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Abstract The primary source of a vast majority of consumable food products
is growing items such as crops or livestock. Most of these food products have
specified maximum shelf lives or expiration dates. This implies that the products
are no longer suitable for human consumption beyond their expiration dates. In
addition, consumers rarely eat these products in their original form, this means
that there are usually some forms of value-adding activities performed on the
growing items in order to transform them into a consumable form, for instance,
processing and packaging. Consequently, this study develops a model for managing
inventory in a three-echelon supply chain for growing items with distinct farming,
processing and retail operations. At the farming echelon, the growing items are
reared but there is the possibility that some of them might die. The surviving
items are then transferred to the processing echelon for slaughtering, processing
and packaging. The processed inventory is then transferred to the retail echelon
where consumer demand for consumable (i.e. processed and packaged) inventory is
met under the assumption that the inventory has a specified expiration date. The
proposed supply chain system is modelled as a cost minimisation problem. The
benefits of integrating inventory replenishment decisions among all supply chain
members are quantified through a numerical example.

Keywords Age-dependent deterioration · Expiration date · Growing items ·
Inventory management · Joint economic lot size · Supply chain management

1 Introduction

1.1 Context

One of the most fundamental changes to business management in recent years has
been that businesses compete within supply chains, as opposed to competing as
individual entities [15]. Businesses executives have realised that competitive advan-
tages such as customer service, responsiveness and cost efficiency, among others,
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can be improved through collaboration with suppliers and customers. One form of
collaboration is through the integration of inventory replenishment decisions with
other supply chain members. A number of researchers have used this collabora-
tion mechanism to develop numerous integrated inventory models in multi-echelon
supply chain systems (i.e. supply chains with more than one party). Nonetheless,
most of these models were developed specifically for either conventional or de-
teriorating items. While these two classes of items are important in inventory
modelling, they are not the only groups of items that are important. Recently,
a new class of items, namely, growing items, has been receiving attention from
multiple researchers working in the field of inventory theory. Growing items, such
as livestock, fish and crops, to name a few examples, represent an important class
of items because they are the primary source of most food products.

1.2 Purpose

Given that growing items are rarely consumed in their original form (i.e. most of
them are processed before being put on sale) and that there are usually multiple
parties involved in the food production chain, growing items (in the context of in-
ventory modelling) are the perfect candidates for an extension of the multi-echelon
inventory model. Accordingly, this study is aimed at developing a coordinated
model for managing inventory in a three-echelon supply chain for growing items
while also taking into account the continuous deterioration of products until when
it reaches its expiration date when its value becomes zero. The three echelons
of the supply chain considered are the farming, processing and retail operations
that are found in some food production systems. At the farming echelon, newborn
items are procured and grown to maturity. It is assumed that some of the items
do not survive at the farming operation due to factors like predators and illnesses.
The mature items are then transferred to the processing echelon for slaughter-
ing, processing and packaging. Following this, the processed inventory is delivered
to the retail echelon where customer demand is met. At the the retail echelon,
the processed inventory, which is now ready for human consumption, is sold to
consumers. The processed inventory, as is the case with most food products, is
perishable and consequently, it has an associated maximum shelf life or expiration
date.

1.3 Relevance

The proposed inventory model accounts for a number of important issues in food
production chains, namely the possibility of mortality (with reference to the live
growing items), the integration of inventory replenishment decisions among mul-
tiple supply chain members and deterioration (of shelved stock items). Growing
items are, like most living organisms, not immune to illnesses and various other
health issues which might result in mortality. This makes item mortality an im-
portant consideration in the upstream portion of most food production chains. At
the other end of the chain (downstream), shelf life becomes very critical because
of government health and safety regulations regarding consumable food products.
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This is because processed food products may no longer be safe for consumption
after their expiration dates.

1.4 Organisation

Apart from the introduction, this paper has seven other sections. A review of pre-
viously published inventory models for growing items, deteriorating items with
expiration dates and items in integrated production-inventory systems with multi-
ple supply chain partners is provided in Section 2. The proposed inventory system
is briefly outlined in Section 3 which also includes notations and assumptions
utilised during the model development phase. The inventory system under con-
sideration is then modelled as a cost minimisation problem in Section 4. This is
followed by a derivation of a special case of the model and a proof of the model’s
optimality in Sections 5 and 6, respectively. Managerial insights are drawn from a
numerical example presented in Section 7 which also shows the potential practical
applications of the model. Concluding remarks and suggestions for future research
are presented in Section 8.

2 Literature Review

The model presented in this study is based on three research stream within the field
of inventory theory, whose roots lie in Harris’ [9] classic economic order quantity
(EOQ) model. These streams are growing items, deteriorating items with expi-
ration dates and items in integrated production-inventory systems within multi-
echelon supply chains.

2.1 Inventory models for growing items

The first inventory model to incorporate item growth is credited to Rezaei [23]
who presented an EOQ model for items whose weight increases during the replen-
ishment cycle. The model considered an inventory system with a single type of
item that has the capability to grow, deterministic demand, and no shortages or
quantity discounts. The total cost of managing inventory in the system was made
up of setup, feeding and holding costs.

Rezaei’s [23] model has received attention from numerous researchers who have
extended the model to suit different practical situations. One such extension was
developed by Nobil et al. [18] who relaxed the assumption that shortages are not
permitted. Sebatjane and Adetunji [27] formulated a version of the model for a
case where a random percentage of the items is of imperfect quality. The effects of
suppliers (of the growing newborn items) offering quantity discounts were inves-
tigated by Sebatjane and Adetunji [28]. Gharaei and Almahware [6] proposed the
so-called economic growing quantity (EGQ) model which considers item mortality,
the utility of the growth function and a reorder point ordering policy. Breeding
policies were incorporated by Pourmohammad-Zia and Karimi [20] through the
development of a model for jointly optimising the replenishment and breeding
under the assumption that the holding and breeding costs are dependent on the
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age of the growing items. Furthermore, Rezaei’s [23] model has also been ex-
tended to multi-echelon supply chain systems. For instance, Malekitabar et al.
[17] and Sebatjane and Adetunji [29] developed models for optimising inventory
replenishment policies for growing items in two- and three-echelon supply chains,
respectively. Sebatjane and Adetunji [31,32] studied three-echelon supply chains
for growing items with freshness- and price-dependent demand and freshness- and
inventory level-dependent demand, respectively. A four-echelon supply chain sys-
tem for growing items, with growing, processing, screening and retail echelons, was
introduced by Sebatjane and Adetunji [30].

2.2 Inventory models for deteriorating items with expiration dates

Item deterioration was first incorporated into inventory theory by Ghare and
Schrader [7] through the development of an EOQ-type model for an item ex-
periencing constant deterioration. Covert and Phillip [3] generalised Ghare and
Schrader [7]’s work by relaxing the constant deterioration rate assumption and
considering a deterioration rate characterised by a Weibull distribution with two
parameters. These two models have have spawned most of the literature on inven-
tory management for deteriorating items. One of the most recent development in
deteriorating inventory modelling is the incorporation of expiration dates, which
in essence assumes that the items’ deterioration rate is time dependent and con-
sequently, the items have a maximum lifetime.

