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Current bracing rules 
The Eurocode for timber design, EC5 (1992), stipulates the following 

requirements: 

Members braced at discrete inter7mls (Fig 5) 
The displacement of the brace itself at the point of attachment of the 

brace has a fundamental influence on the buckling resistance of the strut 
it is required to restrain. An out of straightness limit, for single compres- 
sion members, of L1500 for glue laminated products and L1300 for all oth- 
ers is proposed. This requirement limits the displacement of the strut, re- 
ferred to as d,, . The required spring stiffness C is given by: 

where: 
C = spring stiffness 

, = the design stress 
, = characteristic stress 
kL = 2(1 + cosdm) 
m = the number of bays with a length of a 
a = distance between iaterai supports 

The design resistance F,, of the bracing is given in terms of the mean de- 
sign fol-ce N,,: 

F,, = N,,/50 for solid timber 

F,, = N,,/80 for glued laminated sections 

It is important to note that both the strength and stiffness criteria must 
be satisfied. It does not suffice only to apply the force criterion as the force 
criterion is based on the assumption that the deflection will be limited by 
the stiffness of the spring. 

Members braced by a continuous braring s y s t ~ m  (elastic _ s I A ~ L J ~ ~ , !  
For a series of parallel laterally supported members, the design force 

per unit length on the bracing system q,,, additional to any other forces 
induced by horizontal loads, is gwen by: 

I . 
w11r1c. 

= the nllmber of ?r.embers beinm c 1 1 n n n ~ t o A  a --rrwLL- 
N,, = the design axial force in the member 

Fig 5: Axially loaded compression member with m - 1 lateral supports 
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Fig 3 (left): Bracing frame 
that provides con- 
t inuous elastic 
support 

Fig 4 (right): Discrete lateral 
support  to top 
chord by means 
of diagonal brace 

L = span of the beam or distance from the eaves support to the apex 
support 

k ,  = minimum of l or G/ L 

In order to satisfy the stiffness requirement, the mid-span deflection of 
the bracing system caused by the load q,, alone should not exceed Span/ 
700. If q,, acts in combination with other loads, the requirement is amended 
to Span/500. 

SABS 0163 (1994) by comparison stipulates no stiffness requirement and 
the design load for the bracing system is given by: 

where: 

P ,  = force in each htera! brace 
n = number of trusses or members that are braced by the system 
P,, = the average force in the compression member 
N = the number of lateral restraints 

The Australian steel design code, AS1250-1972, stipulates both a stiff- 
ness and a strength criterion for the bracing of the compression flanges of 
beams. The criterion for the strength of the bracing is given as 2,5 per cent 
of the axiai force, which according to Netnercott ji982j is considered too 
,-*,,CO +k,O ;m -3 c,,c A .,.,l.>,, ,,L+ ...- -,.* ...,... !?l L.-:- 1 ,--- :-.. 
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with that given in EC5 (1992). The stiffness of a hrace is required to he at 
least 1013/L, where L is the overall length and P the force in the compres- 
sion flange. To account for the cumulative effect of a number of members 
supported by a bracing system, the Australian steel code suggests that the 
totai iorce shouid be taken as the force induced by the seven most heaviiy 
I n ~ A o A  -o-hnv.- 
1"U-U .. ,L . , ,LJC 8 . 7 .  

Theoretical models 

R v n r i n u ~ f  dicrroto .,..-, intorlrnlc 

Most bracing rules are based on the work of George Winter (1960). Win- 
ter investigated,the influence of the two principal parameters, stiffness 
and strength, which are required to provide a compression member with 
effective iateral bracing. Winter considered columns with one to four lat- 
ei-a1 spiiiig restrainis as wcii as coiumns provided with continuous iaterai 
support as wau!d be the case fcr c o m p r e s s i ~ ~  m e ~ b e r :  that are coxnectei! 
by sheeting. 

