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Abstract

In this thesis, the generalised autoregressive conditional heteroskedasticity (GARCH) op-
tion pricing model is applied to illiquid markets, volatility indices and in a modern deriva-
tive pricing framework. Chapter 2 provides empirical support for the use of a volatility
index to obtain a more accurate GARCH option pricing model (applied to the South
African equity market). In Chapter 3, the analysis (GARCH option pricing and volatil-
ity indices) is extended to FX markets. Empirical results show that asymmetry is an
important factor to consider when modelling FX volatility indices.

The aim of Chapter 4 is to quantify the effect of asymmetry in the cryptocurrency
market. Furthermore, the accuracy of the GARCH option pricing model applied to cryp-
tocurrencies is also considered. Results indicate that the GARCH option pricing model
produces reasonable price discovery, and that asymmetric effects are not significant when
pricing cryptocurrency options. Chapter 5 focuses on the construction of a cryptocurrency
volatility index, the models in Chapter 4 are used as a basis. The term structure of the
GARCH generated volatility indices are consistent with expectations. Furthermore, short
term volatility tends to increase when large jumps occur in the underlying asset.

In Chapter 6, the Heston–Nandi futures option pricing model is applied to Bitcoin
(BTC) futures options. The model prices are compared to market prices to give an indica-
tion of the pricing performance. In addition, a multivariate Bitcoin futures option pricing
methodology based on a multivatiate GARCH model is developed. The empirical results
show that a symmetric model is a better fit when applied to Bitcoin futures returns, and
also produces more accurate option prices compared to market prices for two out of three
expiry dates considered.

Chapter 7 focuses on the pricing of volatility index options respectively. In Chapter
7, the GARCH option pricing model is applied to the Standard and Poor’s 500 (S&P500)
Volatility Index (VIX) option pricing. The different GARCH models are fitted to VIX
futures returns. The results show that the symmetric GARCH model with skewed Student-
t errors is the best performing model, and that the GARCH option pricing model provides
reasonable price discovery when applied to the VIX.

In Chapter 8, the standard Black model and Heston-Nandi futures options pricing
model are applied to the hedging of VIX futures options. The hedge performance is
compared based on the stability of the profit and loss distribution (P&L) of the hedged
portfolio. Empirical results show that the Heston-Nandi futures option pricing model is
more reliable when applied to hedging of VIX futures options.
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The focus of Chapter 9 is the application of the GARCH model to the pricing of col-
lateralised options in the South African equity market. Symmetric GARCH and nonlinear
asymmetric GARCH (AGARCH) models are considered. The models are used to price
fully collateralised and zero collateral options (European, Asian, and lookback options).
The effect of collateral is illustrated by the difference between zero collateral and fully col-
lateralised option price surfaces. Finally, the effect of asymmetry is shown by the difference
between the symmetric and asymmetric GARCH option price surfaces.

Finally, a closed-form expression for a collateralised European option in the presence
of counterparty credit risk and stochastic volatility is derived in Chapter 10. The model is
applied to S&P500 index options. The option prices obtained are consistent with expec-
tations, default risky options are cheaper than options with no counterparty credit risk,
and fully collateralised options are more expensive when compared to zero collateral op-
tions. The effect of correlation is tested by plotting the default risky at-the-money (ATM)
option price for different levels of correlation. The results indicate that correlation has an
insignificant impact when pricing using the calibrated parameters.
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LHN (·) Heston-Nandi log-likelihood function based on historical returns
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LM (·) Multivariate Log-likelihood function based on historical returns
Wt Standard Brownian motion
RMSEt Root mean squared error at time t
f(·) Cumulant generating function of the Heston-Nandi futures model
fBS(·) Cumulant generating function in the Black-Scholes framework
fP (·) Cumulant generating function in the Piterbarg framework
fPD(·) Cumulant generating function in the credit risky Piterbarg framework
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Abbreviations

AGARCH Asymmetric GARCH
AIC Akaike information criterion
ARCH Autoregressive conditional heteroskedasticity
ARIMA Autoregressive integrated moving average
ATM At-the-money
BEKK Baba, Engle, Kraft and Kroner
BTC Bitcoin
CBOE Chicago Board Options Exchange
CCC Constant conditional correlation
CIR Cox–Ingersoll–Ross
CIVETS Columbia, Indonesia, Vietnam, Egypt, Turkey and South Africa
CME Chicago Mercantile Exchange
CRIX Cryptocurrency Index
DCC Dynamic conditional correlation
EGARCH Exponential GARCH
FTSE Financial Times Stock Exchange
FX Foreign exchange
GARCH Generalised ARCH
GDP Gross domestic product
GFC Global Financial Crisis
GJR-GARCH Glosten, Jagannathan, and Runkle GARCH
IGARCH Integrated GARCH
JSE Johannesburg Stock Exchange
LRNVR Locally risk-neutral valuation relationship
MAE Mean absolute error
P&L Profit and loss
RMSE Root mean squared error
S&P500 Standard and Poor’s 500
SAVI South African Volatility Index
SIC Schwarz information criterion
SR-SARV Square-root stochastic autoregessive volatility
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Preamble

The purpose of the preamble is to outline the foundation of the main theory applied
in this thesis. The preamble is divided into two sections, the first section considers the
introductory theory in which time-varying volatility models are introduced. The second
section focuses on volatility indices and introduces the volatility risk premium.

Introductory Theory

The main method applied in this thesis is a time series approach to derivative pricing.
The fundamental concepts of financial time series are discussed in this section. These
fundamental concepts form a basis for the theory that is applied and extended in this
thesis. McNeil et al. (2015) outlined the stylised facts of financial returns as follows:

1. Return series show little serial correlation (the correlation between a time series and
lagged values of itself) and returns are not identically and independently distributed.

2. Squared or absolute returns indicate signs of profound serial correlation.

3. The conditional expectation of returns is close to zero.

4. Volatility varies over time.

5. Extreme returns appear in clusters.

6. Return series show signs of leptokurtosis.

Conventional wisdom among financial modelling researchers and practitioners is that
most financial models assume that returns are not normally distributed. To illustrate this
concept, the Financial Times Stock Exchange/Johannesburg Securities Exchange (FT-
SE/JSE) Top40 returns are plotted below. In addition, simulated returns from a normal
distribution (with the same mean and variance as the Top40 returns) are plotted below.
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Figure 1: Financial returns
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From the above, it is clear that the normal distribution does not sufficiently capture three
important stylised facts: volatility varies over time, extreme returns appear in clusters,
and leptokurtosis.

In this thesis, we focus on the modelling of volatility in discrete time for the purpose
of pricing derivative instruments. As shown above, assuming normally distributed returns
is not necessarily realistic, and therefore a different approach is required. A possible
solution is the use of an autoregressive conditional heteroskedasticity (ARCH) process.
Before defining an ARCH process, the concept of strict stationarity is required, which is
defined as:

Definition 1: Strict stationarity

A time series Yt (t ∈ Z) is strictly stationary if

(Yt1 , ..., Ytn) = (Yt1+k, ..., Ytn + k)

for all t1, ..., tn, k ∈ Z

McNeil et al. (2015) define an ARCH process as follows:
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Definition 2: ARCH process

Let Zt be a strict white noise process with mean zero and variance equal to one. The
process Yt is an ARCH(p) process if it is strictly stationary and if it satisfies, for all
t ∈ Z and some strictly positive values process ht, the equations

Yt = htZt,

ht = α0 +

p∑
i=1

αiY
2
t−i,

where α0 > 0 and αi ≥ 0, i = 1, ..., p.

Asteriou and Hall (2015) explain that a major drawback of the ARCH specification
is that it behaves more like a moving average rather than an autoregression. Danielsson
(2011) also explains that a long lag length required for the ARCH model to capture the
impact of historical returns on current volatility. This gave rise to the generalised ARCH
(GARCH) model by Bollerslev (1986). According to McNeil et al. (2015) a GARCH
process is defined as follows:

Definition 3: GARCH process

Let Zt be a strict white noise process with mean zero and variance equal to one. The
process Yt is a GARCH(p, q) process if it is strictly stationary and if it satisfies, for all
t ∈ Z and some strictly positive values process ht, the equations

Yt = htZt,

ht = α0 +

p∑
i=1

αiY
2
t−i +

q∑
i=1

βiht−i,

where α0 > 0, αi ≥ 0, i = 1, ..., p, and βj ≥ 0, j = 1, ..., q.

A GARCH process can capture the presence of volatility clustering, leptokurtosis, and
the time varying nature of volatility. In this thesis, the GARCH model (and extensions
thereof) is applied to financial derivative pricing and volatility indices. Volatility indices
are introduced in the next section.
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Volatility indices

Conventional wisdom among quantitative finance researchers is that the Chicago Board
Options Exchange (CBOE) Volatility Index (VIX) is the most popular and most widely
used volatility index. According to Hao and Zhang (2013), VIX reflects investors’ ex-
pectation of volatility of the Standard and Poor’s 500 (S&P500) Index over the next 30
days.

The time series of the S&P500 index level and returns from 1990 to the end of 2021
are plotted below:

Figure 2: S&P500 Index
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From the above, it seems that volatility has a tendency to vary over time, and that
extreme returns appear in clusters (especially during financial crises). This is consistent
with the stylised facts of financial returns (Cont, 2001). As mentioned previously, the
GARCH option pricing model can capture the stylised facts of financial returns. However,
option pricing takes place under the risk-neutral measure. The GARCH option pricing
model by Duan (1995) takes this into account by incorporating a volatility risk premium
(the difference between implied and realised volatility). This implies that the model can
be calibrated under the real-world measure.

To illustrate the concept, the implied volatility (assumed to be the VIX), the expected
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realised volatility (assumed to be the 22 day GARCH forecast), and the volatility risk
premium (the difference between implied volatility and expected realised volatility) of the
S&P500 Index are plotted below:

Figure 3: S&P500 volatility and risk premium
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From the above, the volatility risk premium remains relatively stable. However, the risk
premium tends to be negative at the beginning of crisis periods. The descriptive statistics
are reported in the table below.
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Table 1: Descriptive statistics: volatility risk premium

Risk premium

Mean 4.8795
Median 4.4118
Maximum 48.8037
Minimum -81.1893
Std. Dev. 5.3429
Skewness -0.1199
Kurtosis 23.0034
Observations 8097
Jarque-Bera 135014.6

The volatility risk premium is positive on average, and not normally distributed (based on
the Jarque-Bera statistic). The volatility risk premium also shows signs of leptokurtosis.
The risk premium is discussed in more detail in Chapter 3.
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Chapter 1

Introduction

The focus of this thesis is the application of the GARCH option pricing model to illiquid
markets (South African and crypto asset markets), volatility indices, and derivative pricing
after the Global Financial Crisis (GFC). This chapter is divided into three sections. The
first considers the objectives and research questions, the second focuses on the research
question, and finally the thesis structure is outlined.

1.1 Aims and objectives

The aim of this thesis is to contribute to the existing literature on the GARCH option
pricing model in the context of volatility indices, illiquid markets (for price discovery),
and modern derivative pricing frameworks (after the GFC). More specifically, the use
of volatility indices to obtain more accurate pricing when applying the GARCH option
pricing model (applied to equity and also extended to foreign exchange markets), and
constructing a volatility index in the absence of a well-established derivatives market.
Investigating model performance when applied to option pricing in illiquid markets, and
the pricing and hedging of volatility index options. Finally, extending existing models to a
modern derivative pricing framework that is suitable for post-GFC pricing (more realistic
assumptions and takes additional factors into account, i.e., collateral and counterparty
credit risk).

The objective of Part I is the modelling of South African volatility indices using the
GARCH option pricing model as a basis. By making use of both symmetric and asymmet-
ric GARCH models, our aim is to show which GARCH model is the most accurate when
modelling South African volatility indices (this is done by comparing the model implied
volatility index to the actual volatility index). We will also illustrate the importance of
asymmetric volatility in the South African market. The application of the GARCH op-
tion pricing model equity volatility indices is well-documented in the literature (see e.g.,
Hao and Zhang, 2013), Part I also aims to extend this idea to the foreign exchange (FX)
market.

In order to contribute to the existing literature on the GARCH option pricing model
applied to price discovery, the focus of Part II is the application of the GARCH option
pricing model to cryptocurrencies. This will give an indication of the pricing performance
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when applied to a new asset class that does not have an established derivatives market. In
addition to price discovery, a cryptocurrency volatility index is also considered. Finally,
II also focuses on price discovery of multivariate cryptocurrency options.

In Part III, volatility index futures returns are modelled directly using different GARCH
models and different assumptions for the error distribution. This will indicate which
GARCH model and error distributional assumption is most appropriate when modelling
volatility index futures returns. In addition, III also considers the hedge performance of the
GARCH option pricing model when compared to a classical approach. This will illustrate
whether a more realistic assumption that incorporates time varying volatility, volatility
clustering, and leptokurtosis improves hedge performance when applied to volatility index
options.

Financial markets have changed substantially since the GFC. The models used for
the pricing of financial derivatives now need to take additional factors into account that
were not necessary in previous years. Part IV aims to extend the existing GARCH option
pricing model to take these additional factors (i.e., collateral and counterparty credit risk)
into account. The research questions are outlined in the next section. In addition, the
effect of collateral and asymmetry is also considered.

1.2 Research questions

The aims and objectives outlined in the section above give rise to multiple research ques-
tions. The main research questions are listed below:

1. Can volatility indices be used to obtain more accurate GARCH option pricing models
when applied to the South African market, and can this be extended to different asset
classes?

2. Does the GARCH option pricing model produce reasonable price discovery when ap-
plied to a new asset class, can it be used to construct a reasonable volatility index,
and can the model be used for the pricing of multivariate options?

3. Which GARCH model and error distributional assumption is most reliable when
pricing volatility index options, and does GARCH outperform classical methods when
applied to hedging volatility index options?

4. What is the effect of collateral and asymmetry on vanilla and exotic options in a
GARCH option pricing framework, and can the GARCH option pricing framework
be extended to account for collateral and counterparty credit risk?

The thesis structure is outlined in the next section.

1.3 Thesis structure

The different parts of this thesis are outlined below:
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Part I:
Option Pricing
and Volatility
Indices in the
South African

Market

Part II:
Option Pricing
and Volatility
Indices in the

Cryptocurrency
Market

Part III:
Options on
Volatility
Indices

Part IV:
GARCH Option

Pricing After
the GFC

For the most part, Part IV can be read independently of Parts I to III. The subsections
below discuss the different parts of this thesis in more detail.

1.3.1 Option pricing and volatility indices in the South African market

Part I consists of the following chapters:
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Chapter 2:
GARCH Option
Pricing Models

in a South
African Equity

Context

Chapter 3:
GARCH Option

Pricing and
Implied FX

Volatility Indices

According to Flint and Maré (2017), a problem that financial modelling practitioners are
often faced within a South African markets context, is an illiquid options market. The
market standard for the pricing of vanilla options is the model by Black and Scholes (1973)
(and extensions of the model, which are considered in Part III), which requires implied
volatility (not always observable in illiquid markets) as an input. A possible solution to
this problem is the use of historical data. However, implied volatility is a forward looking
measure.

Another possible solution to the problem of pricing options in illiquid markets is the
use of a volatility index. Kotzé et al. (2009) explain that a volatility index captures the
market’s expectation (forward looking) of volatility for a specified period. The South
African Volatility Index (SAVI) is a measure of the market’s expectation of three month
volatility. Option pricing models based on both historical data and a volatility index can
also be considered as a possible solution. This idea is explored in a South African equity
context in Chapter 2. The work by Hao and Zhang (2013) is extended to the South African
market to determine whether making use of the SAVI can improve the pricing performance
of the GARCH option pricing model.

Most studies that consider volatility indices and variance risk premia, focus on equity
indices. Duan and Wei (1997) extended the GARCH option pricing model to FX options.
Using this model as a basis, the work by Hao and Zhang (2013) is extended to the FX
market in Chapter 3. The GARCH-implied FX volatility indices are estimated for both
South Africa (SAVI Dollar) and the United States (Euro VIX) to consider both a developed
and emerging market. Furthermore, the FX variance risk premium is also considered in
Chapter 3. Essentially, the work on variance risk premiums by Fassas and Papadamou
(2018) is extended to the FX market. Chapter 3 concludes part I on option pricing and
volatility indices in the South African market.

1.3.2 Option pricing and volatility indices in the cryptocurrency market

The following chapters are included in Part II:
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Chapter 4:
Price Discovery in
the Cryptocurrency
Option Market:
A Univariate

GARCH Approach

Chapter 5:
GARCH Generated
Volatility Indices

of Bitcoin
and CRIX

Chapter 6:
Univariate and
Multivariate

GARCH Models
Applied to

Bitcoin Futures
Option Pricing

In addition to pricing derivatives in an illiquid market, financial modelling practitioners
are faced with a similar problem when a new asset class is introduced. Cryptocurrencies
are a good example of a new asset class that does not have a well-established derivatives
market. In this case, the GARCH option pricing model is calibrated to historical returns
only, given that a cryptocurrency volatility index has not yet been developed. The GARCH
option pricing model (both symmetric and asymmetric conditional variance processes) is
applied to Bitcoin (BTC) and Cryptocurrency Index (CRIX) historical returns in Chapter
4 to illustrate the effect of asymmetry in an option pricing context. Previous studies on
cryptocurrency volatility (e.g., Dyhrberg, 2016) rely heavily on statistical tests and do not
consider option pricing.

In addition to the effect of asymmetry, the pricing performance of the GARCH option
pricing model is also tested in Chapter 4 by comparing model prices to BTC market
option prices. This will give an indication of whether the GARCH option pricing model
produces reasonable price discovery. As mentioned previously, a cryptocurrency volatility
index has not yet been developed. To address this problem, using the best performing
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model in Chapter 4, the GARCH-implied BTC and CRIX volatility indices are estimated
in Chapter 5. Volatility indices are based on option prices, and are therefore risk-neutral.
The GARCH option pricing model is ideal in this case as the model is estimated under
the real-world measure, but the same parameters are required for the risk-neutral price
process (required for the GARCH-implied volatility index).

Alexander and Heck (2020) explain that crypto-asset futures are often exposed to sig-
nificant basis risk, which makes crypto-asset futures spread options an attractive product.
This idea is explored in Chapter 6. Previous chapters focus on the modelling of spot
dynamics, Chapter 6 considers the futures price process. The model by Heston and Nandi
(2000) was extended to futures options by Li (2019a). This work was used as a basis to
test the pricing performance of the model when applied to BTC futures options. Rom-
bouts and Stentoft (2011) derived the risk-neutral dynamics of the spot prices processes
for a general class of multivariate heteroskedasticity models. This work is extended to
multivariate futures options. Chapter 6 concludes Part II on option pricing and volatility
indices in the cryptocurrency market.

1.3.3 Options on volatility indices

Part III consists of the following:

Chapter 7:
Price Discovery
in the Volatility
Index Option

Market:
A Univariate

GARCH Approach

Chapter 8:
Hedging VIX

Futures Options:
An Application

of the
Heston-Nandi

Model

The chapters outlined previously focus on the use of volatility indices to obtain more ac-
curate prices, or the construction of a volatility index in the absence of a well-established
derivatives market. However, derivatives on volatility indices are not considered in previ-
ous chapters. In this case, the volatility index becomes the underlying asset. The use of
volatility index derivatives for the hedging of volatility risk has become very popular in
recent years. The pricing and hedging of volatility index derivatives is the focus of Part
III.

The focus of Chapter 7 is price discovery in the volatility index option market. Cur-
rently, options on the SAVI (and other volatility indices) do not actively trade, and there-
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fore a different approach is required. GARCH models are applied to the pricing of volatility
index options in Chapter 7. Conventional wisdom among financial modelling researchers
and practitioners is that the assumption of a Gaussian distribution when modelling fi-
nancial returns is not necessarily realistic. Therefore, different distributional assumptions
(that take skewness and kurtosis into account) are also considered. The GARCH mod-
els are applied to CBOE VIX option pricing. According to Fernandes et al. (2014), the
CBOE has published the VIX since 1993. The VIX is calculated using near term (30
calendar days) volatility implied by options on the S&P500 index. Furthermore, the VIX
is based on a model-free estimator of implied volatility and therefore does not rely on a
particular option pricing framework. VIX options actively trade, and therefore the pricing
performance can be determined by comparing model prices to market prices.

The VIX is not a tradeable asset. However, futures and options on VIX do trade.
Literature focusing on the pricing of VIX options is well-documented in the literature.
However, not many studies have considered the hedging of VIX options. By making use
of a similar approach to Alexander and Nogueira (2004) (applied different option pricing
models to the hedging of equity options) and Lassance and Vrins (2018) (tested the hedge
performance of the Heston-Nandi model applied to equity options), the hedge performance
of the Heston-Nandi futures option pricing model (applied in Chapter 6) applied to VIX
options is considered in Chapter 8. This chapter concludes Part III on volatility index
options. The next part focuses on modern pricing frameworks.

1.3.4 GARCH option pricing after the GFC

As mentioned previously, Part IV can be read independently of Part I to III (for the most
part). The following chapters are included in Part IV:

Chapter 9:
Collateralised
Option Pricing
in a South

African Context:
A Univariate

GARCH Approach

Chapter 10:
Pricing

Collateralised
Options in the
Presence of
Counterparty

Credit Risk: An
Extension of the
Heston-Nandi

Model

The GFC has changed financial markets permanently, especially financial derivatives. Be-
fore the GFC, the model by Black and Scholes (1973) was considered the market standard.
However, the GFC has shown that numerous additional factors that need to be considered.
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This has forced quantitative finance researchers and practitioners to develop a new pricing
framework. Modern derivative pricing frameworks and the GARCH option pricing model
are the focus of Part IV.

An important assumption required for the Black and Scholes (1973) framework is the
existence of a constant and unique risk-free rate. The collapse of large financial institutions
has shown that this is not necessarily a realistic assumption. Furthermore, an important
factor that is often required in today’s market is the posting of collateral. Piterbarg
(2010) extended the Black and Scholes (1973) model to price derivatives in the presence
of collateral. The model relaxes the assumption of a risk-free rate.

Labuschagne and Von Boetticher (2017) were the first to extend the GARCH option
pricing model to the Piterbarg (2010) framework, for the pricing of collateralised options
in the South African market. In Chapter 9 the work by Labuschagne and Von Boetticher
(2017) is extended to different GARCH processes (symmetric and asymmetric), and also
exotic options. The overall purpose is to illustrate the effect of collateral and asymmetry
in a South African equity market context.

An obvious shortcoming of Chapter 9 is that the model still requires an important
assumption made by Black and Scholes (1973) and Piterbarg (2010), which is no coun-
terparty credit risk. This is clearly a strong assumption given defaults during the GFC.
A more realistic approach is considered in Chapter 10. Von Boetticher (2017) extended
the work by Heston and Nandi (2000) to the Piterbarg (2010) framework. However, the
model by Von Boetticher (2017) assumes no counterparty credit risk. In addition, Wang
(2017) extended the model by Heston and Nandi (2000) to the pricing of options in the
presence of counterparty credit risk in the Black and Scholes (1973) framework (assumes
a constant risk-free rate). By making use of ideas presented in Von Boetticher (2017) and
Wang (2017), Chapter 10 extends the Heston-Nandi model to the pricing of options in
the presence of collateral and counterparty credit risk. This chapter concludes Part IV
on GARCH option pricing and modern derivative pricing frameworks. Finally, concluding
remarks and areas for future research are outlined in Chapter 11.
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Part I

Option Pricing and Volatility
Indices in the South African

Market
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Chapter 2

GARCH Option Pricing Models in
a South African Equity Context

2.1 Introduction

In modern finance, asset volatility is synonymous with an asset’s risk. Financial modelling
researchers and practitioners, therefore, face the issue of finding a reliable estimate of
volatility. Soczo (2003) explains that historical data can be used to estimate current and
future levels of volatility. However, this assumes that the future will be like the past,
which is not necessarily a realistic assumption.

