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ABSTRACT
Given the high prevalence of Tuberculosis (TB) and the mortality rate associated with the disease,

numerous models, such as the Gammaitoni and Nucci (GN) model, were developed to model the risk
of transmission. These models typically rely on a quanta generation rate as a measurement of
infectivity. Since the quanta generation rate cannot be measured directly, the unique contribution
of this work is to develop state estimators to estimate the quanta generation rate from available
measurements. To estimate the quanta generation rate, the GN model is adapted into an augmented
single-room GN model and a simplified two-room GN model. Both models are shown to be observable,
i.e. it is theoretically possible to estimate the quanta generation rate given available measurements.
Kalman filters are used to estimate the quanta generation rate. First, a continuous-time extended
Kalman filter (CEKF) is used for both adapted models using a simulation and measurement sampling
rate of 60 s. Accurate quanta generate rate estimates are achieved in both cases. A more realistic
scenario is also considered with a measurement sampling rate of 1 day. For these estimates, a hybrid
extended Kalman filter (HEKF) is used. Accurate quanta generation rate estimates are achieved
for the more realistic scenario. Future work could potentially use the HEKFs, the adapted models,
and real-time measurements in a control system feedback loop to reduce the transmission of TB in
confined spaces such as hospitals.

Index terms— extended Kalman filter, hybrid extended Kalman filter, modelling, non-linear
observability, state and parameter estimation, Tuberculosis quanta estimation.

1 INTRODUCTION

Tuberculosis (TB) is a bacterial disease caused by Mycobacterium tuberculosis (Mtb) (World Health
Organization, 1999). In most cases the disease infects the lungs (pulmonary TB). TB is most commonly
spread when droplet nuclei, containing Mtb bacilli, are expelled from persons with active pulmonary
TB and inhaled by persons that are uninfected. Latently infected persons are infected with the disease
but are not symptomatic. Approximately 5-10% of these persons will become actively infected, with
an estimated 10 million world-wide cases of TB in 2018 (World Health Organization, 1999, 2015, 2019;
Küsel et al., 2019).

Given the high prevalence of TB and the mortality rate associated with the disease, numerous models
were developed over the years to model risk of transmission, especially for confined spaces. The Wells-
Riley (WR) model is commonly used to model such risk (Wells et al., 1955; Nardell, 2016; Yates et al.,
2016). Another popular model is the Gammaitoni and Nucci (GN) model (Gammaitoni & Nucci, 1997).
It was shown that the WR and GN models are fundamentally the same, but that unlike the WR model,
the GN model allows for the use of nonsteady-state conditions of airborne infectious particles (Beggs
et al., 2003). Additionally, the GN model is in state-space format, which makes it suitable for the design
of a state estimator that can estimate unknown states (Simon, 2006).

An important parameter in TB transmission models is the quanta generation rate. A quantum is
defined as the number of infectious droplet nuclei required to infect 63.2% of susceptible individuals (Wells
et al., 1955). It quantifies the infectiousness of the airborne agent. In other words, the infectiousness
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of the disease and the number of the infectious agent in the room can be expressed by the number of
quanta (Beggs et al., 2003). The difference of each individual’s immunological response to the disease
and the characteristics of the pathogen make it impossible to measure quanta directly. Although quanta
is a theoretical unit of measure, it allows one to mathematically compare different scenarios of risk of
transmission and how control mechanisms may affect the risk of transmission (Li et al., 2015; Taylor
et al., 2016).

There is considerable variability in infectivity between patients with respiratory diseases (Nardell,
2016). The quanta generation rate is defined as the rate at which quanta is produced by infective people
(Gammaitoni & Nucci, 1997). Quanta generation rate estimates range from 1 - 10 quanta · h−1 for
rhinovirus and 15-128 quanta ·h−1 for influenza (Rudnick & Milton, 2003). In the case of TB, one study
indicate 1 - 50 quanta · h−1 as a suitable range for the quanta generation rate (Noakes et al., 2006),
whereas others indicate a range of 1.25 - 60 quanta · h−1 (Noakes & Sleigh, 2009; Nardell et al., 1991).
In the case of an intubation-related outbreak, the estimate can go as high as 30840 quanta · h−1 (Beggs
et al., 2003; Nardell et al., 1991; Gammaitoni & Nucci, 1997). If the quanta generation rate in a TB
transmission model can be estimated, it will provide a better indication of the risk of transmission.

The WR model can be manipulated to back-calculate a quanta generation rate. For example, the
spread of influenza in a Boeing 737 was represented with both a steady-state and a dynamic model. A
quanta generation rate ranging between 15 and 77 quanta·h−1 was back-calculated using the steady-state
model, whereas a quanta generation rate ranging between 79 and 128 quanta · h−1 was back-calculated
using the dynamic model from the same data (Rudnick & Milton, 2003). This shows that back-calculating
the quanta generation rate can result in the calculated rate being much less than half of its actual value
(Nardell et al., 1991; Noakes & Sleigh, 2009).

Because of the variability of quanta generation rate and the ranges of the estimates, the uncertainty of
this parameter is large. The problem using backwards calculation is that much of the internal dynamics
are lost and only the end result is taken into account. Backwards calculating the quanta generation rate
can lead to an incorrect estimate thereof and most often does not account for non-steady-state cases for
varying ventilation rates or varying number of infectors.

For experiments conducted at the AIR (Airborne Infections Research) facility in eMalahleni, South
Africa, a quanta generation rate of 2.5 quanta ·h−1 was calculated using a Nelder-Mead search algorithm
(Küsel et al., 2019). Although this method is more accurate than back-calculation, it is not suited for a
control system feedback loop or for real-time estimates.

The aim of this work is to estimate the quanta generation rate for risk of transmission of TB models
as applied to a multi-room environment and to reduce the uncertainty that is present when estimating
this parameter. The multi-room environment considered is an AIR facility in eMalahleni, South Africa
(Mphaphlele et al., 2015; Strydom et al., 2017; Küsel et al., 2019). The standard GN model only
works if the infectious individuals and susceptible individuals are in the same room (Küsel et al., 2019).
Therefore, a modified two-room GN model is used in this work where the infectious individuals and
susceptible individuals are separated and placed in adjacent rooms. This two-room GN model is used to
simulate the spread of the disease in the AIR facility (Mphaphlele et al., 2015; Küsel et al., 2019). The
two-room GN model also incorporates an incubation period which is not accounted for in the standard
GN model (Küsel et al., 2019).

Simulation data are used to estimate the quanta parameters for risk of transmission of TB models
as applied to a single and multi-room environment from published papers of experiments conducted at
the AIR facility in eMalahleni, South Africa (Mphaphlele et al., 2015; Strydom et al., 2017; Küsel et al.,
2019). Sentinel guinea pigs are used to measure the risk of transmission of TB. The AIR facility has
three 2-bed inpatient wards that are connected by airtight ventilation systems to two identical rooms
containing sentinel guinea pigs (Mphaphlele et al., 2015; Küsel et al., 2019). The air is vented from the
wards into the animal rooms. The air in the wards is assumed to be well mixed with the help of paddle
fans to circulate the air in the room. A basic layout of the facility is shown in Fig. 1.

