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Abstract. In this paper, we study a time consistent solution for a defined contribution
pension plan under a mean-variance criterion with regime switching in a jump-diffusion
setup, during the accumulation phase. We consider a market consisting of a risk-free
asset and a geometric jump-diffusion risky asset process. Our solution allows the fund
manager to incorporate a clause which allows for the distribution of a member’s premiums
to his surviving dependents, should the member die before retirement. Applying the
extended Hamilton-Jacobi-Bellman (HJB) equation, we derive the explicit time consistent
equilibrium strategy and the value function. We then provide some numerical simulations
to illustrate our results.

1. Introduction

The investment allocation problem for pension funds is becoming a very important area
of research. One possible reason for this is the need to have sufficient funds at retirement,
for post retirement living expenses, taking into account the financial risks that accompany
fund members’ investments. There are two types of pension plans: a Defined Benefit (DB)
plan, where the benefits are known in advance and the contributions are adjusted in time
to ensure that the fund remains in balance and a Defined Contribution (DC) plan, where
the contributions are defined in advance and the benefits depend on the return of the fund,
with the investment risks taken by the plan members. For a thorough discussion on the
theory of pension funds see e.g. [1], [12] and references therein. Since most developed
and developing countries have moved or are moving from DB to DC plans, where the
employee is directly exposed to the financial risks, the study of optimization problems in
the context of pension funds is of particular interest. The solution of such problems will
help the pension fund members or the pension fund managers who act in their behalf, in
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the allocation of funds in different assets in order to achieve the best retirement savings,
even during periods of market fluctuations, jumps or lack of information.

Since the classical results on the mean-variance formulation for the portfolio allocation
problem proposed by Markowitz [22] in 1952, this approach has become an important tool
to study the pension fund asset allocation problem. Li et. al. [20] study a DC investment
problem under a constant elasticity of variance model with stochastic salary. Using the
extended dynamic programming principle, they obtain an explicit optimal strategy before
and after retirement. He and Liang [17] consider the optimal investment strategy for a DC
pension plan with mortality risks, allowing the return of the premium to protect the rights
of a member who die before retirement. Sun et. al. [25] study in a mean-variance frame-
work, a pre-commitment and equilibrium investment strategy for a DC pension pension
plan under a jump-diffusion model, with deterministic income and mortality risks.

Under the expected utility framework, Chen et. al. [8] consider a DC asset allocation
with loss aversion and minimum performance. Sun et. al. [26] consider a robust portfolio
choice for a DC pension plan with stochastic income and interest rate. Sun et. al. [25]
study a jump diffusion case of a DC investment plan with mortality risks. Other references
include [3], [13] and [15], [16].

In all the above references, the basic assumption is that the associated parameters follow
a Markovian structure, then applying the extended HJB-equation for solving the corre-
sponding problem. However, it is well known that real market may not be following a
Markovian one. For a non-markovian structure of the time-consistent for mean-variance
problem, one may consider more general approaches (the backward stochastic differential
equation (BSDE) approach or the semi-martingale method). For a BSDE approach, we
refer, for instance to Hu et. al. [18], [19], Sun and Guo [24], Yan and Wong [28]. For the
semi-martingale approach we refer to Czichowsky [11]. Note that the recent work by Sun
and Guo [24] consider a jump-diffusion model similar to our current work for the case of
not regime-switching.

Most of the above mentioned papers consider pension funds investment problems in
a diffusion setup; however, as is well known the real market contains some fluctuations,
discontinuities or sudden changes in the evolution of the price process. In order to charac-
terize the dynamics of such markets, we consider a jump-diffusion modeling setup, which
is a valuable extension of an existing work in a diffusion framework. Moreover, we assume
that the market is described with regime switching, which helps to reflect the economic
trends, such as political situations, natural catastrophes or change of law. For a market
with two regimes, one can consider Regime 1, as a market with a declining market index
(bear market) and a market in Regime 2, representing a growing market index (bull mar-
ket). We consider a financial market comprising a risk-free asset and a risky asset derived
by a jump-diffusion process with regime switching. To protect the rights of a member who
dies before retirement, we introduce a clause which allows his/her dependents to withdraw
his/her premiums. Moreover, we assume that the evolution of the income of the pension
members follows a regime switching jump-diffusion process.
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The aim of the fund manager is to maximize the pension fund size and minimize the
volatility of the accumulation. We then formulate the problem in a continuous time mean-
variance stochastic control setup with regime switching. Our main contribution is to con-
sider a jump-diffusion framework in the presence of regime switching and mortality risk. In
a discrete approach, Bian et. al. [4] study the pre-commitment and equilibrium strategies
for a DC pension plan with regime switching, return premium clause and deterministic
income salary. Our problem can also be related to the mean-variance asset-liability man-
agement with regime switching in [10], [27].

We then solve the problem via a time consistent dynamic programming principle and
solve the extended Hamilton-Jacobi-Bellman (HJB) system of equations as in [5]. This
is motivated by the fact that the preferences of an individual changes as times goes on.
Therefore the mean variance problem can be viewed as a game problem, where every time
t ∈ [0, T ] is a player who chooses a strategy π(t, x, `, j) at time t. This game theoretic
framework has been widely studied in the literature. See, for instance, [6], [21], [20], [25],
and references therein.

The rest of the paper is organized as follows: in Section 2, we introduce the DC pension
fund mean variance problem under study. In Section 3, we derive the system of extended
HJB equations for our regime switching mean variance problem with jumps. Section 3.1
provides the equilibrium strategies and the corresponding value functions for our DC prob-
lem. Finally, we give a numerical example to illustrate our results in Section 4.

2. The model formulation

Let T > 0 be the investment horizon of a DC pension fund, with retirement date
denoted by t0 + T and (Ω,F , {Ft},P) a complete filtered probability space. We define on
(Ω,F , {Ft},P) a two dimensional Brownian motions {W (t) , W1(t), 0 ≤ t ≤ T} and a one
dimensional Lévy measure ν(·), with a Poisson random measure N(t, ·). The compensated
Poisson random measure is given by

Ñ(dt, dζ) := N(dt, dζ)− ν(dζ)dt .

Furthermore, consider on (Ω,F , {Ft},P), a continuous time-homogeneous Markov chain
{α(t), t ∈ [0, T ]} with a finite state regime space S = {1, 2, . . . , D} and a transition rate
matrix A = {aij}i,j∈S with transition probability matrix (See [23], Theorem 2.1.1)

P (t) := (pij(t))i,j∈S ,

where

pij(t) := P(α(t) = j | α(0) = i)

and
d

dt
P (t) = AP (t), P (0) = I .

Let Mij(t) denote the counting process defined by

Mij =
∑

0<s≤t

χ{α(s−)=i}χ{α(s)=j} ,
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where χA denotes the indicator function of a set A. The process Mij gives the number
of jumps of the Markov process α from state i to state j up to time t. We introduce the
martingale process M̃ij given by

M̃ij(t) = Mij(t)−
∫ t

0

aijχ{α(s−)=i}ds .

For simplicity, we assume throughout the paper that the three stochastic processes
W (t), W1(t), Ñ(t, ·) and M̃(t) are independent.

We assume the existence of a financial market composed by two assets: a bank account,
and a risky asset. The bank account has price B(t) defined by

dB(t) = r(t, α(t))B(t)dt , (2.1)

where r(t, j) ∈ R+
0 , for any j ∈ S are the risk-free interest rates corresponding to different

market regimes. The risky asset S(t) is defined by the following geometric jump-diffusion
process

dS(t) = S(t−)
[
µ(t, α(t−))dt+ σ(t, α(t−))dW (t) +

∫
R
γS(t, α(t−), ζ)Ñ(dt, dζ)

]
, (2.2)

where, for every fixed j ∈ S, µ(t, j), σ(t, j), γS(t, j, ·) are deterministic continuous functions
on the interval t ∈ [0, T ], representing the appreciation rates, volatilities and jump rates
at different regimes, respectively. To ensure that the risky asset remains positive, we also
assume that γS(t, j, ·) is bounded bellow by -1.