Financial researchers (see, e.g., McNeil et al., 2015) have demonstrated that volatility
is not constant, i.e., it changes substantially over time. Furthermore, financial time series
exhibit periods of high or low volatility; this phenomenon is known as clustering. There
also appears to be mean reversion in volatility, i.e., periods of unusually high or low
volatility tend to be followed by reversion to more normal behaviour (see, e.g., Cont,
2001). In equity markets, volatility typically increases when stock prices decrease; this is
often referred to as the leverage effect.

When it comes to the topic of time-varying volatility in discrete time, most finan-
cial modelling researchers will agree that the GARCH model is the most widely used.
A wide range of different GARCH processes have been introduced in the literature (see,
e.g., Francq and Zakoian, 2019). An important factor to consider when modelling con-
ditional volatility is the effect of asymmetry. According to Asteriou and Hall (2015),
symmetric volatility models assume that positive and negative shocks have the same ef-
fect on volatility, which is also not necessarily a realistic assumption. Therefore, we test
the performance of both symmetric and asymmetric GARCH models when modelling the
conditional variance.

GARCH model parameters are usually estimated using historical returns of an asset
price, by making use of the maximum likelihood method. The fitted GARCH model can
then be used to obtain a forward looking estimate of volatility. A different approach is to
make use of a volatility index. In this chapter, the so-called SAVI is used. As explained
by Kotzé et al. (2009), the SAVI was introduced in 2007 for the purpose of measuring



2.2. METHODOLOGY 17

the expected three-month volatility based on the FTSE/JSE Top40 index. During times
of higher uncertainty (e.g., financial crises), the SAVI index increases substantially (in
direct analogy with the CBOE VIX, which measures investors’ expectations of volatility
of the S&P500 index). Equity volatility indices serve as important financial indicators,
measuring the level of risk in markets, while also exhibiting predictive power for index
returns (see, e.g., Huskaj and Larsson, 2016).

In this chapter,1 three different univariate GARCH processes are used to model the
implied SAVI index. By making use of an approach similar to Hao and Zhang (2013),
three different log-likelihood functions are considered for the estimation of the GARCH
option pricing model parameters to determine the best performing GARCH model when
compared to the historical SAVI. Furthermore, the accuracy of estimated GARCH option
pricing models is tested by comparing the model option prices to market prices (consistent
with Hunzinger et al., 2014). The rest of this chapter is structured as follows: Section 2.2
focuses on the methodology, thereafter the empirical results are presented in Section 2.3,
and finally the main findings are summarised in Section 2.4.

2.2 Methodology

This section is divided into four subsections. The first focuses on GARCH models in
finance. The second subsection considers the application of GARCH models to option
pricing. Thereafter, the theoretical framework of the GARCH-implied SAVI is considered.
Finally, the data and estimation methods used in this study are discussed.

2.2.1 GARCH models in finance

A large proportion of models used in finance assume constant volatility. A good example of
this is the classical Black-Scholes (see e.g., Wilmott, 2007) model used for option pricing.
As mentioned previously, the GARCH model is clearly the most popular when modelling
volatility in discrete time. According to McNeil et al. (2015), GARCH models capture
two important stylised facts of financial time series, namely leptokurtosis and volatility
clustering.

The application of GARCH models to solve financial problems is well-documented in
the literature. According to Duncan and Liu (2009), the mean model of a typical GARCH
model takes the following form:

ln

(
St
St−1

)
= µ+ εt, (2.1)

where St is the price of the underlying asset at time t, µ remains constant over time, and
the error term, εt, is assumed to be normally distributed with mean zero and conditional
variance ht, where ht is some GARCH process. The conditional variance when modelled

1This chapter is based on a paper (Venter and Maré , 2020b) published in ORiON.
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using a GARCH(1,1) process is given by,

ht = α0 + α1ε
2
t−1 + β1ht−1, (2.2)

α0 > 0, α1, β1 ≥ 0, α1 + β1 ≤ 1,

where the parameters α0, α1, and β1 are typically estimated using the maximum likelihood
method (to be discussed in Section 2.2.4).

When the variance equation is modelled using the symmetric GARCH(1,1) process, the
assumption is that volatility will have the same reaction to positive and negative shocks.
However, this is not necessarily a realistic assumption. Glosten et al. (1993) therefore
include an indicator function to capture the asymmetric nature of positive and negative
shocks. The (Glosten, Jagannathan, and Runkle) GJR-GARCH(1,1) model takes the
following form:

ht = α0 + α1ε
2
t−1 + β1ht−1 + γ1{εt−1<0}ε

2
t−1, (2.3)

α0, α1 > 0, β1 ≥ 0, α1 + γ ≥ 0, γ < 2(1− α1 − β1),

where the indicator function, 1{εt−1<0} takes a value of one when shocks are negative, and
zero otherwise.

The third model considered in this study is the asymmetric GARCH (AGARCH) model
that has the following form (see Alexander, 2008):

ht = α0 + α1(εt−1 − γ)2 + β1ht−1, (2.4)

α0 > 0, α1, β1 ≥ 0, (1 + γ2)α1 + β1 ≤ 1,

where the parameter γ captures asymmetric effects. If γ > 0, then (εt−1 − γ)2 will result
in larger negative shocks. Furthermore, when modelling volatility on equity returns, γ is
usually positive, while γ is usually negative for commodities.

An important factor to consider when modelling volatility using different GARCH
type models, is the goodness of fit. Ahmad and Ping (2014) explained that the goodness
of fit of symmetric and asymmetric GARCH models can be compared using the Akaike
information criterion (AIC) and Schwarz information criterion (SIC). The AIC and SIC
are given by,

AIC = −2 lnL+ 2k

SIC = −2 lnL+ k lnN,

where L is the maximised value of the likelihood function, k is the number of estimated
parameters, and N is the sample size. Oberholzer and Venter (2015) applied symmetric
and asymmetric GARCH models to a range of different JSE indices to determine the
most reliable model. Their empirical results based on the AIC and SIC indicated that the
GJR-GARCH(1,1) model is the most reliable model when modelling Top40 volatility.

Conventional wisdom amongst finance researchers and practitioners is that there is
a positive relationship between risk and return. However, the mean model specified in
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Equation 2.1 does not reflect this. Asteriou and Hall (2015) explain that this can be
captured by making use of the GARCH-in-mean model, where the conditional mean is a
function of the conditional variance (or standard deviation). An example of a GARCH-
in-mean specification is given by,

ln

(
St
St−1

)
= µ+ λht + εt,

where µ remains constant over time, λ is the coefficient of the conditional variance ht,
which is some GARCH process, and εt is assumed to be normally distributed with mean
zero, and variance ht.

Hansen and Lunde (2005) compared the predictive ability of 330 GARCH type models,
with the GARCH(1,1) model as the benchmark model. Their findings indicated that the
GARCH(1,1) is highly robust, and that it is difficult to find an alternative model that
shows consistent outperformance. Hence, the GARCH(1,1) model is used as a benchmark
model in this study. Furthermore, Oberholzer and Venter (2015) showed that the GJR-
GARCH(1,1) model is superior when modelling Top40 returns, which is consistent with
the results found in Flint et al. (2014). However, this was based on historical data only.
Therefore the performance of the GJR-GARCH(1,1) applied to Top40 option pricing is
considered in this study. Finally, according to Hsieh and Ritchken (2005), the application
of the AGARCH(1,1) model to option pricing is superior at removing pricing biases from
pricing residuals and should be considered by traders and risk managers. Therefore the
AGARCH(1,1) model is included in this study. GARCH models applied to financial option
pricing is considered in the next subsection.

2.2.2 GARCH models applied to option pricing

Duan (1995) explains that when using a GARCH process to model the log-returns of an
asset, the following is assumed,

ln

(
St
St−1

)
= r + λ

√
ht −

1

2
ht + εt,

and

εt =
√
htzt,

where r is the unique risk-free rate (continuously compounded), and λ is the constant unit
risk premium. Furthermore, zt is assumed to be identically and independently distributed
with mean zero and variance equal to one under the real-world measure P .

Wilmott (2007) explains that the value of an option can be shown to be the expectation
of the discounted future payoff under the risk-neutral measure (Q). Consider the following
definition from Duan (1995):
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Definition 4: Locally risk-neutral valuation relationship

A pricing measure Q satisfies the locally risk-neutral valuation relationship (LRNVR)
if the measure Q is absolutely continuous with respect to measure P, St/St−1 is log-
normally distributed, with conditional expectation and variance under the risk-neutral
measure

EQ
[
St
St−1

| Ft−1
]

= exp {r} , (2.5)

and

VarQ
[
ln

(
St
St−1

)
| Ft−1

]
= VarP

[
ln

(
St
St−1

)
| Ft−1

]
,

almost surely with respect to measure P, where Ft is the information set available at
time t.

To simplify notation, the conditional expectation at time t is denoted by Et[·]. The above
definition allows us to derive the following theorem:

Theorem 1: Risk-neutral asset price dynamics under GARCH

Under pricing measure Q, the LRNVR implies

ln

(
St
St−1

)
= r − 1

2
ht + ξt, (2.6)

where

ξt =
√
htz
∗
t ,

and z∗t is a standard normal random variable under the risk-neutral measure Q. This
implies that,

ξt|Ft−1 ∼ N (0, ht).

Proof. Given that St/St−1 is log-normal under measure Q, it can be written as,

ln

(
St
St−1

)
= µt + ξt, (2.7)

where µt is the conditional mean, and ξt is a Q-normal random variable, with conditional
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mean zero and variance ht. This follows that

EQt
[
St
St−1

]
= EQt [exp {µt + ξt}]

= exp

{
µt +

1

2
ht

}
by the LRNVR, ht = VarQ

[
ln
(

St
St−1

)
| Ft−1

]
= VarP

[
ln
(

St
St−1

)
| Ft−1

]
. Furthermore,

because Equation 2.5 holds, it follows that

µt = r − 1

2
ht.

This completes the proof.

Theorem 2 focuses on the case where ht follows a GARCH(1,1) process.

Theorem 2: GARCH(1,1) risk-neutral dynamics

If ht takes on a GARCH(1,1) specification, the LRNVR implies

ht = α0 + α1

(
ξt−1 − λ

√
ht−1

)2
+ β1ht−1. (2.8)

Proof. By making use of Equations 2.5 and 2.7, it is clear that

r + λ
√
ht −

1

2
ht + εt = r − 1

2
ht + ξt,

which suggests that

εt = ξt − λ
√
ht.

If the above is substituted into Equation 2.2, Equation 2.8 is obtained. This completes
the proof.

It is clear from the above that irrespective of how the conditional variance (ht) is specified,
the variable εt is always replaced by ξt−λ

√
ht. The GJR-GARCH(1,1), and AGARCH(1,1)

processes under the risk-neutral measure Q are given by:

ht = α0 + α1(ξt−1 − λ
√
ht−1)

2
[
α1 + γ1{ξt−1<0}

]
+ β1ht−1 and

ht = α0 + α1

(
ξt−1 − λ

√
ht−1 − γ

√
ht

)2
+ β1ht−1,

respectively. Furthermore, the stationarity constraints of the GARCH(1,1), GJR-
GARCH(1,1), and AGARCH(1,1) processes are given by,
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α1(1 + λ2) + β1 < 1,

α1(1 + λ2) + β1 + γ

[
λ√
2π

exp

{
−λ

2

2

}
+ (1 + λ2)Φ(λ)

]
< 1,

α1[1 + (λ+ γ)2] + β1 < 1

respectively, where Φ(·) denotes the cumulative normal distribution function.
In this study, Monte Carlo simulation is used to price European options. Given the

estimated parameters (α0, α1, β1, γ and λ), the current value of the underlying asset (S0),
and the unique risk-free rate (r), options can be priced using the GARCH(1,1) model by
using the following algorithm at the current time t = 0 (the initial risk-neutral variance
σ0 and the initial value of ξ0 are assumed to be the unconditional variance and zero
respectively).

For a European call option that expires at time T , with strike K, the Monte Carlo
price is given by

Algorithm 1: GARCH(1,1) Monte Carlo option pricing

Step 1: Generate (z1,1, ..., zM,T ) ∼ N (0, 1) where M is the number of simulations.

Step 2: Compute hj,t = α0 + α1(ξj,t−1 − λ
√
hj,t−1)

2 + βhj,t, where ξj,t =
√
hj,t × zj,t

for t = 1, ..., T.

Step 3: Compute Sj,t = Sj,t−1 exp
{
r − 1

2hj,t + ξt
}
, for t = 1, ..., T.

Step 4: Repeat steps 2 and 3 M times.

Step 5: The option price is equal to the discounted payoff function applied to the
underlying:

Vt = DF (t, T )
1

M

M∑
j=1

max {Sj,T −K, 0} ,

where DF (t, T ) is a discount factor used discount a cash flow from time T to time t.

The conditional variance process in the algorithm changes when using the GJR-
GARCH(1,1) or AGARCH(1,1) model. The GARCH-implied SAVI is considered in the
next subsection.



2.2. METHODOLOGY 23

2.2.3 GARCH-implied SAVI

As mentioned, the SAVI reflects investors’ expectations of volatility of the Top40 in the
following three calendar months, which is given by,(

SAV It
100

)2

= EQt
[

1

τ0

∫ t+τ0

t
h̃sds

]
,

where τ0 is equal to three calendar months (assumed to be 63 trading days), h̃s is the
instantaneous annualised variance of the Top40 returns, and EQt [·] denotes the conditional
expectation at time t, under the risk-neutral measure. In this chapter, the SAVI is calcu-
lated as the expected average of the variance in the n subperiods of the following three
calendar months,(

SAV It
100

)2

=
1

n

n∑
k=1

EQt
[
h̃
t+

k×τ0
n

]
.

Daily data is used to estimate the implied SAVI, hence n = τ0, as explained by Hao and
Zhang (2013). Furthermore, when estimating the implied SAVI using daily data, a proxy
for SAV It in terms of daily variance is required. This is given by,

ϑt =
1

n

n∑
k=1

EQt [ht+k],

where ϑt = 1
252

(
SAV It
100

)2
almost surely.

In order to derive the GARCH-implied SAVI, ξt in Equation 2.6 is assumed to be a
square-root stochastic autoregessive volatility (SR-SARV) process of order one. SR-SARV
models are characterised by the autoregressive nature of the stochastic variance, hence the
variance depends on the previous values (lags) of itself. The general form of the conditional
variance (given the information set Jt, available at time t) of a SR-SARV process is given
by,

Pt = Ω + ΓPt−1 + υt,

where Ω is a constant, |Γ| < 1, and the error term E[υt|Jt] = 0. For more information on
SR-SARV processes, the interested reader is referred to Meddahi and Renault (2004). Hao
and Zhang (2013) showed that if ξt follows an SR-SARV process, the implied volatility
index (in terms of daily variance) implied by the GARCH(1,1), GJR-GARCH(1,1), and
AGARCH(1,1) models have an analytical formula, which takes the following form:

ϑt = ζ + ψht,

where

ζ =
Ω

1− γ
(1− ψ),

ψ =
1− Γn

n(1− Γ)
.

The estimated SAVI of the GARCH(1,1), GJR-GARCH(1,1) and AGARCH(1,1) models
are obtained using the general form above.
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2.2.4 Data and estimation methods

In this study, daily data from 1-Jan-2010 to 19-Apr-2019 are used, the dataset was
obtained from the Thomson Reuters Datastream databank. As mentioned previously,
GARCH model parameters are usually estimated using maximum likelihood. According
to Christoffersen et al. (2013), GARCH models used for option pricing can be estimated
using the maximum likelihood method (based on historical returns), by making use of
loss functions (errors between the GARCH-implied option prices and market option prices
are minimised) or models can be calibrated to both historical returns and market option
prices.

Hao and Zhang (2013) estimate GARCH models using three different likelihood func-
tions to estimate the GARCH models, ultimately to estimate the GARCH-implied VIX.
The first likelihood function is based on historical returns only, the second is based on the
historical VIX only, and the final function is a joint likelihood function based on historical
returns and the historical VIX. Christoffersen et al. (2013) explain that estimation meth-
ods based on both historical returns and option prices, or in this case implied volatility,
are better than methods based on option prices only, because they ensure that the model
is consistent with historical returns and the market’s expectations of the future.

In this study, by making use of a similar approach to Hao and Zhang (2013), three
different likelihood functions are used to estimate GARCH model parameters, ultimately to
estimate the GARCH-implied SAVI. The best performing GARCH model is determined by
comparing the GARCH-implied SAVI to the historical SAVI, and by comparing GARCH-
implied option prices to market option prices.

The GARCH parameters based on returns only are estimated by maximising the fol-
lowing log-likelihood function (Hao and Zhang, 2013),

lnLR = −N
2

ln(2π)− 1

2

N∑
t=1

(
lnht +

[
ln

St
St−1

− r − λ
√
ht +

1

2
ht

]2
/ht

)
,

or equivalently, by minimising

−2 lnLR = N ln(2π) +
N∑
t=1

(
lnht +

[
ln

St
St−1

− r − λ
√
ht +

1

2
ht

]2
/ht

)
,

where N is the number of historical returns in the estimation period. For the log-likelihood
function based on the historical SAVI, the following is assumed regarding the relationship
between the market and GARCH-implied SAVI,

SAV IMkt
t = SAV IImpt + εt, εt ∼ i.i.d.N (0, ς2).

The log-likelihood function based on the historical SAVI is given by (Hao and Zhang,
2013),

lnLV = −N
2

(2πς̂2)− 1

2ς̂2

N∑
t=1

(
SAV IMkt

t − SAV IImpt

)2
, (2.9)
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where ς2 is estimated with sample variances ς̂2. In this case, the following function is
minimised,

−2 lnLV = N(2πς̂2) +
1

ς̂2

N∑
t=1

(
SAV IMkt

t − SAV IImpt

)2
.

Finally, the joint log-likelihood function based on returns and the SAVI is given by:

lnLRV = lnLR + lnLV . (2.10)

For the non-linear constrained optimisation required to estimate the GARCH model pa-
rameters, the fmincon function in Matlab is used, this is based on the interior-point
algorithm. The empirical results are discussed in the next section.

2.3 Empirical results

In this section, the performance of the GARCH(1,1), GJR-GARCH(1,1), and
AGARCH(1,1) option pricing models in a South African equity context are considered.
The goodness of fit of the different likelihood functions for each GARCH model is compared
based on the AIC and SIC, and the performance of the models (the GARCH-implied SAVI
compared to the historical SAVI) is compared based on the mean absolute error (MAE),
and root mean squared error (RMSE). The information criteria and performance metrics
are reported in Tables 2.1 and 2.2 below:

Table 2.1: GARCH model information criteria

Log-likelihood GARCH(1,1) GJR-GARCH(1,1) AGARCH(1,1)
function AIC SIC AIC SIC AIC SIC

lnLR -6.4264 -6.4168 -6.4628 -6.4508 -6.4776 -6.4656
lnLV 6.5748 6.5844 7.4713 7.4833 5.4206 5.4326
lnLRV -0.8559 -0.8463 -0.9288 -0.9168 -0.6642 -0.6522

Table 2.2: GARCH-implied SAVI performance metrics

Log-likelihood GARCH(1,1) GJR-GARCH(1,1) AGARCH(1,1)
function MAE RMSE MAE RMSE MAE RMSE

lnLR 3.4729 4.4200 3.7126 4.6570 3.0943 3.9850
lnLV 3.6869 4.6287 3.2764 4.0218 1.9028 2.5157
lnLRV 2.0112 1.986 1.9860 2.6060 2.5785 3.3930
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In Table 2.1, the values in bold indicate the best fitting model for the respective log-
likelihood function. The bold values in Table 2.2 indicate the log-likelihood function that
produces the best performing GARCH model in estimating the SAVI.

The AIC and SIC clearly show that the asymmetric models produce a better fit when
modelling Top40 returns; this is consistent with the findings of Oberholzer and Venter
(2015). The performance metrics indicate that the joint log-likelihood function (historical
returns and SAVI) produces the best performing model for the GARCH(1,1), and the GJR-
GARCH(1,1) model. The log-likelihood function based on the historical SAVI (lnLV )
produces the best performing AGARCH(1,1) model.

When the performance of the three GARCH option pricing models is considered, the
AGARCH(1,1) model is the best performing model when modelling the implied SAVI.
This implies that incorporating asymmetric effects improves performance when modelling
implied volatility in the South African equity market, which is consistent with the infor-
mation criterion. The coefficients of the best performing GARCH(1,1), GJR-GARCH(1,1)
and AGARCH(1,1) model are reported in Table 2.3 below:

Table 2.3: GARCH model coefficients

Coefficient GARCH(1,1) GJR-GARCH(1,1) AGARCH(1,1)

α0 3.79E-07 3.58E-07 4.08E-07
α1 0.0171 0.0029 0.015
β1 0.9825 0.9841 0.9775
γ - 0.0233 4.2273
λ 0.1539 0.0695 -3.5230

The asymmetry coefficient of the GJR-GARCH(1,1) and AGARCH(1,1) indicates that
volatility of the Top40 returns reacts differently to positive and negative shocks, this is
also consistent with previous findings in the literature. Furthermore, the γ coefficient
of the AGARCH(1,1) model is positive; this is consistent with expectations (positive for
equity returns, Alexander, 2008). The coefficients in Table 2.3 were used to produce the
line graphs below. Figure 2.1 illustrates the GARCH-implied SAVI (of the best performing
models) and historical SAVI over time.
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Figure 2.1: GARCH-implied SAVI
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Figure 2.1 indicates that the GARCH-implied SAVI is similar for each model and that the
models perform fairly well when compared to the historical SAVI.

The best performing GARCH(1,1), GJR-GARCH(1,1), and AGARCH(1,1) are used
to price European options on the Top40; the model prices are compared to the JSE prices
to test the pricing performance of each model. Monte Carlo simulation is used to obtain
risk-neutral sample paths. Sample paths of each model are plotted in Figure 2.2 below:

Figure 2.2: Risk-Neutral Sample Paths
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The sample paths in Figure 2.2 indicate how the simulated spot price varies over time. The
black line in each subplot represents the expected value under the risk-neutral measure.
This illustrates the concept of risk-neutrality.

To show the convergence of the Monte Carlo prices, we show the JSE price as well as
three standard deviation error bounds of each relevant model, plotted across the number
of simulations in Figure 2.3 below. The prices are for a 72-day European call option with
strikeK = 41 251.27 (moneyness=1.2). Furthermore, the interest rate used to simulate the
spot price is consistent with the JSE forward curve (published by the JSE), the expected
payoff is discounted using the 91-day Treasury bill rate.

