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Abstract

A dynamic flotation model incorporating fundamental and phenomenological relationships, information from
froth images and steady-state models is described. Model outputs correspond with online measurements
commonly available on flotation circuits, and the model parameters are estimated from industrial data.
Simulation results are presented, highlighting important non-linearities that need to be taken into account
for optimal flotation operation. Observability and controllability analyses are performed, proving that key
flotation parameters can theoretically be estimated from online process measurements, and that the set of
modelled inputs can control all the model outputs. This model can be used in advanced model-based control
and optimisation applications. The ability to estimate key flotation parameters opens up opportunities for
improved optimisation of operating variables such as aeration rates, froth depth and the reagent recipe.
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1. Introduction

Model based flotation control has been used in industry for over 25 years (Schubert et al., 1995). The
first applications focussed mostly upon stabilising pulp levels (Jämsä-Jounela et al., 2003) - an aspect that
remains relevant and is still improved on (Shean et al., 2018). Flotation stabilisation furthermore continues
to add considerable economic benefit as part of advanced control implementations (Saffy et al., 2019).

Stabilisation of flotation cells originated from the need to stabilise the flotation process before optimi-
sation can be attempted. The role of the froth phase and water transport mechanism in flotation grade
and recovery optimisation was modelled by Bascur and Herbst (1982), using a combination of fundamental,
phenomenological and empirical models. Neethling and Cilliers (2003) contributed significantly to under-
standing the mechanisms in the froth phase through fundamental and phenomenological models, as well as
simplified versions of these models (Neethling and Cilliers, 2009), while Hadler and Cilliers (2009) focussed
on the application of these models in maximising grade and recovery. Image analysis has also been used
extensively in quantifying flotation behaviour (Aldrich et al., 2010).

Regardless of whether empirical, fundamental or phenomenological models are used - the number and na-
ture of parameters used in these models often require sampling and modelling campaigns that are much more
extensive (and potentially disruptive) than routine sampling commonly conducted on flotation processes.
As a result, some model parameters will not be updated regularly, resulting in a gradual deterioration in
model accuracy. The ability of a model to estimate the key flotation parameters from online measurements
not only lessens the reliance of the model on periodic manual updates, but also ensures that parameters
track short-term variations in process characteristics that occur between manual samples.

In this work existing models available in literature are combined into a model structure that allows the
estimation of model parameters from online process measurements. Sections 2.1 and 2.2 show fundamental
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mass- and volume balance models as the core of the model. The concentrate volumetric flow rate is described
in Section 2.3 and is based on steady-state models (Neethling and Cilliers, 2009). Section 2.4 describes the
concentrate mass flow model, combining a dynamic kinetic model for true flotation (Polat and Chander,
2000) with a steady-state model for entrainment. A simplification of the entrainment model is also shown.
Section 2.5 describes bubble size and air recovery models, and the derivation of linear relationships to model
bubble size and air recovery based on data collected on an industrial plant (Hadler et al., 2010). A steady-
state simulation of the model is shown in Section 3, using operating ranges from an industrial plant as
described by Hadler et al. (2010). An observability and controllability analysis is done in Section 4, showing
that in theory the model parameters can be estimated from online measurements, and that the process can
be manipulated to achieve a desired operating point.

2. Model Description

2.1. Volume balance

Mass and volume balances govern the transfer of materials between cells and the concentrate and tailings
streams. Fig. 1 is an example of the volumetric flow rates between three flotation cells and a concentrate
hopper.

Figure 1: Volumetric flow rates between 3 flotation cells and a concentrate hopper

The volumetric feed flow rate and density are typically measured, and feed composition is either measured
or, if not, known fairly accurately. For each cell k, the volume balance can be written, with QFk the
volumetric feed flow rate to cell k, QTk the volumetric tailings flow rate from cell k, and QCk the concentrate
flow rate from cell k. The change in cell pulp volume, Vk, can be rewritten in terms of the cell surface area
Ak, and pulp level Lk, assuming a uniform cell surface area over its typical operating range.

dVk
dt

= Ak
dLk
dt

= QFk −QTk −QCk (1)

The tailings flow rate from cell k is the feed to cell k + 1 (QTk = QFk+1
). No attempt will be made

to model tailings flow rate from cell levels and valve characteristics as was done by Jämsä-Jounela et al.
(2003), as valves in industrial environments often have considerable hysteresis, and flow rate through a valve
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is influenced by a variety of process disturbances such as density. Instead, QCk will be calculated from the
water recovery calculation described by Neethling and Cilliers (2009), and it is assumed that a controller
exists to control QTk to a desired flow rate.

For the concentrate hopper with level LH , and surface area AH , the volume balance includes the con-
centrate inflows from all N contributing cells (QC1

+ QC2
+ ... + QCN ), and the outflow from the hopper

(QH).
dVH
dt

= AH
dLH
dt

= QC1 +QC2 + ...+QCn −QH (2)

2.2. Mass balance

The mass flow rates between cells are modelled using a mass balance, with the feed mass flow rate Ṁ i,j
Fk

,
into cell k calculated from the feed volume, density and composition. The mass flow rates of different mineral
species i, are modelled separately to distinguish between desired (usually floatable) minerals containing the
elements that the flotation circuit aims to recover, and other gangue or undesired minerals. In addition, each
species can be divided into multiple classes j, where each class could have different floatability characteristics
(Oosthuizen and Craig, 2018) and/or different size distributions affecting entrainment. The symbols are
described in Table 1.

Table 1: Mass balance symbols

Variable Unit Description
i - Superscript for mineral species (e.g. gangue or valuable mineral)
j - Superscript for mineral class with different floatability or size
k, H - Subscript for unit (flotation cell k, or hopper, H)

M i,j
k kg Accumulated mass of species i and class j, in cell k

∆ - Subscript for concentrate C, tailings T , and feed F

Ṁ i,j
∆k

kg/h Mass flow rate associated with a specific cell, k
Q∆k

m3/h Volumetric flow rate associated with a specific cell, k

d

dt
M i,j
k = Ṁ i,j

Fk
− Ṁ i,j

Tk
− Ṁ i,j

Ck
(3)

For the flotation cells, the tailings mass flow rate from cell k equals the feed flow rate to cell k + 1
(Ṁ i,j

Fk+1
= Ṁ i,j

Tk
). The tailings mass flow rates from each cell can be calculated as the tailings volumetric

flow rate multiplied by the concentration of each species inside the flotation cell.

