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Abstract

The order-frequency spectral coherence and its integrated spectra (e.g. improved envelope
spectrum, squared envelope spectrum) are some of the most powerful methods for per-
forming fault diagnosis under time-varying operating conditions. However, it may require
much work to interrogate the order-frequency spectral coherence for symptoms of dam-
age. Hence, in this work we propose a methodology that combines the order-frequency
spectral coherence with historical data that were acquired from a healthy machine to ob-
tain an anomalous envelope spectrum, which is further processed for fault diagnosis. This
anomalous envelope spectrum is further processed with a smoothing operation to not only
perform automatic fault detection, but it is also possible to identify the damaged com-
ponent if the kinematics of the gearbox are known. The proposed method is investigated
on one numerical gearbox dataset and three experimental datasets, where its potential
for performing automatic fault detection under time-varying operating conditions is high-
lighted.

Keywords:
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detection, Time-varying operating conditions

1. Introduction

The vibration signals acquired from rotating machines are usually generated by periodic
phenomena (e.g. gear mesh interactions, impacts due to bearing damage) [1]. As a
result, the statistics of the signal are periodic in the angle domain and therefore the
measured vibration signals can be described by the theory of cyclostationarity [1, 2].
This makes cyclostationary analysis techniques such as the squared envelope spectrum
[3, 4], the instantaneous power spectrum [5, 6], the spectral correlation [7, 8] and the
spectral coherence [7, 8] very powerful techniques for interrogating the vibration signals
for symptoms of damage.

However, rotating machines such as wind turbines operate inherently under time-
varying operating conditions [5, 9], which impedes the application of the conventional
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time- or angle-based cyclostationary techniques [10]. This is attributed to the fact that
even though the instantaneous power of the bearing damage component is periodic in
the angle domain, the carrier of the signal is described by the dynamic properties of the
structure, which are time-invariant [10]. Hence, neither the time nor angle domain repre-
sentations are suited to describe these signals, and the signals should rather be described
using angle-time cyclostationary theory [10]. Hence, the angle-frequency instantaneous
power spectrum [5], the order-frequency spectral correlation [10] and Order-Frequency
Spectral Coherence (OFSCoh) [10] should be used for analysing the vibration signals that
were acquired under time-varying speed conditions.

The OFSCoh is currently one of the most powerful techniques for performing bearing
diagnostics under time-varying operating conditions [10]. It is a bivariate representation of
the cyclic orders of the angle-periodic modulation components and the spectral frequencies
of their time-invariant carriers [10]. However, the two-dimensional representation can
be difficult to interrogate when incipient damage is present and therefore the integrated
spectral coherence is very useful for fault diagnosis [8, 11–13].

However, applying state-of-the-art signal analysis techniques can require much work
to implement and much manual effort to investigate for symptoms of damage. In some
cases the fault order of the component-of-interest needs to be specified a priori before
the method can be applied e.g., [2, 12, 14]. This means that the techniques could be
difficult to scale when many machines need to be monitored for damage. This has been
one of the main motivations of developing deep learning fault diagnosis methods [15]; the
methods make it possible to automatically determine the condition of the machine from
the raw or processed vibration signals. Chen et al. [16] combined the spectral coherence
and convolutional neural networks for automatic fault classification. However, many deep
learning methods require much historical fault data to be available and the classification
problem is actually an open set recognition problem (i.e. only historical fault data of
some of the damage modes may be available), which could make it difficult to apply the
supervised learning techniques in practice [17].

In Ref. [14], a methodology is proposed to combine the OFSCoh with healthy histor-
ical data. This is performed by firstly identifying the damage modes in the system and
targeting their specific cyclic orders in the OFSCoh. Subsequently, a data-driven model
was developed of the healthy behaviour of the features extracted from the targeted compo-
nents, which was then used to automatically infer the health of the targeted components.
However, if a complex drive train is under consideration, there may be many cyclic orders
that need to be targeted to properly monitor the machine. It is also possible that the
harmonics of the cyclic orders of different components can overlap, which may lead to
ambiguous behaviour when performing inference.

Hence, in this work we propose a blind methodology that can be used for performing
fault diagnosis under time-varying operating conditions. The outcome of this methodology
is the Anomalous Envelope Spectrum (AES) and the smoothed AES (sAES), which are
calculated by combining the OFSCoh and historical data from a healthy machine. The
AES is a powerful representation that can be used to detect faults and it can also help
to identify which components are damaged. It has the additional benefit, compared to
Ref. [14] for example, that it does not require the components-of-interest to be known
nor specified before applying the methodology, i.e. it is blind. It is only desirable to know
the kinematics of the gearbox if the AES is interrogated to determine which machine
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component is damaged.
In summary, the contributions of this paper are the following:

• A new representation, the Anomalous Envelope Spectrum (AES), is proposed which
can be processed to perform fault diagnosis under time-varying operating conditions.
We propose using a smoothing operation between consecutive OFSCohs before the
AES is calculated. This processed AES is referred to as the smoothed AES (sAES)
in this work.

• This method is simple to implement and scalable for monitoring many machines.
This is because historical data are used to supplement the OFSCoh for fault detection
and identification under time-varying operating conditions, i.e. it is not necessary
to manually interrogate the signals.

