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INTRODUCTION
Since the first appearance of computer-based 
analysis programs, ample warnings have 
been issued to maintain the use of simple 
manual calculations. The use of integrated 
design packages linked to analysis pack-
ages can further obscure errors in structural 
modelling. In the case of design packages 
involving members susceptible to failure 
through instability, special care should be 
taken to ensure that the correct boundary 
conditions are used in both planes. It is nec-
essary to review some basic concepts inher-
ent to the design of such members.

SIMPLE LATTICE STRUCTURES 
AND THE K-FACTOR

In-plane buckling
The K-factor or effective length factor is used 
to adjust the actual unrestrained length of a 
compression member to account for prevail-
ing boundary conditions. Many software 
packages use a default effective length factor 
of 0,85, implying some form of rotational 
joint restraint by adjacent members. Some 
design codes also specify effective length 
factors for compression members in lattice 
trusses. BS 5400 Part 3 (2000) in table 11 
specifies effective length factors for buckling 
in the plane of the truss as well as out of 

the plane of the truss. In all cases the values 
given in table 11 of BS 5400 Part 3 are less 
or equal to 0,85. Eurocode 5 (1995) gives 
the effective column length for members 
of triangulated trusses with loading at the 
nodes as the bay length. Furthermore, for 
strength verification the calculated force 
must be increased by 10 %. SANS 10162:1 
(2004), 15.3.1, states that: ‘The effective 
length for buckling in the plane of the truss 
shall be taken as the distance between the 
lines of intersection of the working points of 
the web members and the chord. The effec-
tive length for buckling perpendicular to the 
plane of the truss shall be equal to the dis-
tance between the points of lateral support.’ 
This is then a conservative solution.

 Boundary conditions are not merely a 
function of connection details and continu-
ity, but are influenced by the capacity of 
adjacent members at the node. Consider the 
example of a simple lattice truss with a con-
stant section shown in figure 1.

The compression chord ABCDEFG 
is divided into equal portions. The basic 
principle that the buckling load for mem-
ber ABCDEF is unique shows that an 
effective length factor of less than one for 
a particular member is consistent with 
an effective length factor of greater than 
one in the adjacent members, as shown in 
equation 1 below:
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Figure 1 In-plane buckling of top chord of lattice truss – case 1
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For the loading as shown, the force in 
ABCDEF will be constant over the length of 
the truss. If the member is of constant sec-
tion, equation 1 can only be satisfied if the 
buckling length is taken as L = L

AB
 = L

BC
 = 

L
CD

 = L
DE

 = L
EF

. If the stiffness of the lacing 
elements is ignored, an effective length fac-
tor of less than one is clearly incorrect. 

Now consider the same system but with 
a different loading combination, as shown in 
figure 2.

In the second case shown in figure 2, 
the compression force in BC, CD and DE are 
greater than the forces in AB and EF. P

BC 
= 

P
CD 

=
 
P

DE
 >P

AB
, P

EF. 
 Once again, the buckling 

strength of the chord ABCDEF is unique. 
In order to still satisfy equation 1, the effec-
tive length factors for the members with the 
lower forces are greater than for those mem-
bers with the higher forces. It should now 
be clear that subtle differences exist between 
the buckling modes of the same top chord 
for the two different load cases.

In the first case, the buckling lengths are 
equal on AB, BC etc and the only sensible 
choice of an effective length factor is 1,0. For 
the second load case shown in figure 2 above, 
segment BC, CD and DE are critical while 
segments AB and EF are sub-critical. An 
effective length factor of less than 1,0 is there-
fore justified for BC, CD and DE by virtue of 
the restraint action exercised by AB and EF. A 
rigorous analysis will show that the effective 
length factors of the adjacent portions AB and 
EF are in fact greater than 1,0, this being cou-
pled to a smaller force in the member. 

It may be argued that, in real trusses, 
some rotational restraint from the lacing 
members would always be present at the 
nodes and therefore the effective length fac-
tor may be reduced somewhat. This argu-
ment only holds true in the following cases:
■ Some of the connecting members at a 

node are in tension.
■ Some of the compression members at a 

node are sub-critical.
A sub-critical condition in adjacent 

members can be achieved by having the 

same size member subjected to a lower com-
pression force or a reduced distance between 
restraints.

If every member is optimised in a lattice 
structure, care should be taken in assuming 
effective length factors less than one.