Ṁ i,j
Tk

=
M i,j
k

LkAk
QTk (4)

For the hopper, a similar approach can be followed, with the total hopper inflow being the sum of the
concentrate flow rates from N contributing cells. The mass outflow rate (Ṁ i,j

H ) is calculated as a function of

the hopper concentrations and volumetric outflow rate. The hopper mass pull rate is then given by ṀTot
H ,

for m and n the number of modelled mineral species and classes respectively.

d

dt
M i,j
H =

N∑
k=1

Ṁ i,j
Ck
−

M i,j
H

LHAH
QH (5)

ṀTot
H =

m∑
i=0

n∑
j=0

M i,j
H

LHAH
QH (6)
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2.3. Concentrate volumetric flow rate

The concentrate volumetric flow rate from each cell, QCk , can be calculated from the steady-state water
recovery model given by Neethling and Cilliers (2009). For a two-phase system, Neethling and Cilliers (2003)
showed that froth depth or froth residence time is not the main cause of reduced water recovery observed
when the froth height increases (Wang et al., 2016; Zheng et al., 2006), but rather the increase in bubble size
associated with deep froths. Neethling and Cilliers (2003) showed that water recovery has an inverse squared
relation to bubble-diameter, with the proportionality constant determined by the bubble shape. The model
for water recovery is shown in (7), where Jgk is the superficial gas velocity for cell k, and αk is the air
recovery for cell k. Eq. (8) defines the Plateau border length (λout) per volume of froth where DBFk is the
mean top of froth bubble diameter for cell k. It is assumed for (8) that the bubbles have similar geometry
as Kelvin cells (Neethling and Cilliers, 2003). k1 defined in (9) quantifies the opposing forces acting on a
particle due to gravity and viscosity, with ρ the fluid density, CPB the Plateau border drag coefficient, and
µ the fluid viscosity. Jgk as defined in (10) is calculated from the aeration rate Qairk of the flotation cell
and its surface area Ak. Table 2 summarizes the variables for the water recovery model and provides the
units for each variable.

Table 2: Variables used in concentrate flow rate and entrainment models (Neethling and Cilliers, 2009)

Variable Description Typical value Units
Jgk Superficial gas velocity for cell k 10 mm/s
Qairk Volumetric air flow rate to cell k 360 m3/h
hfk Froth depth 110 mm
αk Air recovery for cell k 0.25 −
DBFk Mean top of froth bubble diameter for cell k 10 mm
ρi,js Solid particle density for species i and class j 3000 kg/m3

ρ Fluid density 1000 kg/m3

µ Fluid viscosity 0.001 Pa · s
g Gravitational acceleration 9.81 m/s2

dpmin Particle minimum diameter 10 µm
dpmax Particle maximum diameter 150 µm
CPB Plateau border drag coefficient 50 −
Pe Dispersion Peclet number 0.15 −

QCk
Ak

=


Jgk

2 λout
k1

(1− αk)αk 0 < αk < 0.5

Jgk
2 λout
4k1

αk ≥ 0.5

(7)

λout ≈
6.81

DBFk
2 (8)

k1 =
ρg

3µCPB
(9)

Jgk = 100
Qairk
Ak

(10)

2.4. Concentrate mass flow rate

The two main flotation mechanisms governing the transfer of material between the pulp and overflowing
froth phases, are the true flotation of hydrophobic particles, and entrainment of all particles together with
the bubble stream (Wills and Napier-Munn, 2006). True flotation is often modelled as a first order process,
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while entrainment is a function of particle size, density and the upward stream of liquid (water recovery)
as part of the bubble stream. The bulk of the desired mineral in the concentrate stream would typically
be hydrophobic particles (due to true flotation), and the bulk of the gangue minerals in the concentrate
stream, entrained particles. Both desired and gangue minerals are however entrained into the froth layer,
and depressants are often required as a reagent to suppress weakly floatable gangue minerals. In this work,
both true flotation and entrainment are modelled for all mineral species, to quantify the contribution of
each mechanism to the final concentrate stream, and to provide insight into the effectiveness of the flotation
reagents (depressants and activators). A model-based control system can optimise the true flotation and
entrainment mass flows from each flotation cell, by exploiting differences in mineral species’ concentrations
among flotation cells and their impact on the combined concentrate streams grade and recovery.

2.4.1. True flotation model

True flotation is usually modelled using a kinetic model, based on a chemical reactor analogy, as described
by Polat and Chander (2000) for a batch reactor. Such a model has the general form:

dCi,jpk
dt

= −Ki,j Ci,jpk Cbk Rfk (11)

where Ci,jpk represent the concentrations of particles of species i, class j in the pulp of cell k, and Cbk
represents the concentration of bubbles in the pulp. Ki,j is a pseudo rate-constant that depends on various
parameters affecting the flotation process. Ki,j is modelled as a distribution with different values for each
species i, and class j. Rfk represents the froth recovery.

In this work the true flotation model of (11) is modified by setting Rfk equal to the air recovery (αk),
described in Section 2.3. As the attachment of particles only takes place on the surfaces of bubbles, the
effect of bubble surface area flux is taken into account by replacing Cbk in (11) with a bubble surface area
flux term (Sbk) in (12), as described by Runge and Franzidis (2003). The change in concentration in the cell
due to true flotation (Ci,jpk ) is also replaced in (12) by a change in mass of each species and class (M i,j

k ) in
flotation cell k. Sbk is defined in (13), where DBPk is the Sauter mean bubble diameter in the pulp for cell
k. Table 3 summarizes the variables for the true-flotation model and provides the units for each variable.

dM i,j
k

dt
= −Ki,jM i,j

k Sbk αk (12)

Sbk = 6
Jgk
DBPk

(13)

Table 3: Variables used in the true flotation model
Variable Description Units
DBPk Sauter mean bubble diameter in pulp for cell k mm
Ci,jpk Concentrations of particles of species i, class j in the pulp of cell k kg/m3

Ki,j Flotation rate-constant for species i, class j −
Rfk Froth recovery for cell k, assumed to be equal to αk −
Sbk Bubble surface area flux for cell k s−1

