is used
to adjust the elements of the kernel, called weights, until they approximate the de-
sired result. Numerous input images for which the desired result is known are used
to adjust the weights by comparing their actual results with the desired result and
making appropriate adjustments to the weights until the desired and actual results
are sufficiently similar.

Training of the weights can be done using an algorithm such as backpropagation
(Werbos 1974; Rumelhart, Hinton, and Williams 1986), which is described in more
detail in Section 2.6. Multiple convolutional layers may be used in constructing the
CNN by using the result of the convolution with one kernel as the input for the next.
Additionally, different types of layers may be combined with convolutional layers
that perform different functions. For example, pooling layers, described in Section
2.7, perform a type of dimensionality reduction.

2.6 Training

Training the weights of the kernels is done using a gradient descent based approach.
Given some function, f , we wish to minimise, calculating the derivative or gradient
indicates how to alter its parameters in order to further reduce it. The function in
this case is some cost or objective function that measures performance of the model.
Its evaluation relies on multiple weights so it is a multivariate function that must
be minimised. Therefore the derivative may also be a multivariate value that must
be minimised in order to determine the best direction to move in. Once the proper
direction is found, being the direction along which the directional derivative is min-
imised, the values may be adjusted in that direction in an appropriately determined
increment. The size of the change is modulated by a hyperparamter called the learn-
ing rate. The method is not perfect as it does not properly account for local minima
and saddle points but it generally can return a sufficiently good result, in the con-
text of deep neural networks, for cost functions that are not complex or multi-modal.

As most training sets are too large to evaluate the gradient with all samples,
Stochastic Gradient Descent (SGD) breaks the training samples into uniformly drawn
batches (more formally this is referred to as mini-batched SGD, but we will use SGD
to mean mini-batching in this project). By simply using one batch to evaluate the
derivative a sufficiently good estimate may be made in order to facilitate effective
optimisation progress. Since the batch size can be held constant with a growing
number of training samples, the computational time required to take one step may
be constant for any training set. Once all of the samples in the training set have
been used in batches it is said that the weights have been trained for one epoch.
Typically, depending on the size of the training set, the algorithm is trained for nu-
merous epochs allowing all of the training samples to influence the weights multiple
times (Goodfellow, Bengio, and Courville 2016).
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In order to determine the gradient for one training step, a method called Back
propagation (Werbos 1974; Rumelhart, Hinton, and Williams 1986) is used. Before
the back propagation step can be taken the cost for some sample must be found using
forward propagation. Forward propagation is when some sample is passed through
the neural network and some cost, C, is derived from the difference between the
output and the intended output. In the case of autoencoders the intended output is
the input image so no supervision is required to provide the correct answer and the
log error is simply taken.

For some arbitrary function, f, the back propagation step will calculate ∇x⃗ f (x⃗, y⃗),
where x⃗ is a collection of variables whose derivatives we need and y⃗ is a collection of
additional input for which the derivatives is not required, such as the target vector.
In this case this will be some manner of cost function with the parameters that need
to be adjusted. In a deep network, the various neurons with their biases can be
treated as the edges on a graph and directed edges, having the weights, added where
one depends on another. This graph then represents the neurons of the network
and the connections between the layers. Let the biases at each neuron be bl

j with
l indicating the layer and j the specific neuron so that the biases of layer l may be
indicated with the vector b⃗l . Similarly, let the vector a⃗l indicate the activations of
layer l for some arbitrary input. The activation of a neuron is its output for some
input and depends on its inputs and bias. Finally, let the weights of the previous
layer, l − 1, be denoted with the matrix wl so that wl

jk indicates the weight of the of
the neuron k from the layer l − 1 feeding into the neuron j in layer l. The activation
for a given layer, l, for some function, f, will be

al
j = f (∑

k
wl

jkal−1
k + bl

j), (2.5)

over all the neurons, k, in the layer l − 1. Written as vectors, this becomes

al = f (wlal−1 + bl). (2.6)

Let wlal−1 + bl be denoted as zl for convenience. Each neuron, j, in each layer, l,
is also associated with some error, δl

j with δ⃗l being the error of the layer l. In order to
correct this error we must adjust the weights and biases. The adjustment that must
be made to each individual weight or bias is given by the partial derivative of the
cost in terms of that weight or bias, ∂C

∂w or ∂C
∂b . We can say that ∂C

∂zl
j

is a measure of

the error in a neuron as it is what is actually passed into the function. We can then
define the error of that neuron as

δl
j ≡

∂C
∂zl

j
, (2.7)

for neuron j in layer l. Let the output layer be denoted L. The error for the output
layer is then given as

δL
j =

∂C
∂aL

j
f ′(zL

j ), (2.8)

which is simple to calculate as the activations of the output layer is the output of
the network (Nielsen 2015). This may be written in matrix form as
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δ⃗L = ∇a⃗C ⊙ f ′(z⃗L), (2.9)

where the operator ⊙ represents the Hadamard product, an element-wise prod-
uct of two vectors that produces a vector of the same length. Next, backpropagation
requires finding the error of a layer, l, in terms of the following layer, l + 1. This is
given by

δ⃗l = ((wl+1)T ⃗δl+1)⊙ f ′(z⃗l), (2.10)

where (wl+1)T indicates the transpose of the weight matrix. Equations 2.9 and
2.10 together allow for the error of any layer to be calculated. First the error is de-
termined for the output layer using 2.9, after which every previous layer may be
calculated in turn using 2.10. At this point it must be determined how much of the
error is attributable to the weights and how much to the biases, so that they may be
adjusted. For the biases we have that

∂C
∂bl

j
= δl

j , (2.11)

and for the weights we have that

∂C
∂wl

jk
= al−1

k δl
j . (2.12)

So first the feedforward step in which all the values of z and a are determined.
Then the output error may be determined as shown in Equation 2.9. The error is
then backpropagated through the layers as shown in Equation 2.10. From here the
gradient of the cost function may be determined as shown in Equations 2.11 and
2.12. At this point the weights and biases may be updated with gradient descent
according to the learning rate and other hyperparameters.

First the feedforward step, finding the cost and also building the graph of neu-
rons. A table is used to store the derivatives of nodes that have already been calcu-
lated. It will then work its way back along the graph, in the opposite direction of
the forward propagation, calculating the partial derivative at each node using chain
rule and storing it in the table. If multiple paths exist back to the same node they are
merely summed at that node. Many variations exist for specific implementations or
to improve efficiency, but now that the derivatives have been calculated the weights
can be updated as aggressively as specified by the learning rate.(Goodfellow, Ben-
gio, and Courville 2016)

2.7 Pooling Layers

Pooling layers reduce the dimensions of the data and replace a subset of the im-
age with a single value, such as reducing a square patch of pixels down to a single
pixel. Pooling layers can be used to reduce the dimensions of the input data and so
constrain the size of the encoded form. This can force the autoencoders to try and
learn some more non-trivial features of the sources. Ideally the features from typical
sources will not always be found in the exotic sources. This would mean that the
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exotic sources might be more poorly reconstructed allowing them to be identified.

A common type of pooling is max pooling (Zhou and Chellappa 1988). In the
max pooling technique the maximum value is taken from any input elements within
a certain rectangle that must be reduced down to a single element. To reduce the
size of an image by a certain factor The pixels are divided into rectangular patches
of that size and an output produced of the maximum value of each, as is shown in
Figure 2.13. More information about other types of pooling can be found in Boureau,
Ponce, and Lecun (2010), Lee, Gallagher, and Tu (2016), and Pala et al. (2018).

FIGURE 2.13: An example of a max pooling operation that reduces
a 4×4 input by a 2×2 filter. The maximum value is selected in each

region.

Spatial Pyramid Pooling (SPP) in convolutional networks (He et al. 2014) is a
different pooling technique that attempts to preserve spatial data within the image
while pooling images of arbitrary size or resolution. The image is pooled down
to a fixed size that is suitable for certain types of layers requiring fixed input sizes.
SPPs make use of spatial matching, an improvement of pyramid matching described
below, to pool inputs of varying sizes and resolutions while maintaining spatial in-
formation.

Pyramid matching (Grauman and Darrell 2005) finds an approximate correspon-
dence between two sets of vectors in feature space (the space containing the input
whether this is the original image or extracted features). This is done through a se-
ries of grids imposed on the space at varying resolutions. For each cell in each grid
the number of matching features is the number of vectors that appear in that cell for
both sets. The number of matching features is summed over for all cells in the grid to
find the total number of intersecting points in that grid. This is done for all grids at
the varying resolutions. The points that match in the finer grids also naturally match
in all coarser grids. So only the new matches at each increasingly coarse grid level
are considered. The number of matches for each grid is then weighted according to
the coarseness of the grid, with the finest grid having the highest weighting and the
coarsest grid having the lowest. The sum of these weighted totals provides a mea-
sure of similarity between the images, although that is not needed here as merely
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the technique for partitioning images is used.

