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HIGH FREQUENCY INDUCED INSTABILITY IN NYSTROM
METHODS FOR THE VAN DER POL EQUATION*

S. W. SCHOOMBIE! AND E. MARE?!

Abstract. In this paper several Nystrom methods for the van der Pol equation are considered.
In an earlier study by Cai, Aoyagi, and Abe it was shown that the second order Nystrom, or leapfrog,
method fails to approximate the limit cycle of the van der Pol equation, exhibiting a periodic mod-
ulation of the amplitude and sporadic high frequency noise instead. Cai et al. did a linear analysis
and concluded that the spurious behavior was due to the interaction of the main part of the solution
with a high frequency computational mode. In this paper we also apply a third and fourth order
Nystrom method to the van der Pol equation. Numerical experiments show that in these cases the
high frequency mode causes blowup after some time. The onset of the instability can be delayed by
decreasing the time step. We also improve on their analysis of the second order scheme by doing a
nonlinear analysis, to wit a discrete multiple scales analysis. By this means we are able to explain
the spurious behavior of this system completely.
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1. Introduction. The van der Pol equation

d*x odr
(1.1) ﬁfe(lfx)aer z=0,
with
(1.2) 0<e<1,

was first formulated by van der Pol [12] in 1922 in the context of electronic circuits
in vacuum tubes.

This equation is well known to have an unstable equilibrium at the origin of its
phase plane, surrounded by a stable limit cycle. It is a standard classroom exercise
to find an approximate analytic expression for the solution of the equation, using a
multiple scales method [3, 6], namely,

2 cos(wt + ¢)
xr =
V1+(4/ag = 1)e=)
where ag is the initial amplitude.
Thus the limit cycle has a period which is very near to 27 /w and an amplitude

which is very near to 2. To find the limit cycle more precisely, the van der Pol equation
needs to be solved numerically. Various approaches have been used for this purpose.

(1.3) + O(e),
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1148 S. W. SCHOOMBIE AND E. MARE

These include extrapolation-based methods with step size control [2], Runge-Kutta
Nystrém methods [2], the implicit Adams method of order up to twelve, and Gear’s
method for stiff equations [4], among others.

That care must be taken when designing a high order finite difference method for
the van der Pol equation was shown by Cai, Aoyagi, and Abe [1]. They considered a
second order Nystrom method which showed a peculiar type of spurious behavior. Its
solution periodically approaches the correct limit cycle, but then moves away from it
again. They essentially used a linear analysis to explain this phenomenon, ascribing
the spurious behavior to a spurious mode which interferes with the numerical solution.

We investigated this phenomenon further by also applying third and fourth order
Nystrém methods to the van der Pol equation. In these cases we found that the
solution behaved reasonably well for some time, after which there was rapid growth
of a high frequency mode, followed by blowup. By decreasing the time step the onset
of this nonlinear instability may be delayed.

To analyze this type of instability, we considered only the simplest case, namely,
the second order Nystrom, or leapfrog, method used by Cai et al. [1]. We felt that their
linear analysis provides only part of the explanation, and that a nonlinear analysis
would give a more complete picture. This paper attempts to do just that. We use
a discrete version of the multiple scales technique mentioned above to analyze the
difference equation, and finally show that the full explanation is to be found in the
phase plane.

In section 2 we will briefly review the difference scheme considered by Cai et al. [1]
and demonstrate the nature of its spurious behavior, as well as show the behavior of
the third and fourth order Nystrém schemes.

In sections 3 and 4 we then proceed with a nonlinear analysis to explain the
observed phenomena in the case of the second order scheme. The results of the
nonlinear analysis is then related to some numerical results in section 5. Section 6
contains some conclusive remarks.

2. Nystrom time discretizations. Following [1], we rewrite (1.1) as a system
of two first order equations, namely,

dx
2.1 — =
(2.1) prial 2
(2.2) % =e(1 -2y — w’z.

To discretize these equations, we introduce the time step 7, the finite difference ap-
proximations " ~ x(n7) and y" ~ y(n7), and the shift operators E and E~!, defined
for any sequence z™ by

(2.3) Ex" =z"' and E7'z" =az"L
Finally, we define the central divided difference operator
(2.4) 6= (E—-EY/(2r).