Different risk of transmission models from literature are presented in Section 2 together with model
modifications that allow for improved parameter estimation. Observability analyses are done in Section
3 to determine whether the quanta parameter can be theoretically estimated. Section 4.1 and Section 4.2
show the development of continuous-time and hybrid non-linear state estimators. Section 5 shows the
simulation results obtained. Sections 6 and 7 discuss the results and conclude the findings respectively.
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Figure 1: Basic layout of AIR facility in eMalahleni, South Africa (Küsel et al., 2019).

2 MODEL DESCRIPTIONS

Two distinct risk of transmission model scenarios are presented: a single-room and a two-room case. In
each case a standard and a modified model is presented. Table 1 summarises the states and parameters
of the single-room models in Section 2.1. Table 2 summarises the states and parameters of the two-room
models in Section 2.2.

2.1 Single-room GN models

2.1.1 Standard single-room GN model

For the GN model (obtained from literature), it is assumed that the susceptible guinea pigs and the
infected individuals (patients) are in the same room such that the room volumes are combined into a
single space. It is assumed the guinea pigs do not become infectious as their contribution to new quanta
in the room is negligible compared to the contribution of quanta by infected individuals.

The GN transmission model is shown in (1) (Gammaitoni & Nucci, 1997),

Ṡ = −
(
p
V

)
CS

Ċ = φIw − F
V C,

(1)

where S is the number of susceptible animals and C is the number of quanta in the room. As per the
model definition in Gammaitoni & Nucci (1997), variables S and C are considered as continuous and real.
The pulmonary ventilation rate p, the room volume V , and the quanta generation rate per infectious
individual φ, are constants. The number of infectious individuals Iw in a room, i.e., the number of sick
patients, is known a-priori and is regarded as a time-varying input to the model. The flow rate of air F
is measured by means of a SCADA system.

The number of infected animals is measured through the diagnosis of TB. Therefore, the number of
susceptible animals S is equal to the difference between the initial number of susceptible animals in the
room and the number of infected animals. Tuberculin skin tests (TST) are used at the AIR facility to
measure whether an animal is infected (Mphaphlele et al., 2015).

Rewriting the model in (1) in state-space format with S = x1 and C = x2 gives,

ẋ1 = −βx1x2 + wx1

ẋ2 = φIw − F
V x2 + wx2

,
(2)

where β = p/V is the pulmonary ventilation rate over room volume, φ is the quanta generation rate,
and wxi

is additive zero-mean Gaussian process noise. The state x1 is assumed measured as,

y = h(x) = x1 + vx1
, (3)

where vx1
is additive zero-mean Gaussian measurement noise.
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Table 1: Single-room GN model parameters.

Parameter Unit Description

S or x1 animals number of susceptible animals
C or x2 quanta number of quanta in the room

p m3 · d−1 pulmonary ventilation rate
V m3 room volume

φ or x3 quanta · d−1 · ind.−1 quanta generation rate per infectious individual
F m3 · d−1 ventilation flow rate
Iw individuals number of infectious individuals

Table 2: Two-room GN model parameters.

Parameter Unit Description

x1 animals number of susceptible animals
x2 animals number of exposed animals
x3 animals number of infected animals
x4 quanta number of quanta in ward
x5 quanta number of quanta in animal room
p m3 · d−1 pulmonary ventilation rate
Vw m3 ward volume
V1 m3 animal room volume
φw quanta · d−1 · ind.−1 quanta generation rate per infectious individual
Fw m3 · d−1 ward flow rate
Fin m3 · d−1 animal room intake flow rate
Fout m3 · d−1 animal room outlet flow rate
Iw ind. number of infectious individuals
α d−1 incubation period delay rate

2.1.2 Augmented single-room GN model

The model states in (2) cannot be accurately estimated if there is a parameter mismatch between the
estimation and simulation models. Therefore, an updated model shown in (4) is suggested that makes
use of one additional quanta generation rate state,

ẋ1 = −βx1x2 + wx1

ẋ2 = x3Iw − F
V x2 + wx2

ẋ3 = wx3
,

(4)

where x1 and x2 are as in (2), and x3 represents the quanta generation rate. The state x1 is assumed
measured as,

y = h(x) = x1 + vx1
. (5)

It is important to include the additional state x3. If x3 is disregarded and if x1 is measured at a
typical sampling rate of 24 hours (1 day), the number of quanta in the room will reach a steady-state
value faster than an estimator can estimate. This can be seen from converting the equation for ẋ2 in (2)
to the Laplace domain,

X2 =
φIwV
F

V
F s+ 1

. (6)

The shortest time constant of this first-order system is V
F = 513 seconds (the parameter values are

V = 112.84 m3 as given in Table 3, and the maximum value of F = 0.22 m3 · s−1 as shown in Fig.
10). The settling time for such a system in response to a step input is 4V

F = 2052 seconds or just over
30 minutes (Nise, 2011). This is much faster than what an estimator can estimate if x1 is measured
once every 24 hours. The inclusion of the additional state x3 prevents x2 form reaching the incorrect
steady-state which makes it possible for an estimator to estimate the value of x2.

The number of quanta in the room x2, reaches a steady-state value of x2 = φIwV
F , determined by

setting ẋ2 in (2) equal to zero. Thus, if the generation rate φ is increased, so does the quanta x2 present
in the room. Inversely, if the ventilation rate F is increased, the quanta in the room x2 decreases.
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Therefore, if the ventilation rate F and number of infected individuals Iw are measured, the number of
quanta in the room x2 can be determined by estimating the quanta generation rate parameter φ.

2.2 Two-room GN models

2.2.1 Standard two-room GN model

For the two-room GN model (which was also obtained from literature) (Küsel et al., 2019), the room in
which the susceptible animals are in is called the animal room (animal room one from Fig. 1) and the
room in which the infectious individuals are in is called the ward. The wards in Fig. 1 were combined
into a single space since the air containing TB bacilli vented from each ward was combined before being
vented to the animal rooms. In this model the individuals who were exposed to the disease and are not
yet infected are labelled exposed individuals. The two-room GN model is described as,

ẋ1 = − p

V1
x5x1 + wx1

ẋ2 =
p

V1
x5x1 − αx2 + wx2

ẋ3 = αx2 + wx3

ẋ4 = φwIw −
Fw
Vw

x4 + wx4

ẋ5 =
Fin
Vw

x4 −
Fout
V1

x5 + wx5
,

(7)

where x1 is the number of susceptible animals in the animal room, p is the pulmonary ventilation rate of
the susceptible animals, V1 is the volume of the animal room, x5 is the number of quanta in the animal
room, x2 is the number of exposed animals, α is the incubation period of the disease, x3 is the number of
infected animals, x4 is the number of quanta in the ward, φw is the quanta generation rate per infectious
individual, Iw is the number of infectious individuals in the ward, Fw is the air extraction ventilation
rate of the ward, Vw is the volume of the ward, Fin is the ventilation rate of the air flowing into the
animal room from the ward, and Fout is the ventilation rate of the air extracted from the animal room.
The measurement is,

y = h(x) =

[
x1 + vx1

x3 + vx3

]
, (8)

where vx1
and vx3

are additive zero-mean Gaussian measurement noise.

