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Bracing of timber roofs

Synopsis

Problems attributed to the bracing of timber roofs have necessitated a fresh
look at the bracing criterion given in the timber design code, SABS 0163 (1994).
The difference between bracing provided for stability of the overall structure and
bracing that is used to reduce the effective length of compression members is dis-
cussed. The differences between bracing at discrete intervals and bracing by means
of a continuous elastic diaphragm are shown. Revised design rules are proposed,
which, if implemented, should solve the problems currently being experienced
with timber roofs.

Samevatting

Probleme waarvoor die verspanning van houtdakke die skuld gegee word, het
genoodsaak dat opnuut gekyk word na die verspanningskriteria wat in die
houtontwerpkode SABS 0163 (1994) gegee word. Die verskil tussen die
verspanning wat stabiliteit aan die hele struktuur verskaf en die verspanning wat
gebruik word om die effektiewe lengte van ‘n drukdeel te verander, word bespreek.
Die verskille tussen die verspanning wat die drukdeel op diskrete intervalle lateraal
steun en verspanning deur middel van ‘n kontinue diafragma word uiteengesit.
Gewysigde reéls word voorgestel wat, indien hulle geimplimenteer sou word, die
probleme wat huidiglik met houtdakke ondervind word, sou oplos.
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Introduction

A marked increase in problems associated with the bracing of timber
roofs has been noted in recent years, perhaps precipitated by the increase
in size and span of such roofs. Failures observed range from buckling of
the top chord to total collapse, the latter failure commonly associated with
a complete absence of bracing. Buckling of the top chords has occurred in
spite of the designs complying with SABS 0243 (1992). The problems are
generally confined to tiled roofs, perhaps owing to the diaphragm action
induced by roof sheeting.

In most instances the problems have manifested themselves only after
anumber of years. It is believed that some of the bracing may be provided
by friction between the tiles, which in turn may be reduced by wind up-
lift and a gradual movement of the tiles induced by thermal expansion
and contraction. In most cases, buckling of the compression chord has
been noted on the side of the roof with the greater exposure to direct
sunlight. Considering that a large number of the problem cases do in fact
comply with SABS 0243 (1992), one may conclude that the current bracing
provisions are inadequate or do not reflect prevailing construction condi-
tions in South Africa.

It is necessary to distinguish clearly between two types of bracing, ie

1 i 1 it Avarall ctahilibg (i 1) and
bracing required to provide a structure with overall stabiuty (Fig 1) and

bracing provided to reduce the effective length of compression or flexural
members (Fig 2). The design and sizing of the former type of bracing is
clearly determined by the magnitude of external forces, while the design
of the latter type is more complex.
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Bracing

Two types of bracing systems are commonly employed, a prefabricated
bracing frame (Fig 3), providing the compression member with a con-
tinuous elastic support, and a single diagonal providing discrete support
for the compression elements at certain intervals (Fig 4).

The interaction between the bracing system and the compression ele-
ment is very complex and the efficiency of the bracing system is depend-
ent on the stiffness of the brace relative to the member being restrained. It
is therefore understandable that codes have traditionally opted for a rela-
tively simple criterion for the design of bracing systems, the most com-
mon being a design action expressed as a force, which is a percentage of
the force in the strut. It will subsequently be shown that this method will
not necessarily ensure that the brace possesses adequate stiffness.
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Current bracing rules
The Eurocode for timber design, EC5 (1992), stipulates the following
requirements:

Members braced at discrete intervals (Fig 5)

The displacement of the brace itself at the point of attachment of the
brace has a fundamental influence on the buckling resistance of the strut
it is required to restrain. An out of straightness limit, for single compres-
sion members, of L/500 for glue laminated products and L/300 for all oth-
ers is proposed. This requirement limits the displacement of the strut, re-
ferred to as d, . The required spring stiffness Cis given by:

C=kmnEl/a "
where:

C = spring stiffness

E = EU,US-fmd/fnk

E,, = fifth percentile modulus of elasticity

f.. = thedesign stress

.+« = characteristic stress

k. =201+ cosn/m)

m = the number of bays with a length of a
a = distance between lateral supports

The design resistance F, of the bracing is given in terms of the mean de-
sign force N

F, = N,/50 for solid timber
F = N,/80 for glued laminated sections 2)

d

It is important to note that both the strength and stiffness criteria must
be satisfied. It does not suffice only to apply the force criterion as the force
criterion is based on the assumption that the deflection will be limited by
the stiffness of the spring.