2.1. Second order Nystrom discretization (leapfrog). Following Cai et al.
[1], we first discretize the system (2.1), (2.2) by means of a second order Nystrom
method:

(2.5) ox" =y",
(2.6) Sy = e(1 — (z™)?)y" — w?a™.
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F1G. 1. Results when running the difference system (2.5), (2.6) with e = 0.025, w =1, 7 = 0.2,
and 2° =0, y° = 0.5.

This discretization is often referred to as a leapfrog method.
The system of difference equations (2.5), (2.6) can easily be seen to be equivalent
to a single fourth order difference equation,

(2.7) (E* =2+ E~?)z"/(41%)
—e(1— (2™*)(E - E " YHa"/(27) + w?a™ = 0.

Using the following notation for the forward and backward divided difference opera-
tors, respectively,

(2.8) A=(E-1)/r, V=01-EY/r,

we can rewrite (2.7) in the more concise form
2
(2.9) |:AV + T4A2V2} " — (1 — (x")Q)(Sx" + w2 = 0.

To compute a numerical solution from (2.5) and (2.6), we need to specify initial values
2% and yY. Values for 2! and y! are also required, and these are calculated by means
of a second order Runge-Kutta starter with time increment 7. Figure 1 shows the
result of such a computation with e = 0.025, w = 1, 7 = 0.2, and 2° = 0, y° = 0.5.
Initially everything seems to go well, and the solution approaches the limit cycle with
its amplitude at around 2 and remains with it for a while. However, after some time it
leaves the limit cycle and eventually returns to it again. What seems to be a periodic
amplitude modulation is imposed, which is quite spurious.

Cai et al. [1] showed that this spurious behavior is due to the presence of a high
frequency computational mode. They performed a linear stability analysis and showed
that the computational mode starts growing when the amplitude of the numerical
solution reaches a value of about 1/0.8.

The onset of the growth of the high frequency mode can be delayed by decreasing
the time step, as shown in Figure 2, where the time step was decreased to 7 = 0.1.
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F1G. 2. Results when running the difference system (2.5), (2.6) with ¢ =0.025, w =1, 7 =0.1,
and z° =0, y° = 0.5.

2.2. Third order Nystrom time discretization. The order of convergence of
the numerical method can be increased by using a higher order Nystrom discretization.
For a third order scheme the discretization of the system becomes

(2.10) b = %[71;” 2"+,

(2.11) oy" = %[U(I"yy") —2f(a" Ly + "y R,
where

(2.12) fla,y) = el —a?)y — *a.

This time we need to supply two extra initial values, namely, for both n = 1
and n = 2. Because of the increased order of this method we used a fourth order
Runge-Kutta method to calculate these initial values.

Using the same parameters as in Figure 1, we find that the numerical solution
does not stay finite though spuriously modulated as with the leapfrog discretization,
but that it suddenly blows up. The reason for this instability is the same, however: a
sudden growth of a high frequency mode. The result is shown in Figure 3.

Since this is a convergent method, like the leapfrog method above, the onset of
the instability can again be delayed by using a smaller time step. In order to reach
the limit cycle before the high frequency mode grows significantly, we found that a
time step of at most 7 = 0.05 has to be used.

Thus, although a higher order method is used, a much smaller time step is re-
quired in order to find the limit cycle numerically. The high frequency induced (HFI)
instability observed here enforces an upper limit to the time step.
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F1G. 3. Results when running the difference system (2.10), (2.11) with e = 0.025, w =1, 7 = 0.2,
and z° =0, y° = 0.5.

2.3. Fourth order Nystrom time discretization. Applying the fourth order
Nystrom discretization to the system (2.1), (2.2), we get

(2.13) bz = —[8y" — By ' + 4y —y" 7,

(214) 8y = S[87("y") — 5FG ")+ AF @Ry - fE )

with f as in (2.12).

The three extra initial values are again computed with a fourth order Runge-
Kutta method. The results are similar to those of the third order method, except
that the high frequency mode now appears much sooner, again leading to blowup.
Figure 4 shows what happens when 7 = 0.05, and it turns out that the limit cycle
can be reached fairly accurately only for time steps lower than about 7 = 0.01. Thus
the upper bound for the time step is even lower than before.

Having observed the havoc caused by the high frequency spurious mode, the next
thing to be attempted is an analysis of this phenomenon. This is done in the next
section for the leapfrog case.