The layout of the paper is as follows: In Section 2, an overview of the proposed method
is given, whereafter the method is applied on numerical gearbox data in Section 3 and on
three experimental gearbox datasets in Section 4. Finally, the paper is concluded in Sec-
tion 5. Appendix A contains additional information pertaining to the threshold selection
discussed in Section 2; Appendix B contains additional information of the numerical gear-
box model presented in Section 3; and Appendix C contains additional results obtained
on the experimental data discussed in Section 4.

2. Proposed methodology

We desire to develop a vibration-based condition monitoring methodology that en-
ables us to determine the condition of the machine at time step i, without requiring the
cyclic orders of interest to be specified beforehand, i.e. the methodology is blind. This
methodology is developed under the following assumptions:

• There are much historical data available that describe the behaviour of the machine
in a reference condition, whereafter the machine is monitored for damage.

• An accurate estimate of the rotational speed is available at each measurement, with
the rotational speed at time step i denoted by ω(i)(t). If the speed cannot be mea-
sured, it is possible to use a tacholess speed estimation method [18, 19] before ap-
plying this methodology.

• Regular measurements are taken during the condition monitoring process. The vi-
bration signal acquired at time step i is denoted by x(i)(t) and its corresponding
sampling frequency is fs.

2.1. Preliminary theory

The Order-Frequency Spectral Coherence (OFSCoh) can highlight weak damage com-
ponents in the signal and therefore enables incipient damage to be detected [10, 11]. The
OFSCoh of the vibration measurement acquired at time step i [10]

γ(i)(α, f) =
S
(i)
xx(α, f)∣∣∣S(i)

x (0, f) · S(i)
xα(0, f)

∣∣∣1/2 , (1)
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is calculated with the order-frequency spectral correlation S
(i)
xx(α, f), the power spectral

density of the vibration signal x(i)(t) denoted by S
(i)
x (0, f) and the power spectral density

of x
(i)
α (t) = x(i)(t) · e−jαθ(i)(t) · ω(i)(t) denoted by S

(i)
xα(0, f) [10]. The imaginary unit is

denoted by j =
√
−1. In Equation (1), α denotes the cyclic order variable and f denotes

the spectral frequency variable. The order-frequency spectral correlation is calculated with
[10]

S(i)
xx(α, f) = lim

W→∞

1

Φ(W )
E
{
FW (x(i)(t))∗ · FW

(
x(i)(t) · e−jαθ(i)(t) · ω(i)(t)

)}
, (2)

where FW (·) is the Fourier transform over a time length of W , x(i)(t) is the measurement
taken at time step i, ω(i)(t) is the corresponding instantaneous rotational speed of a shaft
and θ(i)(t) is the corresponding instantaneous phase of the shaft. The cumulative phase of
the shaft after a time duration of W is denoted Φ(W ). The reason why the measurement
index i is emphasised in all of the terms, is because this is important for the calculation of
the processed AES and it ensures that a consistent notation is used. The order-frequency
spectral correlation is estimated with the Welch-based estimator proposed in Ref. [10], due
to its good bias and variance properties. However, much faster estimators of the spectral
correlation can be used if desired [11, 20].

The integrated spectral coherence is very useful for gearbox diagnostics, due to the
fact that it is simpler to interrogate for damage than the bivariate OFSCoh [12, 13]. The
Squared Envelope Spectrum is the most popular signal analysis technique for performing
bearing fault diagnosis [4] and can be estimated from the OFSCoh with [11, 13, 21]

SES(i)(α) =

∣∣∣∣∣
∫ fs/2

0

γ(i)(α, f)df

∣∣∣∣∣ , (3)

for the ith signal, while the enhanced envelope spectrum can be estimated with

EES(i) (α) =

∫ fs/2

0

∣∣γ(i)(α, f)
∣∣2 df. (4)

The sampling frequency of the signal is denoted by fs. It was shown in Ref. [11] that in
general the EES is better suited for incipient fault detection than the SES. Hence, it is
possible to estimate the SES and the EES with Equations (3) and (4) without performing
bandpass filtering on the raw vibration signal.

It is possible to improve the signal-to-noise ratio of the damaged components in the
integrated spectrum by limiting the integration band of the SES and the EES to a band
[fl, fh]. This is because the impulses generated by damaged components excite resonances
in the system, which means that the fault information manifests in narrow frequency bands
[22]. The integration of the OFSCoh over the band [fl, fh] is used to define the Improved
Envelope Spectrum (IES) [11],

IES(i) (α; fl, fh) =

∫ fh

fl

∣∣γ(i)(α, f)
∣∣2 df, (5)

where 0 < fl < fh and fh < fs/2. Therefore, if the integration band [fl, fh] is carefully
selected, the IES can improve the signal-to-noise ratio of the fault information. How-
ever, selecting the appropriate frequency band automatically can be difficult to perform,
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especially if the fault information is weak. This has resulted in the development of the
IESFOgram, which aims to detect the frequency band that is optimal for detecting specific
targeted signal components [23]. Even though the IESFOgram performs very well in iden-
tifying the optimal integration band, it requires the targeted cyclic orders to be specified
a priori. This can be difficult when complicated drive-trains with many fault orders need
to be monitored or when the fault orders are not known.