A spatial matching approach (Lazebnik, Schmid, and Ponce 2006) improves pyra-
mid matching in that it allows for spatial data to be used for matching but only for
sufficiently similar features. It attempts to consider the spatial data by matching the
features in image space. It also assumes that the features should only match with
the most similar features. The feature space is quantised into M discrete types. For
each of these sets image space coordinates of the features within that type are taken
and pyramid matching performed. The effect on an image is to apply the grids at
varying resolutions as described above to the image and aggregate the features in
each subregion of each grid into M bins.

SPPs make use of the spatial matching approach to pool their input into spatial
bins. The number of bins is constant for any input image as they have sizes propor-
tional to the image size. As the bins are arranged spatially and the size of the bins
is adjusted according to the input size this allows for the images of arbitrary size or
resolution to have their features reduced down in a consistent manner while main-
taining spatial information. Figure 2.14, reproduced from He et al. (2014), shows
an example of such a layer and shows how the input is split into bins. In this ex-
ample, there are three levels of pooling. The first layer has only a single bin, the
second layer has four bins and the last layer has sixteen bins. In each spatial bin in
each layer, the values of each filter, of which there are 256 in this example, is pooled
using max pooling. So the single bin layer will pool each filter across the whole im-
age, while the sixteen bin layer will pool these filters only within each of the sixteen
spatial bins. As the number of bins and layers is fixed, the output size is also fixed
regardless of the input size.

SPPs are useful in the case of classifying radio galaxies from such a survey as the
various observed sources are of vastly differing sizes and distances which can lead
to source cutouts being of varying sizes and resolutions. As these should not affect
the classification of the source the use of pyramidal pooling layers may reduce the
effect that this has on the encoded form.

2.8 Autoencoders

Now having discussed the layers that are used to build up autoencoders, the com-
plete algorithms may be discussed. Autoencoders are a class of feedforward unsu-
pervised machine learning algorithms which consist of a pair of neural networks
which attempt to take an input image, encode it into a latent representation form
using the first network and then decode that back into the original image with the
second network, as show in Figure 2.15. These two models are called the encoder
and the decoder, respectively. The particular networks used here are CNNs mak-
ing these convolutional autoencoders. The difference between the input and re-
constructed image may then be backpropagated through the network, allowing for
unsupervised learning. Autoencoders were initially developed for feature learning
and dimensionality reduction where the encoded latent form could be constricted to
learn to encode certain features or constricted by size to learn a smaller representa-
tion of the input (LeCun 1987; Bourlard and Kamp 1988).
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FIGURE 2.14: Reproduced from He et al. (2014). An example of a
neural network with a spatial pyramid pooling layer between convo-
lutional layers and fully connected layers. 256 is the filter number of

the last convolutional layer in this example.

The encoder CNN must take the input images and try to map them to the latent
space in some encoded form. The latent space being the space in which the encoded
forms of input images, as output by the encoder, reside. Restrictions placed on this
encoded form may induce certain desirable results. For example, a sparsity require-
ment may force the encoder to recognise common features in the data which may
be useful for certain types of classifications. Restrictions on the size of the encoded
form may cause the encoder to learn a form of compression or to isolate the most
important features for reconstruction.

The decoder must then take this encoded form as input and try to restore the
original image. The difference between the input and output images may be com-
pared. Back-propagation of the error signal is used to update the weights of the
autoencoders. In this way the algorithms are able to train in an unsupervised man-
ner to map images to and from the latent space.

Training on more common morphologies may allow the rapid recognition of ex-
otic morphologies in vast datasets. If test images are run through the trained autoen-
coder and the error of reconstruction is calculated, those most similar to the training
data will have the lowest reconstruction errors as the encoders are well trained for
them. But exotic sources will have higher reconstruction errors as the encoders have
not been trained to reconstruct images with their potentially unique morphological
structure. A classification for a given source may then be chosen by comparing the
reconstruction error to some threshold.
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FIGURE 2.15: Basic structure of an autoencoder. The encoder reduces
the input to a code form. The decoder attempts to reconstruct the
original input from the code. Each layer is indicated with a differ-
ent colour. The lines show how previous convolutional layers affect
subsequent layers as an input image moves through the autoencoder,
moving in the direction of the arrows. During backpropagation the

error signal moves back along the lines against the arrows.

2.9 Performance Evaluation

Once the training is completed the performance of each model is measured in com-
parison. A number of metrics are used to do this.

When a model is intended to detect anomalies or specific instances of data it
will return either a positive or negative prediction for each input to indicate if it has
found what it is looking for. In this project the positive case will refer to anomalies
while the negative case will refer to typical sources. These predictions could either
be correct, called true, or incorrect, called false. So there are four potential outcomes
for the classification of an input. If the input has been correctly identified it is either
a True Positive (TP) or True Negative (TN). If it has been incorrectly classified it is
either a False Positive (FP) or False Negative (FN).

The totals of these four values or their relative fractions or proportions may be
arranged into what is called a contingency or confusion matrix. The layout is shown
in Figure 2.16. The columns of the matrix are the actual labels while the rows are
those assigned by the model. For the simple case of positive or negative, this means
the table will have four cells. The cells running diagonally, then, from top left to
bottom right are the cells in which the true and predicted values match and the pre-
diction is correct. Other cells where the row and column do not match contain inputs
incorrectly classified.

The recall parameter, or the True Positive Rate (TPR),

Recall = TPR =
TP

TP + FN
, (2.13)
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FIGURE 2.16: A confusion matrix for a binary classification.

is the proportion of positives that are correctly identified. In this case recall will
be the proportion of positive inputs that are correctly identified by the model as
positive for a given threshold. The recall is very important if we want to locate as
many positive inputs as possible. Similarly, the False Positive Rate (FPR),

FPR =
FP

TN + FP
, (2.14)

is the rate at which negatives are incorrectly identified as positives. Precision,

Precision =
TP

TP + FP
, (2.15)

is the proportion of those inputs marked positive which are truly positive. In
classification or any application where the labels applied must be relied upon and
be correct it is important. However, if the aim is to locate as many positive cases as
possible a tradeoff of precision can be made for higher recall so that the user will
locate more positives but may have to look through more candidates.

The harmonic mean of the precision and recall, called the Fmeasure,

Fmeasure = F1 =
2 × Recall × Precision

Recall + Precision
, (2.16)

is a way often used to measure the performance of a classifier. It assumes that the
performance in terms of recall and precision are equally important. As we are trying
to recover as many positives as possible, Recall is more important than Precision in
our application area. For example, it would be preferred in our application for the
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user to look through 10 sources of which 5 are exotic than to look through 5 sources
of which 3 are exotic. A more generic Fmeasure, called Fβ,

Fβ = (1 + β2)
Recall × Precision

(β2Precision)× Recall
, (2.17)

allows the relative weighting between Recall and Precision to be configured. β
is a positive value that indicates the factor by which Recall is to be weighted against
Precision. For example, if β is 0.5 that indicates that Recall is only half as important
as Precision. If β is 2 then that indicates that Recall is twice as important as Precision.
Lastly, if β is 1 then they are equally important, and this is then just the harmonic
mean from Equation 2.16, (Tharwat 2020).

The Receiver Operating Characteristic (ROC) plots TPR against FPR (Hanley and
McNeil 1982; Fawcett 2006), as shown in the left panel of Figure 2.17, reproduced
from Fawcett (2006). A perfect classifier would have a TPR of 1 and an FPR of 0, so
it would have a coordinate of (0,1) on an ROC curve. The worst case would be if
these values were inverted at (1,0). A random classifier would have these values be
equal, and lie along the positive diagonal TPR = FPR. If a given number of classifiers
are plotted on these axes then the one closest to (0,1) can be selected to maximise
the recall and minimise the FPR. For algorithms such as the autoencoders used here,
a threshold value is used to determine the classification. By varying the threshold
value a curve may be plotted on these axes. When the threshold is set to exclude all
inputs then it will be at (0,0) as no positives are recalled, but no negatives are falsely
classified either. If the threshold is set to include all sources then it will be at (1,1)
as all positives are recalled but all negatives are incorrectly classified positive as well.

