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ABSTRACT
Traditionally, the mean of the run-length distribution (ARL) of an in-
control (IC) process is used to design and implement statistical pro-
cess charting schemes. When standards are unknown (Case U), the
unconditional ARL is considered during Phase-II monitoring—surpris-
ingly, by suppressing the term “unconditional.” The literature has
recently highlighted the difference between the unconditional and
the conditional ARL in studying the properties of Phase-II charting
schemes under the Case U. The effects of bias in the Phase-I sample
may lead to remarkably high rates of early false alarms. We explore
the idea of restricting the probability of unconditional early false
alarms by using lower percentile points of the unconditional run-
length distribution to design nonparametric charting schemes. This
new approach is named “the lower percentile-based (LPL) design.”
We consider the design and implementation of six distribution-free
schemes: five precedence-type schemes and the rank-sum scheme.
We carry out simulations to compare the six schemes with a prefixed
value of some lower percentile point of the IC run-length distribu-
tion. The best scheme is the one with the lowest value for a specific
higher percentile point of the out-of-control run-length distribution.
We illustrate the new design and implementation strategies with
real data, and offer a summary and concluding remarks.
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1. Introduction

From health care surveillance (e.g., Chen and Huang 2014; Li and Qiu 2016) to main-
taining service quality (e.g., Mukherjee and Sen 2018), from the sequential investigation
of environmental pollution (e.g., �Campulov�a, Vesel�ık, and Mich�alek 2017) to ensuring
product quality (e.g., Li, Liu and Xian 2017; Song, Mukherjee, Liu and Zhang 2019), or
monitoring social networks (e.g., Woodall, Zhao, Paynabar, Sparks and Wilson 2017),
Phase-II process charting schemes are one of the most popular statistical tools.
Practitioners often implement a Phase-II charting scheme on the assumption that that
the process parameters are known (Case K). However, in practice, process parameters
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are typically estimated (i.e., Case U) from a presumably in-control (IC) Phase-I refer-
ence sample. Many studies have established that the Phase-II charting schemes under
the Case U suffer from estimation bias. As a result, their IC performance often becomes
worse owing to the increased chance of false alarms; see, for example, the well-known
article by Jensen, Jones-Farmer, Champ and Woodall (2006).
A common practice when implementing charting schemes under the Case K and

Case U is to employ some standard metrics such as the average run-length (ARL) or
the median run-length (MRL). See, for example, Chakraborti (2007) and Kumar and
Baranwal (2019) for more details on appropriate performance metrics. As a conse-
quence, false alarms are often too high for most of the charting schemes under Case U.
For example, if we set the IC ARL (say, ARL0) of the traditional Shewhart X chart for a
normally distributed process at 500, it has a false alarm rate (FAR) of 0.002, and the
cumulative probability of false alarms (CPFA) until the 25th sample is about 4.88%;
readers can easily verify this using the geometric run-length property of the traditional
Shewhart X chart. On the other hand, the run-length distribution of Phase-II charting
schemes under the Case U is only conditionally geometric, given a Phase-I sample.
Thus, the CPFA represents the cumulative probability that there will be a false alarm on
or before a pre-specified number of test samples (denoted as #), which we write as
PðN � #Þ where N represents the run-length random variable. Suppose that p #ð Þ is the
unconditional CPFA (UCPFA) of boundary-crossing on or before the test sample #,
and that pð#jICÞ (denoted as p0ð#Þ) is the UCPFA for the IC case. In most cases, for
charting schemes under the Case U, p0(25) is usually much higher than 4.88%.

In this article, motivated by Faraz, Saniga and Montgomery (2019), we explore a per-
centile-based implementation design for a class of Phase-II distribution-free charting
schemes under the Case U. All the schemes considered in this article are nonparametric,
as nonparametric charts hold many advantages over parametric charts. For a detailed
overview of nonparametric charts, we refer the reader to Chakraborti and Graham
(2019a, 2019b). First, consider the case where we implement a popular Phase-II
Shewhart-type distribution-free scheme based on the Wilcoxon rank-sum (WRS) statis-
tic by setting ARL0 ¼ 500. In such a case, the p0(25) is 20.2% when the reference sam-
ple size (say,m) is 30, and the test sample size (say, n) is 5; see Table 3 of Mukherjee
and Sen (2015) for more details. They also noted that this problem becomes even more
complicated when n increases, and that the problem only subdues as m increases. For
example, for m ¼ 100 and n ¼ 5, the probability (i.e., p0(25)) is 8.4%; and for m ¼
1000 and n ¼ 5, this probability stabilizes at 4.82%. Likewise, if the Phase-I sample size
is less than 30 in a Case U set-up, most of the existing Phase-II distribution-free chart-
ing schemes are practically inadmissible. The problem arises, however, from the fact
that researchers and practitioners are often too excited about setting the ARL0 at 500
or some other acceptable standard, instead of focusing on restricting too many early
false alarms.
In this article, we propose a percentile-based design and implementation scheme in

the following way:

1. Set p0s #ð Þ at a low prefixed level, say c 2 0, 1ð Þ, for the sth scheme
(s ¼ 1, 2:::, S). This is equivalent to setting the 100cth IC run-length percentile at
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# (a condition that can be used as a metric to determine the control limit(s) and
to restrict the probability of early false alarms). When the metric is the IC MRL,
c ¼ 0.5.
But consistent with classical testing, we suggest using a smaller c,
say, c 2 ð0, 0:1Þ: Since the run-length distribution is discrete, we often observe
jumps, and in practice one may not get control limits that exactly yield
p0s #ð Þ ¼ c: In such cases, we recommend choosing the closest value; that is,
p0s #ð Þ � c: Repeat this for various competitive schemes to protect against too
many early false alarms.