Members braced by a continuous bracing system (elastic support)

For a series of parallel laterally supported members, the design force
per unit length on the bracing system g, additional to any other forces
induced by horizontal loads, is given by:

‘ nN,

=K €)
30L

where

n = the number of members being supported

N, = the design axial force in the member

Fig5: Axially loaded compression member with s — 1 lateral supports
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L = span of the beam or distance from the eaves support to the apex
support
k, = minimum of 1or V15/L

1

In order to satisfy the stiffness requirement, the mid-span deflection of
the bracing system caused by the load g, alone should not exceed Span/
700.1f g, acts in combination with other loads, the requirement is amended
to Span/500.

SABS 0163 (1994) by comparison stipulates no stiffness requirement and
the design load for the bracing system is given by:

_ P,

P,=01n"— (4)
N+1

where:

P, = force in each lateral brace

n = number of trusses or members that are braced by the system
P, = the average force in the compression member
N = the number of lateral restraints

The Australian steel design code, AS1250-1972, stipulates both a stiff-
ness and a strength criterion for the bracing of the compression flanges of
beams. The criterion for the strength of the bracing is given as 2,5 per cent
of the axial force, which according to Nethercott (1982) is considered too
conservative in many cases. A value of two per cent would be in keeping
with that given in EC5 (1992). The stiffness of a brace is required to be at
least 10P/L, where L is the overall length and P the force in the compres-
sion flange. To account for the cumulative effect of a number of members
supported by a bracing system, the Australian steel code suggests that the
total force should be taken as the force induced by the seven most heavily
loaded members.

Theoretical models

Bracing at discrete intervals

Most bracing rules are based on the work of George Winter (1960). Win-
ter investigated the influence of the two principal parameters, stiffness
and strength, which are required to provide a compression member with
effective lateral bracing. Winter considered columns with one to four lat-
eral spring restraints as well as columns provided with continuous lateral
support as would be the case for compression members that are connected
by sheeting.

In the design of bracing to resist external horizontal forces, the stiffness
requirement is not that important and the strength requirement will gov-
ern. In the case of bracing that is used to decrease the buckling length of
compression members, ie reduce the slenderness ratio of compression
members, both stiffness and strength are equally important. In consider-
ing the requirements for bracing given by SABS 0163 (1994), the lack of a
requirement for the stiffness of the bracing system s significant. SABS 0163
(1994) only stipulates a provision for a nominal design force for the brac-
ing. It may be argued that the strength criterion should also ensure that
the bracing system possesses adequate stiffness. This is not necessarily the
case.

For a column that is laterally supported by n number of elastic sup-
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ports, the required spring constant was found by Winter (1960) to be a
function of the Euler buckling strength and the distance between the lat-
eral supports. The idealized spring constant, for an initially straight col-
umn, may be written as:

kp
k“i = ¢ (5)
L
where:
k., = idealized spring constant for initially straight column

k_ = factor for the number of lateral supports
= 2(1 + cos(n/m)), given in EC5, 1992
m = number of bays of length L
P = Euler buckling strength
L = distance between the equally spaced lateral supports

Winter (1960) recommended that that the value of the spring constant
be increased for columns with an initial curvature. This increase depends
on the initial deflection and the final displacement. The required spring
constant, km], may then be written as:

k, =k, [(d/d)+ 1] ©)

req

where:

d, = initial deflection due to lack of straightness (see Fig 6)

d = additional deflection after buckling
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The force that will be induced in the spring or brace will then equal the
spring constant times the total deflection at the point of support, there-
fore:

P, =k, (d +d )

b req

Coates (1988) describes a method that may be used to determine the
critical force in a member that is laterally supported at a discrete point by
a single spring. The results are the same as those given by Winter (1960).

Bracing of members by a continuous bracing system

Winter (1960) used the theory of a compression member on an elastic
foundation to determine the stiffness requirement of continuous lateral
support. This method is consistent with the case of a roof thatis braced by
a pre-fabricated bracing frame, where every batten is fixed to the bracing
frame. Owing to the close spacing of the battens and the overall stiffness
of the frame, this type of bracing system is more representative of a con-
tinuous lateral restraint than restraints at discrete points. The theoretical
value of the modulus of the elastic support medium, B, can be obtained
from the following formulae:

B.L* P, B.L*
= (—-_1 ) for 0 < <30 (®)
PL pl_ Pl;

\

4
LZ EZ P 2 LZ
—i’” =7 (—P 70,6) for B};’ >30 ©)

E £ I

Similar to columns having an initial curvature that are supported at
discrete intervals, continuously supported columns with an initial curva-
ture will require a greater value of the modulus of the elastic support
modulus.