The Area Under the Curve (AUC) beneath this curve from (0,0) to (1,1) is a metric
of performance (Hanley and McNeil 1982; Fawcett 2006). As the curve cannot go
below 0 or above 1 the AUC must lie between 0 and 1. If the classifier is perfect and
goes to (0,1), then the curve fills in the whole square and AUC = 1. If the classifier is
no better than random, then it lies along the diagonal TPR = FPR which gives AUC
= 0.5. AUC = 0 would indicate a classifier that always returns precisely the wrong
classification. The AUC is equivalent to the probability that a randomly selected
positive will be ranked higher than a randomly selected negative. So we want as
large an AUC as possible, and to at least exceed 0.5. The right panel in Figure 2.17
illustrates how two AUCs might be compared for two models.

2.10 Ensembles

The performance of machine learning models can often be improved by ensembling
multiple diverse models together. Some of the most common ensembling techniques
are discussed below.

Bagging (Breiman 1994), short for Bootstrap Aggregating, is intended to reduce
variance and improve stability in machine learning models. The technique creates
new training data sets from the original training set, one for each model, by sam-
pling the original training set. The sampling is with replacement, which means that
the set is randomly sampled with no regards for previous sets or samples. This may
result in certain data being duplicated in the new training sets. The models are then
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FIGURE 2.17: Two figures reproduced from Fawcett (2006). (Left) A
basic ROC graph showing five examples of discrete classifier perfor-
mance. Classifier A: Does reasonably well but is better at rejecting
false positives than finding true positives. Classifier B: Also does
reasonably well, but is more optimised to find true positives than re-
ject false positives. Classifier C: No better than random. Classifier D:
This classifier is perfect. Classifier E: This classifier does worse than
random and is more likely to attach the wrong label than the right
one. (Right) ROC curves for two classifiers with varying thresholds.
The AUC is shaded for both. As can be seen, classifier B has a larger

AUC and so is generally better than classifier A.

trained on these new sets. The models are combined to give final predictions by ei-
ther averaging their predictions or by voting on the most common prediction in the
case of classification.

Boosting algorithms attempt to create a strong classifier from several weaker
ones. There are multiple boosting algorithms. One of the most common is AdaBoost
(Freund and Schapire 1997). AdaBoost trains multiple models, attempting to correct
the errors present in a model in the subsequent model. After each model is trained,
AdaBoost assigns weights to the various training data. Those predicted more accu-
rately by the model are given lower weights while those predicted incorrectly are
given higher weights. When the subsequent model is trained higher emphasis is
placed on those training data with higher weights in order to correct for the previ-
ous model. After each model is trained the model itself is also weighted according
to its accuracy. The weighted average of these models is used to make predictions.

Stacking (Wolpert 1992), short for stacked generalisation, trains a model to com-
bine the output of several other models. Stacking involves training multiple base
models, often of different designs, on the complete training set. The models are then
combined using a single meta-model. The way in which this is done is that the train-
ing data is split into k parts. For each of these parts the base models are trained on
all k − 1 other parts and then predictions are made for the withheld part. This is re-
peated for all parts. To train the meta-model, these predictions are then fed into the
meta-model as features of the training data. The base models are then fit to the entire
training set. The prediction on new or testing data is then obtained by first feeding
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the input into the base models, and then the predictions of these base models into
the meta-model which will make the final prediction.

Blending follows a very similar design to stacking and is most notable for being
used in the winning solution to the Netflix Prize (Töscher and Jahrer 2009). The dif-
ference is that the blending technique withholds a validation set which is used to
train the second layer model. From the training data some of the data are set aside
for the validation set. The base models are trained on the training set without the
validation data. The base models are then used to make predictions on the valida-
tion data. The predictions from the validation set only are used as features when
training the meta-model.

2.11 Current Approaches to Classification and Anomaly De-
tection

Machine learning techniques, especially neural networks, have been widely and ef-
fectively used for anomaly detection (Hodge and Austin 2004; Chandola, Banerjee,
and Kumar 2009), including anomaly detection in image data where the data has
spatially correlated characteristics as well as some continuous attributes such as in-
tensity or texture (Chandola, Banerjee, and Kumar 2009; Kwon et al. 2017; Nassif
et al. 2021).

In radio astronomy, neural networks have been used for the classification of ra-
dio galaxies by morphology and to find anomalous sources. Aniyan and Thorat
(2017), used CNNs to classify FRI, FRII and bent tail radio galaxies from the Very
Large Array (VLA) Faint Images of the Radio Sky at Twenty centimetres (FIRST)
survey. Around 100-200 sources of each class were augmented using rotations to
25000-36000 and used to train three binary classifiers, each distinguishing between
a different pair of the three classes. Together they were taken as a fusion classifier,
which combines the predictions of the three classifiers with their probabilities to
make a final decision. For any of the three given classes, two will have been trained
to distinguish it. If two classifiers agree on the classification with good probability
then that classification is returned. If the probabilities are low or two cannot agree
on the classification then it is marked as unusual or strange, potentially allowing
for the discovery of exotic objects. The classifiers had good results comparable to
manual classification. For FRIs, FRIIs and bent-tails precision values of 91%, 75%
and 95% respectively were achieved with recall values of 91%, 91% and 79%, respec-
tively. The work of Aniyan and Thorat is relevant as it concerns the classification
of radio galaxies by morphology as well as some manner of ensembled CNNs. The
data and application differ, however, in that there are only three morphologies of
sources considered, classifiers are trained on highly augmented samples and the im-
ages used are substantially different from the MeerKAT images used here.

Other machine learning approaches have also been used to classify similar data.
Mostert et al. (2021), used an unsupervised machine learning technique called Koho-
nen maps or Self-Organising Maps (SOMs, Kohonen 1988; Kohonen 2001) to classify
around 25000 radio sources from the Low Frequency ARray (LOFAR, van Haarlem
et al. 2013) Two-metre Sky Survey (LoTSS, Shimwell et al. 2017). SOMs work by cre-
ating a grid or map of cells and then organising the data into these cells such that
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the sources in each cell are most similar to each other and cells neighbouring each
other are the most similar. This is done by creating a prototypical image for each cell,
initialised to be random noise or some selected initial images. The map is trained by
iterating over the images and selecting the closest matching cell for each image. The
selected cell is updated so that its prototypical image more closely resembles the in-
put image, typically as a linear combination of its current form and the input, and
neighbouring cells are likewise updated to a lesser degree with each cell being up-
dated to an extent according to some drop-off function of its distance to the selected
cell. Over several epochs the changes made to the map also drop off with increasing
epochs. Images are then sorted into the cells based on the final map by finding the
cell for each image that has the most similar prototypical image. The implementa-
tion of SOMs used was the Parallelised rotation/flipping INvariant Kohonen
maps (PINK, Polsterer, Gieseke, and Igel 2015). In order to find rare or exotic sources, a
threshold is used on the difference between an image and its closest matching cell. If
the difference is large enough it is taken to be a rare source. Figure 2.18, reproduced
from Mostert et al., shows the trained SOM (top) with each cell showing its proto-
typical image and highlighted to show a manually applied classification. The way a
threshold may be applied to select the most unusual sources is shown in the middle.
The bottom panel indicates how these Euclidean distances vary by the source type
and how this may cause the threshold to have more false positives of certain types
of sources and more false negatives of others. Although it is difficult to compare the
performance of this approach directly, the way in which it handles different types of
sources can be seen. It demonstrates that anomaly detection methods might favour
certain source morphologies as anomalies more than others.

Autoencoders, including convolutional autoencoders, have been compared for
anomaly detection by Doorenbos et al. (2021), to other anomaly detection methods.
Doorenbos et al. (2021) compared a number of various machine learning approaches
to outlier detection on the Sloan Digital Sky Survey (SDSS) Data Release 9 (York
et al. 2000; Abazajian et al. 2009). This uses optical imaging data, so not directly
comparable to this thesis, but may give some indication of how the algorithms com-
pare. Six algorithms were compared. The first is Local Outlier Factor (LOF, Breunig
et al. 2000) which detects anomalies by the "density" of the sources in local feature
space, being the typical distance of a source’s k nearest neighbours. Outlier sources
are those with substantially lower density than their neighbours. Second, Isolation
Forests (IF, Liu, Ting, and Zhou 2008) detect anomalies using decision trees which
represent recursive partitioning of the data by a randomly selected threshold on a
randomly selected attribute at each node in the tree. Each tree branches until every
data point is isolated, called isolation trees. The number of branches required for a
particular source to be isolated is its path length for that tree. Anomalies have more
unusual features so will typically become isolated more quickly and have shorter av-
erage path lengths across a forest of isolation trees. Third, K-Means clustering (KM,
Lloyd 1982) partitions the data into k clusters which minimise the variance within
each cluster. Each cluster is represented by a mean of the data in that cluster and
each object belongs to the cluster with the closest mean. The means are typically
found by iterating over two steps, the assignment step, which assigns each object to
the cluster with the nearest mean, and the update step, which updates each mean
to be the mean of all objects in the cluster. The means are initialised either by ran-
domly selecting k objects to be the initial means or by randomly assigning all objects
to clusters and then proceeding with the update step. More efficient implementa-
tions are often used in practice. Fourth, Modified Novelty measure (MN, Hajer et al.
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2020) is a recently proposed variation on LOF that tries to take clustering of the data
into account. It uses a new measure of novelty in which the dimension of the feature
space is used and is proportional to the ratio of number of anomalous objects to the
square root of the number of typical objects in a local volume. Finally, both normal
and convolutional autoencoders are used.

