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A limit states approach
to flexural ductility of
plain steel beams used
in plastic design

Synopsis

In order to validate the principal assumptions inherent to plastic design of frames
and continuous beams, it is necessary to predict the available rotation capacity at
positions in the structure where plastic hinges are likely to form at collapse. The
required rotation capacity is a function of the geometry of the structure and the
loading and may be quantified within certain broad parameters. In order to pre-
dict the rotation capacity available at critical points in the structure, it is necessary
to satisfy limit states criteria on a consistent basis. This paper deals with a pro-
posed method of predicting the available rotation capacity and classifying mem-
bers rather than sections. The available rotation capacity is predicted on the basis
of two principal parameters and an interaction equation. The proposed prediction
model is compared with experimental results.

Samevatting

In die plastiese analise van rame en deurlopende balke word daar aangeneem
dat voldoende rotasiekapasiteit beskikbaar is by posisies in die struktuur waar
plastiese skarniere waarskynlik by swigting sal vorm. Om die geldigheid van
hierdie aanname te bevestig, is dit nodig om die rotasiekapasiteit by kritiese posisies
te kan voorspel. Die hoeveelheid rotasiekapasiteit benodig is afhanklik van die
geometrie van die struktuur en die belastings wat daarop inwerk, en kan
gekwantifiseer word binne sekere parameters. Die voorspelling van die beskikbare
rotasiekapasiteit veroorsaak dat sekere grenslimietstaatkriteria konsekwent
bevredig moet word. In hierdie verhandeling word daar ‘n metode voorgestel
waarmee die beskikbare rotasiekapasiteit voorspel kan word. Dit word duidelik
dat struktuurelemente, eerder as snitte, gegroepeer kan word in terme van
rotasiekapasiteit. Die voorgestelde wiskundige model voorspel die rotasiekapasiteit
aan die hand van twee hoofparameters en ‘n interaksievergelyking. Die
voorgestelde model word vergelyk met eksperimentele resultate.
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Introduction
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pacity in members in order to achieve the large strains associated with the
formation of plastic hinges at critical locations in the structure. A method
is proposed in this paper whereby members rather than sections may be
optimized in order to achieve the required flexural ductility to validate
the fundamental assumptions pertaining to plastic design.

Researchers have identified the two principal parameters that control
plastic collapse of structures as being the rotation required in the struc-
tural members at critical points and the rotation available in structural
members.

In this context the available rotation is defined as the range of inelastic
rotation over which the bending moment exceeds the fully plastic mo-
ment of the section.

Consistent with limit states philosophy, the required rotation may be
classified as an action effect, while the available rotation may be defined
as a resistance effect.

Kemp (Kemp and Dekker, 1991) has proposed a limit states criterion
whereby the available rotation (resistance effect) should exceed the re-
quired rotation (action effect) in regions of the member or at end-connec-
tions where inelastic behaviour occurs. In line with current limit states
philosophy, this criterion is formulated as follows:
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where 6 is the total inelastic rotation at a plastic hinge or end connection
consistent with the design resistance moment exceeding the fully plastic
bending moment M , 8, is the rotation required at critical points in a struc-
ture to achieve a fully plastic distribution of bending moments, and y,  is
a partial material factor to account for uncertainties in both the required
and the available rotations at critical points in the structure.

Avalue of v, of between two and three has been proposed by Kemp
(Kemp and Dekker, 1991) for Eqn 1, the lower value for relatively ductile
modes of failure such as commonly observed in local and lateral buckling,
with the higher value applying to sudden or brittle fractures.

The total inelastic rotation at a plastic hinge may be provided by plastic-
ity within the member or by elastic and inelastic deformation of the con-
nection itself. This paper will focus on rotation within the member only,

ﬂs
mMp ..._._._._._./,. ...........
/
Mp b e = 74_ _______________________
/
y)
0, O
VI
9«'ai
|

Fig 1: Typical moment-rotation curve for a member containing a plas-
tic hinge
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while recognizing that deformation in the connection itself serves to alle-
viate the required rotation.