2. We choose the best plan from among various competing charting schemes—one
that quickly detects a correct signal with a very high unconditional cumulative
probability. This is equivalent to comparing several schemes based on a higher-
order OOC run-length percentile, which is usually much higher than the trad-
itional choice of the median.

Suppose that the 100sth OOC run-length percentile of the sth scheme under a shift d
is Rds, given p0s #ð Þ � c: If pd Rdsð Þ denotes the UCP of an actual signal under a shift
d until test sample Rds, given p0s #ð Þ � c, we have pd Rdsð Þ ¼ s: Note that, in OOC-
MRL based comparisons, we use s ¼ 0:5; but, to achieve higher power of the control
charts, we recommend a higher value of s, say s 2 ½0:9, 1Þ: Now the best scheme (i.e. S�

for any S� 2 f1, 2, :::, Sg) is obtained such that

UCP ¼ pd Rdsð Þ ¼ P N � Rds j d 6¼ 0ð Þ
and

RdS� ¼ minfRds; s ¼ 1, 2, :::, Sg:
where RdS� is the number of test samples corresponding to the charting scheme S�:
Chakraborti, Laan and Wiel (2004) considered a class of Shewhart-type distribution-

free precedence charting schemes that have the advantage of having the same IC
run-length distribution for all continuous process distributions. They derived exact
expressions for the run-length distribution and the ARL, and studied the schemes’
characteristics by evaluating the run-length distribution probabilities and the ARL. They
provided results for the implementation of such schemes along with IC robustness
characteristics. Graham, Mukherjee and Chakraborti (2012) and Mukherjee, Graham
and Chakraborti (2013) extended the idea to construct EWMA and CUSUM-type
schemes, based on a similar pivot. For more recent work involving precedence schemes,
we refer the reader to Malela-Majika et al. (2020) and Malela-Majika, Shongwe, and
Castagliola (2022).
Precedence-type schemes mostly use notions of precedence tests. Balakrishnan and

Ng (2006) outlined the masking effect of ordinary precedence tests. We find similar
problems in precedence-type charting schemes, and so their impacts need to be studied
thoroughly. Balakrishnan, Paroissin and Turlot (2015) studied the properties of one-
sided charting schemes based on precedence and weighted precedence statistics to detect
small shifts. Maximal precedence tests and weighted maximal precedence tests are often
found to be more potent than ordinary precedence tests in certain situations.
Consequently, it is worth studying charting schemes that are based on maximal and
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weighted maximal precedence statistics. For an extensive discussion of some of these
charting statistics, we recommend Koutras and Triantafyllou (2020).
The remainder of this paper is organized as follows: we introduce the statistical

framework of the weighted and unweighted precedence-type charting schemes in
Section 2. We present the lower percentile-based (LPL) design, implementation, and
performance of various schemes with restricted FAR in Section 3. In Section 4, we give
a real-life example of the application of the LPL schemes. We investigate the effect of
the Phase-I bias in Section 5. In Section 6, we provide a summary and some recommen-
dations. For simplicity, we only consider upper one-sided charting schemes that are
used to detect an upward shift in the location parameter. In the illustrative example, we
outline another justification for using upper one-sided control charts.

2. Some precedence-type tests and charting schemes

In this section, we revisit some distribution-free schemes that are based on ranking and
precedence-type statistics.

2.1. Traditional precedence-type test and charting scheme

The precedence test is a distribution-free two-sample test based on the orders of early
failures, initially introduced to compare the lifetimes of two populations. Many
researchers have studied the precedence test’s power properties; see, for instance,
Chakraborti, Laan, and Wiel (2004) and Van der Laan and Chakraborti (2001). Let a
random sample of m observations, say X1, X2, :::, Xm, be available from an unknown
continuous cumulative distribution function (cdf) FXðxÞ: Also, consider a random sam-
ple of size n, say Y1, Y2, :::, Yn, from an unknown continuous cdf GYðyÞ, for which
we assume GY xð Þ ¼ FXðx � dÞ, where d 2 R is the shift in the location parameter.
In a SPM set-up, d ¼ 0 refers to an IC state. Define the precedence statistic Wj as the

number of X-observations that precede Y j:nð Þ: When F ¼ G, the exact probability distri-

bution of the joint precedence statistic can be obtained by using combinatorial techni-
ques (see Chakraborti, Laan, and Wiel 2004). The probability mass function (pmf) is
given by

PIC Wj ¼ wð Þ ¼
jþw�1

w

� �
mþn�j�w

m�w

� �

mþn
m

� � , (1)

where w ¼ 0, 1, :::,m:
It is easy to see that the IC distribution of Wj involves only m, n, j and w: The

pmf does not depend on the parent process distribution or parameters. Therefore, the
decision rules based on Wj are distribution-free until the underlying distributions are
continuous and identical.
The design of a distribution-free scheme for the sequential monitoring of location

shift using a precedence statistic is simple. To this end, we consider the m observa-
tions, X1, X2, :::, Xm, as the reference sample from an IC population (Phase-I sample).

Further, we regard the hth test sample or the Phase-II observations as Yh1, Yh2, :::, Yhn
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of size n, where h ¼ 1, 2, 3,::: . The Phase-II samples are drawn independently of one
another and of the reference sample. Now arrange X1, X2, :::, Xm in ascending order,
and select two order statistics, Xða:mÞ and Xðb:mÞ, for some 1 � a < b � m: The
two-sided exceedance-/precedence-type charting scheme, as in Chakraborti, Laan, and
Wiel (2004), has a lower control limit ðLCLÞ ¼ X a:mð Þ and an upper control
limit ðUCLÞ ¼ X b:mð Þ:
Two types of precedence schemes are popular in the literature. One is based on the

number of reference sample observations; Wjh precedes the median of the hth test sam-
ple. When n is an odd number, say n ¼ 2r þ 1—r is a positive integer, and j ¼ r þ 1:
This is popularly known as the traditional precedence scheme, and is also called “the
median scheme,” which we abbreviate as the “Med” scheme. We plot the statistic as
Wðrþ1Þh against UCL, say bMed, and declare that the process is OOC at the hth test sam-
ple, and expect that there would be an upward shift in location if Wðrþ1Þh � bMed:

Otherwise, we regard the process as IC, and we move on to collect the next test sample.
If the test sample size is even, say j ¼ 2r, one can, without loss of generality, consider
the number of reference sample observations preceding the average of the two middle-
most observations of the hth test sample, and denote the plotting statistic as W rþ1

2ð Þh:
We also consider another well-known precedence scheme that is based on the num-

ber of reference sample observations, in which W1h precedes the minimum, that is
Y 1:nð Þ, of the hth test sample. This is popularly known as the “Min” scheme. The process
is IC when W1h plots below the UCL, say bMin; otherwise it is OOC.

2.2. General maximal precedence test and charting scheme

When observing only a few early failures, a precedence test can determine a location
difference under a life-test. This makes it cost-effective, since most life tests involve
products that are destructive and expensive (Ng and Balakrishnan 2005). However,
Balakrishnan and Frattina (2000) and Ng and Balakrishnan (2005), among others, have
noted that the precedence test suffers from a “masking effect.” The precedence test uses
the sum of the frequency of failures from the X-sample, between the first j failures of
the Y-sample. The masking effect comes from the fact that it ignores the distribution of
this frequency of failures.
Balakrishnan and Frattina (2000) and Balakrishnan and Ng (2001) introduced the

maximal precedence test, which can correct the problem of masking. In this case, the
test statistic is not the number of failures that precede the jth Y-failure. Rather, it is the
maximum of the number of X-failures before the first Y-failure, between the first and

second, and so on, until between the ðj� 1Þth and jth Y-failures. Suppose that there are
U1 failures before the first Y-failure, U2 failures between the first and second Y-failures,

… , Uj failures between the ðj� 1Þth and jth Y-failures.
Figure 1 illustrates an example with U1¼ 0, U2¼ 2, U3¼ 4 and U4¼ 1. Note that we

write the ordinary precedence statistic as
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Wj � WPrej ¼
Xj

k¼1

Uk, (2)

where the information given by j � 3 is masked. We define the general maximum pre-
cedence statistics as

WMPrej ¼ Max U1 , :::, Ujð Þ: (3)

The maximum precedence statistic circumvents the masking effect. In our example, the pre-

cedence statistic is given by Wpre4 ¼
P4

k¼1Uk ¼ U1 þ U2 þ U3 þ U4 ¼ 0þ 2 þ 4þ 1¼ 7,
and the maximum precedence statistic is given by WMPre4 ¼ Max (0, 2, 4, 1) ¼ 4. We
explore a charting scheme based on WMPrej in the current investigation, and refer to it as a
maximal precedence-type scheme, abbreviated as the “M-Pre” scheme. Let WMPrej , h be the

plotting statistic of the M-Pre scheme, based on the reference sample and on the hth Phase-
II sample. The process is declared OOC when WMPrej, h plots above the UCL, say bMPre,
where 1 � bMPre < m: Otherwise, we consider the process IC and collect the next test sam-
ple. For brevity, we only consider up to the median of the test sample. That is, we set j ¼
r þ 1 when n ¼ 2r þ 1, although one may set various other j, 1 � j � n: Nevertheless,
if j ¼ 1, it boils down to the Min scheme, as in Section 2.1.

2.3. Weighted precedence-type statistics and charting schemes

Ng and Balakrishnan (2005) considered the weighted precedence-type tests, and
assigned a decreasing weight to the number of earlier failures, Uj, as j increases. In our
notation, the simple weighted precedence statistic, say WWPrej is

WWPrej ¼
Xj

k¼1

n� kþ 1ð ÞUk (4)

and the weighted maximal precedence statistic, say WWMPrej , is

WWMPrej ¼ Max
1�k�j

f n� kþ 1ð ÞUkg: (5)

We design the two charting schemes using WWPrej and WWMPrej : The plotting statistic,

based on the reference sample and the hth test sample of the weighted precedence
scheme (say, W-Pre scheme), is WWPrej , h: We observe an OOC signal if WWPrej , h >

Figure 1. Illustration of Ui values.
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bWPre, where bWPre is the appropriate UCL: Similarly, the plotting statistic based on the

reference sample and the hth test sample of the weighted maximal precedence scheme
(say, WM-Pre scheme) is WWMPrej, h: We observe an OOC signal if WWMPrej , h >

bWMPre, where bWMPre is the appropriate UCL: As in Section 2.2, we consider only j ¼
r þ 1 when n ¼ 2r þ 1, although one may set various other j, 1 � j � n:

In the next section, we discuss the percentile-based implementation techniques
and design plans of the precedence-type schemes and the Shewhart rank-
sum scheme.

3. Implementation and performance of various LPL charting schemes

Recall that this paper’s main aim is to prefix the lower percentile point of the IC run-
length distribution at some desired level, and to compare various schemes using a cer-
tain higher percentile point of the OOC run-length distribution. The best scheme, from
among numerous competitors, is the one with the lowest value for a specific higher per-
centile point of the OOC run-length distribution. In the Section 1, we learnt that the
run-length distribution follows a geometric probability model with a success probability
of p ¼ 0:002; the ARL0 equals 500, and will occasionally produce false alarms. In that
case, the fifth percentile point of the same run-length distribution is 25.62. Therefore,
we observe close to a 5% chance that there will be a false alarm before the inspection of
the 26th test sample. In the framework of the Shewhart X chart, setting ARL0 ¼ 500 is
equivalent to setting the fifth percentile point at 25.62 or setting the first percentile
point at 5.02. Similarly, setting ARL0 ¼ 370 is comparable with setting the fifth percent-
ile point at 18.96 or setting the first percentile point at 3.72. The conditional run-length
distribution of Phase-II Shewhart precedence type or rank-sum schemes, given the ref-
erence sample, is geometric, but the unconditional run-length distribution is
complicated.
Along the same line of thinking, we propose implementing various schemes, as dis-