We suppose that a pension member has a stochastic income during the contribution
period driven by

d`(t) = `(t−)
[
κ(t, α(t−))dt+ σ1(t, α(t−))dW (t) + σ2(t, α(t−))dW1(t)

+

∫
R
γ`(t, α(t−), ζ)Ñ(dt, dζ)

]
, (2.3)

where κ(t, j) are the expected growth rates of the income, while σ1(t, j), σ2(t, j) and
γ`(t, j, ·) represent the volatilities and jump rates of the income at different regimes, re-
spectively. It is assumed that the parameters are also deterministic continuous functions.

Moreover, suppose that the pension member contributes an amount of δ`(t), at time t,
where δ ∈ (0, 1) is the proportion of the salary contributed to the pension plan. Note that
this proportion of the salary is constant. We assume that the accumulation period of the
fund starts from age t0 > 0 of the member, until the retirement age t0 + T . In order to
protect the rights of the plan members who die before retirement, we adopt the withdrawal
of the premiums for the member who dies, as in He and Liang [17]. In our DC investment
problem, we assume that the employee is concerned about the accumulated amount at
the retirement time for consumption after retirement and not the consumption during the
accumulation period. For DC investment-consumption problem, we refer, for instance, to
[14].
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Let M0 be the number of members who are still alive in the pension at time t, with
age t0 + t. Then, the expected number of members who will die during the time interval
(t, t + ∆t) is M0P

∆t
t0+t, where P∆t

t0+t is the probability that a person alive at the age t0 + t
will die in the following time period of length ∆t.

Let Z(t) be the total accumulated premiums up to time t. Then, Z(t) follows the
dynamics

dZ(t) = δ`(t)dt , (2.4)

with the initial condition Z(0) = z0 (z0 ≥ 0). Note that in real practice, we can assume
z0 = 0. Hence, the premium returned to the dependants or estate of a deceased member
from time t to t + ∆t is Z(t)P∆t

t0+t. After returning the premium, the difference between
the accumulation and the return is equally distributed to the surviving members. The
expected number of members who are alive at time t + ∆t is M0(1 − P∆t

t0+t), which is a
deterministic function of time.

Based on He and Liang [17], we adopt the de Moivre mortality model, i.e., the deter-
ministic force of mortality βt0(t) = 1

τ−(t0+t)
, where τ > 0 is the maximal age of the life

table. Then,

P∆t
t0+t = 1− exp

{
−
∫ t+∆t

t

βt0(u)du
}

=
∆t

τ − t0 − t
, 0 ≤ ∆t ≤ τ − t0 − t.

Suppose that the value amount invested in the risky asset at time t is denoted by π(t)
and Xπ(t) the corresponding wealth process of the pension plan member. Similar to [17],
[25] and [16], we adopt a return premium clause, when a pension member dies during the
accumulation phase. Thus, after deducting the expected return of the premiums for the
members who died during the time interval (t, t + ∆t), the total wealth of the pension
members is given by

X̂π(t+ ∆t) = M0

(
1− P∆t

t0+t

)[
(Xπ(t)− π(t))

B(t+ ∆t)

B(t)
+ π(t)

S(t+ ∆t)

S(t)
+ δ`(t)∆t

]
+M0P

∆t
t0+tX

π(t)− εM0Z(t)P∆t
t0+t .

We assume that ε is a parameter with values 0 or 1. If ε = 0, the pension member obtains
nothing during the accumulation phase, while if ε = 1, the premiums are returned to
the member when he dies. Then, the total wealth is equally distributed to the surviving
members and each of them has the pension wealth of

Xπ(t+ ∆t) =
X̂π(t+ ∆t)

M0(1− P∆t
t0+t)

= (Xπ(t)− π(t))
B(t+ ∆t)

B(t)
+ π(t)

S(t+ ∆t)

S(t)
+ δ`(t)∆t

−βt0(t)∆t[εZ(t)−Xπ(t)] + o(∆t) .
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Dividing by ∆t and taking the limit, when ∆t→ 0, we have the following wealth process
in continuous time:

dXπ(t) =
[
Xπ(t−)(r(t, α(t−)) + βt0(t)) + (µ(t, α(t−))− r(t, α(t−)))π(t) + δ`(t) (2.5)

−εβt0(t)Z(t)
]
dt+ π(t)σ(t, α(t−))dW (t) + π(t)

∫
R
γS(t, α(t−), ζ)Ñ(dt, dζ) .

Definition 2.1. We defineA as the set of measurable (deterministic) functions (t, x, `, z, j)→
π(t, x, `, z, j) ∈ R such that, for each (x, `, z, j), the closed-loop system (2.5) above, with
the initial condition (Xπ(0), `(0), Z(0), α(0)) = (x, `, z, j) has a unique strong solution.

We will then formulate the pension fund mean variance investment problem without
pre-commitment. In order to understand such kind of problems, we first define the pre-
commitment mean variance optimization problem. This problem can be described as the
maximization of the following functional:

J(0, x, π) = E0,x,`,z,j[X
π(T )]− ξ(j)

2
Var0,x,`,z,j[X

π(T )] ,

over all admissible strategies π ∈ A.
As we can see in the above functional, we fix the initial point (0, Xπ(0)) and try to find

the control π∗ which maximizes J(0, Xπ(0), π), that is, there is no update on the optimal
strategy π∗ and future dates (t,Xπ(t)). However, for the optimization problem without
pre-commitment, the DC investment manager updates the investment strategy at each
state (t,Xπ(t)), i.e., the value function is given by

sup
π∈A

{
Et,x,`,z,j[Xπ(T )]− ξ(j)

2
Vart,x,`,z,j[X

π(T )]
}
. (2.6)

Here, ξ(j) are the risk aversion coefficients under the market regimes j ∈ S and Et,x,`,z,j[·],
Vart,x,`,z,j[·] are the expectation and variance conditioned on the event [X(t) = x, `(t) =
`, Z(0) = z, α(t) = j] respectively.

Assume that, for any (t, x, `, z, j) ∈ [0, T ]× R3 × S,

F (x, j) = x− ξ(j)

2
x2 and Γ(x, j) =

ξ(j)

2
x2 .

We define the following functional

Φ(t, x, `, z, j, π) := Et,x,`,z,j[F (Xπ(T ), j)] + Γ(Et,x,`,z,j[Xπ(T )], j) .

Then, the mean-variance optimization problem (2.6) becomes

sup
π∈A

Φ(t, x, `, z, j, π) . (2.7)

Note that Γ is a nonlinear function acting on the conditional expectation, which leads to a
time-inconsistent optimization problem in (2.7) as was pointed out by [5] and [6]. Therefore,
an optimal strategy at time t does not guarantee the optimality of Φ at subsequent moments
s > t. However, since the time horizon T of a pension fund is very long, the plan member’s
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preference may change over time, then it becomes very important to formulate the time-
consistent optimal investment problem for the DC pension fund. To that end, we follow
the game theoretic approach of our problem as in [5], [6] and define an equilibrium strategy
which is consistent with time change, i.e., the optimal strategy derived at time t should
agree with the optimal strategy at time t+ ε, ε > 0.

Definition 2.2. For any fixed (t, x, `, z, j) ∈ [0, T ] × R3 × S, a control law π∗ is an
equilibrium control if for every admissible control π and ε > 0, the collection of strategies
πε, defined by

πε(s, x, `, z, j) =

{
π(s, x, `, z, j), for t ≤ s < t+ ε
π∗(s, x, `, z, j), for t+ ε ≤ s ≤ T ,

satisfies the property

lim
ε→0

inf
Φ(t, x, `, z, j, π∗)− Φ(t, x, `, z, j, πε)

ε
≥ 0 .