In order to provide a comparison between levels of flexural ductility in
different members, the rotation at a plastic hinge may be expressed in a
non-dimensional form as the ratio of the total rotation over which the
bending moment exceeds the fully plastic moment of resistance, to the
elastic rotation. This ratio is defined as the rotation capacity of a member
as shown in Fig 1.

In a non-dimensional form, the rotation capacity of the member at a
plastic hinge may be defined in terms of the rotation capacity at maxi-
mum moment, referred to as:

It is generally recognized that the rotation capacity at maximum mo-
ment can be measured with greater accuracy in experiments on plain steel
beams than the available rotation capacity. Despite the complications in-
volved in predicting or even measuring the falling branch of a moment-
rotation curve, experimental evidence would indicate that the available
rotation capacity would be approximately equal to double the rotation
capacity at maximum moment.

To satisfy the limit states criterion formulated in Eqn 1, it is necessary to
quantify the required rotation or rotation capacity, which is a function of
the geometry of the structural frame and the arrangement of the loading,
as well as the rotation available in the structural members at critical posi-
tions in the structure. A simplified and consistent method of quantifying
the available rotation capacity is presented in this paper and accepted cri-
teria of required rotation capacity are used as a basis for classifying mem-
bers rather than sections in terms of being suitable for plastic design or
not.
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The required hinge rotation at critical points of any framed structure or

continuous beam as determined by a rigorous elasto-plastic analysis m
be reduced if the following factors are taken into account:

* Elastic and inelastic rotation in the connections

* The degree of displacement control present in statically indeterminate
structures as opposed to the total load-control prevalent in statically
determinate structures

* Strain-hardening, which can increase the flexural resistance at critical
points and reduce the hinge-capacity required

Kemp (Kemp and Dekker, 1991) has proposed that a value of rotation
capacity measured at maximum moment of 1,0 would be consistent with
members that are required to achieve at least their fully plastic moment of
resistance, commonly referred to as class 2 sections in design codes.

Members that are required to achieve the necessary redistribution of
bending moments to form a fully plastic collapse mechanism, commonly
referred to as class 1 sections in design codes, have been shown to require
rotation capacities at maximum moment in the region of 3,0, correspond-
ing to a maximum redistribution of bending moments of some 35 per cent
based on an elastic analysis of a continuous member with uniform section
properties. The proposed requirement of a rotation capacity at maximum
moment of 3,0 would therefore be consistent with an available rotation
capacity of 6,0.

Strain-weakening mechanisms in flexural elements

The moment-rotation relationship shown in Fig 1 is typical of tests on
plain steel beams. The maximum moment in the member is greater than
the fully plastic bending moment owing to the effects of strain-harden-
ing. The amount of inelastic rotation that will occur after achieving the
fully plastic bending moment is limited by some form of instability in the
compression zone of the section.

Measurement of rotation after the maximum moment is achieved is
complicated by the energy stored in testing apparatus and is considered
to be somewhat similar to the actual behaviour in statically-indetermi-
nate structures where some form of displacement control would normally
exist, in contrast to the total load control prevalent in tests on statically-
determinate beams.

The amount of inelastic rotation that will occur at a plastic hinge is di-
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rectly related to the strain-hardening properties of structural steel and
the ratio of the maximum moment to the fully plastic moment, defined in
this paper as:

M"Z
m = —
M
v
where:
/
M = maximum moment at the plastic hinge prior to the onset of strain-
weakening behaviour
M = fully plastic moment or design moment

v
Consider the idealized stress-strain curve for structural steel shown in
Fig2.
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Idealized moment strain relationship for a steel beam containing a plastic hinge

Fig 2: Idealized stress-strain curve and moment-strain relationship for
a structural steel beam