For all algorithms, except the autoencoders, the set of images is first reduced
using Principal Component Aanlysis (PCA, Pearson 1901; Hotelling 1933) so that
each image is 14 components. PCA is a dimensionality reduction technique that at-
tempts to maintain as much variance between the projected data points as possible.
The principal components of a collection of points are a sequence of unit vectors,
each the direction of the line that best fits the points while also being orthogonal to
any previous vectors. PCA reduces the dimension of some higher dimensional data
down to n by computing the first n principal components of the data and then us-
ing them as a orthogonal basis onto which the points are projected. It can be shown
that the principal components are the eigenvectors of the data’s covariance matrix,
so this is typically how they are calculated. Doorenbos et al. used the algorithms to
search the same data and extract what each considered to be outliers. The authors
only compared the outliers produced by the algorithms with each other, to deter-
mine the similarity of the algorithms’ output, and not with any catalogue of known
exotic sources. So while it cannot be used to determine which algorithm had the
best performance in detecting unusual sources, it can give an indication of which
algorithms can be expected to have similar predictive outcomes. They found that
convolutional autoecoders and LOF selected outliers most different to the rest of the
algorithms which found outliers quite similar to each other. This can be some ev-
idence that these algorithms are worth further exploration as they might produce
quite different results which may be of interest.

As the goal is to locate anomalies rather than to produce a complete catalogue
of reliable classifications, it may be desirable to optimise recall rather than preci-
sion. This means the user will need to examine more sources, although significantly
fewer than searching the entire catalogue. Astronomaly (Lochner and Bassett 2021)
incorporates user feedback during the training process to improve results, called
active learning. First, feature extraction algorithms, selected based on the type of
the data, are run on the data, such as wavelet decomposition or ellipse-fitting of
morphology features. Further post-processing, also included in Astronomaly, may
be run on the result of the feature extraction, such as feature scaling or PCA. An
anomaly detection algorithm is run on the extracted features after post-processing
which assigns an anomaly score to each source. Astronomaly has two unsupervised
anomaly detection algorithms, IF and LOF. The anomaly detection results are used
to build a list of sources ranked according to their anomaly score. Some are shown
to the user to provide a user score on how relevant the source is to their particu-
lar scientific interests. The user input is fed into another machine learning model
called a regressor which calculates relevance scores for the unseen sources from the
user input based on their similarity to the seen sources. A combined score is created
and used to rank the sources based on the previous anomaly score and the regres-
sor relevance score, weighted such that sources most similar to seen sources will
have their combined score dominated by the regressor score, while those least simi-
lar will have their combined score dominated by the previously calculated anomaly
score. The paper reports two performance metrics. Recall, and the Rank Weighted
Score (RWS), proposed in Roberts, Bassett, and Lochner (2020), which assigns a score
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based on how highly anomalies in the top N sources of the list are ranked. A higher
RWS indicates anomalies in the top N ranked sources are closer to the top, while a
lower score would indicate the they are ranked lower, even for the same number of
recalled anomalous sources. A RWS of 1 would indicate all top N sources are anoma-
lies while 0 would indicate that none are. Figure 2.19, reproduced from Lochner and
Bassett (2021), shows results of Astronomaly run on optical Galaxy Zoo images (Lin-
tott et al. 2008; Lintott et al. 2010; Willett et al. 2013). Looking at Figure 2.19 (a) we
see that the false positive rate is fairly high in order to get a high recall. However,
the user needs to look through far fewer sources in the machine ranked list to find
a certain number of sources of interest than with the randomly ordered list. Trad-
ing recall for precision is useful here. As can be seen, factoring in the user feedback
provides a performance increase to the list ordered without active learning. As this
is optical data no direct comparison to our study is possible but a broader insight of
Astronomaly performance might be gained.

CNNs have also been used to search radio galaxy images for different types of
morphological anomalies. Tang et al. (2022), looked at the use of deep learning
CNNs in classifying Giant Radio Galaxies (GRGs, defined to be those radio galaxies
with a projected linear size of over 700 kpc) in Radio Galaxy Zoo data (Banfield et
al. 2015). Several architectures were tried on several combinations of data from the
surveys FIRST, NRAO VLA Sky Survey (NVSS, Condon et al. 1998) and for some of
them the redshift, z. The data consisted of selected radio galaxies with projected lin-
ear sizes of less than 500 kpc for typical sources and greater than 700 kpc for GRGs.
For finding GRGs, they produced F1 scores varying between ~0.6-0.8. Although the
goal was to find very different types of sources than this project and the architecture
of the machine learning algorithms used was quite different, it shows the applica-
bility of using CNNs to search for anomalous radio galaxies by morphology. Not
only can the image data being searched produce very different results, but so can
the definition of anomalous sources being searched for.

Autoencoders have also achieved success in anomaly detection in image and
other data outside of astronomy (Ding et al. 2019; Lu et al. 2017; Xu et al. 2015).
A common method is that the autoencoders are trained on typical samples. Once
trained, typical samples then result in a low reconstruction error while anomalous
samples have higher reconstruction errors. This method and various modified ver-
sions of this method have achieved quite successful anomaly detection (Hasan et al.
2016; Zong et al. 2018), including on image and video data (Zhao et al. 2017; Gong et
al. 2019). The success of autoencoders in anomaly detection makes them a promising
choice for this project.
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FIGURE 2.18: Three figures reproduced from Mostert et al. (2021) us-
ing LOFAR LoTSS images. (Top) A trained SOM showing the repre-
sentative images of each cell and highlighted by a manually applied
classification. (Middle) A histogram of the Euclidean norms to the
best matching cells for the sources. For each source, this indicates the
"distance" or difference between the source and the closest matching
cell. Indicated is an arbitrary threshold, set to select the 100 most un-
usual objects. (Bottom) Euclidean norms of the sources to their best

matching cells, separated by the classifications shown above.
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FIGURE 2.19: Reproduced from Lochner and Bassett (2021), the re-
sults of Astronomaly using Galaxy Zoo data. True anomalous sources
were taken to be those which more than 90% of human volunteers
marked "odd." (a) For the sources ranked according to how anoma-
lous they are predicted to be, the number of truly anomalous sources
recovered by a certain index is shown for different methods of rank-
ing. Plotted are the list ranked randomly, the list ranked using just
the first model of machine learning, and the list ranked using active
learning with both models. (b) The Rank Weighted Score for the top

N sources on the ranked list.
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Chapter 3

Methods

In this chapter we look at the specific approaches that are explored in this project.
First is examined how the image data is processed and prepared for use in the au-
toencoders. Secondly the autoencoders themselves and their training. Finally, the
performance evaluation of the various models is examined.

3.1 Data Processing

A subset of the galaxy cluster images were processed with the objectives of finding
and making cutouts of extended radio sources while also minimising the number
of point-like sources. The galaxy cluster images were processed using the source-
finding software PyBDSF (Mohan and Rafferty 2015), with settings tuned to select for
extended sources. The settings were chosen based on past experience with similar
MeerKAT maps as well as some interactive tests. PyBDSF searches for and models
sources in the larger image with ellipses. First, PyBDSF searches for image peaks that
have a brightness or value sufficiently higher than the mean which are taken to be
part of sources. This parameter, called "thresh_pix", is set to 30, so PyBDSF would
detect any part of the image at least 30σ above the mean as the peak of an "island" of
pixels that form a source. This "island" forms the complete source and is composed
of continuous pixels that are brighter than the background by a certain factor and
have at least some pixels that have a peak brightness as described above. PyBDSF
looks for the extent of the source around this peak using the lower σ threshold set-
ting for the continuous pixels surrounding the peak. This allows it to model less
bright diffuse emission surrounding the bright parts of the source and determines a
border of the "island." If this setting is too low, background noise may begin being
taken as part of the source. If it is too high then some of the emission will be cut
off and not detected as part of the source. This threshold, called "thresh_isl," is
set to 5σ. PyBDSF will model what it finds by fitting Gaussians to it. It can output
the results as either the individual Gaussian information, which may include point
sources, or by island so care must be taken to use the correct output. It must be set
to group the Gaussians together into islands by setting the "group_by_isl" option
to true and disabling the "split_isl" option which splits apart sources it thinks are
too large. The tolerance for grouping these into islands should be set higher, using
the option called "group_tol," to ensure that it will group the larger sources cor-
rectly. A value of 3 was used over the default of 1.