3. A discrete multiple scales analysis. Since the behavior of the leapfrog
time discretization is the most complicated (the others simply blow up), and since
this is also the simplest difference scheme, we shall attempt an analysis of this case
only.

Since the spurious behavior of (2.9) consists of an amplitude modulation, a mul-
tiple scales analysis would seem to be an appropriate tool to investigate it.

To perform a multiple scales analysis of (2.9) we shall work in direct analogy with
the well-known continuous multiple scales analysis performed for the van der Pol
equation, e.g., [6]. We shall use two discrete time scales, namely,

(3.1) T,=¢€nr, p=0,1,
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Fi1G. 4. Results when running the difference system (2.13), (2.14) with ¢ = 0.025, w = 1,
T =0.05, and z° =0, y° = 0.5.

and consider the expansion [9]
(3.2) x" = x0(Ty, T1) + ex1(To, Th) + O(€2).

We shall also use partial shift operators Er, which we define as
(3.3) Er f(....Tp,...) = f(....,Tp +€'1,...)

in analogy with the temporal shift operator in (2.3). Using the partial shift operator
(3.3) above we also define partial divided difference operators for T},, namely,

(3.4) Az, == (Er, =1)/(¢'1), Vr,:= (1 Ez)/(e'T).
The analogue of the central difference operator 6, defined in (2.4), follows similarly:
(3.5) 6, = (At, + V1,)/2.

Following Schoombie [9, 10] we note the following discrete multiple scales expan-
sion of the differential approximations A and V given in (2.8), namely,

(3.6) A= ATO +e€ ATl ET07 V= VTO + fle Eq_«ol.

By making use of the definition of § in (2.4) and substitution of (3.6) therein, we also
obtain that

(3.7) § = b1, + €/2(Ar, Ex, + Vi, E)).

The equations above are essentially the discrete analogues of the chain rule for differ-
entiation as used in a normal continuous multiple scales analysis.
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We now proceed with our discrete multiple scales analysis. We substitute (3.6)
into (2.9). Note the expansion of the first operator in (2.9):

AV + (72/4)A2V?
(3'8) = AT{)VTO + (7—2/4)A%0v%)
+ E(ATOATI + vTOVT1 + (7—2/2)A%}] VTOATI + (72/2)v%0 ATO le)'

We proceed by collecting terms with equal powers of €. In this way we generate a set
of equations given by

(3.9) Lzy =0,
relevant to O(1), and for O(e),
(3.10) Lz1(To, T1) = R(Ty, Th),
where the difference operator L is defined by
(3.11) Lu(Ty, Th) = (A, Vr, + (72 /4) A, Vi )u(To, T1) + w?u(To, Th)
for any discrete variable u(Tp,Th), and where
R(Ty, ) = —(Ar, A, + V3,V + (72/2) A%, Vi, Ary + (72/2)V5, A, Vi )20
(3.12) + B(1 — x2)é7, 0.
It is easy to see that any real-valued solution of (3.9) must be of the form
(3.13) 2o(To, Th) = a(Ty)e /2 4 (=1)"b(T})e* /2 4 c.c.,
where c.c. denotes the complex conjugate, and where
(3.14) cos(Q7) =1 — 20372

The second term in (3.13) represents the computational wave considered by Cai et al.
[1], the presence of which causes spurious behavior.

If we substitute this expression for z( into the right-hand side of (3.10), we even-
tually find that (neglecting O(€?) terms)

%R(To, T1) = {—sin(Q7)67,a + sin(Q7/2)(a — alal? + 3b%a — 2a|b[?)}e 2 7/2

+ {—=sin(Qr)ép, b + sin(Q27/2) (b + b\b|2 —3a%b+ 2b|a|2)}(_1)neiﬂnr/2
+ sin(Q7'/2)(—a3 + ab2)e3i9m/2
(3.15) + sin(Q¢/2)(b3 — aQb)(_1)”63iﬂm/2 + c.c.,

where the bar indicates the complex conjugate.