2.2.2 Simplified GN two-room model

The two-room GN model has the same estimation problem as the single-room GN model. Because the
quanta in the ward x4 tends to a steady-state value, the state will simply return to that steady-state
value when estimated. If the two-room GN model is modified by removing the incubation period α and
adding the quanta generation rate per infectious individual φw as an additional state, and it is assumed
the number of susceptible animals x1 is measurable, one can estimate the generation rate φw and the
number of quanta in the two rooms x4 and x5. The model is then given as,

ẋ1 = − p

V1
x5x1 + wx1

ẋ4 = x6Iw −
Fw
Vw

x4 + wx4

ẋ5 =
Fin
Vw

x4 −
Fout
V1

x5 + wx5

ẋ6 = wx6
,

(9)

where x6 = φw. The measurement is now given as,

y = h(x) = x1 + vx1 . (10)

It is important to note that the modified models are fundamentally the same. For the single-room
GN model, if ẋ3 = 0, then the modified model is the same as the unmodified model. The same can
be said for the two-room models with the additions that the measurement of the two-room model is no
longer the infected animals but the susceptible animals and that the incubation period is not taken into
account. These alterations to the models allow for better state estimation as discussed in Section 4.
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Figure 2: Sensitivity of number of susceptible
guinea pigs to deviation of the number of infec-
tious individuals for the augmented single-room
and simplified two-room GN models. The devia-
tions at the end of the simulations are 21% and
10% respectively.

Figure 3: Sensitivity of the number of susceptible
guinea pigs to deviation of the quanta generation
rates for the augmented single-room and simplified
two-room GN models. The deviations at the end
of the simulations are 8.9% and 4.3% respectively.

2.3 Sensitivity

A sensitivity analysis was done in literature by deviating the standard single-room model parameters
by 10% and the generation rates by 30% for GN and dose-response models. The large generation rates
deviation resulted in a large deviation in the predicted number of infected animals (Strydom et al., 2017).
The same procedure was followed for the standard two-room model (Küsel et al., 2019).

For the augmented single-room and the augmented two-room models, the simulation parameters
were also deviated by 10% from the values in Table 3. The results are shown in Figs. 2 to 8, and the
sensitivities for these models are plotted separately.

Fig. 2 shows a deviation of a single patient instead of a 10% deviation, seeing that the number
of patients needs to be a positive integer. Fig. 3 shows the effect of a 10% deviation of the quanta
generation rates. The sensitivity to a deviation of the pulmonary ventilation rate is shown in Fig. 4.
The effect of a 10% deviation of the ward extraction ventilation rate is shown in Fig. 5. A 10% deviation
of the ventilation rate into and out of the animal room is shown in Figs. 6 and 7, respectively.

Fig. 8 shows the effect of a larger deviation of 30% in the ranges of the quanta generation rates. The
deviation for the augmented single-room GN model resulted in a deviation of up to 29% in the number
of susceptible animals and the simplified two-room GN model showed a deviation of up to 13% when the
generation rates are deviated by 30%.

3 OBSERVABILITY

In this section, observability analyses are done for each of the models in Section 2 to determine whether
the states are observable and can therefore be estimated from a theoretical point of view. Measurement
and process noise is disregarded in this section as it does not influence the final result.

3.1 Observability theory

A general non-linear state-space model can be written as,

ẋ = f(x) + g(x)u
y = h(x),

(11)

with dim(x) = n and dim(y) = m. The system in (11) is locally (weakly) observable at x0 if there exists
a neighbourhood X0 of x0 such that for every x1, which is an element of the neighbourhood X1 ⊂ X0 of
x0, the indistinguishability of the states x0 and x1 implies that x0 = x1. The two states, x0 and x1, are
said to be indistinguishable if for every admissible input, u, the output y of (11) for the initial state x0
and for the initial state x1 is identical (Hermann & Krener, 1977; Isidori, 1995; Sastry, 1999).
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Figure 4: Sensitivity of the number of suscepti-
ble guinea pigs to deviation of the pulmonary ven-
tilation rate for the augmented single-room and
simplified two-room GN models. The deviations
at the end of the simulations are 8.9% and 4.3%
respectively.

Figure 5: Sensitivity of the number of susceptible
guinea pigs to deviation of the ward ventilation
rate for the augmented single-room and simplified
two-room GN models. The deviations at the end
of the simulations are 8.0% and 3.9% respectively.

Figure 6: Sensitivity of the number of suscepti-
ble guinea pigs to deviation of the ventilation rate
into the animal room for the augmented single-
room and simplified two-room GN models. The
deviation at the end of the simulation is 4.3%.

Figure 7: Sensitivity of the number of susceptible
guinea pigs to deviation of the ventilation rate out
of the animal room for the augmented single-room
and simplified two-room GN models. The devia-
tion at the end of the simulation is 3.9%.

To determine if a system is locally observable, the system has to satisfy the so-called observability
rank condition, i.e. the observability codistribution dO must have dimension n at x0. The observability
codistribution dO of x0 is given by (Hermann & Krener, 1977),

dO = span{dhj , dLfhj , ..., dLn−1
f hj}; j = 1...m. (12)

where Lfh denotes the Lie derivative of h with respect to f ,

Lfh =

n∑
i=1

∂h

∂xi
fi. (13)

The Lie derivative of dh with respect to f is given as,

Lfdh =

(
∂dhT

∂x
f

)T
+ dh

∂f

∂x
= dLfh. (14)

Once the state observability is determined and the system is indeed observable, the states of the
model can be theoretically estimated using state estimators (Simon, 2006).

7



Figure 8: Sensitivity of the number of susceptible guinea pigs to deviation of the range of the quanta
generation rate for the augmented single-room and simplified two-room GN models. The deviations at
the end of the simulations are 29% and 13% respectively.

3.2 Single-room GN model observability

3.2.1 Observability of standard single-room GN model

The standard single-room GN model in (2) and (3) can be written in the state-space form of (11) as,

ẋ1 = f1 = −βx1x2
ẋ2 = f2 = φIw − F

V x2
y = h = x1.