Based upon the idealized tri-linear stress-strain curve for structural steel
and a linear moment-strain and moment-curvature relationship using
Lay’s (Lay and Galambos, 1965) discontinuous yield theory, as shown in
Fig 2, Kemp (1985) has shown that the inelastic rotation capacity at maxi-
mum moment () may be expressed as:

m-1
r,=—— [2s-1+ (m-1)] 2)
m

where s = ratio of strain at the onset of strain-hardening to the yield strain
and e = ratio of strain-hardening modulus to the elastic modulus.
There is a common tendency in current design codes to classify sections
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Fig 3: Classification of sections in terms of rotation capacity

in terms of rotation capacities that can be achieved subject to certain re-
strictions on lateral slenderness. This classification of sections is best illus-
trated by comparing the theoretical moment-rotation curves applicable
to each classification as shown in Fig 3.

The current basis of classification of sections in terms of rotation capac-
ity only considers the geometry and slenderness of the compression zones
of the cross-section and is therefore intended to prevent the following
forms of buckiing: '

. Local buckling of the compression flange of the section
. Local buckling of the portion of the web in compression

Two possible buckling modes of the compression flange have been iden-
tified in experiments on plain steel beams, viz a symmetrical buckling mode
where little or no rotation of the flange occurs about the web and an anti-
symmetrical mode related to sympathetic buckling of the portion of the
web in compression. These modes of buckling are shown in Fig 4.

=

Fig 4: Local buckling of compression flange and web

Despite this tendency towards classification in terms of section geom-
etry only, lateral buckling has been identified as a principal cause of strain-
weakening behaviour.

Code requirements have traditionally treated the three forms of buck-
ling in isolation, thereby implying no interaction between the different
modes. Yura (Yura et al, 1963), Hancock (1978) and Kemp (1985) have dis-
cussed the interactive nature of local and lateral buckling and have pro-
posed models reflecting this behaviour. Dekker (1989) showed that, pro-
vided lateral buckling of the member is effectively prevented, very high
values of rotation capacity can be achieved after local buckling. In these
tests, T-sections were used to prevent local web buckling interacting with
local flange buckling. Dekker (1998) has proposed that local buckling of
the compression flange should be considered in the anti-symmetrical mode
only and should allow for local buckling of the web by considering the
slenderness of the portion of the web in compression.

Prediction model for local buckling

By considering Eqn 1 it becomes clear that in order to quantify rotation
capacity for a member containing plastic hinges, it is necessary to predict
the ratio of maximum moment to fully plastic moment, ie the extent to

which strain hardening can occur in the member at the plastic hinge. A
suitable prediction model should consider the influence of both local and
lateral buckling and should correctly reflect the interaction between the
buckling modes. In this paper the prediction models for local and lateral
buckling are first considered independently and a suitable interaction
equation is then proposed. .

The prediction model for local buckling used in this paper is based on
the proposals of Kemp (1985), with certain simplifications. The proposed
local flange/web buckling model considers supercritical and subcritical
conditions in the web and allows for an independent assessment of the
local flange/web buckling resistance as a function of the slenderness of
the flange outstand, the slenderness of the portion of the web in com-
pression and the material properties of the section.

The resistance of the flange and web to local buckling is expressed in a
dimensionless form as a proportion of the fully plastic moment and de-
fined as m_. Dekker (1998) has previously proposed an interactive flange/
web buckling model based on a modification of the proposals of Kemp
(1985) where the resistance to local flange buckling may be expressed as a
proportion of the fully plastic moment of resistance of the section. The
proposed model considers local buckling of the portion of the web in com-
pression. By assuming typical values as suggested by Haaijer (1969) of the
material properties of steel in the plastic region, elastic modulus E = 200
GPa, plastic modulus E_= 4 GPa, and the plastic strain-hardening ratio s
= 10, the dimensionless local buckling parameter m, may be expressed as
given by Egn 3: '

235 . Y
m, = 270 <T) [ 1-0,017 (t—fﬂ <7f> +06 (3)

where:

h, = depth of web in compression

t, = thickness of the compression flange
b = width of compression flange

t = thickness of the web

Eqn 3 may be represented graphically as a family of curves whereby
the local buckling parameter is expressed as a function of the flange slen-
derness ratio, for a given value of web slenderness.