cussed in Section 2, by setting the fifth percentile point at 20 or 25, as the case may be.
To control the FAR to a greater extent, one may consider setting the first percentile
point of the run-length (PRL) value as 5 or 10, or the fifth percentile point as 50.
Moreover, when m ¼ 100, n ¼ 5, and the target ARL0 is 500, we observe 5% false
alarms on or before the 16th test sample when we employ the Shewhart rank-sum
scheme for the Phase-II monitoring of charting schemes under the Case U. In the same
setting, we observe 5% false alarms on or before the 13th test sample if we use the
Shewhart Med scheme. The situation becomes worse for both schemes when n
increases. Setting the fifth percentile point at 20 or 25 will prevent early false alarms. It
is easy to note that the attained ARL0 will be more than 500 in all such cases; and so,
the LPL procedure will maintain the current industry standard. For the Phase-II moni-
toring of charting schemes under the Case U, it is more important to prevent too many
early false alarms rather than to set the target ARL0 at a fixed level. Therefore, it is legit-
imate to design a charting scheme by setting a lower percentile point of the IC run-
length distribution at a prefixed value. Thus, in this paper, we determine the charting
constants by setting p0 #ð Þ ¼ 0:05, for # ¼ 20, 25 and 50.
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It may be reasonable to compare the 95th percentile point of the OOC run-length
distribution of a class of charting schemes that are competing among themselves. We
identify one with the smallest 95th OOC PRL value as the best scheme. That is, we set
s ¼ 0:95 to compute and compare Rds for various schemes. Next, we discuss the imple-
mentation steps of the upper one-sided unweighted and weighted maximum prece-
dence-type charting schemes.

3.1. Implementation steps

We adopt the following steps to implement all the schemes described in Section 2:

1. Specify the Phase-I reference sample size (m) and the Phase-II test sample
size (n).

2. Set ð#, cÞ, for example, ð# ¼ 25, c ¼ 0:05Þ, and determine the UCL for various
schemes, as explained in Subsection 3.2.

3. Observe and establish a Phase-I (reference) sample, Xm ¼ fX1,X2, :::,Xmg, of
size m from the IC process.

4. Collect the test sample, Yhj ¼ fYh1, Yh2, :::,Yhng, where h ¼ 1, 2, 3, … and j ¼
1, 2, … , n, during the hth stage of Phase-II monitoring.

5. Calculate the appropriate charting statistic and plot it against the corresponding
UCL, as indicated in Section 2.

6. During the Phase-II monitoring, if the hth plotting statistic exceeds the corre-
sponding UCL, the process is OOC at the hth test sample. Otherwise, the process
is IC, and monitoring continues with the next test sample.

We need to determine the UCL values of various schemes to implement these
schemes properly. Next, we discuss the search algorithm to determine UCL values.

3.2. Determination of the control limit constant

It is easy to note that the control limits bMed or bMin of the traditional precedence-type
charting scheme, based on the median of the reference sample or the minimum order
statistic of the Phase-II sample, are, in fact, integers between 1 and m: Similarly, the
control limit for the maximal precedence scheme, that is bMPre, is also an integer
between 1 and m: However, for the simple weighted precedence scheme, the control

limit bWPre lies between 1 and
Pj

k¼1 n� kþ 1ð Þ ¼ m n nþ1ð Þ
2 � n�jð Þ n�jþ1ð Þ

2

h i
¼ mjð2n�jþ1Þ

2 :

In particular, if j ¼ r þ 1 when n is odd, and n ¼ 2r þ 1, then bWPre lies between 1 and
m nþ1ð Þð3nþ1Þ

8 : Likewise, the control limit bWMPre of the weighted maximal precedence

scheme lies between 1 and mn ð¼ Max1 � k � j n� kþ 1ð Þm
� �

Þ: In this paper, we
apply Monte Carlo simulations using R3.2.6 to determine the UCL values as the chart-
ing constants, so that p0 #ð Þ � 0:05 for # ¼ 20, 25 and 50. We also verify the results
using SASVR v 9.4. To this end, we start a trial value of the charting constant, and gener-
ate samples from standard normal distributions for both Phase-I and II, and compute
the run-length using the implementation steps given in Subsection 3.1, and replicate the
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same algorithm 50 000 times to observe the simulated run-length distribution, and com-
pute p0 #ð Þ: We continue to calibrate the trial value of the charting constant until
p0 #ð Þ � 0:05: More specifically, we reduce the trial value by one if p0 #ð Þ < 0:05; other-
wise we increase it. For example, when m ¼ 100 and n ¼ 5, and when the nominal
p0ð20Þ � 0:05, we find that the control limit constants of the traditional Med, Min, and
M-Pre schemes are 94, 71, and 77, respectively. Table 1 gives the charting constants of
the various schemes discussed in Section 2 for some selected values of ðm, nÞ: Table 1
could be handy for practitioners who are designing and implementing precedence-type

Table 1. Control limits different schemes for various values of m and n using some standard # val-
ues with c ¼ 0:05:
Sample sizes Med scheme Min scheme M-pre scheme

m n # ¼ 20 # ¼ 25 # ¼ 50 # ¼ 20 # ¼ 25 # ¼ 50 # ¼ 20 # ¼ 25 # ¼ 50

5 29 29 30 22 23 24 24 25 26
30 11 27 27 28 14 15 16 17 18 19

25 25 25 26 8 8 9 8 9 10
5 48 48 49 36 37 39 39 40 42

50 11 44 45 46 23 23 25 27 28 30
25 40 41 42 12 13 14 15 16 17
5 94 95 96 71 72 76 77 78 81