(15)

The observability codistribution for (15) is,

dO =

[
dh
dLfh

]
=

[
1 0
−βx2 −βx1

]
, (16)

and the determinant is det(dO) = −βx1.
The rank of dO in (16) is 2 if βx1 6= 0 and is equal to the number of states in (15). Therefore, the

standard single-room GN model is observable as long as βx1 6= 0.

3.2.2 Observability of augmented single-room GN model

The augmented single-room GN model given in (4) and (5) can be written in the state-space form of
(11) as,

ẋ1 = f1 = −βx1x2
ẋ2 = f2 = x3Iw − F

V x2
ẋ3 = f3 = 0
y = h = x1.

(17)

The observability codistribution for (17) is,

dO =

 1 0 0
−βx2 −βx1 0

β2x22 − β
(
Iwx3 − F

V x2
)

2x1x2β
2 + F

V x1β −βIwx1

 , (18)

and the determinant is det(dO) = β2Iwx
2
1.

The rank of dO in (18) is 3 if β2Iwx
2
1 6= 0 and is equal to the number of states in (17). Therefore,

the augmented single-room GN model is observable as long as β2Iwx
2
1 6= 0.
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3.3 Two-room GN model observability

3.3.1 Observability of standard two-room GN model

The standard two-room GN model given in (7) and (8) can be written in the state-space form of (11)
as,

ẋ1 = f1 = − p
V1
x5x1

ẋ2 = f2 = p
V1
x5x1 − αx2

ẋ3 = f3 = αx2
ẋ4 = f4 = φwIw − Fw

Vw
x4

ẋ5 = f5 = Fin

Vw
x4 − Fout

V1
x5,

y = h = [x1, x3]
T
.

(19)

Considering only until the second repeated Lie derivative in (12), the observability codistribution matrix
for (19) is,

dO =



1 0 0 0 0
0 0 1 0 0
−p x5

V1
0 0 0 −p x1

V1

0 α 0 0 0
p (Vw p x5

2+Fout Vw x5−Fin V1 x4)
V1

2 Vw
0 0 −Fin p x1

V1 Vw

p x1 (Fout+2 p x5)
V1

2

αpx5

V1
−α2 0 0 αpx1

V1


, (20)

and the determinant of the full-rank portion (rows 1 to 5 and columns 1 to 5) is det(dO1:5;1:5) =

−Finαp
2x2

1

V 2
1 Vw

.

The rank of dO in (20) is 5 if
Finαp

2x2
1

V 2
1 Vw

6= 0 and is equal to the number of states in (19). Therefore,

the standard two-room GN model is observable as long as
Finαp

2x2
1

V 2
1 Vw

6= 0.

3.3.2 Observability of simplified two-room GN model

The simplified two-room GN model in (9) and (10) can be written in the state-space form of (11) as,

ẋ1 = f1 = − p
V1
x5x1

ẋ4 = f2 = x6Iw − Fw

Vw
x4

ẋ5 = f3 = Fin

Vw
x4 − Fout

V1
x5

ẋ6 = f4 = 0
y = h = x1.

(21)

The observability codistribution for (21) is,

dO =


1 0 0 0
−px5

V1
0 −px1

V1
0

pA
V1

+ p2x5
2

V1
2 −Finpx1

V1Vw
O33 0

O41 O42 O43 −FinIwpx1

V1Vw

 , (22)

where,
A = Foutx5

V1
− Finx4

Vw

O33 = Foutpx1

V1
2 + 2p2x1x5

V1
2

O41 = −A
(

2p2x5

V1
2 + Foutp

V1
2

)
−

px5

(
pA
V1

+
p2x5

2

V1
2

)
V1

− Finp(Iwx6−Fwx4
Vw

)
V1Vw

O42 = Fin(O33)
Vw

+ FinFwpx1

V1Vw
2 + Finp

2x1x5

V1
2Vw

O43 = −Fout(O33)
V1

− 2p2x1A
V1

2 −
px1

(
pA
V1

+
p2x5

2

V1
2

)
V1

−
px1x5

(
2p2x5
V1

2 +
Foutp

V1
2

)
V1

. (23)

The determinant is det(dO) =
F 2

inIwp
3x3

1

V 3
1 V

2
w

.

The rank of dO in (22) is 4 if
F 2

inIwp
3x3

1

V 3
1 V

2
w
6= 0 and is equal to the number of states in (21). Therefore,

the simplified two-room GN model is observable as long as
F 2

inIwp
3x3

1

V 3
1 V

2
w
6= 0.
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4 STATE ESTIMATORS

A Kalman filter (KF) can be used to accurately estimate states of a process where the number of
measurements are limited. The KF can also account for uncertainties in the models and the effects of
unmeasured disturbances. The KF generates the maximum likelihood estimates for a linear dynamic
system subjected to additive process and measurement noises with a multivariate Gaussian distribution
(Kalman, 1960; Simon, 2006; Valappil & Georgakis, 2000).

The most commonly used non-linear state estimator is the extended Kalman filter (EKF) (Bavdekar
et al., 2011; Schneider & Georgakis, 2013; Simon, 2006). Implementing the filter requires knowledge
about the process states and the process model. These models often contain model-plant-mismatch in
both the parameters and the structure of the model (Valappil & Georgakis, 2000; Olivier & Craig, 2015).

An EnKF has been used for parameter estimation for the infection rate and fraction of smear positive
cases in India. The study uses a deterministic model of TB that models the risk of infection of TB across
India and makes use of least squares estimation and an EnKF to determine the infection rate and the
number of new cases (Narula et al., 2016). As opposed to the study in India, this study aims to estimate
the generation rate of quanta for models in confined spaces such as hospitals and workplaces.

Continuous-time EKFs and hybrid EKFs are used to estimate the states in the models given in
Section 2 from the available measurements.

4.1 Continuous-time EKF

Continuous-time EKFs (CEKF) were designed for the systems in (2), (4), (7) and (9). The system
equations for the CEKFs are defined as,

ẋ = f(x, u, w, t)
y = h(x, v, t)
w(t) ∼ N (0, Q) ; v(t) ∼ N (0, R),

(24)

where f(x, u, w, t) is the continuous-time system, h(x, v, t) is the measurement model, w(t) and v(t) is
the zero-mean Gaussian process noise and measurement noise respectively, and Q and R is the process
noise covariance matrix and the measurement noise covariance matrix respectively. Matrices Q and R
are positive definite and constant.

The continuous-time EKF algorithm consists of two steps, the linearization step and the measurement
update step (Simon, 2006). The linearization step, which uses Taylor series approximations, is given as,

C =
∂f

∂x
|x̂

L =
∂f

∂w
|x̂

H =
∂h

∂x
|x̂

M =
∂h

∂v
|x̂,

(25)

and the measurement update step is,

˙̂x = f(x̂, u, w0, t) +K[y − h(x̂, v0, t)]
K = PHTR−1

Ṗ = CP + PCT + LQLT − PHTR−1HP,

(26)

where x̂ is the estimate of x, K is the KF gain, and P is the estimation-error covariance of x̂ (Simon,
2006; Bavdekar et al., 2011). The estimation algorithm can be changed for cases where measurement
updates occur at irregular sampling intervals, which itself occurs at multiples of the sampling time to
form a hybrid EKF.

