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A rational approach to the design of
bracing to resist stability forces and a
review of the CSA $16.1-99 proposals

N W Dekker and W M G Burdzik

The design of bracing to resist stability forces involves a
complex interaction between the bracing system and the
member. Most studies have involved sophisticated com-
puter analysis and as such the behavioural aspects have
been clouded, especially when the results of such studies

evolve into design methods.

This paper deals with simplified mathematical models
which clearly illustrate the interaction between the stiff-
ness and strength of the brace itself and the buckling
capacity of the strut. The proposed design rules are con-
sistent with the behaviour, have a sound theoretical basis
and are simple enough to be applied directly in a design

context.
INTRODUCTION

It is common practice to utilise bracing
systems to increase the capacity of struts
and beams by reducing the unrestrained
length of members susceptible to buckling.
Designers tacitly assume that points where
the member is attached to the bracing sys-
tem are fully restrained and determine
effective lengths and resistance values for
the members on that basis. All bracing sys-
tems are in fact flexible, and the interac-
tion between the flexibility of the bracing
system and the stiffness of the member is
often not fully appreciated by the designer.
This lack of understanding of the interac-
tive nature of bracing systems has, per-
haps, been caused by provisions in some
current design codes which specify a nomi-
nal design force, commonly expressed as a
percentage of the design load in the strut.
The use of a simple force criterion is possi-
bly an over-simplification of a complex
problem and may have been instrumental
in disguising the real behaviour of bracing
systems. Under ideal conditions, that is,
where the braced point undergoes no dis-
placement, the force in the brace is zero,
but this condition would require an infi-
nitely high bracing stiffness.

In this paper, a theoretical model is
derived from first principles by examining
the buckling of a strut restrained by a flexible
bracing system at a point midway between
two fixed points. The model subsequently
presented clearly illustrates the interaction
between the flexural stiffness of the strut and
the bracing system. The problem is also
approached by considering the results
obtained from applying force and stiffness
criteria to the design of bracing members. It
is subsequently shown that different values
of stiffness are obtained from designing sim-
ple bracing members for axial tension or
compression. The proposals of CSA §16.1-99
(Canadian Standards Association 1999) are
used as a basis for discussing proposed rules
for the design of stability bracing. Simplified
rules are proposed which are formulated
from considering upper bound criteria.

Proposed theoretical
stiffness model

The interaction between the stiffness of a
bracing member and the resistance of the
member itself is complex and involves an
evaluation of the likely eccentricities of the
unloaded strut as well as the ratio of the
actual load in the strut to the buckling resist-
ance The model proposed in this paper is
based upon a closed form solution of the
force and stiffness required to restrain an axi-
ally loaded strut at mid-height. It is assumed
that the strut in its unloaded form has a
small initial eccentricity at the brace, leading
to deformation of the brace as the load is
increased.

Consider the strut of length 2L,
restrained by an elastic brace at mid-height,
as shown in figure 1. The axial force in the
strut equals the actual buckling resistance of
the strut and the strut is therefore considered
to be in a condition of neutral equilibrium.

Figure 1 Theoretical model for a strut
with flexible bracing

Py, = force in the brace
P, = axial force in the strut

For the strut as shown in figure 1, the pri-
mary interaction between the stiffness of the
brace and the buckling resistance of the strut
may be appreciated by considering the influ-
ence of the stiffness of the brace on the posi-
tion of the point of contra flexure. For a
given level of load in the strut, the effective
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length of the portion AB will exceed L
and may be expressed as KL where K will
always exceed unity. As the buckling load
of the strut is unique, the portion BC will
also have an effective length KL appropri-
ate to the dotted line intersecting the
revised axis OO. The force in the bracing
is equilibriated by lateral reactions at
points A and C. The displacement of por-
tion AB may be expressed as:

. X
y = Asin—

. KL

And:

f_l‘X = A_{_cosﬁ_

dx KL KL

_._:_2_ = —A.‘/f“?sinﬂ
dx (KLY~ KL

d’y El
EI———);:—A il ﬂmﬁ
dx (KLY KL
=—AP sin =
KL
Where: P, = is the critical elastic

( )2
load of the strut, allowing for displace-
ment at the brace. Note that the value of
the effective length factor K is determined
by the displacement of the braced point
and therefore by the stiffness of the brac-
ing system. Also note that the shift of the
inflexion point caused by lateral displace-
ment of the braced point indicates a
reduction in the buckling capacity of the
strut.