To ensure a bounded solution for x1, we need to remove secular terms, which is
done by requiring that the coefficients of both ¢**"7/2 and (—1)“61‘9”7/2 be equated
to zero. This leads to the two ordinary differential equations

(3.16) d' =r(a—ala]* + 3b%a — 2alb|?),
(3.17) v = —r(b— blb|* 4 3a*b — 2b|al?),
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where

1

(3.18) TS o7

and we have noted from the definition of 67, that we can write

(3.19) 61, = (Br, — E.")/(2e7) = 0, + O(€?).
Next we put

1 i6(Ty) 1 i$(Ty)

(3.20) a= ioz(Tl)e , b= iﬁ(Tl)e ,

where o and (8 are real and nonnegative, and 6 and ¢ are real. This enables us to
write zg in the real form

(3.21) zo(To, T1) = acos(Qnt/2 + 0) + (—1)" B cos(Qn7/2 + ¢).

When we put (3.20) into (3.16) and (3.17), and separate real and imaginary parts, we
finally obtain the following coupled system of nonlinear ordinary differential equations:

(3.22) o =ra(l—a?/4—-p3%/2) + Zmﬂ? cos(2¢ — 26),
(3.23) B = —rB(1— B2/ — a?/2) - grﬁoﬂ cos(26 — 20),
(3.24) 0 = %7"52 sin(2¢ — 20),

(3.25) ¢ = %raE sin(2¢ — 20).

4. Amplitude dynamics. The system (3.22) through (3.25) can be reduced to
three equations by introducing the variable v = cos(2¢ — 26):

(4.1) o =ra(l —a?/4—53%/2) + ZrozﬁZ’y,
(4.2) B = —rB(l— @/4—a?/2) - %rﬂa%,
(43) o = (@ - a1 - 7).

As far as the orbits of this system are concerned, we will be interested only in the
orbits within the region « >0, >0, -1 <y < 1.

First consider the orbits for which the projections on the a3-plane are along the
a-axis (i.e., 8 =0). For these the system (4.1)—(4.3) reduces to the two equations

(4.4) o =ra(l—a?/4),
(4.5) 7Y ==(3/2)ra*(1-?).
Equation (4.4) has the solution

2 2

(4.6)

a= = 7
V1+(4/a2 —1e 2Tt /1 + (4/a2 — 1)e=2renT
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where
(4.7) a(0) = ap,

which is very close to the amplitude in (1.3), since 2r = 1 + O(7?) from (3.18).
Equation (4.5) shows that if |y(0)| < 1, v will decrease monotonically and eventu-
ally approach the limiting value of v = —1. This orbit therefore ends at the unstable
equilibrium point (2,0, —1).
For the rest of the orbits in the quarter cylinder, it is convenient to transform to
cylindrical coordinates, i.e., the coordinates (R, ©,), where

(4.8) o= RcosO,
(4.9) (= Rsin0®.

In terms of these coordinates, the system (4.1)—(4.3) then becomes

(4.10) R =7rR(1 — R?/4) cos(20),
(4.11) 0 =—r [1 - 232(1 - 7)] sin(20),
(4.12) v = —grRZ(l — %) cos(20).

This system can be solved analytically. First we eliminate © by dividing (4.12) by
(4.10) to get the differential equation

dy _ 3R(1-7?)
(4.13) dR 2 1-R2/4°

This can easily be solved by separation of variables to give the following relationship
between v and R:

C(1—R2/4) —1

(4.14) TTCA-RYAOS+ U

where C' is a constant defined by

(1+0)
(1 —=0)(1 - R§/4)’

which is positive since —1 < 9 = 7(0) < 1. We note that in the limit if R — 2, then
v — —1.

Note that (4.14) defines a family of nonintersecting surfaces, which are all tangent
to the curve

(4.15) C =

R=2 ~ry=-1, 0<O©<n/2

Figure 5 shows some of these surfaces.
If we now substitute the relationship (4.14) into (4.10) and (4.11), we get the
system

(4.16) R =7rR(1 — R?*/4) cos(20),
3R?

(4.17) O =1 e = rEa £ 1]

sin(20).
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F1G. 5. Two of the surfaces defined by (4.14), namely, for C =5 and for C = 70.

This system describes the projection on the aB-plane of all orbits intersecting the
circle arc

(4.18) R=Ry, 0<O©<7/2, v=n,

defining C' in (4.15).

Since we are primarily interested in the interaction of o and 3 (and therefore that
of R and ©), this dynamical system is of particular interest to us, and it is worthwhile
to examine its dynamics in some detail.

In the quadrant 0 < © < 7/2 the system has the equilibrium points

(R,0) = (0,0), (2,0), (2,7/2),
as well as the point where © = 7/4 and
(4.19) 3R% = 4[C(1 — R*/4)% +1].
If we put u = 1 — R?/4, where u < 1, (4.19) can be written in the simpler form
(4.20) Cu® =2 — 3u.