2.4.2. Entrainment model

The entrainment model is based on the steady-state model by Neethling and Cilliers (2009), but is
simplified to lump the effect of different size classes together. The original entrainment model of Neethling
and Cilliers (2009) calculates an entrainment factor, Enti,j , to define the fraction of particles with a defined
size, dp, and density, ρi,js , that will be entrained for a specified Jgk and froth depth, hfk (14). The variables
and units for the entrainment model are defined in Table 2.
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Enti,j ≈


exp

(
− vi,jset

1.5
hfk

DAxial
√
Jgkαk(1−αk)

)
0 < αk < 0.5

exp

(
− 2vi,jset

1.5
hfk

DAxial
√
Jgk

)
αk ≥ 0.5

(14)

The particle settling velocity vi,jset, is described in (15), for species i and class j. The axial dispersion
coefficient, DAxial, is given by (16), where Pe is the dispersion Peclet number (Neethling and Cilliers, 2009).

vi,jset ≈
1

3

g (ρi,js − ρ) d2
p

18µ
(15)

DAxial ≈
J1.5
gk√

k1

(√
3− π/2

)
Pe

(16)

Enti,j is the ratio of the entrained solids concentration, Ci,jck , to the slurry solids concentration, Ci,jpk .

Enti,j ≈
Ci,jck
Ci,jpk

(17)

Neethling and Cilliers (2009) noted that, although Enti,j does not include a term for the froth bubble
size, the water recovery defined in (7) is dependent on DBFk , implying that the entrained mass is a function
of froth depth and froth bubble size.

Eq. (14) has a sharp transition between an entrainment factor of 0 and 1 over a narrow range in Jgk , for a
particular particle size, dp. Using a single entrainment factor with an average particle size does not provide
an accurate model with a gradual increase in entrainment (of particles of different sizes) as Jgk increases,
and using multiple entrainment factors to model different particle sizes quickly increases model dimensions
beyond practical limits. A simplified entrainment factor Enti,jvar, based on the entrainment models described
in (14 - 16) was consequently derived to describe entrainment of particles as a function of Jgk , as given in
(18). The main variables that will be manipulated are Jgk and hfk . Therefore (14) can be rewritten as

Enti,jvar = exp(−
Ki,j
ent hfk d

i,j
ptr

3

Jgk
2 ) (18)

where all other variables are lumped together in the single constant Ki,j
ent, defined as

Ki,j
ent =

[
1

3

g (ρi,js − ρ)

18µ

]1.5

√
k1

(√
3− π/2

)
Pe√

αk(1− αk)
(19)

The particle diameter, di,jptr, for which the entrainment factor equals 0.5, can be calculated from (18) and
(19) as

di,jptr = 3

√
ln(0.5) Jgk

2

Ki,j
ent hfk

(20)

For smaller particles in particular, the entrainment factor changes from 0 to 1 over a fairly narrow
range of superficial air velocities. Assuming that this transition occurs rapidly, and also assuming a flat
size distribution profile over all size classes (on a log axis), the fraction of the material (of all size classes)
entrained Enti,jFrac, can be estimated as the ratio of the size class for which 50% is entrained over the total
size range, where dpmin and dpmax represents the minimum and maximum ranges of the size classes modelled.
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Enti,jFrac =
ln(di,jptr)− ln(dpmin)

ln(dpmax)− ln(dpmin)
(21)

A comparison of the original entrainment factor Enti,j in (14) (Neethling and Cilliers, 2009) and the
simplified entrainment factor Enti,jFrac in (21) is shown in Fig. 2. This figure shows a good correlation over a
wide range of Jgk , between 0 and 1 cm/s. For the comparison shown in Fig. 2, dpmin = 8µm, dpmax = 220µm
and αk = 0.5 was used.

Figure 2: Comparison of original (14) and simplified (21) entrainment models

2.4.3. Combined concentrate flow rate

The overall concentrate mass flow rate from each cell Ṁ i,j
Ck

, include true flotation and entrainment
components. Combining (12), (17), (19) and (21) yields

Ṁ i,j
Ck

= Ki,jM i,j
k Sbk αk + Enti,jFrac

M i,j
k

Ak Lk
QCk (22)

with Ci,jpk in (17) defined in (23).

Ci,jpk =
M i,j
k

Ak Lk
(23)

The concentrate grade for each cell, GradeCk can be calculated from (22) as the ratio of the desired
element mass flow rate in the concentrate stream, ṀDCk (which may occur in a single or multiple mineral
species) relative to the total concentrate mass flow rate. An “instantaneous” recovery, RecCk , can be
calculated as the ratio of the desired element mass flow rate in the concentrate stream relative to the desired
element mass flow rate in the feed stream, ṀDF . Despite the “instantaneous” recovery not taking variability
in the feed composition and residence times in the flotation circuit into account, it provides a useful real-time
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approximation of recovery. The measured concentrate grade from the hopper, GradeH is calculated in (26)
as the ratio between the desired mass, MDH , and the total masses in the concentrate hopper.

GradeCk =
ṀDCk∑m

i=1

∑n
j=1 Ṁ

i,j
Ck

(24)

RecCk =
ṀDCk

ṀDF

(25)

GradeH =
MDH∑m

i=1

∑n
j=1M

i,j
H

(26)

2.5. Froth stability and bubble size models

The entrainment, water recovery and true flotation models described in (7), (12), (17) and (21) uses
bubble size (DBFk) and froth recovery (αk) as parameters. These are dynamic parameters that vary with
operating conditions, and need to be modelled.

Several attempts have been made to model froth stability and the effect of the entrained and attached
particles on froth stability − often with conflicting results (Ata, 2008; Tang and Tan, 1989). Zheng et al.
(2006) and Barbian et al. (2003) reported a strong correlation between air recovery and the ratio between
froth depth and hfroth−max, where hfroth−max is an experimentally determined maximum depth that froth
would grow to in a non-overflowing column. hfroth−max is however not constant, but increases as a function
of the aeration rate (Barbian et al., 2003). Although different measures of froth stability are used in
literature, good correlations have been reported for some measures of bubble burst rates, dynamic froth
stability, and air recovery (Morar et al., 2006).