In the design of bracing to resist external horizontal forces, the stiftness 
requirement is not that important and the strength requirement will gov- 
ern. In the case ot bracing that is used to decrease the buckling length of 
cornpws~io~i ~nernbers, ie reduce the sienderness ratio of compression 
memhorc hnth c+iffnecc . A A A . . - - u - A . - d L A - A .  anrl ctrongth er;-a!!ji ixpGrtaxt. consider. 

ing the requirements for bracing given by SABS 0163 (1994), the lack of a 
requirement for the stiffness of the bracing system is significant. SABS 0163 
(1994) only stipulates a provision for a nominal design force for the brac- 
ing. It may be argued that the strength criterion should also ensure that 
the brircing system possesses adequate stiffness. This is not necessariiy the 
case. 

For a column that is laterally supported by n number of elastic sup- 



ports, the requ~red spring constant was found by Winter (i9hiij to be a 
function of the Euler buckling strength and the distance between the lat- 
eral supports. The idealized spring constant, for an initially straight col- 
umn, may be written as: 

where: 

k,,, = idealized spring constant for initially straight column 

ks = factor for the number of lateral supports 
= 2(1 + cos(n/nz)), given in EC5,1992 

m = number of bays of length L 
P = Euler bucbJ:ng c+-omm+h 

""L"6L" 
L = distance between the equally spaced lateral supports 

Winter (1960) recommended that that the value of the spring constant 
be increased for columns with an initial curvature. This increase depends 
on the initial deflection and the final displacement. The required spring 
constant, k may then be written as: 

where: 

d,, = initial deflection due to lack of straightness (see Fig 6) 
d = additional deflection after buckling 

Figb: B u c k i e d  
shape of lat- 
erally braced 
compression 
m e m b e r ,  
showing de- 
flections and 
supports 

The force that will be induced in the spring or brace will then equal the 
spring constant times the total deflection at the point of support, there- 
fore: 

Coates (1988) describes a melhod thal may be used to determine the 
critical force in a member that is laterally supported at a discrete point by 
a single spring. The results are the same as those given by Winter (1960). 

Pmci::g ~,f mcmhe~: $9 c aztnf::uous b r ~ c i n g  sy;tsm 
Winter (1960) used the theory of a compression member on an elastic 

foundation to determine the stiffness requirement of continuous lateral 
support. This method is consistent with the case of a roof that is braced by 
a pre-fabricated bracing frame, where every batten is fixed to the bracing 
frame. Owing to the close spacing of the battens and the overall stiffness 
of the frame, this type of bracing system is more representative of a con- 
tinuous lateral restraint than restraints at discrete points. The theoretical 
value of the modulus of the elastic support medium, B,, can be obtained 
from the following formulae: 

P$' P PdLZ 
- = n2 (-+ -1) for 0 
P, \ l Z t  P, 

(8) 

Similar to columns having an initial curvature that are supported at 
discrete intervals, continuously supported columns with an initial curva- 
ture will require a greater value of the modulus of the elastic support 
modulus. 

P ,,.,, = P,,, (4, + 4 (10) 

If the actual elastic modulus; P,,(,; is greater than the required modulus, 
the force induced in the bracing will be: 

P,,, 
= do A (11) 

1 - (P,,! PO( ,1 
Timoshenko et al(1961) used a slightly different approach to determine 

the required stiffness of the bracing, ie the elastic support modulus, B, for 
compression elemenls [hat are braced by a continuous system. An energy 
r.ethod is determ.ifie the critic.! !gad, P c ,, r~rhirh . , . ..-. . ic  A- a. uixron . .. . . h 1 7 .  l' 

where: 

nz = number of half sine waves that form when the compression mem- 
ber buckles 

L = length of the compression member 
E = modulus of elasticity 
l = second moment of area perpendicular to the plane of buckling 

p = modulus of the elastic foundation 

In all cases Eqn 12 can be represented in the form: 

where l equals a reduced length reflecting the influence of the elastic sup- 
port. 