Figure 2 Limiting cases of brace
stiffness

In the extreme case of a brace having a
very low stiffness, the value of the effec-
tive length factor, K, would tend towards
2, indicating that the brace has no influ-
ence on the buckling resistance of the
strut, as illustrated in figure 2.

The following boundary conditions
apply at point B:
y=a and the bending moment in the strut
is equal to :

b/—lu‘—/]dy/
2

dxz x=1.
o)
Ly b = BIAC sin-— ik
2 ( )2
:Al’csinA-
K
=aPl

From which the force in the brace may be
written as:

B=27(R 1)

1)
Ib~2 = +1|P
L\ P o)

And the stiffnes of the brace may be
expressed as:

kh=5=2—P(ﬂ+1)
a LR @

The stiffness of the brace may be deter-
mined from equation {(2) and is shown to
be a function of the actual load in the
strut and the critical elastic load, as well
as the length of the strut. In general
terms, equation (2) shows that the stiffer
the strut, and the greater the value of
axial load in the strut, the greater the
required brace stiffness will be. In the case
of pure elastic buckling, the maximum
value of the load in the strut will equal
the elastic buckling resistance of the strut,

7
/(KL)2 and the maximum value of
equation (2) will be as given by equation (3)
4k,
k, = |

_ 4l

S Tuls ®
Equation (4) demonstrates clearly that the
full buckling capacity of the strut can

only be realised if the stiffness of the
brace exceeds 4% , so achieving a

value of K= 1.

Stiffness
requirements of a
single brace

By setting the value of the effective
length factor K, equal to 1 in equation
(4), the required bracing stiffness may be
derived to achieve a condition where the
buckling resistance of the strut is equal to
that commonly assumed by the designer.
This requirement would maximise the
value of equation (4) which may then be
expressed as equation (5)
s

)
This equation is fundamentally similar to,
and illustrates the background to clause
20.2 of the CSA S 16.1-99 proposals given
as equation (6)

K :m/ 1+ Aa
C gL A4,

(6)
where:

K, =required effective stiffness of the
bracing assembly
A, =initial misalignment of the braced
member at the point of support
Ap, = elastic displacement of the brace
caused by the initial misalignment
Agp=displacement of the brace point due
to movement of the anchor bracing
point relative to adjacent brace
points
=2,3,341,0r3.63for 1,2 3, 0r4
equally spaced braces, respectively
Cs = force in column, the compressed por-
tion of a flexural member, or the
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compression chord of a truss, under
factored loads

L =length between brace points

&, = partial resistance factor

The similarity between equations (5) and
(6) may be demonstrated by recognising
that for the case under consideration,

=2, and in order to maximise the term
1 brackets of equation (6), A,, should be
set equal to zero. Equations (557 and (6) are
then identical, with the exception of the
introduction of the capacity reduction
factor, ¢,. The commentary to CSA $16.1-
99 indicates that the value of £ should be
taken as 1 when considering the ends of a
braced member, and this may be appreci-
ated by considering the theoretical model,
and the basic equilibrium thereof. The
sum of the reactions should equal the
force in the brace, which in turn is related
to the stiffness of the brace, and hence
supports the requirement of a value of

=1

p Most current bracing rules are based
on the proposals of Winter (Winter 1960).
The theoretical model used in this paper
is similar to Winter’s approach, but clearly
indicates the influence of the brace stiff-
ness on the buckling load of the strut.