Hsu et al. [11] developed one of the first inventory models which consider expi-
ration dates. In addition to expiration dates, their model also considered uncertain
lead time and a seasonal demand pattern. Sarkar [26] proposed an EOQ model for
a retailer selling items with an expiration date provided that the supplier permits
the retailer to pay for the order at a later date (i.e. not at the time the order is
delivered). Wang et al. [36] developed an extension of Sarkar [26]’s model which
deemed the demand rate to be a function of the duration of the credit period.
Based on the demand pattern of fresh produce, which is affected by factors such
as freshness, expiration dates and the amount of stock displayed on shelves, Wu
et al. [38] formulated an inventory model for an expiring product with a demand
rate that depends on the product’s freshness condition and it’s stock level. Teng et
al. [33] modelled an inventory situation where the supplier of deteriorating items
with expiration dates, such as fresh produce, requires the retailer to pay for the
inventory prior to its delivery. Retailers selling products with expiration dates
often discount the products as the expiration dates approach. Using this logic,
Banerjee and Agrawal [1] developed a model for optimising ordering, pricing and
discounting policies for an inventory system consisting of expiring items with a
demand rate that is dependent on the selling price. Khan et al. [13] proposed an
EOQ-type model for deteriorating products with expiration dates when shortages
are permitted and end user demand depends on the products’ selling prices. Other
latest development in deteriorating inventory systems modelling includes the in-
corporation of investment in preservation technology with pricing and marketing
decisions [22], trade credit financing and successive quantity discounts [2], uncer-
tainty in demand [25] and resource constraints using a case of the health-care
industry [24].
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2.3 Integrated inventory systems with multiple echelons

Supply chain management advocates for the coordination of various business de-
cision, such as inventory replenishment and shipment policies, among the supply
chain members. The joint economic lot size (JELS) model, credited to Goyal [8],
is among the first inventory models aimed at reducing the costs of managing in-
ventory through the cooperation of different supply chain members. The model
was formulated for a single vendor supplying a single buyer with a single type of
product.

Lu [16] extended the JELS model to a case where there are multiple buyers.
Valentini and Zavanella [34] studied a vendor-buyer inventory system in which
the vendor legally owns the stock and keeps it at the buyer’s facility and devel-
oped a corresponding inventory model. Motivated by the fact that most supply
chains are are complex networks with multiple chain members selling a variety of
products, Khouja [14] formulated an inventory model for a complex three-echelon
supply chain with multiple suppliers, multiple manufacturers and multiple cus-
tomers. Ouyang et al. [19] relaxed the zero lead time and deterministic demand
rate assumptions in the basic JELS model. Ho et al. [10] studied a coordinated
vendor-buyer inventory system where the vendor permits the buyer to delay pay-
ment and simultaneously offers the buyer discounts for paying in cash. In addition,
the buyer also permits their customer to delay payments. Geetha and Uthayaku-
mar [5] developed a model for jointly optimising pricing and replenishment policies
in a two echelon (vendor-buyer) supply chain whereby the vendor not only allows
the buyer to pay for the inventory at a later date through trade credit financing,
but also grants the buyer freight discounts for transporting the inventory based on
the weight of the order. Priyan and Manivannan [21] studied a version of the JELS
problem for a case where the vendor’s production process produces some imperfect
quality items that are screened out at the buyer’s facility under the assumptions
that the screening process is prone to errors and that the fraction of items that
are of imperfect quality is a triangular fuzzy variable. Dey et al. [4] presented
an inventory model for a vendor-buyer system with deteriorating items and in-
vestments in preservation technologies in an effort to slow down the deterioration
process. Most of the research published on the JELS problem seldom accounts for
the cost of transporting goods from the vendor to the buyer, Wangsa and Wee
[37] developed a model which considered stochastic demand and compared two
transportation modes, namely, less-than truck load (LTL) and truck load (TL)
shipping. Vats et al. [35] investigated the effectiveness of a demand aggregation
approach to inventory management in a supply chain with multiple distributors
and multiple retailers under stochastic demand conditions. Islam and Hoque [12]
proposed a model for optimising lot-sizing and shipment policies in a three-echelon
agricultural supply chain with a single raw material supplier, a single manufacturer
and multiple retailers.

2.4 Contribution

Table 1 provides a summary of the major contributions made by various published
studies that are available in the current literature. Of particular interest are stud-
ies that pertain to growing items such as those by Gharaei and Almahdawe [6],
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Nobil et al. [18], Pourmohammad-Zia and Karimi [20], Rezaei [23], Sebatjane and
Adetunji [27,28,29,30,31,32]. From those contributions, the main gap identified
is that there seems to be no published inventory model involving growing items in
a supply chain with multiple echelons that also accounts for a deterioration rate
that is based on the expiration date of the processed inventory. While the studies
by Sebatjane and Adetunji [31,32] also incorporate expiration dates (in addition
to price-dependent demand and stock-dependent demand, respectively), they do
so through a freshness index which is a linear function that relates the freshness
condition of the inventory to the expiration date. In this study, the expiration date
is used to express an age-dependent deterioration rate. In summary, the salient
characteristics of the proposed model are the incorporation of an age-dependent
deterioration rate at the retail echelon and item mortality at the farming echelon
in a three-echelon supply chain involving growing items. Considering that most
food production chains, for brevity, can be represented by the three echelons in
the current model and that food items have shelf lives (i.e. expiration dates), the
proposed supply chain model is more representative of inventory management in
food production systems and the results and analysis can provide insights into the
management of inventory in the food production industry.