Figure 2.3: GARCH Monte Carlo Option Prices
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To test the pricing performance of each model, the model prices of nine 72-day Euro-
pean call options are compared to market prices published by the JSE (on 9 April 2019).
The moneyness levels are equally spaced between 0.6 and 1.4. The GARCH option prices
were calculated using 1 000 000 sample paths. The implied model prices and JSE prices
are plotted in Figure 2.4 below:
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Figure 2.4: Implied call option prices
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Figure 2.4 indicates that the GARCH option pricing models perform well when com-
pared to market option prices. The pricing performance metrics and computation time
(seconds required to price nine 72-day European call options) of each model are reported
in Table 2.4 below:

Table 2.4: Pricing performance metrics and computation time

Model RMSE MAE Computation Time

GARCH(1,1) 191.4070 104.5114 225.5
GJR-GARCH(1,1) 184.0239 99.6803 281.3
AGARCH(1,1) 180.2461 97.5269 275.9

The RMSE and and MAE are calculated based on the ZAR (South African Rand) values
of the option prices. The pricing performance metrics indicate that the AGARCH(1,1)
model is the most accurate, followed by the GJR-GARCH(1,1) model, and finally the
GARCH(1,1) model. The results are consistent with the implied SAVI performance
metrics. However, the difference between the pricing performance of the symmetric
GARCH(1,1) model and the asymmetric models is marginal. Furthermore, the compu-
tation time indicates that the time required to price options using the GARCH(1,1) is
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slightly less than the other models; this is due to the fact that the latter model does not
include a term modelling asymmetry.

2.4 Summary

The use of volatility indices has grown in recent times. These indices are used to aid in
the prediction and measurement of financial conditions as well as stress situations in the
markets (Huskaj and Larsson, 2016). In recent work, Bollerslev et al. (2015) highlighted
the use of volatility indices and the variance risk premium to predict aggregate stock
market returns. While many studies have been performed using the CBOE VIX, we
consider the SAVI index.

In this chapter, three different GARCH models were used to model the GARCH-
implied SAVI. The symmetric GARCH(1,1), the asymmetric GJR-GARCH, and
AGARCH(1,1) models. Furthermore, three different log-likelihood functions were con-
sidered in the model parameter estimation. The first based on historical returns data
only, the second based on the historical SAVI, and finally a joint likelihood function based
on the historical returns and SAVI. This is based on the work by Hao and Zhang (2013).

The goodness of fit of each model was compared based on the AIC and SIC. The infor-
mation criteria indicated that the asymmetric models provide a better fit when compared
to the symmetric GARCH(1,1) model, this is consistent with previous findings in the lit-
erature (Oberholzer and Venter, 2015, Flint et al., 2014). The accuracy of each model was
tested by comparing the GARCH-implied SAVI to the historical SAVI.

Regarding the log-likelihood functions, for the GARCH(1,1) and GJR-GARCH(1,1)
the joint likelihood function based on historical returns and the historical SAVI produces
the best performing model. The log-likelihood function based on the historical SAVI
produces the best performing AGARCH(1,1) model. Finally, when the performance of all
models are considered, the empirical results showed that the asymmetric AGARCH(1,1)
is the best performing model when modelling the GARCH-implied SAVI.

The pricing performance of the GARCH option pricing models was compared based on
the GARCH-implied prices when compared to (72-day) market traded European option
prices. The results were consistent with the GARCH-implied SAVI results; this indicates
that the use of asymmetric GARCH option pricing models improves the model performance
in the South African equity market. However, the improvement is marginal. The use of
asymmetric models is more computationally intensive. Therefore our results are in line
with Hansen and Lunde (2005), the GARCH(1,1) model is highly robust and that it is
difficult to find an alternative model that shows consistent outperformance.

This chapter indicates that the use of volatility indices in a South African equity
context improves pricing performance. However, the focus was on equity options only.
The next chapter extends the analysis to the FX market. Furthermore, the FX volatility
indices of South Africa and the United States of America are considered.
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Chapter 3

GARCH Option Pricing and
Implied FX Volatility Indices

3.1 Introduction

In this chapter,1 the GARCH option pricing analysis applied in Chapter 2 is extended to
the FX market. FX turnover exceeds $8.3 trillion daily according to the most recent BIS
Triennial Central Bank survey (BIS , 2019). Currency movements are therefore studied
intensively by market participants as leading indicators of macro-economic stress based on
their immense liquidity, especially the United States Dollar (USD), Euro, Pound Sterling
and Japanese Yen. According to Dimitriou and Kenourgios (2013), studies that examine
the behaviour of currency markets during high volatility periods are rare.

Baruńık et al. (2017) explain that currency volatility is an important factor to consider
for various market participants; on the FX market volatility affects decisions to hedge open
foreign exchange positions and may also increase the idiosyncratic risk that diminishes
gains from international portfolio diversification.

It is interesting to view ZAR against other emerging market peers. Figure 3.1 below
demonstrates average daily turnover (BIS , 2019) per currency as a percentage of nominal
GDP (gross domestic product) detailing the ZAR liquidity. The ZAR is frequently viewed
as one of the most liquid currencies in the world and seen as an emerging market proxy -
this makes the ZAR of interest in any currency related analysis.

1This chapter is based on a paper (Venter and Maré, 2021) that appeared in Studies in Economics and
Econometrics.
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Figure 3.1: Average daily turnover per currency as a percentage of nominal GDP
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As mentioned previously, the use of volatility indices (fear indices), have become very
popular in recent years. According to Alexander et al. (2015), a wide range of volatility
indices on different asset classes have been developed. Furthermore, these volatility indices
are constructed using European options. As explained, volatility indices reflect investors’
expectations of future realised volatility (in this case, volatility in the FX market).

The focus of this study is on the modelling of FX volatility indices, both a developed
market (USD to the Euro, referred to as the Euro VIX) and an emerging market (ZAR to
USD, referred to as the SAVI Dollar) are considered. As mentioned previously, the ZAR
is considered due to the fact that it is highly liquid compared to its peers. According
to Alexander et al. (2015), the Euro VIX and SAVI Dollar are based on one-month and
three-month expected volatility respectively.

In this chapter, the GARCH-implied volatility approach by Hao and Zhang (2013) (also
applied in Chapter 2) is extended to FX options. Hence, volatility indices are obtained
using the GARCH option pricing model, and not the model-free approach used by the
CBOE and the JSE.

The remainder of this chapter is structured as follows: Section 3.2 reviews the recent
and relevant literature, Section 3.3 focuses on the theoretical framework, the data and
estimation methods are discussed in Section 3.4, the empirical results are presented in
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Section 3.5, and finally the main findings are summarised.

3.2 Literature review

Variance risk premia is a well-researched topic. Carr and Wu (2019) estimated the variance
risk premium using the risk-neutral expected variance, also known as the variance swap
rate. This rate is approximated using a particular portfolio of options. Carr and Wu
(2019) propose that the variance risk premium is equal to the difference between the
realised variance, and the synthetic variance swap rate. The empirical analysis consisted
of an investigation of the historical behaviour of the variance risk premium on five stock
indices, and five individual stocks. The results show that the variance risk premiums are
strongly negative.

According to Fassas and Papadamou (2018), implied volatility reflects not only uncer-
tainty in the market, but also investors’ risk aversion. Hence the risk aversion component
reflects the investors’ compensation for bearing risk and can be measured by the vari-
ance risk premium. Fassas and Papadamou (2018) estimate the variance risk premium
by taking the difference between an implied volatility index, and realised volatility in the
equity market (this approach is extended to the FX market in this study). Empirical
evidence shows that the risk premium is negative on average, indicating that the variance
risk premium is priced in.

Research based on FX option pricing and volatility indices is well-documented. The
empirical performance of the FX GARCH option pricing model was considered by Bhat
and Arekar (2016). The pricing performance during turbulent times of exchange-traded
currency options (USD for Indian Rupee), using the FX GARCH option pricing model and
the Black-Scholes model, was compared. The empirical results indicate that the Black-
Scholes model performs better than the FX GARCH option pricing model. However, it
is also noted that the FX GARCH option pricing model is free of the strike price and
maturity biases associated with the Black-Scholes model.

Kanniainen et al. (2014) used historical data of the CBOE VIX to improve the pricing
performance of the GARCH option pricing model when applied to options on the S&P500
index. The method is based on joint maximum likelihood estimation, which incorporates
both historical returns of the underlying asset and the level of the volatility index. The
empirical results indicate that the joint maximum likelihood method is superior when the
pricing performance is compared to the model when calibrated to historical returns only.

In the previous chapter, the work by Hao and Zhang (2013) was applied to the South
Arican equity market. The overall conclusion is that the SAVI can be used to obtain
more accurate option prices. In this chapter, this work is extended to the FX market by
making use of the FX GARCH option pricing model derived by Duan and Wei (1997).
The theoretical framework applied in this chapter is outlined in the next section.
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3.3 Theoretical framework

In this section, the theory of the variance risk premium and GARCH option pricing model
applied to FX options is discussed. This section is divided into two parts; the first focuses
on the variance risk premium, and the second on the option pricing framework. The
theoretical aspects of the GARCH-implied SAVI is discussed in Section 2.2.3.

3.3.1 Variance risk premium

In this chapter, a similar approach to Fassas and Papadamou (2018) is followed. According
to Della Corte et al. (2016), the τ -period (in days) variance risk premium is formally
defined as:

V RPt,τ = EP [RVt,τ ]− EQ[RVt,τ ],

where RVt,τ is the τ -period realised variance at time t. Furthermore, the expectation of
the τ -period realised volatility under P is given by:

EP [RVt,τ ] =
252

τ

τ∑
i=0

[
ln

(
Xt−i
Xt−i−1

)]2
,

where Xt is the exchange rate at time t.
Fassas and Papadamou (2018) define the risk-neutral expectation of the realised vari-

ance as the squared implied volatility index (IV 2
t ). Hence, the variance risk premium is

given by:

V RPt,τ = 100× (RVt−1,τ − IVt−1)

The US FX variance risk premium is estimated using the Euro VIX. To estimate the
South African FX variance risk premium, the SAVI Dollar is used. The FX GARCH
option pricing model is outlined in the next subsection.

3.3.2 FX GARCH option pricing model

In this study, the following is assumed regarding the FX log-returns under the real-world
measure P :

ln

(
Xt

Xt−1

)
= r(d) − r(f) + λ

√
ht −

1

2
ht + εt (3.1)

εt|Ft−1 ∼ N (0, ht),

where r(d) and r(f) are the domestic and foreign rates respectively. In order to price
options written on the exchange rate Xt, the risk-neutral dynamics are required. Duan
and Wei (1997) define the equilibrium pricing measure as follows:
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Definition 5: Equilibrium pricing measure

An equilibrium price measure Qd for the domestic market satisfies the LRNVR if for

any asset value (measured in domestic currency X
(d)
t ), the following conditions are

satisfied:

1. Qd is mutually continuous with respect to P ;

2.
X

(d)
t

X
(d)
t−1

is log-normally distributed under Qd;

3. EQdt
(
X

(d)
t

X
(d)
t−1

)
= exp{r(d)} almost surely under P ; and

4. VarQd
(

ln
X

(d)
t

X
(d)
t−1

|Ft
)

= VarP
(

ln
X

(d)
t

X
(d)
t−1

|Ft
)

almost surely under P.

If the exchange rate follows the dynamics specified in 3.1, and if the equilibrium price
measure satisfies the LRNVR, Duan and Wei (1997) show that the risk-neutral dynamics
are given by,

ln

(
Xt

Xt−1

)
= r(d) − r(f) − 1

2
ht + ξt, (3.2)

where

ξt = εt + λ
√
ht|Ft ∼ N (0, ht).

Given the risk-neutral dynamics of ht, risk-neutral realisations of Xt (Equation 3.2) can
be simulated, option prices are equal to the expected discounted payoff. In this chapter,
the same univariate GARCH processes that were estimated in Chapter 2 are applied. The
real-world and risk-neutral dynamics of these models are outlined in Section 2.2.2.

3.4 Data and estimation

In this study, the Euro VIX and SAVI Dollar are estimated using univariate GARCH
models. The dataset consists of daily data for the 91-day Treasury bill rates for each
currency, the ZAR/USD exchange rate, the USD/EUR exchange rate, the SAVI Dollar
index, and the Euro VIX index. The dataset was obtained from Bloomberg. Three
different maximum likelihood methods are considered for the estimation of the GARCH-
implied volatility indices, this is based on the work by Hao and Zhang (2013).

The first maximum likelihood method makes use of historical data only, the log-
likelihood function is given by,

lnLFX = −N
2

ln 2π − 1

2

N∑
t=1

(
lnht +

[
ln

Xt

Xt−1
− (r(d) − r(f))− λ

√
ht +

1

2
ht

]2
/ht

)
.
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The second log-likelihood function relies on the assumption that the difference between the
GARCH-implied volatility index and the market volatility index is normally distributed
(consistent with Equation 2.9). Finally, a joint likelihood considered (consistent with
Equation 2.10). The empirical results are considered in the next section.

3.5 Empirical results

In this section, the empirical results of the estimated variance risk premium and the
univariate GARCH-implied volatility indices are reported. This section is divided into
two subsections; the first focuses on the variance risk premium, and the second on the
GARCH-implied volatility indices.

3.5.1 Variance risk premium

The descriptive statistics of the ZAR and USD variance risk premium are reported in
Table 3.1 below:

Table 3.1: Descriptive statistics: variance risk premia

ZAR FX USD FX

Mean -0.0988 -0.2453
Median -0.2487 -0.2113
Maximum 2.8529 1.0952
Minimum -3.9815 -2.2577
Std. Dev. 0.8336 0.4052
Skewness 0.4269 -0.6901
Kurtosis 4.3585 5.3170
Jarque-Bera 262.8042 790.0604

The descriptive statistics in Table 3.1 indicate that the both the ZAR and USD variance
risk premium are negative on average. This indicates that the variance risk premium
is captured in FX market option prices, this is consistent with findings by Fassas and
Papadamou (2018). Furthermore, the Jarque-Bera statistic indicates that both series are
not normally distributed. Finally, the variance risk premium of the ZAR FX market is
more volatile when compared to the USD market. This is consistent with expectations
due to South Africa being an emerging market.

To illustrate how the variance risk premium varies over time, the real-world variance,
risk-neutral variance and variance risk premium for each currency is plotted in Figures 3.2
and 3.3.
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Figure 3.2: ZAR FX variance risk premium
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Figure 3.3: USD FX variance risk premium
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As expected, the line graphs indicate that the ZAR is the more volatile of the two curren-
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cies. Furthermore, the variance risk premium tends to decrease at lower levels of volatility.
Hence, during periods of low volatility, investors require less compensation for taking risk,
which is consistent with expectations.

3.5.2 GARCH-implied FX volatility indices

In this subsection, the different univariate GARCH models and maximum likelihood meth-
ods are compared for the GARCH-implied SAVI Dollar and the Euro VIX. The different
univariate GARCH models and maximum likelihood methods are compared based on the
RMSE and the MAE. The performance metrics for the GARCH-implied SAVI Dollar and
Euro VIX are reported in the Tables 3.2 and 3.3.

Table 3.2: GARCH-implied SAVI Dollar performance metrics

Likelihood GARCH(1,1) GJR-GARCH(1,1) AGARCH(1,1)
function RMSE MAE RMSE MAE RMSE MAE

LR 1.4921 1.9865 1.3308 1.7482 1.1861 1.5906
LV 1.1054 1.4818 1.7962 2.2575 2.1918 2.8332
LRV 1.0753 1.4652 1.0439 1.4088 1.0375 1.3776

Table 3.3: GARCH-implied Euro VIX performance metrics

Likelihood GARCH(1,1) GJR-GARCH(1,1) AGARCH(1,1)
function RMSE MAE RMSE MAE RMSE MAE

LR 1.2746 1.8100 1.2681 1.7560 1.3589 1.8746
LV 1.0163 1.4243 1.0608 1.4825 1.0180 1.4337
LRV 1.1266 1.5278 0.9934 1.4037 1.0220 1.4454

The best performing maximum likelihood method is indicated in bold in Tables 3.2 and
3.3. When the SAVI Dollar performance metrics are considered, it is clear that the joint
log-likelihood function performs best. Furthermore, the AGARCH(1,1) is the best per-
forming univariate GARCH model. When the Euro VIX is considered, the log-likelihood
function based on the difference between the market and GARCH-implied volatility index
seems to be the most reliable. The GJR-GARCH model is the best performing model
when modelling the GARCH-implied Euro VIX. The best performing models are plotted
in Figures 3.4 and 3.5.
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Figure 3.4: GARCH-implied SAVI Dollar
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Figure 3.5: GARCH-implied Euro VIX
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In most instances, the univariate GARCH models perform well for both the SAVI
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Dollar and the Euro VIX. Furthermore, asymmetry is an important factor to consider
in both markets. The asymmetric GJR-GARCH and AGARCH models outperform the
symmetric GARCH model in most cases. Finally, the maximum likelihood method based
on historical data only does not sufficiently capture the variance risk premium, this is
consistent with the outputs by Hao and Zhang (2013).

3.6 Summary

Foreign currency markets frequently serve as early warning systems for macroeconomic
shocks and market stresses owing to their significant volumes traded. An implementation
of GARCH option pricing models is extended to create volatility indices for the EUR and
ZAR against the USD yielding a powerful method to examine forward looking volatility
risk premia for currencies. This has application to trading and investment strategies as
well as forward looking exchange rate forecasts and asset pricing models.

The empirical results indicate that the ZAR is the more volatile of the two currencies.
Furthermore, the variance risk premium tends to decrease at lower levels of volatility,
which is consistent with expectations. Furthermore, the joint likelihood method based
on historical data and the difference between the market and GARCH-implied volatility
index is the most reliable for the SAVI Dollar. When the Euro VIX is considered, the
log-likelihood function based on the difference between the market and GARCH-implied
volatility index seems to be the most reliable. The maximum likelihood method based
on historical data only does not sufficiently capture the variance risk premium, this is
consistent with other findings in the literature.

The empirical results also show that asymmetry is an important factor to consider
when modelling FX volatility indices using univariate GARCH models, this is the case for
both the SAVI Dollar and the Euro VIX. This is also consistent with the South African
equity market (Chapter 2). This chapter concludes Part I on option pricing and volatility
indices in the South African market. Thus far, the estimated models have relied on the
existence of a volatility index and therefore an established derivatives market is required.
The focus of Part II is implied volatility in the cryptocurrency market (i.e., pricing in the
absence of an established derivatives market).
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Part II

Option Pricing and Volatility
Indices in the Cryptocurrency

Market
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Chapter 4

Price Discovery in the
Cryptocurrency Option Market: A
Univariate GARCH Approach

4.1 Introduction

Cryptocurrencies, and especially BTC, have gained a lot of attention in recent years. A
problem that the cryptocurrency market is currently facing, is that it does not have a
well-established derivatives market. This implies that there is no consensus regarding
the pricing of options and other derivatives based on cryptocurrencies. According to
Barnes (2018), cryptocurrencies have no intrinsic value. Barnes (2018) further explains
that cryptocurrencies have prices, which are generally unrelated to economic events and
determined by interaction between supply and demand.

Madan et al. (2019) explain that the cryptocurrency derivatives market is a young mar-
ket and therefore different pricing methodologies are required for price discovery. Madan
et al. (2019) found that models that incorporate stochastic volatility generally perform
well when applied to the pricing of cryptocurrency options. A possible solution is to rely
on historical data; this was considered by Hou et al. (2018) for the pricing of BTC and
CRIX options, with the focus on a stochastic volatility model with correlated jumps.

In this chapter,1 the GARCH option pricing model is applied to BTC and CRIX. We
consider symmetric and asymmetric GARCH models to assess the impact of asymmetric
effects on the implied volatility of cryptocurrencies. In a similar study, Dyhrberg (2016)
made use of univariate GARCH models (symmetric and asymmetric) to assess the financial
asset capabilities of BTC. The empirical results of this study indicate that the volatility of
BTC reacts similarly to positive and negative news. However, the focus of this chapter is
on symmetric and asymmetric effects of cryptocurrencies in an option pricing context, and
how option prices can be obtained in the absence of a well-established derivatives market

1A previous version of this chapter appears as a publication (Venter et al., 2020) in Cogent Economics
and Finance.
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(by making use of historical data).
The rest of this chapter is structured as follows. In Section 4.2 the recent and relevant

literature is considered. Section 4.3 focuses on the theoretical framework. In Section 4.4,
the statistical properties of the dataset and estimation method is considered. Section 4.5
focuses on the empirical results, and Section 4.6 summarised the main findings.

4.2 Literature review

This section focuses on recent and relevant literature, and is divided into three subsec-
tions. The first subsection focuses on cryptocurrency indices, the second reviews relevant
literature based on volatility models applied to cryptocurrencies, finally studies based on
cryptocurrency derivatives are considered.

4.2.1 Cryptocurrency indices

According to Chu et al. (2017), with the exception of BTC, there is not much literature
focused on the application of GARCH models to cryptocurrencies. Therefore, the CRIX
is also considered in this chapter. According to Abboud (2017), there have been sev-
eral attempts to construct a cryptocurrency index. Most cryptocurrency index attempts
make use of empirical models from traditional financial markets with arbitrary param-
eters fitted to cryptocurrencies. The indices include capitalisation weighted indices like
CRIX, Bletchley, TaiFu30, Crypto30, LBI, Smith + Crown SCI. Furthermore, capped
capitalisation indices include: CRYPTO20, CCX30, and BIT20. Finally, the smoothed
capitalisation weighted index, such as the CCI30.

According to Kim et al. (2019) the CRIX is comparable to the S&P500 index (reflection
of the current state of the US market) because it gives an indication of the current state
of the cryptocurrency market. Furthermore, Kim et al. (2019) explain that the CRIX pro-
vides a statistically backed (the number of constituents is determined by the explanatory
power that each cryptocurrency has over market movements, this is based on the Akaike
information criterion) market measure, which distinguishes it from other cryptocurrency
indices. Therefore, the CRIX is used in this study to give an indication of the volatility
of the cryptocurrency market as a whole. The CRIX was also used as a proxy for the
cryptocurrency market by Elendner et al. (2018), Klein et al. (2018), and Hafner (2020).

4.2.2 Cryptocurrency volatility modelling

Cryptocurrency volatility modelling has gained a lot of attention in recent years (as men-
tioned previously, most of this work has been based on BTC). In an attempt to fore-
cast BTC risk, Agyarko et al. (2019) made use of univariate symmetric and asymmetric
GARCH models. Their empirical results indicate that the symmetric GARCH(1,1) model
provides the best fit. This is also consistent with the argument by Hansen and Lunde
(2005), it is difficult to find a model that consistently outperforms the GARCH(1,1) model
because it is highly robust and parsimonious. With regard to forecasting risk, Agyarko et
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al. (2019) explain that no model clearly emerged as superior. Therefore, the study indi-
cates that it is reliable to use the best fitted model when forecasting volatility (symmetric
GARCH, in the case of BTC).

In a recent study, Kurihara and Fukushima (2018) made use of different univariate
GARCH models to analyse BTC volatility. Both symmetric and asymmetric GARCH
models were considered. The overall conclusion is that there is not much difference when
symmetric and asymmetric GARCH models are compared, and that traders should con-
sider both short and long term volatility when examining BTC prices. In a similar study,
Katsiampa (2017) considered a wide range of univariate GARCH models for the modelling
of BTC volatility. In this study, the best fitting model was determined using the Akaike,
Bayesian and Hannan-Quinn information criterion. Their empirical results indicate that
the autoregressive component GARCH model is the best performing model. This high-
lights the importance of both short and long run volatility components of the conditional
variance.

Chen et al. (2018) performed an econometric analysis of the CRIX for portfolio invest-
ment. The empirical analysis included the application of autoregressive integrated moving
average (ARIMA), univariate GARCH, and multivariate GARCH models. Their empirical
results illustrate that the GARCH(1,1) model is sufficient to explain the heteroskedastic-
ity of the CRIX. Chen et al. (2018) also consider alternate GARCH specifications. To
capture the leverage effect (negative relationship between return shocks and subsequent
shocks to volatility) the exponential GARCH (EGARCH) model was estimated. However,
McAleer and Hafner (2014) show that leverage is not possible for the EGARCH model.
Chen et al. (2018) conclude that the symmetric GARCH(1,1) model with a Student-t error
distribution is the best performing univariate model when applied to the CRIX.