100 11 87 88 89 44 45 48 53 54 57
25 78 79 81 23 24 26 29 30 32
5 141 142 144 106 107 114 116 117 122

150 11 129 130 133 64 66 71 78 80 84
25 116 117 120 34 35 38 42 43 46
5 281 283 287 210 214 225 229 232 241

300 11 257 260 265 127 130 141 153 156 166
25 230 232 237 65 67 74 82 85 91
5 470 471 478 349 356 375 378 385 400

500 11 427 430 440 212 216 234 255 260 275
25 382 384 393 108 111 122 135 139 149
5 935 940 953 697 708 749 756 768 800

1000 11 851 858 877 418 431 466 505 517 547
25 758 765 782 214 219 243 269 275 295

Sample Sizes W-pre scheme WM-pre scheme Rank-sum scheme

m n # ¼ 20 # ¼ 25 # ¼ 50 # ¼ 20 # ¼ 25 # ¼ 50 # ¼ 20 # ¼ 25 # ¼ 50

5 128 129 133 110 115 120 145 147 150
30 11 244 247 254 165 169 180 322 324 330

25 492 494 510 238 243 263 856 860 870
5 209 212 218 180 185 195 229 232 237

50 11 397 401 413 264 268 286 484 488 498
25 793 801 822 366 375 400 1188 1196 1212
5 413 417 430 355 361 380 441 444 454

100 11 778 786 809 508 518 550 891 897 916
25 1538 1553 1594 676 695 745 2017 2028 2060
5 617 625 641 527 540 568 649 656 671

150 11 1161 1173 1206 749 767 817 1295 1306 1335
25 2284 2298 2356 982 1008 1083 2841 2858 2906
5 1230 1241 1279 1054 1073 1128 1280 1292 1324

300 11 2297 2323 2392 1471 1504 1614 2513 2529 2588
25 4508 4550 4659 1898 1951 2094 5316 5350 5445
5 2044 2066 2127 1750 1780 1875 2120 2139 2190

500 11 3821 3864 3972 2442 2497 2667 4132 4164 4258
25 7456 7523 7721 3141 3212 3451 8615 8662 8817
5 4083 4130 4241 3492 3555 3742 4219 4261 4361

1000 11 7638 7696 7921 4873 4963 5320 8189 8258 8436
25 14879 14996 15388 6221 6351 6821 16851 16955 17258
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charting schemes. In Table 1, we also include the charting constant for the Shewhart
rank-sum scheme, which is a well-known competitor with the precedence-type schemes.
From Table 1, we observe that the sample size ðm, nÞ affects the values of the chart-

ing constants of various schemes to a great extent. From Table 1, we also note that, for
a fixed ðm, nÞ, when # increases the charting constant of various schemes usually
increases; similarly, for any fixed ðn,#Þ, the charting constants increase as m increases.
Nevertheless, for fixed ðm,#Þ, the charting constant increases with n for the W-Pre,
WM-Pre, and rank-sum schemes only. For other schemes, we see the opposite phenom-
enon. For the same design parameters, ðm, n, #Þ, bMin < bMed, and usually bMed >

bMPre: During the simulation study, we observe that, for small Phase-I sample sizes, it is
difficult to achieve p0ð#Þ � 0:05 for the traditional Med scheme. For instance, when
m¼ 30, and # ¼ 50, the attained c of the classic Med scheme is much smaller than
0.05, although bMed ¼ 30, which is the maximum value that bMed can take in this case.
Thus, c ¼ 1 if we consider any bMed >30. The problem happens owing to jumps in the
run-length distributions. However, when the Phase-I sample size increases, that problem
is solved—and the problem is less severe for the W-Pre scheme.

3.3. In-control robustness

One of the most important advantages of nonparametric schemes over their parametric
counterparts is their IC robustness. That is, for fixed (or the same) design parameters,
the IC characteristics of the run-length distribution, such as the ARL0, MRL0, and
PRL0, remain invariant across all continuous distributions. In this study, we consider a
number of distributions:

(i) Standard normal distribution, N(0,1);
(ii) Student’s t-distribution, t(v), with degrees of freedom v¼ 4, which is symmet-

ric, but has heavier tails than the normal distribution;
(iii) Gamma distribution, GAM(3,1) and GAM(1,1), which are members of the

positively skewed family of densities (note that GAM(1,1) is equivalent to the
exponential distribution EXP(1));

(iv) Laplace (or double exponential) distribution, DEXP(0,1), which is also a sym-
metric distribution with heavier tails than the normal distribution.

We obtain the UCLs such that the attained p0 #ð Þ of the schemes under consideration
is as close as possible to the pre-specified c ¼0.05, and the IC fifth percentile of run-
length distribution # (i.e., #0) values are 20, 25, and 50 under the various distributions
mentioned above for different Phase-I sample sizes. Suppose that (m, n) ¼ (100, 5) and
that #0 ¼ 25: Then we observe that the UCLs of the M-Pre and WM-Pre schemes are
78 and 361, respectively, regardless of the nature (or shape) of the distribution.
For both unweighted and weighted schemes, regardless of the underlying distribution,

the attained # is very close to #0: It is easy to see that the attained # values of the LPL
schemes, under various distributions, are defined by the intervals #060:1 #0, proving
that the LPL charting schemes are IC robust.
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3.4. Out-of-control performance comparison