Many methods were tried in order to clean up the background and point sources.
This includes using PyBDSF to subtract out the point sources, although it lacked the
precision to do so well, often leaving point sources in the cutouts or removing parts
of more diffuse, non-point sources. A similar attempt to subtract the background
in an automated way was also unsuccessful. Although the residual of the PyBDSF
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model did occasionally provide useful information during manual classification. So
the residual was shown during that process along with the original image. The best
results were found by simply cutting out the sources in squares as close as is possi-
ble in an automated way with side-length based on the size estimation returned by
PyBDSF for each island. The background and blank pixels are filled with smoothed
normalised random noise scaled to the residual background.

Next the correct classifications for the sources are required so that the algorithms
may be tested against them as well as used for training. These images are manually
classified by three people into several possible categories which were FRI, FRII, bent
sources, S/Z shaped sources, sources with exotic morphologies as well as cluster
emission. This is also used to flag images which have cutouts that are required to be
removed as they need adjustment or are point sources. Multiple tags can be applied
to any source and some sources fall into multiple categories, such as a bent FRII.
Any such classifications which two or more people agree upon are used to label the
source. Additionally, the exotic sources are manually inspected together in order to
verify their classification. All three researchers agreed on the classification of 58% of
the sources, while the remainder received the classification agreed upon by two out
of the three. S or Z shaped galaxies made up just 1.6% of the sources manually clas-
sified while 14% were classified as bent. The majority were FRII galaxies, making
up 65% of the sources classified, while FRIs were just under 20%. These may differ
somewhat from the expected statistics due to the selection process.

Before training, the data is also augmented by rotating images 90 degrees as well
as flipping both top to bottom and left to right, as shown in Figure 3.1. This type of
augmentation should not affect the classification as the rotation of radio sources in
the sky relative to observing telescopes should be random and have nothing to do
with the morphology or intrinsic properties of the source. Augmentation increases
the number of sources available for training and testing in order to provide a more
thorough test. This increased the number of sources available for testing and train-
ing by four times for a total of 3700, of which 104 are exotic. 3327 of the typical
sources are taken for training. The whole process can be seen in the diagram in Fig-
ure 3.2.
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FIGURE 3.1: An example of augmentations applied to an image. (Top
Left) The original image. (Top Right) The image rotated through
90 deg. (Bottom Left) The image flipped top to bottom. (Bottom

Right) The image flipped left to right.
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FIGURE 3.2: The process of making cutouts of the sources in the MG-
CLS images. The cluster images were processed with PyBDSF which
identifies the locations and estimates the angular extent of sources in
the images. Close cutouts of the images were made and then they
were manually labelled for testing. The images were finally aug-

mented to increase the training sample size.
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3.2 Autoencoders

A number of different arrangements of autoencoders are built using the software
packages Keras (Chollet et al. 2015) and Astropy (Astropy Collaboration et al. 2013;
Astropy Collaboration et al. 2018). The autoencoders all share the same basic struc-
ture, as shown in Figure 3.3. There is an encoder consisting of a SPP layer, followed
by three 2D convolutional layers with 16 filters and 3×3 kernels and finally a 2D
max-pooling layer. The amount it is pooled controls the final size of the latent space
and will differ for each setup. There is also the decoder consisting of a 2D upsam-
pling layer that upsamples by the same factor as the max pooling layer reduces,
followed by three 2D convolutional layers and a final convolutional layer that con-
volves to the same format as the input image. The two together make up the autoen-
coder with input going into the encoder, what it produces, being the encoded form,
going into the decoder and the decoder output being taken as the output. They are
compiled using the Adam optimiser implemented in Keras, a stochastic gradient de-
scent method, with a cross entropy loss function and using accuracy as the metric.
When autoencoders are trained the expected output is the same as the input.

FIGURE 3.3: An autoencoder of the type that is used in this project
consisting of convolutional layers and making use of a pyramidal
spatial pooling layer with a max pooling layer just before the encoded
form. The encoder CNN will take the input images and encode them
onto the latent space while the decoder CNN will attempt to restore

the original input image from the encoded form.

3.3 Ensembles

Various configurations or even initialisation of the models may have differing lev-
els of accuracy with different types of sources or specific individual sources. This
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variance can depend on the structure of the autoencoders as well as their initiali-
sation. An autoencoder may reconstruct some typical sources well while struggling
with others while another autoencoder may be better at reconstructing certain exotic
sources. Typically, multiple models will not have difficulty with the same sources.
By using multiple configurations of the model together it may be possible to signif-
icantly improve the classification results by eliminating these differences in recon-
structing various sources.

Multiple configurations of ensembling the autoencoder based models are tried.
The output of multiple encoders is simply averaged or voted on, similar to bagging,
rather than the use of a meta-model such as is found in stacking. A reconstruction
metric of the image is considered against a threshold in two ways. The first is to av-
erage the reconstruction accuracy and test this averaged value against a threshold in
order to test if a source is exotic or not, which we will call averaging. The second is
to test each reconstruction accuracy against the same threshold separately and then
to take the classification agreed upon by the majority of the autoencoders, which
we will call voting. All of the models are trained on the same data, and differences
between the trained models are due to differences in model design and random ini-
tialisation. In this project approaches such as true bagging would have been difficult
due to the limited number of sources available for training.

The total number of and variations between the structures of the autoencoders
are also tested. An ensemble of autoencoders with the same structure but different
weight initialisations, an ensemble of autoencoders with varying latent spaces, such
as the one shown in Figure 3.4, and an ensemble with both multiple encoders of the
same latent space as well as varying latent spaces.

The voting method will only classify a source as exotic if the majority of the au-
toencoders struggle to reconstruct it with an accuracy above a certain threshold, no
matter how well one or the other does. This accounts for the possibility that some
configuration may do well at reconstructing certain exotic sources by chance, even if
it hasn’t been trained on them, if certain features that it has learnt are common with
the exotic sources. However it is unlikely to be true of multiple configurations of
autoencoders. On the other hand it assumes that most of the autoencoders will all
perform well with the types of sources that they have been trained on.

The averaging method will have the the autoencoders reconstruct the source and
then take the average of the reconstruction score and test that against the threshold
to determine the classification. This does mean that if a source is close to the thresh-
old a single autoencoder with an abnormal performance may put it on the wrong
side of the threshold.

The various setups used are show in Table 3.1. The first setup consists of a single
autoencoder with a latent space of 16 × 16 × 16. This will allow for the evaluation of
a single autoencoder against the ensembles. Second is an ensemble of three autoen-
coders with the same 16 × 16 × 16 latent space as before that should ideally have
minor differences in their results as a result of the initialisation. The output from the
autoencoders will be ensembled together using two methods, the voting and aver-
aging methods. Third an ensemble of three autoencoders but with differing latent
spaces of 32 × 32 × 16, 16 × 16 × 16 and 8 × 8 × 16 respectively. The differences
in performance should be more marked here, and the hope is that the way in which
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FIGURE 3.4: Diagram showing three typical autoencoders working
together in ensemble. Here they have three differing latent spaces
although other arrangements may have autoencoders with the same

latent space dimensions.

they learn to encode the input differs enough to ensure most exotic sources will not
be well encoded by two or more of them, while they will have been trained to re-
construct the typical sources. Finally an ensemble of nine autoencoders as described
above but with three having latent spaces of 32 × 32 × 16, three having latent spaces
of 16 × 16 × 16 and three having latent spaces of 8 × 8 × 16.

TABLE 3.1: The various setups that are used in this project, showing
both the number of autoencoders in the ensemble for each setup as

well as their latent spaces.

Setup
Number

Number of Models
in Ensemble

Latent Space Dimensions

1 1 1×(16×16×16)
2 3 3×(16×16×16)
3 3 1×(32×32×16), 1×(16×16×16), 1×(8×8×16)
4 9 3×(32×32×16), 3×(16×16×16), 3×(8×8×16)

The autoencoders must be trained to reconstruct the typical sources as well as
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possible. This involves updating the weights of the various layers so that the recon-
struction of one of these images is as close as possible to the original input image.
Given the restrictions on the encoded form, this training should ideally only work
well for those typical images and fail when it comes to the exotic sources allowing
them to be identified. Training is done on a set of the typical images set aside specifi-
cally for training and which will not be used in testing. The autoencoders are trained
on the training data set over 50 epochs with a batch size of 32. For validation the au-
toencoders are trained and tested on randomly split datasets five times. The results
are then averaged over the five runs for each model in order to get a more robust
metric of the performance.