In order to determine the effect weather has on the cryptocurrency market, Kathiravan
et al. (2019) made use of a GARCH(1,1) model, Johansen cointegration, and a Granger
causality test. The Coinbase index was used as a proxy for the cryptocurrency market in
this study. The GARCH analysis showed that temperature is the only weather factor that
is statistically significant when modelling cryptocurrency volatility.

To give an indication of the best performing volatility model when applied to the
cryptocurrencies market (not focused on BTC only), Chu et al. (2017) applied 12 GARCH
models (eight different error distributions) to the seven most popular cryptocurrencies.
The models were compared based on the goodness of fit, forecasting performance, and
acceptability of value-at-risk estimates. Their empirical results indicate that the normal
distribution provides the best fitting GARCH model in most cases. Furthermore, the
symmetric integrated GARCH(1,1) (IGARCH(1,1)) model with normal innovation was
the best fitting model for most cryptocurrencies.

In a recent study, Hafner (2020) made use of GARCH models to test for the existence
of speculative bubbles in the cryptocurrency market. The empirical analysis made use
of eleven of the largest cryptocurrencies and the CRIX. The estimated parameters of
the GARCH models indicate that volatility clustering is important and significant when
modelling cryptocurrency volatility and, unlike equities, cryptocurrencies do not have
asymmetric news impact curves. More specifically, the asymmetry terms of asymmetric
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GARCH models are generally statistically insignificant when applied to cryptocurrencies,
this is consistent with other findings in the literature (see e.g. Baur and Dimpfl, 2018).
According to Hafner (2020), there is general evidence that speculative bubbles exist in
cryptocurrency markets.

Gyamerah (2019) made use of the symmetric GARCH(1,1), threshold-GARCH(1,1)
(TGARCH(1,1)), and IGARCH(1,1) models to model the volatility of BTC returns.
With regards to the error distribution, Gyamerah (2019) considered the Student-t, gener-
alised error, and normal inverse Gaussian distributions. The different models were com-
pared based on the AIC and SIC. Their empirical results indicate that the asymmetric
TGARCH(1,1) model with a normal inverse Gaussian error distribution is the best fit-
ting model when modelling volatility of BTC returns. This implies that incorporating
asymmetry in the GARCH model specification, and skewness and kurtosis in the error
distribution, can improve the fit of a GARCH model when applied to BTC.

In order to determine the best performing model when forecasting exchange rate
and cryptocurrency (BTC, Ethereum, and Dash) volatility, Peng et al. (2018) made
use of the following univariate GARCH models: GARCH(1,1), EGARCH(1,1) and the
GJR-GARCH(1,1) model. Three different error distributions were considered: normal,
Student-t, and skewed Student-t distributions. In addition, a support vector regression
GARCH(1,1) model was also estimated. Their empirical results show that the support
vector regression GARCH(1,1) model is superior when compared to the other models
considered. Furthermore, when the traditional GARCH models are compared, the GJR-
GARCH(1,1) performed slightly better when compared to the symmetric GARCH(1,1)
and EGARCH(1,1) models. The different error distributions yielded similar results. This
illustrates that different GARCH specifications can offer better results when applied to
exchange rate and cryptocurrency volatility.

4.2.3 Cryptocurrency derivatives

According to Madan et al. (2019), the BTC derivatives market is a young, but growing
market. Shi and Shi (2019) explain that BTC futures were introduced in 2012, this was
done to provide investors with additional trading tools for BTC. In 2014 more BTC deriva-
tives such as BTC swaps and options emerged. Karkkainen (2018) analysed BTC futures
using vector autoregressive and vector error correction models. The author’s empirical
results indicate that futures lead price discovery in the BTC market. This is consistent
with existing literature of futures-spot market price discovery.

To illustrate how cryptocurrency derivatives can be used, Sebastião and Godinho
(2019) investigated the hedging properties of BTC futures. The authors considered an
equal and opposite hedge, as well as optimal hedge ratios estimated using the ordinary
least squares, and dynamic conditional correlation GARCH approach. The hedge effec-
tiveness was determined by comparing the variance, semivariance, and expected shortfall
of the hedged portfolio to the unhedged position. Their empirical results show that BTC
futures are effective hedge instruments for BTC and also other cryptocurrencies.

Madan et al. (2019) made use of option price data collected from various unregulated
exchanges to construct various BTC volatility surfaces. Furthermore, different Markov
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models were calibrated to the volatility surfaces to determine the best performing model.
The empirical results indicate that the classical Black-Scholes model does not capture
the volatility surface well and that models including some notion of stochastic volatility
perform better. However, the GARCH option pricing model was not considered.

In a recent study, Pagnottoni (2020) made use of a neural network approach for the
pricing of BTC options, where the classical models, namely the trinomial tree model,
Monte Carlo simulation, and finite difference methods were used as input layers. The
empirical results show that BTC option prices are overpriced when classical methods are
considered, and that the use of the neural network model significantly improves pricing
performance.

Hou et al. (2018) mentioned that research based on cryptocurrency derivatives is lim-
ited despite its necessity, and that cryptocurrency derivatives trading on unregulated ex-
changes have recently increased significantly. Hou et al. (2018) proposed a stochastic
volatility model with correlated jumps. The empirical results indicate that the pricing
mechanism underscores the importance of jumps in the cryptocurrency derivative mar-
kets. The theoretical framework is considered in the next section.

4.3 Theoretical framework

In this chapter, the GARCH option pricing model outlined in Section 2.2.2 is applied to
BTC and CRIX. BTC and CRIX are both expressed in USD, therefore the United States
three-month Treasury bill rate is used as a proxy for the risk-free rate, consistent with Hao
and Zhang (2013). Furthermore, we assume that innovations are normally distributed, this
is appropriate based on the findings by Chu et al. (2017).

In this study, two driving GARCH processes are considered, the GARCH(1,1) and the
GJR-GARCH(1,1). According to Hansen and Lunde (2005), the GARCH(1,1) is highly
robust and it is challenging to find a different GARCH model that produces consistent
outperformance. Therefore, the GARCH(1,1) model is used as a benchmark in this chap-
ter. Furthermore, Peng et al. (2018) compared different univariate GARCH models when
applied to exchange rate and cryptocurrency volatility forecasting. Their results indicate
that the GJR-GARCH(1,1) is the best performing model. Therefore, the asymmetric
GJR-GARCH(1,1) model is considered in this chapter.

The pricing performance of the GARCH option pricing model is tested by comparing
prices obtained using the GARCH option pricing model to BTC market option prices and
the Heston stochastic volatility model (based on the work by Madan et al., 2019). The
application of the Heston stochastic volatility model is an existing method for pricing BTC
derivatives. According to Glasserman (2013), the risk-neutral asset price and volatility
dynamics in the Heston framework are given by,

dSt = rStdt+
√

ΥtStdW
(1)
t ,

dΥt = κ($ −Υt)dt+ σ̄
√

ΥtdW
(2)
t ,

dW
(1)
t dW

(2)
t = ρdt,
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where κ is the variance mean reversion speed, $ is the long-run mean of the variance,

σ̄ is the volatility of the variance, W
(1)
t and W

(2)
t are standard Brownian motions, and ρ

is the correlation between the variance and the asset price. A closed-form solution does
exist for European put and call options, therefore the model is generally calibrated to
market option prices (or implied volatility). The data and estimation of GARCH model
parameters are discussed in the next section.

4.4 Data and estimation

In this chapter, the GARCH option pricing model is applied to BTC and CRIX. The
GARCH models are calibrated to historical data (see Section 2.2.4 for more detail). The
BTC and US Treasury bill historical data were obtained from the Thomson Reuters Datas-
tream databank. The CRIX historical dataset was obtained from thecrix.de. The
weighting scheme of the CRIX is outlined in Trimborn and Härdle (2018). Daily data
from the 1-Jan-2016 to 3-Jan-2020 for all variables were used for the estimation of param-
eters.

The descriptive statistics of BTC and CRIX log-returns are reported in Table 4.1
below:

Table 4.1: Descriptive statistics: log-returns

BTC CRIX

Mean 0.0027 0.0029
Median 0.0026 0.0032
Maximum 0.2384 0.2203
Minimum -0.2514 -0.2533
Standard Deviation 0.046 0.0461
Skewness 0.0046 -0.3903
Kurtosis 7.1336 7.3798
Jarque-Bera 743.2889 860.9537
Observations 1044 1044

The results indicate that the means of the log-returns for both BTC and CRIX are close
to zero. Moreover, both series indicate evidence of fat tails, this is consistent with the
stylised facts of financial returns (Cont, 2001). The Jarque-Bera test statistics indicate
that both series are not normally distributed. Finally, when the two series are compared,
the means and standard deviations are similar, this is in line with expectations because
the weighting of BTC is high when calculating CRIX (Trimborn and Härdle, 2018).
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4.5 Empirical results

In this section, the implied volatility surfaces of BTC and CRIX are considered. The
importance of asymmetry is illustrated by comparing the implied volatility obtained from
the symmetric model to the asymmetric model. Furthermore, the pricing performance
of the GARCH option pricing is tested by comparing BTC option prices obtained from
the GARCH option pricing model to market option prices, and prices obtained using the
Heston stochastic volatility model.

The GARCH(1,1) and GJR-GARCH(1,1) implied volatility of BTC are plotted in
Figure 4.1.

Figure 4.1: BTC volatility surfaces

It is clear from Figure 4.1 above that the GARCH(1,1) and GJR-GARCH(1,1) option pric-
ing models produce a volatility surface that is consistent with what is generally observed
in the market. The difference between the two volatility surfaces (GJR-GARCH(1,1)
volatility−GARCH(1,1) volatility) remains small across different levels of moneyness and
maturity. This suggests that asymmetric effects are not important when modelling BTC
volatility. This is in line with findings by Dyhrberg (2016) and Conrad et al. (2018).

Figure 4.2 illustrates the GARCH(1,1) and GJR-GARCH(1,1) implied volatility sur-
faces, and the difference between the two surfaces.
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Figure 4.2: BTC volatility surfaces

Very small differences are observed when the two surfaces are compared. This implies that
CRIX volatility reacts similarly to positive and negative shocks. This is in line with the
BTC volatility surface; as mentioned previously, this is consistent with expectations.

The pricing performance of the GARCH option pricing model applied to cryptocur-
rencies is tested by comparing the model prices to market prices of three-month BTC
vanilla call options. The market option prices (value date 29 June 2018) were obtained
from Madan et al. (2019). As shown above, asymmetry is not significant when pricing
cryptocurrency options, therefore the pricing performance of the GARCH(1,1) model is
considered. For this analysis, the GARCH(1,1) model is calibrated to log-returns from the
1st of January 2016 to the 27th June 2018. The market and model prices are plotted in
Figure 4.3.
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Figure 4.3: BTC option prices
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As shown in Figure 4.3 above, the GARCH(1,1) option pricing model provides realistic
price discovery within the bid-ask prices suggested by the market, and when compared
with the prices obtained from the Heston model. It is also important to note that the
Heston model is calibrated to market option prices, while the GARCH model parameters
are calibrated to historical returns data.

4.6 Summary

In this chapter, two different GARCH processes were applied to BTC and CRIX. The first
model is symmetric and assumes that positive and negative shocks lead to the same effect
on volatility. The second model takes asymmetric effects into account. By comparing
the volatility surfaces implied by the two models, it gives an indication of the importance
of asymmetric effects when pricing options on BTC or CRIX. Furthermore, the pricing
performance of the GARCH option pricing model applied to BTC was also considered.

The results indicate that asymmetric effects are not significant when pricing options
on BTC and CRIX, the differences obtained from the two surfaces are insignificant in each
case. In addition, the prices obtained from the GARCH option pricing model are consistent
with market BTC option prices (within the bid-ask spread). Hence, the models can also be
used to inform trading decisions, to determine whether option prices are consistent with
what is implied by the historical data. However, it is unclear whether historical data and
GARCH option pricing models can be used to construct a BTC volatility index, which is
the focus of Chapter 5.
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Chapter 5

GARCH Generated Volatility
Indices of Bitcoin and CRIX

5.1 Introduction

Previous chapters have shown that GARCH models can be used for price discovery in the
absence of an established derivatives market. The focus of this chapter1 is a volatility
index in the absence of an established derivatives market.

As mentioned previously, cryptocurrencies have recently gained a lot of attention from
finance researchers and practitioners. Currently, there is not a cryptocurrency volatility
index. Furthermore, cryptocurrencies do not have a well-established derivatives market.
In a recent paper, Alexander and Imeraj (2019) addressed this problem by comparing two
methods to construct a BTC volatility index. The first is based on the standard geometric
formula for the sum of squared log price increments; this is consistent with the CBOE VIX
methodology. The second (arithmetic) approach represents a fair value for the average
sum of squared log price increments.

According to Bouri et al. (2017), short horizon investment in BTC can serve as a hedge
against global equity market uncertainty (form of electronic gold). Hence, the need for a
BTC volatility index with different time horizons. In this chapter, the GARCH(1,1) option
pricing model applied in Chapter 4 is used to estimate the volatility indices of BTC and
CRIX. The CRIX implied volatility index will give a more holistic view of cryptocurrency
volatility (30, 60, and 90-day). The estimation of a volatility index for CRIX in the
absence of a derivatives market was considered by Kolesnikova (2018), this was based on
an exponentially weighted moving average approach.

The theoretical framework applied in order to estimate a GARCH volatility index is
considered in Sections 2.2.2 and 2.2.3. The rest of this chapter is structured as follows,
Section 5.2 reviews the recent and relevant literature. This is followed by the empirical
results. Finally, the main findings are summarised.

1This chapter is based on a paper (Venter and Maré , 2020a) published in the Journal of Risk and
Financial Management .
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5.2 Literature review

Studies based on cryptocurrency volatility indices are limited, this is because there is not
a well-established cryptocurrency derivatives market. Volatility indices are used based on
implied volatility obtained from the option market (e.g., the CBOE VIX). Alexander and
Imeraj (2019) constructed a BTC volatility index by making use of the VIX methodology
(geometric variance swap), BTC option data was obtained from the Deribit exchange. In
addition, Alexander (2008) note that BTC prices tend to jump, therefore the fair value of
geometric variance swaps are underestimated using this method. Hence, the method based
on arithmetic variance swaps was also employed. Alexander (2008) recommend the use
of the arithmetic index for horizons of one month or more. However, the volatility index
based on arithmetic or geometric (VIX methodology) variance swaps is dependent on an
established derivatives market, this is not the case for all cryptocurrencies and therefore
a different approach is required.

In a recent study, Kim et al. (2019) construct a cryptocurrency volatility index based
on the CRIX. The purpose of the index is to offer a forecast for the mean annualised
volatility of the next month. Due to the shortcomings of the cryptocurrency derivatives
market, Kim et al. (2019) make use of a proxy for implied volatility, therefore rolling
volatility is used, this is based on historical volatility of the underlying. To get forward
looking estimates (for the next 30 days) of rolling volatility, Kim et al. (2019) made
use of GARCH family models, the Heterogeneous Auto-Regressive model, and a neural
network-based Long short-term memory cell. The performance of the different models was
compared based on the mean squared error and the mean absolute error. Their empirical
results show that the Heterogeneous Auto-Regressive model is the best performing model
when forecasting rolling volatility of the CRIX. However, rolling volatility is based on
historical volatility and is therefore not risk-neutral. Hence, the GARCH option pricing
model is used in this study in order to estimate the implied volatility index (risk-neutral)
in the absence of a well-established derivatives market.

The important studies required for the theory applied in this chapter are summarised
in the table below:

Study Topic

Hansen and Lunde (2005) GARCH(1,1) model
Duan (1995) GARCH option pricing
Meddahi and Renault (2004) SR-SARV processes
Hao and Zhang (2013) GARCH-implied volatility index
Trimborn and Härdle (2018) The CRIX
Chu et al. (2017) GARCH Modelling of cryptocurrencies
Hafner (2020) GARCH Modelling of cryptocurrencies and CRIX

The empirical results are considered in the next section.
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5.3 Empirical results

The GARCH(1,1) calibrated parameters are reported in Table 5.1.

Table 5.1: GARCH(1,1) calibrated parameters

BTC CRIX

α0 0.0001 0.0001
α1 0.1035 0.1504
β1 0.8650 0.8203
λ 0.0744 0.0880
AIC -6.9982 -6.9909

By making use of a similar approach to Alexander and Imeraj (2019), the 30-day, 60-day,
and 90-day volatility indices are shown. The BTC and CRIX GARCH volatility indices
shown are in Figures 5.1 and 5.2 below:

Figure 5.1: BTC GARCH(1,1) volatility indices
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Figure 5.2: CRIX GARCH(1,1) volatility indices
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It is evident from the above that GARCH volatility indices tend to increase after positive
and negative shocks. This is consistent with findings by Dyhrberg (2016) and Conrad
et al. (2018). To illustrate how the term structure varies over time, the differences in
volatility indices (left axis) and underlying assets (right axis) are plotted in Figures 5.3
and 5.4 below:

Figure 5.3: BTC GARCH(1,1) term structure
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Figure 5.4: CRIX GARCH(1,1) term structure
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When the term structure of volatility is considered, the 30-day volatility index for both
BTC and CRIX seem to be the lowest in most cases. This is consistent with expectations,
because there is more uncertainty over a longer period of time. However, when large jumps
occur in the underlying asset, the short term volatility index tends to increase to higher
levels when compared to the 60-day and 90-day volatility indices (this is due to the fact
that the volatility index is calculated as the expected arithmetic average of the variance
in the n subperiods of the following 30, 60, or 90 calendar days). The 30-day GARCH
volatility indices of BTC and CRIX are compared in Figure 5.5 below:

Figure 5.5: 30-Day GARCH(1,1) volatility indices
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Figure 5.5 indicates that the 30-day GARCH volatility index for BTC is similar when
compared to the 30-day CRIX GARCH volatility index.

5.4 Summary

In this chapter, the GARCH option pricing model is applied to BTC and CRIX to estimate
a GARCH volatility index. Volatility indices are usually estimated using a model-free ap-
proach. This approach has previously been applied to BTC (Alexander and Imeraj, 2019).
In this study, we rely on the symmetric GARCH volatility index. This is appropriate be-
cause previous findings (including the empirical results in Chapter 4) indicate that BTC
volatility reacts similarly to positive and negative shocks.

Similar GARCH volatility indices are obtained when BTC and CRIX are compared.
This is consistent with expectations due to BTC being highly weighted when calculating
CRIX (Trimborn and Härdle, 2018). The term structure of volatilities are consistent with
expectations, with 30-day volatility being lower when compared to longer maturities. In
addition, short term volatility tends to increase to higher levels when compared to 60-day
and 90-day volatility when large jumps occur in the underlying asset.

As per previous studies (Antonopoulos, 2014, Leong et al., 2020 Leong and Sung, 2018,
Böhme et al., 2015), BTC, as a digital currency, has huge potential in applications and
advantages, such as lower fees, fraud protection, simpler international payments, etc. The
findings of this chapter, hopefully, would contribute to the development of future BTC
research. This chapter concludes the work on crypto volatility indices. The next chapter
considers the pricing of BTC futures options (univariate and multivariate) in a GARCH
setting.
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Chapter 6

Univariate and Multivariate
GARCH Models Applied to
Bitcoin Futures Option Pricing

6.1 Introduction

The focus of previous chapters has been the use of univariate GARCH models applied to
vanilla option pricing and volatility indices. The focus of this chapter1 is BTC futures
option pricing. We consider both the univariate and multivariate (futures spread options)
case. Abraham (2020) explains that a valuation model for BTC futures options will provide
insight into a central-bank free currency.

As shown in previous chapters, modelling the historical returns of an asset as a uni-
variate GARCH process is often used as a basis for price discovery in illiquid derivative
markets. The model by Heston and Nandi (2000) is often used because it has a convenient
closed-form solution. However, this is usually applied to spot price dynamics. This model
was extended to futures options on commodities by Li (2019a). The Chicago Mercantile
Exchange (CME) was the first established exchange to launch BTC futures options in
the first quarter of 2020 (Bharadwaj, 2021). Therefore, BTC futures options are actively
traded, and model prices can be compared to market prices to give an indication of pricing
performance.

An important factor to consider is the ability to model joint dynamics for the pricing
of multivariate derivatives, when pricing derivatives on a new asset class. According to
Alexander and Heck (2020), crypto-asset futures are exposed to significant basis risk.
Therefore, spread options on BTC futures are ideal for hedging basis risk. Spread options
on BTC futures do not actively trade. In this study, we consider a modelling approach for
price discovery in the BTC futures spread option market. The approach is based on work
by Rombouts and Stentoft (2011), who derived the risk-neutral dynamics of the spot price

1This chapter is based on a paper (Venter and Maré, 2021b) that appeared in the Journal of Risk and
Financial Management.
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processes for a general class of multivariate heteroskedasticity models. In this study, the
model by Rombouts and Stentoft (2011) is extended to multivariate futures options.

The rest of this chapter is structured as follows: Section 6.2 reviews the recent and
relevant literature, Section 6.3 focuses on the theoretical framework (both univariate and
mulitvariate options on BTC futures), Section 6.4 presents the empirical results, and
finally, Section 6.5 summarises the main findings.

6.2 Literature review

Research focusing on GARCH models applied to BTC (and other crypto-assets) and BTC
derivative pricing is well-documented in the literature. In a recent study, Fassas et al.
(2020) made use of a vector error correction model to investigate the price discovery
process in the BTC market. Their empirical results indicate that volume traded in the
futures market is more important than the volume traded in the decentralised spot market
when incorporating new information about the value BTC. In addition, Fassas et al.
(2020) consider the volatility transmission between the BTC spot and futures market, by
using multivariate GARCH models (BEKK and dynamic-conditional-correlation). There
is evidence of cross market effects when the variability of BTC spot and futures returns
are considered.

It is important to consider a reasonable forecast of BTC returns when trading BTC
derivatives. In a study focusing on the use of information on the US-China trade war
to forecast BTC returns, Plakandaras et al. (2021) made use of ordinary least squares
regression, least absolute shrinkage and selection operator techniques, and support vector
regression. The authors also controlled for explanatory variables that include: financial
indices (including the volatility index), exchange rates, commodity prices, political uncer-
tainty indices, and BTC characteristics. Their empirical results indicate that BTC returns
are not affected by trade related uncertainties.

In a recent paper, Shahzad et al. (2019) made use of the bivariate cross-quantilogram
to determine whether BTC exhibits safe haven properties (during extreme market condi-
tions) for equity investments. The authors extend the work by Baur and Lucey (2010) to
incorporate weak and strong safe haven assets. Furthermore, the safe haven properties of
BTC were also compared to that of Gold and the general commodity index. Shahzad et
al. (2019) conclude that BTC, gold, and the general commodity index can be considered
(at best) a weak safe haven asset in some cases.

Fang et al. (2019) made use of the GARCH-MIDAS model to investigate how the
long-run volatility of BTC, global equities, bonds, and commodities evolves with global
economic policy uncertainty. Their empirical results indicate that global economic policy
uncertainty is significant for all variables, except bonds. Furthermore, Fang et al. (2019)
also considered the impact of global economic policy uncertainty on the correlation between
BTC and global equities, commodities, and bonds. Based on the empirical results, the
authors argue that BTC can act as a hedge under specific economic uncertainty conditions.

In a study highlighting the role of BTC futures, Chen and So (2020) focused on the
relationship between BTC spot and futures prices, with the focus on hedging. Chen and
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So (2020) tested the hedge performance of the naive method, ordinary least squares, and
a dynamic hedge based on a bivariate BEKK-GJR-GARCH model. The results show that
the hedge based on the bivariate GARCH model is the most reliable. Furthermore, Chen
and So (2020) also show that the structure of BTC volatility is significantly different after
the introduction of BTC futures.