Table 1: Contributions made by related inventory models in literature

References
Types of items in the system Number of supply Additional inventory

Conventional Deteriorating Growing chain echelons system characteristics

Banerjee et al. [1] One Discounting

Dey at al. [4] Two Preservation efforts

Gharaei and Almahdawe [6] One Item mortality

Hsu et al. [11] Three Seasonal demand

Ho et al. [10] Two Delayed payment

Islam and Hoque [12] Three Agricultural products

Khan et al. [13] One Shortages

Khouja [14] Three Multiple members

Lu [16] Two Multiple buyers

Malekitabar et al. [17] Two Revenue-sharing

Nobil et al. [18] One Shortages

Ouyang et al. [19] Two Stochastic demand

Priyan and Manivannan [21] Two Errors in inspection

Pourmohammad-Zia and Karimi [20] One Breeding policy

Rezaei [23] One -

Sarkar [26] One Delayed payment

Sebatjane and Adetunji [27] One Imperfect quality

Sebatjane and Adetunji [28] One Quantity discounts

Sebatjane and Adetunji [29] Three -

Sebatjane and Adetunji [31] Three Price-dependent demand

Sebatjane and Adetunji [32] Three Stock-dependent demand

Teng et al. [33] One Advance payment

Valentini and Zavanella [34] Two Consignment stock

Vats et al. [35] Two Demand aggregation

Wang et al. [36] One Default payment risk

Wangsa and Wee [37] Two Transportation costs

Wu et al. [38] One Item freshness

This study Three Item mortality

3 Problem description

The proposed supply chain inventory model consists of three echelons representing
different stages of a typical food production chain, namely farming, processing and
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retail operations. At the farming echelon, newborn items are procured and reared
until maturity. The items are declared mature once their weight reaches a pre-
defined target. Following this, the live items are instantaneously transferred to
the next echelon which is processing. The live items are slaughtered, prepared
and packaged in preparation for consumption (or sale) at the processing plant.
For convenience, all activities carried out at the processing plant are collectively
called processing and they are carried out at a given processing rate. The processed
inventory is delivered to the last echelon (i.e. retail) in a number of equally-sized
shipments per processing run. At the retail outlet, the processed inventory is placed
on shelves in order to meet consumer demand. However, the processed inventory
can only be displayed on the shelves for a given amount of time. The inventory
continuously loses some of its utility over time and at the end of the shelf life,
often specified as an expiration date, it is no longer suitable for consumption.

Fig. 1: Inventory system profile showing the weight of the live inventory at the
farmer’s growing facility and the weight of the processed inventory at the proces-
sor’s and the retailer’s facilities.
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The inventory system profile for the problem at hand is depicted by Figure 1,
which shows the behaviour (over time) of the farmer’s live inventory, the proces-
sor’s processed inventory and the retailer’s processed and deteriorating inventory.
The processor’s cycle time is coordinated with the cycle times of the other two
supply chain members on the basis of the behaviour of the inventory at that par-
ticular member’s operations. For instance, the processor’s cycle time is an integer
multiple of the retailer’s cycle time because the processed inventory is replenished
frequently in an effort to keep it as fresh as possible due to its expiration dates.
On the other hand, growing the newborn items requires a relatively longer period
of time and a result the growing cycle is setup up such that when it ends a new
processing cycle commences (as shown in Figure 1). In a nut shell, the farmer and
the processor operate on a single setup-single delivery (SSSD) inventory replenish-
ment policy while the processor and the retailer operate on a single setup-multiple
delivery (SSMD) policy. The difference between these two policies lies in the num-
ber of shipments delivered by upstream supply chain member to the downstream
member per cycle of the upstream member. For the SSSD replenishment policy,
the farmer delivers one shipment of mature items to the processor during a single
growing cycle while in the case of the SSMD policy, the processor delivers multi-
ple shipments (an integer number) of processed inventory to the retailer during a
single processing cycle.

The proposed inventory model is formulated as a cost minimisation problem
aimed at determining the optimal number of newborn items that the farmer should
order when a growing cycle commences (and by extension the processor and the
retailer’s order quantities and cycle times) and the optimal number of shipments
processor should deliver to the retailer during a single processing run.

The following notations are used throughout this study:

w(t) The weight of an item at time t

w0 Newborn weight of each item

w1 Maturity(i.e. target) weight of each item

x Fraction of the live items which survive throughout the growth period

D Demand rate for processed items in weight units per unit time

P Processing rate in weight units per unit time

Kf Farmer’s setup cost per cycle

cf Farmer’s feeding cost per weight unit per unit time

Tf Duration of the farmer’s growth period

Kp Processor’s setup cost per cycle

hp Processor’s holding cost per weight unit per unit time

n Number of shipments from the processor to the retailer per unit cycle
of the processor

I(t) The weight of the processed inventory at time t

θ(t) The age-dependent deterioration rate of the processed inventory at
time t

L The maximum lifetime (i.e. expiration date) of the processed inven-
tory

Tp Processor’s cycle time

Kr Retailer’s ordering cost per cycle

hr Retailer’s holding cost per weight unit per unit time
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T Retailer’s cycle time

y Retailer’s lot size

Q1 Weight of the retailer’s lot size per shipment (i.e. Q1 = xyw1)

ny Farmer’s lot size (for live newborn items) per cycle

α The items’ asymptotic weight

β Constant of integration

λ Growth rate (exponential) of the items

The model representing the proposed inventory system is developed under the
following assumptions:

– There is only one farmer, one processor and one retailer in the supply chain
dealing in one type of growing item.

– A fraction of the ordered items dies before reaching maturity weight.
– The (processor’s) processing rate is greater than the (retailer’s) demand rate,

both of which are deterministic constants.
– The arrival of successive shipments of processed inventory from the processor

to the retailer is scheduled to occur when the previous shipment has just been
depleted.

– The processor delivers processed inventory to the retailer just at the moment
the processed inventory is enough to make up a batch size.

– The retailer’s replenishment interval is an integer multiple of the processor’s
replenishment interval.

– The live inventory incurs feeding costs (during the growth period) while the
processed inventory incurs holding costs (during the processing and selling
periods).

– Once the processed inventory reaches the retailer’s shelves, it has a specified
shelf life (or maximum lifetime) indicated by an expiration date. Beyond this
point, the inventory has lost all utility and it cannot be used to meet consumer
demand.

4 Model development

The procurement of ny newborn items marks the start of the farmer’s replenish-
ment cycle. At the time they are procured, each of the newborn items weighs w0.
Multiplying the number of items procured by the weight of the items yields the
weight of all the ordered items at the time of procurement (i.e. nQ0 = nyw0). The
farmer feeds the live items throughout the growth cycle, of duration Tf , and stops
only when the weight of each item increases to the target maturity weight of w1.
The live items have a survival rate of x [i.e during the growth period, (1 − x) of
the initially ordered newborn items die]. This implies that the weight of all the
surviving ordered mature items (nQ1) is therefore

nQ1 = nxyw1. (1)

The logistic function, given by

w(t) =
α

1 + βe−λt
, (2)
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is used to represent the items’ growth function. It is chosen because of its distinctive
“S”-shaped curve which is representative of the pattern of growth in most living
organisms. The function describes the changes to the weight of items during the
growth period and it makes use of three parameters, namely the items’ asymptotic
weight, the integration constant and the growth rate (represented by the symbols
α, β and λ respectively). When the growth period is complete (i.e. when the weight
of each has reached the target weight w1 at time Tf ), the items are delivered to the
processor for slaughtering, preparation and packaging (i.e processing). Equation
(2) can be rewritten in terms of the target weight and growth cycle duration as

Tf = −
ln

[
1
β

(
α
w1

− 1
)]

λ
. (3)

Since the processor and the retailer operate on a SSMD replenishment policy,
for each processing run, the processor delivers an integer number (n) of equally-
sized shipments of processed inventory to the retailer. The implications of this are
that the retailer places n orders, of total weight Q1, per processing setup. Likewise,
the retailer’s cycle time, T , and the processor’s cycle time, Tp, are linked by the
relation

Tp = nT. (4)

This indicates that the processor should process live items of total weight nQ1

per processing run. And since the farmer and the processor operate on a SSSD
policy, the farmer should grow the same weight units of live inventory during each
processing setup.

