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1. INTRODUCTION* 
 
The assumption of normal returns remains ubiquitous 
in much of modern finance. In the pricing of conditional 
liabilities, for example, we frequently assume that 
logarithmic returns are normally distributed. Many risk 
management metrics, such as Value at Risk (VaR), 
and performance metrics such as Sharpe ratios also 
assume normally distributed movements. 
 
There is however evidence, that financial market 
returns display leptokurtotic behaviour (also known as 
heavy tailed behaviour). This was already noted by 
Fama in 1965. More recent work includes, for 
example, Campbell, Lo and Mackinlay (1997), Duffie 
and Pan (1997), Focardi and Fabozzi (2003), 
Huisman, Koedijk and Pownall (1998), Johansen and 
Sornette (1999) and Longin (1996).  
 
Consider, for example, recent events in the South 
African equity market. During the month of June 2006 
the market experienced high levels of volatility. The 
largest downward move in the FTSE/JSE TOP40 index 
was of the order of five standard deviations, roughly a 
7% decrease. If returns were normally distributed this 
event would only be expected to occur approximately 
once every 52 000 years … 
 
In general the distributions of market movements have 
heavier tails than allowed for under the normality 
assumption. In this paper we focus on a method that is 
particularly suitable to modelling large movements with 
little history, namely extreme value theory (EVT). 
 
We begin with a short description of extreme value 
theory followed by an application to the South African 
FTSE/JSE TOP40 equity index. We also provide 
comparisons between movements predicted by the 
normality assumption and those predicted using 
extreme value theory. We provide some “backtesting” 
results to highlight the differences. 
 
2  EXTREME VALUE THEORY 
 
Predictive power is one of the main goals in modelling. 
This normally takes the form of fitting some equation or 
known distribution to observed data points. For 
example, when trying to predict the probability of a 
wave being six feet high during high tide the customary 
approach would be to fit the normal distribution to the 
heights of all the waves on the beach in question. The 
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probability can then easily be calculated. The 
probability that it reaches a height of forty feet is 
typically very small and this is said to lie in the tail of 
the distribution.  
 
The disregard of extreme values in the statistical 
literature and frequently in practise can probably be 
traced back to comments made by Fourier around 
1824. His comments resulted in what is known as the 
three standard deviations rule, which suggests that all 
observations more than three standard deviations from 
the mean can be neglected. 
 
However, should we link a potential catastrophe to a 
forty foot wave, accurate modelling of the tail becomes 
important as catastrophes could lead to large losses. It 
would be ill-advised to assume normality, and ignore 
the potential for a catastrophe. We therefore need a 
method that can adequately model the tail. 
 
Extreme value theory is a statistical technique that is 
especially useful in modelling the tail of a distribution. It 
has been applied in many areas including hydrology, 
oceanography and structural engineering. More 
recently it has found a number of applications in 
finance (See, for example, Embrechts, Klüppelberg 
and Mikosh (1997), McNeil (1997, 1999) and Gençay, 
Selçuk and Ulugülyağci (2002) for applications in 
insurance and financial risk management.) EVT 
focuses on the observations that lie in the tail and 
attempts to fit a distribution to these observations. It 
then provides the functionality to extrapolate into 
unknown areas of the tail. 
 
In the financial markets we typically consider returns. A 
return that is out of the norm, e.g. a 7% movement in 
the FTSE/JSE TOP40 index, could result in a large 
loss or a large gain depending on the position held. 
Such a movement typically lies in the tail of the 
FTSE/JSE TOP40 index’s return distribution.  
 
There are two well known methods of applying EVT, 
the Block Maxima approach and the Peaks Over 
Threshold approach. The group of models for 
threshold exceedances are more modern and powerful 
than the Block Maxima models (McNeil, Frey and 
Embrechts, 2005) and so we focus on this approach 
and its application to the returns on the FTSE/JSE 
TOP40 index. 
 