It is significant that the Eurocodes for 
steel design specifically, have discarded the 
practice of using tabulated effective length 
factors in the design of both compression 
and flexural members. Elastic buckling 
loads are used as a basis of design, and 
such loads are commonly calculated using 
 computer programs.

Stanway, Chapman and Dowling (1992) 
have discussed the influence of elastic sup-
ports at any position of the length of the strut, 
thereby considering the influence of unequal 
bay lengths and the beneficial restraint offered 
by adjacent sub-critical elements having a 
shorter buckling length. The basis of elastic 
buckling analysis is subsequently discussed.

BUCKLING ANALYSIS OF FRAMED 
AND LATTICE STRUCTURES

In-plane buckling
Most PC-based analysis packages are capa-
ble of performing buckling analysis on 
framed structures using beam elements, and 
individual members using shell elements. 
It is important that the user is aware of the 
actual process and the premises on which 
such analyses are based. The method of 
buckling analysis of a frame structure is pre-
sented in Coates, Coutie and Kong (1980), 
as described below.

 In the case of a linear elastic analysis of 
a framed structure, deformation is linearly 
related to load, or, expressed in matrix form:

Δ= sKP  (2)
Where:
P is the force or load matrix
Δ is the displacement matrix
K

s
 is the stiffness matrix

The terms of K
s 
are constant for a given 

structure, provided that second order effects 
are neglected, therefore K

s
 is independent of 

P. If, however, the influence of axial forces 
on member stiffness is included, K

s
 becomes 

a function of P, or K
s
 = K

s
(P).

In the case where axial loads are not 
neglected, equation 2 becomes non-linear, 
but if the axial loads are known, the deflec-
tions may be calculated. 

)( PKP s  (3)

In equation 3 the term λ has been inserted 
as a load multiplier. As the loads are pro-
gressively increased, a state of neutral equi-
librium is achieved where any deflection 
is possible for a given load level. This state 
defines instability and may be referred to as 
λ = λ

cr
. The critical state is consistent with 

the matrix K
s
(λP) becoming singular.

A test of the singularity of the matrix K
s
 

can therefore be used as a check on stabil-
ity, if it is non-singular and positive definite, 
the structure is stable – if it is singular the 
structure is on the point of collapse. The 
value of λ

cr
 is therefore a multiple whereby 

an arbitrarily chosen load can be multiplied 
to achieve a state of collapse. The following 
comments regarding the value of λ

cr
 should 

be clearly noted:
■ λ

cr
 is not a safety factor. Even if P is cho-

sen to represent load effects at working 
loads, the influence of inelastic buckling 
is not taken into account in an elastic 
buckling analysis.

■ In the case where buckling modes are 
de-coupled, for example lattice structures 
consisting of pin-ended members, the 
value of λ

cr
 applies to the member most 

susceptible to buckling and has no appli-
cation to other members.

■ If a two-dimensional analysis were to be 
carried out to determine λ

cr
, the value so 

obtained obviously does not apply to out 
of plane buckling.

Inelastic buckling
The significance of an elastic buckling 
analysis is that the value of λ

cr
P  is the elas-

tic buckling load of the critical member or 
portion of a structure, or of the structure as 
a whole. In order to calculate the inelastic 
buckling load, and therefore the factored 
resistance of the critical member, the follow-
ing procedure should be followed:
■ Calculate the equivalent effective 

unbraced length from the relationship:

 
2

2

KL

EI
Pcr

 

 therefore: 
P

EI
KL

cr

2

 or  
P

P
K

cr

e  ( 4 )

 Where:
 P

e
 =   Euler buckling load for compression 

member hinged at both ends
 P =  applied load
■ Calculate the inelastic compressive resist-

ance C
r
 using the value of KL obtained from 

Figure 2 In-plane buckling of top chord of lattice truss – case 2
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equation 4 for the appropriate member size. 
For example, if SANS 10162:1 (2004) is 
used, the appropriate slenderness ratio is

 
fr

KL 300

 from which C
r
 can be calculated.

In order to demonstrate the principles 
discussed above, a commonly available PC-
based analysis package, Prokon (2003), was 
used to calculate the effective length factors 
of the top chord of the frame shown in fig-
ures 1 and 2 above. The parameters used in 
the analysis are shown in figure 3.

It is assumed that the trusses in figure 
3 are made up out of equal angle 50 x 50 
x 6 mm sections. The second moment of 
area, I, of chords, verticals and diagonal 
= 128 x 0-9 m4 and E = 206 GPa.