In a recent study, Venter et al. (2020) applied symmetric and asymmetric GARCH op-
tion pricing models to BTC and CRIX (Chapter 4 of this thesis). The BTC option prices
obtained from the model were compared to market option prices, which shows that the
GARCH option pricing model produces reasonable price discovery. Furthermore, the im-
plied volatility surfaces generated using symmetric and asymmetric GARCH models were
compared. This comparison indicates that there is not a significant difference, implying
that the symmetric model is a better choice as it is more efficient.

Jalan et al. (2020) focused on the pricing and risk of BTC options. Jalan et al. (2020)
compared the option prices obtained from classical option pricing models, i.e., the Black-
Scholes-Merton model and the Heston-Nandi model. Furthermore, Jalan et al. (2020)
also compared the risk (the Greeks) of BTC options to those of traditional commodity
options. Jalan et al. (2020) conclude that the classical models produce prices that are
slightly different when compared to the market. Their empirical results also indicate that
BTC deltas are more stable over time when compared to traditional commodities. This
implies that investors in BTC options are protected from undue BTC price changes.

In another recent study, Siu and Elliot (2021) made use of the self-exciting thresh-
old autoregressive model (to incorporate regime switching) in conjunction with GARCH
(Heston-Nandi) to model BTC return dynamics, for the pricing of BTC options. Accord-
ing to Siu and Elliot (2021), conditional heteroskedasticity has a significant impact on
BTC option prices. However, the impact of self-exciting threshold autoregressive terms
seems to be marginal.

Limited research has focused on the GARCH option pricing model applied to futures
options. Li (2019a) extended the Heston-Nandi model to futures options. The overall
purpose was the pricing of crude oil futures options. Li (2019a) concludes that option-
implied filtering is superior when compared to futures based filtering when pricing crude
oil futures options. Li (2019b) also applied the model to natural gas futures. However,
this approach has not been applied to cryptocurrencies.

The application of GARCH models to multivariate option pricing is also well-documented
in the literature. Duan and Pliska (2004) developed an option valuation theory for cointe-
grated assets, the model was used for the pricing of spread options with equity underlying
assets. In a recent study, Mahringer and Prokopczuk (2015) applied the model by Duan
and Pliska (2004) to the pricing of crack spread options (futures returns were modelled).
Mahringer and Prokopczuk (2015) compared this to univariate modelling of the crack
spread. Their empirical results show that the univariate approach is superior for the
pricing of crack spread options.

Rombouts and Stentoft (2011) derived the risk-neutral dynamics (of the spot price
processes) for a general class of multivariate heteroskedasticity models. In addition, a
feasible way to price multivariate options is also provided. Rombouts and Stentoft (2011)
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applied the models to options on equity indices. Their empirical results indicate that
correlation risk and non-Gaussian features are important factors to consider when pricing
multivariate options. In this chapter, the framework by Rombouts and Stentoft (2011) is
extended to futures options, and applied to BTC futures spread options. The theoretical
framework is considered in the next section.

6.3 Theoretical framework

In this study, we test the pricing performance of the Heston-Nandi futures option pricing
model when applied to BTC. Furthermore, we extend the work by Rombouts and Stentoft
(2011) to multivariate futures options to price spread options on BTC futures. The section
is divided into three subsections. The first part focuses on the Heston-Nandi futures option
pricing model, the second considers the multivariate GARCH option pricing framwork.
Finally, the focus of the third subsection is the constant conditional correlation (CCC)
and dynamic conditional correlation (DCC) GARCH (multivariate) models.

6.3.1 Heston-Nandi futures option pricing model

The model by Heston and Nandi (2000) is widely used in the literature for the pricing of
vanilla options. This model was extended to futures options by Li (2019a), who applied
the model to crude oil futures. The futures dynamics under the real-world measure P are
given by (Li, 2019b):
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where Ft,T is the futures price at time t with expiry T, and zt is a standard normal random
variable under P . The conditional variance takes the following form:
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√
ht)

2 + β1ht−1. (6.1)

In this chapter, the parameters λ, α0, α1, δ1, and β1 are calibrated to historical BTC fu-
tures returns (under the real-world measure) using maximum likelihood estimation. When
estimating the symmetric Heston-Nandi model, the asymmetry parameter δ1 takes a value
of zero.

For the pricing of futures options, the risk-neutral dynamics are required. According
to Li (2019a), the risk-neutral futures price process in the Heston-Nandi model is given
by,
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where δ∗1 = δ1 +λ. Given the risk-neutral dynamics, a closed-form formula for a European
call option on a futures contract can be obtained, see Li (2019a) for more detail. The
parameters are estimated using maximum likelihood estimation; the log-likelihood function
is given by (Wang et al., 2017):
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where again, N is the estimation sample size. The multivariate GARCH futures option
pricing model is outlined in the next section.

6.3.2 Multivariate GARCH futures option pricing model

We assume the following futures return dynamics ln
(

Fj,t,Tj
Fj,t−1,Tj

)
= Rj,t,Tj under the real-

world measure P :

Rj,t,Tj = µj,Tj − f(−cj) + Ej,t,Tj for j = 1, ..., n, (6.3)

where Fj,t,Tj is the futures price of asset j with expiry Tj at time t; µj,Tj is the conditional
mean of asset j; f(·) denotes the cumulant generating function; cj is a vector of zeros
except for position j, which takes a value of one. Furthermore, we assume a multivariate
heteroskedastic process, therefore,

Et = HtZt,

where Zt is identically and independently distributed with mean zero and covariance ma-
trix equal to the identity matrix under the real-world measure P. In addition, Ht is an
n× n matrix of full rank, more specifically,

Σt = HtH
′
t,

where Σt is the conditional covariance matrix, driven by a multivariate GARCH process.
In order to obtain the risk-neutral dynamics (Q measure) required for pricing, we use

the following Radon-Nikodym derivative,

dQ

dP

∣∣∣∣Ft = exp

{
−

t∑
i=1

(
ν ′iEi + f(νi)

)}
, (6.4)

where νi is an N dimensional vector sequence. Rombouts and Stentoft (2011) prove that
Equation 6.4 is in fact a Radon-Nikodym derivative. Furthermore, it can also be shown
(using the tower property) that,

EPt
[
dQ

dP

]
= EP

[
exp

{
(ν ′1E1 + f(ν1))

}]
= exp {−f(ν1)} exp {f(ν1)}
= 1,

as required.
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Proposition 1: Risk-neutral measure

The risk-neutral measure Q defined by the Radon-Nikodym derivative in Equation 6.4
is an equivalent martingale if and, only if,

f(νt − cj)− f(νt)− f(−cj) + µj,Tj = 0, (6.5)

for j = 1, ..., n.

Proof. Clark (2014) explains that under the Tj-forward measure, the futures price process
is driftless. However, when assuming constant interest rates, the risk-neutral (Q) and
Tj-forward measures are equivalent. Therefore,

EQt
[
Fj,t,Tj
Fj,t−1,Tj

]
= 1.

Hence, by making use of the Radon-Nikodym derivative,

EQt
[
Fj,t,Tj
Fj,t−1,Tj

]
= EPt

[(
dQ
dP

∣∣Ft−1
dQ
dP

∣∣Ft−1
)

Fj,t,Tj
Fj,t−1,Tj

]
= EPt

[
exp

{
ν ′tEt − f(νt)

}
exp

{
µj,Tj − f(−cj) + Ej,t,Tj

}]
= exp

{
−f(νt) + µj,Tj − f(−cj)

}
EPt
[
exp

{
(cj − νt)′Ej,t,Tj

}]
= exp

{
−f(νt) + µj,Tj − f(−cj) + f(νt − cj)

}
.

Using the driftless property of the futures price under the risk-neutral measure, it follows
that

f(νt − cj)− f(νt)− f(−cj) + µj,Tj = 0,

which completes the proof.

To derive the risk-neutral dynamics, the following lemma from Rombouts and Stentoft
(2011) is required:

Lemma 5: Conditional moment generating function

Under the risk-neutral measure, the conditional moment generating function takes the
following form,

EQ
[
exp

{
−u′Et

}]
= exp {f(νt + u)− f(νt)} .

Proof. See Rombouts and Stentoft (2011).
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Using the lemma above, the following expression for the risk-neutral cumulant gener-
ating function is obtained

f∗(u) = f(νt + u)− f(νt). (6.6)

Hence, for any choice of νt, the risk-neutral dynamics can be obtained by substituting
Equation 6.6 and 6.5 into the mean Equation 6.3. The risk-neutral futures log-returns are
given by:

R∗j,t,Tj = f∗(−cj) + E∗j,t,Tj ,

∗ denotes that the variables are considered under the risk-neutral measure.
In this chapter, we assume a multivariate Gaussian distribution. Rombouts and

Stentoft (2011) show that the conditional cumulant generating function is given by:

f(u) =
1

2
u′Σtu, (6.7)

where u is an arbitrary vector, if the multivariate Gaussian distribution is assumed. By
substituting Equation 6.7 into Equation 6.5, it is easily shown that νt takes the following
form:

νt = Σ−1t µt.

In addition, the risk-neutral cumulant generating function is given by:

f∗(u) = f(νtu)− f(νt)

=
1

2
(νt + u)′Σt(νt + u)− 1

2
ν ′tΣtνt

= u′Σtνt +
1

2
u′Σtu.

We assume the following mean model,

µt = diagΣtλ,

where diagΣt is a diagonal matrix of conditional variances, and λ is the unit risk premium.
This suggests that

f∗(u) = u′diagΣtλ+
1

2
u′Σtu.

This implies that the risk-neutral dynamics are given by:

R∗j,t,Tj = f∗(−cj) + ε∗j,Tj

= (−cj)′diagΣtλ+
1

2
c′jΣtcj + ε∗j,Tj .

The multivariate GARCH models are outlined in the next subsection.
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6.3.3 Multivariate GARCH models

According to Francq and Zakoian (2019), the CCC-GARCH model is formulated as follows:

Σt = DtΛDt,

where Λ is the constant correlation matrix of εj,Tj (estimated using historical data). The
diagonal matrix Dt takes the following form

Dt =


√
h1,t 0 · · · 0

0
. . .

...
. . .

0
√
hN,t

 .

The conditional variance of each asset is assumed to be consistent with Equation 6.1.
An obvious shortcoming of the CCC-GARCH model is the assumption of constant

correlation. To address this problem, Engle (2002) extended the model to incorporate
dynamic conditional correlation (DCC). The DCC-GARCH model is formulated as follows:

Σt = DtΛtDt,

where

Λt = diag(Ψt)
− 1

2 Ψtdiag(Ψt)
− 1

2 .

Ψt is modelled using an autoregressive process:

Ψt = (1− θ1 − θ2)Ψ̄ + θ1vt−1v
′
t−1 + θ2Ψt−1,

where vt = εj,Tj/
√
hj,t, Ψ̄ is the unconditional covariance matrix of εj,Tj , and to ensure

stationarity and positive definiteness, θ1 + θ2 < 1 and θ1, θ2 > 0. The log-likelihood
function (up to a constant) of both the CCC-GARCH and DCC-GARCH models is given
by:

lnLM = −1

2

N∑
t=1

ln |Σt| −
1

2

N∑
t=1

ε′tΣ
−1
t εt.

In this study, we consider futures prices on BTC with different expiry dates. Therefore,
highly correlated asset price processes are expected (same underlying). Given the volatility
process, risk-neutral sample paths of BTC futures prices can be simulated. The price of a
BTC futures spread option at time t, that expires at time T, is given by,

Vt = DF (t, T )× EQ [max{F1,T,T1 − F2,T,T2 − sK}, 0] ,

where T1, T2 ≥ T, T1 6= T2, and sK is the spread. It is clear from the above that when
sK = 0, it is an exchange option. The empirical results are considered in the next section.
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6.4 Empirical results

In this section, the empirical results are presented and discussed. In this study, daily data2

from 30-Oct-2020 to 1-Apr-2021 were used. The expiry dates of the BTC futures prices
are as follows: 30-Apr-2021, 28-May-2021, and 25-Jun-21. The BTC futures prices and
returns are plotted in Figures 6.1 and 6.2 below.

Figure 6.1: BTC futures
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Figure 6.2: BTC futures returns
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It is clear from the above that BTC futures prices are trended. Furthermore, the returns

2The dataset was obtained from the Thomson Reuters Datastream databank.
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show signs of volatility clustering, which is consistent with the typical stylised facts of
financial returns (McNeil et al., 2015).

The descriptive statistics of the BTC futures returns are reported in Table 6.1 below.

Table 6.1: Descriptive statistics: BTC futures returns

April May June

Mean 0.0132 0.0139 0.0126
Median 0.0057 0.0038 0.0112
Maximum 0.1631 0.1626 0.1578
Minimum -0.1557 -0.2118 -0.1605
Std. Dev. 0.0517 0.0572 0.0563
Skewness -0.2318 -0.5091 -0.4326
Kurtosis 4.6279 5.3923 3.9755
Jarque-Bera 13.0122 25.0679 4.9587
Probability 0.0015 0.0000 0.0838
Observations 109 89 70

The descriptive statistics indicate that the conditional expectation of the returns is close
to zero, the returns are not normally distributed, and the returns also show signs of
leptokurtosis. This is consistent with the stylised facts of financial returns (McNeil et al.,
2015).

The estimated parameters (maximum likelihood) and information criteria of the sym-
metric and asymmetric Heston-Nandi model applied to BTC futures returns are reported
in Tables 6.2 and 6.3 below.

Table 6.2: Symmetric Heston-Nandi parameters

April May June

λ 5.2100 4.2970 4.0490
α0 0.0024 0.0030 0.0028
α1 2.0E-04 3.5E-10 3.2E-11
β1 2.3E-07 0.0685 0.0930
AIC -4.1841 -3.7271 -3.2558

Table 6.3: Asymmetric Heston-Nandi parameters

April May June

λ 5.0020 4.2970 4.0490
α0 0.0023 0.0030 0.0028
α1 2.3E-04 3.5E-10 3.5E-11
β1 3.4E-08 0.0671 0.0927
δ1 16.1600 0.3934 0.0986
AIC -2.1870 -1.7271 -1.2558
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The AIC indicates that the symmetric time-varying volatility model is a better fitting
model. This is consistent with previous findings in the literature (see, e.g., Venter and
Maré , 2020a, Conrad et al., 2018, Dyhrberg, 2016). In addition to the AIC, a likelihood
ratio test is also used to compare the estimated symmetric and asymmetric models. The
test statistic of the likelihood ratio test for each expiry is reported in Table 6.4 below:

Table 6.4: Likelihood ratio test (Heston-Nandi)

Expiry Test Statistic

April 1.2856
May 2.8E-08
June -2.1E-08

We do not reject the null hypothesis for each expiry (Held and Sabanés Bové, 2014), this
is also in favor of the symmetric Heston-Nandi model.

The futures option prices of the two models and market prices3 (scaled by the relevant
futures price) are plotted in Figure 6.3 below. Furthermore, the pricing performance
metrics of the two models applied to different futures are outlined in Tables 6.5 to 6.7.
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Figure 6.3: BTC futures option prices

3The market prices were obtained from CME Group.
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Table 6.5: April performance metrics

Symmetric Heston-Nandi Asymmetric Heston-Nandi

RMSE 669.6865 724.2534
MAE 496.0976 533.5693

Table 6.6: May performance metrics

Symmetric Heston-Nandi Asymmetric Heston-Nandi

RMSE 1302.6712 1302.6727
MAE 1092.2221 1092.2235

Table 6.7: June performance metrics

Symmetric Heston-Nandi Asymmetric Heston-Nandi

RMSE 1149.2917 1149.2875
MAE 1018.2780 1018.2741

It is clear that similar European put futures option prices are obtained when the different
models are compared. The models produce reasonable prices when compared to market
prices. The RMSE and MAE of the symmetric Heston-Nandi model are slightly lower
when compared to the asymmetric Heston-Nandi model.

The performance metrics of the two models are similar. Therefore, to determine
whether the predictive accuracy of the two models are the same, the test by Diebold
and Mariano (1995) is applied. The test statistic for each expiry is reported in Table 6.8
below:

Table 6.8: Diebold-Mariano test

Expiry Test Statistic

April -2.5072*
May -3.3034*
June 4.0599

In the table above, * denotes significance at a 1% level. The null hypothesis of the test
is that the symmetric and asymmetric Heston-Nandi model have the same accuracy, and
the alternative hypothesis is that the symmetric model outperforms the asymmetric model
(this is consistent with previous findings in the literature, and previous chapters). The
Diebold-Mariano test indicates that the symmetric model outperforms the asymmetric
model for options that expire in April and May, but the predictive accuracy of the models
is the same for options that expire in June.

Based on the pricing performance of univariate options, the symmetric Heston-Nandi
GARCH process is used for the pricing of short-dated spread options on BTC futures. For
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the CCC-GARCH model, no additional parameters need to be estimated. The additional
parameters of the DCC-GARCH model are reported in Table 6.9 below:

Table 6.9: DCC-GARCH estimated parameters

Estimated parameter

θ1 1.4E-09
θ2 0.5657

The CCC-GARCH and DCC-GARCH models are compared using a likelihood ratio test.
The value of the test statistic is -3.8E-07, which is insignificant. Hence, we do not reject
the null hypothesis, which is in favour of the CCC-GARCH model. Therefore, the CCC-
GARCH model is used for the pricing of BTC futures spread options.

As mentioned previously, BTC futures are highly correlated. To illustrate this concept,
risk-neutral sample paths are illustrated in Figure 6.4 below.

Figure 6.4: BTC futures sample paths
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The sample paths are consistent with expectations. CCC-GARCH spread option prices
(scaled by the April futures prices) are plotted in Figure 6.5 below. The spread option is
based on the difference between the April and May futures prices, with an expiry date of
18-Apr-21.
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Figure 6.5: BTC futures spread option prices

Spread options on BTC futures do not actively trade and, therefore the model prices can
not be compared to market prices.

6.5 Summary

BTC futures options were launched in the first quarter of 2020. GARCH modelling of BTC
returns and BTC option pricing is well-documented in the literature. However, the pricing
of BTC futures options in a GARCH framework has not been considered. In addition,
a methodology for price discovery of multivariate options on BTC futures has not been
developed.

In this chapter, BTC futures options were priced using the Heston-Nandi futures option
pricing model (Li, 2019a). The empirical results show that the symmetric Heston-Nandi
model is a better fitting model, this is consistent with previous studies that focused on
BTC spot return dynamics. The pricing performance metrics show that the Heston-Nandi
model produces reasonable BTC option prices, and that the symmetric Heston-Nandi
model also produces more accurate option prices when compared to market prices for two
out of the three expiry dates considered.

In addition to the pricing of univariate BTC futures options, the work by Rombouts
and Stentoft (2011) was also extended to the pricing of multivariate futures options. The
model was applied to BTC futures spread options. The model produces reasonable spread
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option prices. However, spread options on BTC futures do not actively trade. Therefore,
the model prices cannot be compared to market prices.

The empirical results show that the symmetric Heston-Nandi model is more accurate in
most cases. This implies that the symmetric model is a better choice when pricing exotic
options (univariate) and other illiquid derivatives written on BTC futures. Furthermore,
the multivariate GARCH analysis showed that the CCC-GARCH model is more appropri-
ate (based on historical data) when pricing multivariate BTC futures options. Hence, the
symmetric Heston-Nandi model and CCC-GARCH model can serve as a basis for pricing
and risk measurement (quantifying market risk and capital calculations) of BTC futures
options.

This chapter concludes Part II on option pricing and volatility indices in the cryptocur-
rency market. Thus far we have shown that volatility indices can be used to improve the
accuracy of GARCH option pricing models and that volatility indices can be constructed
in illiquid markets. However, options on volatility indices were not considered. The pricing
and hedging of options written on volatility indices is the focus of Part III.
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Part III

Options on Volatility Indices
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Chapter 7

Price Discovery in the Volatility
Index Option Market: A
Univariate GARCH Approach

7.1 Introduction

Previous chapters have focused on price discovery, the use of volatility indices when mod-
elling different underlying assets, and constructing an implied volatility index in the ab-
sence of an established derivatives market. In this chapter,1 we consider the case where a
volatility index is the underlying asset. The use of volatility indices to identify risk regimes
and to hedge volatility-related risks has become very popular in recent years. According to
Rhoads (2011), the VIX derivatives (futures and options) market has recently experienced
significant increases in trading volume since inception. Rhoads (2011) explains that this is
due to the inverse relationship between market implied volatility and prices in the equity
market, where both VIX options and futures can be used as a hedge against decreases in
the equity market.

Market makers of volatility derivatives are faced with the problem of price discovery in
the absence of a well-established volatility derivatives market. According to Wang et al.
(2017), research focused on VIX is well-documented in the literature, however, not many
studies have focused on the pricing of VIX derivatives in the GARCH framework. The
focus of this chapter is the GARCH option pricing model applied to price discovery in
volatility index option markets.

In a study, Huang et al. (2019) considered different option pricing models for price dis-
covery in the Taiwanese VIX options market. The models include: standard Black-Scholes,
square-root, log-normal Ornstein-Uhlenbeck, and the GARCH option pricing models. In
the GARCH option pricing framework, Huang et al. (2019) model the spot dynamics of
the Taiwanese VIX with only the symmetric GARCH model considered. Furthermore, the
Taiwanese VIX options do not actively trade, therefore the prices obtained from the dif-

1This chapter is based on a publication (Venter and Maré, 2021a) in Finance Research Letters.
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ferent models could not be compared to market option prices to get an idea of the pricing
performance.

According to Wang et al. (2011), the standard Black model applied to VIX option
pricing performs best. The standard Black model is based on the futures price dynamic,
which is modelled as a driftless geometric Brownian motion. However, this model requires
market implied volatility, which relies on the presence of an established derivatives mar-
ket. A different approach is to model the risk-neutral dynamics of VIX futures using a
univariate GARCH model, which previous studies have not considered. Previous studies
have focused on the dynamics of the underlying index, i.e., S&P500, (see e.g., Wang et
al., 2017), or the volatility index spot dynamics (e.g., Huang et al., 2019).

The purpose of this chapter is to determine whether the GARCH option pricing model
can be used for price discovery in volatility index options markets in the absence of a well-
established volatility index options market (absence of market implied volatility). The
approach by Huang et al. (2019) is extended to model the VIX futures price dynamics.
In addition, the approach is also extended to different GARCH models. Finally, we also
consider different error distributions (Huang et al., 2019 consider the Gaussian distribution
only). The models are applied to CBOE VIX options (calibrated to futures returns only)
to compare model prices to (well-established) market option prices. This will give an
indication of whether the model produces reasonable price discovery.

The rest of this chapter is structured as follows: Section 7.2 reviews the recent relevant
literature, Section 7.3 outlines the theoretical framework implemented in this study, Sec-
tions 7.4 and 7.5 focus on the preliminary data analysis and empirical results, respectively;
finally the main findings are summarised in Section 7.7.

7.2 Literature review

Research focusing on VIX is well-documented in the literature. However, according to
Wang et al. (2017), not many studies have focused on the pricing of VIX derivatives in
the GARCH framework. Wang et al. (2017) made use of the Heston-Nandi (Heston and
Nandi, 2000) model to estimate VIX futures prices. Five different log-likelihood functions
were considered for the estimation of the Heston-Nandi model. The functions were based
on returns, model-implied VIX, and VIX futures prices. Two joint likelihood functions
were considered, the first based on returns and model-implied VIX, the other based on
VIX futures and model-implied VIX. Their empirical results indicate that the estimation
based on VIX futures provides the smallest pricing error, however, this leads to distorting
of the model-implied VIX. Therefore, Wang et al. (2017) conclude that estimating the
model based on VIX futures and implied VIX is the best approach. This provides similar
pricing performance without distortion of the model-implied VIX.