The total cost of managing inventory in the proposed three-echelon supply
chain is made up of the individual inventory management costs incurred at each
of the three echelons.

4.1 Retail operations

The inventory system profile for the retailer’s processed and deteriorating inven-
tory is illustrated by Figure 2. When a replenishment cycle commences, the retailer
receives an order weighing Q1 from the processor in order to meet consumer de-
mand, with a rate D, for processed inventory. The retailer keeps the processed
inventory on shelves and it deteriorates as a result. For health reasons, the pro-
cessed inventory has a specified shelf life, L, beyond which it is no longer suitable
for consumption.

The deterioration experienced by the retailer’s processed inventory is age-
dependent in the sense that the longer the items are on the shelf, the greater
the deterioration. The rate of deterioration peaks (at 100%) at the expiration
date. Beyond this point, the inventory is no longer useful in the sense that it can
no longer be used to fulfil consumer demand. This type of deterioration is often
associated with perishable food products such as fresh meat, fresh produce and
milk, among other types of inventory items. Since growing items are the primary
source of a vast majority of consumable food products, this type of deterioration is
appropriate for the proposed inventory system. The defining characteristic of this
type of deterioration is that the deterioration rate is dependent on the maximum
lifetime (i.e expiration date) of the perishable product under study. In essence,
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Fig. 2: Inventory system profile the retailer

the deterioration rate depends on the age of the product in the sense that as the
product ages (i.e. closer to its expiration date), the rate of deterioration increases.
The deterioration rate is given by

θ(t) =
1

1 + L− t
, (5)

for 0 ≤ t ≤ T where L represents the maximum lifetime or expiration date of
the processed inventory at the retail echelon. This deterioration rate is adopted
from works such as Khan et al. [13], Sarkar [26] and Wang et al. [36], to name
a few. Since the items’ deterioration rate cannot exceeds 100% (i.e. θ(t) ≤ 1 ),
Equation (5) implies that the retailer’s replenishment cycle, T , cannot exceeds the
expiration date of the processed inventory (i.e. L > T ).

Throughout retailer’s replenishment cycle, the weight of their inventory de-
creases due to consumer demand and deterioration. Accordingly, the changes to
the weight of the retailer’s processed inventory can be represented by the differ-
ential equation

dI(t)

dt
= −D − θ(t)I(t), 0 ≤ t ≤ T. (6)

Since the weight of the processed inventory is completely depleted at time T ,
Equation (6) has the boundary condition I(T ) = 0. Using the boundary condition
to solve Equation (6) results in

I(t) = D(1 + L− t) ln

(
1 + L− t

1 + L− T

)
, 0 ≤ t ≤ T. (7)

The weight of the retailer’s order quantity, computed by subsisting t = 0 in
Equation (7), is therefore

Q1 = I(0) = D(1 + L) ln

(
1 + L

1 + L− T

)
. (8)

Consequently, the corresponding number of items (or the retailer’s lot size) is

y =
1

xw1

[
D(1 + L) ln

(
1 + L

1 + L− T

)]
. (9)
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The retailer incurs a cost of hr for holding a single weight unit of the pro-
cessed inventory per unit time. This cost is multiplied by the average weight of
the processed inventory (i.e. the area under the graph in Figure 2 divided by the
replenishment interval) in order to determine the holding cost per unit time as

HCr = hr

∫ T

0
I(t) dt

T
=

hrD

T

[
(1 + L)2

2
ln

(
1 + L

1 + L− T

)
+

T 2

4
− (1 + L)T

2

]
. (10)

Furthermore, the retailer incurs a fixed ordering cost of Kr whenever a new
order for processed inventory is placed. This means that the ordering cost per unit
time is

KCr =
Kr

T
. (11)

The total cost (per unit time) of managing inventory at the retailer, computed
by summing Equations (10) and (11), is thus

TCr =
Kr

T
+

hrD

T

[
(1 + L)2

2
ln

(
1 + L

1 + L− T

)
+

T 2

4
− (1 + L)T

2

]
. (12)

4.2 Processing operations

The total cost of managing inventory at the processing plant is made up of the
holding and setup costs. The profile of the processor’s inventory (in weight units)
is represented by Figure 3. The processor receives one delivery from the farmer
at the beginning of each replenishment cycle with a duration of Tp = nT . The
weight of each shipment received is nQ1 = nxyw1. When a new replenishment
cycle starts, the processor incurs a fixed cost of Kp for preparing the processing
facility for slaughtering, preparation and packaging (all are collectively termed
processing and they occur at a rate of P ). This implies that the setup cost per
unit time is

KCp =
Kp

nT
. (13)

In order to determine the processor’s holding costs per unit time, the average
weight of the processed inventory (in weight units) is multiplied by the holding
cost (in weight units per unit time, i.e. hp). It follows that

HCp =
hpTD

2

[(
n− 1

)(
1− D

P

)
+

D

P

]
. (14)

The average weight of the processed inventory is determined by dividing the
area under the processed inventory level, as shown in Figure 3a, by the duration
of the replenishment interval. So as to easily determine the area under Figure 3a,
the figure is redrawn into Figure 3b. This approach is adapted from Yang et al.’s
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(a) Original. (b) Redrawn (modified from Yang et al.
[39]).

Fig. 3: The processor’s processed inventory system behaviour.

[39] JELS model and the resulting expression for the average inventory level is

Average inventoryp =
Processor’s time-weighted inventory

Processor’s replenishment interval

=

nQ2
1

2P +Q2
1

(
1
D − 1

P

)
+ 2Q2

1

(
1
D − 1

P

)
+ · · ·+ (n− 1)Q2

1

(
1
D − 1

P

)
nQ1/D

=
D

nQ1

[
nQ2

1

2P
+

n(n− 1)Q2
1

2

( 1

D
− 1

P

)]
=

Q1

2

[(
n− 1

)(
1− D

P

)
+

D

P

]
.

(15)

The cost of managing the processor’s inventory (per unit time) is therefore

TCp =
Kp

nT
+

hpTD

2

[(
n− 1

)(
1− D

P

)
+

D

P

]
. (16)

4.3 Farming operations

The farmer, whose inventory system profile is given by Figure 4, is responsible for
rearing the live newborn items to maturity The items are deemed mature once they
have grown to a pre-defined target weight. The farmer’s total inventory manage-
ment cost is comprised of the setup, feeding and mortality costs. In order for the
retailer to meet a demand rate (for processed inventory) of D, the farmer delivers
a shipment of processed inventory weighing nQ1 to the processor, who in turn sup-
plies the retailer with n shipments of processed inventory each weighing Q1. Since
the farmer and the processor operate on a SSSD replenishment policy, for each of
the processor’s processing setups the farmer starts a single replenishment cycle.
Given that the farmer pays a fixed setup cost of Kf when a new replenishment
cycle begins, the farmer’s setup cost per unit time is therefore

KCf =
Kf

nT
. (17)
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Fig. 4: Inventory system profile the farmer

With exception to the setup cost, all of the farmer’s other cost components are
dependent on the average weight of the farmer’s live inventory. The average weight
is determined by dividing the area under the inventory system graph, depicted by
Figure 4, by the duration of the replenishment cycle and it is given by

Average inventoryf =
Farmer’s time-weighted inventory

Farmer’s replenishment interval

=

∫ Tf

0
nyw(t) dt

nT

=
D(1 + L) ln 1+L

1+L−T

Txw1

{
αTf +

α

λ

[
ln

(
1 + βe−λTf

)
− ln (1 + β)

]}
.