The above definition implies that the equilibrium control law π∗ is time consistent, i.e.,
if all the players t+ ε ≤ s ≤ T , choose the strategy π∗ as their optimal, it remains optimal
for the players t ≤ s < t+ ε.

In order to ensure the existence of the equilibrium value function and the equilibrium
control strategy, it is sufficient to assume the uniform boundedness and non-degeneracy
conditions on the associated parameters:

(A1) r(t, j), µ(t, j), σ(t, j), γS(t, j, ·), κ(t, j), σ1(t, j) and γ`(t, j, ·) are uniformly bounded
on [0, T ], for each j ∈ S. And the risk aversion coefficient ξ(j) is non-degenerate,
that is, there exists ε > 0, such that ξ(j) > ε, for any j ∈ S.

In order to solve the optimization problem (2.7), we will apply the game theoretic frame-
work as in [5] for our mean-variance DC problem with regime switching and jumps problem.
For simplicity of notation, we denote r(t, j), µ(t, j), σ(t, j), γS(t, j, ·), κ(t, j), σ1(t, j), σ2(t, j),
γ`(t, j, ·), ξ(j) by rj, µj, σj, γSj, κj, σ1j, σ2j, γ`j, ξj, respectively.

Applying the Itô’s formula for Markov regime switching jump diffusion process (see [9],
Theorem 3.1.), for any φ(t, x, `, z, j) ∈ C1,2,2,1([0, T ] × R3 × S), with π ∈ A and x, `, z in
(2.5), (2.3) and (2.4), the infinitesimal generator operator is defined by

Lφ(t, x, `, z, j) (2.8)

= φt(t, x, `, z, j) +
[
x(r(t, j) + βt0(t)) + (µ(t, j)− r(t, j))π(t) + δ`− εβt0(t)z

]
φx(t, x, `, z, j)

+κ(t, j)`φ`(t, x, `, z, j) + δ`φz(t, x, `, z, j) +
1

2
(σ2

1(t, j) + σ2
2(t, j))`2φ``(t, x, `, z, j)

+
1

2
π2(t)σ2(t, j)φxx(t, x, `, z, j) + π(t)`σ(t, j)σ1(t, j)φx`(t, x, `, z, j)

+
∑

α∈S,α 6=j

ajα(φ(t, x, `, z, α)− φ(t, x, `, z, j))
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+

∫
R0

[
φ(t, x+ π(t)γS(t, j, ζ), `(1 + γ`(t, j, ζ)), z, j)− φ(t, x, `, z, j)

−π(t)γS(t, j, ζ)φx(t, x, `, z, j)− `γ`(t, j, ζ)φ`(t, x, `, z, j)
]
ν(dζ) .

3. The extended HJB system

In this section, we derive the extended HJB system for our mean variance problem
with regime switching and the corresponding verification theorem. Our aim is to establish
explicitly the admissible equilibrium control for our problem according to Definition 2.2.
For more details we refer to [5], [27], [20], and references therein.

Theorem 3.1. Suppose that there exist functions Ψ, ϕ : [0, T ] × R3 × S → R and ψ :
[0, T ]× R3 × S × [0, T ]× S → R satisfying the following system of equations:

sup
π∈R

{
LπΨ(t, x, `, z, j)− Lπψ(t, x, `, z, j, j′) + Lπψj′(t, x, `, z, j)− Lπ(Γ ◦ ϕ)(t, x, `, z, j)

+Mπϕ(t, x, `, z, j)
}

= 0 , (3.1)

Lπ∗ψj′(t, x, `, z, j) = 0 , (3.2)

Lπ∗ϕ(t, x, `, z, j) = 0 , (3.3)

Ψ(T, x, `, z, j) = x ,

ψj
′
(T, x, `, z, j) = x− ξ(j′)

2
x2 ,

ϕ(T, x, `, z, j) = x ,

where ψj
′
(t, x, `, z, j) := ψ(t, x, `, z, j, t, j), (Γ ◦ ϕ)(t, x, `, z, j) := Γ(t, ϕ(t, x, `, z, j), j) =

ξ(j)
2
ϕ(t, x, `, z, j)2, and Mπϕ(t, x, `, z, j) := Γy(t, ϕ(t, x, `, z, j), j) × Lπϕ(t, x, `, z, j), for

any j′ ∈ S.
Then π∗ is an equilibrium control law and Ψ is the corresponding value function. Fur-

thermore, ψ and ϕ have the following probabilistic representation:

ψ(t, x, `, z, j, j′) = Et,x,`,z,j[F (Xπ∗(T ), j)] and ϕ(t, x, `, z, j) = Et,x,`,z,j[Xπ∗(T )] .

Proof. See Appendix. �

Note that from the probabilistic representation of ψ and ϕ, Ψ can clearly be written as

Ψ(t, x, `, z, j) = ψ(t, x, `, z, j, j′) + Γ(t, ϕ(t, x, `, z, j), j) . (3.4)

Hence, the first equation in Theorem 3.1 is simplified to

sup
π∈R

{
Lπψj′(t, x, `, z, j) +Mπϕ(t, x, `, z, j)

}
= 0 .

Using the generator (2.8), the extended HJB system can be written as

sup
π∈R

{
ψj
′

t (t, x, `, z, j) + ξjϕ(t, x, `, z, j)ϕt(t, x, `, z, j) + [x(rj + βt0) + (µj − rj)π
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+δ`− εβt0z][ψj
′

x (t, x, `, z, j) + ξjϕ(t, x, `, z, j)ϕx(t, x, `, z, j)]

+κj`[ψ
t,j
` (t, x, `, z, j) + ξjϕ(t, x, `, z, j)ϕ`(t, x, `, z, j)]

+δ`[ψt,jz (t, x, `, z, j) + ξjϕ(t, x, `, z, j)ϕz(t, x, `, z, j)]

+
1

2
σ2
jπ

2[ψj
′

xx(t, x, `, z, j) + ξjϕ(t, x, `, z, j)ϕxx(t, x, `, z, j)]

+
1

2
(σ2

1j + σ2
2j)`

2[ψj
′

``(t, x, `, z, j) + ξjϕ(t, x, `, z, j)ϕ``(t, x, `, z, j)]

+σjσ1j`π[ψj
′

x`(t, x, `, z, j) + ξjϕ(t, x, `, z, j)ϕx`(t, x, `, z, j)]

+
∑

α∈S,α 6=j

ajα[ψj
′
(t, x, `, z, α) + ξαϕ(t, x, `, z, α)ϕ(t, x, `, z, α)]

−
∑

α∈S,α 6=j

ajα[ψj
′
(t, x, `, z, j) + ξjϕ(t, x, `, z, j)ϕ(t, x, `, z, j)]

+

∫
R0

[
ψj
′
(t, x+ πγSj(ζ), `(1 + γ`j(ζ)), z, j)− ψj′(t, x, `, z, j)

+ξjϕ(t, x, `, z, j)ϕ(t, x+ πγSj(ζ), `(1 + γ`j(ζ)), z, j)− ϕ(t, x, `, z, j)

−πγSj(ζ)[ψj
′

x (t, x, `, z, j) + ξjϕ(t, x, `, z, j)ϕx(t, x, `, z, j)]

−`γ`j(ζ)[ψj
′

` (t, x, `, z, j) + ξjϕ(t, x, `, z, j)ϕ`(t, x, `, z, j)]
]
ν(dζ)

}
= 0 , (3.5)

ψj
′

t (t, x, `, z, j) + [x(rj + βt0) + (µj − rj)π∗ + δ`− εβt0z]ψj
′

x (t, x, `, z, j)