The proposed methodology was developed to allow us to automatically identify the
frequency bands that have important information and then to use this to obtain an intuitive
representation for fault diagnosis. The Anomalous Envelope Spectrum (AES) is presented
in the next section.

2.2. Anomalous Envelope Spectrum (AES)

The AES is derived from the Generalised Integrated Spectrum (GIS) in this work.
The GIS of the ith vibration measurement is obtained from the integrated spectrum of
the OFSCoh by including a general weighting function G(α, f)

GIS(i)(α) =

∫ fs/2

0

∣∣γ(i)(α, f)
∣∣2 · G(α, f) df, (6)

where the weighting function 0 ≤ G(α, f) ≤ 1. This GIS has the following properties:

• The EES is obtained by setting G(α, f) = 1 ∀ f ∈ [0, fs/2], i.e. then GIS(i)(α) =
EES(i)(α).

• The IES is obtained by setting G(α, f) = 1 ∀ f ∈ [fl, fh] and G(α, f) = 0 ∀ f /∈
[fl, fh], i.e. then GIS(i)(α) = IES(i)(α; fl, fh).

Since it is assumed that healthy historical data are available, it is possible to construct a
function G(α, f) to automatically highlight regions in the OFSCoh that have non-healthy
(i.e. anomalous) behaviour. This anomaly function G(α, f) indicates whether healthy
(G(α, f) = 0) or anomalous (G(α, f) = 1) behaviour is seen at a cyclic order α and a
spectral frequency f in |γ(i)(α, f)|2. If we use this anomaly function G(α, f) in the GIS,
the Anomalous Envelope Spectrum (AES)

AES(i)(α) =

∫ fs/2

0

∣∣γ(i)(α, f)
∣∣2 ·G(α, f) df, (7)

is obtained. The AES is used to identify components that are anomalous (e.g. attributed
to machine damage or spurious noise). Hence, as opposed to selecting or estimating the
optimal fl and fh to determine the IES with the GIS, only the information from anomalous
frequency bands are retained in the AES.

2.3. Estimation of the AES

The OFSCohs associated with the Nh measurements from a healthy machine, denoted
by {γ(i)h (α, f)}i∈Z,0≤i≤Nh−1, are used to calculate a threshold τ(α, f). This threshold is used
to automatically determine whether a specific combination of cyclic orders and spectral

frequencies of the ith measurement contain anomalous information
∣∣γ(i)(α, f)

∣∣2 > τ(α, f)

5



or not
∣∣γ(i)(α, f)

∣∣2 ≤ τ(α, f). This is used to define the anomaly function G for the
measurement at time step i as follows:

G(i) (α, f) =

{
1 if |γ(i)(α, f)|2 > τ(α, f)
0 if |γ(i)(α, f)|2 ≤ τ(α, f).

(8)

It is possible to use kernel density estimators to detect anomalous behaviour with the
spectral coherence as investigated in Ref. [14], however, this can be computationally
intensive to use and it is required to find the optimal hyperparameters for each combination
of α and f . If it is assumed that the data are Gaussian, the threshold can be defined by:

τ(α, f) = µγ(α, f) + κ · σγ(α, f), (9)

where κ is a factor, µγ(α, f) is the mean and σγ(α, f) is the standard deviation of the
healthy spectral coherences. However, the sampling distribution of the spectral coherence
is not expected to be Gaussian. In Ref. [7], it was shown that the spectral coherence has a
chi-square distribution when long signals are considered. Using the empirical distribution
of the data to set the threshold is another approach that can be used. For example, the
inter-percentile range can be used to obtain a threshold with

τ(α, f) = κ · (pξ(α, f)− p100−ξ(α, f)) + p100−ξ(α, f), (10)

where pξ(α, f) is the ξth percentile of the set of healthy spectral coherences, denoted by

{γ(i)h (α, f)}, at a specific cyclic order α and spectral frequency f . A special case of this
range is the interquartile range where ξ = 75. If κ = 1, it means that the ξth percentile
is used for detecting outliers, which could result in false alarms. In addition to this, the
threshold in Equation (10) is estimated from limited healthy measurements and is therefore
a random variable. Hence, it is therefore suggested that κ > 1. In a practical situation,
it would be better to use different κs to obtain a range of thresholds for decision making,
e.g. one threshold can act as a warning and another threshold can automatically stop the
machine. The interpretation and use of the threshold would depend on the machine and
its application (e.g. implications of a sudden failure).

The OFSCoh is estimated from a finite length signal and since the OFSCoh is sensitive
to weak components in the signal, it could contain spurious noise. This would result in
the anomaly function G(i) (α, f) to indicate anomalous behaviour, i.e. G(i) (α, f) = 1, for
healthy cyclic orders and spectral frequencies. The robustness of the AES can be increased
by utilising the information from consecutive measurements to obtain the smoothed AES
(sAES), which is a more robust representation of the condition of the gearbox under
consideration. The smoothed AES (sAES) is calculated with

sAES(i)(α) =

∫ fs/2

0

P
{
|γ(m)(α, f)|2 ·G(m)(α, f)