The EKF is initialised using,

x̂0 = E[x0]
P0 = E[(x0 − x̂0)(x0 − x̂0)T ],

(27)

where x0 is a vector containing the initial states and x̂0 is the initial estimates of x0.
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4.2 Hybrid EKF

Increasing the simulation step time and the measurement time for the models can result in numerical
integration inaccuracies when doing simulations (Labuschagne et al., 2013). To circumvent this, a hybrid
EKF (HEKF) can be used. The HEKF will allow one to simulate the system and update the filter at
different time intervals or when measurements are available.

HEKFs are used for continuous-time systems where discrete-time measurements are available. The
HEKF uses continuous-time update equations to evaluate the discrete-time values of the model states,
x, and the covariance of the estimation error, P , and updates the state estimate using a discrete-time
KF.

The HEKF process is similar to the EKF. However, the update step is split into the continuous-time
update equations (where the models are simulated in continuous-time) and the discrete measurement
update equations (where the filter estimates are updated).

The continuous-time update equations are,

˙̂x = f(x̂, u, ω0, t)

Ṗ = CP + PCT + LQLT ,
(28)

and the discrete measurement update equations are,

Kk = P−
k H

T
k (HkP

−
k H

T
k +MkRkM

T
k )−1

x+k = x−k +Kk[yk − hk(x̂−k , v0, tk)]
P+
k = (ID −KkHk)P−

k (ID −KkHk)T +KkMkRkM
T
k K

T
k ,

(29)

where k denotes the k-th discrete-time measurement, P−
k is the covariance of xk before the measurement

update, and P+
k is the covariance of xk after the measurement update. ID is an identity matrix. x−k is the

estimate of x before the measurement update is made and x+k is the estimate of x after the measurement
update is made.

5 SIMULATIONS AND RESULTS

The simulation setup and results for the continuous-time and hybrid EKFs (CEKF and HEKF) for the
modified models are given in this section.

5.1 CEKF for the augmented single-room GN model

5.1.1 Simulation scenario and setup

Considering the models given in (2) and (4), the variable x1 and parameters p, V , Iw and F can all be
measured. The variable x2 and parameter φ (or x3) can not be measured but can be estimated. Since
x2 is a function of the measured parameters, Iw, V , and F , and the estimated parameter φ, one only
needs to estimate φ (or x3) to obtain x2.

Table 3 shows the model parameters taken from literature. The data were obtained from an ex-
periment that was conducted at the AIR (Airborne Infections Research) facility in eMalahleni, South
Africa (Küsel et al., 2019) in which sentinel guinea pigs were used to measure the risk of transmission.
The model in (4) was simulated with a sampling time of 60 s. Measurement and process noise with
distributions as shown in Table 4 was added to (4) and (5) in the simulation at an interval of 60 s.

The infectious individual excitation data (number of infectious individuals in the ward Iw) is shown
in Fig. 9. Fig. 10 shows the ventilation rate out of the ward Fw. The ventilation rate into and out of
the animal rooms (Fin and Fout) are shown in Fig. 11 (Küsel et al., 2019).

It was assumed that each infectious individual generated the same number of quanta x2 and that
each of the animals have the same susceptibility. It was also assumed that the infectious individuals Iw
remained in the room for the duration of the experiment. The model parameters were time-scaled to the
sampling time used in the simulations and the simulation duration was 3 months. The simulation time
step size for the CEKF is the same as the measurement time of 60 s.

The measurement and process noise covariance matrices R and Q as in (24) for the CEKF, as well as
the initialization of the state and estimation-error covariance for the CEKF are shown in Table 5. The
initial number of susceptible animals is taken as x̂1 = 81 animals and the initial quanta in the room
as x̂2 = 17.14 quanta. The quanta generation rate is taken as x̂3 = 150 quanta·d-1. The initial EKF
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Table 3: Initial parameters for the augmented single-room GN model.

Parameter Values

S0 90 animals (Mphaphlele et al., 2015)
φ 60 quanta · d−1 (Strydom et al., 2017; Küsel et al., 2019)
p 0.23 m3 · d−1

V 112.84 m3

Table 4: Augmented single-room GN simulation model process and measurement noise distributions.

Parameter Distribution

wx1
N
(
0, 0.33122

)
wx2 N

(
0, 22.6032

)
wx3 N

(
0, 482

)
vx1

N
(
0, 1.82

)
Table 5: CEKF and HEKF initialization parameters for augmented single-room GN model.

Parameter Value

EKF process noise Q

0.1838 0 0
0 766.34 0
0 0 3456


EKF measurement noise R

[
4.86

]
State condition x̂0 [81, 17.14, 150]

T

Estimation error-covariance P0

81 0 0
0 311.22 0
0 0 22500
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Figure 9: Measured number of infectious individ-
uals in the ward (Küsel et al., 2019).
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Figure 10: Measured air flow out of the ward, mea-
sured in m3 ·s−1 (Küsel et al., 2019). The flow rate
was measured inm3·s−1 but time scaled tom3·d−1

in the simulations.

state and noise estimates in Table 5 are larger than the actual state values in Table 3 and the noise
distributions in Table 4 to ensure there is a degree of uncertainty between the simulation model and
the EKF. The CEKF measurement update matrix K and the estimation-error covariance matrix P are
updated as in (26).

5.1.2 Simulation results

The number of susceptible animals x1 decays from 90 to 38 animals in 3 months for a quanta generation
rate of x3 = 60 quanta·d-1 per infectious individual as shown in Fig. 12. The CEKF estimate of the
number of susceptibles x1 starts at 81 and converges to the measured number of susceptibles within
0.1542 days. The number of quanta x2 in the room is simulated in Fig. 13 and a zoomed version is
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Figure 11: Measured air flow out of and into the animal room, measured in m3 · s−1 (Küsel et al., 2019).
The flow rate was measured in m3 · s−1 but time scaled to m3 · d−1 in the simulations.

shown in Fig. 14. The estimated number of quanta converges to the simulated number of quanta after
3.9 days.

As seen in Fig. 15, the estimated quanta generation rate x3 converges to within 2% of the measured
values after just 3.9 days of simulation. This shows that the CEKF can converge to an accurate estimate
of the quanta generation rate of the model.