All are tested on the same data. For each run the data is randomly split into a
set of 3327 typical sources for training, a set consisting of half the remaining typical
sources and half the exotic sources for finding a suitable threshold and a set of the
remaining exotic and typical sources for testing the F1 and F2 scores at those thresh-
olds. This is repeated five times, with both the averaging and voting methods being
evaluated, and the average F1 and F2 scores are then found. This type of statistical
validation gives a better indication of the performance of the algorithms rather than
the chance performance of a single run and avoids shot noise.

3.4 Performance Evaluation

In order to evaluate how well an autoencoder has reconstructed a particular image
the input and output images are compared and the Normalised Cross-Correlation
(NCC) is calculated. This is not used during training but rather to evaluate the re-
construction of images for classification purposes. A cross-correlation is a similar-
ity measure that is very similar to convolution (Goodfellow, Bengio, and Courville
2016). For two two dimensional arrays, I and K, of m by n pixels, it is given by

(I ∗ K)(i, j) = ∑
m

∑
n

I(i + m, j + n)K(m, n). (3.1)

A normalised cross-correlation is used in order to account for variations in inten-
sity and background noise that should ideally not affect the outcome of the similarity
measurement. It can be normalised, where for every step it is divided by the stan-
dard deviation of the two images being compared, or zero normalised in which the
mean of each image is also subtracted. The NCC measure for two such images, f
and t, with dimensions m × n is

NCC =
1

mn ∑
x

∑
y

1
σf σt

( f (x, y)− µ f )(t(x, y)− µt), (3.2)

where σ and µ are the standard deviation and mean of each image, respectively.
The value is averaged over all pixels and is equal to 1 only if the images are identical.
The closer to 1 the value is the more similar we take the images to be.

For any image, the normalised cross correlation may be calculated between the
input image and the image reconstructed by a trained autoencoder in order to de-
termine the reconstruction success. An encoder trained only on typical sources is
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expected to perform better at reconstructing typical sources and poorly at recon-
structing the sources with exotic morphologies. By setting a threshold for the re-
construction accuracy, ideally the majority of typical sources will have better recon-
structions than the threshold while the majority of exotic sources will have poorer
reconstruction performance allowing the two populations to be separated.

Once they have been trained on the training set, the autoencoders are used to en-
code and then decode the testing images. For each of these testing images the NCC
is calculated between the original image and this reconstructed image. Classification
is done by applying a threshold value between 0 and 1 to the NCCs. Anything above
the threshold is assumed to be well enough reconstructed to be similar enough to the
training images which consisted of typical sources. Anything below that threshold
is then labeled exotic. For those autoencoders that are in an ensemble the final result
is taken in one of two ways. A given original image will have a different reconstruc-
tion and so a different NCC for each autoencoder in the ensemble. The "averaging"
method, Figure 3.5 (Left), takes the average of the NCCs for a particular image across
all the autoencoders in the ensemble and then tests this against the threshold to de-
termine the classification. The "voting" method, Figure 3.5 (Right), tests the NCC
for each autoencoder against the same threshold individually, and each will have its
own classification. It then selects whichever classification was applied for a majority
of the autoencoders.

Those with highest and the lowest NCC values are useful for manual inspection.
It is also useful to compare the best and worst typical source reconstructions as well
as the best and worst reconstructed exotic sources.

The ROC can then be plotted by varying the threshold between 0 and 1. As the
goal is to locate exotic sources, the exotic sources may be considered positives while
the typical sources may be considered negatives. At each threshold step the FPR and
TPR are evaluated and plotted. The confusion matrix and F scores can also be cal-
culated for a given threshold. For the testing in this project F2, which assigns double
the significance to recall, is evaluated in addition to F1.

In order to determine the F1 and F2 scores the best threshold will need to be se-
lected. In order to have a more reliable and validated metric of the performance of
the autoencoders, the threshold cannot simply be selected so that it maximises these
scores for a given run as there would be no way to determine those values before-
hand if we were not dealing with a labelled testing set. So the sets of typical testing
images and exotic testing images are both randomly split into two equal sets. One
half is used to find the threshold by maximising it for that half. The performance is
then evaluated using the other half. This is repeated over five runs with the train-
ing, testing and threshold-finding sets being randomly split each time. The average
is taken over these runs for both the threshold and the resulting F1, F2 and confusion
matrix values. It should be noted that the values for the F1 and F2 scores and the
confusion matrices are averaged separately. The confusion matrices are important
to look at to understand the way in which the sources would finally be distributed.
The F1 and F2 scores are important for understanding the level of performance of
the model both when weighting precision and recall equally and when prioritising
recall. As they are averaged separately the averaged confusion matrix values might
not yield the averaged F1 and F2 scores if the formula is applied to them directly.
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FIGURE 3.5: Summary of the methods for determining the classifica-
tion of a single image using a given threshold. (Left) The averaging
method, where the threshold is applied to the mean of the NCCs cal-
culated between the original and reconstructed images for all models
in the ensemble. (Right) The voting method, where the threshold is
applied to each NCC for each model in the ensemble individually
to acquire individual classifications, and the classification that most

models agree upon is applied to the image.

As we are looking at both F1 and F2 and each of these may be optimised at differ-
ent thresholds, different thresholds and confusion matrix values are kept for each.
For the ensembles, as we are also looking at the difference between the averaging
and voting ensembling methods, these too need to be kept separately. So for an
ensemble there are four thresholds and results being the F1 voting values, the F1 av-
eraging values, the F2 voting values and the F2 averaging values.

Although it will not be used in classification, it may give some insight to inspect
the latent space for some of these autoencoders. PCA can be used to project the
encoded latent space representations of the testing images onto a 2D plane. No re-
strictions were set on these latent space representations to try and get similar classes
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to cluster together or other useful properties of the latent space representation, how-
ever, so they will not be used for classification.
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Chapter 4

Results

In this chapter the results of running the various autoencoder ensemble models de-
scribed in Chapter 2 on the data as described is presented. The results of each setup
are presented separately and in the order described in Table 3.1.

4.1 Single Autoencoder

Data are passed through a single autoencoder with a latent space of 16×16×16. For
one run the testing images encoded in the latent space is analysed with PCA. The re-
sult is shown in Figure 4.1. Although there is some minor separation the two classes
of objects cannot be readily distinguished in the latent space. This suggests that the
two classes may not be very separable, although recall may still see an increase and
there are regions without any exotic sources.

FIGURE 4.1: PCA output for the single autoencoder when run on the
encoded output in latent space. The blue dots indicate typical testing

sources while the red dots indicate exotic sources.
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For the testing images the NCCs are then calculated between the original input
images and the reconstructed images. Histograms of the distribution of these NCC
values for the typical sources and the exotic sources are shown in Figure 4.2. There
is an obvious difference in these distributions towards worse reconstructions but a
significant overlap towards the higher end.

FIGURE 4.2: Instance of the results produced by the single autoen-
coder. (Left) Histogram showing the distribution of the NCC values
for the typical testing sources. Lower values indicate a worse recon-
struction while higher values indicate a better one. (Right) Histogram
showing the NCC values for the exotic testing sources. It can be seen
that more of these sources have worse reconstruction values although

there is an overlap towards the higher end.

Figure 4.3 shows the ten best and worst reconstructed typical and exotic test
sources. For each source it shows the original, the reconstruction and the residual.
The residual is the subtraction between the original and reconstructed images and
allows us to see what the algorithm has difficulty in reconstructing. As augmented
images typically have relatively similar scores to their originals, as can be expected,
they have been omitted and only the ten best and worst original images in each
category is shown. For the best reconstructed images we can see that the residual
typically has very low SNR emission remaining, which is expected. It can also be
seen that the residuals for the exotic images appear to be more pronounced than
those of the typical images, which is also expected. The worst reconstructions have
much larger residuals that show that many of the images could not be accurately
reconstructed. Looking at the images that it has difficulty reconstructing accurately,
we see it struggles with low signal to noise images. The best reconstructed exotics
seem to resemble typical radio galaxies more closely with lobes and similar struc-
ture while the worst reconstructed exotics seem to be sources such as relics with
little structure resembling anything in the training data. This is to be expected as
the autoencoders will be best at reconstructing whatever more closely resembles the
typical source morphology encountered in the training data.

The ROC curve for the run is shown in Figure 4.4. A AUC of 0.76 is achieved.
This is substantially better than the 0.5 of randomly ordered sources and so it can be
seen that the model is at least somewhat effective.