+κj`ψ
j′

` (t, x, `, z, j) + δ`ψj
′

z (t, x, `, z, j) +
1

2
σ2
j (π
∗)2ψj

′

xx(t, x, `, z, j)

+
1

2
(σ2

1j + σ2
2j)`

2ψj
′

``(t, x, `, z, j) + σjσ1j`π
∗ψj

′

x`(t, x, `, z, j)

+
∑

α∈S,α 6=j

ajα[ψj
′
(t, x, `, z, α)− ψj′(t, x, `, z, j)]

+

∫
R0

[
ψj
′
(t, x+ π∗γSj(ζ), `(1 + γ`j(ζ)), z, j)− ψj′(t, x, `, z, j)

−π∗γSj(ζ)ψj
′

x (t, x, `, z, j)− `γ`j(ζ)ψj
′

` (t, x, `, z, j)
]
ν(dζ) = 0 , (3.6)

ϕt(t, x, `, z, j) + [x(rj + βt0) + (µj − rj)π∗ + δ`− εβt0z]ϕx(t, x, `, z, j)

+κj`ϕ`(t, x, `, z, j) + δ`ϕz(t, x, `, z, j) +
1

2
σ2
j (π
∗)2ϕxx(t, x, `, z, j)

+
1

2
(σ2

1j + σ2
2j)`

2ϕ``(t, x, `, z, j) + σjσ1j`π
∗ϕx`(t, x, `, z, j)

+
∑

α∈S,α 6=j

ajα[ϕ(t, x, `, z, α)− ϕ(t, x, `, z, j)]
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+

∫
R0

[
ϕ(t, x+ π∗γSj(ζ), `(1 + γ`j(ζ)), z, j)− ϕ(t, x, `, z, j)

−π∗γSj(ζ)ϕx(t, x, `, z, j)− `γ`j(ζ)ϕ`(t, x, `, z, j)
]
ν(dζ) = 0 , (3.7)

ψj
′
(T, x, `, z, j) = x− ξj

2
x2 , (3.8)

ϕ(T, x, `, z, j) = x . (3.9)

If the expression in the sup function (3.5) is concave in π, i.e.,

σ2
j [ψ

j′

xx(t, x, `, z, j) + ξjϕ(t, x, `, z, j)ϕxx(t, x, `, z, j)]

+

∫
R0

[
ψj
′

ππ(t, x+ πγSj(ζ), `(1 + γ`j(ζ)), z, j)

+ξjϕ(t, x, `, z, j)ϕππ(t, x+ πγSj(ζ), `(1 + γ`j(ζ)), z, j)
]
ν(dζ) < 0 , (3.10)

then the equilibrium control π∗ solves the following equation

(µj − rj)[ψj
′

x (t, x, `, z, j) + ξjϕ(t, x, `, z, j)ϕx(t, x, `, z, j)] + σjσ1j`[ψ
j′

x`(t, x, `, z, j)

+ξjϕ(t, x, `, z, j)ϕx`(t, x, `, z, j)] + σ2
jπ
∗[ψj

′

xx(t, x, `, z, j) + ξjϕ(t, x, `, z, j)ϕxx(t, x, `, z, j)]

+

∫
R0

[
ψj
′

π (t, x+ π∗γSj(ζ), `(1 + γ`j(ζ)), z, j)

+ξjϕ(t, x, `, z, j)ϕπ(t, x+ π∗γSj(ζ), `(1 + γ`j(ζ)), z, j)

−γSj(ζ)[ψj
′

x (t, x, `, z, j) + ξjϕ(t, x, `, z, j)ϕx(t, x, `, z, j)]
]
ν(dζ) = 0 . (3.11)

In the following section, we derive the solution for the equilibrium control and the
corresponding value function.

3.1. Solution of the time-consistent mean-variance DC problem.

We attempt to solve the extended HJB system (3.5)-(3.9) and obtain the explicit equi-
librium control π∗ ∈ A . As in [27], we conjecture the solutions of the following form:

ϕ(t, x, `, j) = b(t, j)x+ c(t, j)`+ h(t, j)z + e(t, j) , (3.12)

ψ(t, x, `, j, j′) = b(t, j)x+ c(t, j)`+ h(t, j)z + e(t, j)− ξ(j)

2

[
A(t, j)x2 (3.13)

+B(t, j)`2 + P (t, j)z2 + 2C(t, j)x`+ 2R(t, j)xz + 2K(t, j)z`

+2M(t, j)x+ 2N(t, j)`+ 2H(t, j)z +Q(t, j)
]
,

with the terminal conditions b(T, j) = A(T, j) = 1 and c(T, j) = h(t, j) = e(T, j) =
B(T, j) = C(T, j) = M(T, j) = N(T, j) = H(t, j) = P (T, j) = R(T, j) = K(T, j) =
Q(T, j) = 0 . For the concavity condition (3.10) to be satisfied, we assume that A(t, j) > 0,
for all (t, j) ∈ [0, T ] × S . For simplicity, we adopt the following notation bj, cj, hj, ej,
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Aj, Bj, Pj,Cj,Mj, Nj, Hj, Rj, Kj andQj for b(t, j), c(t, j), h(t, j), e(t, j), A(t, j), B(t, j), C(t, j),
M(t, j), N(t, j), H(t, j), P (t, j), R(t, j), K(t, j) and Q(t, j) respectively.

From the conjecture (3.12)-(3.13) and equation (3.11), we can easily see that the equi-
librium control law π∗ is given by

π∗(t, x, `, z, j) =
(µj − rj)(b2

j − Aj)

Aj

(
σ2
j +

∫
R0
γ2
Sjν(dζ)

)x+
(µj − rj)bjhj

Aj

(
σ2
j +

∫
R0
γ2
Sjν(dζ)

)z (3.14)

+
(µj − rj)(bjcj − Cj)− Cj

(
σjσ1j +

∫
R0
γSjγ`jν(dζ)

)
Aj

(
σ2
j +

∫
R0
γ2
Sjν(dζ)

) `

+
(µj − rj)(bj + ξj(bjej −Mj))

ξjAj

(
σ2
j +

∫
R0
γ2
Sjν(dζ)

) .

Based on (3.12), (3.13) and (3.14), the expressions (3.6)-(3.7) can be written as

−ξj
2

[
Ȧj + 2(rj + βt0)Aj +

(µj − rj)2(b2
j − Aj)

σ2
j +

∫
R0
γ2
Sjν(dζ)

( b2
j

Aj
+ 1
)

+
∑

α∈S,α 6=j

ajα(Aα − Aj)
]
x2

−ξj
2

{
Ḃj +

(
2κj + σ2

1j +

∫
R0

γ2
`jν(dζ)

)
Bj + 2δ(Cj +Kj)

+2
(µj − rj)(bjcj − Cj)− Cj

(
σjσ1j +

∫
R0
γSjγ`jν(dζ)

)
Aj

(
σ2
j +

∫
R0
γ2
Sjν(dζ)

) (
µj − rj +

∫
R0

γSjγ`jν(dζ)
)
Cj

+

[
(µj − rj)(bjcj − Cj)− Cj

(
σjσ1j +

∫
R0
γSjγ`jν(dζ)

)]2

Aj

(
σ2
j +

∫
R0
γ2
Sjν(dζ)

) +
∑

α∈S,α 6=j

ajα(Bα −Bj)
}
`2

−ξj
2

[
Ṗj − 2εβt0Rj +

(µj − rj)2bjhj

Aj

(
σ2
j +

∫
R0
γ2
Sjν(dζ)

)(2Rj + bjhj

)
+

∑
α∈S,α 6=j

ajα(Pα − Pj)
]
z2

−ξj
{
Ċj + (rj + βt0 + κj)Cj +

(µj − rj)(b2
j − Aj)Cj

Aj

(
σ2
j +

∫
R0
γ2
Sjν(dζ)