}
m∈Z,i−Ns≤m≤i

df, (11)

where Ns is the number of consecutive measurements that is used for processing the
weighted spectral coherences |γ(m)(α, f)|2 · G(m)(α, f). We refer to this AES as the
smoothed AES so that it is not confused with the raw AES obtained with Equation
(7). The smoothing function P can for example be the median or the mean. If the
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Figure 1: The calculation procedure of the Anomalous Envelope Spectrum (AES) for measurement k
is shown in (a), while the calculation procedure of the smoothed AES (sAES) and its corresponding
Condition Indicator (CI) are shown at time step k by using the information from the previous 3 time
steps, i.e. Ns = 3 in Equation (11).

mean is used, the integrated spectrum of the moving averaged OFSCoh, i.e. the aver-
age of |γ(m)(α, f)|2 · G(m)(α, f) is calculated over measurement index m. The sAES can
subsequently be used for automatic fault detection by searching for cyclic orders where
sAES(i)(α) > 0 and if the kinematics of the drive train are known, it would also be possible
to identify the damaged component.

Lastly, the sAES can be used to obtain a Condition Indicator (CI) for time step i as
follows:

CIi =
1

αmax

∫ αmax

0

sAES(i)(α) dα, (12)

with CIi > 0 indicates that anomalous behaviour is present, while CIi = 0 indicates
that the spectral coherence of the measurement at time step i displays healthy behaviour.
Since the smoothing operation removes the spurious anomalous components, the threshold
can be set to CIi = 0 for detecting anomalous behaviour. This threshold was used in
subsequent sections. It is also possible to investigate other blind features such as the
L2/L1 ratio [24] or the spectral negentropy [25] of the AES, but the optimisation of the
condition indicator and the threshold selection is not considered in this work.

2.4. Summary

The calculation procedures of the AES and the sAES that were described in the pre-
vious sections are summarised in Figures 1(a) and 1(b) for time step k. The following
parameters are used in all investigations:

• The median is used as the processing function P in Equation (11). The median
is much more robust to outliers than the mean and can therefore provide a more
reliable estimate of the actual condition of the machine.
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• The number of measurements used in calculating the sAES, i.e. Ns in Equation (11),
is set to Ns = 10.

• The percentile ε and the factor κ in Equation (10) are set to ε = 95 and κ = 4,
respectively. The 95 percentile is used, because it is assumed that the healthy
dataset does not contain much outliers and we desire to utilise the full distribution
for detecting outliers in the damaged signal. We have found that κ = 4 ensures that
the method is not too sensitive to outliers attributed to noise in the data and can
therefore result in less false alarms, while still performing very well in fault detection
and fault trending. The κ is further motivated in Section 4.2 and Appendix A.

This method is firstly investigated on numerical gearbox data in the next section, where-
after the method is investigated on three experimental gearbox datasets in Section 4.

3. Numerical gearbox investigation

The phenomenological gearbox model presented in Ref. [4] is considered in this work
to simulate vibration data acquired from a gearbox operating under time-varying speed
conditions. The measured casing vibration signal of the gearbox in its reference condition

xc(t) = xgmc(t) + xdgd(t) + xn(t), (13)

is decomposed in terms of three components, namely, a deterministic gear mesh component
denoted xgmc(t), a random gear component attributed to distributed gear damage denoted
by xdgd(t) and a broadband noise component denoted by xn(t). Forty measurements
were taken from the gearbox in its reference condition, whereafter an additional signal
component due to outer race bearing damage is added to the casing vibration signal. The
new casing vibration signal

xc(t) = xgmc(t) + xb(t) + xdgd(t) + xn(t), (14)

contains the additional bearing damage component denoted xb(t). More information re-
garding the signal components is given in Appendix B. Two-hundred measurements from
the damaged gearbox are investigated in this section, with the magnitude of the bear-
ing component increasing monotonically with the measurement number as discussed in
Appendix B and shown in Figure B.18.

The time-varying rotational speed profiles that were used to generate the vibration
data are presented in Figure 2(i). The casing vibration signal of the 110th measurement
from the damaged gearbox (i.e. Equation (14)) shown in Figure 2(ii) is used to illustrate
the different steps of the proposed method in this section.

The OFSCoh of the damaged gearbox is presented in Figure 3(i) for the measurement
considered in Figure 2(ii). In Figure 3(i), the distributed gear damage component is clearly
seen at a spectral frequency of 1.3 kHz and the components associated with the bearing
damage are seen at 7 kHz. The methodology was applied on the 110th measurement of
the considered dataset to obtain the resulting weighted OFSCoh, which is presented in
Figure 3(ii). The weighted OFSCoh, calculated with G(i)(α, f) · |γ(i)(α, f)|2, only contains
the bearing component at the spectral frequency of 7kHz, because the bearing damage
component is the only novel component in the signal. Hence, the weighted OFSCoh is able
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Figure 2: The rotational speeds that are under consideration in the phenomenological gearbox data as
well as the vibration signal corresponding to the 110th measurement of the damaged gearbox.

(i) (ii)

Figure 3: The OFSCoh of the vibration signal is presented in Figure 3(i) for the 110th measurement in
the damaged dataset. The corresponding weighted OFSCoh is presented in Figure 3(ii).
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to enhance the novel components in the signal and attenuate the dominant components
that were in the reference signal.