The role of bubble size in froth stability was investigated by Geldenhuys and McFadzean (2019) and
Gallegos-Acevedo et al. (2010). It was concluded that the top-of-froth bubble size in a non-overflowing
column is determined by the bubble loading and is independent of the pulp bubble size. It was further
shown that hfroth−max follows a decaying trend with pulp bubble size. Ata (2008) performed experiments
to determine the coalescence time of bubbles with varying surface coverings. It was shown that the relation
between the coalescence time between two bubbles, and the percentage of their surface coverage is mostly
linear. Gallegos-Acevedo et al. (2010) obtained similar results, but also showed how the average bubble size
stabilised at a constant value of approximately 3mm for high bubble loadings, while the average bubble size
exceeded 5 mm at lower loadings, indicating that further coalescence was inhibited at high bubble loadings.

Neethling and Cilliers (2003) included common probability functions to determine the probability that a
bubble film would fail, in the models for both bubble coalescence and bubbles bursting at the top of the froth.
Morar et al. (2012) used similar variables and fitted the bubble burst rate to a power function of both bubble
size and bubble loading, but the sign of the power function was not consistent for all experiments. Despite
agreement on the mechanisms affecting froth stability, Neethling and Brito-Parada (2018) concluded that
the mechanisms for froth stability cannot be modelled with sufficient accuracy, and hence used an empirical
relation to model froth stability and bubble size in combination with the fundamental water recovery model
described in (7) - (9).

Empirical relationships were hence fitted to the measured top of froth bubble sizes DBFk , and air re-
coveries αk, described in Hadler et al. (2010). DBFk was modelled as a linear combination of Jgk and the
froth residence time, λairk , shown in (27), while αk was modelled as a linear relation with Jgk and DBFk

shown in (28). KBSJg , KBSλ , KαBF and KαJg are the linear parameters that were calculated using data for
4 rougher cells. For DBFk an R2 value of 0.84 was achieved for 4 rougher cells, while αk had a much lower
R2 value of 0.55. Including bubble load in (28) resulted in an insignificant increase in accuracy, but it could
be related to the dataset used.

d

dt
DBFk =

KBSJg Jgk +KBSλ λairk −DBFk

λairk
(27)
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d

dt
αk =

KαBF DBFk +KαJg Jgk − αk
λairk

(28)

λairk =
hfk
Jgk

(29)

2.6. Model summary

The state equations for each flotation cell k, are summarised in Table 4, and the state equations for
the concentrate hopper in Table 5. The ”Online Measured” column in Tables 4 and 5 indicates if a state
is measured. Additional measured model outputs (calculated from states) are shown in Table 6, measured
disturbances in Table 7 and model parameters in Table 8.

Table 4: States for each Flotation Cell
Symbol Eq. State equation Description Online Measured

DBFk (27) d
dtDBFk =

KBSJg Jgk+KBSλ λairk−DBFk
λairk

Top of froth bubble size Yes

αk (28) d
dtαk =

KαBF DBFk+KαJg Jgk−αk
λairk

Air recovery Yes

Lk (1) d
dtLk = (QFk −QTk −QCk)/Ak Cell pulp level Yes

M i,j
k (3) d

dtM
i,j
k = Ṁ i,j

Fk
− Ṁ i,j

Tk
− Ṁ i,j

Ck
Masses in flotation cell No

Table 5: States for the Concentrate Hopper

Symbol Eq. State equation Description Online Measured

LH (2) AH
dLH
dt = QC1 +QC2 + ...+QCn −QH Hopper level Yes

M i,j
H (5) d

dtM
i,j
H =

∑N
k=1 Ṁ

i,j
Ck
− Mi,j

H

LHAH
QH Masses in hopper No

Table 6: Additional measured model outputs

Symbol Eq. Output equation Description Online Measured

ṀTot
H (6) ṀTot

H =
∑m
i=0

∑n
j=0

Mi,j
H

LHAH
QH Mass pull rate Yes

GradeH (26) GradeH =
MDH∑m

i=1

∑n
j=1M

i,j
H

Concentrate grade in hopper Yes

2.7. Interactions not modelled explicitly

The flotation model summarised in Section 2.6 does not explicitly model the effect of factors such as
gas-holdup, pulp viscosity, turbulence, or reagents in the pulp on the recovery of different mineral species, as
described by Bascur (2005). Instead, the effect of all factors contributing to the attachment and detachment
of particles in the pulp are lumped together in a pseudo rate constant, Ki,j , as defined in (12). Where
additional online measurements are available, more detailed sub-models can be developed to potentially
improve model accuracy.
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Table 7: Measured Disturbances
Symbol Description Unit

QF1
Volumetric feed rate to cell 1 m3/h

ρF1
Feed density of slurry flow to cell 1 kg/m3

GradeiF Feed grade of species i to cell 1 -
dpmin Particle minimum diameter µm
dpmax Particle maximum diameter µm

Table 8: Model parameters to be estimated

Symbol Description

KBSJg Effect of the superficial gas velocity on the mean top of froth bubble diameter
KBSλ Effect of the average froth residence time on the mean top of froth bubble diameter
KαBF Effect of the mean top of froth bubble diameter on air recovery
KαJg Effect of the superficial gas velocity on air recovery
CPB Plateau border drag coefficient
Ki,j Flotation rate-constant for species i, class j

A key aspect of the model described in Section 2 is the ability to continuously estimate (and hence
update) model parameters using online measurements. Future work to expand the model should ensure that
all additional model parameters can also be estimated from online (or frequently updated) measurements,
to prevent the expanded model from degrading over time.
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3. Steady-state Model Simulation

Steady-state simulations were performed for a single flotation cell using the models described in Section 2,
to show the dependence of the modelled variables on the controlled variables, Jgk and hfk . Operating ranges
and model outputs are based on the industrial data reported by Hadler et al. (2010). Simulation results
of the empirical models of DBFk and αk as described in (27) and (28) are shown in Fig. 3 and Fig. 4.
Concentrate water recovery was simulated based on (7), including the dependence of DBFk and αk on hfk
and Jgk . Grade and recovery simulations are based on true flotation (12) and the simplified entrainment
model (21). The same ranges of Jgk and hfk were used as what was described in Hadler et al. (2010), and
model parameters were fitted to obtain similar results for these variables as was reported during this trial.
Note that the experimental trial conducted by Hadler et al. (2010) focussed on the effect of Jgk on αk and
other process variables, and that hfk was not varied intentionally as part of the test work.