B, =B, @, +4d (10)

If the actual elastic modulus, B, is greater than the required modulus,
the force induced in the bracing will be:
-4, B (11)
l - (Bul/ B/u‘/)
Timoshenko et al (1961) used a slightly different approach to determine
the required stiffness of the bracing, ie the elastic support modulus, B, for

compression elements that are braced by a continuous system. An energy
method is used to determine the critical load, P, which is given by:

Kl ( B L >
P = e+ (12)

R Pt El

req

where:

m = number of half sine waves that form when the compression mem-
ber buckles

L = length of the compression member

E = modulus of elasticity

I = second moment of area perpendicular to the plane of buckling

B = modulus of the elastic foundation

In all cases Eqn 12 can be represented in the form:
n? El
P =

or P

(13)

where [ equals a reduced length reflecting the influence of the elastic sup-
port.
A series of values for //L are given in the accompanying table.

Reduced length [ for a compression member on an elastic foundation

priteEn | 0 1 3 5 10 15 20
UL 1 0927 | 0819 | 0741 | 0615 | 0537 | 0483

BII6ED | 30 40 50 75 100 200 300
ul. 0437 | 0421 | 0406 | 0376 | 0351 | 028 | 0263

BI/I6ED | 500 700 | 1000 | 1500 | 2000 | 3000 | 4000
UL 0235 | 0214 | 0195 | 0179 | 0165 | 0149 | 0140

Egn 12 can be modified and expressed in terms of the Euler buckling
load, P, and the critical load applied to the member, P_. The equation for
P“, as a proportion of P is given by:

P 12
= (m2 L > (14)
P m** P

where m = number of half sine waves and B,, = the ideal modulus of the
bracing,.

The critical values of L/l, where the buckled shape changes from a half
sine wave, m = 1, to a full, one-and-a-half and two full sine waves are
0,447, 0,277 and 0,200 respectively (see Graph 1). The value of /L is given
by VP /P . If the mode shape m is known, the ideal B, value can be calcu-
lated. The ideal B, is given by:

m'w’P, [ P
R (15)

The theoretical elastic support modulus must be increased by the factor
of (I + d /d) to allow for initial curvature and a partial factor of safety of at
least 2,22 should be applied.

The force in the bracing can be calculated by multiplying the stiffness
by the theoretical deflection. If the initial curvature is known and the ad-
ditional deflection is given, the load in the bracing is the stiffness multi-
plied by the sum total deflection. In the case of multiple members sup-
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Graph 1: The effect of [3, the stiffness modulus of the lateral support,
on the buckled shape of a compression member

ported by a single bracing system, it is unlikely that all contributing mem-
bers will have similar initial curvatures, thereby causing a cumulative ef-
fect in terms of forces on the bracing. It is therefore presumed that the
individual contribution of the members will decrease with an increase in
the number of members supported by the same bracing system
(SABS 0163,1994).

Comparison of theoretical formulae with code requirements
The theoretical models clearly indicate the fundamental importance of
tiffness of the bracing system, as opposed to a criterion based solely

ominal r‘]omgn force. It is therefore of vital vmpnr{-nnrn that a new

set of bracing rules has both stiffness and strength criteria. Bracing rules
must, furthermore, also consider the different types of bracing that can be
used, namely bracing at discrete intervals and continuous braces.

Proposed bracing rules

Members braced at discrete points

For members that are braced at discrete points along the length, we
propose that the required stiffness of the bracing be as suggested by Win-
ter (1960), namely:

kP
k== (16)
L
where:
k = factor for number of lateral supports
= 21 + cos(n/m)) (17)
P = compressive force in the member due to dead load only
L = distance between lateral supports

k,(1+68/0) (18)

If an initial curvature, with average amplitude for all the trusses in the
braced system,§,, equal to 1/500 is assumed and a final additional deflec-
tion, §, of L/500 is possible, then the required stiffness should be at least
equal to 2,0 times the ideal.