3. APPLYING EXTREME VALUE THEORY TO 

THE FTSE/JSE  TOP40 INDEX 
 
We used 10 years of daily FTSE/JSE TOP40 closing 
index data, covering the period 1996 to 2006. The 

DC Wentzel and E Maré* 



Extreme value theory – An application to the South African equity market 
 

 
74 Investment Analysts Journal – No. 66 2007 

analysis was conducted using the statistical package R 
combined with the Extreme Values in R (EVIR) 
package. Although we used log returns in our analysis 
below, the tabled results have been converted to 
actual return figures. Furthermore, we converted the 
negative log returns to positive log returns to ease the 
calculation in R and hence we talk about positive 
decreases. In all cases we worked with daily return 
figures. 
 
The Peaks Over Threshold approach attempts to fit the 
generalized Pareto distribution (GPD) to the 
observations that exceed some predetermined 
threshold (McNeil et al 2005). The distribution function 
of the GPD is given by 
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where the parameters ξ and β are referred to, 
respectively, as the shape and scale parameters. We 
refer to the threshold as u. The methods used to fit the 
GPD have been thoroughly documented (Embrechts et 
al (1997)) and we used the maximum likelihood 
method in R to fit the distribution. The maximum 
likelihood method is the most general fitting method 
used in statistics. 
 
The choice of threshold, however, remains subjective 
(McNeil 1999), so we performed exploratory data 
analysis in R to aid in the threshold choice. 
 
The data analysis commences with a QQ-plot against 
the exponential distribution. 
 
Quantiles above the exponential quantiles indicate that 
the data exhibits a heavier tail than that of an 
exponential distribution. As expected our data 
indicates a heavier tail. We now proceed to choose our 
threshold level. 
 
Mean excess plots are used to decide on a suitable 
threshold level. In general if the plot has a positive 
gradient and follows a straight line above a certain 
level, we can assume the data follows a GPD above 
the particular level (McNeil et al 2005). We then test 
this level as a threshold. The following two figures are 
mean excess plots where we omitted firstly the three 
greatest (Figure 2) and then the hundred greatest 
(Figure 3) returns. 
 
Clearly choosing a threshold based on analysing the 
figures is difficult. It is important to keep in mind that by 
choosing a lower threshold a better fit is obtained but 
one risks losing the extreme behaviour of the tail. 
Similarly choosing too high a threshold will result in an 
inadequate fit. We settled on a threshold of 0,0165 as 
the plot in Figure 3 tends to behave in a linear fashion 
with a positive slope beyond this level. Figure 4 shows 

the results of our fit as we plot the observed returns 
against the fitted tail based on our estimated 
parameters (ξ = 0,30, β = 0,00759 and u = 0,0165). 
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Figure 1: QQ plot against exponential distribution 
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Figure 2: Sample mean excess plot, omitting 3 
largest observations 
 
 
4. DISTRIBUTIONS OF FTSE/JSE TOP40 

RETURNS 
 
We now focus on some results obtained by applying 
EVT. For ease of illustration, results are expressed as 
a probability in the form of once in x years for a 
specified decrease in the FTSE/JSE TOP40 Index. We 
also calculate the 1st percentile to serve as a 
comparison against “normal” movements. This 
assumes 250 trading days per annum. The results 
obtained are compared to the equivalent results under 
the normal distribution assumption and are shown in 
Table 1. 
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Figure 3: Sample mean excess plot, omitting 100 
largest observations 
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Figure 4: Performance of fit in the tail area 
 

 
The differences are not difficult to spot. Under “normal” 
market conditions, for a movement we expect once 
every 100 days (1st percentile), the results appear 
similar. As soon as we expand the movement to, say, 
three standard deviations, the differences become 
more pronounced. The normal distribution basically 
implies that market decreases of 10% (or more) will 
not happen in our lifetime, perhaps not even in the 
lifetime of our solar system, yet a 13% index 
movement did occur in 1997. Analyses based on the 
assumption of normal returns could therefore be 
flawed as a result of the normal distribution’s inability 
to cater for the observed heavier tails.  
 