We have already noted that the LPL schemes considered here are IC robust. Therefore,
it is of interest to compare their efficiency when the process is OOC. Tables 2 and 3
display the 95th OOC PRL values of various competing schemes when (m, n) ¼ (100,
5) and (300, 5), respectively, for #0 ¼25 under different distributions. For instance,
under the N(0,1) distribution, for a pre-specified #0 value of 25, when d ¼ 0.5, m ¼
100, and n ¼ 5, the M-Pre and WM-Pre charting schemes have a 95% chance to sig-
nal on or before the 371st and 197th test samples, respectively. We observe that the W-
Pre scheme is the best for detecting small shifts in the location parameter, followed by
the rank-sum scheme for the normal distribution. For moderate and large shifts, the W-
Pre and rank-sum schemes perform similarly. The Min and WM-Pre schemes outper-
form the competing schemes under heavier-tailed distributions for small shifts; however,
the W-Pre scheme is the best for moderate shifts. We also note that the M-Pre and
WM-Pre charting schemes offer a signal on or before the 903rd and 266th samples with
a 95% chance in Phase-II under the GAM(3,1) distribution when d¼ 0.5 and (m, n) ¼
(100, 5). Here, the W-Pre scheme is more effective. We also observe that under heavier-
tailed distributions and significant shifts in the location parameter, the M-Pre and WM-
Pre charting schemes may give an OOC signal a bit sooner. For instance, when the
underlying IC process distribution is t(3) and the target d ¼ 1:5, there is a 95% chance

Table 2. OOC performance of the proposed monitoring schemes in terms of the 95th PRL when
m¼ 100 and n¼ 5 for a prescribed # value of 25 under different distributions.

Monitoring schemes

Distribution Shift Rank-sum Med M-Pre Min W-Pre WM-Pre

0.25 649.78 2479.94 1114.93 725.31 622.79 720.13
0.50 151.66 570.70 371.35 198.47 148.38 197.15
1.00 17.61 51.77 49.68 27.72 17.46 27.57

N (0,1) 1.50 4.62 9.75 11.57 7.70 4.57 7.69
2.00 2.00 3.17 4.41 3.35 2.00 3.31
3.00 1.00 1.00 1.94 1.17 1.00 1.14
0.25 467.92 4531.22 718.16 391.58 446.39 393.14
0.50 72.87 1637.61 132.72 65.18 69.57 65.29

t(3) 1.00 6.21 151.33 10.60 7.67 6.02 7.61
1.50 2.32 13.16 3.36 3.04 2.0914 3.01
2.00 2.00 2.24 2.00 2.00 1.98 2.00
3.00 1.00 1.00 1.06 1.45 1.00 1.05
0.25 649.48 4470.67 1058.38 579.76 622.07 573.42
0.50 124.39 1658.33 264.75 98.67 126.60 98.93

DEXP (0,1) 1.00 10.23 211.32 16.63 10.36 10.31 10.34
1.50 3.14 29.43 5.03 4.15 3.05 4.14
2.00 2.00 4.93 2.99 2.82 2.00 2.74
3.00 1.00 1.00 1.96 1.90 1.00 1.78
0.25 1051.02 4964.04 3947.78 968.91 996.02 973.95
0.50 306.67 3017.22 1138.38 277.33 287.87 279.11

EXP (1) 1.00 26.51 688.69 92.66 22.40 27.30 22.10
1.50 3.37 164.79 7.06 1.03 3.92 1.02
2.00 1.00 41.19 1.00 1.00 1.00 1.00
3.00 1.00 3.23 1.00 1.00 1.00 1.00
0.25 955.34 4625.36 2356.32 916.16 907.11 912.14
0.50 263.89 1920.56 902.62 265.23 254.46 265.67

GAM (1, 3) 1.00 26.91 317.73 86.17 29.99 26.99 30.19
1.50 4.50 60.00 11.95 5.27 4.78 5.31
2.00 1.06 13.93 2.78 1.33 1.61 1.33
3.00 1.00 1.94 1.00 1.00 1.00 1.00
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that the M-Pre and WM-Pre schemes will give an OOC signal on or before the third
sample respectively. In contrast, if the underlying IC process follows the GAM(3,1) dis-
tribution, for the same shift size there is a 95% chance of observing the OOC signal on
or before the 12th and 5th samples, respectively. In Tables 2 and 3, we indicate the best
charting scheme with gray shading. In the event that two or more columns are shaded,
the competing schemes perform similarly. The summarized findings in Tables 2 and 3
are as follows:

(1) The larger the Phase-I sample size, the more sensitive the proposed scheme.
(2) The smaller the Phase-I sample size, the more unstable and less efficient the

proposed scheme.
(3) Under the N(0,1) distribution,

� the W-Pre scheme outperforms all competing schemes for small shifts.
However, both the W-Pre and the rank-sum schemes outperform all com-
peting schemes for moderate and large shifts, and

� the rank-sum scheme outperforms all unweighted competing schemes from
small to large shifts. For substantial shifts (i.e. d > 2), the rank-sum and
Med schemes perform similarly.

(4) Under the t(3) distribution,

Table 3. OOC performance of the proposed monitoring schemes in terms of the 95th PRL when
m¼ 300 and n¼ 5 for a pre-specified # value of 25 under different distributions.