As can be seen clearly from Figure 6, the curve representing the left-hand side
of (4.20) and the line representing the right-hand side have two real intersections for
each value of C, namely, u; > 0 and us < 0. This corresponds to two equilibrium
points (Ry,7/4) and (Rg,7/4), such that Ry < 2 and Ry > 2. Clearly, if C — 0, then
u; — 2/3 and Ry — 2/v/3, while up — —o0 and Ry — oo. Also, if C' — oo, then
both u1,us — 0 and Ry, Ry — 2. Thus

(4.21) 2/V3< R <2, 2<Ry< oo,

with the equalities achieved when 79 = —1 (so that C = 0) and 79 = 1 (so that
C = o), respectively.
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Fi1G. 6. The two real solutions uz < 0 and ui > 0 of (4.20), shown here for C = 2.

The points (R, ©) = (0,0), (2,0), and (2, 7/2) are easily seen to be saddle points.
We shall show that the remaining two equilibrium points of the projected system are
both surrounded by closed orbits, and are therefore centers.

It is also easy to see that the lines ©® = 0 and © = 7/2 are orbits, directed
away from and towards the origin, respectively, as well as the circle segment R = 2,
0 < © < /2, in a counterclockwise direction.

The rest of the orbits can be found from the differential equation

du  2u(l —u)(Cub + 1) cot(20)

(4.22) 0 CuS+1-31-u)

obtained by dividing (4.16) by (4.17) and putting
u=1-R?/4.

Integrating this by separation of variables yields the orbit equation

6
(4.23) In(sin20) = In 7 3 o %ln <lflé’u6> -+ constant,
or
(4.24) L/ 1+ Cub = u*(1 — u) sin(20),

where L is a constant which is nonnegative for orbits in the region under consideration.
(Note that (4.24) is also true for C' = 0, i.e., v = —1. According to (4.12) these are
planar orbits.)

To investigate the nature of these orbits, we first note that (4.22) shows that for
u<1and C >0,

du
(4.25) 0= 0 when © =m/4.
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The extremes of u are therefore on the line © = 7 /4 and are defined by

(4.26) u*(1 —u) = L1+ Cub

or, equivalently, are given by those zeros of the polynomial

(4.27) f(u) = (L2C — 1)ub + 2u® —u* + L2

which are less than one. Now since

(4.28) f'(u) = 2u3[3(L*C — 1)u® + 5u — 2],

the critical points of f are at v = 0 and v = u+, where

(4.29) wy = 2= V1+ 2450
6(L2C —1)

For all L > 0, uy is always a local minimum, with

(4.30) <2/3<1.

4
0<uy =
= 5+ VI+24L20)
On the other hand, when L?C > 1, u_ is a local minimum with

5+ V1 +24L2C
431 T e i
(431) “ 6(1—120)

while if L2C < 1, u_ is a local maximum and u_ > 1.

Thus the nature of f, and therefore of its zeros, depends very much on whether
L?C > 1or L?C < 1. If L?>C < 1, i.e., for 0 < L < 1/+/C, the graph of f is as in
Figure 7.

There is then always one and only one negative zero, signifying a single extreme
value for u and hence an open orbit in the region R > 2. There are no positive zeros at
all, unless L < Ly, where L, is that value of L for which f is tangent to the horizontal
axis at uy (see Figure 7(b)). For L < Ly there are two positive zeros of f less than
one (Figure 7(a)), signifying two extremes in u in the region R < 2, and thus a closed
orbit. When L > L1, the function f is positive for all positive u (Figure 7(c)), and
hence for all R < 2. Since this also implies that sin(20) > 1, there are no orbits in
this region for these values of L. Hence all orbits inside the quarter circle R < 2,
0 < © < /2 are closed. However, there are open orbits in the region R > 2 for the
entire range of values of L between 0 and 1/v/C.

When L2C > 1, i.e., L > 1/4/C, the graph of f is as in Figure 8.

There are no positive zeros of f less than one at all, and negative zeros only if
L < Lsy, where Lo is that value of L for which f is tangent to the horizontal axis at
u_ (Figure 8(b)). If 1/v/C < L < Lo, there are two negative zeros, signifying closed
orbits in the region R > 2 (Figure 8(a)). For L > Lo, the function f is positive for
all u (Figure 8(c)), which means that there are no orbits at all for these values of L.