Top of froth bubble size, DBFk (Fig. 3) and air recovery, αk (Fig. 4) show peaks that occur at a lower
value of Jgk for shallower froths, as reported by Hadler et al. (2012). The values of Jgk and hfk where the
peaks occur are however different.

Figure 3: Top of froth bubble size, DBFk , (27) as a function of Jgk and hfk

Water recovery has a quadratic dependence on Jgk , and an inverse dependence on bubble size, which
results in some interesting variations in entrainment over a range for Jgk and hfk as shown in Fig. 5.

When the true flotation and entrainment components are combined, concentrate grade (as shown in
Fig. 6) increases with an increase in hfk and a decrease in Jgk as expected. Recovery, as shown in Fig. 7,
however shows a strong dependence on air recovery, implying that the same concentrate grade can be
obtained at multiple recoveries, confirming that hfk and Jgk cannot be considered independently when
optimising grade and recovery in a flotation cell.

The maximum recovery shown in Fig. 7 is 45.8% when the cell is operated at Jgk = 9.7mm/s and
hfk = 100mm. Fig. 6 shows a grade of 30.1% at this operating point, which can also be achieved at various
other operating points. If the flotation cell was for example operated at Jgk = 7.4mm/s and hfk = 108mm,
the same grade of 30.1% would have been achieved, but at a recovery of only 37.4%. In a flotation circuit,
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Figure 4: Air recovery, αk, (28) as a function of Jgk and hfk

Figure 5: Water Recovery, QCk , (7) as a function of Jgk and hfk
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there is still an opportunity to recover more of the desired minerals in downstream cells, where upstream
cells are not operated at their recovery peaks. The masses of desired minerals available in downstream cells,
are also a function of the recoveries in upstream cells, as indicated by the mass balance (3). This quantitative
example provides an indication of the potential benefit that model-based control could have on improving
recoveries in flotation processes.

Figure 6: Concentrate Grade, GradeCk , (24) as a function of Jgk and hfk

13



Figure 7: Concentrate Recovery, RecCk , (25) as a function of Jgk and hfk

4. Dynamic Model Analysis

The dynamic model analysis has two objectives:

• To determine if the model parameters (that would normally be calculated from a manual sampling
campaign) can be estimated continuously from online measurements, defined as measured model out-
puts. The observability analyses shown in Sections 4.1 - 4.3 evaluate different combinations of model
states and measurements to show which measurements are required to estimate specific sets of param-
eters. Should an observability analysis return a negative result, the interpretation is that all model
states and parameters cannot be estimated using the defined model equations and measurements. An
alternative model definition with additional measurements (which may include derivatives of existing
measurements), a reduced parameter set or alternative model equations would be necessary to estimate
all models states and parameters.

• To determine if the model states can be controlled to desired setpoints using the defined model inputs.
This is evaluated using a controllability analysis as described in Section 4.4. Similar to the observability
analysis, if all the states are not controllable, it means that the states cannot be driven to a specific
operating condition given the available inputs. Note that the controllability analysis does not provide
any conclusion on the operating ranges of the model inputs relative to the desired model states.

The dynamic flotation model can be analysed by dividing it into three parts: the parameter estimation for
froth bubble size and αk, the volume balance and the mass balance. The flotation model can be represented
in state-space format, with x the states, u the manipulated variables and y the measured variables:

dx

dt
= f(t,x,u)

y = h(t,x,u)
(30)
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The non-linear system can be linearised at a steady-state operating point, (x0,u0), with the deviation
variables defined as δx = x− x0, δu = u− u0 and δy = y− y0.

d

dt
δx =Aδx + Bδu

δy =Cδx + Dδu
(31)

The system matrices, A, B, C and D can be calculated as:

A =
∂f(t,x,u)

∂x

∣∣∣∣
x0,u0

C =
∂h(t,x,u)

∂x

∣∣∣∣
x0,u0

B =
∂f(t,x,u)

∂u

∣∣∣∣
x0,u0

D =
∂h(t,x,u)

∂u

∣∣∣∣
x0,u0

(32)

Skogestad and Postlehwaite (2005) describe how state observability and state controllability can be
analysed for linear systems by determining the rank of an observability (O) and controllability (C) matrix
respectively. If the linearised system is observable or controllable, it implies that the non-linear system is
also observable or controllable (Hermann and Krener, 1977; le Roux et al., 2017). All the states, x, are said
to be observable or controllable from the input vector, u, and output vector, y, if O or C has full rank,
n, where n is the dimension of the state vector x. This technique can also be used to determine if model
parameters can be estimated from u and y, by augmenting the state vector x, with the model parameters as
states without any dynamics (Simon, 2006). The state observability matrix is shown in (33) and the state
controllability matrix in (34).

O =


C
CA

...

CAn−1

 (33)

C =
[
B AB A2B . . . An−1B

]
(34)

4.1. Parameter estimation of froth bubble size and air recovery

The state equations for DBFk , DBFk and αk, are shown in Table 4. Estimation of KαBF , KαJg , KBSJg

and KBSλ are trivial as these parameters can be determined from multiple data-points using linear regression
techniques. To include estimation of these empirical parameters into the overall flotation model analysis,
KαBF , KαJg , KBSJg and KBSλ are defined as state variables xp1, with zero dynamics. The augmented state
vector xaug1, include x1, the original state vector, and xp1. Analogous to multiple measurements being
required to calculate the parameters using regression techniques, derivatives of manipulated variables u,
and outputs y, are required to satisfy observability requirements, if a single flotation cell is considered. An
alternative approach is to use measurements from multiple cells, which removes the requirement for higher
order derivatives. Measurements from two flotation cells will be included for this analysis.

The state (xck), output (yck) and input (uck) vectors for a single flotation cell, k, are given in (35),
followed by the state (x1) and output (y1) and input (u1) vectors for two cells. The observability analysis
is performed using the augmented state vector xaug1, and output vector y1. A full rank of 8 is achieved,
indicating that all the states in xaug1 can be estimated from the measurements in y1.