A series of values for 1lL are given in the accompanying table. 

Reduced length l for a compression member on an elastic foundation 

Eqn 12 can be modified and expressed in terms of the Euler buckling 
ioad, q, and the cnticai ioad appiled to the member, 4,. The equat~on for 
q, as a proportion of P is given by: 

P", L2 \ [ w 2  1 - -  

q \ - m2n2 P< / 

20 

0,483 

300 

0,263 

4 0 K  

0,140 

where m = number of halt sine waves and p,,, = the ideal modulus of the 
bracing. 

The critical values of L/!, where the buckled shape changes from a half 
sine wave, m = 1, to a full, one-and-a-half and two full sine waves are 
0,447,0,277 and 0,200 respectiveiy (see Graph i j. T i e  vaiue of lli  is given 
by m. If the mode shape m is known, the ideal P,,, value can be calcu- 
lated. The ideal P,, is given by: 

P14/(16 El) 

[ /L 

PN(16 ET) 

111. 

E !  

/ /L  

The theoretical elastic support modulus must be increased by the factor 
of (1 + dJd) to allow for initial curvature and a partial factor of safety of at 
ieast 2,22 s'hould be applied. 

The force in the bracing can be calculated by multiplying the stiffness 
by the theoretical deflection. If the initial curvature is known and the ad- 
ditional deflection is given, the load in the bracing is the stiffness multi- 
plied by the sum total deflection. In the case of multiple members sup- 

5 

0,741 

75 

0,376 

: 500 

0,179 
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0,235 
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100 

0,351 

2 G00 

0,165 

15 

0,537 

200 

0,286 

3 OK 

0,149 

1 

0,927 

40 

0;421 

7 

0,214 

3 

0,819 

50 

0;406 

1 000 

0,195 



Graph 1: The effect of P, the stiffness modulus of the lateral support, 
on the buckled shape of a compression member 

ported by a single bracing system, it is unlikely that all contributing mem- 
bers will have similar initial curvatures, thereby causing a cumulative ef- 
fect in terms of forces on the bracing. It is therefore presumed that the 
individual contribution of the members will decrease with an increase in 
the number of members supported by the same bracing system 
(SABS 0163,1994). 

Comparison of theoretical formulae with code requirements 
The thcorctical models clearly indicate the fundamental importance of 

the stiffness or' ihe bracing system, as opposed to a criterion based soieiy 
or. a r.omina! design force. !t is t h e r e h e  ~f vita! impmtaxce that a xew 
set of bracing rules has both stiffness and strength criteria. Bracing rules 
must, furthermore, also consider the different types of bracing that can be 
used, namely bracing at discrete intervals and continuous braces. 

Prroposed bracing ruies 

where: 

k = factor for mmher  of !atera! supparts 
= 2(1 + cos(x1m)) (17) 

P = compressive force in the member due to dead load only 
L = distance between lateral supports 

kli,q = k i r 1 ( i  + 414 (18) 

If an initial curvature, with average amplitude for all the trusses in the 
braced system,6,,, equal to W500 is assumed and a final additional deflec- 
tion, 6, of iJ5OO is possibie, then the required stiffness shouid be at ieast 
eqm! t~ 2,0 times the idea!. 

A partial factor of safety of at least 2;0 should be applied to the theoreti- 
cal value. The required stiffness is then equal to: 

For the specific case of a single lateral brace the required stiffness is then: 

L - -  L . .  1 1  . .  1 I . .  1 . .  , \ F  I n  
r u 1  L I K  ~ d b e  UI I I ~ U I L I ~ I ~  I ~ L ~ I ~ I  b u p y u ~ ~ b  u l e  vdlues ur cus(~r~nr) 111 cqr~ 11 

tend tow2& 1 and the pqCired stiffnPSS at ~ ~ n n n r t  r ~ r i l l  ho mkmn rr--= -- eA---- 
by: 

k ,,to,,,, = ?6,0 lDIL (20) 
p. 
I he force in the support may be obtained by multiplication of the stitt- 

ness by the deflection. If a final additional defleclion, 6, ol L/500 is as- 
sumed, then the force in the lateral support is equal to: 