The integrated spectra, i.e. the EES, the AES and the sAES, are presented in Figure
4 for two measurements. No additional processing was performed before the EES and
AES were calculated. The distributed gear damage component, with a cyclic order of 1.0
shaft orders, is dominant in the OFSCoh and therefore makes the weak bearing damage
components more difficult to detect in the EES shown in Figure 4. Since both signals are
random, they cannot be separated using techniques such as the generalised synchronous
average [4]. In contrast to the EES, the bearing damage components are very prominent
in the AES and the sAES, since the distributed gear damage components are removed in
the weighted OFSCoh presented in Figure 3(ii). The sAES contains much less noise than
the AES due to the additional processing that is performed.

(i)
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Figure 4: The integrated spectra are presented for two measurements in the damaged gearbox dataset.
The integrated spectra of the 77th measurement and 110th measurement are presented in Figures 4(i)
and 4(ii) respectively.

Since it is not only important to determine whether it is possible to detect bearing dam-
age, but also whether changes in the condition can be detected, different magnitudes of
bearing impulses are investigated. The magnitude of the bearing impulses were increased
monotonically over the measurement number. Please refer to Figure B.18 for more infor-
mation. The EES and the sAES of the different measurements under consideration are
presented in Figures 5(i) and 5(ii), respectively. The exact signal-to-noise ratios of the
bearing component for each measurement are included in Appendix B. The distributed
gear damage and bearing damage components can be seen in the EES presented in Figure
5(i), while the sAES does not contain any signal components until the bearing damage
component is detected. The bearing damage components at 4.12 shaft orders and its
harmonics are clearly seen.

The mean of the integrated spectra are investigated as condition indicators for fault
trending. The mean of the EES and the mean of the sAES as calculated with Equation
(12) are presented in Figures 5(iii) and 5(iv) respectively. The condition indicator of the
EES contains much noise which makes it difficult to observe the increase of the condition
indicator due to the change in the magnitude of the bearing component. However, the CI
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are presented for the phenomenological gearbox model.
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Figure 6: The experimental setup with the important components and parts highlighted.

of the sAES performs much better, due to the fact that it is not affected by the noise in
the signal and provides a monotonic trend which is consistent with the magnitude of the
bearing impulses that increases monotonically over the measurement number.

Hence, the proposed anomalous envelope spectrum and its related metrics are not only
capable of detecting changes in the condition of the bearing, but it is also able to identify at
which cyclic orders the damage manifests when inspecting the sAES. In the next section,
the proposed method is investigated on experimental data.

4. Experimental gearbox investigation

The proposed method is now investigated on experimental data that were acquired from
a helical gearbox under time-varying operating conditions. In Section 4.1, an overview of
the experimental setups and the measurement equipment is given, whereafter measure-
ments taken from a gearbox with localised gear damage are investigated in Section 4.2
and measurements taken from a gearbox with distributed gear damage are investigated in
Section 4.3. Finally, the method is investigated on healthy gearbox data in Section 4.4.

4.1. Experimental setup

The data considered in this section were acquired from the experimental setup shown
in Figure 6. The experimental setup consists of three helical gearboxes, an alternator
and an electrical motor. The shafts between the different components are denoted by
S1, S2, S3 and S4 respectively. The centre helical gearbox is monitored for damage with
two accelerometers, namely, a single-axis accelerometer and a tri-axial accelerometer. The
methodology is applied on the axial-component of the tri-axial accelerometer, which is
located on the bearing housing of the monitored gearbox as seen in Figure 6(b). The
instantaneous speed of the input shaft of the gearbox (i.e. S2 in Figure 6) was measured
with the optical probe and the zebra tape shaft encoder also shown in Figure 6(b). An
OROS OR 35 data acquisition device was used with an accelerometer signal that was
sampled at a rate of 25.6 kHz, while the optical probe was sampled at 51.2 kHz.

The electrical motor and the alternator were independently controlled to apply the
time-varying operating conditions to the monitored gearbox as shown in Figure 7.

The monitored helical gearbox in Figure 6 consists of a gear and a pinion. The pinion
was kept healthy for all measurements, while the gear was damaged as discussed in the
next sections. Since the gear is connected to the reference shaft S2 in Figure 6, it rotates
at 1.0 shaft order. This means that impacts from a damaged gear tooth would modulate
the signal at 1.0 shaft order and would therefore be detected at 1.0 shaft order and its
harmonics when interrogating the envelope spectrum. In Appendix C, the RMS, the
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Figure 7: The operating conditions that were estimated at the input shaft of the gearbox, i.e. S2 in
Figure 6.

(i) Before (ii) After

Figure 8: The gear with localised gear damage is presented. In Figure 8(i), the gear before the fatigue
experiment is presented, while in Figure 8(ii) the gear after the fatigue experiment is presented.

kurtosis and the L2/L1-norm ratio of the SES are presented for the raw vibration signals
considered in this work. This is to further highlight the benefits of using the proposed
method.

4.2. Localised gear damage experiment

Localised gear damage such as root cracks can severely affect the remaining useful
life of gearboxes and is therefore very important to detect. An experiment was firstly
performed with both gears of the monitored gearbox being healthy. Forty measurements,
taken while the gearbox was operating under operating condition 1 in Figure 7, are used
to calculate the bivariate threshold function τ(α, f) with Equation (10). Thereafter, the
gearbox was disassembled and the gear was damaged by seeding a small slot in the root
of the gear tooth as shown in Figure 8(i). The helical gears have much larger contact
ratios than spur gears, which makes the gear damage shown in Figure 8(i) more difficult
to detect. The monitored gearbox was reassembled with the damaged gear and tested for
approximately 20 days under operating condition 1 before the damaged tooth failed as
shown in Figure 8(ii). Two-hundred measurements, approximately evenly spaced over the
testing period, are used to evaluate the effectiveness of this methodology.