Two cases were considered. In the first 
case rigid nodes were used, that is, a frame 
analysis was carried out. In the second case 
the nodes were considered as pinned, that is, 
only axial forces exist in the truss members. 
Significant differences exist between the two 
cases of pinned and fixed joints for the load 
cases considered, and are shown in table 1.

It is important to note the following:
■ Significant differences exist between the 

cases of fixed and pinned frame joints. In 
this particular case the differences were 
amplified by the choice of stiffness of 
the lacing members as being equal to the 
chords. In real trusses the lacing members 
would commonly have significantly less 
stiffness than the chord members.  

■ The effective length factor of the 
 compression chord is not only dependent 
on the joint  conditions, but also on the 
loading conditions, as is evident from the 
differences in the critical buckling loads 
between load cases 1 and 2.

It is not commonly accepted that the restrain-
ing influence of lacing members is influenced 
by the magnitude of the axial forces resulting 
from load effects, to the capacity of the mem-
bers. In order to demonstrate this principle, a 
buckling analysis was performed on a simple 
sub-frame representing two bays of a chord 
member and one vertical element. Different 
combinations of axial forces relative to the 
buckling capacities of the members were 
used as shown in figure 4:

 I
abc

 = I
bd 

 = 127 x 10-9 m4 and E = 206 GPa

For the node-frame model shown in figure 4, 
the critical buckling loads (Euler), for ABC and 
for DB using an effective length factor K = 1, 
are 10,28 kN and 28,55 kN, respectively. The 
results of the analysis are shown in table 2.

The following important conclusions 
may be drawn from studying the results 
shown in table 2:
■ The degree of restraint offered to a com-

pression member by connecting members 
at a node is dependent on the magnitude 
of the axial forces in the connecting 

Table 1 Results of an elastic buckling analysis performed on a simple frame 

Load case and 
frame conditions

Axial load in top 
chord at  buckling, 

P
Load factor, λ

cr
P

e 
=

 
2

2

L

EI

Effective length 
factor,

 P.

P
K

cr

e

LC 1 fixed 16,67 kN 1,32 10,33 kN 0,69

LC 1 pinned 16,67 kN 0,62 10,33 kN 1,00

LC 2 fixed 33,3 kN 0,70 10,33 kN 0,67

LC 2 pinned 33,3 kN 0,36 10,33 kN 0,93

A A A

D

3 
m

5 m 5 m

P
2

P
1

Figure 4 Node frame model

Table 2  Results of elastic buckling analysis on node-frame (values in parentheses indicate hypothetical k-factors of
non-critical members) 

P
1

P
2

P
1
/P

e
P

2
/P

e λ
cr

Κ
AB,BC

Κ
BD

10,28 kN 28,55 kN 1,0 1,0 1,00 1,0 1,0

10,28 kN 0 kN 1,0 0 1,36 0,85 -

0 28,55 kN 0 1,0 1,46 - 0,68

5,14 kN 28,55 kN 0,5 1,0 1,28 (0,63) 0,88

10,28 kN 14,28 kN 1,0 0,5 1,21 0,91 (0,64)

Table 3  Results of elastic buckling analysis on node-frame – out-of-plane buckling (values in parentheses indicate
hypothetical k-factors of non-critical members)

P
1

P
2

P
1
/P

e
P

2
/P

e
λ

cr
Κ

AB/BC
Κ

BD

54,97 kN 152,71 kN 1,0 1,0 1,00 1,00 1,00

54,97 kN 0 kN 1,0 0 1,19 0,917 -

0 152,71 kN 0 1,0 1,08 - 0,962

27,48 kN 152,71 0,5 1,0 1,07 (0,684) 0,967

54,97 kN 76,35 kN 1,0 0,5 1,17 0,925 (0,654)

Figure 3 Frame parameters for in-plane buckling analysis
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members. If the connecting members are 
 subjected to axial compression, the ability 
of such members to restrain adjacent criti-
cal members is reduced.

■ If the connecting members are subjected 
to axial compressive forces equal to their 
critical buckling loads, such members 
offer no restraint action. 

■ Design nomographs expressing effective 
length factors of compression members in a 
frame as a function of the stiffness of con-
necting members do not account for the 
reduction in stiffness of connecting members 
themselves subjected to compressive forces.

■ Tensile forces in connecting members 
increase their stiffness and lead to a 
reduction in the buckling length of com-
pression members. The particular soft-
ware package used in this analysis does 
not consider this effect.