)(µj − rj + σjσ1j

+

∫
R0

γSjγ`jν(dζ)
)

+
(µj − rj)

[
(µj − rj)(bjcj − Cj)− Cj

(
σjσ1j +

∫
R0
γSjγ`jν(dζ)

)]
b2
j

Aj

(
σ2
j +

∫
R0
γ2
Sjν(dζ)

)
+δ(Aj +Rj) +

∑
α∈S,α 6=j

ajα(Cα − Cj)
}
x`− ξj

[
Ṙj + (rj + βt0)Rj − εβt0Aj
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+
(µj − rj)(Ajbjhj + (Rj + bjhj)(b

2
j − Aj))

Aj

(
σ2
j +

∫
R0
γ2
Sjν(dζ)

) +
∑

α∈S,α 6=j

ajα(Rα −Rj)
]
xz

−ξj
{
K̇j + κKj + 2δ(Rj + Pj)− εβt0Cj +

(µj − rj)(µj − rj + σjσ1j)bjhjCj

Aj

(
σ2
j +

∫
R0
γ2
Sjν(dζ)

)
+

(µj − rj)(Rj + bjhj)
[
(µj − rj)(bjcj − Cj)− Cj

(
σjσ1j +

∫
R0
γSjγ`jν(dζ)

)]
Aj

(
σ2
j +

∫
R0
γ2
Sjν(dζ)

)
+

∑
α∈S,α 6=j

ajα(Kα −Kj)
}
z`− ξj

{
Ṁj + (rj + βt0)Mj

+
(µj − rj)2(b2

j − Aj)

Aj

(
σ2
j +

∫
R0
γ2
Sjν(dζ)

)Mj +
(µj − rj)2(bj + ξj(bjej −Mj))

ξjAj

(
σ2
j +

∫
R0
γ2
Sjν(dζ)

) b2
j +

∑
α∈S,α 6=j

ajα(Mα −Mj)
}
x

−ξj
{
Ṅj + κjNj + δ(Mj +Hj) + σSjσ1jCj +

∑
α∈S,α 6=j

ajα(Nα −Nj)

+
(µj − rj)(bj + ξj(bjej −Mj))

ξjAj

(
σ2
j +

∫
R0
γ2
Sjν(dζ)

) (
µj − rj +

∫
R0

γSjγ`jν(dζ)
)
Cj

+
(µj − rj)(bjcj − Cj)− Cj

(
σjσ1j +

∫
R0
γSjγ`jν(dζ)

)
ξjAj

(
σ2
j +

∫
R0
γ2
Sjν(dζ)

) (µj − rj)(1 + ξjej)bj

}
`

−ξj
[
Ḣj − εβt0Mj +

(µj − rj)2bjhjMj

Aj

(
σ2
j +

∫
R0
γ2
Sjν(dζ)

) +
(µj − rj)2(bj + ξj(bjej −Mj))(Rj + bjhj)

ξjAj

(
σ2
j +

∫
R0
γ2
Sjν(dζ)

)
+

∑
α∈S,α 6=j

ajα(Hα −Hj)
]
z

−ξj
2

{
Q̇j +

(µj − rj)2(bj + ξj(bjej −Mj))

ξ2
jAj

(
σ2
j +

∫
R0
γ2
Sjν(dζ)

) (ξjMj + (1 + ξjej)bj) +
∑

α∈S,α 6=j

ajα(Qα −Qj)
}

[
ḃj + (rj + βt0)bj +

(µj − rj)2(b3
j − Ajbj)

Aj

(
σ2
j +

∫
R0
γ2
Sjν(dζ)

) +
∑

α∈S,α 6=j

ajα(bα − bj)
]
x+

[
ċj + κjcj

+δ(bj + hj) +
(µj − rj)(bjcj − Cj)− Cj

(
σjσ1j +

∫
R0
γSjγ`jν(dζ)

)
Aj

(
σ2
j +

∫
R0
γ2
Sjν(dζ)

) (µj − rj)bj

+
∑

α∈S,α 6=j

ajα(cα − cj)
]
`+

[
ḣj − εβt0bj +

(µj − rj)2bjhj

Aj

(
σ2
j +

∫
R0
γ2
Sjν(dζ)

) +
∑

α∈S,α 6=j

ajα(hα − hj)
]
z
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+
[
ėj +

(µj − rj)2(b2
j + ξj(b

2
jej −Mjbj))

ξjAj

(
σ2
j +

∫
R0
γ2
Sjν(dζ)

) +
∑

α∈S,α 6=j

ajα(eα − ej)
]

= 0 ,

and

[
ḃj + (rj + βt0)bj +

(µj − rj)2(b3
j − Ajbj)

Aj

(
σ2
j +

∫
R0
γ2
Sjν(dζ)

) +
∑

α∈S,α 6=j

ajα(bα − bj)
]
x+

[
ċj + κjcj

+δ(bj + hj) +
(µj − rj)(bjcj − Cj)− Cj

(
σjσ1j +

∫
R0
γSjγ`jν(dζ)

)
Aj

(
σ2
j +

∫
R0
γ2
Sjν(dζ)

) (µj − rj)bj

+
∑

α∈S,α 6=j

ajα(cα − cj)
]
`+

[
ḣj − εβt0bj +

(µj − rj)2bjhj

Aj

(
σ2
j +

∫
R0
γ2
Sjν(dζ)

) +
∑

α∈S,α 6=j

ajα(hα − hj)
]
z

+
[
ėj +

(µj − rj)2(b2
j + ξj(b

2
jej −Mjbj))

ξjAj

(
σ2
j +

∫
R0
γ2
Sjν(dζ)

) +
∑

α∈S,α 6=j

ajα(eα − ej)
]

= 0 ,

where ẏ denotes the first derivative of y with respect to time t. Due to the arbitrariness of
the variables x, ` and z, we deduce the following system of ordinary differential equations
(ODEs):

Ȧj + 2(rj + βt0)Aj +
(µj − rj)2(b2

j − Aj)
σ2
j +

∫
R0
γ2
Sjν(dζ)

( b2
j

Aj
+ 1
)

+
∑

α∈S,α 6=j

ajα(Aα − Aj) = 0 ; (3.15)

Ḃj +
(

2κj + σ2
1j +

∫
R0

γ2
`jν(dζ)

)
Bj + 2δ(Cj +Kj) (3.16)

+2
(µj − rj)(bjcj − Cj)− Cj

(
σjσ1j +

∫
R0
γSjγ`jν(dζ)

)
Aj

(
σ2
j +

∫
R0
γ2
Sjν(dζ)

) (
µj − rj +

∫
R0

γSjγ`jν(dζ)
)
Cj

+

[
(µj − rj)(bjcj − Cj)− Cj

(
σjσ1j +

∫
R0
γSjγ`jν(dζ)

)]2

Aj

(
σ2
j +

∫
R0
γ2
Sjν(dζ)

) +
∑

α∈S,α 6=j

ajα(Bα −Bj) = 0 ;

Ṗj − 2εβt0Rj +
(µj − rj)2bjhj

Aj

(
σ2
j +

∫
R0
γ2
Sjν(dζ)

)(2Rj + bjhj

)
+

∑
α∈S,α 6=j

ajα(Pα − Pj) = 0;(3.17)

Ċj + (rj + βt0 + κj)Cj +
(µj − rj)(b2

j − Aj)Cj
Aj

(
σ2
j +

∫
R0
γ2
Sjν(dζ)

)(µj − rj + σjσ1j +

∫
R0

γSjγ`jν(dζ)
)
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+
(µj − rj)

[
(µj − rj)(bjcj − Cj)− Cj

(
σjσ1j +

∫
R0
γSjγ`jν(dζ)

)]
b2
j

Aj

(
σ2
j +

∫
R0
γ2
Sjν(dζ)