In a similar study, Zhu and Lian (2012) derived a closed-form solution for VIX futures
using a stochastic volatility model. Jumps were included in both the asset price and
volatility processes. The pricing performance was tested by comparing the model-implied
futures prices to market futures prices published by the CBOE. Based on the empirical
analysis, Zhu and Lian (2012) conclude that the Heston stochastic volatility model is a
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good candidate for pricing VIX futures. Furthermore, including jumps in the asset price
process improves the pricing performance. Finally, including jumps in the volatility process
does not lead to a significant improvement in the pricing performance of the model.

More recently, Huang et al. (2019b) made use of realised volatility for the pricing of VIX
futures. Huang et al. (2019b) made use of the heterogeneous autoregressive model with a
Gamma innovation and more flexible leverage components (suggested by Majewski et al.,
2015) to model-implied volatility (in the risk-neutral measure). The model was calibrated
using the maximum likelihood method based on a joint-likelihood function (returns and
futures), and a likelihood function based on futures only. The model outputs were also
compared to the Heston-Nandi approach by Wang et al. (2017). Huang et al. (2019)
conclude that the heterogeneous autoregressive model is superior to the Heston-Nandi
model when pricing performance is considered, especially during high volatility periods.

Lou et al. (2019) provide a unified theoretical framework for the pricing of VIX deriva-
tives, including futures and options written on VIX and the short term VIX (VXST, 9 day
VIX). Lou et al. (2019) make use of a two-factor model to model the returns of the S&P500
under the risk-neutral measure and the instantaneous VIX. Their empirical results show
that the model is capable of capturing various shapes of the VIX term structure and term
structures of average at-the-money implied volatility and its skew.

Psychoyios et al. (2010) made use of a jump diffusion model for the pricing of VIX
futures and options. Psychoyios et al. (2010) show that a mean-reverting logarithmic
process with jumps is capable of capturing the stylised facts of VIX dynamics, which
include: rapid mean-reversion when the VIX is at high levels, level effects of volatility
(as the level of implied volatility increases the volatility of implied volatility increases
proportionally), and large upward movements during times of market stress. Finally,
Psychoyios et al. (2010) conclude that incorrectly omitting jumps in a VIX derivative
pricing model can lead to considerable problems for pricing and hedging VIX derivatives.

In a study focused on VIX option pricing, Wang et al. (2011) tested the pricing per-
formance of VIX option pricing models. Wang et al. (2011) considered the standard Black
model by Whaley (2007), the mean reversion approach by Grünbichler and Longstaff
(1996), the model-free approach (Carr and Lee, 2007), and finally the stochastic models
derived by Lin and Chang (2009). Wang et al. (2011) conclude that no model performs
well for all types of moneyness. However, Wang et al. (2011) argue that the standard Black
model applied to VIX options performs the best. This model is based on the futures price
dynamic, which is modelled as a driftless Brownian Motion.

In a recent study, Jing et al. (2020) developed a general valuation framework for VIX
options that incorporates asymmetric jumps and a stochastic skew. The pricing perfor-
mance was tested by comparing the model-implied prices to market option prices. Their
empirical results show that multi-factor stochastic volatility models are superior to single-
factor stochastic volatility models, especially for out-of-the-money options. Furthermore,
allowing for downward jumps could improve the pricing performance of the model.

In a recent study, Cao et al. (2020) made use of affine GARCH models based on
Gaussian and Inverse Gaussian distributions to derive semi-closed-form solutions for the
Price of VIX options and target volatility options. The models are applied to the S&P500,
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where VIX options are priced by modelling the GARCH model implied VIX. The models
were calibrated to historical returns and market quotes on VIX and S&P500 Index options.
Cao et al. (2020) conclude that the inclusion of a skewed distribution for modelling the
asset returns improves the pricing performance.

Huang et al. (2019) made use of different models for price discovery in the Taiwanese
VIX option market. Huang et al. (2019) considered the following models: the Black-Scholes
model (Black and Scholes, 1973), the square-root model (Grünbichler and Longstaff, 1996),
the log-normal Ornstein-Uhlenbeck model (Detemple and Osakwe, 2000), and the GARCH
option pricing model (Duan, 1995). Huang et al. (2019) conclude that the GARCH option
pricing model produces the highest option prices, which is followed by Black-Scholes,
square-root, and finally the log-normal Ornstein-Uhlenbeck model.

Taiwanese VIX options are not actively traded yet; therefore the pricing performance
could not be tested. In addition, the models were also estimated under the physical
measure. Huang et al. (2019) calibrated the GARCH option pricing model to the spot
return of the Taiwanese VIX (the spot price was modelled as a driftless process); therefore
a unit risk premium was included. Furthermore, only the symmetric GARCH model was
considered. In this study, we extend the work by Huang et al. (2019) to asymmetric models.
Furthermore, the GARCH models are calibrated to the futures return (consistent with Li,
2019a, who applied the Heston-Nandi model to commodity futures returns). Finally, the
models are applied to the VIX, which is actively traded. Hence, the pricing performance of
the GARCH option pricing model applied to volatility indices can be tested by comparing
model-implied prices to market option prices. The most important studies required for
the theory applied in this chapter are summarised in the table below.

Study Topic

Duan (1995) GARCH option pricing
Hao and Zhang (2013) GARCH option pricing (additional models)
Li (2019a) GARCH option pricing applied to Futures
Huang et al. (2019) GARCH option pricing applied to VIX

The theoretical framework is considered in the next section.

7.3 Theoretical framework

In this section, the theory applied in this study is outlined. The aim of the empirical
analysis is to determine whether the GARCH option pricing model provides reasonable
price discovery in the VIX option market when compared to market prices. By making
use of a similar approach to Li (2019a), the futures price dynamics are modelled.

In this study, the VIX futures price process is assumed to be consistent with Equa-
tion 6.2. We consider the GARCH(1,1), GJR-GARCH(1,1), and AGARCH(1,1) models
(Equations 2.2 to 2.4) for the conditional variance. With regard to the distribution of ξt,
this can clearly be generalised. However, in this study we consider the Gaussian distribu-
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tion as a benchmark. In addition, the skewed Student-t distribution (Azzalini and Salehi,
2020) is also considered to capture the effect of skewness and excess kurtosis often found
in financial returns (McNeil et al., 2015).

As mentioned previously, the price of a contingent claim (a European put option in
this case) is the risk-neutral expectation of the discounted payoff (Wilmott, 2007). Liu
et al. (2015) explain that VIX is defined under the risk-neutral measure only. Therefore,
the risk-neutral dynamics can be calibrated to the futures return series. Hence, given the
calibrated parameters, different realisations of the VIX level at expiry can be simulated.
The preliminary data analysis is considered in the next section.

7.4 Data analysis

In this section, the statistical properties of the VIX futures returns are considered. The
futures price data was obtained from the CBOE. The following delivery dates are included
in the analysis: 19-Aug-2020, 16-Sep-2020, 21-Oct-2020, and 18-Nov-2020. This allows us
to price VIX options across a range of different strike prices and expiry dates.

The futures prices for the different delivery dates are plotted in Figure 7.1 below.

Figure 7.1: Futures price
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The futures prices seem to be trended over time. However, the different GARCH models
considered in this study are calibrated to futures returns. The futures returns are plotted
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in Figure 7.2 below.

Figure 7.2: Futures return
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The returns seem to show signs of volatility clustering and also have a conditional ex-
pectation of close to zero, which is consistent with the stylised facts of financial returns
(McNeil et al., 2015). The descriptive statistics are reported in Table 7.1 below.

Table 7.1: Descriptive statistic: futures return

Delivery 19-Aug-2020 16-Sep-2020 21-Oct-2020 18-Nov-2020

Mean 0.0015 0.0022 0.0025 0.0025
Median -0.0031 -0.0032 -0.0013 -0.0027
Maximum 0.2444 0.1928 0.1536 0.1495
Minimum -0.171 -0.1432 -0.1134 -0.0994
Std. Dev. 0.0446 0.0399 0.0343 0.0332
Skewness 1.2516 1.1756 1.0331 0.9865
Kurtosis 9.7118 7.8522 7.392 6.6765
Jarque-Bera 376.3021 202.2948 163.9283 121.1384

The descriptive statistics indicate that the mean of the futures return for each delivery
is close to zero. Furthermore, the Jarque-Bera test statistic shows that the returns series
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are not normally distributed. The kurtosis indicates that the returns are fat tailed, which
is also consistent with the stylised facts of financial returns (McNeil et al., 2015). Finally,
the skewness statistic indicates that the futures return series are positively skewed. The
empirical results are considered in the next section.

7.5 Results

In this section, the calibrated parameters and information criteria of the fitted parameters
are reported. Furthermore, the pricing performance of the three GARCH option pricing
models are compared. The calibrated parameters and information criteria of the different
models considered in this study are reported in Tables 7.2 to 7.7 below. The parameters
ω and ν denote the skewness and shape parameters of the skewed Student-t distribution.

Table 7.2: GARCH(1,1) parameters (Gaussian distribution)

19-Aug-2020 16-Sep-2020 21-Oct-2020 18-Nov-2020

α0 7E-05 4E-05 2E-05 2E-05
α1 0.3425 0.3248 0.2787 0.2952
β1 0.6565 0.6742 0.7203 0.7038
AIC -3.6492 -3.9075 -4.2903 -4.3791
SIC -3.5952 -3.8515 -4.2343 -4.323

Table 7.3: GJR-GARCH(1,1) parameters (Gaussian distribution)

19-Aug-2020 16-Sep-2020 21-Oct-2020 18-Nov-2020

α0 6E-05 4E-05 2E-05 2E-05
α1 0.4952 0.4024 0.1941 0.2961
β1 0.6433 0.6681 0.7068 0.7039
γ -0.2791 -0.143 0.1963 -0.0019
AIC -3.6515 -3.8988 -4.2937 -4.3671
SIC -3.5795 -3.8241 -4.219 -4.2924

Table 7.4: AGARCH(1,1) parameters (Gaussian distribution)

19-Aug-2020 16-Sep-2020 21-Oct-2020 18-Nov-2020

α0 7E-05 4E-05 2E-05 1E-05
α1 0.3341 0.2988 0.279 0.2705
β1 0.6317 0.674 0.72 0.7183
γ -0.3152 -0.2964 0.0061 -0.1937
AIC -3.668 -3.9154 -4.2783 -4.3729
SIC -3.5959 -3.8407 -4.2036 -4.2982



7.5. RESULTS 80

Table 7.5: GARCH(1,1) parameters (Skewed Student-t distribution)

19-Aug-2020 16-Sep-2020 21-Oct-2020 18-Nov-2020

α0 2E-05 2E-05 1E-05 1E-05
α1 0.2883 0.2827 0.2818 0.2797
β1 0.7107 0.7163 0.7172 0.7193
ω 1.6041 1.4228 1.2655 1.3181
ν 5.6587 4.1556 4.4321 4.2372
AIC -4.077 -4.2557 -4.5600 -4.6238
SIC -3.987 -4.1623 -4.4666 -4.5305

Table 7.6: GJR-GARCH(1,1) Parameters (Skewed Student-t distribution)

19-Aug-2020 16-Sep-2020 21-Oct-2020 18-Nov-2020

α0 2E-05 2E-05 1E-05 1E-05
α1 0.3824 0.4601 0.2898 0.3592
β1 0.7267 0.7595 0.7204 0.7423
γ -0.1903 -0.3779 -0.0204 -0.1821
ω 1.6542 1.4289 1.2662 1.3197
ν 5.1822 3.2286 4.3588 3.7506
AIC -4.0761 -4.2628 -4.5481 -4.618
SIC -3.968 -4.1507 -4.4361 -4.506

Table 7.7: AGARCH(1,1) Parameters (Skewed Student-t distribution)

19-Aug-2020 16-Sep-2020 21-Oct-2020 18-Nov-2020

α0 2E-05 2E-05 1E-05 1E-05
α1 0.2688 0.2006 0.2671 0.2215
β1 0.7236 0.7358 0.7286 0.7363
γ -0.1567 -0.5583 -0.1107 -0.4317
ω 1.6005 1.4267 1.2703 1.3292
ν 5.6304 3.7395 4.3302 3.9219
AIC -4.0696 -4.2589 -4.5489 -4.623
SIC -3.9615 -4.1469 -4.4369 -4.511

The bold values in the tables above indicate the minimum value of the AIC or SIC of
the relevant futures price. This indicates the best fitting model based on the historical
data. The AIC and SIC indicate that the GARCH(1,1) model with a skewed Student-t
error distribution is the best fitting model for all of the futures return series except the 16-
Sep-2020 delivery, the GJR-GARCH(1,1) model with a skewed Student-t error distribution
is the best fitting model in this case.

The estimated GARCH option pricing models were used to estimate VIX European



7.5. RESULTS 81

put option prices, which were compared to market option prices2. The pricing performance
based on the RMSE and MAE of the three GARCH models are reported in Tables 7.8
and 7.9 below.

Table 7.8: Pricing performance (Gaussian distribution)

RMSE MAE

GARCH(1,1) 2.0201 1.7851
GJR-GARCH(1,1) 1.8723 1.6199
AGARCH(1,1) 2.1503 1.9003

Table 7.9: Pricing performance (Skewed Student-t distribution)

RMSE MAE

GARCH(1,1) 1.0977 0.8866
GJR-GARCH(1,1) 1.9863 1.4408
AGARCH(1,1) 1.4750 1.1073

The bold values indicate the minimum value of the MAE and RMSE. The MAE and
RMSE both indicate that GARCH(1,1) model with a skewed Student-t error distribution
is the best performing model. To illustrate the pricing performance, the market option
prices for each maturity date are plotted in addition to the model prices in Figure 7.3
below.

Figure 7.3: Put option prices
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2Market VIX option prices were obtained from the Thomson Reuters Datastream databank.
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The empirical results are discussed in the next section.

7.6 Discussion

The preliminary data analysis shows that the VIX futures return series are consistent with
the stylised facts (Cont, 2001) of financial returns (mean of close to zero and leptokurtosis).
It is also important to note that the return series are positively skewed, thus, the use of
the skewed Student-t distribution (in addition to the Gaussian distribution) used to model
the error distribution is justified in this case. Furthermore, Alexander (2008) explains
that non-Gaussian error distributions usually outperform the Gaussian distribution when
modelling financial returns using GARCH models.

When the GARCH parameters and information criteria are considered, it is clear that
the skewed Student-t error distribution assumption produces a better fitting model (for
the three GARCH processes considered). This is consistent with expectations given the
excess kurtosis and positive skewness. Overall, the GARCH(1,1) model with a skewed
Student-t error distribution is the best fitting model, which is aligned with the argument
by Hansen and Lunde (2005), that it is difficult to find a GARCH model that consistently
outperforms a GARCH(1,1) model. The negative asymmetry parameters (γ) indicate that
the rise in volatility is greater after a positive shock. This implies that VIX futures behave
more like a commodity.

The pricing performance metrics show that the GARCH(1,1) model with skewed
Student-t errors produces the most accurate VIX put option prices. This is consistent
with expectations as it is aligned with the information criteria. The plot of the VIX op-
tion market and model prices (Figure 7.3) show that the GARCH option pricing model
produces reasonable VIX option prices. Therefore, the GARCH option pricing model can
be used in the absence of a well-established volatility index option market. The summary
is outlined in the next section.

7.7 Summary

In this chapter, the GARCH option pricing model is applied to VIX futures returns to
determine whether the model can be used for price discovery in the absence of a well-
established volatility index option market. Huang et al. (2019) applied the GARCH option
pricing model to the Taiwanese VIX spot return, the spot price was modelled as a driftless
process, and the variance process included a unit risk premium. Furthermore, Huang et
al. (2019) focused on the symmetric GARCH(1,1) model with normally distributed errors.
In this chapter, we extend the work of Huang et al. (2019) by calibrating the GARCH
models to the historical futures returns (consistent with Li, 2019a). Furthermore, the
symmetric GARCH(1,1) was used in addition to the asymmetric GJR-GARCH(1,1) and
AGARCH(1,1) models. Finally, both Gaussian and skewed Student-t error distributions
were considered. The models were applied to VIX, which has an established options
market, in order to determine the accuracy of the model-implied prices.
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The empirical results indicate that the GARCH(1,1) model, with skewed Student-t
errors, provides the best fitting model (in most cases) based on the information criteria.
Furthermore, when the pricing performance is considered, the GARCH(1,1) model with
skewed Student-t errors is also the best performing model (consistent with the argument
by Hansen and Lunde, 2005). Reasonable price discovery is obtained when using the
GARCH option pricing model calibrated to VIX futures returns.

The empirical results suggest that it is appropriate to use the GARCH option pricing
model for price discovery in the absence of a well-established volatility index options
market. However, it is important to make use of error distributions that incorporate
skewness and kurtosis to accurately model the risk-neutral dynamics. An important factor
that was not considered is the hedge performance of the GARCH option pricing model
applied to VIX futures options, which is the focus of the next chapter.
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Chapter 8

Hedging VIX Futures Options: An
Application of the Heston-Nandi
Model

8.1 Introduction

Volatility indices and volatility index derivatives have become popular risk management
tools in recent years. The focus of this chapter1 is the hedging of CBOE VIX futures
options, using VIX futures. The pricing of VIX options (considered in Chapter 7) is well-
documented in the literature. However, not many studies focus on the hedging of VIX
options.

As discussed in Section 7.2, in a study focused on the pricing of VIX options Wang et
al. (2011) showed that the standard Black (1976) model is the most reliable when it comes
to pricing VIX options. Therefore, the Black (1976) model is used as a benchmark in this
study. According to Lassance and Vrins (2018), the ability of a model to describe the
underlying dynamics is an important factor to consider when using models for hedging.

As mentioned previously, conventional wisdom among financial modelling researchers is
that the assumption of constant volatility is not always a realistic assumption. Therefore,
the hedge performance of the model by Heston and Nandi (2000) applied to VIX futures
options is also considered. The rest of this chapter is structured as follows: Section 8.2
outlines the recent and relevant literature, the theory applied in this chapter is outlined
in Section 8.3, the empirical results are shown in Section 8.4, and the main findings are
summarised in Section 8.5.

1A previous version of this chapter was presented at the 2021 Student Simposium in Natural Sciences
(North-West University).



8.2. LITERATURE REVIEW 85

8.2 Literature review

Research focused on the pricing of volatility index futures is well-documented in the litera-
ture (see e.g., Zhang and Zhu, 2006, Zhu and Lian, 2012, Huang et al., 2019b, Wang et al.,
2017). Similarly, the pricing of volatility index options is also well-documented. Wang et
al. (2011) considered four different VIX option pricing models. The pricing performance
metrics are based on the difference between the market price and the theoretical model
price. Their empirical results indicate that the standard Black (1976) model performs best
when applied to VIX options. In this chapter, the Black (1976) model is applied to the
hedging of VIX options.

In a recent paper, Venter and Maré (2021a) (Chapter 7 is based on this paper) applied
different univariate GARCH models to historical VIX futures returns for the pricing of
VIX options. The authors considered symmetric and asymmetric GARCH models, dif-
ferent error distribution (Gaussian and distributions that capture skewness and kurtosis)
assumptions were also considered. The authors conclude that the symmetric GARCH
model with skewed Student-t errors is the best performing model.

Lassance and Vrins (2018) considered the mismatch between the pricing and hedg-
ing performance of option pricing models when applied to equity options. Lassance and
Vrins (2018) considered the pricing and hedging performance of: Black-Scholes, practi-
tioner Black-Scholes, and the Heston-Nandi model applied to the S&P500 Index, and
Apple options. The authors explain that a model’s hedge performance is dependent on
the underlying asset price dynamics. The main conclusion is that Black-Scholes and prac-
titioner Black-Scholes largely outperform the Heston-Nandi model when it comes to hedge
performance.

Kuen Siu et al. (2014) considered the hedge performance of the GARCH option pricing
model when applied to the hedging of crude oil derivatives. Their analysis focused on
hedging strategies based on Delta and Delta-Gamma. The hedge performance different
models were compared based on value-at-risk and expected shortfall. Their empirical
results indicate that the GARCH option pricing model with shifted gamma innovations
outperform the GARCH option pricing model with normal innovations, and the Black-
Scholes model.

Not many studies have focused on the hedging of VIX options. In a recent study,
Fukasawa et al. (2021) applied three different models (Black-Scholes, CIR, and rough
stochastic volatility) to the hedging of VIX options using a forward variance swap. The
hedge performance of the different models was based on the stability of the P&L. Their
empirical results indicate that the rough stochastic volatility model is the most reliable
hedging model.

8.3 Theoretical framework

In this chapter, using a similar approach to Lassance and Vrins (2018), the futures option
pricing models derived by Black (1976) and Li (2019a) are applied to the hedging of VIX
futures options. The risk-neutral asset price process in the Black (1976) model is given
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by,

dFt,T = σFt,TdWt,

where σ is the implied volatility (assumed to be constant), and Wt is a standard Brownian
motion under the risk-neutral measure Q. The problems associated with the assumption
of constant volatility (for the pricing and hedging of derivatives) are well-documented in
the literature. Therefore, a stochastic volatility model is also considered.

As mentioned previously, the model by Heston and Nandi (2000) was extended by
Li (2019a) to futures options. The Heston and Nandi (2000) model is usually calibrated
to spot price dynamics under the real-world measure (as it is applied in Chapter 6).
However, in this chapter the model is calibrated to futures option prices. Therefore, only
the risk-neutral asset price dynamics are required. The risk-neutral futures price process
is consistent with Equation 6.2. For the estimation of parameters, the root-mean squared
error of the model price relative to the market price (similar to Christoffersen and Jacobs,
2004). The following function is minimised:

RMSEt =

√√√√ 1

NMkt

N∑
i=1

(
CMkt
i,t − CHNi,t

)2
,

where NMkt is the number of market options used for calibration at at time t, CMkt
i,t is

the market price of the ith option at time t, and CHNi,t is the corresponding Heston-Nandi
price. The models are calibrated on a daily basis, using an approach that is consistent
with Alexander and Nogueira (2004) the hedged portfolio is rebalanced on a daily basis
(using the daily closing price).

In our analysis, we assume that we have written a range of call options (different strike
prices) on VIX futures. The delta (∆t - hedge ratio) of either the Black (1976) or the
Heston-Nandi futures model (Li, 2019a) are computed numerically (central difference). At
each point in time t, the hedged portfolio consists of a short call option, ∆t VIX futures,
and an amount of cash either borrowed or invested at the risk-free rate (Maré, 2009).
We consider delta hedging only (consistent with Lassance and Vrins, 2018). The superior
hedge model will produce the most stable profit and loss (P&L) distribution (average
standard deviation across different strikes considered). The empirical results are outlined
in the next section.

8.4 Empirical results

This section focuses on the hedge performance of the Black and Heston-Nandi futures
option pricing models applied to the hedging of VIX futures options. The futures options
were hedged from 22-Oct-2020 up to 21-Apr-2021 (the futures option expiry date). The
following strike prices were considered: 15, 16,..., 30. The VIX futures price and returns
are plotted in Figures 8.1 and 8.2 below:
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Figure 8.1: VIX futures price
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Figure 8.2: VIX futures return
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The futures returns do seem to indicate signs of volatility clustering. Therefore, the use of
the Heston-Nandi model is appropriate. However, in this study the Heston-Nandi model
is not calibrated to futures returns, it is calibrated to option prices. The time series of
VIX option prices (strike = $23) is plotted in Figure 8.3 below:
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Figure 8.3: VIX option price (strike = 23)
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Daily rebalancing is assumed in this study (consistent with Alexander and Nogueira, 2004).
Hence, the Heston-Nandi futures model is calibrated to VIX options (multiple strikes) on
each day included in the sample period.