Monitoring schemes

Distribution Shift Rank-sum Med M-Pre Min W-Pre WM-Pre

0.25 391.12 688.69 715.00 466.86 393.09 467.00
0.50 100.89 189.47 251.00 138.66 102.43 141.00
1.00 13.95 25.05 38.00 22.60 14.18 23.00

N (0,1) 1.50 4.04 6.27 10.00 6.90 4.03 7.00
2.00 2.00 2.72 4.00 3.06 2.00 3.00
3.00 1.00 1.00 2.00 1.07 1.00 1.00
0.25 259.56 952.02 435.00 245.70 258.55 250.50
0.50 45.87 282.21 84.00 47.36 45.34 47.00

t(3) 1.00 5.23 23.22 9.00 6.91 5.12 7.00
1.50 2.07 3.37 3.00 3.01 2.01 3.00
2.00 2.00 1.12 2.00 2.00 1.96 2.00
3.00 1.00 1.00 1.00 1.37 1.00 1.00
0.25 349.11 1072.41 906.50 331.35 355.30 532.00
0.50 71.70 385.18 349.00 58.36 75.29 160.00

DEXP (0,1) 1.00 7.97 53.03 41.00 9.09 8.00 21.00
1.50 3.01 8.33 11.00 4.02 3.00 7.00
2.00 2.00 2.00 4.00 2.68 2.00 3.00
3.00 1.00 1.00 2.00 1.83 1.00 2.00
0.25 561.55 1428.20 1947.00 557.54 552.00 557.00
0.50 160.52 698.95 559.00 158.39 159.23 159.00

EXP (1) 1.00 14.42 167.32 45.00 12.27 15.61 12.00
1.50 2.02 42.07 3.00 1.00 2.42 1.00
2.00 1.00 11.35 1.00 1.00 1.00 1.00
3.00 1.00 1 1.00 1.00 1.00 1.00
0.25 525.12 1187.50 1327.00 548.28 518.91 553.00
0.50 153.18 490.75 492.00 167.31 152.81 167.00

GAM (1, 3) 1.00 17.57 90.91 53.00 20.97 18.23 21.00
1.50 3.30 20.65 8.00 4.09 3.79 4.00
2.00 1.00 5.97 2.00 1.00 1.00 1.00
3.00 1.00 1.00 1.00 1.00 1.00 1.00
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� the Min and WM-Pre schemes outperform all competing schemes for small
shifts, and

� for moderate to large shifts, the W-Pre scheme outperforms all compet-
ing schemes.

(5) Under the DEXP(0,1) distribution,
� for small to moderate shifts, the Min and WM-Pre schemes outperform all

competing schemes, and
� for large shifts, the W-Pre and rank-sum schemes outperform all compet-

ing schemes.
(6) Under the EXP(1) distribution, both the Min and the WM-Pre schemes outper-

form all competing schemes for small to moderate shifts. For large shifts, they
all perform similarly except for the Med scheme, which performs the worst.

(7) Under GAM(3,1) distribution,
� the W-Pre scheme outperforms all competing schemes for small to moder-

ate shifts, and
� for moderate to large shifts, the rank-sum scheme outperforms all compet-

ing schemes.
(8) The Med scheme is relatively insensitive, regardless of the magnitude of

the shift.

The above findings stand, regardless of the Phase-I sample size.

4. Illustrative example

The dataset provided by Sakar et al. (2019) contains information about real-time online
shoppers’ purchasing intention, and is used to demonstrate the application and imple-
mentation of the proposed LPL approach. The dataset consists of several features (or
categories)—“Administrative,” “Administrative duration,” “Informational,”
“Informational duration,” “Product-related,” and “Product-related duration”—which
represent the number of different pages visited by the user in a session, and the time
spent in each of these page categories. The other variables, “Exit rates,” “Bounce rates,”
and “Page value,” are Google Analytics metrics for each page on the e-commerce site.
For the sake of brevity, we do not go into the detail of each variable. In this example,
we only focus on the exit rates and the product-related duration, representing Google
Analytics metrics when the user leaves the page and the time spent on the page catego-
ries, respectively. When working with data that primarily reflects the time spent on a
webpage, it is clear that an upper one-sided chart is desirable. The dataset contains 12
330 sessions; however, we were left with 530 data points by filtering the data. The
schemes under consideration are implemented in two phases. In Phase-I, when the pro-
cess is considered to be IC, we select samples of 300 and 150 observations of the exit
rates and the product-related durations respectively; we find the appropriate control
limits from Table 1. In Phase-II, we monitor 25 subgroups, each of size 5, for both exit
rates and product-related data. We show the plotting statistics of the schemes under
consideration, based on “Exit rates” and “Product-related duration” data, in Figures 2
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and 3, respectively. The Min scheme is not plotted on these figures, as most of the val-
ues equal zero, and the Min scheme does not signal.
According to Figure 2, for the exit rate, when (m, n) ¼ (300, 5) with pre-specified

#0 of 20, all five schemes considered here do not give a signal. This is why we consider
next another variable—i.e., the “Product-related duration.”
According to Figure 3, for the product duration, when (m, n) ¼ (150, 5) with a pre-

specified #0 value of 20, the rank-sum and Med schemes give a signal on the 22nd and
16th subgroups, respectively. However, the M-Pre, WM-Pre and W-Pre schemes do not
provide a signal, indicating that the Med scheme performed best, followed by the rank-
sum scheme in this situation.

5. Effect of the Phase-I bias

In this section, we study the effect of Phase-I bias on the IC performance of various
charting schemes. For brevity and simplicity, we consider Phase-I samples from the
standard normal distribution. The actual median in this case is equal to zero. However,
in a sample of size m, the observed median might vary. We consider five differ-
ent classes:

(i) Sample median is less than -0.10, where we have a sizeable downward bias;
(ii) Sample median lies between -0.10 and -0.05, where we have a moderate down-

ward bias;
(iii) Sample median lies between -0.05 and 0.05, where we have a nearly pre-

cise estimate;
(iv) Sample median lies between 0.05 and 0.10, where we have a moderate

upward bias;
(v) Sample median is more than 0.10, where we have a significant upward bias.

Figure 2. The proposed Rank-sum scheme and precedence-type monitoring schemes for the exit
rates data.