(18)

The farmer incurs a cost associated with disposing the fraction of newborn
items which do not survive until the end of the growing cycle. The farmer’s mortal-
ity cost per unit time is computed as the product of the farmer’s average inventory
level, the fraction of items which do not not survive (1−x) and the mortality cost
per weight unit per unit time (mf ). The mortality cost per unit time is therefore

MCf =
mf (1− x)D(1 + L) ln 1+L

1+L−T

Txw1

{
αTf +

α

λ

[
ln

(
1 + βe−λTf

)
− ln (1 + β)

]}
.

(19)
Similarly, the farmer’s feeding cost per unit time is determined as the product

of the farmer’s average inventory level, the fraction of items which survive (x) and
the feeding cost per weight unit per unit time (cf ). It follows that

FCf =
cfxD(1 + L) ln 1+L

1+L−T

Txw1

{
αTf +

α

λ

[
ln

(
1 + βe−λTf

)
− ln (1 + β)

]}
. (20)

The farmer’s total cost per unit time is the sum of Equations (17), (19) and
(20) and it is given by

TCf =
Kf

nT
+
cfx+mf (1− x)

Txw1

(
αTf+

α

λ

[
ln

(
1 + βe−λTf

)
−ln (1 + β)

])
D(1+L) ln

(
1 + L

1 + L− T

)
.

(21)
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4.4 Whole supply chain

4.4.1 Constraints governing the proposed inventory system

The feasibility and tractability for the proposed inventory model is dependent on
the imposition of two constraints. Firstly, the number of shipments of processed
inventory delivered to the retailer per processing setup (n) should be an integer.
This makes the solution procedure tractable. Secondly, the duration of the farmer’s
growth period (Tf ) should be less than or equal to the duration of the processor’s
cycle time (Tp = nT ). This ensures that the solution to the problem is feasible by
assuring that the weight of the live items has reached maturity at the start of the
processing run.

4.4.2 Total inventory management cost across the whole supply chain

The total supply chain (inventory management) cost per unit time is determined
by adding Equations (12), (16) and (21). Furthermore, the fraction of items items
which survive throughout the farmer’s replenishment cycle, x, is considered a ran-
dom variable with a given probability density function f(x). The two constraints
and the expected value of the total supply chain cost per unit time are used to
formulate the inventory problem at hand as

Min.

{
E[TCsc] =

Kr

T
+
hrD

T

[
(1 + L)2

2
ln

(
1 + L

1 + L− T

)
+
T 2

4
− (1 + L)T

2

]
+
Kp

nT

+
hpTD

2

[(
n− 1

)(
1− D

P

)
+

D

P

]
+

Kf

nT

+

[
cfE[x] +mfE[1− x]

TE[x]w1

][
αTf+

α

λ

[
ln

(
1 + βe−λTf

)
−ln (1 + β)

]][
D(1+L) ln

(
1 + L

1 + L− T

)]}
s.t. n ∈ Z, Tf ≤ nT. (22)

4.4.3 Solution procedure

The following iterative procedure is followed when calculating the optimal values
of n and T :

Step 1 Set n to 1.
Step 2 Find the value of T which minimises Equation (22).
Step 3 Increase n by 1 and find the value of T which minimises Equation (22). Carry

on to Step 4.
Step 4 If the latest value of E[TCsc] decreases, go back to Step 3. If the value of

E[TCsc] increases, the previously calculated value of E[TCsc (along with cor-
responding T and n values) is the best solution and in this case, carry on to
Step 5.

Step 5 Verify the solution’s feasibility with regard to the constraint Tf ≤ nT . Tf is
calculated from Equation (2). If the solution is feasible, those values of n and
T are optimal and if this is the case, carry on to Step 7. If the solution is not
feasible, carry on to Step 6.



16

Step 6 If the constraint is violated, set T to Tf/n and use that T value to calculate
E[TCsc] using Equation (22) and then carry on to Step 7.

Step 7 End.

5 Special case with no mortality nor deterioration

A special case of the proposed inventory model is derived by disregarding the pos-
sibility of some of the live items dying throughout the growing cycle and the fact
that the processed inventory has a specified shelf life at the retail store. Before de-
riving this result, two scenarios (which aid in the derivation) are briefly discussed,
namely one with no deterioration at the retail echelon and one with no mortality
at the farming echelon.

5.1 Scenario I: Infinite shelf life (i.e. no deterioration)

Using the result

lim
L→∞

(
1 + L

T

)
ln

(
1 + L

1 + L− T

)
= 1, (23)

from Wang et al. [36], the weight of the retailer’s order for processed inventory, as
given in Equation (8), can be rewritten in terms of the result in Equation (23) as

Q1 = DT

(
1 + L

T

)
ln

(
1 + L

1 + L− T

)
. (24)

This means that when the processed inventory is assumed to have an infinite
shelf life (i.e. in the absence of deterioration), the retailer’s order for processed
inventory weighs

Q1 = DT, (25)

as L → ∞.
Likewise, the result

lim
L→∞

[
(1 + L)2

2
ln

(
1 + L

1 + L− T

)
− (1 + L)T

2

]
=

T 2

4
, (26)

from Wang et al. [36] is used to evaluate the retailer’s holding cost per unit time
as given in Equation (10). This holding cost can be rewritten in terms of the result
in Equation (26) as

HCr =
hrD

T

[
(1 + L)2

2
ln

(
1 + L

1 + L− T

)
− (1 + L)T

2
+

T 2

4

]
. (27)

Consequently, when the processed inventory is assumed to have an infinite shelf
life, the retailer’s holding cost per unit time becomes

HCr =
hrD

T

(
T 2

4
+

T 2

4

)
=

hrDT

2
, (28)

as L → ∞.
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Therefore, the retailer’s total cost associated with managing the processed
inventory per unit time becomes

TCr =
Kr

T
+

hrDT

2
. (29)

Similarly, as L → ∞, the farmer’s total cost associated with managing the
processed inventory per unit time becomes

TCf =
Kf

nT
+

[
cfx+mf (1− x)

]
D

xw1

{
αTf +

α

λ

[
ln

(
1 + βe−λTf

)
− ln (1 + β)

]}
.

(30)
Since the processor’s total cost function is not a function of L, it remains the

same as the one given in Equation (16) even under this scenario.