However, this experiment does not represent the actual conditions that would be ex-
pected in a real application. If maintenance is performed on the system, the damaged
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(i) Healthy (ii) Damaged

Figure 9: The logarithm of the mean OFSCoh of the healthy data and the logarithm of the OFSCoh from
a damaged signal are presented in Figures 9(i) and 9(ii) on different colour scales.

components would be replaced with healthy components, which would make new mea-
surements available for calculating the threshold τ . In this experiment, we needed to
replace the gear with a damaged gear to ensure that the gear would fail in a reasonable
time. The implication of this is that there may be some differences between the experi-
mental setup under consideration and the reference experimental setup which could also
result in the measurements to have different statistical properties. Hence, κ in Equation
(10) was made sufficiently large to ensure that false alarms are avoided.

The average spectral coherences of the healthy measurements are presented in Figure
9(i) to emphasise the motivation of using a bivariate threshold τ(α, f) in the method. If
the threshold was set to a constant value for all cyclic orders and spectral frequencies, it
may be too sensitive to noise at specific combinations of α and f , while being insensitive
to damage at other combinations of α and f .

The OFSCoh of one of the measurements from the damaged gearbox is presented in
Figure 9(ii). The damaged components are located in a resonance band at approximately
500 Hz, but the OFSCoh is dominated by other phenomena which make the damage
difficult to detect. The corresponding weighted OFSCoh is presented in Figure 10(i).
Since the impacts attributed to localised gear damage are the only new information in the
signal, the weighted OFSCoh retains only the damaged information in the aforementioned
frequency bands as seen in Figure 10(i). Since the damage only manifest in a very localised
region of the OFSCoh, a zoomed view is included in Figure 10(i). Lastly, the different
integrated OFSCoh of the measurement from the damaged gearbox are presented in Figure
10(ii). The EES only retains a strong component at 5.72 shaft orders, but the components
attributed to the gear damage cannot be clearly seen. The AES and the sAES perform
much better, because they are able to identify the damaged components in the signal, with
the sAES containing a much clearer representation due to the additional processing that is
performed. Hence, it is clear that the proposed method is a very powerful representation
for identifying frequency bands with novel information and using this not only for fault
detection, but also for fault identification.

The EES and the sAES are presented over the measurement number in Figure 11. The
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Figure 10: The weighted OFSCoh and corresponding integrated spectra are presented for the same signal
considered in Figure 9(ii).
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Figure 11: The Enhanced Envelope Spectra (EES) and the smoothed Anomalous Envelope Spectrum
(sAES) of the data acquired from the gearbox with localised gear damage.

EES contains the very strong component at 5.72 shaft orders for all measurements, while
being unable to detect the damaged gear component. This dominant signal component is
present in both the healthy and the damaged datasets, however, it impedes the detection
of the damaged gear component. The signal component at 5.72 shaft orders is attributed
to the movement of the floating shaft in the monitored gearbox that results in undesired
contact between the bearing and the casing of the gearbox. The movement is exacerbated
by the fact that the input shaft of the helical gearbox has strong axial excitations due to
the axial forces of the helical gears.

In contrast, the sAES performs much better than the EES. In the sAES in Figure
11, the signal components associated with the damaged gear are very prominent in the
spectrum, while it is also possible to see the degradation of the components over time as
the condition of the gear worsens. Lastly, the Condition Indicator (CI) is calculated from
the EES and the sAES and presented in Figure 12 over the measurement number. It is
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Figure 12: The blind condition indicators of the EES and the sAES are presented over measurement
number.

not possible to see the deterioration of the gear in the EES feature, because the signal-to-
noise ratios of the damaged components are too low in the EES. This is in contrast to the
sAES. The CI associated with the sAES is always larger than zero, which indicates that
the system contains anomalous information. Initially the CI makes a hump between the
first and the 50th measurements, whereafter the CI steadily increases until the gear failed.
We do not know the reason behind the hump in the CI at the start of the experiment,
since the gearbox was not opened nor inspected between the start of the measurement
and the end of the experiment. However, we speculate that this was due to propagation
of the gear damage starting in the initial measurements, whereafter it stabilised until the
crack reached its critical length.

Comparing the results against the results obtained with the raw signal in Figure Ap-
pendix C, it is evident that the proposed method highlights the fault information in the
vibration signal and makes it possible to see the degrading gear component.

4.3. Distributed gear damage experiment

Distributed gear damage modes such as pitting are very frequently encountered in crit-
ical rotating machines such as wind turbine gearboxes [26]. The distributed gear damage
can result in localised gear damage to develop, which could lead to the failure of the gear-
box. Hence, distributed gear damage is also very important to detect, especially under
time-varying operating conditions.