Although it is not shown, the CEKF was also simulated for measurement sampling times of both
twice per day and once per day in order to view the effects of different sampling times on the estimates.
It is important to note that if the sampling time becomes fairly large, some integration error occurs in
the simulation. The number of susceptible animals x1 reduces to 38 animals in the simulation with a
measurement sampling time of 60 s and in the worst case only reduces to 44 animals in the simulation
with a measurement sampling time of 1 day. The simulation with a measurement sampling time of 1
day also only converged after 2 months. To improve on this situation, an HEKF is used for simulations
where the time between measurements of the number of susceptibles is greater than the time between
measurements of the other parameters, as is the case in Section 5.2.

In order to obtain the best sampling rate (measurement time), one can use a fast Fourier transform of
the simulated quanta in the room (or ward) to determine the Nyquist frequency. The Nyquist frequency
results in a measurement rate of twice per day and the second harmonic gives a measurement rate of once
per day. Sampling at the Nyquist frequency is a minimum requirement for preserving the information
contained in the quanta generation rate (Lathi, 2010).

The generation rate parameter x3 = φ only influences the gain of the state x2 as seen in (6), and is
a time-independent constant. Because quanta state x2 is dependent on the generation rate x3 (which is
constant) and the ventilation rate F (which is measured at a sampling rate of 60 s, much faster than
the Nyquist frequency), the estimated number of quanta in the room x2 can be updated at a rate slower
than the Nyquist frequency, seeing as the only uncertain parameter is a constant and that the simulation
time is the same as the ventilation sampling rate. Therefore, sampling at the second harmonic would
be sufficient to estimate the quanta generation rate x3 and thereby the number of quanta x2. Thus, a
measurement sampling rate of once per day, and not twice per day, is used.

The CEKF performs well seeing that the estimated states rapidly converge to the measurements when
using a measurement sampling time of 60 s. However, taking measurements every 60 s is unrealistic, but
is used here to see what estimates can be obtained under ideal circumstances. A more realistic scenario,
with a measurement rate of once per day, is discussed in the next section.

It is important to note that the artificial zero-mean Gaussian noise parameter, wx3
, allows the EKF

to better adjust the estimate of the quanta generation rate (Simon, 2006).

5.2 HEKF for augmented single-room GN model

5.2.1 Simulation scenario and setup

Similar to Section 5.1, the model as given by (4) and (5) along with the process and measurement noise
distributions as in Table 4 are used here. The HEKF is initialized with the values shown in Table 5, and
the simulation input data, Figs. 9 to 11, are the same as in Section 5.1.
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Figure 12: Number of susceptible animals of the
augmented single-room GN model CEKF simula-
tion with a sampling time of 60 s. The measured
number of susceptible animals is shown in blue
and the estimated number of susceptible animals
is shown in orange.
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Figure 13: Number of quanta in the room of the
augmented single-room GN model CEKF simula-
tion with a sampling time of 60 s. The simulated
number of quanta in the room is shown in blue
and the estimated number of quanta in the room
is shown in orange.
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Figure 14: Zoomed number of quanta in the room
of the augmented single-room GN model CEKF
simulation with a sampling time of 60 s. The blue
line indicates the simulated number of quanta in
the room and the orange line represents the esti-
mated number of quanta in the room. The period
shown is 3 days.
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Figure 15: Quanta generation rate of the aug-
mented single-room GN model CEKF simulation
with a sampling time of 60 s. The blue line indi-
cates the actual quanta generation rate per infec-
tious individual and the orange line represents the
estimated quanta generation rate per infectious in-
dividual.

5.2.2 Simulation results

The model in (4) is simulated with a simulation step size of 60 s and the measurement sampling rate
for (5) is 1 day because the measurement data are not available at 60 s sampling intervals as assumed
in Section 5.1. The resulting simulations are shown in Figs. 16 to 19.

Figs. 16 to 19 show that the HEKF quanta generation rate x3 estimate converges using the same
noise covariance matrices as used in Section 5.1. However, the estimate is not very accurate, but remains
within 0.5wx1 after 40.031 days. The number of susceptible animals x1 also reduces to 38 as it should.
A large amount of deviation can be seen in the number of quanta in the room due to the discontinuities
present in the measured state x1.
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Figure 16: Number of susceptible animals of the
augmented single-room GN model HEKF param-
eter estimation simulation with a sampling time
of 1 day and simulation step size of 60 s. The
measured number of susceptible animals is shown
in blue and the estimated number of susceptible
animals is shown in orange.
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Figure 17: Number of quanta in the room of the
augmented single-room GN model HEKF param-
eter estimation simulation with a measurement
time of 1 day and simulation step size of 60 s. The
simulated number of quanta in the room is shown
in blue and the estimated number of quanta in the
room is shown in orange.
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Figure 18: Time-zoomed number of quanta in the
room of the augmented single-room GN model
HEKF parameter estimation simulation with a
measurement time of 1 day and simulation step
size of 60 s. The simulated number of quanta in
the room is shown in blue and the estimated num-
ber of quanta in the room is shown in orange. The
period shown is 3 days.
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Figure 19: Quanta generation rate per infec-
tious individual of the augmented single-room GN
model HEKF parameter estimation with a mea-
surement time of 1 day and simulation step size
of 60 s. The simulated quanta generation rate per
infectious individual is shown in blue and the esti-
mated quanta generation rate per infectious indi-
vidual is shown in orange.

5.3 CEKF for the simplified two-room GN model

5.3.1 Simulation scenario and setup

The simplified two-room GN model as given by (9) and (10) is used to simulate the process. The initial
parameters are given in Table 6 and the process and measurement noise distributions are shown in Table
7.

The CEKF simulation sampling time and the measurement sampling time is 60 s. The CEKF
measurement updates are made using (26). The same simulation input data (Figs. 9 to 11) is used as in
Section 5.1. The CEKF is initialized with the data as shown in Table 8.

The initial number of susceptible animals is taken as x̂1 = 81 animals, the initial quanta in the ward
as x̂4 = 17.14 quanta, the initial quanta in the animal room as x̂5 = 0.3333 quanta and the initial quanta
generation rate is taken as x̂6 = 150 quanta·d-1.
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Table 6: Initial parameters for simplified two-room GN model (Küsel et al., 2019).

Parameter Values

S0 90 animals
p 0.23 m3 · d−1

Vw 112.84 m3

V1 3.4965 m3

Table 7: Simplified two-room GN simulation model process and measurement noise distributions.

Parameter Distribution

wx1
N
(
0, 0.69122

)
wx4 N

(
0, 23.6032

)
wx5 N

(
0, 0.69182

)
wx6

N
(
0, 482

)
vx1

N
(
0, 1.82

)
Table 8: CEKF and HEKF initialization parameters for the simplified two-room GN model.