As explained in the previous section, the superior hedging model will produce a more
stable P&L distribution. The average (across the different strike prices considered) P&L
standard deviations are reported in Table 8.1 below (average Dollar standard deviation):

Table 8.1: Hedge performance

Model Standard Deviation

Heston-Nandi 0.7333
Black 76 0.7963

It is clear from the above that the Heston-Nandi model produces a more stable P&L
distribution on average. This implies that the non-Gaussian dynamics of VIX futures
returns are better explained by the Heston-Nandi model as apposed to the Black model
(Lassance and Vrins, 2018).

8.5 Summary

The focus of this chapter is the hedging of VIX futures options. The standard Black
(1976) model was used as a benchmark. Furthermore, to take leptokurtosis and the
stochastic nature of volatility into account, the model by Heston and Nandi (2000) was
also considered. The models were compared based on the standard deviation of the P&L
generated by the hedged portfolio. Empirical results indicate that the Heston-Nandi model
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is more reliable when applied to the hedging of VIX futures options. The Heston-Nandi
model better explains the dynamics (leptokurtosis and volatility clustering often found in
financial time series) of VIX futures.

This chapter concludes part III on the pricing and hedging of options on volatility
indices using the GARCH option pricing model. The focus of part IV is the application
of the GARCH option pricing model to more modern derivative pricing frameworks that
take additional factors into account that were not considered prior to the GFC.
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Part IV

GARCH Option Pricing After the
GFC
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Chapter 9

Collateralised Option Pricing in a
South African Context: A
Univariate GARCH Approach

9.1 Introduction

Parts I to III have focused on the pricing of derivatives and volatility indices in illiquid
markets. The focus of Part IV is GARCH option pricing in a more modern framework. The
GFC of 2008 was a turning point for financial markets, especially for financial modelling
and risk management of contingent claims. As discussed, these claims, such as financial
options, were typically valued in the Black-Scholes-Merton framework (Black and Scholes,
1973). Common modelling assumptions within this modelling paradigm are the existence
of constant unique risk-free interest rate, constant volatility, normally distributed asset
returns, and no transaction costs (Black and Scholes, 1973). Previously, the pricing of
derivative instruments was not as complicated as it is today.

An important factor that needs to be considered after the GFC is the effect of funding,
which, in essence, imposes constraints on the balance sheet of the financial intermediating
entity. This has forced financial modelling researchers and practitioners to develop a new
pricing framework. Piterbarg (2010) extended the Black-Scholes framework by relaxing
the assumption of a unique risk-free rate. The purpose of the model derived by Piterbarg
(2010) is the pricing of derivatives in the presence of collateral. Three different rates are
required when pricing derivatives in this framework: the repurchase agreement rate, the
collateral rate, and the funding rate.

In this chapter, the GARCH option pricing model (in the presence of collateral) derived
by Labuschagne and Von Boetticher (2017) is extended to two different models, namely
the symmetric GARCH(1,1) model and the non-linear AGARCH model. This is done to
illustrate the effect of asymmetry when pricing collateralised options (vanilla and exotic)
in the GARCH option pricing framework. The purpose of our analysis is to demonstrate
pricing effects of contingent claims in the presence of balance sheet constraints, and use
a stochastic volatility model to relax volatility assumptions. The remainder of this chap-
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ter is structured as follows: Section 9.2 focuses on recent and relevant literature. The
methodology is considered in Section 9.3, Section 9.4 reports the empirical results, and
the main findings are summarised in Section 9.5.

9.2 Literature review

In a recent study, Oberholzer and Venter (2019) made use of the Heston-Nandi model to
approximate option price surfaces for the CIVETS (Columbia, Indonesia, Vietnam, Egypt,
Turkey and South Africa) countries’ equity indices. Their empirical results indicate that
the option price surfaces obtained from the model are consistent with those usually found
in the market. However, the options considered do not incorporate collateral agreements.
Furthermore, only vanilla options were considered.

Christoffersen et al. (2013) compared a wide range of different GARCH models for
option valuation market traded option prices. Their results showed that market option-
based objective functions and models that allow for a standard leverage effect produce
the most parsimonious GARCH option pricing model. However, the estimation of these
models were done in the Black-Scholes framework which does not account for collateral.
As mentioned previously, collateral agreements have become very important after the
GFC. Therefore, a more modern pricing framework (Piterbarg, 2010) is considered in this
chapter.

In a similar study, Hsieh and Ritchken (2005) compared the Heston-Nandi model to the
AGARCH option pricing model by Duan (1995). The accuracy of the models was tested
by comparing the model option prices to actual market option prices on the S&P500 index.
Their results indicated that the AGARCH model is superior to the Heston-Nandi model,
and should be considered by traders and risk managers. Similar to Christoffersen et al.
(2013), this study was performed before the GFC. Hence, collateral was not considered.

In a recent paper, Levendis and Venter (2019) made use of local volatility in the
Piterbarg framework to price collateralised Asian options. Local volatility assumes that
volatility is a deterministic function of the spot price and time. Levendis and Venter
(2019) explain that no closed-form solution exists for an arithmetic Asian option in the
Piterbarg framework. Therefore, Monte Carlo simulation was used. Their empirical results
indicate that the presence of collateral has a greater effect on in-the-money options (i.e.,
more expensive). The calibration of local volatility requires an implied volatility surface
which is not always available in emerging markets (GARCH models can be calibrated to
historical data). Assuming that volatility is a deterministic function of the spot price and
time is a better assumption than constant volatility. However, this does not capture the
stochastic nature of volatility. Therefore, GARCH models are applied in this study.

Labuschagne and Von Boetticher (2017) extended the GARCH option pricing model
by Duan (1995) to incorporate collateral in the Piterbarg (2010) framework. The GJR-
GARCH and exponential GARCH models were considered. Their empirical results showed
that both the GJR-GARCH and exponential GARCH models produce the characteristic
volatility skew that can be observed in the markets. However, no comparison was made
with a symmetric model. Furthermore, exotic options were not considered.
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9.3 Methodology

In this chapter, the GARCH option pricing model is used to price collateralised options
on the Top40. We use closing spot levels of the Top40 from 1 January 2010 to 31 October
2019 to fit the parameters. The remainder of this section is divided into two subsections,
the first focuses on the Piterbarg (2010) framework and the second focuses on the GARCH
option pricing model.

9.3.1 The Piterbarg framework

As mentioned previously, the Piterbarg (2010) model extends the Black-Scholes frame-
work to incorporate three different interest rates: the collateral rate (rC), the repurchase
agreement rate (rR), and the funding rate (rF .) In general, the following inequality holds,

rC ≤ rR ≤ rF .

The prices of fully collateralised (VFC) and zero collateral (VZC) European call options in
the Piterbarg framework are given by,

V
(FC)
t = exp{−rC(T − t)} (St exp{rR(T − t)}Φ(d1)−KΦ(d2))

V
(ZC)
t = exp{−rF (T − t)} (St exp{rR(T − t)}Φ(d1)−KΦ(d2)) ,

respectively. In addition, d1 and d2 are given by,

d1 =
ln
(
St
K

)
+ (rR + 1

2σ
2)(T − t)

σ
√

(T − t)
d2 = d1 − σ

√
(T − t).

The framework is discussed more formally in Section 10.3.2. The GARCH option pricing
model is considered in the next subsection.

9.3.2 GARCH option pricing

Labuschagne and Von Boetticher (2017) make the following assumption regarding the
dynamics of the underlying asset under the real-world measure P ,

ln

(
St
St−1

)
= rR + λ

√
ht −

1

2
ht + εt, (9.1)

where εt ∼ N (0, ht), ht is some GARCH process, and λ is the unit risk premium. In
this chapter, the conditional variance is assumed to be driven by a GARCH(1,1) and an
AGARCH(1,1) process, respectively. The real-world and risk-neutral conditional variance
processes are outlined in Section 2.2.2. Labuschagne and Von Boetticher (2017) show that
the dynamics of the underlying asset under the risk-neutral measure (QrR) are given by,

ln

(
St
St−1

)
= rR −

1

2
ht + ξt, (9.2)
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where ξt ∼ N (0, ht) under the QrR measure.
In this study, the GARCH model parameters are estimated using the maximum like-

lihood method based on historical returns data (implied volatility is not required). Fur-
thermore, Monte Carlo simulation (50000 simulations) is used to approximate option price
surfaces. Hence, different realisations of Equation 9.2 are simulated to obtain the expec-
tation of the discounted payoff of an option.

Both vanilla and exotic (Asian and lookback) options are considered in this study. As
mentioned previously, the payoff of a (vanilla) European call option is given by,

max {ST −K, 0} .

The payoff of an Asian call option is given by,

max

 1

NAvg

NAvg∑
i=1

Si −K, 0

 ,

where NAvg is the number of averaging periods. In this study, daily averaging throughout
the life of the option is assumed. The payoff of a (fixed) lookback call option is,

max {Smax −K, 0} ,

where Smax is the maximum underlying asset price achieved during the life of the option.
The empirical results are reported in the next section.

9.4 Empirical results

This section focuses on the approximated GARCH option price surfaces, which illustrate
the effect of collateral and asymmetry. The GARCH option price surfaces are plotted and
compared. Both vanilla options and exotic options are considered. For the estimation of
parameters, rR is assumed to be consistent with the 91 day Treasury bill rate (6.67%).
In addition, we assume that rC = rR − 1%, and rF = rR + 1%. The GARCH model
parameters are reported in Table 9.1 below:

Table 9.1: GARCH model parameters

GARCH(1,1) AGARCH(1,1)

α0 2.17E-06 2.12E-06
α1 0.0714 0.0472
β1 0.9086 0.828
λ 0.0465 0.0009
γ 1.523
AIC -6.4385 -6.4866
SIC -6.4293 -6.4775
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The GARCH model parameters in the table above are used to approximate the option price
surfaces that follow. The asymmetry term (γ) of the AGARCH(1,1) model is positive.
This is usually the case when applying the AGARCH model to equity returns (Alexander,
2008).

In this study, both vanilla and exotic call option price surfaces are considered. The
GARCH(1,1) (vanilla) European call option price surfaces are plotted in Figure 9.1 below.
Both the full collateral and zero collateral surfaces are plotted. In addition, the differences
between the zero and full collateral surfaces are also plotted to show the effect of collateral.
All price surfaces and differences are expressed as a percentage of the initial spot price.
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Figure 9.1: GARCH(1,1) European call option price surfaces
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Similar option price surfaces were obtained when using the AGARCH(1,1) model. The
difference in the full collateral and zero collateral surfaces increases as the option price
increases. The call option is more in the money and over longer expiries. This is consistent
with Levendis and Venter (2019).

The difference between the GARCH(1,1) and AGARCH(1,1) surfaces are plotted in
Figure 9.2 below to illustrate the effect of asymmetry. Similar results were obtained for
full collateral and zero collateral, therefore only the difference between the full collateral
surfaces is considered.

Figure 9.2: European option price differences

Small differences are obtained when the GARCH(1,1) and AGARCH(1,1) option prices
are compared. However, the difference in prices tends to increase as the time to expiry
increases. This is consistent with expectations because the probability of negative shocks
is greater over a longer period of time (more uncertainty).

Collateral has a similar effect on the Asian call option price surface. However, to illus-
trate the effect of asymmetry on Asian options, the difference between the AGARCH(1,1)
Asian call option price surface and the GARCH(1,1) full collateral Asian call option price
surface is plotted in Figure 9.3 below.
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Figure 9.3: Asian option price differences

The difference between the AGARCH(1,1) and GARCH(1,1) Asian call option price
surfaces in Figure 9.3 illustrates that asymmetry is not as significant when pricing Asian
options in the collateralised GARCH option pricing framework. This is consistent with
expectations, because the averaging feature of Asian options reduces the volatility inherent
in the options (see e.g., Jeon et al., 2016). This also explains why Asian options are
generally cheaper than European options.

The difference between the full and zero collateral price of the lookback call option
price surface is illustrated in Figure 9.4 below.

Figure 9.4: Effect of collateral (lookback option)
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Collateral clearly has a greater impact on the lookback option (when compared to the
vanilla option price difference). This is intuitive, as the price of a lookback call option is
always greater than, or equal to, the price of a vanilla call option (greater option price
implies greater collateral). The difference between the AGARCH(1,1) and GARCH(1,1)
price surfaces of fully collateralised lookback options is plotted in Figure 9.5 below:

Figure 9.5: Lookback option price differences

Asymmetry clearly also has a greater effect on the price of a lookback option.
The empirical results show that asymmetry and collateral have different effects on ex-

otic and vanilla options. As the option price increases, the amount of collateral increases.
When dealing with an Asian option (generally cheaper than a vanialla option), less col-
lateral is required. Furthermore, asymmetry is also less significant. Therefore, it will be
less computationally expensive to price Asian options using a symmetric model. When
it comes to lookback options, both asymmetry and collateral are more significant when
compared to the vanilla option. Hence, it is important to use a model that accounts for
asymmetry when pricing lookback options.

9.5 Summary

In this chapter, the work by Labuschagne and Von Boetticher (2017) is extended to two
different models, the symmetric GARCH(1,1) and the asymmetric AGARCH(1,1) model
to price European options on the Top40 in the presence of collateral. Full collateral
and zero collateral option price surfaces were approximated using the GARCH(1,1) and
AGARCH(1,1) option pricing models.

The difference between the full collateral and zero collateral surfaces indicates that the
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effect of collateral increases as the option price increases, this is consistent with previous
findings in the literature. The difference between the GARCH(1,1) and AGARCH(1,1)
surfaces indicated that asymmetry has a greater effect on the option price as the expiry
increases. This is in line with expectations as there is greater probability for negative
shocks as the time to expiry increases.

In order to illustrate the effect of collateral and asymmetry on options with exotic
features, a similar analysis was performed using Asian and lookback option price surfaces.
Collateral has a similar effect on the Asian option price surface. Furthermore the difference
between the collateralised GARCH(1,1) and AGARCH(1,1) Asian option price surfaces
indicates that asymmetry is not as important when pricing collateralised Asian options on
the Top40. Hence, it will be more efficient to price collateralised Asian options using the
GARCH(1,1) model. However, this is not the case for lookback options on the Top40. It
is important to take asymmetry into account when pricing lookback options.

Interest rates in South Africa are fairly high, which implies greater differences between
collateral and funding rates. Lower spreads are expected in developed markets with lower
interest rates. Therefore, an important area for future research is the comparison of
collateralised option pricing in other developed and emerging markets. Other areas for
future research include different error distribution assumptions that incorporate skewness
and kurtosis. In addition, the hedging performance of the GARCH option pricing models
should be tested when applied to collateralised options. Furthermore, the application of
the collateralised GARCH option pricing model should also be applied to single stocks in
the South African market. Finally, the hedging performance of the collateralised GARCH
option pricing model should also be tested when applied in a South African equity context.

As mentioned in the introduction, pricing after the GFC is more complicated than
before. Additional factors such as collateral and credit risk need to be considered. An
obvious shortcoming of this chapter is that although collateral is accounted for in the
GARCH option pricing model by Labuschagne and Von Boetticher (2017), counterparty
credit risk is not. Pricing of options in the presence of collateral and counterparty credit
risk is considered in the next chapter.
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Chapter 10

Pricing Collateralised Options in
the Presence of Counterparty
Credit Risk: An Extension of the
Extended Heston-Nandi Model

10.1 Introduction

The pricing model (based on work by Labuschagne and Von Boetticher, 2017) applied in
Chapter 9 extends the model by Duan (1995) (Black-Scholes framework) to incorporate
collateral (Piterbarg framework). However, as mentioned previously, this model does not
have a closed-form solution, and therefore option prices are computed numerically. As
discussed, the model by Heston and Nandi (2000) is convenient because it has a closed-
form solution. However the Heston-Nandi model relies on the assumption of a unique
risk-free rate. Von Boetticher (2017) extended the model by Heston and Nandi (2000) to
the Piterbarg (2010) framework to adress this problem.

An additional assumption required from the Black-Scholes framework is no counter-
party credit risk. As a solution to this problematic assumption, Wang (2017) extended
the model by Heston and Nandi (2000) to incorporate counterparty credit risk for vanilla
options. This has also been extended to exotic options by Wang (2020). However, this
model also assumes the existence of a risk-free rate.

In this chapter,1 the work by Von Boetticher (2017) is extended to the pricing of
collateralised options using the Heston-Nandi model in the Piterbarg framework, in the
presence of counterparty credit risk. The rest of this paper is structured as follows: Section
10.2 considers the recent and relevant literature, Section 10.3 focuses on the theoretical
framework and derivation of the pricing model, Section 10.4 focuses on the empirical
results of a numerical example, finally in Section 10.5 the main findings are summarised.

1A previous version of this chapter appears as a publication (Venter and Maré, 2022) in South African
Statistical Journal.
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10.2 Literature review

Research focusing on the pricing of derivatives using GARCH models to model volatil-
ity is well-documented in the literature. Duan (1995) initially considered a risk-neutral
pricing framework based on GARCH volatility modelling. This allowed for the pricing
of derivatives with time-varying volatility in the Black and Scholes (1973) framework. A
shortcoming of the model by Duan (1995) (based on a non-linear asymmetric GARCH
model) is that it does not have a closed-form solution, and therefore numerical methods
are required.

Heston and Nandi (2000) extended the work by Duan (1995) and derived a closed-form
solution for vanilla options when volatility is modelled using a GARCH process. This
model addresses the assumption of constant volatility in the Black-Scholes framework.
However, it still requires the assumption of a unique risk-free rate and no credit risk; these
are not necessarily realistic assumptions.

The GFC of 2008 has changed the way in which derivative instrument trades are
conducted. An important factor that needs to be considered in modern pricing frame-
works is the presence of collateral (Hunzinger et al., 2014). Piterbarg (2010) extended
the Black-Scholes framework to the pricing of derivatives in the presence of collateral.
This framework allows for three different interest rates; the discount rate is dependent
on the amount of collateral that is posted. Von Boetticher (2017) extended the work by
Piterbarg (2010) to incorporate the Heston-Nandi methodology to address the constant
volatility assumption.

The Heston-Nandi model in the Black-Scholes framework requires the assumption of
no counterparty credit risk. The GFC of 2008 has clearly shown that counterparty credit
risk is an important factor to consider when pricing derivative instruments. To address
this problem, Wang (2017) extended the Heston-Nandi model to incorporate counterparty
credit risk. This model allows for correlation between the conditional variance of the
underlying asset and the default intensity process.

Wang (2017) shows numerically that vanilla options are cheaper in the presence of
counterparty credit risk. Intuitively, this makes sense because the option holder suffers
losses if the counterpary defaults. This model was later extended to the pricing of executive
stock options (Wang, 2018) and Asian options (Wang, 2020). However, this model still
relies on a unique risk-free rate (single-curve framework), and does not take collateral
into account. Therefore, this chapter contributes to the existing literature by extending
the Heston-Nandi model to the pricing of derivatives in the presence of collateral and
counterparty credit risk.

10.3 Theoretical framework

In this section, the theory applied in this paper is outlined. This section is divided into
four subsections. The first focuses on the Heston-Nandi model (in the Black-Scholes
framework). The second subsection briefly discusses the Piterbarg framework (Black-
Scholes with collateral). Thereafter, the Heston-Nandi model with collateral is briefly
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outlined. Finally, the Heston-Nandi model with collateral and counterparty credit risk is
considered.

10.3.1 Heston-Nandi model

The main assumption of the model derived by Heston and Nandi (2000) is that the asset
price dynamics under the real-world measure, P, are given by,

ln

(
St
St−1

)
= r + λht +

√
htzt.

The real-world and risk-neutral conditional variance processes are outlined in Section 6.3.1.
The conditional generating function of the asset price under the measure P is given by,

fBS(t, φ) = EPt
[
SφT

]
.

The conditional generating function is dependent on the parameters and state variables,
however, this is suppressed for notational convenience.

Heston and Nandi (2000) show that the asset price dynamics under the risk-neutral
measure Q in the Black-Scholes framework are given by,

ln

(
St
St−1

)
= r − 1

2
ht +

√
htz
∗
t .

The risk-neutral generating function (ensures that the risk-neutral expected price at time
T > t is Ste

r(T−t)) takes the following log-linear form,

f∗BS(t, φ) = Sφt exp {ABS(t, φ) +BBS(t, φ)ht+1} ,

where,

ABS(t, φ) = φr+ABS(t+ 1, φ) +α0BBS(t+ 1, φ)− 1

2
ln (1− 2α1BBS(t+ 1, φ)) (10.1)

BBS(t, φ) = β1BBS(t+ 1, φ)− 1

2
δ21 + φ(λ+ δ1) +

(φ− δ1)2

2 (1− 2 (α1BBS(t+ 1, φ)))
. (10.2)

These coefficients can be calculated recursively using the terminal conditions,

ABS(T, φ) = BBS(T, φ) = 0.

Heston and Nandi (2000) explain that the generating function of the spot price is the
moment generating function of the logarithm of the spot price. Hence, f∗BS(t, iφ) is the
characteristic function of the logarithm of the spot price (where i =

√
−1). Using the

risk-neutral dynamics, it is possible to derive a closed-form formula for a European call
option. The Heston-Nandi price of a European call option is stated in Theorem 3 below:
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Theorem 3: Heston-Nandi call option in the Black-Scholes framework

The price of a European call option at time t, is given by,

Vt =
1

2
St +

e−r(T−t)

π

∫ ∞
0

Re

[
K−iφf∗BS(t, iφ+ 1)

iφ
dφ

]
−Ke−r(T−t)

(
1

2
+

1

π

∫ ∞
0

Re

[
K−iφf∗BS(t, iφ)

iφ
dφ

])
, (10.3)

where Re[·] denotes the real portion of a complex number.

Proof. See Heston and Nandi (2000).

10.3.2 The Piterbarg framework

An important assumption required for the Heston-Nandi model in the Black-Scholes frame-
work is the existence of a unique risk-free rate. As mentioned previously, the purpose of
the model derived by Piterbarg (2010) is the pricing of derivatives in the presence of col-
lateral. The Piterbarg framework is an extension of the Black-Scholes framework, which
relaxes the assumption of a unique risk-free rate.

It is assumed that collateral is posted in the form of cash. The funding rate is associated
with the most risk (unsecured lending), and finally a repurchase agreement (collateralised
loan) is less risky than unsecured lending; however, there is more risk associated with the
underlying asset than there is with cash.

Piterbarg (2010) assumes the following asset price dynamics under the real-world mea-
sure, P,

dSt = µStdt+ σStdWt,

where again, Wt is a standard Brownian Motion under P . In the Piterbarg framework,
pricing is done under the QrR measure. As mentioned in Section 9.3.1, the Piterbarg
framework incorporates three different interest rates: the collateral rate (rC), the repur-
chase agreement rate (rR), and the funding rate (rF .) Hence, the dynamics under the
risk-neutral measure QrR are given by,

dSt = rRStdt+ σStdW̃t,

where W̃t is a standard Brownian Motion under QrR . Using a replicating portfolio argu-
ment and an application of the Feynman-Kac theorem (see Shreve, 2004), it is possible
to derive an expression for the price of a call option in the Piterbarg framework (essen-
tially a derivation of the Black-Scholes model with different interest rates); this is given
in Theorem 4 below:
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Theorem 4: Piterbarg call option

The price of a European call option at time t is given by

Vt =EQrRt

[
e−

∫ T
t rC(u)du(ST −K)+

]
− EQrRt

[∫ T

t
e−

∫ T
t rC(u)du(rF (s)− rC(s))(V (s)− γC(s))ds

]
,

where γC denotes the collateral account.