The gear of the monitored gearbox was replaced with a healthy gear and tested again.
In the healthy and the testing dataset all operating conditions in Figure 7 are considered.
Forty measurements were again taken from the healthy gearbox whereafter the gearbox
was disassembled and replaced with a different gear that was left in a corrosive environment
for a long time. This gear is presented in Figure 13(a), where the surface damage is clearly
seen. The damaged gear was tested for approximately eight days before the experiment
was stopped due to excessive vibrations that were measured on the gearbox. This damaged
gear after the completion of the experiment is presented in Figure 13(b). After inspecting
the data, it was observed that the gear experienced a tooth failure at approximately the
100th measurement of the 200 considered in this work, which resulted in the higher loads
and impacts on the adjacent teeth. This subsequently resulted in the adjacent gear teeth
to fail in the final stages of the test.

The methodology is again similarly applied as in the previous section, where a threshold
τ(α, f) is obtained of the healthy data, which is subsequently used to calculate the AES
and the sAES. The 200 measurements that were acquired over the life of the gear are
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Figure 13: The gear before the experiment started and after the experiment was completed are presented
in Figures 13(a) and 13(b) respectively. The damaged regions of the gear are clearly highlighted in Figure
13(b).
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Figure 14: The Enhanced Envelope Spectra (EES) and the smoothed Anomalous Envelope Spectrum
(sAES) of the vibration data acquired during the distributed gear damage experiment.

presented in Figure 14 for the EES and the sAES. Both the EES and the SAES are able to
detect the gear damage components at 1.0 shaft orders and its harmonics, but the sAES
contains much lower noise levels. The benefit of the lower noise levels is highlighted when
investigating the condition indicator of the EES and the sAES.

The condition indicators of the EES in Figure 15 contains much noise and it is difficult
to detect the deterioration of the gear over time. This is in contrast to the results obtained
with the sAES condition indicator that is presented in Figure 15. The CI of the sAES is
clearly larger than the threshold, which is indicative that the gearbox contains anomalous
behaviour. The changes of the CI of the sAES over time, indicates the degradation of the
gear, with the two events associated with the failure of the gear teeth seen at approximately
the 100th measurement number and the 175th measurement respectively. Hence, the
proposed method results in a significant improvement.

The sAES is therefore very capable of not only detecting that there is damage present
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Figure 15: The blind condition indicators calculated with the EES and the sAES are presented over
measurement number for the distributed gear damage experiment.

in the system, but it is also possible to determine the cyclic orders of the anomalous
component and it is possible to identify when the gearbox is deteriorating over time.

4.4. Healthy gearbox

Vibration data from a healthy gearbox are investigated in this section. This vibration
data were not used for estimating the threshold τ(α, f), i.e. we did not use the training
data. The integrated spectra (i.e. EES, AES and sAES) are presented for two measure-
ments of the healthy gearbox in Figure 16. The EES is dominated by the 5.72 shaft
orders component. The AES contains spurious anomalous components at different cyclic
orders, however, these components are random and are removed in the smoothing process
as shown in the sAES. The spurious components are attributed to the vibration data from
the gearbox being random and the OFSCoh being very sensitive to weak components.

The condition indicators associated with the EES and the sAES are also presented in
Figure 16. The EES contains some random fluctuations, but does not have an increasing
trend. In contrast the sAES is 0 for all measurements. This is attributed to the removal
of the dominant healthy components by the AES, whereafter the smoothing operation
removes the spurious noise components. The results therefore indicate that the proposed
method allows us to distinguish between a healthy gearbox and a damaged gearbox.

5. Conclusions and recommendations

A new methodology is proposed in this work to perform fault diagnosis under time-
varying operating conditions. This methodology does not require much knowledge about
the kinematics of the machine (i.e. it is blind) nor much human effort to interrogate the
results. In this methodology, the order-frequency spectral coherence and healthy histor-
ical data are used to calculate an anomalous envelope spectrum, a smoothed anomalous
envelope spectrum and a condition indicator. These representations can be used for not
only detecting damage in the rotating machine, but it can also be used to identify the
damaged components and be used to perform fault trending. The methodology is investi-
gated on a numerical gearbox dataset and three experimental datasets, where it is shown
that the proposed method has much potential for performing condition monitoring under
time-varying operating conditions.

Future work would investigate and compare different methods of modelling the healthy
spectral coherences under time-varying operating conditions (e.g. different threshold se-
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Figure 16: The Enhanced Envelope Spectra (EES) and the smoothed Anomalous Envelope Spectrum
(sAES) and their corresponding condition indicators are presented for the vibration data acquired from
a healthy gearbox. The healthy gearbox data were acquired from a different experiment compared to the
data used in the training procedure.
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lection procedures) and also recalibration procedures of the threshold if the gearbox was
assembled and disassembled during the monitoring period.

Appendix A. Threshold selection motivation

If the ξth percentile is used in Equation (10) with κ = 1 there would be 100− ξ% false
positives during monitoring. This would therefore result in regular false alarms and should
be avoided. The number of false positives can be reduced by selecting κ > 1. In general,
care should be taken when selecting κ > 1 as this result in extrapolation. However, this
is sensible for this application, because of the following reasons:

• The OFSCoh is very sensitive to weak components and therefore large changes are
expected in the OFSCoh if damage is present, i.e. it would exceed the threshold
even if κ > 1.

• The distribution of the OFSCoh is known to be chi-squared distributed [7, 10].