■ Unless a buckling analysis has been per-
formed on a frame or truss, it is difficult 
to justify the use of a general effective 
length factor less than one.

Out-of-plane buckling behaviour 
The preceding discussion and analysis 
have been limited to in-plane behaviour. In 

 considering the out-of-plane buckling behav-
iour of planar trusses, the behaviour is some-
what different. Rotational restraint to the 
compression chord can now only be provided 
by the torsional stiffness of the connecting 
members. In order to demonstrate this prin-
ciple, the same node frame model previously 
used was modified to incorporate a diagonal 
member and the members were changed to 
angle sections. Out-of-plane restraints were 
provided at all joints in the X-direction.

 Use an angle section – 125 x 75 x 8 mm 
with I

xx
 = 2,47 x 10-6, I

zz
 = 0,676 x 10-6, 

J = 36,7 x 10-9 and E = 206 GPa.
For the node-frame model shown in 

figure 5, the critical buckling loads (Euler), 
for ABC and for DB using an effective length 
factor K = 1 are 54,97 kN and 152,71 kN, 
respectively. The results of the analysis are 
shown in table 3.

The following important conclusions 
may be drawn from studying the results 
shown in table 3:
■ Owing to the low torsional stiffness of 

angle sections, adjacent sub-critical mem-
bers offer very little restraint to out-of-
plane buckling. In order to demonstrate 
this principle, the same node frame as 

shown in figure 5 was re-analysed using 
square hollow section, 90 x 90 x 3,5 mm, 
members. The section properties and 
member parameters used in this analysis 
were as follows:

I
xx 

= I
yy

=
 
1,43 x 10-6, J = 2,33 x 10-6 , P

e
 (AB) 

= 116,3 kN, P
e
(BD) = 323,0 kN

For the case where ABC and BD are both 
critical, that is, the load effects equal the 
elastic buckling load with K = 1 (Euler), the 
critical load factor equalled 1,03.

For the case where BD was critical but 
the axial load in ABC was zero, the critical 
load factor equalled 1,06 reflecting an effec-
tive length factor of 0,971.

It is clear that there is no justification for 
the use of an effective length factor of 0,85.

LATERAL BUCKLING OF GIRDERS WITH 
FLEXIBLE LATERAL SUPPORTS
Perhaps the case of incorrect application of 
effective length factors with the most seri-
ous consequences may be found where the 
compression chords of girders or trusses are 
restrained by flexible supports. This case is 
commonly found in the older type bridge 
girders where the carriageway is attached 
to the bottom chords and the top chords 
are not restrained by a dedicated separate 
bracing system. In this case the lateral sta-
bility of the top chord is controlled by the 
U-frame action of the transverse beams 
acting with the uprights of the girders (see 
figure 6).

Two buckling modes of the U-frame 
are shown in figure 6, a symmetrical mode 
where the transverse beam is in single cur-
vature, and an anti-symmetrical mode where 
the transverse beam is in double curvature. 
The lowest buckling mode is associated with 
the lowest lateral restraint to the compression 
chord and is therefore consistent with the 
symmetrical case where the transverse beam 
is in single curvature. 

 The buckling resistance of the com-
pression chord is now determined by the 
flexural stiffness of the U-frame compris-
ing the transverse beam and the verticals. 
Designing the compression chord using 
a buckling length equal to the spacing 
between U-frames, without consideration of 
the lateral stiffness of the U-frame at chord 
level, will result in lateral buckling occur-
ring before in-plane buckling. The use of a 
simple force criterion to size the U-frames 
will not provide sufficient stiffness to satisfy 
the assumption of a buckling length equal 
to the spacing between U-frames. Dekker 
and Burdzik (2000) have proposed the use 
of a combined force and stiffness criterion, 
which may be applied to this case.

This case is covered in BS5400 Part 3 
(2000), clause 12.5.1, where the effective 
length of a  compression chord that is later-
ally restrained by U-frame action is given by:

3 
m

A X

Y

Z

B
C

P
1

Rotationally 
fixed

D Rotationally 
fixed

P
2

5 m
5 m

Figure 5 Node frame model for out-of-plane buckling

Table 4  Results of elastic buckling analysis on node-frame – out-of-plane buckling (values in parentheses indicate 
 hypothetical k-factors of non-critical members)