)
+δ(Aj +Rj) +

∑
α∈S,α 6=j

ajα(Cα − Cj) = 0 ; (3.18)

Ṙj + (rj + βt0)Rj − εβt0Aj +
(µj − rj)(Ajbjhj + (Rj + bjhj)(b

2
j − Aj))

Aj

(
σ2
j +

∫
R0
γ2
Sjν(dζ)

)
+

∑
α∈S,α 6=j

ajα(Rα −Rj) = 0; (3.19)

K̇j + κKj + 2δ(Rj + Pj)− εβt0Cj +
(µj − rj)(µj − rj + σjσ1j)bjhjCj

Aj

(
σ2
j +

∫
R0
γ2
Sjν(dζ)

)
+

(µj − rj)(Rj + bjhj)
[
(µj − rj)(bjcj − Cj)− Cj

(
σjσ1j +

∫
R0
γSjγ`jν(dζ)

)]
Aj

(
σ2
j +

∫
R0
γ2
Sjν(dζ)

)
+

∑
α∈S,α 6=j

ajα(Kα −Kj) = 0; (3.20)

Ṁj + (rj + βt0)Mj +
(µj − rj)2(b2

j − Aj)

Aj

(
σ2
j +

∫
R0
γ2
Sjν(dζ)

)Mj

+
(µj − rj)2(bj + ξj(bjej −Mj))

ξjAj

(
σ2
j +

∫
R0
γ2
Sjν(dζ)

) b2
j +

∑
α∈S,α 6=j

ajα(Mα −Mj) = 0 (3.21)

Ṅj + κjNj + δ(Mj +Hj) + σSjσ1jCj +
∑

α∈S,α 6=j

ajα(Nα −Nj)

+
(µj − rj)(bj + ξj(bjej −Mj))

ξjAj

(
σ2
j +

∫
R0
γ2
Sjν(dζ)

) (
µj − rj +

∫
R0

γSjγ`jν(dζ)
)
Cj

+
(µj − rj)(bjcj − Cj)− Cj

(
σjσ1j +

∫
R0
γSjγ`jν(dζ)

)
ξjAj

(
σ2
j +

∫
R0
γ2
Sjν(dζ)

) (µj − rj)(1 + ξjej)bj = 0 ; (3.22)

Ḣj − εβt0Mj +
(µj − rj)2bjhjMj

Aj

(
σ2
j +

∫
R0
γ2
Sjν(dζ)

) +
(µj − rj)2(bj + ξj(bjej −Mj))(Rj + bjhj)

ξjAj

(
σ2
j +

∫
R0
γ2
Sjν(dζ)

)
+

∑
α∈S,α 6=j

ajα(Hα −Hj) = 0; (3.23)
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Q̇j +
(µj − rj)2(bj + ξj(bjej −Mj))

ξ2
jAj

(
σ2
j +

∫
R0
γ2
Sjν(dζ)

) (ξjMj + (1 + ξjej)bj) (3.24)

+
∑

α∈S,α 6=j

ajα(Qα −Qj) = 0 ;

ḃj + (rj + βt0)bj +
(µj − rj)2(b3

j − Ajbj)

Aj

(
σ2
j +

∫
R0
γ2
Sjν(dζ)

) +
∑

α∈S,α 6=j

ajα(bα − bj) = 0 ; (3.25)

ḣj − εβt0bj +
(µj − rj)2bjhj

Aj

(
σ2
j +

∫
R0
γ2
Sjν(dζ)

) +
∑

α∈S,α 6=j

ajα(hα − hj) = 0 ; (3.26)

ċj + κjcj + δ(bj + hj) +
∑

α∈S,α 6=j

ajα(cα − cj) (3.27)

+
(µj − rj)(bjcj − Cj)− Cj

(
σjσ1j +

∫
R0
γSjγ`jν(dζ)

)
Aj

(
σ2
j +

∫
R0
γ2
Sjν(dζ)

) (µj − rj)bj = 0 ;

ėj +
(µj − rj)2(b2

j + ξj(b
2
jej −Mjbj))

ξjAj

(
σ2
j +

∫
R0
γ2
Sjν(dζ)

) +
∑

α∈S,α 6=j

ajα(eα − ej) = 0 ; (3.28)

with the terminal conditions b(T, j) = A(T, j) = 1 and c(T, j) = h(T, j) = e(T, j) =
B(T, j) = C(T, j) = P (T, j) = M(T, j) = N(T, j) = K(T, j) = R(T, j) = H(T, j) =
Q(T, j) = 0 . Note that although these equations (3.15)-(3.28) look very complicated, they
can be solved one by one following similar techniques as in [27]. First, from the fact that
ajj = −

∑
j 6=α aαj, the solutions of the equations (3.15) and (3.25) are given by

Aj(t) = exp
(

2

∫ T

t

(rj(s) + βt0(s))ds
)

and bj(t) = exp
(∫ T

t

(rj(s) + βt0(s))ds
)
,

for all j ∈ S.
Moreover, the solution of the equation (3.26) is given by

hj(t) = exp
{∫ T

t

[ (µj(s)− rj(s))2

bj(s)
(
σ2
j (s) +

∫
R0
γ2
Sj(s, ζ)ν(dζ)

) − εβt0(s)]ds}−1 .

Based on the equations (3.18) and (3.27), and the explicit solutions for Aj and bj above,
we deduce that Cj(t) = bj(t)cj(t) . Hence, the ODE (3.27) can be simplified to the following
first order linear system of ODEs.

ċj +
[
κj −

(µj − rj)
σ2
j +

∫
R0
γ2
Sjν(dζ)

(
σjσ1j +

∫
R0

γSjγ`jν(dζ)
)]
cj +

∑
α∈S,α 6=j

ajα(cα − cj)

+δ(bj + hj) = 0 .



16

Therefore, its solution exists and is well studied in the literature. Similarly, from equa-
tions (3.21) and (3.28), we deduce that Mj(t) = bj(t)ej(t) . Then, the ODE (3.28) can be
simplified to the following first order linear system of ODEs:

ėj +
∑

α∈S,α 6=j

ajα(eα − ej) +
(µj − rj)2

ξj

(
σ2
j +

∫
R0
γ2
Sjν(dζ)

) = 0 .

Finally, since the explicit solutions for cj and ej can be obtained, combining with the
solutions for Aj, bj and hj obtained above, the equations (3.16), (3.17), (3.19), (3.20),
(3.22), (3.23) and (3.24) become the system of linear ODEs for Bj, Pj, Rj, Kj, Nj, Hj and
Qj that can be solved explicitly.

Therefore, our main result is given by the following theorem.

Theorem 3.2. The equilibrium control for the mean-variance defined contribution opti-
mization problem (2.7) is given by

π∗(t, x, `, z, j) =
(µj − rj)(1 + ξjhjz)− ξj`

(
σjσ1j +

∫
R0
γSjγ`jν(dζ)

)
cj

ξj

(
σ2
j +

∫
R0
γ2
Sjν(dζ)

) × b(t, j) (3.29)

and the corresponding equilibrium value function is given by

Ψ(t, x, `, z, j, j′) = b(t, j)x+ c(t, j)`+ h(t, j)z + e(t, j) +
ξ(j)

2

[
(B(t, j)− c2(t, j))`2

+P (t, j)z2 + 2R(t, j)xz + 2K(t, j)z`+ 2(N(t, j)− c(t, j)e(t, j))`

+2H(t, j)z + (Q(t, j)− e2(t, j))
]
,

where

b(t, j) = exp
(∫ T

t

(rj(s) + βt0(s))ds
)
,

hj(t) = exp
{∫ T

t

[ (µj(s)− rj(s))2

bj(s)
(
σ2
j (s) +

∫
R0
γ2
Sj(s, ζ)ν(dζ)

) − εβt0(s)]ds}−1

and c(t, j), e(t, j), B(t, j), N(t, j) and Q(t, j) satisfy the following system of first order
linear ODEs.