5.2 Scenario II: No mortality

When all the live items are assumed to survive throughout the growing period
(i.e. 100% survival rate or simply, x = 1), the farmer’s total cost associated with
managing the live inventory per unit time becomes

TCf =
Kf

nT
+

cf
Tw1

{
αTf+

α

λ

[
ln

(
1 + βe−λTf

)
−ln (1 + β)

]}
D(1+L) ln

(
1 + L

1 + L− T

)
.

(31)
Under this scenario, the retailer and the processor’s total cost function remain

the same as those in Equations (12) and (16), respectively.

5.3 Special case

A special case of the proposed inventory model is derived by assuming that all
the live ordered items survive (at the farming echelon) and that the processed
inventory has an infinite shelf life (at the retail echelon). In essence, this special
case is derived by letting x = 1 and L → ∞ (simultaneously, as opposed to
doing it separately as was the case in the two aforementioned scenarios). Since
the processor’s total cost function is not affected by neither x nor L, it remains
the same as the one given in Equation (16). The retailer’s total cost function is
only affected by L and it becomes the same as the one given in Equation (29)
which corresponds to a situation where L → ∞. Since, the farmer’s total cost
function is affected by both x and L, the farmer’s new total cost for the special
case is determined by evaluating Equation (31) for L → ∞. Equation (31) can be
rewritten in terms of the result in Equation (23) as

TCf =
Kf

nT
+

cf
Tw1

{
αTf +

α

λ

[
ln

(
1 + βe−λTf

)
− ln (1 + β)

]}
DT

(
1 + L

T

)
ln

(
1 + L

1 + L− T

)
=

Kf

nT
+

cfD

w1

{
αTf +

α

λ

[
ln

(
1 + βe−λTf

)
− ln (1 + β)

]}
,

(32)

as L → ∞.
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Consequently, the total inventory management cost across the supply chain
becomes

TCsc =
Kr

T
+

hrDT

2
+

Kp

nT
+

hpTD

2

[(
n− 1

)(
1− D

P

)
+

D

P

]
+

Kf

nT

+
cfD

w1

{
αTf +

α

λ

[
ln

(
1 + βe−λTf

)
− ln (1 + β)

]}
. (33)

The result in Equation (33) corresponds to the one in Sebatjane and Adetunji
[29] who developed an inventory model for a three-echelon supply chain for growing
items without considering the possibility of mortality at the farming echelon and
the shelf life of the processed inventory at the retail echelon, making the model
presented herein a generalisation of the one presented in that paper.

6 Proof of optimality

It is necessary to show that the objective function of the proposed inventory model
has a unique solution that actually minimises the total cost function. Therefore, it
suffices to prove that the function is convex. This is achieved through the following
two theorems.

Theorem 1 For a certain n > 0, E[TCsc] is a convex function of T and thus
there exists a unique value of T which minimises E[TCsc].

Proof The following auxiliary functions are derived by rewriting the objective
function to be of the form E[TCsc] =

g(T )
h(T )

g(T ) = Kr + hrD

[
(1 + L)2

2
ln

(
1 + L

1 + L− T

)
+

T 2

4
− (1 + L)T

2

]
+

Kp

n

+
hpT

2D

2

[(
n− 1

)(
1− D

P

)
+

D

P

]
+

Kf

n

+

[
cfE[x] +mfE[1− x]

E[x]w1

][
αTf+

α

λ

[
ln

(
1 + βe−λTf

)
−ln (1 + β)

]][
D(1+L) ln

(
1 + L

1 + L− T

)]
,

(34)

and
h(T ) = T. (35)

Taking the first and the second derivatives of g(T ) with respect to T for any
specified n results in

g′(T ) = hrD

[
(1 + L)2

2(1 + L− T )
+

T

2
− 1 + L

2

]
+

hpTD

2

[(
n− 1

)(
1− D

P

)
+

D

P

]

+

[
cfE[x] +mfE[1− x]

E[x]w1

][
αTf+

α

λ

[
ln

(
1 + βe−λTf

)
−ln (1 + β)

]][ D(1 + L)

(1 + L− T )

]
.

(36)
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and

g′′(T ) = hrD

[
(1 + L)2

2(1 + L− T )2
+

1

2

]
+

hpD

2

[(
n− 1

)(
1− D

P

)
+

D

P

]

+

[
cfE[x] +mfE[1− x]

E[x]w1

][
αTf+

α

λ

[
ln

(
1 + βe−λTf

)
−ln (1 + β)

]][ D(1 + L)

(1 + L− T )2

]
.

(37)

To show that g(T ) is strictly convex, it should be guaranteed that (1+L)2

2(1+L−T )2

and D(1+L)
(1+L−T )2 are always positive. This achieved using Lemma 1. Consequently,

g′′(T ) > 0 for all T > 0 and therefore g(T ) is a differentiable and positive con-
vex function. Given that h(T ) is also differentiable and positive convex function,
E[TCUsc] is a convex function of T for a given value of n and hence, there exists
a unique optimal value of T .

Lemma 1 (1+L)2

2(1+L−T )2 and D(1+L)
(1+L−T )2 are always positive for all T > 0.

Proof Let

∆1(T ) =
(1 + L)2

2(1 + L− T )2
, (38)

∆2(T ) =
D(1 + L)

(1 + L− T )2
. (39)

Taking the first derivatives of ∆1(T ) and ∆2(T ) with respect to T results in

∆′
1(T ) =

(1 + L)2

(1 + L− T )3
, (40)

∆′
2(T ) =

2D(1 + L)

(1 + L− T )3
. (41)

Since ∆′
1(T ) > 0 and ∆′

2(T ) > 0, ∆1(T ) and ∆2(T ) are increasing functions of

T . Therefore, for all T > 0, (1+L)2

2(1+L−T )2 and D(1+L)
(1+L−T )2 are always positive.

Theorem 2 For all T > 0 values, E[TCsc] is a convex function of n and conse-
quently, there exists a unique value of n which minimises E[TCsc].

Proof Taking the first and the second derivatives of E[TCsc] with respect to n for
any specified T results in

∂E[TCsc]

∂n
= − Kp

n2T
+

hpTD

2
− Kf

n2T
, (42)

∂2E[TCsc]

∂n2
=

Kp

n3T
+

Kf

n3T
. (43)

E[TCsc] is a convex function of n because ∂2E[TCsc]
∂n2 > 0. This indicates that a

unique value of n which minimises E[TCsc] exists.
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7 Numerical results

7.1 Base example

As a way of demonstrating the potential practical applications of the proposed
inventory system, an example that considers a farmer, a processor and a retailer
involved in the chicken production supply chain (at different stages) is studied.
The retailer meets end consumer demand for processed chicken at a store and can
only keep the chicken on shelves for a maximum of 4 days. The example considers
the following input parameters: L=4 days; w0= 0.06kg; w1= 2kg; D=100 kg/day;
P=150 kg/day; Kf=7 500 ZAR; cf=1 ZAR/kg/day; mf=2 ZAR/kg/day; Kp=5
000 ZAR; hp=0.5 ZAR/kg/day; Kr=1 000 ZAR; hr=1 ZAR/kg/day; α=6.87 kg;
β=120; λ=0.11 /day. The fraction of items which survive throughout the farmer’s
growth period, x, is assumed to be a random variable that is uniformly distributed
over [0.8, 1] with a probability density function given by

f(x) =

{
5, 0.8 ≤ x ≤ 1

1, otherwise.