To find Ly and Ly, we return to (4.26). The function f will be tangent to the
horizontal axis when the functions f; = u?(1 — u) and fo = L+/1 + CuS are tangent
to each other. If we suppose that the tangent point is at u = v, corresponding to
L = L*, then v and L* may be found by solving the two equations

(4.32) v (1 —v) = L*/1+ Cvb,
3CL* P

4.33 -3t =
( ) V14 Cvb
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-0.05
-1 -05 0 0.5 1

F1Gc. 7. The function f as defined in (4.27) for C = 16 and for (a) L = 0.07 < Ly, (b) L =
0.1135 = L1, and (¢c) L =0.15 > Li. In all three cases L2C < 1.

(a) (b)
1 1
0.5 / 0.5 J
- 0 - 0
-0.5 \/ -0.5
1 -1
-2 -1 0 1 -2 -1 0 1
u u
©
1
0.5 L /
- 0
-0.5
-1
-2 -1 0 1

F1Gc. 8. The function f as defined in (4.27) for C = 16 and for (a) L = 0.4 < La, (b) L =
0.5055 = Lo, and (c) L =0.55 > Lo. In all three cases L2C > 1.

from which we find, by eliminating L*, that v satisfies
(4.34) 2 —3v=C15,

which is just (4.20). Thus v = uy,us and L* = Ly, Lo, respectively, and the tangent
points are the centers (R, ©) = (R;,7/4), i = 1,2, of the projected system. Also

o (Ui)2\/1 — U;
(4.35) L, = 7\/3 ]
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(@)

-0.5 0.5

F1G. 9. Three-dimensional phase diagram (a) as well as its projection (b) on the afB-plane for
C =10.

Thus the orbits may be classified as follows:

o L =0: The saddle points (R, ©) = (0,0), (2,0), (2,7/2), and the orbit R = 2,
0 < © < /2. (Note that from (4.15), whenever R = 2, v = —1, so that these
saddle points will correspond to the unstable equilibrium points («, 8,7) =
(0,0,(C = 1)/(C +1)),(0,2,-1),(2,0,—1) of the three-dimensional system
(4.1)-(4.3).)
0 < L < Ly: Closed orbits for R < 2, open orbits for R > 2.
L = Ly: Center at R = R1,0 = w/4 and an open orbit in the region R > 2.
L1 <L< 1/\/6: Only open orbits in the region R > 2.
1/\/5 < L < Ly: Only closed orbits in the region R > 2.
L = Ls: Center at R = Rs, O =7/4.

e L > Ly: No orbits.
From (4.22) we can also see that % will be zero if Cu®+3u—2 = 0or u = uy, us.

Then the extreme values of © on the orbit are given by

(4.36) sin20, = L/L;, i=1,2,
i.e.,

(4.37) Oumme = 7/2 — %arcsin(L/Li),
(4.38) Ouin — %arcsin(L/Li).

A typical phase diagram, both in three-dimensional phase space and as projected
on the afB-plane, is shown in Figure 9 for C' = 10.

5. Application to the leapfrog method. Having studied the dynamics of the
amplitudes of the two interacting waves in general, we can now relate it to the actual
numerical results obtained when solving (2.5) and (2.6). It should be remembered
that the values of y' and ' must be found by using some one-step method like the
Euler method or one of the Runge-Kutta methods before the leapfrog method can
start. Because of this, the computational wave is present from the outset, as we will
demonstrate below.
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Fic. 10. Orbit in three dimensions, and projected on the afB-plane, for an Euler starter and
7=0.2,e=0.025w=1,20=0,9° =0.5.

To find the initial amplitudes a(0) = oy and 5(0) = [y, as well as the initial
phase angles 6y and ¢ (and hence also vy), we put

(5.1) z" = ag cos (QZT + 90) + (=1)"Bo cos <Q;T + ¢o>

for n = 0,1,2, and 3. (Here we assume that e is small enough so that the functions
depending on T, i.e., a, 3, 6, and ¢, do not change significantly over three time steps.)
Note that 2% and y° are the given initial conditions, and ', z2, and =3 depend on the
actual starter scheme used. By solving for ag cos 6y, ag sin 6y, Gy cos ¢g, and [y sin ¢g
first, we need only solve a linear algebraic system. Eventually we can then find Ry,
Oy, and 7, and hence the orbit parameters C' and L.