In Figure A.17(i), the false positive rates are presented as a function of κ for different
distributions. The probability distribution of the OFSCoh is expected to be chi-squared
distributed with two degrees-of-freedom if the length of the signal is very long [7, 10]
and it is not expected to be uniform, Gaussian or Laplacian distributed. If κ = 4, then
very few false positives are expected. However, since the OFSCoh is very sensitive to weak
damage components, it will still make it possible to detect the damaged components. This
is proven by the results in the main document.

Ultimately, the threshold is estimated from a limited number of healthy measurements.
This makes the threshold τ a random variable with an underlying sampling distribution.
In Figure A.17(ii), the results are presented for the case where we use the 5th and 95th
percentile of the sampling distribution of τ as a threshold. The performance of the method
is clearly dependent on the number of measurements that are used to estimate the thresh-
old. However, by using κ = 4 on the OFSCoh data, the results are sufficient for this
application.

Appendix B. Phenomenological gearbox model

The model used in this work is based on the model used in Ref. [4]. However, it is
important to summarise the signal components for understanding the model. The casing
vibration signal of the gearbox with bearing damage can be decomposed as

xc(t) = xgmc(t) + xdgd(t) + xb(t) + xn(t), (B.1)

The gear mesh component is attributed to the deterministic gear mesh interactions and
is calculated with

xgmc(t) = M (ω(t)) · hgmc(t)⊗
(
Ngmc∑
k=1

A(k)
gmc · sin

(
k ·Nteeth ·

∫ t

0

ω(τ)dτ + ϕ(k)
gmc

))
, (B.2)

where M (ω(t)) = ω2 simulates the dependence of the signal-component to rotational
speed. The impulse response function hgmc(t) is approximated with a single degree of
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Figure A.17: In Figure A.17(i) the probability of a false alarm is presented for different distributions,
calculated using samples from the same distribution as a function of κ in Equation (10). In Figure
A.17(ii), the probability of a false alarm is presented for a chi-squared distribution for two degrees of
freedom as a function of N using the 5th and 95th percentile of the sampling distribution for calculating
the threshold. This illustrates the variance in the results that can be expected when using a limited
number of samples for estimating the threshold τ with κ = 4.

freedom system with a natural frequency of 2000 Hz and a damping ratio of 0.05. The
amplitude and phase of the ith gear mesh component are denoted by A

(k)
gmc and ϕ

(k)
gmc

respectively. The instantaneous gear mesh frequency is calculated with Nteeth ·ω(t), where
Nteeth is the number of teeth on the gear.

The random gear component is attributed to distributed gear damage and is calculated
with

xdgd(t) = M(ω(t)) · hdgd ⊗

εσ(t) ·
Ndgd∑
k=1

A
(k)
dgd · sin

(
k ·
∫ t

0

ω(τ)dτ + ϕ
(k)
dgd

) , (B.3)

which has the same form as the gear mesh component, except for the additional variable
εσ(t). The variable εσ(t) is sampled from a standardised Gaussian and simulates the
interactions between the damaged gear teeth during meshing. The single degree-of-freedom
impulse response function of the distributed gear damage component hdgd(t) has a natural
frequency of 1300 Hz and a damping ratio of 0.05.

The broadband noise component is calculated with

xn(t) = M(ω(t)) · εσ(t) (B.4)

which consists of standardised Gaussian noise εσ(t) being scaled by changes in rotational
speed with M(ω(t)).

Bearing damage on the outer race of a rolling element bearing would result in impacts
as the rolling elements move in-and-through the defective area. These impacts result in
broadband excitation of the structure as it is filtered from the source of the bearing damage
through the structure to the transducers. The measured outer race bearing damage signal
is simulated with

xb(t) = M(ω(t)) · hb(t)⊗

Nimp−1∑
k=0

A
(k)
b · δ

(
t− T (k)

b

) , (B.5)
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Figure B.18: The signal-to-noise ratio and the Root-Mean-Square (RMS) of the damaged bearing compo-
nent are presented over measurement number. The signal-to-noise ratio is calculated with 10 log10(Eb/En)
where Eb is the energy of the bearing component and En is the energy of the noise component.

where the impulse response function of the bearing damage component hb(t) has a natural
frequency of 7000 Hz and a damping ratio of 0.05. The signal contains Nimp impulses,

with the kth impulse having a time-of-arrival given by T
(k)
b and its magnitude is scaled

with A
(k)
b .

Since it is desired to investigate the ability of the proposed method to perform fault
trending the magnitude of the bearing damage component is scaled as shown in Figure
B.18. The RMS of the resulting bearing signals are also presented over measurement
number.

Appendix C. Experimental results

The root-mean-square of the raw vibration signal; the kurtosis of the raw vibration
signal; and the L2/L1 norm ratio of the SES of the raw order tracked signal are presented
in Figure C.19. The RMS is very sensitive to time-varying operating conditions and do not
clearly indicate that the gear is damaged for the localised gear and distributed gear damage
experiment. The kurtosis performs better than the RMS for both cases, but it contains
much more noise than the condition indicators obtained with the proposed methodology.
The L2/L1 ratio of the SES does not perform well on the considered dataset. Hence, it
is clear that the proposed method performs very well in highlighting that the gearbox is
damaged and that its health is deteriorating over measurement number.
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