In order to get a more accurate statistical measure of the performance, the algo-
rithm is run five times, as described in Section 3.4. Each time the data is randomly
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FIGURE 4.3: The ten best and worst reconstructed sources from both
the exotic and typical test sources produced by an instance of the sin-
gle autoencoder. (Top) The ten best reconstructed exotic and ten best
reconstructed typical images from the testing data. For each image
the original, the reconstruction and the residual is shown. (Bottom)
The ten worst reconstructed exotic and ten worst reconstructed typi-

cal images from the testing data.
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FIGURE 4.4: The Receiver Operating Characteristic curve for the sin-
gle autoencoder.

split into the training and testing datasets. In order to get the F1 and F2 thresholds,
half of the testing data is used to find the optimal threshold for each metric and the
other half is then used to calculate the confusion matrix values and the score. Over
all of the runs these values are then averaged to produce a more reliable estimate
of the performance. The thresholds found this way were 0.9663 for the F1 score and
0.9864 for the F2 score. Figure 4.5 shows confusion matrices and F1 and F2 scores pro-
duced this way. Over the five runs the F1 score averaged 0.48 with a standard devia-
tion of 0.02 while the F2 averaged 0.69 with a standard deviation of 0.01. The values
in these confusion matrices do not necessarily sum to one as they are the average of
each value over the five runs. It can be seen that when using the F1 threshold the
FPR is high. However the F2 score is significantly better. It cannot be used to make
reliable classifications as the precision only averages at 0.35, but a user searching for
interesting sources will have more than half of the uninteresting sources removed
while very few of the interesting sources will be removed along with these typical
sources with an average recall of 0.92 having a standard deviation of 0.02 across the
five runs. Using the threshold optimised for F2, recovering many interesting exotic
sources will require the user to look through far fewer sources. This is similar to the
example from Astronomaly, where many false positives remained but the number of
sources required to look through to recover a certain number of anomalous sources
was greatly reduced.
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FIGURE 4.5: For the single autoencoder. (left) The confusion matrix
and F1 score averaged over multiple runs of the algorithm for the
threshold 0.9663. (Right) The confusion matrix and F2 score averaged

over multiple runs of the algorithm for the threshold 0.9864.

4.2 Ensemble of Three Similar Autoencoders

Next, an ensemble of three autoencoders, having latent spaces of 16×16×16 similar
to the previous one, are trained on the same data.

Histograms of the average NCC for each source across the three autoencoders
are shown in Figure 4.6 for the typical and exotic testing images. Again we can see
that, when compared with the typical sources, the exotic images have a larger frac-
tion of sources towards the lower end of the spectrum.

FIGURE 4.6: Example of the reconstruction abilities from an ensemble
with three similar autoencoders (Left) Histogram of the distribution
of the average NCC values of the typical testing images. (Right) His-

togram of the average NCC values of the exotic testing images.

Two approaches are used to combine the scores from the three autoencoders, the
averaging method and the voting method. For both methods, the ROC curves are
shown in Figure 4.7. As can been seen here they produce rather similar results with
AUC scores of around 0.7 for averaging and 0.73 for voting, although fluctuations
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from run to run can put these in line with each other and the single autoencoder.

FIGURE 4.7: ROC curves for the ensemble of three similar autoen-
coders for both the averaging and voting methods.

As before, the thresholds optimised for F1 and F2 as well as the F1 and F2 scores
themselves and the values in the confusion matrices are calculated over five runs
with the training and testing data being randomly split in each run. For the ensem-
ble they are calculated using both the averaging method and the voting method. In
Figure 4.8 the confusion matrices are provided for the averaging method. Thresh-
olds are 0.9764 and 0.9892 for F1 and F2, respectively. Figure 4.9 shows the same
for the voting method. Thresholds are 0.9780 and 0.9896 for F1 and F2, respectively.
Here it can be seen that the results between the voting and averaging methods for
this particular ensemble are <0.1% apart. Their performance is also comparable to
the single autoencoder. The voting method produced an average F1 score of 0.5,
with a standard deviation of 0.02 across the five runs, and an average F2 score of
0.67, with standard deviation 0.03. It also produces an average recall of 0.88, with a
standard deviation of 0.07 across the five runs, at the F2 threshold and a recall of 0.76
with a standard deviation of 0.13 at the F1 threshold. These unusually high standard
deviations suggest the run to run variance is still high despite the ensemble.



4.3. Ensemble of Three Different Autoencoders 49

FIGURE 4.8: The F1 and F2 scores and confusion matrices for the en-
semble of three similar autoencoders using the averaging method.
(left) The confusion matrix and F1 score of the threshold optimised for
F1, 0.9764. (Right) The confusion matrix and F2 score of the threshold

optimised for F2, 0.9892.

FIGURE 4.9: The F1 and F2 scores and confusion matrices for the en-
semble of three similar autoencoders using the voting method. (Left)
The confusion matrix and F1 score of the threshold optimised for F1,
0.9780. (Right) The confusion matrix and F2 score of the threshold op-

timised for F2, 0.9896.

4.3 Ensemble of Three Different Autoencoders

Another ensemble of three is also tested, this time with three differing encoders. The
structure of the encoders is the same but they reduce the images down to different
latent spaces of sizes 8×8×32, 16×16×16 and 32×32×32.

PCA was run on the encoded forms of the testing data for the different latent
spaces. Figure 4.10 shows the results. Some differences are noticeable between the
way the encoded images have been mapped to 2D. Like the previous autoencoders,
no constraints have been placed to encourage separation so the encoded form is not
useful for classification here. The most noticeable differentiation appears to be from
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the first autoencoder.

FIGURE 4.10: The encoded forms of the test sources in the three latent
spaces of the varying autoencoders mapped into 2D using PCA. Red
points indicate exotic test sources while blue dots indicate typical test-

ing sources. (Left) 16×16×16 (middle) 8×8×32 (Right) 32×32×32.

Histograms of the average NCCs of the typical and exotic test data across the
three autoencoders for a run of the ensemble are shown in Figure 4.11. Here it al-
ready looks significantly different to the previous autoencoders, with both being
skewed more broadly to the lower end.

FIGURE 4.11: An example of the reconstruction ability of the ensem-
ble of three differing autoencoders. (Left) Histogram of the distribu-
tion of the average NCC values of the typical testing images. (Right)

Histogram of the average NCC values of the exotic testing images.

An example of the ten best and worst reconstructed typical and exotic sources
produced by the ensemble, selected by their average NCC score, are shown again
along with their reconstruction and the residual for each of the three autoencoders
in Figures 4.12, 4.13 and 4.14. The first one has the same setup as the previous en-
coders, so the result is quite similar. The second, however, has a much more con-
strained latent space and has much more difficulty reconstructing the images as a
result. As the goal is not to accurately encode and reconstruct the images this isn’t a
problem. Ideally it will have more difficulty reconstructing unusual sources than the
typical sources it already struggles with. It has more significant residuals, although
the largest residuals do appear in the worst reconstructed exotics, as is expected.
The final encoder has the largest latent space so is expected to have the best recon-
structions and the smallest residuals for typical and exotic. However, again as the
aim is not to encode and reconstruct images this does not mean that it is the best of
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the three.

Again both the averaging and voting methods were used to classify the sources.
Figure 4.15 shows the ROC curves for both the averaging and voting methods for
an instance of the ensemble. This time there is a significant difference with the aver-
aging method achieving an AUC of only 0.66 while the voting method manages an
AUC of 0.74.