Equation (4) indicates that, for the
case under consideration, the brace
becomes ineffective at a stiffness of one
quarter of that required to be fully effec-
tive.

It is also important to note that the
greater the stiffness provided in the brace,
the lesser the force in the brace.

Force criteria and the
design of bracing

The force in the brace is linearly related
to the displacement of the brace, and
multiplication of equation (5) by the dis-
placement of the brace allows the force in
the brace to be calculated.

CSA §16.1-99 also calculates the
bracing force directly from the displace-
ment of the braced point as given by
equation (6). It is important to note that
the force in the brace tends towards zero
if the brace is infinitely stiff, and increases
with the displacement of the braced
point.

Design codes typically specify nomi-
nal loads for the design of bracing sys-
tems having values between 1,5% and
2,5% of the force in the strut. The funda-
mental problem of specifying a nominal
design force without a stiffness criterion
may only be appreciated by recognising
that such an approach cannot ensure that
the conditions required by equation (4) tc
achieve an effective length factor consis-
tent to that assumed by the designer, are
met.

CSA §16.1-99 specifies an iterative
procedure whereby the brace stiffness is
initially calculated from equation (6),
considering the recommendation con-
tained in the commentary of maximising
the term in brackets, and using a value in
the region of, or exceeding 2, which is



essentially the same as using equation (5),
as previously discussed. A preliminary size
of brace is then selected and the force in
the brace is calculated using an assumed
displacement of the braced point. The dis-
placement of the braced point is then re-
calculated using the actual stiffness and
the first iteration value of the force in the
brace. The procedure is repeated until
force and displacement criteria are simul-
taneously satisfied.

This procedure may be regarded as
too tedious and time consuming, especial-
ly when considering the relative cost of
bracing as a proportion of the overall cost
of the structure.

Force criteria traditionally contained
in design codes stipulate nominal design
forces varying between 1,5% and 2,5% of
the force in the strut. Using equation (5)
and multiplying the stiffness by the dis-
placement, such values are seen to be
consistent with displacements of the
braced point of between L/267 to L/160.
These values are, of course total values
and relate to the final position of the
braced points relative to adjacent sup-
ports, and are greater than the initial mis-
alignment.

Design of bracing
members to force
and stiffness criteria

A fundamental issue which should be
resolved is, whether both criteria, stiffness
and strength, need to be satisfied within a
design context. To answer this question, it
is necessary to consider the problem from
a different angle, viz the actual perform-
ance of the bracing element. Consider the
very simple case of a tie installed perpen-
dicular to the strut to act as a brace.

Figure 3 Simple bracing system using tie or
strut braces

If the sizing of the tie is performed on the
basis of a force criterion the following
minimum size for the element is
obtained:

k= 4, fy
Where:

Ay, = area of brace
fy = yield strength of brace

By applying a criterion of minimum stiff-
ness, the following result is obtained:
_E4,

k
b I

Where:

Ly, = length of brace

Ey, = modulus of elasticity of the brace
The two results may be related by divid-
ing the first equation by the displacement
of the brace, a and then equating the
result to the second equation, then:

A, E. 4,
a L,
Which may be written as:

a [,

L, E, )
For structural steel the ratio of yield stress
to elastic modulus lies between ,001 and
,002.

The maximum deformation per unit
length of a brace designed as an axially
loaded tie, simultaneously satisfying both
the force and the stiffness criteria, there-
fore lies between 0,001 and 0,002, and is
shown to be a function of the yield stress
of the material, as well as the value of the
modulus of elasticity.

The situation is more complicated
when the brace is in compression, the
minimum strength of the brace can then
be expressed as:

TElba

&,y
used to convert the elastic critical load to
an inelastic buckling load of the brace.
The stiffness of a brace in compression is
however, greatly reduced if the brace has
an initial curvature.