ċ(t, j) +
[
κj −

(µj − rj)
σ2
j +

∫
R0
γ2
Sjν(dζ)

(
σjσ1j +

∫
R0

γSjγ`jν(dζ)
)]
c(t, j)

+
∑

α∈S,α 6=j

ajα(c(t, α)− c(t, j)) + δ(b(t, j) + h(t, j)) = 0 ;

c(T, j) = 0 ;
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ė(t, j) +
∑

α∈S,α 6=j

ajα(e(t, α)− e(t, j)) +
(µj − rj)2

ξj

(
σ2
j +

∫
R0
γ2
Sjν(dζ)

) = 0 ;

e(T, j) = 0 ;

Ḃ(t, j) +
(

2κj + σ2
1j +

∫
R0

γ2
`jν(dζ)

)
B(t, j) +

∑
α∈S,α 6=j

ajα(B(t, α)−B(t, j))

+2δ(b(t, j)c(t, j) +K(t, j)) +
σjσ1j +

∫
R0
γSjγ`jν(dζ)

σ2
j +

∫
R0
γ2
Sjν(dζ)

(
σjσ1j − µj + rj

)
e2(t, j) = 0 ;

B(T, j) = 0 ;

Ṙ(t, j) + (rj + βt0)R(t, j)− εβt0A(t, j) +
(µj − rj)b(t, j)h(t, j)

σ2
j +

∫
R0
γ2
Sjν(dζ)

+
∑

α∈S,α 6=j

ajα(R(t, α)−R(t, j)) = 0;

R(T, j) = 0 ;

Ṗ (t, j)− 2εβt0R(t, j) +
(µj − rj)2h(t, j)

b(t, j)
(
σ2
j +

∫
R0
γ2
Sjν(dζ)

)(2R(t, j) + b(t, j)h(t, j)
)

+
∑

α∈S,α 6=j

ajα(P (t, α)− P (t, j)) = 0;

P (T, j) = 0 ;

K̇(t, j) + κK(t, j) + 2δ(R(t, j) + P (t, j))− εβt0b(t, j)c(t, j)

+
∑

α∈S,α 6=j

ajα(K(t, α)−K(t, j)) +
(µj − rj)(µj − rj + σjσ1j)h(t, j)c(t, j)

σ2
j +

∫
R0
γ2
Sjν(dζ)

−
(µj − rj)(R(t, j) + b(t, j)h(t, j))

(
σjσ1j +

∫
R0
γSjγ`jν(dζ)

)
c(t, j)

b(t, j)
(
σ2
j +

∫
R0
γ2
Sjν(dζ)

) = 0;

K(T, j) = 0 ;

Ṅ(t, j) + κjN(t, j) +
∑

α∈S,α 6=j

ajα(N(t, α)−N(t, j)) + δ(b(t, j)e(t, j) +H(t, j))

+σSjσ1jb(t, j)c(t, j) +
µj − rj

ξj

(
σ2
j +

∫
R0
γ2
Sjν(dζ)

)(µj − rj +

∫
R0

γSjγ`jν(dζ)

−
(
σjσ1j +

∫
R0

γSjγ`jν(dζ)
)

(1 + ξje(t, j))
)
c(t, j) = 0 ;

N(T, j) = 0 ;
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Ḣj − εβt0b(t, j)e(t, j) +
(µj − rj)2h(t, j)e(t, j)

σ2
j +

∫
R0
γ2
Sjν(dζ)

+
(µj − rj)2(R(t, j) + b(t, j)h(t, j))

ξjb(t, j)
(
σ2
j +

∫
R0
γ2
Sjν(dζ)

)
+

∑
α∈S,α 6=j

ajα(H(t, α)−H(t, j)) = 0;

H(T, j) = 0 ;

Q̇(t, j) +
∑

α∈S,α 6=j

ajα(Q(t, α)−Q(t, j)) +
(µj − rj)2

ξ2
j

(
σ2
j +

∫
R0
γ2
Sjν(dζ)

)(1 + 2ξje(t, j)) = 0 ;

Q(T, j) = 0 .

Remark. From the expression of the equilibrium control (3.29), we can see that it depends
on the force of mortality βt0 and the stochastic income `. This latter case can be com-
pared to the dependence of the control problem on the asset-liability management in [27].
Moreover, from (A1), the existence of finite c(t, j), e(t, j), B(t, j), P (t, j), R(t, j), K(t, j),
N(t, j), H(t, j), and Q(t, j) can essentially be guaranteed by the uniform boundedness
condition on the coefficients.

4. Numerical illustration

In this section, we provide some numerical simulations for the equilibrium control strat-
egy π∗, to illustrate our main results. We assume that N(t, ·) is a Poisson process with
a intensity νj > 0, and all the market parameters are time-homogeneous, i.e., they only
depend on the regime switching. For simplicity, we assume the existence of two market
regimes S = {1, 2}, with Regime 1 corresponding to the economy in expansion and Regime
2, the economy in recession, respectively. We adopt the deterministic force of mortality
βt0(t) = 1

τ−(t0+t)
, with the maximal age τ = 100. Then, from Theorem 3.2,

π∗(t, x, `, z, j) =
(µj − rj)(1 + ξjhjz)− ξj`(σjσ1j + γSjγ`jν)cj

ξj(σ2
j + γ2

Sjν)
× τ − (t0 + t)

τ − (t0 + T )
erj(T−t) ,

where

hj(t) = exp
{(µj − rj)2

σ2
j + γ2

Sjν

∫ T

t

τ − (t0 + T )

τ − (t0 + s)
e−rj(T−s)ds

}
×
(τ − (t0 + T )

τ − (t0 + t)

)ε
−1

and c(t, j) solves the following linear ODE:

∂c

∂t
(t, j) +

[
κj −

(µj − rj)
σ2
j + γ2

Sjνj
(σjσ1j + γSjγ`jνj)

]
c(t, j)

+
∑

α∈S,α 6=j

ajα(c(t, α)− c(t, j)) + δ
τ − (t0 + t)

τ − (t0 + T )
erj(T−t) + δh(t, j)) = 0 ;

c(T, j) = 0 ;
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Figure 1. The equilibrium
strategy for ε = 1.
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Figure 2. The equilibrium
strategy for ε = 0.

Let a11 = q1, a22 = q2, a12 = −q1, a21 = −q2. We consider the following parameters
(some of them are adapted from [27]):

Regime j rj µj σj κj σ1j γj γ`j ν ξj t0 τ T δ qj `
j = 1 0.06 0.2 0.13 0.09 0.03 0.1 0.1 1 0.6 25 100 35 0.1 −0.4 8
j = 2 0.04 0.05 0.3 0.03 0.07 0.2 0 2 0.5 25 100 35 0.1 −0.6 8

The Figures 1-2 show the effect of the market regimes on the equilibrium strategy for
ε = 1, i.e., the premiums are returned to the member when he dies and ε = 0 (the pension
member obtains nothing during the accumulation phase). We can see that in both cases,
the pension manager makes a more conservative investment by short selling the stock to
buy the risk free assets. This is because a time consistent pension investor, sacrifices the
current happiness to ensure a consistent return during the investment period. We can
see that in both cases, the amount dedicated to the stock, tends to stabilize to values
approaching zero, after five years. It is consistent with the actuarial practices and DC
pension funds regulations of many countries, where most of the pension investment models
tend to put all the wealth into the risk-free asset as time of work goes.

Acknowledgment. The first author would like to express a deep gratitude to the Uni-
versity of Pretoria ABSA Chair in Actuarial Science for financial support.