A partial factor of safety of at least 2,0 should be applied to the theoreti-
cal value. The required stiffness is then equal to:
k=~ =40k,

req

req

For the specific case of a single lateral brace the required stiffness is then:

k. =80P/L (19)

single

For the case of multiple lateral supports the values of cos(n/m) in Eqn 17
will tend towards 1 and the required stiffness at each support will be given
by:

k =16,0P/L (20)

many

The force in the support may be obtained by multiplication of the stiff-
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ness by the deflection. If a final additional deflection, §, of L/500 is as-
sumed, then the force in the lateral support is equal to:

F o =k,8 (1)

For a single central lateral support the force in the brace is 1,6 per cent
of the axial force in the member and for multiple lateral supports 3,2 per
cent of the axial force. The latter requirement would apply to the case
where a number of members are supported by the same lateral support.
Where a single member is laterally braced, the requirement should be more
severe as the initial curvature could be as high as L/200. The value of 3,2
per cent of the axial force caused by dead load only is similar to that re-
quired by the Australian code, ie 2,5 per cent of total load, but is signifi-
cantly more than the value given by SABS 0163, ie 10 per cent divided by
the number of lateral supports. The value recommended in this paper is
higher to allow for realistic values of initial curvatures in the members.

Member supported by an elastic bracing frame

For members that are braced by a continuous bracing system, the pro-
posals are based on the method described by Timoshenko et al (1961).

P wP [P .
ForA [— <0447 B o=—=t (— 1 (22)
P > \p

P, 4n2PL,< P )

0,447 < ’\/ <0 Bu=—T: 3 -4 (23)
P, 9P (P

0277 < \[5- <0200 B, =3 B 9 (24)
P 16m2P /P

0,200 < A [—< B, = ( o 16> (25)
r 2 \p

er

The required stiffness will be greater than the theoretical stiffness and

is given by:
% )

[ / 1. 0 (2N
Prg = P \ 7= (<)

Y

If an initial curvature, with maximum amplitude §, equal to L/300 is
assumed and a final additional deflection & of I/500 is possible, then the
stiffness required should be equal to at least 2,667 times the ideal.

If a partial load factor of 2,22 is then applied to this value, the required
lateral stiffness of the bracing system would be equal to 5,921 times the
theoretical stiffness.

B, =5921 B,

req
The nominal force induced in the bracing system will be equal to the
required stiffness multiplied by the additional deflection of L/500.

g = 5921 B, L/500*0,637
= 3,772 B, L/500 (27)

The factor of 0,637 reflects the buckled shape, which is assumed to be a
half sine wave. In the case of a buckled shape in the form of a full sine
wave, the bracing system will be subjected to load reversal along its length,.
which will reduce the total load on the system.

Summary of bracing requirements
The following bracing criteria are proposed for timber structures and

could be modified slightly for the bracing of steel structures.

Compression members braced at discrete intervals

Stiffness:
4k P
g (28)
L

where
k= 2(1+cos(n/m))
m = number of equal bays of length L between apex and eaves
P = axialload in compression member, at the lateral support, owing to

dead load only

Force in lateral support, P,: For many lateral supports to a compression mem-



ber, P, = three per cent of the average axial load P in the compression
member.

Compression members continuously braced by a membrane or bracing frame

Required stiffness modulus, B :
591mmeP (P,
e =

e

B, = required stiffness modulus

m = 1for = <£0,447 (buckling in half sine wave)

or

P
= 2for0,447 <"\ ’7 <0,227 (buckling in full sine wave)

) ’ P
= 3for0,227 < ? <0,200 (bucklingin one and a half sine wave)

or

/ P
= 4for0,200 <~ [ (buckling in a double sine wave)
P

cr

1.1

IVN - Xmdl ioad in IllElIll)Cl' UUE to ueau lOd(.l dlUIlE

P = Euler buckling load
m°E, I

— 0,05 (30)
L2

L = length of beam or distance between eaves support and apex sup-
port of truss

E = fifth percentile modulus of elasticity

Nominal design load, q (based on a single half wave buckle):

0,06 P
q = 31)
L
where:
P = axial force in member due to dead load alone
L = length of beam or distance from eaves support to apex support of

truss

If the buckled shape of the compression member assumes a full wave as
opposed to a half sine wave, the moments that are induced in the bracing
will be reduced. It is therefore conservative to assume a half sine wave
buckle and to base the force on that buckled shape.
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