Parameter Value

EKF process noise Q


0.35 0 0 0

0 22.603 0 0
0 0 0.6918 0
0 0 0 48


EKF measurement noise R

[
4.86 0

0 0.003375

]
State condition x̂0 [81, 17.14, 0.3333, 150]

T

Estimation error-covariance P0


81 0 0 0
0 302.76 0 0
0 0 0.1111 0
0 0 0 22500



5.3.2 Simulation results

Although not explicitly shown in Fig. 20, the estimate of the number of susceptible animals x1 converges
to the correct number of susceptible animals after 16 days. Figs. 21 and 23 show that the estimates of
the number of quanta in the ward x4 and the animal room x5 converge within 16 days to the simulated
number of quanta in the ward and the animal room respectively. Figs. 22 and 24 are time-zoomed figures
of x4 and x5 respectively. The quanta generation rate x6 estimate also converges after 16 days as seen
in Fig. 25.

5.4 HEKF for simplified two-room GN model

5.4.1 Simulation scenario and setup

Similar to Section 5.3, the model as given by (9) and (10) along with the process and measurement noise
distributions as in Table 7 are used here. The HEKF is initialized with the values shown in Table 8, and
the simulation input data, Figs. 9 to 11, are the same as in Section 5.1.

5.4.2 Simulation results

The model in (9) is simulated with a simulation step size of 60 s and a measurement time of 1 day, as
in Section 5.2. Figs. 26 to 31 show the results.

Fig. 26 shows that the number of susceptible animals x1 is estimated fairly well. Figs. 27 and 29 show
that the filter does not estimate the correct quanta in the ward x4 and animal room x5. Time-zoomed
figures are shown in Figs. 28 and 30. The quanta generation rate x6 estimate is shown in Fig. 31, with
the estimate converging to within 1wx6 after 1 month. A large amount of deviation can be seen in the
number of quanta in the rooms due to the discontinuities present in the measured state x1.
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Figure 20: Number of susceptible animals of the
simplified two-room GN model estimation with a
sampling time of 60 s. The measured number of
susceptible animals is shown in blue and the esti-
mated number of susceptible animals is shown in
orange.
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Figure 21: Number of quanta in the ward of the
simplified two-room GN model estimation with a
sampling time of 60 s. The simulated number of
quanta in the ward is shown in blue and the esti-
mated number of quanta in the ward is shown in
orange.
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Figure 22: Time-zoomed number of quanta in the
ward of the simplified two-room GN model estima-
tion with a sampling time of 60 s. The simulated
number of quanta in the ward is shown in blue
and the estimated number of quanta in the ward
is shown in orange. The period shown is 3 days.
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Figure 23: Number of quanta in the animal room
of the simplified two-room GN model estimation
with a sampling time of 60 s. The simulated num-
ber of quanta in the animal room is shown in blue
and the estimated number of quanta in the animal
room is shown in orange.

5.5 Summary of results

Table 9 shows a summary of the results and a normalised root mean square error (NRMSE) of each of
the individual simulations shown above for the number of quanta in the ward and animal room. These
are normalised since the two models will have different levels of quanta and are compared directly. The
NRMSE is calculated as:

NRMSE =

√∑ (y−ŷ)T ·(y−ŷ)
N

max(y)
. (30)

The analysis is performed using the data after the estimate has reached steady-state because of the
large deviation of the estimate at the start of the simulation. The NRMSE is calculated for the error
between the estimated and simulated quanta after 1 month because this is close to the longest settling
time of the CEKF models with 10% mismatch, which is 29 days. The NRMSEs of the unmodified single-
room and two-room GN models, for which the simulations are not given in this article, are also given in
the table. The unmodified single-room and two-room GN model estimates do not converge.

Table 9 indicates that the CEKF outperforms the HEKF for both the unmodified single-room and
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Figure 24: Time-zoomed number of quanta in the
animal room of the simplified two-room GN model
estimation with a sampling time of 60 s. The sim-
ulated number of quanta in the animal room is
shown in blue and the estimated number of quanta
in the animal room is shown in orange. The period
shown is 3 days.
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Figure 25: Quanta generation rate of the simplified
two-room GN model estimation with a sampling
time of 60 s. The simulated quanta generation
rate is shown in blue and the estimated quanta
generation rate is shown in orange.
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Figure 26: Number of susceptible animals of the
simplified two-room GN model HEKF estimation
simulation with a measurement time of 1 day and
simulation step size of 60 s. The measured number
of susceptible animals is shown in blue and the
estimated number of susceptible animals is shown
in orange.
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Figure 27: Number of quanta in the ward of the
simplified two-room GN model HEKF estimation
with a measurement time of 1 day and simulation
step size of 60 s. The simulated quanta in the ward
is shown in blue and the estimated quanta in the
ward is shown in orange.

two-room GN models. However, the HEKF represents a more realistic scenario where measurements
are made available once a day. Therefore, the accuracy of the HEKF can be improved if measurements
become available at a higher frequency.

6 DISCUSSION

6.1 Single-room GN models

The GN model is in state-space format which allows for simulation with non-zero initial conditions, the
use of non-steady-state parameters (such as the ventilation rate), and the design of state estimators.
The state-space format also allows one to easily add additional states to the model, such as the quanta
generation rate per infectious individual.

The single-room GN model, as opposed to the two-room GN model, has fewer states but the same
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Figure 28: Time-zoomed number of quanta in the
ward of the simplified two-room GN model HEKF
estimation with a measurement time of 1 day and
simulation step size of 60 s. The simulated quanta
in the ward is shown in blue and the estimated
quanta in the ward is shown in orange.
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Figure 29: Number of quanta in the animal room
of the simplified two-room GN model HEKF esti-
mation simulation with a measurement time of 1
day and simulation step size of 60 s. The simu-
lated number of quanta in the room is shown in
blue and the estimated number of quanta in the
room is shown in orange.
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Figure 30: Time-zoomed number of quanta in the
animal room of the simplified two-room GN model
HEKF estimation simulation with a measurement
time of 1 day and simulation step size of 60 s. The
simulated number of quanta in the room is shown
in blue and the estimated number of quanta in the
room is shown in orange.
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Figure 31: Number of quanta in the ward of the
simplified two-room GN model HEKF estimation
with a measurement time of 1 day and simulation
step size of 60 s. The simulated quanta in the ward
is shown in blue and the estimated quanta in the
ward is shown in orange.

number of measurements. Fewer states make state estimation easier as it implies fewer parameters that
are susceptible to noise and unknown disturbances. The single-room GN model describes the infection
of susceptible entities by infectious entities who occupy the same room. This is often the case in hospital
settings, but it does not account for the ventilation of infectious droplets to other rooms.

The single-room GN model assumes that the susceptible animals are immediately infected upon
exposure to the droplet nuclei and therefore incorporates the incubation period of the disease into the
quanta parameter. The other assumptions made are that the air in the room is well mixed, the infectious
entities are equally infectious, the susceptible animals are equally susceptible and that they have the same
pulmonary ventilation rate. The quanta parameter essentially contains the uncertainty of each of the
assumptions made, the measurement noise, and unknown disturbances.