We are not advocating the abolishment of the normal 
assumption, as EVT also has its own built-in flaws. We 
merely highlight that large movements may (and do) 

occur with relatively high probability contrary to the 
belief of many who find moves typically above 5 
standard deviations unimaginable.  
 
To verify the substantiality of our results we performed 
some “backtesting” to assess the goodness-of-fit of the 
EVT model. 
 
5. COMPARISON AND BACK-TESTING THE 

MODEL 
 
In this section we present the results of a comparison 
between EVT, the normal assumption and the 
observed distribution and comment on the results 
obtained when testing EVT and the normal assumption 
(based on 1996 to 2001 movements) against the 
movements that occurred in the period 2001 to 2006. 
 
We compared the probability of an average move 
within a number of intervals using EVT, the normal 
distribution and the actual observed probability based 
on frequency analysis. The intervals are based on a 
multiple of standard deviations to represent the 
downward movements in the FTSE/JSE TOP40. This 
allows us to compare the distributions for a specified 
multiple of standard deviations. We assumed the 
typical move in each interval to be the average of the 
borders of the interval. Table 2 shows the results 
obtained. The probabilities are given as a decrease of 
the relevant magnitude occurring once every x years. 
For instance in Table 2 the Peaks Over Threshold 
approach estimates a decrease of magnitude 6,9% to 
8,3% to occur once every 3,2361 years, and the 
normal distribution estimates a decrease of magnitude 
1,4% to 2,8% to occur once every 0,0657 years. The 
table also shows the percentage difference between 
the observed probability and the probabilities obtained 
under EVT and the normal distribution. 
 
It can be seen quite clearly that EVT (represented in 
the table by “Peaks Over Threshold”) is not a good 
predictor when we model events that do not occur in 
the tail of the distribution. However, the differences 
become relatively smaller as we increase intervals. 
This clearly shows the ability of EVT to better model 
large movements. The table also shows that large 
moves are far more likely to occur than is assumed 
under the normal assumption. 
 
Finally we tested the models by fitting them over 
market movements during the period 1996 to 2001 and 
compared the results with the actual observed 
probabilities obtained from the market movements 
during 2001 to 2006. The results are presented in 
Table 3. 
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Table 1: EVT and normal probabilities for extreme events in the FTSE/JSE Top40 index 
 

 
 

EVT probability Normal probability

1st percentile 
5% decrease 

10% decrease 
25% decrease 

 

3,75% decrease 
Once in 0,9 years 
Once in 7,7 years 

Once in 183,2 years 
 

3,14% decrease 
Once in 40,5 years 

Once in 2,8 x 1011 years 
Once in 2,5 x 1092 years 

 
Table 2: Comparison between observed probabilities and probabilities obtained through EVT and the 
normal distribution for the period 1996 to 2006 
 

Probabilities given as once every X years 
Fitted and Observed probabilities based on 1996 to 2006 movements

 
Interval (decreases) 

 

Observed Peaks Over 
Threshold 

% Difference Normal % Difference

0,0% to 1,4% 
1,4% to 2,8% 
2,8% to 4,2% 
4,2% to 5,5% 
5,5% to 6,9% 
6,9% to 8,3% 
8,3% to 9,7% 

9,7% to 11,1% 
11,1% to 12,5% 
12,5% to 13,9% 
13,9% to 15,3% 

 

0,0045 
0,0514 
0,2260 
1,0800 
2,4300 
3,2400 
- 
- 
- 
9,7200 

 - 

0,0104 
0,0876 
0,3222 
0,8294 
1,7469 
3,2361 
5,4826 
8,6977 

13,1208 
19,0212 
26,7008 

-134% 
-70% 
-43% 
23% 
28% 
0% 
- 
- 
- 

-96% 
 - 

0,0135 
0,0657 
0,7915 
26,3082 
2614,14 
8,32E+05 
9,05E+08 
3,59E+12 
5,52E+16 
3,53E+21 
1,01E+27 

 