In order to simultaneously satisfy the
stiffness and strength criteria, the follow-
ing relationship is obtained:

T’ E o  EA,

P =

where the factor « is

a(Lb)2 L,
Ta_a
Ay Ls

(8)
Equation (8) illustrates that the more
slender the strut, the greater the deforma-
tion of the brace per unit length. A slen-
derness limit commonly adopted in
design codes is A = 180.

At this value of slenderness the elastic
critical load is almost equal to the inelas-
tic load and the value of a may be conve-
niently taken as equal to one. The defor-
mation limit of a slender strut used as a
brace, simultaneously satisfying the pro-
posed force and stiffness criteria, is then
given by:

2 = 0,000346

L,

The following significant conclusions
may be drawn from considering the
results of applying force and stiffness cri-
teria to the design of simple, axially
loaded bracing members:

* The stiffness of a tie designed to satisfy
force criteria only is significantly less
than that obtained for a bracing
member designed for axial compres-
sion.

* Bracing members d signed as ties using
simple force criteria will not necessari-
ly possess the requiz d stiffness.

¢ Bracing members act ng as struts,
designed to stiffness . riteria only, will
not necessarily posses sufficient buck-
ling resistance.

Upper bound limits in
design using
stiffness and force
criteria

Proposed upper t ound
limit stiffness crit rion

In defining an upper bound solution used
for design purposes, it is imy ortant to
consider not only elastic bel. wiour but
the influence of yielding.

Consider the stiffness cri erion as
given by equation (5):

a5

L ®)
Equation (5) was derived by co sidering
elastic buckling only. In real str 'ts the
buckling load and therefore req ired stiff-
ness is reduced by inelastic behe 7iour. As
the slenderness of the strut is rec uced, the

Y

. coooxal

value of E in the expression —i -
I

k, =

will be reduced from the elastic v: 'ue to
the strain-hardening value of the : 1ateri-
al. The upper limit of P, is determi 1ed by
the squash load of the strut. The it rease
in the value of the squash load cau ed by
strain-hardening is small and may 1 »
assumed to be covered by the introc uc-
tion of a partial resistance factor, wt ch
will be discussed subsequently.

Consider the hypothetical case of a
strut with no residual stress or imperfec-
tions, as shown in figure 4:

A y s

Figure 4 Resistance curve for a
column with no residual stress or
imperfections

For the strut shown in figure 4, the maxi-
mum value of bracing stiffness required
will coincide with a slenderness ratio pro-
ducing the maximum value of axial force
in the strut, and this will occur at the
point of intersection of the critical elastic
load with the squash load of the strut.

At slenderness ratios lower than this
value, yielding will reduce the stiffness of
the strut and consequently the required
brace stiffness. The upper limit of equa-
tion (4) may therefore be expressed as:
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The proposed upper bound stiffness crite-
rion is therefore formulated as follows:

4r

For P<Afy: k, = 7

For P>Afy: &, = —4-1%]:1

Proposed upper bound
limit force criterion

The force in the brace is a function of the
final displacement of the brace, which in
turn is dependent on the initial misalign-
ment.

As the design bracing force is depend-
ent on the initial misalignment of the
braced point, it is useful to consider the
requirements of some design codes
regarding the misalignment of column
restraints. BS 5400 (BS 5400 Part 3 1982)
specifies a misalignment of the sum of
two adjacent un-braced lengths divided
by 500 and BS 5950 (BS 5950 Part 1 1985)
as L/600. The draft Canadian Code CSA 1-
99 (Canadian Standards Association 1999)
recommends an initial misalignment of
L/1000. Only the Eurocode specifies a
final misalignment of 1/250 to be consid-
ered in the design of bracing, used in con-
junction with an initial imperfection of
L/500, indicating a modal amplification
factor of 2.

The final displacement of the brace is
a function of the initial misalignment or
sweep and the ratio of the load in the
strut to the elastic buckling load of the
strut. The final displacement of the
brace may also be determined by an
iterative process which is basically similar
to the procedure suggested by the
CSA §16.1-99.