P
1

P
2

P
1
/P

e
P

2
/P

e λ
cr

Κ
AB/BC

Κ
BD

116,3 kN 323,0 kN 1,0 1,0 1,03 0,985 0,985

116,3 kN 0 kN 1,0 0 1,35 0,861 -

0 kN 323,0 kN 0 1,0 1,06 - 0,971

58,15 kN 323,0 kN 0,5 1,0 1,05 (0,690) 0,976

116,3 kN 161,5 kN 1,0 0,5 1,33 0,867 (0,613)

Compression chord

Vertical girder

Transverse beam

Anti-symmetrical mode Symmetrical mode

Figure 6 Cross section and buckling modes of girder with elastic lateral supports
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25,0
35,1 aEIkl ce

Where:
k

3
 depends on the flexural stiffness of the 
vertical members of the truss and may be 
taken as 1,0

I
c
 is second moment of area of the chord 
about the out-of-plane axis

a is the distance between U-frames
δ is the nominal lateral deflection of the U-

frame under the application of a unit load, 
therefore representing the effective stiff-
ness of the U-frame

For the case where the U-frame is symmetrical 
and cross members and verticals have a constant 
section over their length, this clause of BS 5400 
Part 3 provides a method of calculating the 
required stiffness from the value of δ but the 
process is time consuming. In some cases the 
top chords of Warren-type trusses are braced 
horizontally but the bracing cannot be com-
pleted to the supports and a stiffened U-frame is 
placed at each end to allow clearance at the ends 
of the bridge. This case is covered in BS 5400 
Part 3 in clause 12.5.3.2. 

Girders using U-frame action to achieve 
stability of the compression chords may be 
conveniently analysed using buckling analy-
sis options of PC-based software. Two meth-
ods may be used:
■ Modelling the compression chord in isola-

tion with the U-frame stiffness represented 
by spring supports

■ Modelling the complete structure on a 
three-dimensional basis

The design of a simple truss used to support 
a pedestrian walkway was used to demon-
strate this principle, as shown in figure 7.

The arrangement shown in figure 7 is 
typical of a system where the stiffness of the 
vertical elements and the transverse beams 
combine to prevent lateral buckling of the 
top chord. 

The main girders were first analysed as 
planar structures for nodal loads of 9 kN, 
which reflects combined unfactored dead- 
and live-load effects. The self-weight of the 
truss is additional to this. The top chord 
forces are given in figure 8. 

These forces were used to size the mem-
bers assuming lateral restraint at each node 
point and the preliminary member sizes given 
in table 5 were adopted.

The in-plane Euler buckling resistance 
of the top chord can be determined from the 
section properties and is equal to:

kN
L

IE
P y

e 645
2

2

For out-of-plane buckling one would strive 
to obtain a similar buckling strength.

Three alternative methods used to estab-
lish the out-of-plane resistance of the top 
chord will now be discussed in turn.

Top chord analysed in isolation
Compression member with spring supports
Top chord modelled as a strut with rigid 
vertical supports and lateral springs at 
the node points and the load distribution 

as shown in figure 8 – that is, load varies 
between bays. The lateral spring is the later-
al support afforded by the transverse frames.

The lateral spring stiffness is obtained 
from a plane frame analysis considering the 
floor beam in single curvature as shown in 
figure 9.

The stiffness obtained equals 10/0,181 = 
55 kN/m.

The top chord may now be modelled 
as shown in figure 10. Care must be taken 
that the software is capable of performing 
a buckling analysis when springs are used 
as supports. If not, axially loaded members 
with equivalent stiffness may be used to 
replace the springs.

As a first step, the springs are replaced 
with rigid lateral supports in order to obtain 
the buckling  factor for in-plane buckling. A 
critical buckling factor of 2,46 was obtained 
for this case. This value is then consistent 
with the in-plane buckling resistance of the 
selected member size and reflects an elastic 
buckling load of 2,46 x 284,1 kN = 698,9 
kN in the critical portion of the top chord.  

The lateral restraints were then replaced 
by springs with a stiffness of 55 kN/m. 
A critical buckling factor of 2,38 was 
obtained, reflecting an elastic buckling load 
of 676,2 kN. Figure 11 shows the increase 
in the buckling factor with an increase of 
the U-frame stiffness. A buckling factor in 
excess of 2,46 would then induce in-plane 
buckling rather than out of plane buckling 
and a further increase in U-frame stiffness 
would be a waste of material. A stiffness of 
about 60 kN/m would suffice.