Fig 5 clearly demonstrates the principle of compensation of one pa-
rameter in terms of another. A value of the local buckling parameter equal
to one that is consistent with the minimum value required for this class of
section may be achieved with various combinations of web and flange
slenderness.

A value of web slenderness h/t,=35 is consistent with many current
code requirements for class 1 sections and is shown to require a value of
flange slenderness of b/f, <16. The model also demonstrates that a value
of the flange slenderness parameter b/t, of as high as 20 can still achieve a
value of the local buckling parameter in excess of 1,0 provided that the
value of the web buckling parameter is reduced to 25 or lower.

Prediction model for lateral buckling
The complexities associated with quantifying the lateral buckling re-
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Fig 5: Variation of local buckling parameter as a function of flange and
web slenderness
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sistance of a member containing a plastic hinge have been discussed by
Kemp (1984). The prediction model used in this paper (Dekker, 1998) is
based on the principle of modal extrapolation and considers non-uniform
material properties, a linear variation in the stress in the compression flange
caused by moment gradient and linear moment-strain and moment-cur-
vature relations allowmg for a physical length of the plastic hinge.

The resistance to lateral buckling is expressed in a form similar to that
used for local flange buckling and defined as #1,.The lateral buckling of
beams containing plastic hinges has been con51dered by modelling the
compression flange of the beam, containing both yielded and elastic por-
tions, as a strut subjected to a varying axial load, consistent with the vari-
ation in bending moment as shown in Fig 6.
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Fig 6: Idealized model for lateral buckling

Lateral restraints are assumed at the position of maximum bending
moment and at the ends of the beam. In this manner an effective length
factor for the plastic zone is derived, which, when used in conjunction
with the classic beam-buckling equation, may be used to quantify the lat-
eral buckling resistance of beams containing plastic hinges. The theoreti-
cal solutions previously proposed by Dekker (1998) are tedious to apply,
but may be represented in a simple form as given by Eqn 4.

1

m =
1,029 -41 (

r
v

where [, = distance between lateral restraints or half span of simply sup-
ported beam containing a plastic hinge.

Eqn 4 is valid for the most common case where the bending moment
varies from zero to m M, over alaterally unsupported distance equal to L.
This condition is also consistent with most tests on steel beams. The vari-
ation of the lateral buckling parameter as a function of the lateral slender-
ness ratio is shown in Fig 7.

Eqn 4 is illustrated graphically in Fig 6 and shows the variation of the
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Fig7: Variation of lateral buckling parameter as a function of lateral
slenderness
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lateral buckling parameter m, as a function of the lateral slenderness ratio
L /r, 1tis of interest to note that values of the lateral buckling parameter
m, greater than 1,0 are obtainable at lateral slenderness ratios exceeding
140.

Interactive lateral torsional/local flange-web buckling

The effective or interactive buckling moment may be expressed as a
proportion of the fully plastic moment of resistance, therefore mM, is used
to define the value of the interactive buckling resistance of the member. It
is important to recognize the relative importance of local and lateral buck-
ling. Two separate cases are considered:

Case 1: Lateral torsional buckling precedes local flangefweb buckling (m, < m)-
where m, is given by Eqn 4 and m, is given by Eqn 3

By con51dermg lateral torsmnal buckling as the principal cause of strain-
weakening behaviour, it is proposed that for the case under consideration
the overall member resistance should be based on the lateral buckling re-
sistance, therefore:

m,MV = m,MP orm, = m,

Case 2: Local flange/web buckling precedes lateral torsional buckling (m < my)

In this case the lateral buckling resistance may be reduced by local flange
buckling to a value defined as m M where m,is the reduced or interactive
moment multiplier. The value of m. will be upper-bound by the lateral
buckling resistance and lower-bound by the local flange/web buckling re-
sistance.