We wish to extend our gratitude to the Editor and two anonymous reviewers, whose
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Appendix

Proof of the Theorem 3.1.
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To prove the theorem, we follow [5], Theorem 7.1. We divide the proof in two parts,
first we show that for the equilibrium control π∗ ∈ A, the value function Ψ(t, x, `, z, j) =
Φ(t, x, `, z, j, π∗) and ψ and ϕ have the following probabilistic representation:

ψ(t, x, `, z, j, j′) = Et,x,`,z,j[F (Xπ∗(T ), j)] and ϕ(t, x, `, z, j) = Et,x,`,z,j[X
π∗(T)] .

In the second part, we prove that π∗ ∈ A is indeed the equilibrium control strategy.
Let h(t, x, `, z, j) ∈ C1,2,2([0, T ]× R2 × S), then by Itô’s formula ([2], Lemma A1),

h(t,Xπ(t), `(t), Z(t), j)

= h(0, x, `, z, j) +

∫ t

0

Lh(s,Xπ(s), `(s), Z(s), j)ds

+

∫ t

0

`(s)σ2
∂h

∂`
(s,Xπ(s), `(s), Z(s), j)dW1(s)

+

∫ t

0

(
π(s,Xπ(s), `(s), Z(s), j)σ

∂h

∂x
(s,Xπ(s), `(s), Z(s), j)

+`(s)σ1
∂h

∂`
(s,Xπ(s), `(s), Z(s), j)

)
dW (s)

+

∫ t

0

∑
α∈S,α 6=j

(
h(s,Xπ(s), `(s), Z(s), α)− h(s,Xπ(s), `(s), Z(s), j)

)
dM̃jα

+

∫ t

0

∫
R
(h(s,Xπ(s) + π(s,Xπ(s), `(s), Z(s), j)γS, `(s), j)

+h(s,Xπ(s), `(s)(1 + σ1), Z(s), j)− 2h(s,Xπ(s), `(s), Z(s), j))Ñ(ds, dζ) ,

where Lh is given by (2.8). Since W, M̃ and Ñ are martingales, under the integrability
condition h ∈ L2

T (Xπ∗), we have that

h(t,Xπ(t), `(t), Z(s), α(t))− h(0, x, `, j)−
∫ t

0

Lπh(s,Xπ(s), `(s), Z(s), α(s)ds

is a martingale. Thus, for Ψ = h, we have:

Et,x,`,z,j[Ψ(T,X(T ), `(T ), Z(T ), α(t)] (4.1)

= Ψ(t, x, `, z, j) + Et,x,`,z,j
[∫ T

t

Lπ∗Ψ(s,Xπ∗(s), `(s), Z(s), α(t)ds
]
.

In order to show that Ψ(t, x, `, z, j) = Φ(t, x, `, z, j, π∗), we use the Ψ-equation (3.1) to
obtain:

Lπ∗Ψ(t, x, `, z, j) = Lπ∗ψ(t, x, `, z, j, j′)− Lπ∗ψj′(t, x, `, z, j)
+Lπ∗(Γ ◦ ϕ)(t, x, `, z, j)−Mπ∗ϕ(t, x, `, z, j) .

Then, from (3.2)-(3.2), The relation (4.1) becomes:

Et,x,`,z,j[Ψ(T,X(T ), `(T ), Z(T ), α(t)]



21

= Ψ(t, x, `, z, j) + Et,x,`,z,j
[∫ T

t

(
Lπ∗ψ(s,X(s), `(s), Z(s), α(s), j′)

+Lπ∗(Γ ◦ ϕ)(s,X(s), `(s), Z(s), α(s))
)
ds
]
.

Similarly,

Et,x,`,z,j
[∫ T

t

Lπ∗ψ(s,X(s), `(s), Z(s), α(s), j′)ds
]

= Et,x,`,z,j
[
ψ(T,X(T ), `(T ), Z(T ), α(T ), j′)

]
−ψ(t, x, `, z, j, j′)

and

Et,x,`,z,j
[∫ T

t

Lπ∗(Γ ◦ ϕ)(s,X(s), `(s), Z(s), α(s))ds
]

= Et,x,`,z,j
[
Γ(T, ϕ(T,X(T ), `(T ), Z(T ), α(T )), α(t)

]
−Γ(t, ϕ(t, x, `, z, j), j) .

Then, using the above relations, the boundary conditions and (3.4), we can easily con-
clude that

Ψ(t, x, `, z, j) = ψ(t, x, `, z, j, j′) + Γ(t, ϕ(t, x, `, z, j), j)

= Et,x,`,z,j[F (Xπ∗(T ), α(T )] + Et,x,`,z,j[Xπ∗(T )]

= Φ(t, x, `, z, j, π∗) . (4.2)

In order to show that π∗ is indeed an equilibrium control strategy, we construct, for any
ε > 0 and π ∈ A, the control strategy πε defined in Definition 2.2. For any s ∈ [t, t+ ε] we
have: (See Lemma 2.2, [5])

Φ(t, x, `, z, j, π) (4.3)

= Et,x,`,z,j[Ψ(t+ ε,Xπ
t+ε, `, α)]

−
{
Et,x,`,z,j[ψ(t+ ε,Xπ

t+ε, `, Z, α, j
′)]− Et,x,`,z,j[ψ(t+ ε,Xπ

t+ε, `, Z, α, j
′)]
}

−
{
Et,x,`,z,j[Γ(t+ ε, ϕ(t+ ε,Xπ

t+ε, `, Z, α), α)]

−Γ(t+ ε,Et,x,`,z,j[ϕ(t+ ε,Xπ
t+ε, `, Z, α), α])

}
.

Moreover, for all π ∈ A and (3.1), we have

LπΨ(t, x, `, z, j)− Lπψ(t, x, `, z, j, t, j) + Lπψt,j(t, x, `, z, j)− Lπ(Γ ◦ ϕ)(t, x, `, z, j)

+Mπϕ(t, x, `, z, j) ≤ 0 .

Discretizing the above expression, we have

Et,x,`,z,j[Ψ(t+ ε,Xπ
t+ε, `, Z, α)]−Ψ(t, x, `, z, j)−

{
Et,x,`,z,j[ψ(t+ ε,Xπ

t+ε, `, Z, α, j
′)]
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−ψ(t, x, `, z, j, j′)
}

+Et,x,`,z,j[ψ(t+ ε,Xπ
t+ε, `, Z, α, j

′)]− ψ(t, x, `, z, j, j′)

−Et,x,`,z,j[Γ(t+ ε, ϕ(t+ ε,Xπ
t+ε, `, Z, α), α)] + Γ(t, ϕ(t, x, `, z, j), j)

+Γ(t+ ε,Et,x,`,z,j[ϕ(t+ ε,Xπ
t+ε, `, Z, α), α])− Γ(t, ϕ(t, x, `, z, j), j) ≤ o(ε) .

Hence

Ψ(t, x, `, z, j)

≥ Et,x,`,z,j[Ψ(t+ ε,Xπ
t+ε, `, Z, α)]− Et,x,`,z,j[ψ(t+ ε,Xπ

t+ε, `, Z, α, j
′)]

+Et,x,`,z,j[ψ(t+ ε,Xπ
t+ε, `, Z, α, j

′)]− Et,x,`,z,j[Γ(t+ ε, ϕ(t+ ε,Xπ
t+ε, `, Z, α), α)]

+Γ(t+ ε,Et,x,`,z,j[ϕ(t+ ε,Xπ
t+ε, `, Z, α), α]) + o(ε) .

Therefore, from (4.2) and (4.3), we obtain

Φ(t, x, `, z, j, π∗)− Φ(t, x, `, z, j, πε) ≥ o(ε) ,

that is,

lim
ε→0

inf
Φ(t, x, `, z, j, π∗)− Φ(t, x, `, z, j, πε)

ε
≥ 0 ,

which completes the proof.
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