15



yck = [DBFk , αk]T

xck = [DBFk , αk]T

uck = [Jgk , hfk ]T

y1 = [yTc1,y
T
c2]T

x1 = [xTc1,x
T
c2]T

u1 = [uTc1,u
T
c2]T

xp1 = [KBSJg ,KBSλ ,KαBF ,KαJg ]T

xaug1 = [xT1 ,x
T
p1]T

(35)

4.2. Parameter estimation including the volume balance

The outflow rate from the concentrate hopper (QH) is often manipulated to achieve a desired mass-pull
(the flow rate of solids reporting to the concentrate), and the concentrate hopper level (LH) is typically
measured. The measurement of LH allows CPB (a state with zero dynamics) to be estimated, which also
allows the concentrate flow rates from all flotation cells to be estimated using (2), and (7) to (9). The
required states and measurements to estimate CPB are given in (36), for the circuit with a hopper and two
flotation cells defined in (35). The resulting observability matrix has a full rank of 10, confirming that CPB
can be estimated from (36).

y2 = [yT1 , LH ]T

x2 = [xT1 , LH ]T

u2 = [uT1 , QH ]T

xp2 = [xTp1, CPB ]T

xaug2 = [xT2 ,x
T
p2]T

(36)

Estimation of the tailings flow rates (QTk) for each flotation cell using (1), requires that the flotation
cell levels (Lk) also be measured. The states and measurements required together with those detailed in
(36) to estimate the tailings flow rates (with zero dynamics) from three cells, are given by (37). The states
and measurements for each cell are shown in (xck) and (yck). The system analysis was expanded to include
3 flotation cells with concentrate flow rates into the same concentrate hopper. The resulting observability
matrix has a full rank of 18.

yck = [DBFk , αk, Lk]T

xck = [DBFk , αk, Lk]T

uck = [Jgk , hfk ]T

y3 = [yTc1,y
T
c2,y

T
c3, LH ]T

x3 = [xTc1,x
T
c2,x

T
c3, LH ]T

u3 = [uTc1,u
T
c2,u

T
c3, QH ]T

xp3 = [xTp2, QT1
, QT2

, QT3
]T

xaug3 = [xT3 ,x
T
p3]T

(37)

4.3. Parameter estimation including the mass balance

For the model analysis, 2 mineral species are included (chalcopyrite (i = 0) and gangue minerals (i = 1))
(Hadler et al., 2010), which can be generalised to be the desired (floatable) and undesired (mostly entrained)
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mineral species. A single class (j = 0) is defined for each of these species. This approximation hence does
not subdivide each class into multiple size distributions (dpmin and dpmax) or floatability constants (Ki,j).
For each flotation cell, (3) needs to be included in the model for i = 0 (desired mineral) and i = 1 (gangue
mineral). Concentrate mass flow rates, Ṁ i,j

Ck
, are modelled by including the true flotation and entrainment

models, as shown in (22). The two mineral species are also included in the hopper model using (5), for i =
0 (desired mineral) and i = 1 (gangue mineral).

The model analysis including the mass balance equations are performed for 3 flotation cells feeding into
a concentrate hopper. The 10 measurements in y3 (37) are required, as well as the concentrate hopper
outflow grade (GH) and total mass flow rate (ṀTot

H ) (inferred from a density measurement). For this model
structure (two species and one class per species), the total mass flow rate is given in (38) and the hopper
outflow grade in (39).

ṀTot
H =

1∑
i=0

0∑
j=0

Ṁ i,j
H (38)

GH =
M0,0
H

M0,0
H +M1,0

H

(39)

The state vector x4, is made up of the state vector x3 in (37) and 8 additional states that are comprised
of the masses of each of the two species in each flotation cell (M i,j

k ) and in the concentrate hopper (M i,j
H ).

The states and measurements applicable to the flotation bank - not a specific cell - are lumped together
under xC and yC respectively in (40). As the tailings flow rates between flotation cells (QTk) are typically
manipulated to control the levels in flotation cells (Lk), QTk is included in the input vector (uck) in this and
the controllability analysis in Section 4.4, rather than in the parameter vector xp4 as was done in (37). The
dimensions of xaug4 is 23 x 1, including the 18 states in x4 and the 5 parameters in xp4. The observability
matrix of this system has full column rank of 23, implying that the masses of the desired and gangue minerals
in all flotation cells as well as the concentrate hopper can be estimated from the online measurements in y4

(40).

yck = [DBFk , αk, Lk]T

xck = [DBFk , αk, Lk,M
0,0
k ,M1,0

k ]T

uck = [Jgk , hfk , QTk ]T

yC = [LH , GH , Ṁ
Tot
H ]T

xC = [LH ,M
0,0
H ,M1,0

H ]T

y4 = [yTc1,y
T
c2,y

T
c3,y

T
C ]T

x4 = [xTc1,x
T
c2,x

T
c3,x

T
C ]T

u4 = [uTc1,u
T
c2,u

T
c3, QH ]T

xp4 = [KBSJg ,KBSλ ,KαBF ,KαJg , CPB ]T

xaug4 = [xT4 ,x
T
p4]T

(40)

It may theoretically be possible to determine the flotation rate constants of the two mineral species, Ki,j ,
defined in (12) from online measurements, by adding additional derivatives of concentrate grade (GH) and
mass flow rate (ṀTot). Given typical measurement noise levels on industrial plants, and considering that
some process variables (for example mass flow rates) rely on a combination of measurements (density and
volumetric flow rate), such an approach is unlikely to be reliable in an industrial environment.

An alternative, more robust approach, is to only perform the estimation of Ki,j when the process is at
steady-state, or to use the average of multiple measurements (approximating steady-state operation). At
steady-state, mass derivative terms in (3) ( ddtM

i,j
k ) and (5) ( ddtM

i,j
H ) would be zero, allowing the mass flow
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rates in the flotation cells (3) and concentrate hopper (5) to be calculated from inferred mass flow rates of
the feed, Ṁ i,j

F1
, and similarly for the concentrate, Ṁ i,j

H . Noting that at steady-state, the tailings mass flow

rate from the last flotation cell, Ṁ i,j
T3

, would be the difference between the feed mass flow rate to the first

flotation cell, Ṁ i,j
F1

, and the concentrate hopper mass flow rate, Ṁ i,j
H , as described in (41), the steady-state

mass balance can be solved.