Stanway et al (1992 ) and Winter
(1960) have considered the equilibrium of
simple bar link systems as shown in
figure 5:

Table 1 Comparison of force and stiffness criteria for three different sec-
tions use as struts, having the same axial resistance and the same dis-

tance between braced points

Distance Section Factored | Ultimate braced | Elastic Minimum

between member | strength of buckling | bracing

braced points resistance | column load (Pg) stiffness (eq 5)

4 000 mm 120 x 120 107 KN 504 kKN 130 kKN 130 KN/mm
x8L

4 000 mm IPE 180 104 kN 513 kN 125 kN 125 kN/mm

4 000 mm 102 x 2,8 CHS | 108 kN 235 kKN 132 kN 132 kN/mm

Figure 5 Equivalent bar link sys-
tem representing braced strut

Considering basic equilibrium of the
spring and the applied load of the system
shown in figure 5, the force in the brace
is given as:

P, =2p %

L ©

The bracing force is given in terms of the
bracing stiffness as:

£ =hyay, (10)
The bar link system shown in figure 5
constitutes a non-linear problem where,
for any small initial displacement, a; , the
final force in the brace may be written as
follows:

B):gzg(ai+‘§‘l+§2+b}+ ....... 5.)

For the bar link system to be stable, the
second order displacements should
decrease in magnitude, therefore:

S <aq

J, <9,

&;y < Cy"_,
This requirement is clearly met if the stiff-
ness of the brace is greater than 2Pg/L.

If the stiffness of the brace, however,
is provided in terms of equation (5), the
brace stiffness will be double that
required for stability of the bar link sys-
tem. The second order displacements will
therefore be halved in each iteration. The
final displacement of the braced point
may therefore be expressed in terms of a
series as given by equation (11):

n-—t 1

aﬁn = ai(l + Z—z—:)

n=l

1n
The series ) —  can be shown to
p 2»
have a convergence value of 1.
In more general terms, the amplifica-
tion factor for the system may be
expressed as:

a;, =a(+ Z‘l;,‘)
n=1 X
Where:
x= k,
2P /L

(12)

Provided that the minimum stiffness
requirements of equation (5) are met, the
final displacement of the braced point
will therefore be equal to double the ini-
tial displacement, and the force in the
brace may be expressed as:

B =4r%
L

Examples using the
proposed bracing
design criteria

The above proposals are best illustrated by
considering some examples of using the
proposed criteria. Three common struc-
tural sections will be used, a circular hol-
low section, a hot-rolled IPE-section and
an equal-legged angle. The force and stiff-
ness criteria are reviewed by comparing
suitable bracing elements designed as
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struts or ties, providing central restraint
to an axially loaded strut, as shown in fig-
ure 2. (See table 1 above.)

The calculation of the design force in
the bracing and the influence of modal
amplification is now illustrated using the
circular section.

An iterative procedure is followed.
The initial force in the bracing is calculat-
ed using a minimum value of brace stiff-
ness as required by equation (5) and the
initial misalignment of the braced point.
The force in the strut was taken as the
factored resistance of the strut. The brac-
ing force is then progressively adjusted
using the total displacement of the braced
point. Satisfactory convergence is
obtained after approximately nine itera-
tions. This procedure is similar to that
proposed in CSA 1-99. The results are
shown in table 2.

Table 2 Bracing force and final displacement
for an initial misalignment: L/200 - minimum
brace stiffness: 0,132 kN/mm, initial dis-
placement of braced point: 20 mm

Iteration | Bracing force | Displacement | Total

(kN) of braced displacement
point (mm) | (mm)

1 1,32 10 30

2 1,98 15 35

3 2,31 17,5 37,5

4 2,475 18,75 38,75

5 2,5575 19,375 39,375

6 2,598 19,6875 39,6875

7 2,619 19,84375 39,843

8 2,6297 19,9219 39,9219

9 2,6348 19,961 39,961
1,996% of Py, L/100

The results are similar to using equation
(11) to calculate the modal amplification.
The final misalignment equals double the
initial misalignment, because the brace
stiffness is double the minimum value
given by equation (9), and the design
bracing force equals 2% of the force in
the strut.