14



Now, with setting ¼ 5 and #0 ¼ 25, we compute the conditional fifth percentile of
the run-length for m ¼ 100, 300, and 500 using the control limits in Table 1 for vari-
ous charting schemes. We study how the conditional fifth percentile values vary for dif-
ferent types of bias, for different types of scheme, and how the values vary as
m increases.
In general, we see from Table 4 that the conditional fifth percentile values vary a lot,

depending on the Phase-I bias. The conditional fifth percentile values are much lower
than the deserving level of 25 for sizeable downward bias, and slightly lower for moder-
ate downward bias. The conditional fifth percentile values are more than the deserving
level of 25 when there is sizeable upward bias. For moderate upward bias, the attained
value of the fifth percentile is often close to the target, and sometimes higher. When the
sample median is very near the population median, as expected, the results are most
deserving, except for the cases where we observe jumps; in these instances, the target
value of 25 is not precisely achievable.
Overall, from Table 4 we see that the traditional precedence chart and maximal pre-

cedence charts are the two least-affected schemes under a Phase-I bias. In contrast, the
Min chart is affected heavily by the Phase-I bias, especially with Phase-I sample sizes of
less than 300. We can say the same about the W-Pre scheme. The problem does not go
away rapidly, even with an increasing reference sample size. However, if the Phase-I
bias is minimal, most of these schemes ensure that the attained fifth PRL values are
closer to the target, even with m ¼ 100:

We also study the conditional probability of a false alarm on or before the 25th test
sample. We present the results in Table 5, from which we see an inflation of the false
alarm probability with a downward bias in the sample median. The rate of inflation
reduces as the reference sample size increases. As expected, Table 5 also suggests that
the inflation of early false alarm probabilities is minimal for the Med and M-Pre
schemes. The Min scheme is again the worst. The effect of Phase-I bias on the WM-Pre
and rank-sum schemes is very similar.

Figure 3. The proposed Rank-sum scheme and precedence-type monitoring schemes for the Product
Related Duration data.
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6. Summary and recommendations

A large number of studies related to the design and implementation of SPM schemes use the
IC ARL as the performance metric for the determination of control limits, and consider the
OOC ARL to compare competing schemes. In general, the run-length distribution of a
charting scheme is right-skewed, and even the IC ARL may not be finite. Noting this, many
researchers have suggested using the MRL or any other PRL, which provide additional
information such as information about early false alarms. In this paper, we discuss the
design and implementation of several precedence-type charting schemes, and the rank-sum
scheme, using a smaller percentile of the run-length distribution. The determination of the
control limit using the lower percentile point of the run-length distribution is easier and
faster than the determination of control limits based on the ARL. Also, the use of the lower
percentile restricts the probability of early false alarms to a prefixed level.

Table 4. Conditional 5th PRL for various schemes reflecting the effect of Phase-I bias.
Phase-I Median

Scheme m Less than -0.10 [-0.10, -0.05) [-0.05, 0.05] (0.05,0.10] Greater than 0.10

100 14 17 21 24 30
Med 300 18 21 24 29 32

500 18 21 25 28 34
100 12 17 23 31 49

Min 300 14 19 24 33 43
500 15 19 25 32 43
100 16 19 22 25 33

M-Pre 300 18 22 25 31 34
500 17 21 25 29 31
100 13 19 25 33 50

W-Pre 300 16 19 25 33 42
500 15 18 25 33 39
100 14 21 28 36 54

WM-Pre 300 15 20 26 34 46
500 16 19 25 31 41
100 14 20 26 35 55

Rank-sum 300 16 19 25 34 41
500 16 18 25 32 43

Table 5. Conditional probabilities of a false alarm on or before 25th sample for various schemes.
Phase-I Median

Scheme m Less than -0.10 [-0.10, -0.05) [-0.05, 0.05] (0.05,0.10] Greater than 0.10

100 0.0854 0.0718 0.0599 0.0519 0.0417
Med 300 0.0676 0.0610 0.0513 0.0424 0.0409

500 0.0722 0.0574 0.0488 0.0435 0.0332
100 0.0990 0.0696 0.0530 0.0388 0.0256

Min 300 0.0824 0.0650 0.0498 0.0372 0.0293
500 0.0765 0.0645 0.0491 0.0377 0.0262
100 0.0810 0.0668 0.0556 0.0495 0.0388

M-Pre 300 0.0674 0.0563 0.0483 0.0404 0.0321
500 0.0739 0.0567 0.0492 0.0412 0.0383
100 0.0904 0.0661 0.0496 0.0349 0.0271

W-Pre 300 0.0792 0.0640 0.0500 0.0368 0.0285
500 0.0805 0.6667 0.0499 0.0374 0.0279
100 0.0840 0.0588 0.0452 0.0325 0.0228

WM-Pre 300 0.0786 0.0630 0.0482 0.0372 0.0259
500 0.0765 0.0641 0.0491 0.0385 0.0306
100 0.0873 0.0613 0.0462 0.0352 0.0229

Rank-sum 300 0.0756 0.0640 0.0484 0.0356 0.0309
500 0.0706 0.0653 0.0488 0.0379 0.0269
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We compare the performance of six distribution-free SPM schemes for location shift,
using a high PRL value. In respect of the 95th OOC PRL values, the weighted precedence-
type schemes outperform the unweighted precedence-type schemes. However, we notice
that these schemes might be more affected in the presence of sizeable upward or down-
ward bias in the reference sample median. In contrast, the Med and M-Pre schemes are
less affected by considerable bias in the reference sample. It is not easy to choose between
the various competing schemes. However, we feel that the Min chart may be disregarded.
We advise operators and practitioners to apply distribution-free schemes when they do

not have any knowledge of the underlying process distribution. In particular, to detect a
location shift, they could use the W-Pre or the WM-Pre scheme if the Phase-I sample is
well established. If there is some doubt about possible downward bias, it is safer to use
the Med scheme or the M-Pre scheme. However, more exploration is required on the
overall performances of various schemes, the performance of the individual schemes, and
the effect of Phase-I bias after omitting a few observations of reference samples with
extreme ranks. We recommend the design and comparison of various other existing
charting schemes using the PRL-based methods used in this paper.
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