Again, the thresholds for F1 and F2 scores, as well as the scores themselves and
confusion matrices were averaged over five runs with the split between training data
and testing data randomised in each run. Half of the testing data is again used in
each run to determine the best threshold and that threshold is then tested with the
other half. Figure 4.16 shows the confusion matrices for F1 and F2 by the averaging
method. The performance here is poorer than that of the ensemble of three similar
autoencoders by average. For the F1 score it averages 0.43 and seems to miss a few
more exotic sources while for the F2 score, an average across the five runs of 0.58, the
optimisation has instead included most of the typical sources to optimise the score,
making it not very useful for our application. The performance of the ensemble by
using the voting method, shown in Figure 4.17, however, yields a better AUC of
about 0.74 as opposed to about 0.64, being comparable to the ensemble of three sim-
ilar autoencoders. Here the F1 is an average of 0.49 with a standard deviation across
the five runs of 0.02. Likewise the F2 score is also improved and averages 0.66 with
a standard deviation across the five runs of 0.02. The F1 and F2 thresholds are quite
similar and using the F2 threshold instead of the F1 threshold only raises the average
recall from 0.85 to 0.87 with the standard deviation being 0.02 across the five runs.
The low average precision of 0.34 means the user will have to look through multiple
sources to find the ones of interest.
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FIGURE 4.12: From the three differing autoencoders the ten best and
worst reconstructed sources from both the exotic and typical test
sources for the first autoencoder with a latent space of 16×16×16.
(Top) The ten best reconstructed exotic and ten best reconstructed
typical images from the testing data. For each image the original,
the reconstruction and the residual is shown. (Bottom) The ten worst
reconstructed exotic and ten worst reconstructed typical images from

the testing data.
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FIGURE 4.13: From the three differing autoencoders, the ten best
and worst reconstructed sources from both the exotic and typical test
sources, for the second autoencoder with a latent space of 8×8×32.
(Top) The ten best reconstructed exotic and ten best reconstructed
typical images from the testing data. For each image the original,
the reconstruction and the residual is shown. (Bottom) The ten worst
reconstructed exotic and ten worst reconstructed typical images from

the testing data.
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FIGURE 4.14: For the three differing autoencoders, an example of the
ten best and worst reconstructed sources from both the exotic and
typical test sources it might find. These are from the third autoen-
coder with a latent space of 32×32×32. (Top) The ten best recon-
structed exotic and ten best reconstructed typical images from the
testing data. For each image, the original, the reconstruction, and the
residual is shown. (Bottom) The ten worst reconstructed exotic and

ten worst reconstructed typical images from the testing data.
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FIGURE 4.15: ROC curves of the three differing autoencoders using
the averaging method and the voting methods.

FIGURE 4.16: The F1 and F2 scores and confusion matrices for the en-
semble of three differing autoencoders using the averaging method.
(Left) The confusion matrix and F1 score of the threshold optimised
for F1, 0.9254. (Right) The confusion matrix and F2 score of the thresh-

old optimised for F2, 0.9784.
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FIGURE 4.17: The F1 and F2 scores and confusion matrices for the
ensemble of three differing autoencoders using the voting method.
(Left) The confusion matrix and F1 score of the threshold optimised
for F1, 0.9880. (Right) The confusion matrix and F2 score of the thresh-

old optimised for F2, 0.9892.
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4.4 Ensemble of Nine Different Autoencoders

Finally, an ensemble of nine autoencoders is tried. It has three of each of the different
types of autoencoders described above with latent spaces of 16×16×16, 8×8×32 and
32×32×32. For one run of the ensemble, the histograms of the average NCC recon-
struction scores for the typical and exotic testing images are shown in Figure 4.18.
Qualitatively, the distributions here look very different from the previous encoders.

FIGURE 4.18: An example of the reconstruction ability of the ensem-
ble of nine autoencoders. (Left) Histogram of the distribution of the
average NCC values of the typical testing images. (Right) Histogram

of the average NCC values of the exotic testing images.

Again both the averaging and voting methods are used to sort the images. ROC
curves for the two methods for a run of the ensemble are shown in Figure 4.19.
Again, the averaging method appears to have a significantly poorer AUC of about
0.65 compared to the voting method at around 0.76.

Finally, the F1 and F2 thresholds, scores and confusion matrices are found for the
two methods the same way they were for the previous autoencoders by averaging
the values over five runs. Again, we see that those taken by averaging perform more
poorly than those taken by voting. The averaging method produces an average F1
score of 0.42 and an average F2 score of 0.60. The voting method has somewhat im-
proved scores with an average F1 score of 0.49 with standard deviation 0.03 across
the five runs and an average F2 score of 0.64 with a standard deviation of 0.04 across
the five runs. At the F2 threshold the average recall is high at 0.89, however the pre-
cision is just 0.31 so the user will need to look through multiple sources to find those
of interest. The F1 and F2 scores are similar to those of the best of the previous au-
toencoders as are their standard deviations. Similarly, the majority of exotic sources
seem to be correctly classified while the typical sources are closer to being split in
half.

So, the output can be used to more easily search for exotic sources by greatly
reducing the number of typical sources while managing to keep most of the exotic
sources.
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FIGURE 4.19: The ROC curves for a run of the ensemble of nine au-
toencoders showing both the averaging method and voting method.

FIGURE 4.20: The F1 and F2 scores and confusion matrices for the
ensemble of nine autoencoders using the averaging method. (Left)
The confusion matrix and F1 score of the threshold optimised for F1,
0.9339. (Right) The confusion matrix and F2 score of the threshold

optimised for F2, 0.9699.
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FIGURE 4.21: The F1 and F2 scores and confusion matrices for the en-
semble of nine autoencoders using the voting method. (Left) The con-
fusion matrix and F1 score of the threshold optimised for F1, 0.9780.
(Right) The confusion matrix and F2 score of the threshold optimised

for F2, 0.9884.
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4.5 A Sample of Automatically Selected Interesting Sources

To demonstrate the sources that may be found in this data in this manner, Fig-
ure 4.22 contains a sample of interesting and exotic sources automatically identified.
The sources classified as exotic were inspected and a sample of the most interesting
sources was manually selected. The sources also demonstrate the quality of the MG-
CLS data. The sources are good candidates for further study including looking at
multiwavelength data, which is well beyond the scope of this thesis.
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FIGURE 4.22: A manual selection of the testing images marked as
exotic by the autoencoders.
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Chapter 5

Conclusions

When assessing the results it is clear that the autoencoders show some promise in
finding exotic sources. The classifications returned by the algorithms are not, how-
ever, a reliable classification that may be relied upon without inspection. For well
selected thresholds, the algorithms return most of the exotic sources. However, they
also return a fairly high number of false positives. This is not dissimilar to what
was seen with other approaches such as Astronomaly, where recall was also priori-
tised. The use case and value in these approaches, then is to help the user search
through large collections of potential sources by reducing the total number without
discarding the exotic sources. The algorithms could potentially remove half or more
of the typical sources while retaining almost all of the exotic sources. As a result
the F1 performance was always poor, as they have difficulty with precision, but the
F2 performance that prioritises recall is much more promising. Although they do
not produce reliable classifications that may be used without further analysis, the
models succeed at least partially in the aiding in isolating exotic radio sources by
significantly reducing the time required to search for such sources. Autoencoders
certainly show potential in finding exotic radio sources by morphology in survey
data as per the objective of this thesis.

When it comes to the ensembles of autoencoders, it is clear that the voting method
is superior to the averaging method. Although numerous arrangements of ensem-
bles were tried, their performance when using a voting approach remained mostly
similar. This may indicate that the certain exotic sources are morphologically too
similar to many typical sources for this type of approach. The standard deviation
across the runs did not improve with ensembling either. This may be due to the en-
sembling method used, as opposed to a more typical implementation of bagging or
a more complex means of ensembling such as stacking. Many sources may be classi-
fied as exotic by experts because of a deeper understanding of the source itself while
not having features that are particularly unusual in shape. So, for automated clas-
sification a method that does not purely rely on morphology might also be worth
considering. It should also be noted that the categories used here of "typical" and
"exotic" are very broad. Searching more specifically for more narrowly defined type
of morphology, such as X-shaped sources or bent tail sources, may yield better re-
sults. The results could also change if a larger set of data is used, as the dataset used
here is relatively small at just 3700 sources.

With the ever increasing power of modern radio telescopes, it has become in-
feasible to manually search through or classify the hundreds of thousands or even
millions of sources in modern and future surveys. Therefore, the ability to search
through this data in an automated fashion has become extremely important. The
power of these telescopes means that many of these sources are now visible at much
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greater angular resolution and sensitivity, sometimes making them difficult to even
classify manually, and often leaving their fields crowded with background point
sources and other sources. For this reason, even more powerful automated tools
will become required to handle these more complicated challenges for automated
classification. Autoencoders prove themselves a promising candidate for further de-
velopment in this area. More testing is certainly required with larger catalogues of
sources, as with more variations of the algorithms and possibly looking for more
specific types of sources. The results here did not indicate a level of accuracy suit-
able for a catalogue, however, when trying to search the data for certain types of
sources these automated approaches are already capable of returning most suitable
candidates and rejecting many unsuitable ones for even a search as broad as "exotic"
morphologies. In a search for some more narrowly defined morphology it may do
even better, a topic for future work as well as the more detailed multi-wavelength
analysis of individual sources of interest identified so far.

For further future work it would be very useful to further investigate the latent
space of autoencoders and determine if the classes can separate here in the manner
more typical of autoencoders. It would also be useful to further study the ensem-
bling of the autoencoders and determine if the performance of the ensembles may be
improved with a different ensembling technique, such as bagging, or if it can be de-
termined if ensembling does not work well for this particular type of data. It would
also be useful to compare these particular models against a wider variety of machine
learning approaches to classification on the same data in order to determine which
approaches show the most promise on these types of datasets.
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