SUMMARY OF
BRACING DESIGN
PROPOSALS

Minimum stiffness of braced point:

ap_ 44y,
or
L

k, >

whichever is the lesser.




Minimum design force in bracing:

A=y k
P = gfiai(lﬁ- ZL) where x = 21{/
L

n
nel X

The progression of the modal amplifica-
tion factor as a function of the stiffness
ratio x is shown in figure 6:

3,5

Modal amplification
o= NNy w
< 2] [} w [=}

o
W

14
=]

<

5 10 15 20 25
Stifness ratio x

Figure 6 Values of modal amplifica-

tion factor (ratio of initial misalign-

ment to final displacement) as a

function of the stiffness ratio of

the brace

In a common design situation, the
designer may assume the modal amplifi-
cation factor to equal 2, provided that the
stiffness of the brace exceeds the mini-
mum required by equation (5).

COMPLEX BRACING
SYSTEMS

Bracing systems commonly consist of a
number of members acting in compres-
sion and tension to form a lattice truss
system. As a general rule, all such systems
can be reduced to a system of equivalent
springs acting in series as shown in figure 7:

k, k, ks

A AN~

Figure 7 Equivalent spring system
for complex bracing system

The effective spring stiffness for such sys-
tems may be obtained by using the series
addition rule, ie

1 1 1
e e e
k, Kk kK

In practice, however, the designer will
commonly opt to use a simple frame
analysis program and determine the effec-

tive stiffness of a system by applying a
unit load at the appropriate position and
calculating the corresponding deflection.

EVALUATION OF
STIFFNESS OF
BRACING SYSTEMS

Excepting the cases where very simple
bracing systems such as axially loaded
links connected directly to rigid mediums
are employed, frame analysis software
offers the most convenient method of
evaluating the stiffness of bracing sys-
tems. By applying unit loads at the appro-
priate positions, the deflections obtained
from such analysis directly reflect the
stiffness of the bracing system at such
positions.

Where bolted connections are used to
connect bracing members, slip in such
connections will obviously reduce the
effective stiffness of the system. The com-
plexities involved in quantifying the
influence of slip in the connections is
probably not warranted, but it is recom-
mended that the theoretical stiffness of
the system be reduced by some 20%
where the bracing system consists of
members with bolted end connections.
The above comment would only apply to
connections utilising bolts in bearing.

Conclusion

A rational approach to the design of brac-
ing elements to provide stability to com-
pression elements has been proposed. By
specifying both force and stiffness criteria
in the design of such members or sys-
tems, the following benefits are achieved:

¢ The stiffness criterion ensures that
bracing systems possess adequate stiff-
ness to prevent a reduction in the
buckling capacity of the primary mem-
bers caused by large deflections of the
braced points. This criterion is of par-
ticular importance when bracing ele-
ments are subjected to tensile loads
only.

¢ The force criterion ensures that com-
pression members in the bracing sys-
tem are adequately designed to
prevent buckling of the bracing mem-
bers themselves.

* By specifying force and stiffness
criteria as well as a method of calcu-
lating modal amplification effects, the
iterative procedure required by the
Canadian Code is not required.

¢ The benefit of providing additional
stiffness over and above the minimum
specified by equation (5) is reflected in
the reduced design force in the
bracing, as proposed in the upper
bound force criterion.

¢ The designer can evaluate the design
bracing force for any initial displace
ment of the braced point.

¢ The reduction in stiffness caused by
yielding in stocky struts ( P, > Af,) is
considered in formulating the upper
bound stiffness criterion and leads to
more economical bracing design at
low slenderness ratios.

¢ Although the discussion has been lim-
ited to single brace systems, the model
may be expanded to include multiple
braced points using the principles out-
lined in CSA-S16.1-99.
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