This means that

E[x] =

∫ 1

0.8

5x dx = 5

[
(12 − 0.82)

2

]
= 0.9

The example is solved using Solver, a Microsoft Excel add-in, and the results
are presented in Table 2.

Decision variables Quantity
and objective function

T ∗ 1.79 days
n∗ 22 shipments

E[TCsc]∗ 2 909.78 ZAR/day

Table 2: Optimal number of shipments per processing run, cycle time and expected
total profit

From those results, the optimal inventory replenishment and shipment policies
for all three supply chain members are determined. The farmer should place an
order for (ny =) 2 706 live newborn (day old) items. The weight of the all the
ordered newborn items (nQ0) would amount to 162 kg. When the growth period
ends, (E[x] =) 90% of the initially ordered items would have survived. This im-
plies that the weight of the surviving mature items (nQ1) would be 5 412 kg. The
farmer should then transfer the entire lot to the processing plant. Throughout
the processing cycle, the processor should deliver the items (now in a consumable
form) to the retailer in (n =) 22 equally sized batches. Each batch that the re-
tailer receives will weigh about (Q1 =) 246 kg. The retailer should replenish their
inventory every (T =) 1.79 days so that the processed items don’t expire (after
L = 4 days). The farmer and the processor should start new growing and process-
ing cycles every (nT=) 39.6 days. By following this replenishment and shipment
policy, the total costs of managing inventory in the supply will be minimised at 2
909.78 ZAR/day.
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7.2 Sensitivity analysis

Table 3: Sensitivity analysis of various input parameters

Parameters % Retailer’s cycle time (T ∗) Number of shipments (n∗) Supply chain cost (E[TC∗
sc])

change days % change shipments % change ZAR/day % change

Base example 1.79 22 2 909.78

L

-50 1.34 -24.9 29 +31.8 3 183.07 +9.4
-25 1.60 -10.6 24 +9.1 3 015.86 +3.6
+25 1.96 +9.8 20 -9.1 2 835.93 -2.5
+50 2.14 +19.4 18 -18.2 2 781.36 -4.4

Kr

-50 1.38 -23.1 28 +27.3 2 595.94 -10.8
-25 1.61 -9.8 24 +9.1 2 763.34 -5.0
+25 1.95 +9.1 20 -9.1 3 042.64 +4.6
+50 2.08 +16.1 19 -13.6 3 166.25 +8.8

hr

-50 1.87 +4.6 21 -4.5 2 855.84 -1.9
-25 1.84 +3.0 21 -4.5 2 883.07 -0.9
+25 1.76 -1.4 22 0 2 935.59 +0.9
+50 1.74 -2.8 22 0 2 960.96 +1.8

Kp

-50 1.78 -0.4 20 -9.1 2 841.84 -2.3
-25 1.81 +1.3 20 -9.1 2 876.62 -1.1
+25 1.79 +0.1 23 +4.5 2 941.26 +1.1
+50 1.79 +0.1 24 +9.1 2 971.36 +2.1

hp

-50 1.81 +1.4 30 +36.4 2 713.09 -6.8
-25 1.80 +0.7 25 +13.6 2 819.45 -3.1
+25 1.78 -0.8 20 -9.1 2 989.93 +2.8
+50 1.77 -1.0 20 -9.1 3 067.44 +5.4

Kf

-50 1.77 -1.0 20 -9.1 2 806.59 -3.5
-25 1.80 +0.4 20 -9.1 2 859.30 -1.7
+25 1.80 +0.8 23 +4.5 2 956.36 +1.6
+50 1.79 0 25 +13.6 3 000.24 +3.1

cf

-50 2.06 +14.9 19 -13.6 2 247.90 -22.7
-25 1.92 +7.5 20 -9.1 2 582.00 -11.3
+25 1.70 -5.0 23 +4.5 3 232.47 +11.1
+50 1.62 -9.3 24 +9.1 3 551.25 +22.0

mf

-50 1.85 +3.3 21 -4.5 2 764.71 -5.0
-25 1.83 +2.4 21 -4.5 2 837.34 -2.5
+25 1.77 -0.9 22 0 2 981.80 +2.5
+50 1.76 -1.7 22 0 3 053.66 +4.9

E[x]

-50 1.29 -28.0 30 +36.4 5 680.03 +95.2
-25 1.56 -12.9 25 +13.6 3 855.18 +32.5
+25 2.03 +13.5 19 -13.6 2 322.78 -20.2
+50 2.26 +26.2 17 -22.7 1 917.81 -34.1

A sensitivity analysis was performed on the major input parameters in the base
example in order to observe the effect of changes (increases and decreases of 25%
and 50%) to those parameters on the objective function (E[TCsc]) and the two
decision variables (T and n). The results are given in Table 3 and the following
observations are note-worthy:

– While the shelf life (or expiration date) of the processed items affected the to-
tal inventory management cost across the supply chain, the effect was minimal
when compared to those it had on the number of shipments and the retailer’s
cycle time. Case in point, a 50% reduction in the shelf life increased the cost by
about 9%, increased the number of shipments by roughly 32% and reduced the
retailer’s cycle time by roughly 25%. The effects on the shipment and replen-
ishment policy are not surprising considering that the retailer does not want
to keep the products beyond their expiration dates. Consequently, when the
shelf life of the products is reduced, the model’s optimal solution recommends
placing orders for relatively smaller lot sizes, but more frequently.
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– The effects of changes to the retailer’s ordering cost were also significant, but
highly anticipated as well. When the cost of placing an order increases, the
model’s most obvious response is to let the retailer place orders less frequently
(by increasing the lot size). However, this can have negative effects on the total
cost, particularly due to the increased holding costs as a result of the larger lot
size. For example, increasing the ordering cost by 50% increases the cycle time
(and lot size) by about 17%. While this counters the effect of the increased
ordering cost, it also increases the total cost by approximately 9%.

– When the retailer’s holding costs are increased, the model’s optimal solution
responds by prompting the retailer to order less processed items. The main
benefit of ordering smaller lot sizes is that they attract relatively lower holding
costs, firstly, because there are fewer items that need to be kept in storage
and secondly, because when the lot size is smaller, the retailer’s cycle time is
reduced which means that the processed inventory spends less time in storage
and consequently, the holding costs are reduced. However, meeting a given de-
mand rate from smaller lots leads to an increase in the number of shipments
delivered to the retailer. This response is emulated by the results of the sen-
sitivity analysis where, for example, a 50% increases in the retailer’s holding
costs resulted in a 3% reduction in the cycle time and a 2% increase in the
shipments.