For 7 = 0.2, ¢ = 0.025, w = 1, 2% = 0, 4 = 0.5, and an Euler starter, the initial
amplitudes and phases were

(5.2) ao = 0.50809,
(5.3) Bo = 0.0040,
(5.4) 0o = —1.5718 radians,
(5.5) ¢o = —1.4428 radians.

Thus the computational wave has a small but significant amplitude §; initially. The
initial orbit polar coordinates are then

(5.6) Ro = 0.5089,
(5.7) O = 0.0079 radians,
(5.8) ~o = 0.9669,

from which the orbital parameters of this numerical solution can be calculated as
C = 88.8002 and L = 0.00011453. The resulting orbit and its projection in the
af-plane are shown in Figure 10.

We also used both a second order and a fourth order Runge-Kutta starter. The
initial phases and amplitudes for these are given in Table 1.

The corresponding orbits are shown in Figures 11 and 12.

When comparing Figures 10, 11, and 12, we note that the projection of the
orbit on the af-plane looks virtually the same in all three cases, but that the full

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



1162 S. W. SCHOOMBIE AND E. MARE

TABLE 1
Orbital parameters for different starter schemes.

Starter o Bo 0o %0 Ro Ao Yo C L
2nd order RK | 0.5038 | 0.00117 | —1.5715 | 1.2499 | 0.5038 | 0.0023 | 0.8019 | 13.4768 | 0.000083
4th order RK | 0.5038 | 0.00132 | —1.5722 | 1.0015 | 0.5038 | 0.0026 | 0.4215 | 3.6407 | 0.000160

o
-
N
w

Fic. 11. Orbit in three dimensions, and projected on the af-plane, for a second order Runge—
Kutta starter and 7 = 0.2, e = 0.025, w =1, 20 = s yo =0.5.

Fic. 12. Orbit in three dimensions, and projected on the afB-plane, for a fourth order Runge—
Kutta starter and 7 = 0.2, € = 0.025, w = 1, 0 = 0, y° = 0.5.

three-dimensional orbit varies significantly. The more inaccurate the starter scheme
is, the more variation there seems to be in 7, and hence in the phase angles 6 and ¢.

From the actual orbits it is easy to find the point where the computational wave
starts to grow. Cai et al. [1] calculated that this happens when a = /0.8 = 0.8944.
Our nonlinear analysis allows us to be more precise by finding the lowest point of a
particular orbit. In fact, we can already see that the computational wave is initially
damped, until the damping eventually becomes an amplification. In Table 2 we list,
for each of the three starter schemes and the parameter values and initial conditions
as before, the point a = aj, where the amplitude 3 of the computational wave reaches
a minimum value of #*. At this point the computational wave starts growing, albeit
very slowly at first. We also list the point a = o where the amplitude ( first exceeds
the value of 0.01.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



SPURIOUS SOLUTIONS 1163

TABLE 2
The point a = aj on the orbit where B reaches its minimum (3*, together with the value o of
«, where 3 first exceeds 0.01 for the three different starter schemes, and T = 0.2, ¢ = 0.025, w =1,
0 _ 0 _
¥ =0, y’ =0.5.

Starter ol ol B8*

Euler 1.4450 | 1.8866 | 0.000996
2nd order RK | 1.2507 | 1.9043 | 0.000465
4th order RK | 1.1065 | 1.8655 | 0.000713

We see that af is sensitive for the particular starter scheme used, whereas a3
does not vary very much. From Table 1 we see that C' decreases with the accuracy of
the initial values 2! and y'. Tt is worthwhile to note at this point that if C' = 0 (and
therefore v = —1 throughout), then if we consider an orbit close to § = 0, by putting
B = e < 1, then (4.2) becomes

(5.9) ¢ =re(5a?/4— 1),

showing that o} would take on the value of v/0.8 predicted by Cai et al. Their value
is therefore a limiting value. In practice, growth of the computational wave starts a
bit later. In practical terms, for the type of accuracy expected from a second order
method and a time step of 0.2, the computational wave will start to cause trouble
only when its amplitude becomes larger than about 0.01, i.e., about 0.5% of the limit
circle amplitude. This does not happen before the solution gets very close to the
limit cycle, i.e., at about = 1.9. Up to then the effect of 8 in (3.22) and (3.24) is
negligible, so that the phase angle # is virtually constant, and the amplitude of the
solution is given by (4.6), which is as near to the analytic solution as can be expected
from a second order method. In other words, the numerical solution is quite sound
and useful until it very nearly reaches the limit cycle.