Local web buckling will limit the stress due to bending at the flange tip
to a value determined by the local flange buckling resistance, mf,. In the
absence of local flange buckling the stress in the flange would be gov-
erned by lateral buckling and it is therefore assumed that this condition
would also apply at the centre line of the beam. _

A condition of stress in the compression flange is therefore assumed
where the stress at the flange tip is limited by local buckling to a value
equal to the local flange/web buckling resistance, n1.f, and the stress at the
centre line of the flange is governed by lateral bucklmg to a value equal to
m, f. By combining the two conditions, the stress distribution for the case
whcre local flange buckling precedes local flange/web buckling is shown
in Fig 8.

The variation in stress between the flange tip and the centre line of the
beam is dependent on the extent to which the local flange buckle has de-
veloped and therefore on the ratio of m,/m,.

The simplest variation in stress between the two limiting values would
be linear and this form is considered to be consistent with the required
degree of accuracy.

It is then possible to express the interactive resistance to lateral buck-
ling preceded by local flange/web buckling as follows:

m, + m,
m=— 6)
2

The influence of moment gradient

The derivation of Eqn 5 assumes that the point of maximum lateral cur-
vature coincides with the point of maximum amplitude of the local flange
buckle. For partially yielded beams under moment gradient, the point of
maximum lateral curvature will occur close to the transition point between
the elastic and plastic length, while the maximum deflection of the local
buckle will occur in the middle of the plastic length.

Under conditions of moment gradient, Eqn 5 reflects the influence of
the local buckle on a beam with an unbraced length approximately haif
the actual length or a lateral buckling resistance approximately four times
the actual resistance, as shown in Fig 9. A revised form of Eqn 5 is there-
fore proposed as Eqn 6, in which the ratio of m:m, is adjusted in the pro-
portion of 1:4, thereby providing a better reflection of the influence of
local buckling on the interactive buckling resistance.

m, +4m,
m =— (6)
5

The proposals discussed in this paper are illustrated in Fig 10.

The solid line in Fig 10 represents a moment-rotation curve for a beam
in which local buckling did not occur before or after lateral buckling while
the moment at the plastic hinge exceeded M . The dotted line A shows a
moment-rotation curve based upon Egn 6 for a beam having the same
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Fig 9: Influence of moment gradient on the

position of the local buckle relative to

level of lateral buckling resistance but in which local flange buckling oc-
curred at a moment equal to m M, wherem M <m M

This situation reflects a reduction in the available rotatlon capacity as
well as the rotation capacity at maximum moment. The dotted line B shows
the moment-rotation curve for a beam in which local flange buckling oc-
curred after lateral buckling and hence the available rotation capacity may
be expected to be more than in the previous case. No attempt has been
made to quantify the influence of local flange buckling on the falling branch
of the moment-rotation curve, owing to the difficulties associated with
consistent and accurate measurements in this region, as previously dis-
cussed.

Application to limit states criteria for rotation capacity

Combining Eqns 3, 4, 6 and 2 will allow the user to classify members in
terms of flexural ductility, bearing in mind that the upper bound limit on
flexural resistance will always be governed by lateral stability. Consistent
with the proposals of Kemp (1985), a partial material factor of y = 2in
Eqn 1 would require a value of available rotation capacity equal to six for
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Fig 10: Proposed interactive lateral/local buckling model

the lateral buckle

a class 1 member.

Experimental evidence indicates that the available rotation capacity
would at least equal the rotation capacity at maximum moment. For a
class 1 member a rotation capacity at maximum moment of 3,0 would there-
fore be considered adequate. For a given value of yield stress, the required
rotation capacity may be achieved by limiting the lateral slenderness ratio
for a given section. In a similar fashion, the lateral slenderness ratio may
be extended for a section where the section properties are subcritical (m,
> 1). This concept may be best illustrated by considering tests on steel
beams having various combinations of super-optimim and sub-optimum
levels of local and lateral buckling resistance.