Theoretical stiffness requirement 
for top chord buckling
Winter (1960) used the theory of a com-
pression member on an elastic foundation 
to determine the stiffness requirement of 
continuous lateral support. The theoretical 
value of the modulus of the elastic support 
medium, β

id
, can be obtained from the fol-

lowing formulae:

1
P

P

P

L

E

cr2

E

2
id

 
for  

30
P

L
0

E

2
id

2

E

cr
2

E

2
id 6,0

P

P

4P

L

 for  
30

P

L

E

2
id

2 
m

15 x 2 m = 30 m span

Elevation on main truss

Cross section

2,5 m

2 
m

Figure 7 Typical pedestrian bridge with U-frame restraint to top chords

All forces are compression and in kN

71,1 kN 131,9 182,6 223,2 253,6 273,9 284,1 284,1

CL

Figure 8 Compression forces in top chord of monoplanar truss

Figure 9 Equivalent lateral spring representing cross-
frame stiffness

181 mm 181 mm

10 kN 10 kN

Table 5 Member sizes for the girder truss pedestrian bridge

Member Element A – mm2 Ixx – mm4 Iyy – mm4

Top chord PFC 180 x 70 – web horizontal 2,68 x 103 13,5 x 106 1,27 x 106

Bottom chord PFC100 x 50 – web horizontal 1,29 x 103 2,05 x 106 0,320 x 106

Diagonals 100 x 100 x 8 angle section 1,55 x 103 1,45 x 106 1,45 x 106

Verticals and floor beams PFC 100 x 50 – web vertical 1,29 x 103 2,05 x 106 0,320 x 106
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Where:
β

id  
=  the ideal stiffness of the elastic support in 

kN/m/m
P

cr
  = the critical load

P
E
  =  the Euler buckling strength, based on 

the full laterally unsupported length
L  = the total length of the member

This method is consistent with the case of a 
top chord that is braced by U-frames. 

One can apply these equations to the 
top chord of the girder truss with U-frames 
as lateral support for out of plane buckling. 
One must, however, assume uniform axial 
loading to use these equations.

P
e
 = 30,5 kN

P
cr
 = 698,9 kN

3317
2

,
P

L

E

id  ≤ 30

2

E

cr
2

E

2
id 6,0

P

P

4P

L

 thus governs

β
req

 = 41,65 kN/m/m which at 2 m spacing 
would require a spring  stiffness of 83,3 kN/m. 

As the axial load is not uniform it would not 
be inconsistent for a spring with slightly less 
stiffness to suffice.

Full three-dimensional buckling 
analysis of structure
Modelling the top chord in isolation does 
not account for the influence of the vertical 
compression members and the diagonal ten-
sion members in the truss. As a third step, 
the entire system was modelled including 
both trusses as well as the transverse beams. 
This model is shown in figure 12.

Unfactored loads were applied to the 
node points and a buckling analysis was per-
formed. The buckling factor in this case was 
2,04 for symmetrical buckling. Increasing the 
stiffness of the U-frame to 112 kN/m by using 
a PFC – 120 x 55 increased the symmetrical 
buckling factor to a value of 3,01. The prima-
ry buckling mode changed from a symmetri-
cal to an anti-symmetrical torsional buckling 
mode with the structure rotating about its 
longitudinal axis. The buckling factor for the 
anti- symmetrical buckling was 2,83, which is 
still greater than the required 2,48. 

CONCLUSIONS
■ The use of a uniform effective length fac-

tor between 0,7 and 0,85 for the design of 
compression members in lattice trusses 
cannot be justified by rigorous analysis.

  An elastic buckling analysis using 
PC-based software provides the most reli-
able method of calculating the buckling 
lengths of such members. 

■ In the absence of a buckling analysis of 
the whole structure, the use of an effective 
length factor of 1,0 is recommended for 
design purposes.

■ An elastic buckling analysis provides the 
means of calculating the correct effective 
length factor to be used in sizing compres-
sion members using design codes. The 
critical load factor obtained from an elastic 
buckling analysis is not a safety factor.

■ Any system where flexible members pro-
vide restraint against buckling is best ana-
lysed on a global basis. The approach of 
EC3 in omitting the use of effective length 
factors, and using the elastic buckling 
load in calculating the inelastic buckling 
resistance, should be encouraged. 
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Figure 11 Increase in the buckling factor with an increase in the stiffness of the U-frame

Bu
ck

lin
g 

fa
ct

or
 λ

2,8

2,6

2,4

2,2

2,0

1,8

1,6
30 40 50 60 70 80

Stiffness of the U-frame in kN/m

Figure 12 Space truss modelling of trusses and floor elements