We may also note from the phase diagram in Figure 9 that when we start with
initial conditions which leads to an initial amplitude larger than that of the limit
cycle, the open orbits in the region R > 2 imply eventual blowup. To test this, we
used the parameter values we used before, but changed the initial values to z° = 5,
y? = 0. With a second order Runge-Kutta starter, the numerical results are shown
in Figure 13.

The computational wave is clearly seen to become significantly large quite early,
causing a blowup of the solution at about 50 time units. The orbit parameters for
these parameter values and initial conditions turn out to be C' = 3.1070 x 10~% and
L = 5.2642. For this low value of C, closed orbits in the region R > 2 start only
at about L = 567, so that this orbit is definitely open. Figure 14 shows this orbit,
both in three dimensions and projected on the af-plane. The point on this orbit
where § is a minimum is at & = af = 6.82. Since the initial point on this orbit
is further along, the computational wave is amplified from the very start, where it
already has an amplitude of 0.08. Thus, for these particular initial conditions, the
numerical solution is useless.

Finally (4.12) implies that there is another set of planar orbits besides v = —1,
namely, those on the plane v = 1 (C' = o0). Then, according to (4.11), ©' < 0 on
(0,7/2), and hence (3, monotonically decreases for all orbits on this plane. Thus the
computational wave will cause no problems as long as v = 1 (i.e., § = ¢). Unfortu-
nately these orbits are structurally unstable. The smallest deviation from v = 1 will
move the solution to one of the other C-surfaces, and hence lead to growth of (.
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F1G. 13. Results when running the difference system (2.5), (2.6) with ¢ = 0.025, 7 = 0.2, and
0 _ 0 _
z” =5, y° =0.
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Fic. 14. Orbit in three dimensions, and projected on the af-plane, for a second order Runge—
Kutta starter and 7 = 0.2, e = 0.025, w =1, 29 = 5, 40 = 0.

6. Discussion. In this paper we demonstrated that attempts to calculate the so-
lution of the van der Pol equation by means of several Nystrém methods of different
orders lead to nonlinear instabilities caused by sudden growth of a high frequency
mode. This high frequency induced (HFI) instability can be delayed simply by de-
creasing the time step. Thus it is always possible to calculate the limit cycle accurately,
provided a small enough time step is used. Time step restrictions get more severe as
the order of the method is increased.

As far as the analysis is concerned, we first improved upon the work done by Cai
et al. [1], in the sense that by doing a full nonlinear analysis of the amplitude dynamics
of the second order Nystrom difference scheme (2.5), we were able to fully explain the
observed spurious amplitude modulation imposed by it, and also to assess the extent
to which this scheme could still be useful as a second order numerical method.
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We also demonstrated the use of a discrete multiple scales technique combined
with a phase plane analysis to analyze such a nonlinear difference scheme. These tech-
niques will certainly also be applicable to other numerical methods for the van der Pol
and other nonlinear differential equations, and indeed to nonlinear models which are
discrete to start with.

The fact that leapfrog time discretizations could cause spurious behavior has been
known for some time [7, 8, 11], and Sanz-Serna [7] and Sanz-Serna and Vadillo [8]
did a phase plane analysis in some simpler cases. Of course, in the case of (2.5) the
problem is much more complicated, since it is not the behavior of the solution itself
which needs to be analyzed (as in the cases studied by Sanz-Serna and his coworkers),
but rather that of its amplitude, which makes it necessary to use a discrete multiple
scales method first.

In a case such as Duffing’s equation, which models oscillations but does not have
a limit cycle, we found that the HFI instabilities were less severe, in the sense that it
seems to be totally absent in the case of the second order Nystrém scheme, although
still present in the case of the higher order methods.

We also observed HFI instability where Nystrom methods were applied to other
cases where limit cycles occurred in the dynamics of the solutions. One such case was
a predator-prey system described in [5, Chapter 3, section 3.3]. An analysis of these
and other cases is currently under way and will be discussed in forthcoming papers.
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