Tests on plain steel beams for the purpose of measuring rotation capaci-
ties are commonly performed on simply supported beams subjected to a
central point load.

Such conditions satisfy the assumptions made in the derivation of the
lateral buckling model, Eqn 5, as well as the interaction equation as given
by Eqgn 8. Results of 44 tests of this type have previously been used to
demonstrate the proposed model. In this paper certain of these results
have been selected to demonstrate the concept of super- and sub-opti-
mum levels of local and lateral buckling resistance, combined to allow
classification as class 1 members where a value of rotation capacity at maxi-
mum moment of 3,0 is used as a limiting criterion. Comparison of the
proposed interactive model with selected laboratory specimens where
various combinations of local and lateral slenderness parameters are shown
to satisfy different levels of member classification are shown in the accom-
panying table.

Test parameters such as flange, web and lateral slenderness have all been
normalized for the yield stress to a value of f, = 235 MPa (European stand-
ard). References to test specimens have been designated as La (Lukey and
Adams, 1969), K (Kemp, 1985) or RK (Kuhimann, 1989).

Itis evident that regardless of the code of practice that is adopted, suffi-
cient rotation capacity may be obtained from class 2 sections to allow clas-
sification as class 1 members, provided that the lateral slenderness ratio is
limited enough to provide an acceptable value of the lateral buckling pa-
rameter, m,.

It is also clear that the lateral slenderness governs the upper-bound
bound flexural resistance as reflected by the lateral buckling parameter.
Consider as an example the test specimen designated K14. Despite the
relatively high value of the local buckling parameter of m, = 1,5, consist-
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Classification of members by rotation capacity

Test ref bt, h./t, L/, m, m, m, m, " r Class
Egn3 Eqnd4 | Egneé Obs Egn2 Obs member-
section
Laal 20,7 15,3 38,6 1,06 1,21 1,18 1,39 4,3 5,1 1-2
Lab2 17,6 254 44,1 1,09 1,18 1,16 117 3,8 472 1-1
Ladl 154 239 77,1 1,27 11 1,1 1,09 22 15 2-1
K14 12 30,6 53,6 1,50 1,15 1,15 1,10 3,5 3,6 1-1
K4 15,1 20,5 604 1,37 1,13 1,13 1,17 29 33 2-1
K7 19,7 17,3 30,1 1,09 1,28 1,24 1,24 6,1 74 1-2
RK8 22,1 28,4 32,7 0,89 1,26 1,19 1,33 8,8 11,5 1-2
RK24 22,2 27,6 35,1 0,89 1,24 1,17 1,26 8,0 52 1-2/3
ent with the stocky flange geometry b/t, = 12, the flexural resistance was
clearly limited by the value of the lateral buckling parameter m, = m, = R
eferences

1,15 (predicted) and m, = 1,10 (observed). This particular example clearly
illustrates the fundamental importance of lateral slenderness in the con-
text of rotation capacily.

Conclusion

A method of classifying members in terms of rotation capacity allows
for a consistent limit states approach to rotation capacity. The proposed
method considers local and lateral buckling in terms of dimensionless
buckling parameters that are then combined by means of an interaction
equation. This approach has previously been shown to provide accept-
able accuracy when compared with experimental work by others. The
method as presented here in its simplified form may be easily applied in a
design coniext.

A section commonty classified as a class 2 section on the basis of flange
slenderness may, for example be re-classified as a class 1 member by an
appropriate reduction in the lateral slenderness ratio.

Classification of members rather than sections provides a more consist-
ent approach to limit states requirements related to rotation capacity.

Current code provisions relating to class 1 sections would appear to be
sub-optimum, requiring sub-critical values of lateral slenderness in order
lo achieve the necessary rotation capacity.

This paper was submitted in November 1998
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