– Changes to the processor’s setup and holding costs followed an identical re-
sponse pattern to the retailer’s holding and ordering costs. The major differ-
ence being that the response in the upstream members is not as sever as those
shown by the downstream members. For example, when the processor and the
retailer’s fixed costs (i.e. setup and ordering costs, respectively) are reduced by
50%, the cycle time and total cost decreased by roughly 23% and 11% respec-
tively in case of the retailer, while for the processor, the changes were about
1% and 2% respectively.

– A reduction in the farmer’s feeding and mortality costs prompts the farmer to
order more live newborn items. As a result, the processor and the retailer will
receive relatively larger lots of mature items for processing and selling respec-
tively. Consequently, the cycle time will increase and the number of shipments
will decrease. The increased cycle time means that the processed inventory
spends more time in holding and consequently, the total cost increase.

– As the fraction of live items which survive during the growing cycle increases,
the number of shipments and the total cost decrease while the cycle time
increases. The model’s optimal solution responds this way because the a given
demand rate for processed items can be met from a smaller lot size of newborn
items since the survival rate has improved. While this increases the holding
costs at the processor (since there are more mature surviving items that need
to be processed), the reduced mortality costs at the farmer cushions against this
and consequently, the total supply chain cost decreases despite the increased
processor’s costs.

7.3 Comparisons with alternative scenarios

The proposed inventory replenishment and shipment policy is compared with three
alternative scenarios in order to investigate the benefits (or lack thereof) that might
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be reaped if those alternative scenarios occurred. The first of these alternative
scenarios considers the shelf life of the processed items to be infinite (i.e. the
items do not expire). The second alternative scenario considers a situation where
the survival rate of the live items during the farmer’s growth period is 100%,
while the last scenario considers an independent replenishment policy where the
replenishment decisions are made for the benefit of individual chain members as
opposed to optimising costs for the whole supply chain. The results from the
comparison are presented in Table 4.

For the first scenario, the processed items were assumed to have no expiration
dates. When the items have an infinite shelf life at the retail store, the retailer’s
optimal cycle time increases significantly and the number of shipments delivered by
the processor to the retailer decreases notably. This is achieved by ordering larger
lot sizes. This scenario is actually beneficial to the whole supply chain because of
the decreased fixed costs since fewer setups are required if the processed inventory
can spends longer time periods in stock without expiring. In the example studied,
the supply chain cost decreased by 21.6% under this scenario. While it might not
be practical for management to infinitely increase the shelf life of the inventory, this
result should motivate management to invest in better preservation technologies
which have the potential to prolong the life time of the inventory.

Table 4: Performance of the proposed inventory control mechanism against various
alternative scenarios

Variables
Base Scenario Scenario 1 Scenario 2 Scenario 3

(Proposed system) (Infinite shelf life) (No mortality) (Independent)
Quantity Quantity % difference Quantity % difference Quantity % difference

T ∗ (days) 1.709 4.23 +136.3 1.91 +16.7 3.04 +70.0
n∗ (shipments) 22 9 -59.1 20 -9.1 22 0

y∗ (items) 123 235 +91.1 121 -1.6 260 +111.6
TC∗

r (ZAR/day) 663.18 447.89 -32.5 635.61 -4.2 540.02 -18.6
TC∗

p (ZAR/day) 469.90 483.98 +3.0 465.49 -0.9 657.54 +39.9
TC∗

f (ZAR/day) 1 777.70 1 350.25 -24.0 1 517.64 -14.6 2 086.33 +17.4

TC∗
sc (ZAR/day) 2 909.78 2 282.12 -21.6 2 618.74 -10.0 3 283.90 +12.9

For the second scenario, it was simply assumed that all (100%) of the ini-
tially ordered newborn items survive throughout the farmer’s growth cycle. The
increased inventory management resulting from mortality also show that item mor-
tality is an important consideration in food production systems which derive most
of their products primarily from growing items. Since growing items are living or-
ganisms, it is possible for the to die. The financial benefits of having no mortality
are not only reaped by the farmer, they also trickle (albeit lower) downstream
across the supply chain. The total cost of managing inventory across the supply
chain decreased by 10% when the survival rate was 100% (compared to 90% in the
base case). This result should motivate management to take measures aimed at
increasing the survival rate of the items such as immunisations and inoculations.

For the scenario with an independent replenishment policy (i.e. third scenario),
it was assumed that the retailer (who faces consumer demand for processed items)
optimises their own inventory replenishment and shipment decisions (while ensur-
ing that the lot does not expire) and these are passed down to the upstream chain
members. This resulted in a sizeable reduction (of 18.6% ) in the retailer’s in-
ventory management costs, however, the total costs of managing inventory across
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the supply chain increased (by 12.9%). The benefits of coordinating replenishment
and shipment decisions with all supply chain members outweigh those achieved
through individual optimisation. This emphasises the importance of one of the
main objectives of supply chain management which collaborating will all chain
members towards a common goal (for the benefit of all parties involved).

The cost differences between the proposed inventory system and the three alter-
native scenarios highlight the importance of the three major concepts incorporated
in the proposed model, namely, item mortality, expiration dates and the integra-
tion of shipment and replenishment decisions with all supply chain members. It
would, therefore, be advisable for procurement managers in food production sys-
tems with an inventory control setup similar to the proposed one to pay close
attention to those three issues as they have sizable effects on the financial and
operational performance of the supply chain.

8 Conclusion

Operations managers and inventory control specialists at various stages of food
production systems are faced with a number of issues. For instance, at the down
stream end of the supply chain, retailers are confronted with short product life
cycles and their aim is to sell the inventory as fast as possible in order to avoid
expiration and to reduce holding costs. One way of achieving this goal is to keep
stock levels low but doing so puts the retailers at a higher risk of losing sales due
to stock-outs. At the upstream end of the chain, item mortality is a threat to
the livelihood of growing items. Another issue facing all supply chain members is
deciding whether to make inventory replenishment decisions individually or jointly
with other chain members.

This study take all these issues into consideration and develops a coordinated
model for inventory management in a supply chain with distinct farming, process-
ing and retail echelons. In addition to determining the optimal replenishment poli-
cies to be followed at each echelon, the model demonstrates the benefits (through
cost savings) of supply chain integration as well as the drawbacks of item mortal-
ity which are not only detrimental at the farming echelon, but are also amplified
across the entire supply chain.

Several assumptions, which have the potential to limit the practical appli-
cations of the model, were made during the model development process. These
include, but are not limited to, deterministic demand and processing rates, one
type of growing item in the inventory system and the absence of incentive policies
between the supply chain members. Food production systems are not isolated from
macroeconomic conditions and are therefore characterised by uncertainty and more
often than not, retailers often stock multiple food products derived from growing
items. Furthermore, incentive policies like quantity discounts, pre-payments and
delayed payments are not uncommon in food production chains where margins are
relatively low. Any of these factors, along with various popular EOQ extensions,
can be used (solely or in combination with one another) to extend the proposed
model.
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