F =krc,,,6 (21) 

For a single central lateral support the force in the brace is 1,6 per cent 
of the axial force in the member and for multiple lateral supports 3,2 per 
cent of the axial force. The latter requirement would apply to the case 
where a number of members are supported by the same lateral support. 
Where a single member is laterally braced, the requirement should be more 
severe as the initial curvature could be as high as Ll200. The value of 3,2 
per cent of the axial force caused by dead load only is similar to that re- 
quired by the Australian code, ie 2,5 per cent of total load, but is signifi- 
cantly more than the value given by SABS 0163, ie 10 per cent divided by 
the number of lateral supports. The value recommended in this paper is 
higher to allow for realistic values of initial curvatures in the members. 

Member supported by an elastic bracingframe 
For members that are braced by a continuous bracing system, the pro- 

posals are based on the method described by Timoshenko et a1 (1961). 

The required stiffneqq will be greater than the theoretical stiffness and 
1s p c n  by. 

If an initial rGrva:ure, maxim.cm 6, to L,/3fifi is 

assumed am! a final addikiona! deflection Li of G 0 0  is possih!e, t h m  the 
stiffness required should be equal to at least 2,667 times the ideal. 

If a partial load factor of 2,22 is then applied to this value, the required 
lateral stiffness of the bracing system would be equal tu 5,921 times the 
theoreticai stiffness. 

Prtg = 5,921 Ptc1 
The nominal force induced in the bracing system will be equal to the 

required stiffness multiplied by the additional deflection of L/500. 

q = 5:921 B,,; L/500*0,637 
= 3,772 P ,  L1500 (27) 

The factor of 0,637 reflects the h~ckled  shape, which is assumed to he a 
half sine wave. In the case of a buckled shape in the form of a full sine 
wave, the bracing system will be subjected to load reversal along its length,. 
which will reduce the total load on the system. 

c -.!I----: &.. 
aulullialy UI uldulitj I ~ ~ U ~ ~ ~ I I I ~ I I L S  

The fo!!owing bracing criteria are proposed for timber strnctnres and 
could be modified slightly for the bracing of steel structures. 

Compression members braced at discrete intervals 

Stiffness: 

&<P 
k . =- 

/ c , ,  

L 

where: 

Force in iaterai support, P,,: For many iaterai supports to a compression mem- 
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ber, P,, = three per cent of the average axial load P in the compression 
member. 

Compression members continuously braced by a membrane or bracing frame 

Required stiffness modulus, Prcc,: 
5,921 mZx2Pc ( ) 

B,., = LZ \T- m2 j 

where: 

preq = required stiffness modulus 
r--- 

m = l for 10,447 (buckling in half sine wave) 

= 2 for 0,447 <$ r 0,227 (buckling in h11 sine wave) 

= 3 for 0,227 <.\I4 i 0,200 (buckling in one and a half sine wave) ' '-v 

= 4 for 0,200 <g (buckling in a double sine wave) 

PCr = dxmi i u d  m member due to dead ioad aione 
Pt = Euler buckling load 

L = length of beam or distance between eaves support and apex sup- 
port of truss 

E,,,= fifth percentile modulus of elasticity 

Nominal design load, q (based on a single halfwave buckle): 

where: 

P = axial force in member due to dead load alone 
L = length of b e ~ f i  or &st.nce fmm ea\ies snnnnrt tn nnw c~~nnnrt nf rr--- -- - r-" --rr--- -- 

truss 

If the buckled shape of the compression member assumes a full wave as 
opposed to a halt' sine wave, the moments that are ~ n d u c ~ d  in the bracing 
will be reduced. It is therefore conservative to assume a half sine wave 
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buckle and to base the force on that buckled shape. 
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