Ṁ i,j
T3

= Ṁ i,j
F1
− Ṁ i,j

H (41)

For the steady-state observability analysis, one can include Ṁ i,j
T3

for the desired and gangue minerals
as additional measurements to y4, defined in (40). The two reaction rate constants for the desired and
gangue minerals, Ki,j , are added to xp4, the parameter vector, as shown in (42). With the steady-state
approximation, a full rank of 25 is achieved, indicating that the flotation rate constants of the desired and
gangue minerals, Ki,j , can be estimated from online measurements when a steady-state approximation is
used.

y5 = [yT4 , Ṁ
0,0
T3
, Ṁ1,0

T3
]T

x5 = [x4]

xp5 = [xTp4,K
0,0,K1,0]T

xaug5 = [xT5 ,x
T
p5]T

(42)

4.4. Controllability

The state controllability of the linear system is analysed to determine if the states, x4 described in (40)
(and repeated in (43)) can be controlled using the manipulated variables, u6 in (43). The objective is to
determine if the grade of the flotation bank (GH - measured at the outflow from the concentrate hopper)
can be controlled, while also controlling the air recoveries of all cells at their maximums, which is equivalent
to operating at the maximum recovery point for each cell, for a given hfk (Hadler et al., 2010). Full rank
of 18 is achieved for the state controllability matrix, C, defined in (34), indicating that all 18 states in x6

can be controlled using the aeration rates (Jgk), froth depths (hfk) and tailings flow rates (QTk) in all the
flotation cells in combination with the concentrate hopper outflow rate (QH).

xck = [DBFk , αk, Lk,M
0,0
k ,M1,0

k ]T

uck = [Jgk , hfk , , QTk ]T

xC = [LH ,M
0,0
H ,M1,0

H ]T

y6 = [yTc0,y
T
c1,y

T
c2,y

T
C ]T

x6 = [xTc0,x
T
c1,x

T
c2,x

T
C ]T

u6 = [uTc0,u
T
c1,u

T
c2, QH ]T

(43)

5. Discussion

The ability to estimate model parameters for αk and DBFk from online measurements, provide valuable
information on how close to the maximum air recovery point each cell is operating and in what direction
the manipulated variables, Jgk and hfk , should be moved to optimise operation. Combining the estimated
maximum air-recovery point with a model for DBFk (which has a strong influence on entrainment, and
hence grade), open up opportunities to optimise both grade and recovery, and also to include additional
manipulated variables such as frother addition into an optimisation strategy.

The volume balance and associated observability analysis (allowing CPB to be estimated), allow the
concentrate volume produced by each cell to be calculated. This provides a good indication of the relative
contribution of each cell to the total entrained mass - even without considering the mass balance. A reduction
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in the entrained concentrate volume from a cell results in an increase in grade. The quadratic relationship
between water recovery and DBFk , shown in Fig. 5, highlights the importance of including an online measure
of froth bubble size as part of an optimisation strategy.

The mass balance provides invaluable information in distinguishing between true flotation and entrain-
ment in the concentrate stream from each cell. This is the key to optimise reagent addition, as the reason
for excessive gangue minerals in the concentrate stream can be identified as either insufficient suppression
or excessive entrainment. An estimate of the relative contribution from each cell to the overall concentrate
stream, allows for optimisation across multiple cells, to achieve optimal operation. The ability to estimate
the flotation rate constants of the desired and gangue minerals (K0,0 and K1,0) from online measurements
(even if limited to steady-state operation) opens a range of opportunities to optimise reagent additions
(depressants and collectors) and to react to short-term variations in ore characteristics that occur between
sampling campaigns. While mass flow rate measurements on the concentrate streams from each flotation
cell is often impractical to install, there is scope to include other image qualities from froth imaging devices
to quantify the relative contributions from multiple cells.

While the observability analysis confirm that valuable process parameters can be estimated from online
measurements, the controllability analysis confirms that a model-based automatic control strategy can be
used to optimise a flotation process. Control variables that are commonly available on industrial plants
(Jgk , hfk , QTk and QH) are sufficient to control the concentrate grade and air recovery αk, while regulating
the concentrate hopper level LH , and flotation cell levels Lk. Being able to control αk in each cell implies
that each cell can be controlled at its peak air recovery (αk) at all times, using a model-based controller
instead of relying on an iterative stepping algorithm.

The main aim of a flotation plant is to produce a product of a desired grade. Being able to control
grade in combination with operating at the maximum air recovery (αk) (which is associated with maximum
recovery (Hadler et al., 2012)) is an important step towards optimising flotation operation.

6. Conclusion

A flotation model was described that can model the effect of variations in aeration rate (Jgk) and
froth depth (hfk) on multiple mineral species, and how the contribution from each species influences the
concentrate hopper and tailings grade and recovery of a flotation bank. An observability analysis showed
that floatability constants of desired and gangue minerals can be estimated using online measurements. A
controllability analysis confirmed that the modelled states can be controlled using aeration rate (Jgk), froth
depth (hfk), tailings flow rates (QTk) and concentrate hopper flow rate (QH), and that the process can
consequently be controlled at an optimum air recovery point while maintaining a desired grade.

The combination of fundamental dynamic mass and volume balances, steady-state flotation froth models
and empirical relations on air recovery and froth bubble size, allows key characteristics of flotation processes
to be estimated from online measurements. This opens up opportunities to control the flotation process more
efficiently, and to include reagent addition in the set of manipulated variables based on real-time estimates of
true flotation and entrainment of desired and gangue minerals. Further refinements to the model developed
in this work can be made to include frother, depressants and activators in the set of control variables, and
there is potentially an opportunity to use froth image data from multiple cells to enhance observability of
model states related to relative concentrate mass flow rates under time-varying operation.
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Appendix A. Linearised System Matrices