 -204% 
 -28% 
 -250% 
 -2 336% 
 -107 478% 
-25 681 323% 
 - 
 - 
 - 
 -4,0E+20 
 - 

 
Table 3: Comparison between observed probabilities for the period 2001 to 2006 and probabilities obtained 
through EVT and the normal distribution for the period 1996 to 2001 
 

Probabilities given as once every X years 
Probabilities Fitted probabilities based on 1996 to 2001 

 
Interval (decreases) 

 

based on observed 
2001 to 2006 
movements 

Peaks Over 
Threshold 

% Difference Normal % Difference

0,0% to 1,3% 
1,3% to 2,5% 
2,5% to 3,8% 
3,8% to 5,0% 
5,0% to 6,3% 
6,3% to 7,6% 
7,6% to 8,8% 

8,8% to 10,1% 

0,01 
0,04 
0,23 
1,62 
4,86 
4,86 
- 
- 

0,02 
0,07 
0,19 
0,42 
0,82 
1,47 
2,43 
3,80 

-49% 
-74% 
19% 
74% 
83% 
70% 

- 
- 

 

 0,01 
 0,04 
 0,24 
 2,97 
 75,58 
4,24E+03 
5,45E+05 
1,68E+08 

-7% 
-3% 
-6% 

-83% 
-1 455% 

-87 062% 
- 
- 

 
 
 
The table shows that the normal distribution is 
inadequate in modelling large movements and, whilst 
EVT doesn’t provide a perfect fit, it certainly gives 
more accurate results when we move into the tail of 
the distribution. More importantly the normal 
distribution rated 5 to 6 percent decreases as almost 
impossible during our lifetime whereas EVT showed 
them as being highly probable. Looking at the actual 
movements during 2001 to 2006, decreases of the 
order of 5 to 6 percent occurred at least once. 
 
Comparing the EVT results with those obtained in 
Table 2, we notice some differences. These can 

partially be attributed to the fact that the period 1996 to 
2001 was generally more volatile than the period 2001 
to 2006. The other important factor stems from the fact 
that EVT is extremely sensitive to the underlying data 
used in the modelling; a small change in the estimated 
parameters can lead to a large difference in 
estimation. The sensitivity is also a consequence of 
the somewhat subjective choice of threshold as 
discussed in Section 3. 
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6. CONCLUSION 
 
As seen from the analysis presented, returns on the 
South African equity market, here represented by the 
FTSE/JSE TOP40 index, display some serious 
departures from those obtained using the assumption 
of normal return distributions. Extreme value theory 
serves as a good reminder that actual market returns 
are not normally distributed. It highlights the 
implications of assuming normality and it can give a 
good estimate of the movements we may see when 
exogenous events cause market turmoil.  
 
Our analysis was based on the FTSE/JSE TOP40 
index as a proxy for the equity market; however, it 
could easily be applied to individual equities. As 
remarked by Fama (1965) and Focardi and Fabozzi 
(2003), there is much value to be extracted in the 
investment process by understanding the distribution 
of returns of a common stock. The normal distribution 
gives us a fair idea of return distributions for everyday 
events. EVT gives us an understanding of the 
best/worst case returns and the frequency thereof. 
 
This theory will not replace the more convenient 
assumption of normally distributed asset returns but 
has its place in risk management. People are generally 
more comfortable working with the normal distribution 
owing to its friendly mathematical properties. Although 
using EVT presents a significant increase in work, the 
results obtained justify the efforts. Appreciation of the 
true distribution of returns not only presents us with 
trading opportunities but also a clearer picture of the 
risk involved in an investment decision. 
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