Proof. See Piterbarg (2010).

It is clear from the above that the price of a fully collateralised call option is given by,

V
(FC)
t = EQrRt

[
e−

∫ T
t rC(u)du(ST −K)+

]
, (10.4)

and the price of a zero collateral call option is given by,

V
(ZC)
t = EQrRt

[
e−

∫ T
t rF (u)du(ST −K)+

]
.

The extended Heston-Nandi model (with collateral) is considered in the next subsection.

10.3.3 Heston-Nandi model with collateral

The Heston-Nandi model in the Black-Scholes framework relies on the existence of a unique
risk-free rate. Therefore, Von Boetticher (2017) extended the model by Heston and Nandi
(2000) to price collateralised options; this was done in the Piterbarg framework. Von
Boetticher (2017) shows that the Heston-Nandi asset price dynamics under measure QrR
take the following form,

ln

(
St
St−1

)
= rR −

1

2
ht +

√
htz
∗
t , (10.5)

the conditional variance ht is the same as as in the Black-Scholes framework. Furthermore,
the log-linear form of the risk-neutral generating function is given by,

f∗P (t, φ) = Sφt exp {AP (t, φ) +BP (t, φ)ht+1} ,

where,

AP (t, φ) = φrR +AP (t+ 1, φ) + α0BP (t+ 1, φ)− 1

2
ln (1− 2α1BP (t+ 1, φ))

BP (t, φ) = β1BP (t+ 1, φ)− 1

2
δ21 + φ(λ+ δ1) +

(φ− δ1)2

2 (1− 2 (α1BP (t+ 1, φ)))
.
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Clearly, AP (t, φ) and BP (t, φ) are the same as Equations 10.1 and 10.2 respectively, the
only difference is that the risk-free rate r is replaced by the repurchase agreement rate rR.
Using the boundary conditions,

AP (T, φ) = BP (T, φ) = 0,

AP (t, φ) and BP (t, φ) are calculated recursively.
The Heston-Nandi price of a European call option in the Piterbarg framework is given

in Theorem 5 below:

Theorem 5: Heston-Nandi call option in the Piterbarg framework

The Heston-Nandi price of a fully collateralised call option at time t is given by,

V
(FC)
t =

1

2

(
S(t)e

∫ T
t (rR(u)−rC(u))du −Ke

∫ T
t rC(u)du

)
+
K

π
ψ̃(rC),

where the function

ψ̃(rC) = e−
∫ T
t rC(s)ds

e
∫ T
t rR(s)ds

K

∫ ∞
0

Re

[
K−iφf

∗
P (t,iφ+1)

iφ

]
dφ

− e−
∫ T
t rC(s)ds

∫ ∞
0

Re

[
K−iφf

∗
P (t,iφ)

iφ

]
dφ,

and f∗P (t, φ) ensures that EQrRt [ST ] = Ste
rR(T−t). The price of a zero collateral call

option is,

V
(ZC)
t =

1

2

(
S(t)e

∫ T
t (rR(u)−rF (u))du −Ke

∫ T
t rF (u)du

)
+
K

π
ψ̃(rF ).

Proof. See Von Boetticher (2017) Section 3.2.

It is clear from the above that if rC = rR = rF = r, the Heston-Nandi price of a call
option in the Black-Scholes framework (Equation 10.3) is obtained. The use of the above
model addresses the unreasonable assumption of a unique risk-free rate. However, it does
not take the effect of counterparty credit risk into account; this is the focus of the next
subsection.

10.3.4 Heston-Nandi model with collateral and counterparty credit risk

The focus of this subsection is the derivation of the Heston-Nandi price of a default risky
European call option (in the presence of collateral), in the Piterbarg framework. The
overall objective is to extend the model derived by Von Boetticher (2017) to incorporate
counterparty credit risk by making use of an approach similar to Wang (2017).
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The asset price dynamics under measure QrR , are consistent with Equation 10.5. The
random default time τ̃ is modelled as the first jump time of a Cox process with intensity
κt (Wang, 2017). The following QrR dynamics are assumed for the default intensity,

κt = w + bκt−1 + az
(κ)
t−1.

The mean arrival rate of default in (t, t+ 1] is given by

QrR(τ̃ > t+ 1|Ft) = EQrR
[
e−κt

]
= e−κt+1 .

We also assume that z∗t and z
(κ)
t have correlation coefficient ρ.

Wang (2017) explains that when pricing a default risky call option, two parts need to
be considered. The first part is if no default event during the life of the trade, in this case
the payoff, is equal to the payoff of a vanilla call option (full collateral or zero collateral
in this case). The second part considers that a default event occurs during the life of the
trade, in this case only a portion of the option value can be recovered.

By making use of Equation 10.4 and the argument above, the price of a default risky
European call option, which is fully collateralised, is formulated as follows (assuming
constant interest rates),

Ṽ
(FC)
t = erC(T−t)EQrRt

[(
1{τ̃>T}

)
(ST −K)+

]
+

EQrRt

[(
1{t≤τ̃≤T}

)
θerC(τ̃−t)E

τ̃QrR [erC (T−τ̃)(ST−K)+]

]
= erC(T−t)EQrRt

[(
1{τ̃>T}

)
(ST −K)+

]
+ θerC(T−t)EQrRt

[(
1{t≤τ̃≤T}

)
(ST −K)+

]
= erC(T−t)EQrRt

[(
1{τ̃>T}

)
(ST −K)+ + θ

(
1{t≤τ̃≤T}

)
(ST −K)+

]
,

where θ is the recovery rate, and 1{τ̃>T} is an indicator function that takes a value of one
if a default event occurs after the expiry of the option (τ̃ > T ) and zero otherwise. The
value of a zero collateral option is expressed as,

Ṽ
(ZC)
t = erF (T−t)EQrRt

[(
1{τ̃>T}

)
(ST −K)+ + θ

(
1{t≤τ̃≤T}

)
(ST −K)+

]
.

It is important to note that 1{t≤τ̃≤T} = 1 − 1{τ̃>T}. Hence, the fully collateralised price
can be simplified as follows,

Ṽ
(FC)
t = erC(T−t)EQrRt

[(
1{τ̃>T}

)
(ST −K)+ + θ

(
1{t≤τ̃≤T}

)
(ST −K)+

]
= (1− θ)erC(T−t)EQrRt

[(
1{τ̃>T}

)
(ST −K)+

]
+ θerC(T−t)EQrRt

[
(ST −K)+

]
= (1− θ)erC(T−t)(I1 −KI2) + θerC(T−t)(I3 −KI4),

where

I1 = EQrRt

[
ST
(
1{τ̃>T,ST≥K}

)]
, (10.6)

I2 = EQrRt

[(
1{τ̃>T,ST≥K}

)]
, (10.7)

I3 = EQrRt

[
ST
(
1{ST≥K}

)]
, (10.8)

I4 = EQrRt

[(
1{ST≥K}

)]
. (10.9)
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I2 is the probability of the counterparty surviving up to time, T, and the option expiring
in the money (I1 scales this value by the expected value of the underlying price at expiry).
I4 is the probability of the option expiring in the money (default risk is not taken into
account), I4 scales this value by the expected value of the underlying price at expiry. The
zero collateral price of a default risky call option takes a similar form,

Ṽ
(ZC)
t = (1− θ)erF (T−t)(I1 −KI2) + θerF (T−t)(I3 −KI4).

Deriving closed-form expressions for Equations 10.6 to 10.9 will allow for the derivation
of a closed-form expression for the Heston-Nandi price of an option in the Piterbarg
framework in the presence of counterparty credit risk. Wang (2017) derived an expression
for the characteristic function under the Q measure. Under the QrR measure the derivation
is the same, the only difference is the drift of the underlying asset is equal to rR. In this
case, the risk-neutral generating (log-linear) function is given by,

f∗PD(t, φ1, φ2) = exp

{
φ1xt + φ2

t∑
s=1

κs +APD(t, φ1, φ2)

}
×

exp
{
B

(1)
PD(t, φ1, φ2)ht+1 +B

(2)
PD(t, φ1, φ2)κt+1

}
,

where xT = lnST , and

APD(t, φ1, φ2) = φ1rR +APD(t+ 1, φ1, φ2) + α0B
(1)
PD(t+ 1, φ1, φ2)

+ wB
(2)
PD(t+ 1, φ1, φ2)−

1

2
ln
(

1− 2aB
(2)
PD(t+ 1, φ1, φ2)(1− ρ2

)
− 1

2
ln

(
1− 2

(
α1B

(1)
PD(t+ 1, φ1, φ2) +

aB
(2)
PD(t+ 1, φ1, φ2)ρ

2

1− 2aB
(2)
PD(t+ 1, φ1, φ2)(1− ρ2)

))
,

B
(1)
PD(t, φ1, φ2) = β1B

(1)
PD(t+ 1, φ1, φ2)−

1

2
φ1 + α1(δ1 + λ)2 +B

(1)
PD(t+ 1, φ1, φ2)

+
(φ1 − 2α1(δ1 + λ)B

(1)
PD(t+ 1, φ1, φ2))

2

2

(
1− 2

(
α1B

(1)
PD(t+ 1, φ1, φ2) +

aB
(2)
PD(t+1,φ1,φ2)ρ2

1−2aB(2)
PD(t+1,φ1,φ2)(1−ρ2)

)) ,

B
(2)
PD(t, φ1, φ2) = bB

(1)
PD(t+ 1, φ1, φ2) + φ2,

with boundary conditions,

APD(T, φ1, φ2) = B
(1)
PD(T, φ1, φ2) = B

(2)
PD(T, φ1, φ2) = 0.

Given the boundary conditions, APD(t, φ1, φ2), B
(1)
PD(t, φ1, φ2) and B

(2)
PD(t, φ1, φ2) are cal-

culated recursively. The closed-form expression is reported in Theorem 6 below:
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Theorem 6: Heston-Nandi credit risky call option in the Piterbarg framework

In the presence of counterparty credit risk, the price of a fully collater-
alised European call option is given by,

Ṽ
(FC)
t = erC(T−t)(1− θ)×(

Π1(t, T ) +
1

2
f∗PD(t, 1,−1)−KΠ2(t, T )− 1

2
Kf∗PD(t, 0,−1)

)
+

erC(T−t)θ

(
Π3(t, T ) +

1

2
f∗PD(t, 1, 0)−KΠ4(t, T )− 1

2
K

)
,

where f∗PD(·) is the risk-neutral characteristic function, and

Π1(t, T ) =
1

π

∫ −∞
0

Re

[
eiφ1 lnKf∗PD(t, iφ1 + 1,−1)

iφ1

]
dφ1,

Π2(t, T ) =
1

π

∫ −∞
0

Re

[
eiφ1 lnKf∗PD(t, iφ1,−1)

iφ1

]
dφ1,

Π3(t, T ) =
1

π

∫ −∞
0

Re

[
eiφ1 lnKf∗PD(t, iφ1 + 1, 0)

iφ1

]
dφ1,

Π4(t, T ) =
1

π

∫ −∞
0

Re

[
eiφ1 lnKf∗PD(t, iφ1, 0)

iφ1

]
dφ1.

Similarly, the zero collateral price in the presence of counterparty credit
risk is

Ṽ
(ZC)
t = erF (T−t)(1− θ)×(

Π1(t, T ) +
1

2
f∗PD(t, T, 1,−1)−KΠ2(t, T )− 1

2
Kf∗PD(t, T, 0,−1)

)
+

erC(T−t)θ

(
Π3(t, T ) +

1

2
f∗PD(t, T, 1, 0)−KΠ4(t, T )− 1

2
K

)
.

Proof. See Appendix A

10.4 Empirical results

In this study, the Heston-Nandi option pricing model in the Piterbarg framework is applied
to the pricing of three-year S&P500 index call options in the presence of counterparty
credit risk. Daily data from 4-Jan-2010 to 31-Jan-2021 were obtained from the Thomson-
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Reuters Datastream databank. The Heston-Nandi parameters are calibrated to historical
returns in the Black-Scholes framework (rC = rR = rF = r) using the maximum likelihood
method. Furthermore, for the default intensity, parameters consistent with a Ba rating
for corporate bonds are assumed (consistent with Wang, 2020). According to Hull (2018),
the average cumulative issuer-weighted default rate (based on 1970 to 2009) of a Ba rated
bond with a three-year term is 4.492%. The risk-free rate is assumed to be equal to the
three-year US treasury yield.

The parameters are outlined in Tables 10.1 and 10.2 below:

Table 10.1: Underlying process parameters

Parameter Value

λ 4.6429
α0 0
α1 5.28E-06
β1 0.7557
δ1 183.7511

Table 10.2: Default intensity parameters

Parameter Value

w 1.54E-07
a 2.60E-11
b 0.9770

For illustrative purposes, ρ = 0.5. The three-year US treasury yield on 31-Jan-2020 is
r = 1.3%. We assume that rR = r, rC = 1% (collateralised and therefore less risky, which
implies a lower rate), and rF = 1.6% (higher rate because there is no collateral). The
call option prices (relative to the spot price) assuming no default risk in a single-curve
framework (Heston and Nandi, 2000), full collateral options, and zero collateral (Von
Boetticher, 2017) options are plotted below (Figure 10.1). In addition, the default risky
(Wang, 2017, for the single-curve case) prices are also included. Moneyness is defined as
the spot price over the strike price.
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Figure 10.1: S&P500 index option prices
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It is clear from the above that default risky options are cheaper than options that
are not default risky. This is consistent with expectations (if a default occurs, the payoff
is less than that of a vanilla option). Furthermore, fully collateralised options are more
expensive (less risk) when compared to zero collateral options. To illustrate the effect of
correlation, at-the-money (ATM) option prices assuming different correlation values are
illustrated in Figure 10.2 below.

Figure 10.2: Effect of correlation
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It is clear from the above that the correlation between the underlying volatility process
and default intensity does not have a significant impact on ATM option prices using the
parameters outlined above.

10.5 Summary

In this chapter, a closed-form expression for the Heston-Nandi price of a collateralised
European call option in the presence of counterparty credit risk was derived. This is an
extension of the work by Von Boetticher (2017), who derived an expression for the Heston-
Nandi price of a collateralised European call option in the absence of counterparty credit
risk in the Piterbarg framework. Using an approach similar to Wang (2017), the work by
Von Boetticher (2017) is extended to incorporate counterparty credit risk.

As a numerical example, the model was applied to three-year S&P500 index options.
The underlying process parameters were calibrated in a single-curve framework, assuming
no default risk. The assumed default risk parameters are consistent with a Ba rated
corporate bond. The prices obtained are consistent with expectations, default risky bonds
are cheaper than options with no counterparty credit risk, and fully collateralised options
are more expensive when compared to zero collateral options. The effect of correlation is
tested by plotting the default risky ATM option price for different levels of correlation.
The results indicate that correlation has an insignificant impact when pricing using the
calibrated parameters.
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Chapter 11

Conclusion

When it comes to the modelling of financial assets, a reliable estimate of the asset’s
volatility (synonymous with the risk associated with the asset) is required. A reliable
estimate of volatility is not always available, especially in illiquid markets or for assets
that do not have a well-established derivatives market. This problem serves as a basis for
the various analyses performed in this thesis.

The GFC has changed financial markets permanently and therefore additional factors
need to be considered. The extension of simpler models to account for additional factors is
also an important contribution. As outlined in Chapter 1, the following research questions
were considered:

1. Can volatility indices be used to obtain more accurate GARCH option pricing models
when applied to the South African market, and can this be extended to different asset
classes?

2. Does the GARCH option pricing model produce reasonable price discovery when ap-
plied to a new asset class, can it be used to construct a reasonable volatility index,
and can the model be used for the pricing of multivariate options?

3. Which GARCH model and error distributional assumption is most reliable when
pricing volatility index options, and does GARCH outperform classical methods when
applied to hedging volatility index options?

4. What is the effect of collateral and asymmetry on vanilla and exotic options in a
GARCH option pricing framework, and can the GARCH option pricing framework
be extended to account for collateral and counterparty credit risk?

Chapter 2 contributes to the literature by extending the analysis by Hao and Zhang
(2013) to the South African market to determine which GARCH model is the most ap-
propriate when modelling the SAVI. The information criteria showed that asymmetry is
an important factor to consider when modelling Top40 returns; this is consistent with
previous findings in the literature. In most cases, the joint likelihood function based on
historical returns and historical SAVI produced the most reliable results. This is consistent
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with the argument by Christoffersen et al. (2013), the joint likelihood based on historical
returns and option prices (SAVI in this case) ensures that the asset is consistent with
historical dynamics, and also the market’s expectation of the future.

Chapter 2 also contributes to the literature by extending the work by Hao and Zhang
(2013) to the testing of the pricing performance of the models calibrated to the volatility
index. Our empirical results indicated that the use of asymmetric GARCH option pricing
models improves the model performance in the South African equity market. However,
the improvement is marginal. The use of a symmetric model will be computationally more
efficient. Chapter 2 adresses the first part of Research Question 1.

The novelty of Chapter 3 is that it extends the concept of a GARCH-implied volatility
index to the FX market (to address the second part of Research Question 1). Furthermore,
the FX variance risk premium is also considered. The analysis was applied to both a
developed (United States) and an emerging market (South Africa). As expected, the ZAR
is the more volatile of the two currencies. The joint likelihood function (based on returns
and the historical volatility index) is the most reliable when modelling the GARCH-implied
SAVI Dollar. However, the likelihood function based on the historical volatility index only
is the most reliable for the Euro VIX. For both currencies, asymmetry is an important
factor that needs to be considered. An obvious shortcoming of Chapters 2 and 3 is reliance
on the normal distribution. An area for future research is the GARCH-implied SAVI and
SAVI Dollar based on different GARCH models and error distributions that take skewness
and kurtosis into account.

Cryptocurrencies are the focus of Part II. Reliable models for price discovery are essen-
tial when a new asset class (to address the first part of Research Question 2) is introduced
(the absence of an established derivatives market). According to Chu et al. (2017), most
studies focusing on cryptocurrencies focus on BTC only, and therefore both BTC and
CRIX are considered to give a holistic view of the cryptocurrency market. The empirical
analysis applied in Chapter 4 is a novel approach to cryptocurrency volatility modelling
(based on option price surfaces). The results showed that asymmetry does not make a sig-
nificant difference when pricing cryptocurrency options. This is consistent with previous
findings in the literature.

In addition to price discovery in an illiquid market, the absence of a volatility index
is an important problem when dealing with a new asset class (second part of Research
Question 2). The novelty of Chapter 5 is that it is the first application of the GARCH
option pricing model to the construction of a cryptocurrency volatility index. Different
maturities are considered to get an indication of the term structure of volatility (based
on the work by Alexander and Imeraj, 2019). The empirical results show that the term
structure of volatilities are consistent with expectations, with 30-day volatility being lower
when compared to longer maturities. Previous findings in the literature have shown that
jumps are often found in crypto-asset prices. An important area for future research is a
crypto volatility index based on a GARCH option pricing model that incorporates jumps.

Chapter 6 considered the pricing of BTC futures options using the Heston-Nandi (sym-
metric and asymmetric) futures model (based on the work by Li, 2019a) to get an indication
of pricing performance. Chapter 6 also makes a theoretical contribution by deriving the
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risk-neutral futures price processes for a general class of multivariate heteroskedasticity
models. This is relevant in the current market environment, as crypto-asset futures are
exposed to significant basis risk (Alexander and Heck, 2020). This is applied to BTC fu-
tures spread options. The empirical results showed that a symmetric model is a better fit
when applied to BTC futures returns (consistent with the findings of previous chapters),
and also produces more accurate option prices compared to market prices. BTC futures
spread options do not actively trade and therefore the model prices obtained could not
be compared to market prices. Chapter 6 addresses the third (and final) part of Research
Question 2.

Part III of this thesis considers the case where the volatility index is the underlying
asset. Volatility indices do not actively trade. However, futures on volatility indices
often do trade. Chapters 7 and 8 model the VIX futures price in a GARCH framework for
option pricing and hedging. The empirical results in Chapter 7 showed that the symmetric
GARCH model with skewed Student-t errors is the best performing model, and that the
GARCH option pricing model provides reasonable price discovery when applied to the VIX.
The novelty of Chapter 8 is that it is the first application of the Heston-Nandi futures
model the to the hedging of VIX options (using VIX futures). The analysis is based on
the work by Lassance and Vrins (2018). Empirical results indicate that the Heston-Nandi
model is more reliable when applied to the hedging of VIX futures options. The Heston-
Nandi model better explains the dynamics (leptokurtosis and volatility clustering often
found in financial time series) of VIX futures. An important shortcoming of Part III is
that it focuses on VIX futures and options markets, which is a liquid and well-established
market. An area for future research is the GARCH option pricing model applied to the
pricing and hedging of emerging market volatility index options. Chapters 7 and 8 address
Research Question 3.

GARCH option pricing in a more modern derivatives pricing framework was considered
in Part IV. The work by Labuschagne and Von Boetticher (2017) was extended to different
GARCH processes and exotic options in Chapter 9 to illustrate the effect of collateral and
asymmetry on options written on the Top40. Empirical results showed that when it comes
to vanilla options, the effect of collateral increases as the option price increases, this is
consistent with previous findings in the literature. Furthermore, asymmetry has a greater
effect on the option price as the expiry increases. This is consistent with expectations
as there is greater probability for negative shocks as the time to expiry increases. The
effect of collateral is similar when exotic options are considered. Finally, asymmetry is
important when pricing lookback options, but not as significant when pricing Asian options
(a symmetric model should be used when computational efficiency is a concern). Chapter
9 addresses the first part of Research Question 4.

The focus of Chapter 10 is the second part of Research Question 4. Chapter 10 makes
a theoretical contribution by extending the model by Heston and Nandi (2000) to include
collateral (based on the work by Von Boetticher, 2017) and counterparty credit risk (based
on the work by Wang, 2017). As a numerical example, the model is applied to S&P500
index options. The prices obtained were consistent with expectations. Furthermore, the
results showed that correlation does not have a significant impact on ATM option prices.
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Areas for future research include the application of the model to different underlying assets
(e.g., emerging markets), exotic options (e.g., geometric Asian options), and different bond
process assumptions (we assumed a Ba rated corporate bond).
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Trimborn, S. and Härdle, W.K., (2018). CRIX an Index for cryptocurrencies. Journal of
Empirical Finance, 49, pp. 107-122.
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Appendix A

Proof of Theorem 6

The proof of Theorem 6 is outlined below. The proof follows Wang (2017) closely. How-
ever, Wang (2017) derived expressions for the required probabilities in the Black-Scholes
framework (measure Q). This relies on the existence of a unique risk-free rate. To extend
the model to the Piterbarg framework (multiple interest rates to account for the presence
of collateral), it is necessary to derive expressions for the probabilities under the QrR
measure.

Proof. To evaluate the integral I1, it is necessary to define a new probability measure,
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In this case, standard probability theory applies (Kendall and Stuart, 1977), the distribu-
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tion function corresponding to f (1) is given by,
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By using the definition of Q
(1)
rR , we have that,
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which is an explicit expression for I1.
For I2 a similar process is required. Define the following probability measure,
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The corresponding distribution function is given by,
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By using Equation A.1 above and the definition of Q
(2)
rR it is possible to derive an expression

for I2,
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For the derivation of I3, the following probability measure is defined,
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which implies
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This implies,
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which completes the proof.
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