The linearised system matrices A, B and C in (31) as described in Section 4 are shown in Appendix
A.1 - Appendix A.3. For brevity, terms related to the mass balance described in Section 2.2 are not shown
due to the complexity of derivatives of the entrainment equations (19) - (21). Variables in the augmented
state vector xaug5 and output vector y5 shown in (42), and the input vector u6 shown in (43) are reordered
as shown in (A.1).
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u7 = [Jg1 , hf1 , Jg2 , hf2 , Jg3 , hf3 , QH , QT1 , QT2 , QT3 ]T

x7 = [DBF1
, α1, DBF2

, α2, DBF3
, α3, L1, L2, L3, LH ,M

0,0
1 ,M1,0

1 ,M0,0
2 ,M1,0

2 ,M0,0
3 ,M1,0

3 ,M0,0
H ,M1,0

H ]T

xp7 = [KBSJg ,KBSλ ,KαJg ,KαBF , CPB ,K
0,0,K1,0]T

xaug7 = [xT7 ,x
T
p7]T

y7 = [DBF1
, α1, DBF2

, α2, DBF3
, α3, L1, L2, L3, LH , Ṁ

Tot
H , GH , Ṁ

0,0
T3
, Ṁ1,0

T3
]T

(A.1)

Appendix A.1. Process matrix A

The structure of the linearised process matrix A, is shown in (A.2). 0r×c is a zero-matrix with dimensions
r×c, and A1

6×4 in (A.3), A2
4×6 in (A.4) and A3

4×1 in (A.5) are sub-matrices of A. The elements of A4
8×25

are not shown here because of space restrictions.

A =



06×18 A1
6×4 06×3

A2
4×6 04×12 04×4 A3

4×3

A4
8×25

07×25


(A.2)

A1 =



Jg1
hf1
Jg1

0 0

Jg1KαBF
KαBF hf1

Jg1
Jg1 Jg1KBSJg +

KBSλhf1
Jg1

Jg2
hf2
Jg2

0 0

Jg2KαBF
KαBF hf2

Jg2
Jg2 Jg2KBSJg +

KBSλhf2
Jg2

Jg3
hf3
Jg3

0 0

Jg3KαBF
KαBF hf3

Jg3
Jg3 Jg3KBSJg +

KBSλhf3
Jg3


(A.3)

A2 =


−SubA1µ

A1ρg
SubA2µ
A1ρg

0 0 0 0

0 0 −SubA4µ
A2ρg

SubA5µ
A2ρg

0 0

0 0 0 0 −SubA7µ
A3ρg

SubA8µ
A3ρg

SubA1µ
AHρg

−SubA2µ
AHρg

SubA4µ
AHρg

−SubA5µ
AHρg

SubA7µ
AHρg

−SubA8µ
AHρg

 (A.4)

A3 =


SubA3µ
A1ρg

0 0

SubA6µ
A2ρg

0 0

SubA9µ
A3ρg

0 0

−µ(SubA3+SubA6+SubA9)
AHρg

0 0

 (A.5)

SubA1 =
40.86CPBJ

2
g1α1 (α1 − 1)

D3
BF1

(A.6)

SubA2 =
20.43CPBJ

2
g1 (2α1 − 1)

D2
BF1

(A.7)
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SubA3 =
20.43J2

g1α1 (α1 − 1)

D2
BF1

(A.8)

SubA4 =
40.86CPBJ

2
g2α2 (α2 − 1)

D3
BF2

(A.9)

SubA5 =
20.43CPBJ

2
g2 (2α2 − 1)

D2
BF2

(A.10)

SubA6 =
20.43J2

g2α2 (α2 − 1)

D2
BF2

(A.11)

SubA7 =
40.86CPBJ

2
g3α3 (α3 − 1)

D3
BF3

(A.12)

SubA8 =
20.43CPBJ

2
g3 (2α3 − 1)

D2
BF3

(A.13)

SubA9 =
20.43J2

g3α3µ (α3 − 1)

D2
BF3

(A.14)

Appendix A.2. Input matrix B

The structure of the linearised input matrix B, is shown in (A.15). The elements in rows 11 - 18 include
derivatives of the entrainment equations (19) - (21), and are lumped into a sub-matrix B3 which is not
shown here because of space restrictions. B1

10×3 in (A.16) and B2
10×7 in (A.17) are sub-matrices of B.

B =


B1

10×3 B2
10×7

B3
8×10

07×10

 (A.15)

B1 =



KBSJg −
KBSλhf1

J2
g1

KBSλ
Jg1

0

KαBF

(
KBSJg −

KBSλhf1
J2
g1

)
+KαJg

KBSλKαBF
Jg1

0

0 0 KBSJg −
KBSλhf2

J2
g2

0 0 KαBF

(
KBSJg −

KBSλhf2
J2
g2

)
+KαJg

0 0 0

0 0 0

− 40.86CPBJg1α1µ(1−α1)

A1D2
BF1

ρg
0 0

0 0 − 40.86CPBJg2α2µ(1−α2)

A2D2
BF2

ρg

0 0 0
40.86CPBJg1α1µ(1−α1)

AHD2
BF1

ρg
0

40.86CPBJg2α2µ(1−α2)

AHD2
BF2

ρg



(A.16)

22



B2 =



0 0 0 0 0 0 0

0 0 0 0 0 0 0
KBSλ
Jg2

0 0 0 0 0 0

KBSλKαBF
Jg2

0 0 0 0 0 0

0 KBSJg −
KBSλhf3

J2
g3

KBSλ
Jg3

0 0 0 0

0 KαBF

(
KBSJg −

KBSλhf3
J2
g3

)
+KαJg

KBSλKαBF
Jg3

0 0 0 0

0 0 0 0 − 1
A1

0 0

0 0 0 0 1
A2

− 1
A2

0

0 − 40.86CPBJg3α3µ(1−α3)

A3D2
BF3

ρg
0 0 0 1

A3
− 1
A3

0
40.86CPBJg3α3µ(1−α3)

AHD2
BF3

ρg
0 − 1

AH
0 0 0


(A.17)

Appendix A.3. Output matrix C

The linearised output matrix C, is a sparse matrix, with its structure shown in (A.18). Ir×r is an identity
matrix with r rows and columns, and C1

6×4 in (A.19) is a sub-matrix of C.

C =

 I9×9 09×9

05×9 C1
5×9

014×7

 (A.18)

C1 =



1 0 0 0 0 0 0 0 0

−QH(M0,0
H +M1,0

H )
AHL2

H
0 0 0 0 0 0 QH

AHLH

QH
AHLH

0 0 0 0 0 0 0 − M0,0
H

(M0,0
H +M1,0

H )
2 + 1

M0,0
H +M1,0

H

− M0,0
H

(M0,0
H +M1,0

H )
2

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0


(A.19)

23