The single-room GN model was augmented with the quanta generation rate as an additional state
and EKFs were used to estimate the states. The observability analysis showed that the single-room GN
model is observable. Results from the CEKF, for which a measurement time of 60 s is used, are quite

19



Table 9: Normalised root mean square error of the simulated and estimated number of quanta in the
ward. (SR - Single-room; TR - Two-room)
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Standard SR model CEKF 22500 150 60 s 60 s - 0.527 -
Augmented SR
model

CEKF 22500 150 60 s 60 s 4 d 0.0179 -

Augmented SR
model

HEKF 22500 150 60 s 86400 s 40 d 0.194 -

Standard TR
model

CEKF 22500 150 60 s 60 s - 0.524 0.265

Simplified TR
model

CEKF 22500 150 60 s 60 s 16 d 0.00125 0.00161

Simplified TR
model

HEKF 22500 150 60 s 86400 s 40 d 0.197 0.128

favourable. An NRMSE of the quanta in the ward of 0.01793 was obtained. This is 29.4 times less than
when using the standard single-room GN model (for which the quanta in the ward estimate could not
converge), also using a measurement time of 60 s. The HEKF, for which a measurement time of 1 day
is used, resulted in an NRMSE of 0.1939 which is 2.72 times greater than the standard single-room GN
model. The convergence time for the CEKF and HEKF were 3.9 and 40 days, respectively.

Therefore, the quanta generation rate and thereby the number of quanta in the ward can be estimated
using the augmented GN model CEKF, but performance is degraded for the HEKF. The CEKF results
can be used to better determine the number of quanta present in a ward and are less susceptible to mea-
surement noise and unknown disturbances than when determining the number of quanta and generation
rates when using for example methods such as a Nelder-Mead search algorithm.

The estimators for the augmented single-room GN model require measurements of the ventilation rate
out of the ward, the pulmonary ventilation rate of the susceptible individuals (measured or estimated),
the total room volume, measurements of the number of susceptible individual and the time between each
measurement. Most of these measurements only have to be made once or can be obtained from sensors.

6.2 Two-room GN models

The two-room GN model adds the incubation period and the transmission of the disease between two-
rooms through ventilation. The model is able to simulate the transmission of the disease as it spreads
from one room to another, assuming that the ventilated air is not sterilised and the ventilation rates
between the rooms are measured. The model can also be expanded to more than two-rooms, making it
possible to model disease transmission throughout a building.

The number of quanta φ in the two-rooms and the incubation period α of the disease cannot be
measured and the uncertainty of the model lies in these three parameters. The same assumptions are
made as for the single-room GN models, with the added assumption that the incubation period of the
disease is the same for each individual. The uncertainty that is contained in these assumptions are spread
across the number of quanta in the ward and number of quanta in the adjacent rooms.

The simplified two-room GN model removed the incubation period, added the quanta generation rate
as a state, and assumed that once an animal has been exposed to the disease it shows signs of infection.
However, this assumption causes the estimate of the number of quanta to be less than it actually is
because there might be more animals who have not tested positive but have been exposed, meaning the
quanta would be greater if those animals are included in the measurements.

For the two-room GN augmented model, a measurement of the change in number of susceptible
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animals in addition to the number of susceptible animals is required to make the two-room GN model
observable. The CEKF (measurement time 60 s) and HEKF (measurement time 1 day) estimates of the
quanta in the ward and animal rooms converge after 16 and 40 days respectively. The NRMSEs of the
quanta in the ward and the quanta in the animal rooms for the CEKF are 420.3 and 164 times smaller,
respectively, than for the standard two-room GN model. The HEKF NRMSEs for the quanta in the
ward and animal rooms are 2.66 and 2.07 times smaller respectively than for the standard two-room GN
model.

The number of quanta in the two rooms and the quanta generation rate can therefore be estimated
reasonably well. This model requires the same measurements as the single-room GN model in addition
to the added ventilation rate and volume of the animal room.

7 CONCLUSION

A reduction in the transmission of TB is essential to reduce new cases and thereby reduce the number of
deaths from TB in the future. Towards this end, two TB risk of transmission models in literature were
investigated (Gammaitoni & Nucci, 1997; Strydom et al., 2017). Both models rely on a quanta generation
rate that cannot be directly measured, as a measurement of infectiousness. If this quanta generation
rate can be estimated using nonlinear state estimators, a feedback control system can potentially be
used to reduce the transmission of TB by controlling room ventilation rates and, where applicable, also
use ultraviolet germicidal irradiation (UVGI) to prevent transmission (Li et al., 2015; Beggs et al., 2000;
Beggs & Sleigh, 2002; Li et al., 2007).

In this paper, the standard Gammaitoni and Nucci (GN) model was adapted into an augmented
single-room GN model, and a two-room GN model from literature was adapted into a simplified two-
room GN model. Both modified models were shown to be observable, which means that it is theoretically
possible to estimate the quanta generation rate in these models given the available measurements.

The models were simulated based on parameter data from an AIR facility (Mphaphlele et al., 2015;
Küsel et al., 2019) to generate data. Kalman filters were used to estimate the quanta generation for the
simulated data. First, a continuous-time extended Kalman filter (CEKF) was used for both adapted
models using a simulation sample time and a measurement update time of 60 s. Accurate quanta
generation rate estimates were achieved in both cases. Taking measurements every 60 s is however
unrealistic, but was used to see what estimates can be obtained under ideal circumstances.

A more realistic scenario, with a measurement rate of once per day, was used next. For these
estimates, a hybrid extended Kalman filter (HEKF) was required as it is able to deal with simulations
where the time between model output measurements is greater than the time between measurements of
other model parameters. The quanta generation rate for both the augmented single-room and simplified
two-room GN models was estimated reasonably well.

Real-time measurement of the number of quanta in a room is not possible since the parameter contains
uncertainty related to an individual’s immune response (Nardell, 2016) and TST measurements can take
up to 72 hours to indicate infection (Küsel et al., 2019). The measurement of the concentration of
infectious particles in the air is possible using bioaerosol particle sensors (Ghosh et al., 2015; Bhangar
et al., 2014; Tobias et al., 2005). Pairing the infectious particle concentration measurement with a
modified dose-response model, more accurate estimates of the risk of transmission can be made (Sze To
& Chao, 2010; Nardell, 2004).

The measurements would only be able to identify the concentration of bio-aerosols of a specific size,
1-5 µ m (Nardell, 2016; Issarow et al., 2015; Liu et al., 2017; Yang et al., 2007), and not the exact
composition thereof (Ghosh et al., 2015). The estimates could therefore be further improved using
filters. The effects of control measures could then also be investigated in real-time.

The efficacy of UV control measures and the placement thereof relative to the ventilation in- and
outlets should also be taken into account (Sung & Kato, 2011; Noakes et al., 2015). Zonal models can
be used to model the interaction between these control measures.
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